•  
  •  
 

Agency

Caddo Archeology Journal

DOI

https://doi.org/10.21112/.ita.2018.1.10

Abstract

Geophysical survey and other non-invasive methods are, in some cases, the only options available for archaeological investigation. This is exemplified at the Collins site, a possible Late Woodland to Middle Mississippian period, multi-mound, civic ceremonial center in Northwest Arkansas. The site is located on private property and although excavation is not allowed, non-invasive survey methods are permitted on its northern section. This paper presents the results of a ground-penetrating radar survey over Mounds B, C, and D. The results reveal a number of features that are interpreted as mortuary structures as well as evidence of multiple building episodes over time within distinct layers of Mound C. A high-resolution DEM generated with aerial imagery is used in interpreting the GPR data as well as to provide an updated map of mound size and distribution. By integrating the GPR data with the DEM, orthoimagery, and magnetic gradiometry data from a previously documented survey, and comparing the results to ethnohistoric accounts, interpretation of the geophysical data is enhanced. Geophysical survey is often used to assess an archaeological site on a landscape scale. By narrowing the scope to individual mounds, this article demonstrates how multiple, complementary technologies, when used in concert, can inform on the feature level.

Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Share

 
COinS

Tell us how this article helped you.

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.