Date of Award

Spring 5-8-2023

Degree Type

Thesis

Degree Name

Master of Science - Statistics

Department

Mathematics and Statistics

First Advisor

Jacob Turner

Abstract

In this work, we provide an overview of the Cox proportional hazards model for time to event or survival analysis and the notion of propensity score matching to deal with confounding factors. A full analysis is reported in Chapter 2 concerning mortality for in-center dialysis patients with sickle cell disease to demonstrate the application of a general analysis strategy that has some logistical benefits over more traditional approaches to accounting for confounding variables. We also provide some insight and discussions on the challenges and future research questions that will emerge when trying to implement this strategy as a monitoring tool over time.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS

Tell us how this article helped you.

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.