Effects of Prescribing Burn on Cavity Trees of Red-Cockaded Woodpeckers

Richard N. Conner
Wildlife Habitat and Silviculture Laboratory, Southern Research Station, U.S.D.A., Forest Service, Nacogdoches, Texas 75962

Ann Snow

Follow this and additional works at: http://scholarworks.sfasu.edu/forestry

Part of the Forest Sciences Commons
Tell us how this article helped you.

Recommended Citation
http://scholarworks.sfasu.edu/forestry/385

This Article is brought to you for free and open access by the Forestry at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.
EFFECTS OF A PRESCRIBED BURN ON CAVITY TREES OF RED-COCKADED WOODPECKERS

Prescribed burning helps maintain low-lasity understory vegetation apparently preferred by red-cockaded woodpeckers (Picoides borealis) at colony sites (Hopkins and Lynn 1971, Jackson et al. 1977). Beckett (1971), Hopkins and Lynn (1971), and Jackson et al. (1977) suggested that caution be used during routine prescribed burns on colony sites because resin flows on cavity trees can ignite and damage cavities. Hopkins and Lynn also recommended that combustible material be raked away from the bases of active cavity trees, but suggested no distance.

On 21 March 1978, we discovered that a prescribed burn had been conducted in an area containing 4 red-cockaded woodpecker colonies. We reconstructed pre-burn conditions of each cavity tree using records kept by personnel conducting the prescribed burn and our own field examinations after the burn. Our objectives were to assess fire damage to 21 cavity trees in the area and to recommend measures to prevent damage to red-cockaded colony sites in future burns.

The burn was conducted on 21 and 22 February 1978 in a 330-ha longleaf pine (Pinus palustris) mature timber stand in Jasper County, East Texas. Basal area of trees in the area was 18–20 m²/ha and sparse understory vegetation was 1–2 m high. Fuel for the burn was 6 years' accumulation of grass, leaf litter, and branch slash; 3 years' accumulation is recommended for hazard reduction in southeastern United States (Sackett 1975). Combustible fuel had been raked to about 1 m away from 11 woodpecker cavity trees, and the ground at the base of 10 trees was left unraled.

At the start of the burn air temperature was 6.5 °C and the wind was steady from the northwest at 8 km/hr; conditions were suitable for a safe burn (Crow 1973). Although a back fire (burning into the wind) was attempted, a head fire (burning with the wind) burned through most of the area on both days. On the second day, gusts of wind caused the fire to burn hotter than desirable, scorching the bark on some trees.

On 21 March we examined the 21 cavity trees for resin flow and degree of burn. Resin flow was classified as follows: abundant—resin flow covering at least 4 vertical meters of the tree; moderate—resin flow covering less than 4 vertical meters of the tree; none—no fresh resin flow present. Degree of burn was classified as: severe—burnt into crown; slight—burnt 1–2 m up the bole; unburned.

RESULTS AND DISCUSSION

Six of the 21 cavity trees had abundant resin flow, and all 6 were burned severely, even though the ground at 2 of them had been
raked (Table 1). On trees with abundant flows, resin was so flammable that raking was ineffective.

Six of 11 cavity trees with moderate resin flows had been raked; 3 were slightly burned and 3 were unburned (Table 1). Of the 5 un-raked trees with moderate resin flow, 1 was severely burned, 3 were slightly burned, and 1 was unburned. On trees with moderate resin flows, raking may have helped prevent burns. The 4 cavity trees that lacked fresh resin did not burn, whether the ground around them had been raked or not.

The bark of noncavity trees in the area was often scorched up to 1 m above the ground, and occasionally up to 2.5 m. Fire never entered the crowns of noncavity trees.

Red-cockaded woodpeckers nested in existing cavities in 2 of the 7 severely burned cavity trees during 1978; 3 young fledged from the 2 trees. Clans nesting in these burned trees scaled the burnt bark from tree exteriors and pecked wells that provided substantial, new resin flow. None of the other 19 trees examined were used for nesting. We could not find nest trees of the other 2 clans in the burned area. Nest trees previously used by these 2 clans were severely burned and had all cavities burned out, and 1 tree had burned through at a cavity and fallen.

On 15 July we discovered that 3 of the remaining 5 severely burned trees with abundant resin were dead. They had been attacked and infested by several species of beetles. No other trees within 150 m of each tree had been infested. Examination of beetle galleries and individuals emerging from logs in the lab revealed that Ips avulsus, I. calligraphus, and Dendroctonus frontalis (Scolytidae) were the initial invaders. Flatheaded borers (Buprestisidae) and long-horned beetles (Cerambycidae) were secondary invaders. The beetles coincidentally inoculated the trees with an imperfect fungus: bluestain, or Ceratocystis spp. Bluestain fungus grows rapidly and clogs both xylem and phloem tissue, thus killing the tree. Because red-cockaded woodpeckers almost always nest in living pine trees, any factor that kills cavity trees is detrimental to the woodpecker.

We estimated the effects of fire on the 16 cavities and 7 cavity starts within the 6 severely burned trees that had abundant resin flows by vertically sectioning the 4 dead trees with a chain saw and visually inspecting the 2 standing live trees. Only 6 cavities and 2 starts would have been useable had all trees remained alive. Seven cavities were burned so severely that gaping holes, 30–40 cm in diameter, were left in the trees. Entrance tubes of the 3 other cavities were burned on to 12–24 cm in diameter, and the cavities were burned about 3 cm larger on all dimensions. Cavity entrances of this size are seldom used by red-cockaded woodpeckers (Jackson 1978). The 4 cavity starts judged unusable were burned 2–3 times their normal size. The mean height of cavities was 8.5 m ± 2.5, a distance well above the height fire reached on noncavity trees.

MANAGEMENT RECOMMENDATIONS

Use extreme caution when conducting prescribed burn on red-cockaded woodpecker colony sites. The most active cavity trees which are probably the most important tree to red-cockaded woodpecker reproductive efforts (Jackson 1977), are most susceptible to burning because of highly volatile turpentines in abundant, fresh resin flows. Burns on cavity trees can destroy the trees, cavities, and cavity starts. Even if burns do not destroy cavities, they can enlarge entrance tubes, possibly discouraging use by red-cockaded woodpecker and encouraging predators and nest competitors (Jackson 1978).

<table>
<thead>
<tr>
<th>Degree of burn</th>
<th>Resin Flow</th>
<th>Abundant N</th>
<th>Un-raked N</th>
<th>Moderate N</th>
<th>Un-raked N</th>
<th>None N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td></td>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slight</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unburned</td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Because colony sites are typically more sensitive to burning than the forest around them, we suggest that a fire lane be plowed at a distance of 60 m from the edge of colony sites and that they be burned separately. Since a ten meter distance was ineffective on trees with abundant resin, we also suggest that combustible materials be raked at least 3 m away from bases of cavity trees, which hopefully will be a sufficient distance to prevent ignition. Adequate fire suppression equipment should be kept available to protect cavity trees with heavy resin flows covering most of the lower portions of the trees. Prescribed burning at colony sites should be done with a backfire at least every 3 years to prevent accumulation of too much fuel.

We thank J. A. Jackson, M. R. Lennartz, and M. C. Reeves for constructive suggestions on the manuscript.

LITERATURE CITED

RICHARD N. CONNER, USDA Forest Service, Southern Forest Experiment Station, Nacogdoches, TX 75962, AND BRIAN A. LOCKE, School of Forestry, Stephen F. Austin State University, Nacogdoches, TX 75962.

Received 11 December 1978.
Accepted 24 May 1979.

MINIMUM STANDARDS AND FOREST WILDLIFE MANAGEMENT

As demands for timber products increase, many forest managers will want to shorten timber rotation times to meet demand and to further minimize losses to decay. Anticipating such management policies on lands designated for multiple use, wildlife scientists have presented minimum standards of selected habitat factors to be provided for wildlife.

Conner et al. (1975) suggested that the minimum diameter of trees used for nest sites by pileated woodpeckers (Dryocopus pileatus) might be the best to use when setting length of timber rotations. Thomas et al. (1976) and Bull (1978) listed minimum diameters and heights of snags to be provided when managing for cavity-nesting birds in the Pacific Northwest. Bull and Meslow (1977:337) recommended “managing for a group of snags greater than 20 inches in d.b.h.” when managing snags for pileated woodpeckers. Measurements of pileated nest trees in the area averaged 76 cm DBH (30 inches) and the smallest nest tree observed was 58 cm DBH (23 inches). Berner and Gysel (1969) recom-
HIGHLIGHTS

SSSS is the name of the game for BILL MARTIN and RUSS GUM in ECONOMIC VALUE OF HUNTING, FISHING AND GENERAL OUTDOOR RECREATION.

Modern-day traffic prompted ROW CASE to study INTERSTATE HIGHWAY ROAD-KILLED ANIMALS: A DATA SOURCE FOR BIOL-OGISTS. Drive on, gang, for a Rosenthal of data. - Rubber Duck!

BRUCE THOMPSON compiled some entrees of controversy to prepare FENCE-CROSSING BEHAVIOR EXHIBITED BY COYOTES. With a ladder, no doubt.

Species diversity and population ecology are outlined in STREAM CHANNELIZATION IMPACTS ON SONGBIRDS AND SMALL MAM- MALS IN VERMONT by EARL POSSARDT and WENDELL DODGE. The "straight and narrow" line, not necessarily the best for these critters.

A 1974 COYOTE HARVEST ESTIMATE FOR 17 WESTERN STATES is presented by ERWIN PEARSON. Here's a status report and a plan for routine regulations.

In Brief: Articles, read THE AMERICAN DISPOSITION TOWARD HUNTING IN 1978 by BILL SHAW et al. CHUCK HENRY and JOHN KURTZ's report of GREAT BLUE HERONS RESPOND TO NESTING HABITAT LOSS; DOMESTIC DOGS AS PREDATORS ON DEER by DWAIN LOWRY and KATHERINE McARTHUR, AN ACETATE SURVEY GUIDE FOR FOREST WILDLIFE HABITAT IMPROVEMENT by MIKE PUGLISI and JERRY HASSINGER, ANALYSIS OF AERIAL CIRCLING SURVEYS FOR CANADA GOOSE BREEDING POPULATIONS by TOM TACHA and RAY LINDER, and CURT GRIFFIN and PAT REDIG's note on the SUCCESSFUL REHABILITATION AND REINTRODUCTION OF BALD EAGLES. New Edition for the Bulletin and Journal, too.

PLUS REGULAR FEATURES

Vol. 6, No. 1

Spring, 1978