A major disadvantage of the Cloud GIS applications, however, is found when compared to the desktop platform. While ArcGIS.com does offer some tools to make maps, it pales in comparison to the sheer number of analysis tools available to the standard ArcGIS(Fg.4). A second disadvantage stems from the risk of hacking to uploaded private data to the cloud, which could be remedied with more stringent data security.

Conclusions

Use of the cloud for GIS applications will need to jump a few hurdles in order for future acceptance. First, complexity generally translates into less user friendly with computer applications, but Cloud GIS platforms need to be able to better compete with the analysis tools of traditional desktop platforms. Without many of the more in depth tools, the Cloud GIS platform becomes utility of amateur users, and will not gain traction with GIS professionals. Second, the security issues with putting private data onto a cloud should be addressed more carefully. If one cannot trust that his data is safe, he won’t have a reason to upload it and use cloud computing.

The advantages of this technology, however, are greatly compelling. The Cloud would unshackle users from their traditional posts, and allow greater productivity due to this independence from the 4 walls of the office. The data management in terms of reliability and scalability are leaps and bounds better than a traditional desktop environment, it becomes apparent quite quickly how useful it could become. Though it seems simple at first glance, ArcGIS.com(Fg.2) and its derivative mobile applications provide enough tools to create maps from data collected or made available by ESRI. Creating data on the smart phone mobile application was as simple as walking around and adding points(Fg.3a). These points can then be uploaded to ArcGIS.com to be analyzed(Fg.3b).

A major disadvantage of the Cloud GIS applications, however, is found when compared to the desktop platform. While ArcGIS.com does offer some tools to make maps, it pales in comparison to the sheer number of analysis tools available to the standard ArcGIS(Fg.4). A second disadvantage stems from the risk of hacking to uploaded private data to the cloud, which could be remedied with more stringent data security.

Conclusions

Use of the cloud for GIS applications will need to jump a few hurdles in order for future acceptance. First, complexity generally translates into less user friendly with computer applications, but Cloud GIS platforms need to be able to better compete with the analysis tools of traditional desktop platforms. Without many of the more in depth tools, the Cloud GIS platform becomes utility of amateur users, and will not gain traction with GIS professionals. Second, the security issues with putting private data onto a cloud should be addressed more carefully. If one cannot trust that his data is safe, he won’t have a reason to upload it and use cloud computing.

The advantages of this technology, however, are greatly compelling. The Cloud would unshackle users from their traditional posts, and allow greater productivity due to this independence from the 4 walls of the office. The data management in terms of reliability and scalability are leaps and bounds better than a traditional setting, and the ability to share data across a very wide group of users would make long distance collaboration quite simple.

With a little bit of time and polishing, the Cloud could very well become the standard platform by which all GIS work is done. It will be interesting to see how this technology becomes widely used among professionals in the future.