2012

The East Texas Caddo: Modeling Tempo and Place

Robert Z. Selden Jr.
seldenjrz@sfasu.edu

Timothy K. Perttula
Archeological & Environmental Consultants, LLC

Follow this and additional works at: http://scholarworks.sfasu.edu/crhr

Part of the Applied Statistics Commons, Archaeological Anthropology Commons, Geographic Information Sciences Commons, Probability Commons, and the Radiochemistry Commons

Tell us how this article helped you.

Repository Citation
http://scholarworks.sfasu.edu/crhr/9

This Presentation is brought to you for free and open access by the Center for Regional Heritage Research at SFA ScholarWorks. It has been accepted for inclusion in CRHR: Archaeology by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.
The East Texas Caddo: Modeling Tempo and Place

Robert Z. Selden Jr.1 and Timothy K. Perttula2

1Department of Anthropology, Texas A&M University and Center for Regional Histories Research, Stephen F. Austin State University
2Archaeological and Environmental Consultants, LLC

ABSTRACT

This approach to the interpretation of ¹⁴C data can be frustrating, but its potential for providing more accurate predictions regarding occupation intensity or the warrants further consideration. While hesitant to use the proportion of radiocarbon dates as a marker for population fluctuations, we are more comfortable using the temporal dynamics from site-specific analyses for this discussion, which—once refined through the site comparison process—can provide a more accurate measure of regional occupation, once a sufficient sample of well-dated Caddo sites throughout East Texas stream basins and environmental habitats is obtained. Centuries changes in the frequency of ¹⁴C dates might be employed as a proxy for indicating population fluctuations, but we need to remain vigilant as we continue to refine our chronological models.

RESULTS

Although the number of sites is small, they highlight a possible temporal hiatus of nearly 400 years in the Red River basin, and another of nearly 200 years in the Cypress Creek basin, both of which appear here on the basis of data from one site in each river basin. The remaining peaks correlate with populations from the kernel density plot, and they illustrate a small peak in the Red River basin around 400 B.C. followed by slight increases in the dates from the Sulphur, Cypress, and Sabine basins around 200 B.C. This is prior to a 200-year gap in dates from the Sulphur and Sabine River basins for A.D. 50-220, after which a marked increase occurs in the number of identified Woodland sites for the Sulphur, Cypress, Sabine, and Neches River basins from A.D. 600-800.

CONCLUSIONS

We are quickly approaching an era where typological assignments can be associated with radiocarbon samples in this same manner, but significant advances in correlating these data with specific aspects of archaeological assemblages still need to be made as we progress in our analyses of the Woodland period of East Texas. This analysis represents only a small sample of ¹⁴C dates from the ETRD, which remains a large and understudied amalgam of radiocarbon dates that is available for use within current cultural resource management endeavors. Through the systematic employment of this methodological approach, it is plausible that similar analyses would reveal the same patterns presented here (i.e., shorter hiatuses during the later and better-understood Caddo period, and longer hiatuses ranging from the Archaic through Paleoindian periods), providing a productive medium through which dialogues regarding the material culture of East Texas can continue to be developed.