Cultural Resources Investigations Of The Cps Energy Eastwood Village Overhead Pole Replacement Project, San Antonio, Bexar County, Texas

Kristen M. Atwood

Follow this and additional works at: https://scholarworks.sfasu.edu/ita

Part of the American Material Culture Commons, Archaeological Anthropology Commons, Environmental Studies Commons, Other American Studies Commons, Other Arts and Humanities Commons, Other History of Art, Architecture, and Archaeology Commons, and the United States History Commons

Tell us how this article helped you.

Cite this Record
Available at: https://scholarworks.sfasu.edu/ita/vol2020/iss1/146

This Article is brought to you for free and open access by the Center for Regional Heritage Research at SFA ScholarWorks. It has been accepted for inclusion in Index of Texas Archaeology: Open Access Gray Literature from the Lone Star State by an authorized editor of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.
Cultural Resources Investigations Of The CPS Energy Eastwood Village Overhead Pole Replacement Project, San Antonio, Bexar County, Texas

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

This article is available in Index of Texas Archaeology: Open Access Gray Literature from the Lone Star State: https://scholarworks.sfasu.edu/ita/vol2020/iss1/146
CULTURAL RESOURCES INVESTIGATIONS OF THE
CPS ENERGY EASTWOOD VILLAGE
OVERHEAD POLE REPLACEMENT PROJECT,
SAN ANTONIO, BEXAR COUNTY, TEXAS

FINAL REPORT (Redacted)

Prepared for:
CPS Energy
145 Navarro Street
San Antonio, Texas 78205

Prepared by:
Kirsten M. Atwood, Ph.D.

Principal Investigator
Rhiana D. Ward, M.A.

Texas Antiquities Committee Permit Number 8820

Cultural Resources Report No. 19-009
ASF19-001-13

February 4, 2020
ABSTRACT

Raba Kistner Environmental, Inc. (RKEI), was contracted by CPS Energy (CLIENT) to conduct cultural resources investigations for the CPS Energy (CPSE) Eastwood Village Overhead Pole Replacement Project (Eastwood Village Project), conducted under CPSE Work Order Number 40236867. The project was located within the eastern right-of-way (ROW) of Upland Drive, between Jarbet Drive and Leonidas Drive in east San Antonio, Bexar County, Texas. The undertaking consisted of the archaeological monitoring of seven boreholes measuring an average diameter of 26 inches (66 centimeters [cm]) and an average depth of 98 inches (249 cm) to allow for new wooden overhead utility pole installation and eventual sidewalk installation along the eastern ROW of Upland Drive. For archaeological purposes, each pole installation will disturb approximately 3.66 cubic feet of surface area, for a total of 25.62 cubic feet, or less than 1/10th of an acre, for all seven poles.

Given that the project took place within a publicly owned ROW, and because CPSE is a political subdivision of the State of Texas, the project was subject to review under the jurisdiction of Chapter 35 of the Unified Development Code (UDC) of the City of San Antonio (COSA) (Article VI, Historic Preservation and Urban Design, COSA UDC), as well as the Antiquities Code of Texas (ACT) (Texas Natural Resources Code, Title 9, Chapter 191).

Cultural resources monitoring investigations for the Eastwood Village Project were conducted on March 28, 2019. Rhiana D. Ward served as Principal Investigator and Project Manager, and all field work was completed by Project Archaeologist Kirsten M. Atwood, Ph.D. Overall, the APE was found to be moderately impacted from existing utility installation and construction disturbance. No intact cultural deposits or features were observed. As such, no cultural materials were collected for this project.

RKEI made a reasonable and good faith effort to identify cultural resources within the given project area; however, no cultural deposits or features were identified. As such, RKEI recommends no further archaeological investigations for the current APE. However, should additions be made to the Project Area, additional cultural resources investigations may be required. All photographs and field records produced during field investigations will be curated at the Center for Archaeological Research at the University of Texas at San Antonio.
TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION .. 1
 Project Area and Area of Potential Effects ... 1

CHAPTER 2. ENVIRONMENTAL SETTING .. 4
 Geology ... 4
 Soils ... 4
 Flora and Fauna ... 5
 South Texas Climate ... 5

CHAPTER 3. CULTURAL CONTEXT ... 6
 Paleoindian Period .. 6
 Archaic Period ... 7
 Early Archaic .. 8
 Late Archaic ... 9
 Late Prehistoric Period .. 9
 Historic Period ... 10
 Previous Archaeological Investigations and Known Cultural Resources ... 12
 Historic Map Review ... 14

CHAPTER 4. METHODS OF INVESTIGATION ... 18

CHAPTER 5. RESULTS OF INVESTIGATIONS .. 19

CHAPTER 6. SUMMARY AND RECOMMENDATIONS .. 24

REFERENCES CITED .. 25
LIST OF FIGURES

Figure 1-1. Project location in San Antonio, Bexar County, Texas... 2
Figure 1-2. Overview of the APE with soils... 3
Figure 3-1. Known cultural resources and previous investigations within a 0.5-mile (0.8 km) radius of the project area. .. 13
Figure 3-2. APE projected on 1871 Bexar County parcel map by Louis Klappenbach (draftsman) and Herman Lungkwitz, (photographer). ... 15
Figure 3-3. APE depicted on 1897 Bexar County parcel map by John D. Rullmann............................ 16
Figure 3-4. APE depicted on the 1953 7.5-minute USGS topographic quadrangle map. 17
Figure 5-1. Results of cultural resources monitoring.. 20
Figure 5-2. Overview of the APE from the vicinity of Borehole 6, facing northwest..................... 21
Figure 5-3. Average soil profile for the APE, Borehole 4, facing north... 21

LIST OF TABLES

Table 1. Borehole Results... 22
CHAPTER 1. INTRODUCTION

Raba Kistner Environmental, Inc. (RKEI), was contracted by CPS Energy (CLIENT) to conduct cultural resources investigations for the CPS Energy (CPSE) Eastwood Village Overhead Pole Replacement Project (Eastwood Village Project), conducted under CPSE Work Order Number 40236867. The project was located within Upland Drive right-of-way (ROW) in east San Antonio, Bexar County, Texas (Figure 1-1). The undertaking consisted of archaeological monitoring of seven overhead utility pole replacement locations on March 28, 2019. This report summarizes the results of investigations and provides recommendations for future monitoring.

Given that the project took place within a publicly owned ROW, and because CPSE is a political subdivision of the State of Texas, the project was subject to review under the jurisdiction of Chapter 35 of the Unified Development Code (UDC) of the City of San Antonio (COSA) (Article VI, Historic Preservation and Urban Design, COSA UDC), as well as the Antiquities Code of Texas (ACT) (Texas Natural Resources Code, Title 9, Chapter 191). These legislations call for the assessment of all improvement activities that have a potential to disturb historically significant resources and significant subsurface deposits on lands owned by the State. Oversight of compliance with the UDC is provided by the COSA Office of Historic Preservation (OHP), while the ACT is administered by the Texas Historical Commission (THC).

Project Area and Area of Potential Effects

The Eastwood Village Project consisted of the replacement and installation of 28 overhead utility poles within the Eastwood Village community in eastern San Antonio, Texas. A review conducted by the CPSE Archaeologist on January 2, 2019, determined that no known cultural resources existed within or adjacent to the project area; however, the project was along the eastern terraces of Salado Creek. As such, cultural resources monitoring was required for seven of the 28 pole replacements. Specifically, monitoring investigations were required for the pole locations situated within the lower terraces of Salado Creek. No cultural resources monitoring was required for the remaining 21 pole locations situated within an upland setting. The Area of Potential Effects for the Eastwood Village Project encompassed approximately 0.27-mile (0.43 kilometers [km]) within the Upland Drive ROW, from its intersection with Jabet Drive to its intersection with Leonidas Drive (Figure 1-2). Each pole location was excavated to 26 inches (66 centimeters [cm]) in diameter with an average depth of 98 inches (249 cm).
Figure 1-1. Project location in San Antonio, Bexar County, Texas.
Figure 1-2. Overview of the APE with soils.
CHAPTER 2. ENVIRONMENTAL SETTING

The APE is situated immediately adjacent to the upper terrace of Salado Creek in a well-developed residential neighborhood. Prior to development, the natural vegetation of the APE consisted of medium to tall grasses and a few widely separated elm, hackberry, and mesquite trees. The current APE is now vegetated with manicured lawns and scattered trees. As such, the current species composition and numbers of native flora and fauna that inhabit the APE has been substantially reduced due to the effects of converting the area for human use and habitation. Martin Luther King, Jr. Park, intersected by the Salado Creek Greenway, is located immediately west of the APE.

The APE is located in the south-central Texas geographic region within the Blackland Prairie ecoregion. The Blackland Prairie is an area of low topographic relief and poor drainage, prone to frequent flooding (Collins 1995). The Blackland Prairie physiographic region is characterized by gently undulating topography and is generally defined as grasslands punctuated by riparian bands along creeks, rivers, and other drainages. Generation of the Blackland Prairie soils occurred during the late Tertiary, with the erosions of soils on the Edwards Plateau. These soils were deposited by eolian and colluvial processes across an existing, eroded parent material of the Gulf Coastal Plain, creating a mix of deep Tertiary and Quaternary calcareous clay soils (Black 1989).

Geology

The underlying geology of the APE is mapped as Terrace deposits of Pleistocene and Holocene age (Qt) (Barnes 1983). Terrace deposits are composed of varying proportions of sand, silt, clay, and gravel that may be locally indurated in terraces along streams. Gravel is more predominant in older, higher terrace deposits.

Soils

Soils within the APE are mapped as approximately 99.96-percent Lewisville silty clay, 0 to 1-percent slopes (LvA), and as 0.04-percent Rock outcrop-Olmos complex, 5 to 25-percent slopes (HgD) (National Resources Conservation Service 2019) (see Figure 1-2). Lewisville silty clays are very deep (62 inches [157 cm] below surface), moderately permeable soils that formed in ancient loamy and clayey calcareous alluvium. They
are found on stream terraces. Rock outcrop-Olmos complex soils of the APE are 75-percent limestone-based stone outcroppings and 25-percent very shallow to shallow (13 inches [33 cm]) very to extremely gravelly loams overlying caliche. They are well drained, moderately permeable soils formed in loamy alluvium derived from limestone. These soils are found on undulating uplands.

Flora and Fauna

The project area is located near the intersection of the Balconian and Taumaulipan biotic provinces (Blair 1950). A diverse number of both floral and faunal resources are available from the Austroriparian, Taumaulipan, Chihuahuan, Kansan, Balconian and Texan biotic provinces.

There are three major geographic regions nearby the project area: the Edwards Plateau, the Blackland Prairie, and the South Texas Plains. Trees, plants and grasses in this region include cedar (*Juniperus ashei*), live oak (*Quercus fusiformis*), Texas mountain laurel (*Sophora secundiflora*), mesquite (*Prosopis glandulosa*), prickly pear (*Opuntia* sp.), agarita (*Berberis trifoliolata*), cat claw (*Smilax bona-nox*), mustang grape (*Vitis mustangensis*), sotol (*Dasylirion texanum*), and Spanish dagger (*Yucca* sp.).

The fauna that inhabit the South-Central Texas region includes at least 95 bird and 29 mammal species. The area also contains a wide array of reptiles, fish and amphibians. Mammal species that were noted along the ROW include white-tailed deer (*Odocoileus virginianus*), nine-banded armadillo (*Dasypus novemcinctus*), Virginia opossum (*Didelphis virgininana*), striped skunk (*Mephitis mephitis*), raccoon (*Procyon lotor*), coyote (*Canis latrans*), and cottontail rabbit (*Sylvilagus audubonii*).

South Texas Climate

The climate in south-central Texas is humid subtropical with hot and humid summers. From May through September, hot weather dominates with the cool season beginning around the first of November and extending through March. Winters are typically short and mild with little precipitation. Monthly temperature averages range between 52°F in January to 85°F in August (NOAA Climate 2019). San Antonio averages 30.38 inches of rain per year, but average yearly rainfall is highly variable (Edwards Aquifer Website 2019; rainfall average based on recorded totals from 1934–2017).
CHAPTER 3. CULTURAL CONTEXT

The cultural history of Bexar County and the vicinity spans approximately 11,500 years. Archaeologists have divided the occupation of the region into four principal periods and several sub-periods: Paleoindian, Archaic, Late Prehistoric, and Historic. The periods are characterized by changes in climatic conditions, distinct vegetation types and structure, and concomitant adaptive changes by human populations in hunting and gathering technologies and strategies, general material culture, and at the tail end of the cultural sequence, the arrival of non-indigenous populations. The standard summaries of the cultural chronologies of Central Texas accepted by many of the regional archaeologists were produced by Collins (1995) and Prewitt (1981). Below is a brief summary of the cultural sequence that has been reconstructed by archaeologists for the south-central part of the State.

Paleoindian Period

The oldest cultural materials found in the region date to the Paleoindian period. The period spans roughly from 11,500-8,800 B.P. (Collins 1995, 2004). The Aubrey site in Denton County has one of the earliest occupations, with radiocarbon assays dating to between 11,542 ± 11 B.P. and 11,590 ± 93 B.P. (Bousman et al. 2004:48). Paleoclimatic proxy measures suggest that a cooler climate with increased precipitation was predominant during the Late Pleistocene (Mauldin and Nickels 2001; Toomey et al. 1993), the later portion of the period.

Initial reconstructions of Paleoindian adaptations typically viewed these hunter-gatherers as traversing extreme distances in pursuit of now extinct mega-fauna such as mammoth and mastodon. While these Paleoindian populations did exploit the Late Pleistocene mega-fauna when it was accessible, faunal assemblages from a larger number of sites indicate that the Paleoindian diet was more varied and consisted of a wide range of resources, including small game and plants. The Lewisville (Winkler 1982) and Aubrey sites (Ferring 2001) produced faunal assemblages that represented a wide range of taxa, including large, medium, and small species. Information on the consumption of plant resources during the Paleoindian period is lacking. Bousman et al. (2004) reported that the late Paleoindian component at the Wilson-Leonard site reflected the exploitation of riparian, forest and grassland species. Analysis of Paleoindian skeletal remains indicates that the diets of the Paleoindian and later Archaic hunter-gatherers may have been similar (Bousman et al. 2004; Powell and Steele 1994).
The early portion of the Paleoindian period was characterized by the appearance of Clovis and Folsom fluted projectile points that were used for hunting mega-fauna. Typical projectile points produced at sites with occupations dating to the later portion of the Paleoindian period included the Plainview, Dalton, Angostura, Golandrina, Meserve, and Scottsbluff types. Meltzer and Bever (1995) have identified 406 Clovis sites in Texas. One of the earliest, 41RB1, yielded radiocarbon assays that put the maximum age for the Paleoindian component at 11,415 ± 125 B.P. (Bousman et al. 2004:47).

Sites in Bexar County that contain Paleoindian components include St. Mary’s Hall (Hester 1978, 1990), Pavo Real (Collins et al. 2003), the Richard Beene site (Thoms et al. 1996; Thoms and Mandel 2006) and 41BX1396 (Tomka 2012). St. Mary’s Hall, 41BX229, was first encountered in 1972 during the construction of a house just outside the school’s property. The Pavo Real site, 41BX52, is located along Leon Creek in northwest Bexar County. The site was first documented in 1970 and has been investigated several times over the past 40 years (Collins et al. 2003). The Richard Beene site, 41BX831, is located along the Medina River in southern Bexar County (Thoms et al. 1996). Site 41BX1396 is located in Brackenridge Park in San Antonio, Texas, and was encountered during installations for lighting in 2010. Dating of organic samples indicated that occupation at the site occurred as early as 10,490-10,230 B.P.

Archaic Period

The Archaic period dates between ca. 8,800 to 1,200 B.P. It is divided into three sub-periods: Early, Middle, and Late. During the Archaic, mobility strategies may have shifted to more frequent short distance movements that allowed the exploitation of seasonal resource patches. The intermittent presence of bison in parts of Texas, combined with changes in climatic conditions and the primary productivity of the plant resources may have contributed to shifts in subsistence strategies and associated technological repertoire. When bison was not present in the region, hunting strategies focused on medium to small game along with continued foraging for plant resources. When bison was available, hunter-gatherers targeted the larger-bodied prey on a regular basis.
Early Archaic

The Early Archaic spans from 8,800 to 6,000 B.P. (Collins 1995). Projectile point styles characteristic of the Early Archaic include Angostura, Early Split Stem, Martindale, and Uvalde (Collins 1995). The Early Archaic climate was drier than the Paleoindian period and witnessed a return to grasslands (Bousman et al. 1998). Mega-fauna of the Paleoindian period could not survive the new climate and ecosystems, therefore eventually dying out. Early Archaic exploitation of medium to small fauna intensified.

The Wilson-Leonard excavation produced a wealth of cultural materials representative of a lengthy period in regional prehistory. The projectile point assemblages from the site indicate that the lanceolate Paleoindian point forms continue from the Paleoindian into the Early Archaic (Angostura). However, relatively quickly during the Early Archaic, they are replaced by corner- and basally-notched and shouldered forms (Early Triangular, Andice, Bell) that quickly become the dominant points tipping the atlatl-thrown darts. In addition, the uses of small to medium hearths similar to the previous period were noted too. The appearance of earth ovens suggests another shift in subsistence strategies. The earth ovens encountered at the Wilson-Leonard site were used to cook wild hyacinth along with aquatic and terrestrial resources (Collins et al. 1998). Analyses of Early Archaic human remains encountered in Kerr County (Bement 1991) reveal diets low in carbohydrates in comparison to the Early Archaic populations found in the Lower Pecos region. Within Bexar County, the excavations at 41BX1396 revealed an Early Archaic component, radiocarbon dated to Cal B.P. 8390 to 8180 (Tomka 2012).

Middle Archaic

The Middle Archaic sub-period spans from 6,000 to 4,000 B.P. (Collins 1995; Weir 1976). Archaeological data indicates that there appeared to be a population increase during this time. Climate was gradually drying leading to the onset of a long drought period. Changes to the demographics and cultural characteristics were likely in response to the warmer and more arid conditions. Projectile point styles characteristic of this sub-period include Bell, Andice, Calf Creek, Taylor, Nolan, and Travis.

Subsistence during the Middle Archaic saw an increased reliance on nuts and other products of riverine environments (Black 1989). The increase of burned rock middens during the Middle Archaic represented the increased focus on the use of plant resources (Black 1989; Johnson and Goode 1994). Little is known about burial practices during the Middle Archaic. An excavation in an Uvalde County sinkhole (41UV4) contained 25-50 individuals (Johnson and Goode 1994:28).
Late Archaic

The Late Archaic spans from 4,000 to 1,200 B.P. (Collins 2004). It is represented by the Bulverde, Pedernales, Kinney, Lange, Marshall, Williams, Marcos, Montell, Castroville, Ensor, Frio, Fairland, and Darl projectile points. The early part of the Late Archaic exhibited fluctuations in the temperature and rainfall. There appears to have been an increase in population at this time (Nickels et al. 1998). Some researchers believe that the use of burned rock middens decreased during the Late Archaic. Some research has challenged this notion (Black and Creel 1997; Mauldin et al. 2003). Johnson and Goode (1994) discuss the role of burned rock middens in relation to acorn processing. Human remains from burials related to the Late Archaic in Central and South Texas suggest the region saw an increase in population. This increase may have prompted the establishment of territorial boundaries which resulted in boundary disputes (Story 1985). Human remains dating to this sub-period have been encountered near the Edward’s Plateau.

Late Prehistoric Period

The Late Prehistoric period begins ca. 1,200 B.P. (Collins 1995, 2004), and appears to continue until the beginning of the Protohistoric period (ca. A.D. 1530). The term Late Prehistoric is used in Central and South Texas to designate the time following the end of the Archaic period. A series of traits characterizes the shift from the Archaic to the Late Prehistoric period. The main technological changes were the shift to the bow and arrow and the introduction of pottery. The Late Prehistoric period is divided into two phases: The Austin phase and the Toyah phase.

At the beginning of this period, environmental conditions were deemed to be warm and dry. Moister conditions appear after 1,000 B.P. (Mauldin and Nickels 2001). Subsistence practices appeared similar to the Late Archaic. Projectile points associated with the Austin phase include the Scallorn and Edwards types. The Toyah phase is characterized by the prominence of the Perdiz point (Collins 1995).

Most researchers concur that the early portion of the Late Prehistoric period saw a decrease in population density (Black 1989:32). Radiocarbon dates from some sites have indicated that the middens were utilized during the Late Prehistoric. Some archaeologists feel the peak of midden use was after A.D. 1 and into the Late Prehistoric (Black and Creel 1997:273). Radiocarbon dates from Camp Bowie middens provide evidence that supports Black and Creel’s arguments that burned rock middens were a primarily Late Prehistoric occurrence (Mauldin et al. 2003).
Beginning rather abruptly at about 650 B.P., a shift in technology occurred. This shift is characterized by the introduction of blade technology, the first ceramics in Central Texas (bone-tempered plainwares), the appearance of Perdiz arrow points, and alternately beveled bifaces (Black 1989:32; Huebner 1991:346). Prewitt (1981) suggests this technology originated in north-central Texas. Patterson (1988), however, notes that the Perdiz point was first seen in southeast Texas by about 1,350 B.P., and was introduced to west Texas some 600 to 700 years later.

Early ceramics in Central Texas (ca. A.D. 1250 to 1300) are associated with the Toyah phase of the Late Prehistoric and are referred to as Leon Plain ware. The Leon Plain ceramic types are undecorated, bone-tempered bowls, jars, and ollas with oxidized, burnished and floated exterior surfaces (Ricklis 1995). There is notable variation within the type (Black 1986; Johnson 1994; Kalter et al. 2005). This variation can be attributed to differences in manufacturing techniques and cultural affiliation. Analysis of residues on ceramic sherds suggests that vessels were used to process bison bone grease/fat, mesquite bean/bison bone grease and deer/bison bone grease (Quigg et al. 1993).

The return of bison to South and Central Texas during the Late Prehistoric resulted from a drier climate in the plains located to the north of Texas and increased grasses in the Cross-Timbers and Post Oak Savannah in north-central Texas (Huebner 1991). The increased grasses in the two biotas formed the “bison corridor” along the eastern edge of the Edwards Plateau and into the South Texas Plain (Huebner 1991:354-355). Rock shelter sites, such as Scorpion Cave in Medina County (Highley et al. 1978) and Classen Rock Shelter in northern Bexar County (Fox and Fox 1967), have indicated a shift in settlement strategies (Skinner 1981). Burials encountered that dated to this period often reveal evidence of conflict (Black 1989:32).

Historic Period

The beginnings of San Antonio came about with the establishment of Mission San Antonio de Valero in 1718. Fray Antonio de San Buenaventura y Oliviares briefly visited the site several years prior, and petitioned to set up a mission at the headwaters of the San Antonio River to act as a waypoint in the journey to East Texas. The Marques de Valero, Viceroy of New Spain, granted Olivares’ request (de la Teja 1995). The mission, presidio, and villa were first established on the San Pedro Creek, the “first spring” of the San Antonio River. Mission Valero occupied at least one other location on the east side of the San Antonio River before it was moved in 1724 to its final location.
Four days after Mission Valero was founded, Presidio de Bexar was established on May 5, 1718. The presidio was to house the Spanish soldiers who had come along with the expedition to found the Mission. Typically, the families that followed the soldiers lived just outside the presidio.

Two years later, in 1720, Mission San José y San Miguel de Aguayo was established on the opposite bank of the San Antonio River, and to the south of Mission Valero and Presidio San Antonio de Bexar. This mission was established to help serve native groups that did not want to reside at Mission Valero because they were not on friendly terms with groups already living there. The original location of Mission San José was along the east bank of the San Antonio River, approximately three leagues from Mission Valero. The mission was then moved to the opposite bank sometime between 1724 and 1729, and relocated to its present site during the 1740s due to an epidemic (Scurlock et al. 1976:222).

In 1722, just two years after Mission San José was founded, Mission San Francisco Xavier de Nàjera was established. The mission was to serve a group of 50 Ervipiami families that came from the Brazos River area (Schuetz 1968:11). Mission San Francisco Xavier de Nàjera was located on or near the present site of Mission Concepción. The mission was unsuccessful due to a lack of funding. An attempt was made to make the mission a sub-mission of Valero, but this failed as well (Habig 1968:78-81). Its doors closed in 1726 (Schuetz 1968:11). Ivey (1984:13) argued that the closure of the mission was due to the natives’ lack of interest in entering mission life.

Within the next few years, three other missions were established within the San Antonio area. The remaining three missions were established in San Antonio within weeks of each other in 1731. These three missions, Mission Nuestra Señora de la Purísima Concepción, Mission San Juan de Capistrano, and Mission San Francisco de la Espada, were originally missions established in east Texas. When each failed along the eastern border, they were moved to San Antonio.

In 1731, in addition to the five missions, Villa San Fernando de Bexar was established by the Canary Islanders. Prior to the establishment of Villa San Fernando, Villa de Bexar had been settled by 30 presidio soldiers, seven of whom were married and brought their families. Archival research indicates that upon arrival, the Canary Islanders immediately took over the land surrounding the garrison. This land was used as pasture and was originally property of Mission Valero. There had been a lack of cleared agricultural land at the time, leading Captain Juan Antonio Pérez de Almazán to allow the Canary Islanders use of the
Cultural Resources Investigations of the CPSE Eastwood Village Project, San Antonio, Bexar County, Texas

property (de la Teja 1995). The initial plan was for additional Canary Island settlers to be sent to San Antonio after the first group was established. Due to high costs to the Spanish Crown, no more groups were brought to Texas. The Canary Islanders launched a formal complaint against Mission Valero. In 1731, the Canary Islanders established their own villa, named San Fernando de Bexar, with their own church. The arrival of the Isleños resulted in the first clearly defined civilian settlement in San Antonio.

With the establishment of the San Antonio Missions, the Spanish friars used the labor of Native Americans and soldiers to construct a system of acequias (irrigation ditches) utilizing local springs, streams, and the San Antonio River to supply water for the agricultural fields of the missions, personal use, and household purposes (Cox 2005; Porter 2009). The first acequias were simple, soil-lined, gravity-flow canals whose depressions can still be seen today in certain areas around central San Antonio (Cox et al. 1999). This system allowed the Spanish to sustain the large population of Native Americans, settlers, and soldiers that occupied the area.

Previous Archaeological Investigations and Known Cultural Resources

A cultural resources desktop review was conducted in order to summarize all known cultural resources and surveys within a 0.5-mile (0.8 km) radius of the APE (Figure 3-1) (THC 2019). The review determined that no previously recorded archaeological sites and no archaeological surveys are recorded within the APE. Furthermore, no known archaeological sites are located within 0.5-mile (0.8 km) of the APE. However, the review did identify four archaeological surveys within 0.5-mile of the APE. The nearest archaeological site is 41BX1832, a historic occupation site, located 0.62-mile (1-km) northwest of the APE (THC 2019).

In 2003, a linear survey was conducted by the Center for Archaeological Research at the University of Texas San Antonio (CAR UTSA) under the sponsorship of the Federal Highway Administration and the Texas Department of Transportation (TxDOT) under TAC Permit No. 2917 (Weston et al. 2004). Other archaeological surveys conducted within a 0.5-mile (0.8 km) area included a 2007 area survey conducted by RKEI under the sponsorship of San Antonio Water System (SAWS) under TAC Permit No. 4730 (Held and Darnell 2008), a 2009 area survey conducted by SWCA Environmental Consultants under the sponsorship of the City of San Antonio under TAC Permit No. 5148 (Galindo 2009), and a 2013 area survey conducted by SWCA Environmental Consultants under the sponsorship of the San Antonio Integrated School District under TAC permit No. 6477 (Acuña and Slone 2013).
Figure 3-1. Known cultural resources and previous investigations within a 0.5-mile (0.8 km) radius of the project area.
Historic Map Review

An 1839 map representing the land surveys made in Bexar County by Lindsey and Upshur depicts the APE as owned by the “Heirs of Cubier”. General Land Office maps of Bexar County from 1868 and 1871 depict the APE as within the western segment of a three-part parcel that was likely owned by Maria F. Curbier and occupied by Guillerma Nuñez. The southern extent of Curbier’s land is located at approximately Martin Luther King Jr. Drive. The area roughly aligned with the projection of Paso Hondo street at Salado Creek north of the APE is labeled “Paso Hondo” (Figure 3-2). By 1878, Guillermo (sp.) Nunez is listed as the sole owner of the APE. An 1897 map of Bexar County drawn by J.D. Rullmann depicts the APE as owned by E. Dittmar. Road development at what would later be called Martin Luther King, Jr. Drive, previously called Nebraska Street, is depicted west of Salado Creek, but no development is depicted within or immediately adjacent to the APE (Figure 3-3). Historic topographic maps from 1953 and 1959 depict the APE and its vicinity as an un-vegetated area developed with a dirt road that was used to access a quarry located southwest of the APE (Figure 3-4). By 1969, topographic maps indicate that this dirt road was developed into Upland Drive and that the APE was converted into its current form and use as a residential neighborhood. The quarry southwest of the APE is no longer depicted on this 1969 map. Martin Luther King Jr. Drive south of the APE first appears on a 1992 topographic map.

The 1930s Stoner System aerial photographs depict the APE as thinly vegetated with brush and grasses and in a state suitable for rangeland. By 1955, the APE was developed with a dirt road that followed the eventual route of Upland Drive. This road was used to access a quarry southwest of the APE. The APE appears to be thinly vegetated with grass and scattered brush. The area north of the APE was developed into an orderly residential neighborhood by this time. By 1963, aerial photographs indicate that Upland Drive and its side streets were installed within the APE, and the area immediately adjacent to the APE was partially developed with residences. The APE and its vicinity can be characterized as a residential neighborhood by this date. By 1966, more residences had been constructed immediately adjacent to the APE. Martin Luther King, Jr. Drive south of the APE first appears on a 1986 aerial photograph. Sidewalks were installed along the western side of Upland Drive at the APE in 2013 or very early 2014. Pole location adjustments conducted during this project will allow for future sidewalk installation along the eastern side of Upland Drive.
Figure 3-2. APE projected on 1871 Bexar County parcel map by Louis Klappenbach (draftsman) and Herman Lungkwitz, (photographer).
Figure 3-3. APE depicted on 1897 Bexar County parcel map by John D. Rullmann.
Figure 3-4. APE depicted on the 1953 7.5-minute USGS topographic quadrangle map.
CHAPTER 4. METHODS OF INVESTIGATION

To ensure that construction did not impact significant archaeological resources, RKEI archaeologists conducted archaeological monitoring for seven borehole excavations associated with the Eastwood Village Project. The pole locations were situated along the eastern ROW of Upland Road ROW, between its intersection with Jarbet Drive and Leonidas Drive. All work complied with THC and Council of Texas Archeologists (CTA) standards. In order to conduct this work, an RKEI archaeologist stood on the edge of the active excavation, within a safe distance of heavy equipment, and observed the removal of soil matrix. None of the matrix removed during the mechanical excavation was screened for artifacts.

The project adhered to a temporally diagnostic artifact collection only policy. No diagnostic artifacts were encountered during the course of the investigations, thus, no artifacts will be curated at the completion of the project. The only materials to be processed and curated consist of documents and digital photographs produced during field investigations. Digital photographs were printed on acid-free paper, labeled with archivally-appropriate materials, and placed in archival-quality plastic sleeves. Ink-jet produced maps and illustrations were placed in archival quality plastic page protectors to prevent against accidental smearing due to moisture. Field notes, field forms, photographs, and field drawings were placed into labeled archival folders and were also converted into electronic files (i.e., PDF). A copy of the report and all digital material were burned onto a CD and permanently curated with field notes and documents.
CHAPTER 5. RESULTS OF INVESTIGATIONS

Cultural resources monitoring investigations for the Eastwood Village Project were conducted on March 28, 2019. Rhiana D. Ward served as Principal Investigator and Project Manager, and all field work was completed by Project Archaeologist Kirsten M. Atwood, Ph.D. Overall, the APE was found to be moderately impacted from existing utility installation and construction disturbance. No intact cultural deposits or features were observed (Figure 5-1).

Borehole locations were located within residential yards adjacent to the asphalt-paved Upland Drive. Upland Drive does not have a sidewalk along its eastern extent and is intersected by asphalt-paved side streets and alleys that are largely unpaved. Topography of the APE is generally flat (Figure 5-2).

Each pole location was excavated to 26 inches (66 cm) in diameter with an average depth of 98 inches (249 cm). Excavations proceeded from south to north. The average soil profile consisted of 0 to 4 inches (10 cm) of dark brown (10YR 3/3) silty clay loam with 5 to 10-percent limestone gravels overlying 2 to 6 inches (5 to 15 cm) of brown (10YR 5/3) silty clay loam with 10-percent gravel, underlain by 90 inches (230 cm) of white to light gray (10YR 8/1 to 10YR 7/) silty clay with 10-percent indurated soil nodules (Table 5-1). The silty soil obscured excavation walls (Figure 5-3). No cultural material or archaeological features were observed during the course of the monitoring investigations.
Figure 5-1. Results of cultural resources monitoring.
Figure 5-2. Overview of the APE from the vicinity of Borehole 6, facing northwest.

Figure 5-3. Average soil profile for the APE, Borehole 4, facing north.
<table>
<thead>
<tr>
<th>Borehole</th>
<th>Sedimentary Level Depth (cmbs)</th>
<th>Sediment Color (Munsell)</th>
<th>Sediment Texture</th>
<th>Inclusions</th>
<th>Cultural Material /Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0–15</td>
<td>10YR 5/3 (brown)</td>
<td>silty clay loam</td>
<td>10 percent indurated soil nodules</td>
<td>No cultural material</td>
</tr>
<tr>
<td></td>
<td>15–220</td>
<td>10YR 8/2 (very pale brown)</td>
<td>very silty clay</td>
<td>10 percent indurated soil nodules</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td></td>
<td>0–15</td>
<td>10YR 3/3 (dark brown)</td>
<td>silty clay loam</td>
<td>5 percent limestone gravel</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td></td>
<td>15–60</td>
<td>7.5YR 5/4 (brown)</td>
<td>silty clay loam</td>
<td>50 percent limestone gravel</td>
<td>No cultural material</td>
</tr>
<tr>
<td></td>
<td>60–110</td>
<td>7.5YR 6.4 (light brown)</td>
<td>very silty clay</td>
<td>50 percent limestone gravel</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td></td>
<td>110–240</td>
<td>10YR 7/2 (light gray)</td>
<td>very silty clay</td>
<td>10 percent indurated soil nodules</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td></td>
<td>240–290</td>
<td>2.5YR 8/2 (pinkish white)</td>
<td>very silty clay</td>
<td>10 percent indurated soil nodules</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td>2</td>
<td>0–20</td>
<td>10YR 3/3 (dark brown)</td>
<td>silty clay loam</td>
<td>5 percent limestone gravel</td>
<td>No cultural material</td>
</tr>
<tr>
<td></td>
<td>20–30</td>
<td>10YR 5/2 (grayish brown)</td>
<td>silty clay loam</td>
<td>15 percent limestone gravel</td>
<td>No cultural material</td>
</tr>
<tr>
<td></td>
<td>30–110</td>
<td>5YR 7/3 (pink)</td>
<td>very silty clay</td>
<td>15 percent limestone gravel, 10 percent indurated soil nodules</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td></td>
<td>110–240</td>
<td>10YR 8/1 (white)</td>
<td>very silty clay</td>
<td>15 percent limestone gravel, 10 percent indurated soil nodules</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td>3</td>
<td>0–25</td>
<td>10YR 3/3 (dark brown)</td>
<td>silty clay loam</td>
<td>5 percent limestone gravel</td>
<td>No cultural material</td>
</tr>
<tr>
<td></td>
<td>25–43</td>
<td>10YR 5/4 (yellowish brown)</td>
<td>very silty clay</td>
<td>10 percent indurated soil nodules, 20 percent caliche</td>
<td>No cultural material</td>
</tr>
<tr>
<td></td>
<td>43–120</td>
<td>10YR 5/4 (yellowish brown)</td>
<td>very silty clay</td>
<td>10 percent indurated soil nodules</td>
<td>No cultural material</td>
</tr>
<tr>
<td></td>
<td>120–220</td>
<td>10YR 7/6 (yellow)</td>
<td>very silty clay</td>
<td>60 percent limestone gravel, 10 percent indurated soil nodules</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td></td>
<td>220–250</td>
<td>10YR 8/2 (very pale brown)</td>
<td>very silty clay</td>
<td>30 percent powdery caliche</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td>Borehole</td>
<td>Sedimentary Level Depth (cmbs)</td>
<td>Sediment Color (Munsell)</td>
<td>Sediment Texture</td>
<td>Inclusions</td>
<td>Cultural Material /Notes</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>5</td>
<td>0–20</td>
<td>10YR 3/3 (brown)</td>
<td>silty clay loam</td>
<td>5 percent limestone gravel</td>
<td>No cultural material</td>
</tr>
<tr>
<td></td>
<td>20–25</td>
<td>10YR 5/3 (brown)</td>
<td>Silty clay loam</td>
<td>5 percent limestone gravel</td>
<td>No cultural material</td>
</tr>
<tr>
<td></td>
<td>25–85</td>
<td>7.5YR 5/4 (brown)</td>
<td>very silty clay</td>
<td>10 percent limestone gravel, 10 percent indurated soil nodules</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td></td>
<td>85–215</td>
<td>10YR 7/2 (light gray)</td>
<td>very silty clay</td>
<td>10 percent indurated soil nodules</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td></td>
<td>215–245</td>
<td>10YR 8/2 (very pale brown)</td>
<td>very silty clay</td>
<td>10 percent indurated soil nodules</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td>6</td>
<td>0–10</td>
<td>10YR 3/3 (dark brown)</td>
<td>silty clay loam</td>
<td>5 percent limestone gravel</td>
<td>No cultural material</td>
</tr>
<tr>
<td></td>
<td>10–25</td>
<td>10YR 5/1 (gray)</td>
<td>very silty clay</td>
<td>20 percent limestone gravel</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td></td>
<td>25–90</td>
<td>10YR 7/2 (light gray) with 1 percent 10YR 8/8 (yellow)</td>
<td>very silty clay</td>
<td>10 percent indurated soil nodules</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td></td>
<td>90–210</td>
<td>10YR 7/2 (light gray) with 3 percent 10YR 8/8 (yellow)</td>
<td>very silty clay</td>
<td>10 percent limestone gravel, 10 percent caliche, 10 percent indurated soil nodules</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td></td>
<td>210–250</td>
<td>10YR 7/3 (very pale brown)</td>
<td>very silty clay</td>
<td>5 percent limestone gravel, 10 percent indurated soil nodules trending towards sand.</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td>7</td>
<td>0–10</td>
<td>–</td>
<td>gravel</td>
<td>xeriscaping gravel underlain by geofabric</td>
<td>No cultural material/very silty</td>
</tr>
<tr>
<td></td>
<td>10–60</td>
<td>10YR 3/3 (dark brown)</td>
<td>silty clay loam</td>
<td>5 percent construction gravel</td>
<td>No cultural material</td>
</tr>
<tr>
<td></td>
<td>60–70</td>
<td>10YR 5/3 (brown)</td>
<td>silty clay loam</td>
<td>10 percent limestone gravel, 10 percent indurated soil nodules</td>
<td>No cultural material</td>
</tr>
<tr>
<td></td>
<td>70–270</td>
<td>10YR 7/2 (light gray)</td>
<td>very silty clay</td>
<td>5 percent limestone gravel, 20 percent indurated soil nodules</td>
<td>No cultural material/very silty</td>
</tr>
</tbody>
</table>
CHAPTER 6. SUMMARY AND RECOMMENDATIONS

RKEI was contracted by CPSE to conduct cultural resources investigations for the CPSE Eastwood Village Project due to their proximity to Salado Creek in eastern San Antonio, Bexar County, Texas. The project consisted of archaeological monitoring of seven boreholes placed within the eastern ROW of Upland Drive between Jarbet Drive and Leonidas Drive. Given that the project took place within a publicly owned ROW, and because CPSE is a political subdivision of the State of Texas, the project was subject to review under the jurisdiction of Chapter 35 of the UDC of the COSA, as well as the ACT.

An archaeological background review determined that no known cultural resources exist within or adjacent to the project area; however, the project is located along Salado Creek, within deep Holocene soils. Holocene-age soils have a high probability for containing intact prehistoric archaeological deposits. Furthermore, Archaic human burials have been typically found in similar settings along Leon and Salado Creeks. As such, cultural resources monitoring was required for seven of the 28 pole replacements. Due to their low potential of encountering intact archaeological deposits, the remaining 21 pole locations of the Eastwood Village Project did not require archaeological monitoring.

Monitoring investigations were conducted on March 28, 2019. Monitoring investigations typically encountered dark brown to brown silty clay loam over white to light gray very silty clay. No cultural material or archaeological features were encountered.

RKEI made a reasonable and good faith effort to identify cultural resources within the given APE; however, no intact cultural deposits or features were identified. As such, RKEI recommends no further archaeological investigations for the current APE. However, should additions be made to the Project Area, additional cultural resources investigations may be required.
REFERENCES CITED

Acuña, L.I, and K.A. Sloan

Barnes, V.E.

Bement, L.C

Black, S.L.
1986 *The Clemente and Herminia Hinojosa Site, 41JW8: A Toyah Horizon Campsite in Southern Texas*. Special Report, No. 18. Center for Archaeological Research, The University of Texas at San Antonio

Black, S.L., and D.G. Creel

Blair, W.F.

Bousman, C.B, B.W. Baker, and A.C. Kerr

Collins, M.B.

Collins, M.B., J. Guy, and S.W. Dial

Collins, M.B., D.B. Hudler, and S.L. Black
2003 Pavo Real (41BX52): A Paleoindian and Archaic Camp and Workshop on the Balcones Escarpment, South-Central, Texas. Studies in Archaeology 41, Texas Archeological Research Laboratory, The University of Texas at Austin. Archeological Studies Program, Report 50, Environmental Affairs Division, Texas Department of Transportation, Austin.

Cox, I. W.

Cox, I. W., E.D. Johnson, and C.B. Bousman

Edwards Aquifer Website.net, The

Ferring, C.R.
2001 The Archaeology and Paleoecology of the Aubrey Clovis Site (41DN479) Denton County, Texas. Center for Environmental Archaeology. Department of Geology, University of North Texas, Denton.

Fox, A.A., and D.E. Fox

Galindo, M.J.
2009 Intensive Archaeological Resources Survey of the Proposed 0.32-Acre Storm Sewer System Outfall for the North Hein (W.W. White to Hein West) and Hein West (Rice to North Hein) Project at Salado Creek, East San Antonio, Bexar County, Texas. SWCA Cultural Resources Report No. 2009-43. SWCA Environmental Consultants, Austin.

Habig, M.A.

Held, P. and B. Darnell
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1990</td>
<td>Plainview Artifacts at the St. Mary’s Hall Site, South Central Texas. Current Research in the Pleistocene 7:14-17.</td>
</tr>
<tr>
<td>Ivey, J.E.</td>
<td>1984</td>
<td>The San Antonio Missions. Unpublished manuscript on file at the Center for Archaeological Research, The University of Texas at San Antonio.</td>
</tr>
</tbody>
</table>
Natural Resources Conservation Service (NRCS)

Nickels, D.L., C.B. Bousman, J.D. Leach, and D.A. Cargill
1998 *Test Excavations at the Culebra Creek Site, 41BX126, Bexar County, Texas.* Archaeological Survey Report, No. 265. Center for Archaeological Research, The University of Texas at San Antonio.

NOAA Climate

Patterson, L.W.

Porter, C. R.

Powell, J.F., and D.G. Steele

Prewitt, E.R.

Ricklis, R.A.

Schuetz, M.K.

Scurlock, D., A. Benavides, Jr., D. Isham, and J.W. Clark, Jr.
Skinner, S.A.

Story, D.A.

Teja, J. de la

Thoms, A.V., and R.D. Mandel
2006 *Archaeological and Paleoecological Investigations at the Richard Beene Site 41BX831: South Central Texas*. Reports of Investigations, No. 8. Center for Ecological Archaeology, Texas A&M University, College Station.

Texas Historical Commission (THC)

Tomka, S.A.

Toomey, R.S., M.D. Blum, and S. Valastro, Jr.

Weston, J.D. B.K. Moses, R.G. Greaves, B.A. Meissner, R.B. Mahoney

Weir, F.A.

Winkler, B.A.