Intensive Archeological Survey Of GISD Proposed High School City Of Georgetown, Williamson County, Texas

Caitlin Gulihur

Follow this and additional works at: https://scholarworks.sfasu.edu/ita

Part of the American Material Culture Commons, Archaeological Anthropology Commons, Environmental Studies Commons, Other American Studies Commons, Other Arts and Humanities Commons, Other History of Art, Architecture, and Archaeology Commons, and the United States History Commons

Tell us how this article helped you.

Cite this Record
Gulihur, Caitlin (2020) "Intensive Archeological Survey Of GISD Proposed High School City Of Georgetown, Williamson County, Texas," Index of Texas Archaeology: Open Access Gray Literature from the Lone Star State: Vol. 2020, Article 156. ISSN: 2475-9333
Available at: https://scholarworks.sfasu.edu/ita/vol2020/iss1/156

This Article is brought to you for free and open access by the Center for Regional Heritage Research at SFA ScholarWorks. It has been accepted for inclusion in Index of Texas Archaeology: Open Access Gray Literature from the Lone Star State by an authorized editor of SFA ScholarWorks. For more information, please contact cdssscholarworks@sfasu.edu.
Intensive Archeological Survey Of GISD Proposed High School City Of Georgetown, Williamson County, Texas

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

This article is available in Index of Texas Archaeology: Open Access Gray Literature from the Lone Star State: https://scholarworks.sfasu.edu/ita/vol2020/iss1/156
Cultural Resources Survey

INTENSIVE ARCHEOLOGICAL SURVEY OF Gisd Proposed High School
CITY OF GEORGETOWN, WILLIAMSON COUNTY, TEXAS

January 9, 2020

Final Report – Public Copy

Terracon Project No. 96197745A
Antiquities Permit No. 9111

Caitlin Gulihur, MA, RPA, Principal Investigator

Prepared for:
Georgetown Independent School District
Georgetown, Texas

Prepared by:
Caitlin Gulihur, MA, RPA and Ann M. Scott, PhD, RPA
Terracon Consultants, Inc.
Austin, Texas
ABSTRACT

Georgetown Independent School District (GISD) has proposed the Proposed High School project where school facilities will be constructed in western Georgetown, Williamson County, Texas. GISD retained Terracon Consultants, Inc. to conduct a systematic, intensive pedestrian survey of the approximate 93.5-acre project area. Because the GISD, a political subdivision of the State of Texas, sponsored the project, the proposed undertaking is subject to compliance with the Antiquities Code of Texas and oversight from the Texas Historical Commission (THC). In addition, the survey meets the standards for compliance under Section 106 of the National Historic Preservation Act of 1966, as amended, should federal funding or permitting be required for the project. The cultural resources survey was carried out under Texas Antiquities Permit Number 9111, issued to Caitlin Gulihur, MA, RPA, Principal Investigator. Fieldwork was carried out by Caitlin Gulihur with assistance from Archeological Technician Ruben Castillo Jr. Records from the project will be curated at the Center for Archaeological Studies at Texas State University.

The approximate 93.5-acre parcel was considered the Area of Potential Effect (APE). Survey of the APE consisted of systematic pedestrian coverage, including discretionary shovel tests. The work was carried out on October 14-16, 2019. Forty-eight shovel tests were excavated in areas that had less than 30 percent ground visibility or placed in areas previously undisturbed. One historic-age site, 41WM1409, and two prehistoric-age sites, 41WM1410 and 41WM1411, were recorded during the course of the survey. Site 41WM1409 consists of a scatter of typical mid-20th century domestic materials. Sites 41WM1410 and 41WM1411 were recorded as lithic procurement sites. Sites 41WM1409, 41WM1410, and 41WM1411 are recommended as not eligible for listing on the National Register of Historic Places (NRHP) or for designation as a State Antiquities Landmark (SAL).

Given the absence of eligible historic properties within the APE, it is Terracon’s recommendation that the proposed project be allowed to proceed as currently designed. In the unlikely event that human remains or cultural features are discovered during construction, construction should cease in the vicinity of the remains and Terracon, the Texas Historical Commission’s Archeology Division, or other proper authorities should be contacted.
TABLE OF CONTENTS

1.0 Introduction .. 1
2.0 Area of Potential Effect ... 1
3.0 Environmental Setting ... 2
 3.1 Geology ... 2
 3.2 Soils ... 2
 3.3 Vegetation and Wildlife .. 3
 3.4 Current and Past Climates .. 3
4.0 Cultural History .. 4
 4.1 Prehistoric ... 4
 4.2 Protohistoric and Historic .. 5
5.0 Methods ... 5
 5.1 Desktop Review .. 5
 5.2 Intensive Pedestrian Survey .. 6
 5.3 Artifact Analysis ... 6
 5.4 National Register of Historic Places and State Antiquities Landmark Criteria 6
6.0 Results .. 7
 6.1 Desktop Review .. 7
 6.2 Intensive Pedestrian Survey .. 9
 6.2.1 Site 41WM1409 .. 9
 6.2.2 Site 41WM1410 .. 10
 6.2.3 Site 41WM1411 .. 11
7.0 Conclusions and Recommendations ... 12
8.0 References Cited .. 14

Table 1. Soil Survey data in Area of Potential Effect .. 2
Table 2. Summary of previously recorded archeological sites within 0.5-mile buffer 7
Table 3. Summary of previous investigations within 0.5-mile buffer .. 8

Appendices
Appendix A. Exhibit Maps
Appendix B. Photographs
Appendix C. Shovel Test Log
INTENSIVE ARCHEOLOGICAL SURVEY OF
GISD PROPOSED HIGH SCHOOL,
CITY OF GEORGETOWN, WILLIAMSON COUNTY, TEXAS
Terracon Project No. 96197745A
Antiquities Permit No. 9111
January 9, 2020

1.0 INTRODUCTION

This report presents the findings from an intensive pedestrian survey of an approximate 93.5-acre parcel on which Georgetown Independent School District (GISD) has proposed constructing school facilities in western Georgetown, Williamson County, Texas (Appendix A, Exhibits 1 and 2). The 93.5-acre survey was performed on behalf of GISD, a political subdivision of the State of Texas. Therefore, the project is under the purview of the Texas Historical Commission (THC) in compliance with the Antiquities Code of Texas. In addition, the survey meets the standards for compliance under Section 106 of the National Historic Preservation Act of 1966, as amended, should federal funding or permitting be required for the project. Work was performed under Texas Antiquities Permit Number 9111, issued to Caitlin Gulihur, MA, RPA Principal Investigator, and in adherence to Title 13, Chapter 26 of the Texas Administrative Code.

Abiding by standards set forth by the Council of Texas Archeologists (CTA), this report includes descriptions of the project area, environmental setting, cultural and historical contexts, methods, results, and recommendations. The report was authored by Caitlin Gulihur, Principal Investigator, and Ann M. Scott, Environmental Planning Group Manager.

2.0 AREA OF POTENTIAL EFFECT

The project area, which is the same as the area of potential effect (APE), is an approximate 93.5-acre parcel. The project area is located southwest of the intersection of DB Wood Road and Cedar Breaks Road, in western Georgetown, Williamson County, Texas (see Appendix A, Exhibits 1 and 2). The proposed project will consist of the construction of a high school and associated facilities. The exact plans for the high school have not been finalized, but the school building is anticipated to be two to three stories tall. Parking lots and athletic facilities will also be constructed on the parcel. Athletic facilities are expected to include a track and football field, practice fields, baseball and softball fields, tennis courts, bleachers, lighting, a field house, and buildings for concessions and restrooms. The vertical depths of impact for the project is currently unknown, but the maximum depths of impacts will likely range from 15 to 30 feet.
3.0 ENVIRONMENTAL SETTING

Environments are composed of various interconnected elements such as underlying bedrock geology, soil, flora, fauna, and climate. It is important to consider environmental conditions of the past and present when assessing cultural resources.

In general terms, the project area is located near the transition between three large-scale biotic provinces or biomes, the Balcones Canyonland, the Limestone Cut Plains, and the Northern Blackland Prairie (Griffith et al. 2007). Each of these biomes is characterized by a distinct set of physical and biological properties, and the transitional zone is known to have endemic plant and animal communities as well (Blair 1950). These transitional zones are known as ecotones, and they typically support relatively increased biological richness and diversity (Crumley 1994). Locally, the project area is in the Balcones Canyonland ecoregion. Limestone Cut Plains begins north of the project area; Northern Blacklands Prairie begins east of the project area. More specifically, the APE is nestled in the gently sloping plain north of the Middle Fork San Gabriel River in the Brazos River Basin.

3.1 Geology

The bedrock geology of the APE is mapped as Edwards and Comanche Peak Limestones, undivided (Early Cretaceous) (Kec) consisting of dolostone, limestone, and chert inclusions (Barnes 1992).

3.2 Soils

Soil formation is a function of local climate, biology, parent material, topography, and time, and so it is clearly tied to environment as defined above. Accordingly, soil can serve as a proxy for environmental conditions of the present and past. Defining soils as they are relevant to investigations of cultural resources, however, is useful because of how they are characterized and mapped by the Natural Resources Conservation Service, formerly Soil Conservation Service. Though agricultural in nature, county soil surveys provide a description of soil characteristics, including depth, color, inclusions, etc., which can be used to elucidate site formation processes. Three soils are mapped in the project area (NRCS 2019; Werchan and Coker 1983) (Appendix A, Exhibit 3) and are presented in Table 1.

<table>
<thead>
<tr>
<th>Soil or Series Name</th>
<th>Drainage</th>
<th>Soil Depth</th>
<th>Associated Landform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eckrant extremely stony clay, 0 to 3 percent slopes (EeB)</td>
<td>Well-drained; moderate slow permeability</td>
<td>12 inches to bedrock</td>
<td>Ridges</td>
</tr>
<tr>
<td>Eckrant-Rock outcrop association, 1 to 10 percent slopes (ErE)</td>
<td>Well-drained; moderate slow permeability</td>
<td>12 inches to bedrock</td>
<td>Ridges</td>
</tr>
</tbody>
</table>
Georgetown stony clay loam, 1 to 3 percent slopes (GsB) | Well-drained; very slow permeability | 35 inches to bedrock | Ridges

3.3 Vegetation and Wildlife

Flora and fauna of the ecotone include species that are representative of the Balcones Canyonland, the Limestone Cut Plain, and the Northern Blackland Prairie as well as endemic species (Blair 1950). Major game species of the region include whitetail deer, javelina, and several species of bird, and pronghorn and bison were periodically present further back in history. The region’s natural vegetation is typically a grassland-woodland mosaic (Ellis et al. 1995).

The natural vegetation of the region falls under the Balcones Canyonland ecoregion, and was dominate woodland vegetation, with oak and juniper as the dominating tree species. Grasslands are common in broad valleys and on adjacent slopes (Riskind and Diamond 1988). The Balcones Canyonland is characterized by a high degree of plant community diversity. This diversity is attributable to the ecoregion’s variety of soil orders and their variation in texture and depth, as well as the variable elevation and mesic or xeric conditions (Riskind and Diamond 1988). The vegetation of the Limestone Cut Plains is similar to the vegetation of the Balcones Canyonland, although it is less diverse (Griffith et al. 2007).

Prior to European settlement in the region, natural landscape-scale disturbances, most notably fires, were important to maintain the system. Natural fires from lightning strikes kept Ashe juniper confined to limited areas. Fire suppression programs and overgrazing in historic times has greatly affected the vegetation communities of the Balcones Canyonland and the Limestone Cut Plains. Ashe juniper, mesquite, and prickly pear have all increased in abundance, while grasslands have decreased (Griffith et al. 2007; Riskind and Diamond 1988).

3.4 Current and Past Climates

Georgetown has a climate classified as warm temperate (hot summers and cool winters), with precipitation ranging from 35 to 40 inches in an average year. Precipitation is less in the western part of the ecoregion and greater in the east (Bailey 2014).

Because most cultural resources originate in the period between the Last Glacial Maximum and the colonization of the western hemisphere by emigrants of the European continent, it is necessary to consider past climates, too. Since past climatic conditions cannot be observed (i.e., measurements did not begin in this region until the late 19th century), proxy data must be relied upon to reconstruct past conditions. Proxy data do not directly reflect past environments, but they can be used to infer conditions under which they form (Ellis et al. 1995).

Based on fossil pollens (Bousman 1998), phytoliths (Joines 2005), microfaunal remains (Toomey 1993), soil chemistry (Nordt et al. 2002), and speleothems (Musgrove et al. 2001), it is clear that
climatic conditions of the past approximately 20,000 years have steadily become warmer and increasingly arid with several punctuated episodes. The transition from the Pleistocene to the Holocene at approximately 11,700 years ago was marked by an increase in warmth and aridity. In addition to increased warmth and aridity, the Holocene has been characterized by increasing seasonal variation of temperatures and precipitation. Peak warmth and aridity occurred during the mid- to late-Holocene Altithermal. Following the Altithermal, conditions similar to the early-Holocene returned, but warmth and aridity increase to the present.

4.0 CULTURAL HISTORY

Generally, the cultural chronology of Central Texas can be divided into three periods, prehistoric, protohistoric, and historic. The protohistoric effectively marks the boundary between the prehistoric and historic periods, and is characterized by the initial introduction of Europeans into the western hemisphere. The following description of Central Texas’ cultural history is a gross compilation of a vast suite of data and interpretations (cf. Collins 1995, 2004).

4.1 Prehistoric

The prehistoric people of Central Texas were primarily hunter-gatherers. Through the last 75-plus years of archaeological research in the region, identifiable and repeated patterns in artifact assemblages have indicated major shifts in subsistence strategies and technology through time. As a result, the prehistoric period now has three subdivisions: Paleoindian, Archaic, and Late Prehistoric.

The Paleoindian period (ca. 12,500-8800 years ago) includes the earliest human occupation of North America, which extends back into the late Pleistocene. During this time, people hunted large game, but they generally had a broad diet. This included plant foods, small game, in addition to megafauna that went extinct with the close of the Pleistocene (i.e., mammoth, mastodon, bison, horse, camel, etc.). Technological traditions further subdivide the Paleoindian period into Early and Late.

The Archaic period (ca. 8800-1250 years ago) of Central Texas was the longest period in prehistory, and it is generally marked by the introduction of hot rock cooking in addition to the proliferation of a wide variety of diagnostic projectile points. Cooking with fire-heated rocks developed with increased reliance on plant foods, which may have been a response to diminishing game resources and ultimately climatic change or variation. This is not to say that human agency did not play an important role in the shift of economic and subsistence strategies. The Archaic period is subdivided into Early-, Middle-, and Late-Archaic periods, each with a slight variation in response to cultural shifts and ambient conditions.

The Late Prehistoric (ca. 1250-250 years ago) was a relatively brief period, but it was marked by a shift in weapon technology: the introduction of the bow-and-arrow. Like the Archaic, the Late Prehistoric people utilized hot rock cooking to process plants to edible forms. There also appeared
to be increasing contact among groups, which resulted in increased trade of materials and evident competition over resources.

4.2 Protohistoric and Historic

Spanish Entradas (expeditions) mark the onset of European influence in the New World. These explorations effectively scouted the new land and resulted in the settlement and establishment of missions spread throughout what has become northern Mexico and Texas. The Spanish entered into what is now Texas along the *El Camino Real de los Texas*. During this time, European populations and influence steadily increased as native populations steadily diminished.

Williamson County was formed from Milam County in March 1848; Georgetown became the county seat later that same year. The early economy of Williamson County, from the 1850s through the 1860s, was dominated by family operated farms which primarily produced wheat and corn (Odintz 2016). In the 1870s, railways began to crisscross the county, allowing for a boom in the agricultural business. This boom lasted through the 1920s, before the economy slowed due to the Great Depression. After the county recovered from the Great Depression, both the economy and the population grew. By the 1980s, the economy had diversified. Construction and manufacturing became significant parts of the economy; agriculture also remained important. Proximity to Austin helped the population, especially in Round Rock and Georgetown, to grow rapidly. As of 2014, roughly 489,250 people lived in Williamson County.

Georgetown was founded in 1848. In addition to being the seat of Williamson County, Georgetown gained importance during its early history with the establishment of Southwestern University and with its location along a major cattle trail (Scarborough 2015). Population and economic diversity in Georgetown increased steadily until the 1960s, when the city began to experience rapid growth. In 2000, the population was recorded as 28,339. Manufacturing, quarries, and industries related to commercial and residential development are main components of the modern economy of Georgetown.

5.0 METHODS

The methods described below were employed to identify and characterize cultural resources present within the APE to the extent practicable. Desktop review focused on identifying previously known cultural materials, while fieldwork was used to both search for unknown cultural resources and gather more information based on the desktop review.

5.1 Desktop Review

To search for known cultural resources within and in proximity to the APE, reviews of the Texas Archeological Sites Atlas (Atlas), the list of State Archeological Landmarks, and the National Register of Historic Places were conducted. Historic-period maps and aerial images that include the project area were reviewed for evidence that the location contained buildings or other features that may be considered historic (at least 50 years old).
5.2 Intensive Pedestrian Survey

In order to examine the approximately 93.5-acre APE for previously unknown cultural resources, and to gather additional information based on the desktop review, an intensive pedestrian survey was conducted.

The ground surface in the APE was systematically inspected by two archaeologists walking parallel transects spaced approximately 30 meters or less apart for 100 percent coverage of the project area. Shovel tests were placed in areas that appeared to be previously undisturbed or had less than 30 percent visibility.

As a general method, shovel tests are excavated to varying depths that target Holocene-aged soils. Sediment was excavated in arbitrary 20-cm levels to depth and passed through ¼-inch hardware mesh. Characteristics and contents of shovel tests are recorded with photographs, forms and notes, and a hand-held global positioning system (GPS) unit; upon completion of excavation and documentation, the unit holes and artifacts, if present, are backfilled. Cultural materials encountered through the course of shovel test excavations are described and returned to their approximate origin.

Archeological sites, if encountered, would be recorded with the Texas Archeological Research Laboratory and be assessed for eligibility for inclusion in the NRHP or designation as a SAL as appropriate. This survey has a “no-collection” policy; therefore, diagnostic artifacts (if encountered) would be documented in the field and not collected. Records will be temporarily housed in Terracon’s office in Austin and will be permanently curated by the Center for Archaeological Studies (CAS) at Texas State University upon completion of the project.

5.3 Artifact Analysis

Artifacts, if encountered through the course of investigations, would be described and photographed on-site, and then returned to their respective places. The importance of the artifacts is in their capacity to relate temporal and other information about the former occupants of the site, and as such they are categorized according to their material and subdivided by unique or diagnostic characteristics.

5.4 National Register of Historic Places and State Antiquities Landmark Criteria

For a historic resource to be deemed eligible for inclusion in the National Register of Historic Places (NRHP), the resource must be at least 50 years old and must possess significance and integrity. The quality of significance in American history, architecture, archaeology, engineering, and culture is present in districts, sites, buildings, structures, and objects that possess integrity of location design, setting, materials, workmanship, feeling, and association and:

A. That are associated with the events that have made a significant contribution to the broad patterns of our history; or
B. That are associated with the lives of persons significant in our past; or
C. That embody the distinctive characteristics of a type, period, or method of construction,
or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or
D. That have yielded, or may be likely to yield, information important in our prehistory or history (36 CFR 60.4).

Additionally, the State of Texas affords important cultural resources a level of protection beyond that of NRHP status if the resource meets the criteria for listing as a State Antiquities Landmark (SAL). The SAL criteria are divided into four categories based on the type of resource: archaeological site, shipwreck, cache and collection, and historic structure. The criteria for archaeological sites are:

1) The site has the potential to contribute to a better understanding of the prehistory and/or history of Texas by the addition of new and important information;
2) The site’s archeological deposits and the artifacts within the site are preserved and intact, thereby supporting the research potential or preservation interest of the site;
3) The site possesses unique or rare attributes concerning Texas prehistory and/or history;
4) The study of the site offers the opportunity to test theories and methods of preservation, thereby contributing to new scientific knowledge; and
5) There is a high likelihood that vandalism and relic collecting has occurred or could occur, and official landmark designation is needed to ensure maximum legal protection, or alternatively, further investigations are needed to mitigate the effects of vandalism and relic collecting when the site cannot be protected (Title 13, Rule 26.10).

6.0 RESULTS

6.1 Desktop Review

A review of the Texas Archeological Sites Atlas database with emphasis on 0.5-mile buffer indicates that no previously recorded sites are located within the APE (Appendix A, Exhibit 4). Five previously recorded archaeological sites are located within the search buffer and are summarized in Table 2. No State Antiquities Landmarks (SALs), Recorded Texas Historic Landmarks (RTHLs), or National Register of Historic Places (NRHP) properties are present in the buffer search.

<table>
<thead>
<tr>
<th>Site #</th>
<th>Site Type</th>
<th>Year Recorded/Company</th>
<th>NRHP Eligibility Determination by THC</th>
</tr>
</thead>
<tbody>
<tr>
<td>41WM52</td>
<td>Prehistoric-age buried site</td>
<td>1963/--</td>
<td>Undetermined</td>
</tr>
</tbody>
</table>
Cultural Resources Services
GISD Proposed High School ■ Georgetown, Williamson County, Texas
January 9, 2020 ■ Terracon Project No. 96197745A

<table>
<thead>
<tr>
<th>Site #</th>
<th>Site Type</th>
<th>Year Recorded/Company</th>
<th>NRHP Eligibility Determination by THC</th>
</tr>
</thead>
<tbody>
<tr>
<td>41WM53</td>
<td>Prehistoric-age buried site</td>
<td>1963/--</td>
<td>None</td>
</tr>
<tr>
<td>41WM54</td>
<td>Prehistoric-age open campsite</td>
<td>1963/--</td>
<td>None</td>
</tr>
<tr>
<td>41WM821</td>
<td>Prehistoric-age lithic scatter</td>
<td>1994/Lone Star Archeological Services</td>
<td>Ineligible</td>
</tr>
<tr>
<td>41WM837</td>
<td>No information available on Atlas</td>
<td>No information available on Atlas</td>
<td>None</td>
</tr>
</tbody>
</table>

Five previous investigations have been conducted within the 0.5-mile search buffer and are summarized in Table 3. No portion of the APE appears to have been previously surveyed.

Table 3. Summary of previous investigations within 0.5-mile buffer.

<table>
<thead>
<tr>
<th>Year</th>
<th>Antiquities Code Permit #</th>
<th>Company</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>--</td>
<td>--</td>
<td>National Park Service</td>
</tr>
<tr>
<td>1976</td>
<td>--</td>
<td>--</td>
<td>United States Army Corps of Engineers (USACE)</td>
</tr>
<tr>
<td>1981</td>
<td>--</td>
<td>--</td>
<td>USACE</td>
</tr>
<tr>
<td>1994</td>
<td>1463</td>
<td>Lone Star Archeological Services</td>
<td>--</td>
</tr>
<tr>
<td>2006</td>
<td>3806</td>
<td>American Archaeology Group</td>
<td>City of Round Rock</td>
</tr>
</tbody>
</table>

Historic-period topographic maps dating back over 100 years cover the project area. Several years were examined including 1893, 1928, 1949, 1951, and 1982. No structures are apparent within the project area in topographic maps.

Historic aerials were also reviewed, the earliest of which was dated 1941. Others were dated 1953, 1962, 1964, 1974, 1981, 1988, 1995, 2004, and 2015. In the photos from 1941, 1953, 1962, 1964, 1974, and 1981, no structures can be observed in the project area, and there is little development in the vicinity of the project area. In the photos from 1988, 1995, 2004, and 2015, DB Wood Road can be observed, along with increasing development in the area. No structures were observed in the project area in historic aerials.
6.2 Intensive Pedestrian Survey

The intensive pedestrian survey resulted in the excavation of forty-eight shovel tests in areas which were undisturbed with less than 30 percent ground visibility (Appendix A, Exhibit 5). Overall, the APE was covered short grasses with prickly pear and oak tree vegetation; ground visibility within the project area was generally decent, ranging from 30 to 60 percent (Appendix B, Photos 1 and 2). Portions of the project area contained bedrock at ground surface (Appendix B, Photo 3). The project area was generally undeveloped and undisturbed, with the exception of unpaved two-track roads across the project area and excavated karst/sinkholes (Appendix B, Photos 4-6). Three archaeological sites, 41WM1409, 41WM1410, and 41WM1411, were recorded during the course of the current survey and are described below (see Appendix A, Exhibit 5).

The soil in the shovel tests was predominately clay and clay loam, with a generally shallow depth to subsoil or bedrock (Appendix B, Photos 7 and 8). Nine shovel tests were positive (see Appendix A, Exhibit 5). Artifacts observed in shovel tests consisted of lithics associated with 41WM1411, which is described below. See Appendix C for details in the Shovel Tests Log.

6.2.1 Site 41WM1409

Site 41WM1409 was recorded in the eastern portion of the project area as a historic-age artifact scatter, with a size of approximately 40 meters northeast to southwest by 31 meters northwest to southeast (see Appendix A, Exhibits 5 and 6). Site 41WM1409 was on a generally level setting, with a slight slope down to the southeast. Vegetation at the site consisted of short local grasses, prickly pear cactus, and oak and persimmon trees (Appendix B, Photos 9 and 10). A karst/sinkhole was located in the eastern portion of the site (Appendix B, Photo 11). One shovel test was excavated in 41WM1409.

Artifacts observed at 41WM1409 included sheet metal, metal cans, whiteware ceramics, a rubber tire inner tube, leather shoe, and glass containers of various colors (clear, green, blue, brown, and milk glass). Artifacts were generally present at moderate- to high-density (15-20 artifacts per square meter) (Appendix B, Photo 12). The karst/sinkhole in the eastern portion of the site was not entered, but appeared to contain artifacts including metal containers, ceramic fragments, and glass containers (Appendix B, Photo 13). A discrete dump pile containing mostly metal cans and glass containers was present in the western portion of the site (Appendix B, Photo 14). This discrete dump pile appears to have been originally deposited in a karst/sinkhole and recently excavated and dumped on the surface. It is unknown if the materials came from the karst/sinkhole at 41WM1409, or another nearby karst/sinkhole.

Artifacts observed at 41WM1409 consisted of mid-20th century domestic materials, including ceramic dish and glass cookware fragments (Appendix B, Photo 15), metal and glass containers such as a beverage dispenser, orange juice can, and bottles of cleaners (Appendix B, Photos 16 and 17), and other materials including a shoe and Jergens deodorant container (Appendix B, Photos 18 and 19). Several marker’s marks were observed on glass containers, including marks.

Site 41WM1409 consisted of typical mid-20th century domestic materials. The site appeared to be a dump, with no associated structures or structural remains observed (Appendix B, Photo 26). Structures were not observed at this location in historic topographic maps or aerial photographs. No buried deposits were observed associated with the site (ST39). It is unknown when the materials were dumped at the site; it is possible that they were dumped fairly recently. Given the lack of association of the materials with a structure, and the uncertainty of when the materials were dumped and where they originated from, archival research was not conducted for this site.

6.2.2 Site 41WM1410

Site 41WM1410 was recorded in the southern portion of the project area as a prehistoric-age lithic procurement site along a small drainage, where cherty limestone was available on the ground surface and was utilized (see Appendix A, Exhibits 5 and 7). The topography of the site ranged from a level terrace to a slight slope downwards to the drainage (Appendix B, Photos 27 and 28). Vegetation at 41WM1410 consisted of short local grasses, prickly pear cactus, and oak trees (see Appendix B, Photos 27 and 28). Bedrock was present at the ground surface in areas throughout the site, but especially in areas near the drainage (Appendix B, Photos 29). The extent of the site within the current project boundary was recorded; the site likely extends to the southwest outside of the current project APE.

Six shovel tests were excavated in 41WM1410 (see Appendix A, Exhibit 7). Shovel tests were negative for cultural materials. In general, artifact density across the majority of the site was low (5-10 artifacts per 10 square meters), but areas with higher artifact densities were observed (5-10 artifacts per 1 square meter) (Appendix B, Photos 30 and 31). When observed, areas with noticeably higher artifact concentrations were marked with a handheld GPS; it is important to note that additional areas with high artifact concentrations might be present at the site and were not observed or marked due to width of survey transects.

No prehistoric-age features were observed when 41WM1410 was recorded. Cultural materials observed consisted of lithic artifacts, mostly made from cherty limestone (Appendix B, Photo 32). Some chert was observed at the site, mostly confined to the small drainage at the western project boundary (Appendix B, Photos 33). Artifacts observed at 41WM1410 consisted mostly of cores, with primary and secondary flakes also common (Appendix B, Photos 34-36). Tertiary flakes and debitage was uncommon. One projectile point, typed as an Ensor dart point, was observed in the central portion of the site (see Appendix A, Exhibit 7) (Appendix B, Photos 37-39). Due to the abundance of cores, primary and secondary flakes, taken along with the low frequency of tertiary
flakes and debitage, the primary activity at 41WM1410 appears to have been early stage lithic reduction.

6.2.3 Site 41WM1411

Site 41WM1411 was recorded in the northern portion of the project area as a prehistoric-age lithic procurement site, where chert and cherty limestone were available on the ground surface and were utilized (see Appendix A, Exhibits 5 and 8). The topography of the site was level to gently sloping (Appendix B, Photo 40). Vegetation at the site consisted mostly of short local grasses, prickly pear cactus, and oak trees (Appendix B, Photo 41). Bedrock was present at the ground surface in many areas of the site (Appendix B, Photo 42). The extent of 41WM1411 within the current project boundary was recorded; the site likely extends to the west, and possibly to the north, outside of the current project APE.

Twenty-four shovel tests were excavated in 41WM1411 (see Appendix A, Exhibit 8). Nine of those shovel tests were positive (ST03, ST07, ST08, ST15, ST17, ST25, ST36, ST37, and ST45). Cultural materials observed in positive shovel tests consisted of lithic artifacts (cores, flakes, and modified flakes) found within the upper 20 cm below the ground surface (Appendix B, Photos 43-45). In general, artifact density across the majority of the site was low (5-10 artifacts per 20 square meters), but areas with high artifact densities were observed (20-30 artifacts per 1 square meter) (Appendix B, Photos 46-48). When observed, areas with noticeably higher artifact concentrations were marked with a handheld GPS; it is important to note that additional areas with high artifact concentrations might be present at the site and were not observed or marked due to width of survey transects.

No prehistoric-age features were observed when 41WM1411 was recorded. Cultural materials observed at the site consisted of lithic artifacts, made of both chert and cherty limestone (Appendix B, Photos 49 and 50). Artifacts observed at 41WM1411 consisted mostly of cores, with primary and secondary flakes also common (Appendix B, Photos 51-53). Tertiary flakes and debitage was observed in a few areas with high concentrations of artifacts, mostly in the western portion of the site (Appendix B, Photos 54 and 55). Diagnostic artifacts were not observed at 41WM1411; however, several stone tools were observed. Two large bifaces were observed in the northwestern portion of the site (see Appendix A, Exhibit 8) (Appendix B, Photos 56 and 57). Several modified flakes were also observed in the same high concentration area as the bifaces (Appendix B, Photo 58). A large uniface made on a primary flake was noted on the ground surface near ST15 (see Appendix A, Exhibit 8) (Appendix B, Photo 59). A chert secondary flake that appeared to have been utilized as a flake tool was found on the ground surface near ST37 (see Appendix A, Exhibit 8) (Appendix B, Photo 60).

Due to the abundance of cores, primary and secondary flakes, taken along with the low frequency of tertiary flakes and debitage, the primary activity at 41WM1411 appears to have been early stage lithic reduction. Tertiary flakes and debitage, indicating late stage lithic reduction and
possible tool manufacturing, were present in a few areas with higher artifact concentration, and were observed primarily in the western portion of the site.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Terracon archaeologists conducted an intensive pedestrian survey of an approximate 93.5-acre area in advance of the proposed construction of school facilities by Georgetown Independent School District on currently undeveloped land in western Georgetown, Williamson County, Texas. Forty-eight shovel tests were excavated. One historic-age site, 41WM1409, and two prehistoric-age sites, 41WM1410 and 41WM1411, were recorded within the project area.

Site 41WM1409 was recorded as a historic-age artifact scatter, containing typical mid-20th century domestic materials. Terracon recommends 41WM1409 as ineligible for inclusion on the NRHP under any criteria. The materials at 41WM1409 were dumped at their current location with no indication of when they were deposited or where they originated. Therefore, they cannot be tied to people or events of local, state, or national significance, and are ineligible under Criteria A and B. There are no standing structures, so 41WM1409 does not fall under Criterion C. Given the typical domestic materials it contains, the lack of observed buried deposits, and the apparent secondary context of the materials, Terracon does not believe that 41WM1409 is likely to yield information important in history, thus, it is not eligible under Criterion D.

Site 41WM1410 was recorded as a prehistoric-age lithic procurement site with no observed buried deposits. Terracon recommends 41WM1410 as ineligible for inclusion on the NRHP. Given the low density of cultural materials across most of the site and the lack of buried deposits, along with the lack of unique site attributes, Terracon does not believe that the site is likely to yield information important in prehistory, thus, it is not eligible under Criterion D. Site 41WM1410 does not fall under Criteria A, B, or C.

Site 41WM1411 was recorded as prehistoric-age lithic procurement site with limited buried deposits and no observed diagnostic artifacts. Terracon recommends 41WM1411 as ineligible for inclusion on the NRHP. Given the low density of cultural materials across most of the site, the lack of isolable deposits, and the lack of unique site attributes, Terracon does not believe that the site is likely to yield information important in prehistory, thus, it is not eligible under Criterion D. Site 41WM1411 does not fall under Criteria A, B, or C.

In addition, 41WM1409, 41WM1410, and 41WM1411 should not be designated as SALs, as they are not eligible under any criteria for evaluating archaeological sites. The sites lack significant intact deposits, do not possess any unique or rare attributes, and are not likely to contribute to new scientific knowledge or a better understanding of Texas history or prehistory.

It is Terracon’s opinion that there are no historic properties in the APE eligible for listing on the NRHP or designation as a SAL. Therefore, Terracon recommends that the project be allowed to proceed as future construction of the school facilities will not affect historic properties. In the
unlikely event that human remains or intact cultural resources are discovered after THC’s review, activities should cease in the vicinity of the discovery and Terracon, the Texas Historical Commission’s Archeology Division, or other proper authorities should be contacted.
8.0 REFERENCES CITED

Bailey R. G.

Barnes, V.E.
1992 *Geologic Map of Texas*. Bureau of Economic Geology, University of Texas at Austin.

Blair, W. Frank

Bousman, C. Britt

Collins, Michael B.

Crumley, Carole L. (editor)

Ellis, Linda Wootan, G. Lain Ellis, and Charles D. Frederick

Griffith, G. E., S. A. Bryce, J. M. Omernik, and A. C. Rogers

Joines, Jason Paul
2005 *17,000 Years of Climate Change: The Phytolith Record from Hall’s Cave, Texas*. Unpublished Master’s thesis, Department of Biology, Oklahoma State University, Stillwater.

Lindsey, Bill
2019 Historic Glass Bottle Identification & Information Website: https://sha.org/bottle/. Society for Historical Archaeology and Bureau of Land Management.

Scarborough, Clara Stearns 2015 Georgetown, TX (Williamson County). Handbook of Texas Online: https://tshaonline.org/handbook/online/articles/hfg03. Texas State Historical Association.

Toomey, Rickard S., III 1993 *Late Pleistocene and Holocene Faunal and Environmental Changes at Hall’s Cave, Kerr County, Texas*. Unpublished Ph.D. dissertation, Department of Geography, University of Texas at Austin.

APPENDIX A
Exhibit Maps
Page removed to protect site location
APPENDIX B
Photographs
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 1. Area of higher ground surface visibility in the southwestern portion of project APE. Note short local grasses, prickly pear cactus, and oak trees. View to the north.

Photo 2. Area of lower ground surface visibility in the northwestern portion of project area. Note short local grasses and oak trees. View to the north.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 3. Area with bedrock at surface in south-central portion project APE. View to the south.

Photo 4. Two-track road in eastern portion of project area. View towards DB Wood Road. View to the northeast.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 5. Excavated karst/sinkhole in the west-central portion of project area. View to the southwest.

Photo 6. Excavated karst/sinkhole in the central portion of the project area. View to the southwest.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 7. Shovel Test 02. Note shallow depth to reddish-brown clay subsoil.

Photo 8. Shovel Test 33. Note shallow depth to bedrock.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 11. View of karst/sinkhole in eastern portion of 41WM1409. View to the south.

Photo 12. Central portion of 41WM1409. Note rubber tire inner tube, sheet metal, and glass containers.
Appendix B. Photographs
GISD Proposed High School • Georgetown, Williamson County, Texas
Terracon Project No. 96197745A • Photos taken October 14-16, 2019

Photo 13. Interior of karst in eastern portion of 41WM1409. Note apparent historic-age materials in karst.

Photo 14. Discrete pile of metal cans and glass containers, in western portion of 41WM1409. View to the west.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 15. Artifacts from 41WM1409. Glass ‘FIRE-KING’ cookware fragments, and ceramic whiteware fragment with flower design.

Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 17. Artifacts from 41WM1409. Metal container and metal lid, metal orange juice can, clear glass containers and cup, whiteware ceramic cup.

Photo 18. Artifacts from 41WM1409. Leather shoe. Note whiteware ceramic also pictured in Photo 15.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 19. Artifact from 41WM1409. Milk glass container marked ‘JERGENS FRAGRANT STICK DEODORANT’.

Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 22. Artifact from 41WM1409. Clear glass container with maker's mark for Knox Glass Bottle Co., 1932-1952. Also marked 'GRAPE SODA IMITATION GRAPE FLAVOR'.
Appendix B. Photographs
GISD Proposed High School ▶ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ▶ Photos taken October 14-16, 2019

Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 26. General view of 41WM1409 from eastern boundary. View to the west.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 27. View of central portion of 41WM1410. Note mostly level terrace setting. View to the northwest.

Photo 28. View of western portion of 41WM1410. Note drainage at right side of photo. View to the southeast.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 29. Bedrock at ground surface in central portion of 41WM1410. Note slope downward to drainage. View to the southeast.

Photo 30. Area of low artifact density, eastern portion of 41WM1410.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 31. Area with higher artifact density, central portion of 41WM1410. View towards drainage/project boundary. View to the south.

Photo 32. Artifacts from 41WM1410. Cores. Note cherty limestone material.
Appendix B. Photographs
GISD Proposed High School ▲ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ▲ Photos taken October 14-16, 2019

Photo 33. Gravels, including chert gravels and artifacts, in small drainage at project/site boundary. Western portion of 41WM1410.

Photo 34. Artifacts from 41WM1410. Cores. Note cherty limestone material.
Appendix B. Photographs
GISD Proposed High School • Georgetown, Williamson County, Texas
Terracon Project No. 96197745A • Photos taken October 14-16, 2019

Photo 35. Artifacts from 41WM1410. Cores. Note cherty limestone material.

Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 37. Artifact from 41WM1410. Ensor dart point, from central portion of site.

Photo 38. Artifact from 41WM1410. Ensor dart point, reverse view from Photo 37.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 39. Artifact from 41WM1410. Ensor dart point from Photos 37 and 38, edge view.

Photo 40. Northwestern portion of 41WM1411. Note level topography. View to the southwest.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 41. Southern portion of 41WM1411. Note short local grasses, prickly pear cactus, and oak tree vegetation. View to the east.

Photo 42. View of bedrock at ground surface in 41WM1411. Note lithics of cherty limestone material.
Appendix B. Photographs
GISD Proposed High School ▶ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ▶ Photos taken October 14-16, 2019

Photo 43. Artifact from 41WM1411. Utilized secondary flake from ST07, 0-10 cmbs.

Photo 44. Artifact from 41WM1411. Core from ST36, 0-20 cmbs.
Appendix B. Photographs
GISD Proposed High School • Georgetown, Williamson County, Texas
Terracon Project No. 96197745A • Photos taken October 14-16, 2019

Photo 45. Artifacts from 41WM1411. Cores from ST45, 0-20 cmbs.

Photo 46. View of low artifact concentration area in the north-central portion of 41WM1411. View to the north.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 47. View of high artifact concentration area in northwestern portion of 41WM1411.

Photo 48. View of high artifact concentration area in southeastern portion of 41WM1411.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 49. Artifact from 41WM1411. Chert secondary flake found on ground surface near ST37.

Photo 50. Artifacts from 41WM1411. Cores of cherty limestone material.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 51. Artifact from 41WM1411. Core of cherty limestone material.

Photo 52. Artifact from 41WM1411. Primary flake.
Appendix B. Photographs
GISD Proposed High School • Georgetown, Williamson County, Texas
Terracon Project No. 96197745A • Photos taken October 14-16, 2019

Photo 53. Artifacts from 41WM1411. Secondary flakes.

Photo 54. Artifacts from 41WM1411. Tertiary flakes and debitage on ground surface, in northwestern portion of site.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 55. Artifacts from 41WM1411. Secondary flakes and tertiary flakes, from western portion of site.

Photo 56. Artifact from 41WM1411. Large biface from northwestern portion of site.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 57. Artifact from 41WM1411. Large biface from northwestern portion of site.

Photo 58. Artifacts from 41WM1411. Modified secondary and tertiary flakes from northwestern portion of site.
Appendix B. Photographs
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Terracon Project No. 96197745A ■ Photos taken October 14-16, 2019

Photo 59. Artifact from 41WM1411. Uniface found on ground surface near ST15.

Photo 60. Artifact from 41WM1411. Utilized secondary flake, found near ST37. Same artifact as in Photo 49.
APPENDIX C
Shovel Test Log
Appendix C. Shovel Test Log
GISD Proposed High School ■ Georgetown, Williamson County, Texas
Shovel Tests from October 14-16, 2019 ■ Terracon Project No. 96197745A

<table>
<thead>
<tr>
<th>ST ID #</th>
<th>Depth (cmbs)</th>
<th>+/-</th>
<th>Ground cover</th>
<th>Munsell & Color</th>
<th>Texture</th>
<th>% Gravels</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0-20</td>
<td>-</td>
<td>80-90%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>2-20%</td>
<td>Rootlets and roots, somewhat dense, moist, limestone and cherty gravels. Within 41WM1411.</td>
</tr>
<tr>
<td>01</td>
<td>20-30</td>
<td>-</td>
<td>-</td>
<td>5YR4/3 Reddish Brown</td>
<td>Clay</td>
<td>>50%</td>
<td>Mechanically fractured chert, developed clay, limestone gravels, terminated at subsoil. Within 41WM1411.</td>
</tr>
<tr>
<td>02</td>
<td>0-15</td>
<td>-</td>
<td>60-80%</td>
<td>7.5YR3/2 Dark Brown</td>
<td>Clay Loam</td>
<td>2-20%</td>
<td>Rootlets; moist and somewhat denser, limestone cobbles and cherty gravels. Within 41WM1411.</td>
</tr>
<tr>
<td>02</td>
<td>15-30</td>
<td>-</td>
<td>-</td>
<td>5YR3/2 Dark Reddish Brown</td>
<td>Clay</td>
<td>2-20%</td>
<td>Very dry, limestone gravels and cherty gravels, chalk bits (1%), terminated at subsoil. Within 41WM1411.</td>
</tr>
<tr>
<td>03</td>
<td>0-15</td>
<td>+</td>
<td>60-80%</td>
<td>10YR3/2 Very Dark Gray Brown</td>
<td>Clay Loam</td>
<td>2-20%</td>
<td>Possible tested cobbles, rootlets, limestone cobbles and cherty gravels, moist. Within 41WM1411.</td>
</tr>
<tr>
<td>03</td>
<td>15-32</td>
<td>-</td>
<td>-</td>
<td>5YR4/3 Reddish Brown</td>
<td>Clay</td>
<td>2-20%</td>
<td>Clear transition, very large chalky limestone cobbles, terminated at subsoil. Within 41WM1411.</td>
</tr>
<tr>
<td>04</td>
<td>15-30</td>
<td>-</td>
<td>-</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay</td>
<td>2-20%</td>
<td>Very dry, dense, deteriorating limestone and limestone cobbles, some chalky limestone present, terminated at subsoil. Within 41WM1410.</td>
</tr>
<tr>
<td>ST ID #</td>
<td>Depth (cmbs)</td>
<td>+/-</td>
<td>Ground cover</td>
<td>Munsell & Color</td>
<td>Texture</td>
<td>% Gravels</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-----</td>
<td>--------------</td>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>05</td>
<td>0-15</td>
<td>-</td>
<td>80-90%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>2-20%</td>
<td>Moist, roots and rootlets, limestone cobbles and a quartz fragment. Within 41WM1410.</td>
</tr>
<tr>
<td>05</td>
<td>15-30</td>
<td>-</td>
<td>-</td>
<td>5YR4/3 Reddish Brown</td>
<td>Clay</td>
<td>2-20%</td>
<td>Very dry, dense, decomposing limestone terminated at subsoil. Within 41WM1410.</td>
</tr>
<tr>
<td>06</td>
<td>0-10</td>
<td>-</td>
<td>80-90%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Moist, rootlets, bedrock at five centimeters below surface to end of test. Chalky limestone, terminated at bedrock.</td>
</tr>
<tr>
<td>07</td>
<td>0-10</td>
<td>+</td>
<td>80-90%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>2-20%</td>
<td>Moist, rootlets, one piece of chert debitage, somewhat dense strata. Within 41WM1411.</td>
</tr>
<tr>
<td>07</td>
<td>10-20</td>
<td>-</td>
<td>-</td>
<td>5YR4/3 Reddish Brown</td>
<td>Clay</td>
<td>>50%</td>
<td>Clear transition, limestone gravels and decomposing chalky limestone bedrock at 20 centimeters. Within 41WM1411.</td>
</tr>
<tr>
<td>08</td>
<td>0-10</td>
<td>+</td>
<td>80-90%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>2-20%</td>
<td>Moist, rootlets, two chert flakes, somewhat dense. Within 41WM1411.</td>
</tr>
<tr>
<td>08</td>
<td>10-25</td>
<td>-</td>
<td>-</td>
<td>5YR4/3 Reddish Brown</td>
<td>Clay</td>
<td>2-20%</td>
<td>Clear transition, limestone gravels and cherty gravels, terminated at subsoil. Within 41WM1411.</td>
</tr>
<tr>
<td>09</td>
<td>0-8</td>
<td>-</td>
<td>90%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>2-20%</td>
<td>Moist, rootlets, cherty gravels, within 41WM1411.</td>
</tr>
</tbody>
</table>
Shovel Test Log

GISD Proposed High School ■ Georgetown, Williamson County, Texas
Shovel Tests from October 14-16, 2019 ■ Terracon Project No. 96197745A

<table>
<thead>
<tr>
<th>ST ID #</th>
<th>Depth (cmbs)</th>
<th>+/-</th>
<th>Ground cover</th>
<th>Munsell & Color</th>
<th>Texture</th>
<th>% Gravels</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>09</td>
<td>8-12</td>
<td>-</td>
<td>-</td>
<td>5YR3/2 Dark Reddish Brown</td>
<td>Clay</td>
<td>>50%</td>
<td>Decomposing limestone bedrock, dry, dense, terminated at bedrock. Within 41WM1411.</td>
</tr>
<tr>
<td>10</td>
<td>0-20</td>
<td>-</td>
<td>80-90%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>2-20%</td>
<td>Decomposing limestone gravels with cherty cobbles, somewhat dense, moist, roots, within 41WM1411, terminated at big root and bedrock.</td>
</tr>
<tr>
<td>11</td>
<td>0-10</td>
<td>-</td>
<td>60-80%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Rootlets, soft, moist, decomposing bedrock at 10 centimeters below surface, terminated at bedrock.</td>
</tr>
<tr>
<td>12</td>
<td>0-12</td>
<td>-</td>
<td>80-90%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Rootlets, moist, decomposing limestone bedrock, cherty gravels, within 41WM1410, terminated at bedrock.</td>
</tr>
<tr>
<td>13</td>
<td>0-25</td>
<td>-</td>
<td>80-90%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>2-20%</td>
<td>Rootlets, moist, roots, cherty gravels and limestone gravels, within 41WM1411.</td>
</tr>
<tr>
<td>13</td>
<td>25-30</td>
<td>-</td>
<td>-</td>
<td>5YR3/2 Dark Reddish Brown</td>
<td>Clay</td>
<td>>50%</td>
<td>Very dense, decomposing limestone bedrock, roots, terminated at subsoil and bedrock. Within 41WM1411.</td>
</tr>
<tr>
<td>14</td>
<td>0-30</td>
<td>-</td>
<td>80-90%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Somewhat dense, roots, decomposing limestone and cherty gravels. Terminated at bedrock. Within 41WM1411.</td>
</tr>
<tr>
<td>15</td>
<td>0-10</td>
<td>+</td>
<td>80-90%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Two pieces of modified chert, rootlets, soft, moist, decomposing limestone bedrock, within 41WM1411. Terminated at bedrock.</td>
</tr>
<tr>
<td>ST ID #</td>
<td>Depth (cmbs)</td>
<td>+/-</td>
<td>Ground cover</td>
<td>Munsell & Color</td>
<td>Texture</td>
<td>% Gravels</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-----</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>17</td>
<td>0-12</td>
<td>+</td>
<td>90%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>One tertiary flake, one chert shatter, cherty cobbles, decomposing limestone bedrock, soft, moist soil. Terminated at bedrock. Within 41WM1411.</td>
</tr>
<tr>
<td>18</td>
<td>0-15</td>
<td>-</td>
<td>80-90%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Soft, rootlets, cherty cobbles and decomposing limestone gravels, terminated at subsoil. Within 41WM1411.</td>
</tr>
<tr>
<td>19</td>
<td>0-20</td>
<td>-</td>
<td>90%</td>
<td>10YR2/2 Very Dark Brown</td>
<td>Loam</td>
<td>>50%</td>
<td>Shallow but established top soil, rootlets, oak wood, with seep nearby. Terminated at subsoil. Within 41WM1411.</td>
</tr>
<tr>
<td>20</td>
<td>0-20</td>
<td>-</td>
<td>90+%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Somewhat dense, rootlets, cherty cobbles and decomposing limestone bedrock. Terminated at bedrock.</td>
</tr>
<tr>
<td>21</td>
<td>0-18</td>
<td>-</td>
<td>90+%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Soft, moist, rootlets, rife with decomposing limestone. Terminated at bedrock.</td>
</tr>
<tr>
<td>22</td>
<td>0-20</td>
<td>-</td>
<td>90+%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>2-20%</td>
<td>Moist, somewhat dense, tree root and rootlets, cherty cobbles. Within 41WM1410.</td>
</tr>
<tr>
<td>22</td>
<td>20-25</td>
<td>-</td>
<td>-</td>
<td>5YR4/6 Reddish Brown</td>
<td>Clay</td>
<td>>50%</td>
<td>Dense, cherty cobbles, and decomposing limestone bedrock. Terminated at bedrock. Within 41WM1410.</td>
</tr>
<tr>
<td>ST ID #</td>
<td>Depth (cmbs)</td>
<td>+/-</td>
<td>Ground cover</td>
<td>Munsell & Color</td>
<td>Texture</td>
<td>% Gravels</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-----</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>23</td>
<td>0-15</td>
<td>-</td>
<td>90+%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Somewhat dense, rootlets, cherty cobbles and decomposing limestone bedrock. Terminated at bedrock.</td>
</tr>
<tr>
<td>24</td>
<td>0-20</td>
<td>-</td>
<td>80-90%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>2-20%</td>
<td>Somewhat dense, rootlets, moist, limestone and cherty cobbles. Within 41WM1411.</td>
</tr>
<tr>
<td>26</td>
<td>0-20</td>
<td>-</td>
<td>80-90%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Cherty cobbles, rootlets, somewhat dense, moist. Terminated at bedrock. Within 41WM1411.</td>
</tr>
<tr>
<td>27</td>
<td>0-5</td>
<td>-</td>
<td>90+%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Extreme shallow strata, expose bedrock in immediate vicinity, terminated at bedrock. Within 41WM1411.</td>
</tr>
<tr>
<td>28</td>
<td>0-10</td>
<td>-</td>
<td>90+%</td>
<td>5YR3/2 Dark reddish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Rootlets, somewhat dense, moist, cherty gravels, terminated at bedrock. Within 41WM1411.</td>
</tr>
<tr>
<td>28</td>
<td>10-20</td>
<td>-</td>
<td>-</td>
<td>2.5YR3/4 Dark Reddish Brown</td>
<td>Clay</td>
<td>>50%</td>
<td>Dense, roots, decomposing limestone, terminated at bedrock. Within 41WM1411.</td>
</tr>
</tbody>
</table>
Appendix C. Shovel Test Log
GISD Proposed High School ♦ Georgetown, Williamson County, Texas
Shovel Tests from October 14-16, 2019 ♦ Terracon Project No. 96197745A

<table>
<thead>
<tr>
<th>ST ID #</th>
<th>Depth (cmbs)</th>
<th>+/-</th>
<th>Ground cover</th>
<th>Munsell & Color</th>
<th>Texture</th>
<th>% Gravels</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>0-35</td>
<td>-</td>
<td>90+%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>2-20%</td>
<td>Rootlets, somewhat dense, moist, cherty gravels, terminated at bedrock.</td>
</tr>
<tr>
<td>30</td>
<td>0-20</td>
<td>-</td>
<td>90+%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Rootlets, somewhat dense, moist, cherty gravels, terminated at bedrock. Within 41WM1410.</td>
</tr>
<tr>
<td>31</td>
<td>0-17</td>
<td>-</td>
<td>90+%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Roots, moist, somewhat dense, decomposing limestone. Terminated at bedrock.</td>
</tr>
<tr>
<td>33</td>
<td>0-10</td>
<td>-</td>
<td>90+%</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Soft, loamy, rootlets. Terminated at bedrock. Within 41WM1411.</td>
</tr>
<tr>
<td>34</td>
<td>0-15</td>
<td>-</td>
<td>90+%</td>
<td>10YR3/1 Very Dark Gray</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Next to old oaks and karst study area, rootlets, somewhat dense. Terminated at bedrock.</td>
</tr>
<tr>
<td>36</td>
<td>0-20</td>
<td>+</td>
<td>90%+</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>20%</td>
<td>Soft, roots, cherty gravels. Core found at 20 centimeters below surface. Within 41WM1411.</td>
</tr>
</tbody>
</table>
Appendix C. Shovel Test Log
GISD Proposed High School • Georgetown, Williamson County, Texas
Shovel Tests from October 14-16, 2019 • Terracon Project No. 96197745A

<table>
<thead>
<tr>
<th>ST ID #</th>
<th>Depth (cmbs)</th>
<th>+/-</th>
<th>Ground cover</th>
<th>Munsell & Color</th>
<th>Texture</th>
<th>% Gravels</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>20-30</td>
<td>-</td>
<td>-</td>
<td>5YR3/2 Dark Reddish Brown</td>
<td>Clay</td>
<td>>50%</td>
<td>Dense, decomposing limestone, roots. Terminated at subsoil. Within 41WM1411.</td>
</tr>
<tr>
<td>37</td>
<td>0-15</td>
<td>+</td>
<td>90%+</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>20%</td>
<td>Two cores found, cherty gravels, soft, moist. Within 41WM1411.</td>
</tr>
<tr>
<td>37</td>
<td>15-30</td>
<td>-</td>
<td>-</td>
<td>5YR3/2 Dark Reddish Brown</td>
<td>Clay</td>
<td>>50%</td>
<td>Dense, decomposing limestone, roots, moist. Terminated at bedrock. Within 41WM1411.</td>
</tr>
<tr>
<td>38</td>
<td>0-20</td>
<td>-</td>
<td>90%+</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>20%</td>
<td>Soft, cherty gravels, roots, moist.</td>
</tr>
<tr>
<td>38</td>
<td>20-25</td>
<td>-</td>
<td>-</td>
<td>5YR3/2 Dark Reddish Brown</td>
<td>Clay</td>
<td>>20%</td>
<td>Dense, decomposing limestone and gravels, roots, terminated at subsoil.</td>
</tr>
<tr>
<td>39</td>
<td>0-25</td>
<td>-</td>
<td>90%+</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Soft, moist, roots, decomposing limestone gravels, terminated at bedrock. Within 41WM1409.</td>
</tr>
<tr>
<td>40</td>
<td>0-25</td>
<td>-</td>
<td>90%+</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Soft, moist, roots, decomposing limestone gravels. Terminated at bedrock.</td>
</tr>
<tr>
<td>41</td>
<td>0-10</td>
<td>-</td>
<td>90%+</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Dense, moist, limestone gravels, roots.</td>
</tr>
<tr>
<td>ST ID</td>
<td>Depth (cmbs)</td>
<td>+/-</td>
<td>Ground cover</td>
<td>Munsell & Color</td>
<td>Texture</td>
<td>% Gravels</td>
<td>Comments</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>-----</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>41</td>
<td>10-30</td>
<td>-</td>
<td>-</td>
<td>5YR3/2 Dark Reddish Brown</td>
<td>Clay</td>
<td>>50%</td>
<td>Dense, moist, decomposing limestone. terminated at bedrock.</td>
</tr>
<tr>
<td>42</td>
<td>0-20</td>
<td>-</td>
<td>90%+</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Dense, moist, decomposing limestone. terminated at bedrock.</td>
</tr>
<tr>
<td>43</td>
<td>0-17</td>
<td>-</td>
<td>90%+</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>50%</td>
<td>Dense, moist, decomposing limestone. terminated at bedrock. Within 41WM1411.</td>
</tr>
<tr>
<td>44</td>
<td>0-15</td>
<td>-</td>
<td>90%+</td>
<td>5YR3/2 Dark Reddish Brown</td>
<td>Clay</td>
<td>2-20%</td>
<td>Dense, rooty, moist, decomposing limestone, and cherty gravels.</td>
</tr>
<tr>
<td>44</td>
<td>15-25</td>
<td>-</td>
<td>-</td>
<td>2.5YR3/2 Dark Reddish Brown</td>
<td>Clay</td>
<td>2-20%</td>
<td>Decomposing limestone cobbles, moist, sticky. Terminated at subsoil.</td>
</tr>
<tr>
<td>45</td>
<td>0-15</td>
<td>+</td>
<td>90%+</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>20%</td>
<td>Two cores, soft, rootlets, moist. Within 41WM1411.</td>
</tr>
<tr>
<td>45</td>
<td>15-20</td>
<td>-</td>
<td>-</td>
<td>5YR3/2 Dark Reddish Brown</td>
<td>Clay</td>
<td>>50%</td>
<td>Very dense, decomposing limestone, roots, terminated at bedrock. Within 41WM1411.</td>
</tr>
<tr>
<td>46</td>
<td>0-15</td>
<td>-</td>
<td>90%+</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>2-20%</td>
<td>Soft, moist, roots, decomposing limestone cobbles, terminated at bedrock.</td>
</tr>
<tr>
<td>ST ID #</td>
<td>Depth (cmbs)</td>
<td>+/-</td>
<td>Ground cover</td>
<td>Munsell & Color</td>
<td>Texture</td>
<td>% Gravels</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>-----</td>
<td>--------------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>47</td>
<td>0-25</td>
<td>-</td>
<td>90%+</td>
<td>10YR3/2 Very Dark Grayish Brown</td>
<td>Clay Loam</td>
<td>>20%</td>
<td>Soft, moist, large roots, decomposing limestone cobbles, terminated at bedrock.</td>
</tr>
<tr>
<td>48</td>
<td>15-25</td>
<td>-</td>
<td>-</td>
<td>10YR3/1 Very Dark Gray</td>
<td>Clay</td>
<td>>50%</td>
<td>Very dense, roots, decomposing limestone, dry, terminated at bedrock. Within 41WM1410.</td>
</tr>
</tbody>
</table>