

Volume 2019 Article 23

2019

Data Recovery Excavations at the Snakeskin Bluff Site (41GU177), Guadalupe County, Texas

Christina Nielsen

Ashley Eyeington

Ken Lawrence

Chris Shelton

Mercedes C. Cody

See next page for additional authors

Follow this and additional works at: https://scholarworks.sfasu.edu/ita

Part of the American Material Culture Commons, Archaeological Anthropology Commons, Environmental Studies Commons, Other American Studies Commons, Other Arts and Humanities Commons, Other History of Art, Architecture, and Archaeology Commons, and the United States History Commons

Tell us how this article helped you.

This Article is brought to you for free and open access by the Center for Regional Heritage Research at SFA ScholarWorks. It has been accepted for inclusion in Index of Texas Archaeology: Open Access Gray Literature from the Lone Star State by an authorized editor of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.

Data Recovery Excavations at the Snakeskin Bluff Site (41GU177), Guadalupe County, Texas

Authors

Christina Nielsen, Ashley Eyeington, Ken Lawrence, Chris Shelton, Mercedes C. Cody, and Brandon S. Young

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Data Recovery Excavations at the Snakeskin Bluff Site (41GU177), Guadalupe County, Texas

TEXAS ANTIQUITIES PERMIT NO. 8231

OCTOBER 2019

PREPARED FOR

Central Texas Regional Water Supply Corporation and

VRRSP Consultants, LLC

PREPARED BY

SWCA Environmental Consultants

Redacted

DATA RECOVERY EXCAVATIONS AT THE SNAKESKIN BLUFF SITE (41GU177), GUADALUPE COUNTY, TEXAS

Prepared for

Central Texas Regional Water Supply Corporation 3711 S. Mo-Pac Expressway, Building One, Suite 300 Austin, Texas 79746

and

VRRSP Consultants, LLC 2000 NW Loop 410 San Antonio, Texas 78213

Prepared by

Christina Nielsen, M.A., Ashley Eyeington, B.A., Ken Lawrence, M.A., Chris Shelton, M.A., Mercedes C. Cody, B.A., and Brandon S. Young, M.A., RPA

Principal Investigator Christina Nielsen, M.A.

SWCA Environmental Consultants

4407 Monterey Oaks Boulevard Building 1, Suite 110 Austin, Texas 78749 www.swca.com

SWCA Project No. 31410.00

Texas Antiquities Permit No. 8231

SWCA Cultural Resources Report No. 19-584

October 2019

ABSTRACT

On behalf of Central Texas Regional Water Supply Corporation (CTRWSC) and VRRSP Consultants, LLC, SWCA Environmental Consultants (SWCA) conducted archaeological data recovery excavations at multicomponent site 41GU177 (the Snakeskin Bluff Site) within the proposed alignment of the Vista Ridge Regional Water Supply Project (Vista Ridge) in Guadalupe County, Texas. Investigations were conducted in compliance with Section 106 of the National Historic Preservation Act (NHPA) (54 United States Code [USC] 306108) and its implementing regulations (36 Code of Federal Regulations [CFR] 800), in anticipation of a Nationwide Permit 12 from the U.S. Army Corps of Engineers (USACE) in accordance with Section 404 of the Clean Water Act. In addition, the work is subject to compliance with the Antiquities Code of Texas (ACT), as the Vista Ridge Project will be ultimately owned by CTRWSC, a political subdivision of the State of Texas.

The Vista Ridge project will involve construction of an approximately 140-mile-long, 60-inch-diameter water pipeline from north-central San Antonio, Bexar County, to Deanville, Burleson County, Texas. The of area of potential effects (APE) for the Phase I survey efforts included the proposed centerline alignment and a 100-foot-wide corridor (50 feet on either side of centerline), as well as temporary and permanent construction easements, and aboveground facilities, such as pump stations and the northern and southern termini sites. Between June 2015 and March 2018 the cultural resources inventory identified 78 cultural resources (i.e., 64 archaeological sites and 14 isolated finds). Included in that inventory was site 41GU177, originally discovered on August 31, 2015 on the west bank of the Guadalupe River.

Site 41GU177 is a stratified prehistoric site on the western high bank of the Guadalupe River southeast of New Braunfels, Texas near the community of McQueeney. The site contains components deposited intermittently from approximately the Late Archaic to Transitional Archaic periods through Late Prehistoric times. The primary components investigated in the excavations span the final Late Archaic period and into the Austin phase of the Late Prehistoric, a timeframe from approximately 2,600 to 900 years ago. The field investigations, conducted between October 2016 and December 2017, included intensive shovel testing, geomorphological study with mechanical excavations, and subsequent hand excavations. This report presents the results of the data recovery investigations conducted from November–December 2017. The survey results and testing results have been previously reported on (Acuña et al. 2016; Rodriguez et al. 2017); the testing results are also presented in Appendix A.

SWCA's work at 41GU177 was conducted under the ACT. The state regulations mandate the evaluation of the site's eligibility for designation as a State Antiquities Landmark (SAL) or for listing on the National Register of Historic Places (NRHP). The survey and testing investigations were conducted under ACT Permit No. 7295, and the subsequent data recovery was completed under Permit No. 8231. Brandon S. Young served as initial Principal Investigator (PI) on both permits and Christina Nielsen took over as PI on the permits for the final reporting stages of the project.

Overall, 34.1 m³ of sediment was excavated from the site during the data recovery through both traditional and feature-focused unit excavations. During these excavations, approximately 22 m² of Late Prehistoric components were exposed, consisting of rock-lined hearths and 6,496 artifacts. The Late Prehistoric artifacts included Edwards points, Perdiz points, a Fresno point, ceramics, bifaces, an end scraper, a shell bead, various informal lithic tools, ground stone, choppers, debitage, and faunal remains. The Late Prehistoric component was approximately 40–80 cm thick. No cultural features were identified within the underlying Archaic components of the site; however, 3,421 artifacts were recovered including a Zephyr point, bifaces, ground stone, various informal lithic tools, choppers, debitage, and faunal remains. The Transitional Archaic component was approximately 35–60 cm thick; however, the underlying Archaic (and possible older) components were not defined.

The excavations were limited to the right-of-way, and consequently the exposure afforded only a partial glimpse of the overall site. Based on the assemblage, the site is interpreted as a logistical base camp as indicated by both formal and informal tool forms and site furniture. Small groups exploited the abundance of lithic raw material and riparian zone resources, making forays into the landscape to hunt and forage. A total of four radiocarbon dates from the Late Prehistoric components reveal several short-term encampments over the course of several centuries from approximately 600 to 1200 B.P. (A.D. 750 to 1350). The Toyah Phase component has some noted disturbances (especially towards the ground surface), but good integrity from where the radiocarbon sample was collected. The Austin Phase component is vertically and horizontally discrete, contains a substantial amount of archaeological materials, and the site structure and radiocarbon dates suggests multiple, discrete occupations.

The data recovery investigations at the Snakeskin Bluff site sought to address environmental, technological, chronological, and adaptive changes during the transition from Archaic to Late Prehistoric. As mentioned, the overall artifact and feature recovery at the site was low and disturbances and mixing of components was noted, especially within the upper deposits of the site. Disturbances within the Late Prehistoric Toyah Phase were most prevalent in the eastern portions of the site. The Late Prehistoric Austin Phase component contained intact, well-preserved archaeological deposits containing preserved flora and faunal material, cooking features, and diagnostic implements. The Transitional Archaic (and older) occupations were difficult to characterize, due to limited quantities of temporal diagnostic artifacts, lack of cultural features, and low artifact recovery. Despite these limitations, the data recovered from the cultural components show diachronic shifts between the technological and foraging strategies of the Archaic and Late Prehistoric.

In concurrence with the 2016–2017 testing recommendations, the Snakeskin Bluff site is considered eligible for designation as an SAL and for the NRHP. Although not all cultural components of the site were stratigraphically discrete, the Late Prehistoric Austin Phase component revealed intact, well-preserved archaeological deposits that significantly contributed to our understanding of Late Prehistoric patterns. Given the sensitive nature of the cultural deposits at 41GU177, the main concern following the completion of data recovery excavations was the prevention of significant surface and subsurface impacts to the site during clearing and pipeline construction. As such, SWCA developed a site monitoring protocol; methods and results of the monitoring efforts are provided in Appendix H. Contributing components beyond the impact area will not be affected and will be preserved by avoidance; however, it is important to note that these investigations mitigated the project-specific effects, not the entire site. Any future project that could impact the site's deeper deposits, or those beyond the current right-of-way, warrant further consideration to assess the possibilities for additional contributing components. With these considerations, no further work is recommended.

CONTENTS

Abstract		i
Chapter 1.	Introduction	1-1
_	of Investigations at 41GU177	
Project Pe	ersonnel	1-6
Structure	of Report	1-6
Chapter 2.	Environmental Setting	2-1
Site Settir	ng	2-1
Overview	of Geomorphology	2-1
Flora		2-2
Fauna		2-2
Paleoenvi	ronment	2-3
Chapter 3.	Cultural Setting	3-1
	aic (ca. 4000 to 1250 B.P.)	
	nal Archaic (ca. 2250 to 1250 B.P.)	
	istoric (ca. 1250 to 350 B.P.)	
Austin Ph	ase (ca. 1250 to 650 B.P.)	3-2
Toyah Ph	ase (ca. 650 to 200 B.P.)	3-3
Chapter 4.	Research Design and Methods	4-1
Research	Design	4-1
	hods	
	vation Grid and Site Mapping	
	Excavations	
	re Excavation Methods Iodifications to Field Methodology	
	act Collection and Sampling Strategy	
	y Processing and Analysis Methods	
	act Processing	
	ct Analysis	
L	ithic Analysis	4-8
	aunal Analysis	
	al Samples	
	adiocarbon Analysis	
	lotation and Macrobotanical Analysis	
	eological Investigationscal Characteristics	
•	etic Susceptibility	
_	etie susceptionity	
Chapter 5.	Overview of Data Recovery Investigations	
-	graphygraphy	
	al Strata	
	2 terrace (Excavation Blocks A–F)	
	ummary of Natural Strata	
Excavatio	ns Blocks	5-6

Block A	5-6
Block B	5-8
Block C	5-9
Block D	5-10
Block E	5-12
Block F	5-13
Site Formation Analyses	5-15
Radiocarbon Analysis	5-15
Particle Size Distribution	5-17
Magnetic Susceptibility (MS)	5-20
N996 E1014 (Block A)	5-20
N1000 E1004 (Block C)	5-20
N1000 E1010 (Block D)	5-20
N1004 E1017 (Block E)	5-24
N1009 E1012 (Block F)	5-24
Feature 4 (Block C)	5-24
Site Formation Analysis Summary	5-27
Chapter 6. Artifacts, Ecofacts, and Features	6-1
Artifacts	
Projectile Points	
Arrow Points	
Dart Point	
Bifaces	
Biface Reduction Stages	
Typed Bifaces	
Scrapers	
Modified Flakes	
Cores	
Core Tools	
Lithic Debitage	
Non-Chipped Stone Artifacts	
Ground stone	
Manuport	
Shell Ornament	
	6-19
Historic/Modern Materials	
Burned Clay	
•	
Faunal Remains	
Bone	
Shell	
Special Samples	
Features	
Feature 2	
Summary	
Feature 3	
Summary	
Feature 4	
Summary	6-33
Cultural Strata	6-34

Chapter 7. Synthesis and Recommendations
Review of Research Questions and Findings
Research Issue 1: Regional Chronology and 41GU177
Research Issue 2: Lithic Technology
Research Issue 3: Foraging Strategies
Appendix A. 41GU177 Testing Interim Report Appendix B. 41GU177 Data Recovery Specimen Inventory and Burned Rock Tables Appendix C. Artifact Analysis Tables Appendix D. Faunal Analysis Appendix E. Radiocarbon Assays Appendix F. Macrobotanical Analysis
Appendix A. 41GU177 Testing Interim Report Appendix B. 41GU177 Data Recovery Specimen Inventory and Burned Rock Tables Appendix C. Artifact Analysis Tables Appendix D. Faunal Analysis Appendix E. Radiocarbon Assays Appendix F. Macrobotanical Analysis
Appendix A. 41GU177 Testing Interim Report Appendix B. 41GU177 Data Recovery Specimen Inventory and Burned Rock Tables Appendix C. Artifact Analysis Tables Appendix D. Faunal Analysis Appendix E. Radiocarbon Assays Appendix F. Macrobotanical Analysis
Appendix B. 41GU177 Data Recovery Specimen Inventory and Burned Rock Tables Appendix C. Artifact Analysis Tables Appendix D. Faunal Analysis Appendix E. Radiocarbon Assays Appendix F. Macrobotanical Analysis
Appendix B. 41GU177 Data Recovery Specimen Inventory and Burned Rock Tables Appendix C. Artifact Analysis Tables Appendix D. Faunal Analysis Appendix E. Radiocarbon Assays Appendix F. Macrobotanical Analysis
Appendix C. Artifact Analysis Tables Appendix D. Faunal Analysis Appendix E. Radiocarbon Assays Appendix F. Macrobotanical Analysis
Appendix D. Faunal Analysis Appendix E. Radiocarbon Assays Appendix F. Macrobotanical Analysis
Appendix F. Macrobotanical Analysis
Appendix G. Geoarchaeological Analysis Raw Data
Appendix H. Construction Monitoring Memo
Figures
Figure 1.1. Location Map for VRRSP Project and Site 41GU177
Figure 1.2. Site 41GU177 Area
Figure 1.3. Site 41GU177 Previous Work
Figure 4.1. Site 41GU177 Data Recovery excavations plan map
Figure 4.2. Overview of Unit Layout for Feature 4 Excavations
Figure 5.1. 41GU177 Cross-section Plan Map. 5-2
Figure 5.2. 41GU177 Strike Profile Map
Figure 5.3. 41GU177 Dip Profile Map. 5-4
Figure 5.4. Overview of 41GU177 data recovery excavation blocks, facing south, upslope, away from drainage
Figure 5.5. Overview of Block A after all units at termination level and geoarchaeological samples
collected, facing northeast
Figure 5.6. Overview of N999 E1014 in Block B at termination level (98.10 m), facing northeast 5-8
Figure 5.7. Overview of Block C after all units at termination level and geoarchaeological samples
collected, facing southeast.
Figure 5.8. Overview of Block D after all units at termination level and geoarchaeological samples
collected, facing east5-11
Figure 5.9. Large mammal bone recovered from N1001 E1009, Level 5 at 99.15 m and submitted
for radiocarbon dating (Beta 492587)5-11
Figure 5.10. Overview of Block E after all units at termination level and geoarchaeological samples
collected, facing north

Figure 5.12. Unit N996 E1014 Particle Size distribution.	.5-18
Figure 5.13. Unit N1004 E1017 Particle Size distribution.	.5-19
Figure 5.14. Unit N996 E1014 profile annotation with magnetic susceptibility results	
Figure 5.15. Unit N1000 E1004 profile annotation with magnetic susceptibility results	
Figure 5.16. Unit N1000 E1010 profile annotation with magnetic susceptibility results	
Figure 5.17. Unit N1004 E1017 profile annotation with magnetic susceptibility results	
Figure 5.18. Unit N1009 E1012 profile annotation with magnetic susceptibility results	
Figure 19. Feature 4 magnetic susceptibility sample cruciform.	
Figure 5.20. Feature 4 χlf magnetic susceptibility results from west to east sample column	
Figure 5.21. Feature 4 χlf magnetic susceptibility results from south to north sample column	
Figure 6.1. Edwards arrow points: a) Lot 552-8, b) Lot 668-6; Perdiz arrow points: c) Lot 559-7, d)	
Lot 579-10; Fresno arrow point: e) Lot 607-6; Indeterminate arrow point: f) Lot 550-	
69; Zephyr dart point: g) Lot 621-7.	6-4
Figure 6.2. Representative sample of biface assemblage. Stage 5: a) Lot 403-9, b) Lot 620-1, c) Lot	
661-7; Stage 1: d) Lot 341-1; Stage 2: e) Lot 360-1; Stage 3: f) Lot 404-1	6-8
Figure 6.3. Side-notched biface: a) Lot 316-7 and Gahagan biface: b) Lot 552-9.	6-9
Figure 6.4. End and Side Scraper: Lot 390-6.	.6-10
Figure 6.5. Representative sample of edge-modified and utilized flake assemblage. Edge modified	
flakes: a) Lot 519-10, b) Lot 590-7, c) Lot 638-5; Utilized flakes: d) Lot 320-1, e) Lot	
506-34, f) Lot 619-6	.6-11
Figure 6.6. Representative sample of core assemblage. Unifacial: a) Lot 650-5; Bifacial: b) Lot	
500-5; Multidirectional: c) Lot 632-8.	
Figure 6.7. Representative sample of core tool-chopper assemblage: a) Lot 427-1, b) Lot 624-1	.6-13
Figure 6.8. Representative sample of non-chipped tool assemblage. Mano: a) Lot 492-6; Grooved	
Stone: b) Lot 416-1; Manuport: c) Lot 461-1.	
Figure 6.9. Shell bead: Lot 321-28.	
Figure 6.10. Prehistoric ceramics: a-f) Lot 462-22, g) Lot 463-4, and h) Lot 464-5.	.6-17
Figure 6.11. Microscopic image of prehistoric ceramic sherd temper with thermally altered angular	c 15
bone fragment from Unit N1000 E1003, Level 3 (Lot 462-22)	6-17
Figure 6.12. Historic Assemblage: Non-diagnostic whiteware sherds: a) Lot 367-5, b) 488-4, c)	
497-3, and d) 557-2; Colorless glass: e) Lot 673-5; Mayer China: f) Lot 578-6; Bullet	
casing: g) Lot 687-2; and Miscellaneous metal fragments: h) Lot 471-13, and i) Lot 540-6.	6-18
Figure 6.13. Representative sample of pieces of burned clay. Lot 405-9.	
Figure 6.14. Piece of burned clay with coronal heat alteration. Lot 538-6.	
Figure 6.15. Bone exhibiting butchering and processing taphonomy; Percussion notch: a) Lot 323-	.0-20
1; cutmarks: b) Lot 539-1; percussion notch and spiral fracture: c) Lot 576-1	6-21
Figure 6.16. Representative sample of mussel shell: a) Lot 589-1 (two on left) and b) Lot 605-6	0 21
(two on right).	.6-22
Figure 6.17. Modern Guadalupe orb shell from Palmetto State Park in Gonzales County, Texas.	
Note the vibrant orange color of the shell	.6-23
Figure 6.18. Feature 2 plan view	
Figure 6.19. Feature 2, northwest profile showing overlapping burned rock, facing south	
Figure 6.20. Feature 3 plan view showing location of Clusters 1 and 2.	
Figure 6.21. Feature 4 Layer 1 plan view, note possible discard area to west	
Figure 6.22. Feature 4 Layer 1 Plan map.	
Figure 6.23. Feature 4 Layer 2 Plan map.	
Figure 6.24. Feature 4 Layer 2 plan view.	

Tables

Table 4.1. Excavation Volume by Blocks	4-5
Table 5.1. Block A Artifact Assemblage	5-7
Table 5.2. Block B Artifact Assemblage	5-8
Table 5.3. Block C Artifact Assemblage	5-10
Table 5.4. Block D Artifact Assemblage	5-12
Table 5.5. Block E Artifact Assemblage	5-13
Table 5.6. Block F Artifact Assemblage	5-14
Table 5.7. Radiocarbon Assays	5-16
Table 6.1. 41GU177 Data Recovery Artifact Assemblage	6-2
Table 6.2. Chipped Stone Tool Assemblage	6-3
Table 6.3. Biface Reduction Stages	6-9
Table 6.4. Lithic Debitage Assemblage	6-14
Table 6.5. Non-Chipped Stone Artifact Assemblage	6-14
Table 6.6. Mussel Shell Species Identified within the 41GU177 Assemblage	6-22
Table 6.7. Feature 2	6-25
Table 6.8. Feature 3	6-27
Table 6.9. Feature 4	6-30
Table 7.1. Summary of Lithic Assemblage from Snakeskin Bluff Components	7-3
Table 7.2. Biface to Core Ratio among Snakeskin Bluff Components	
Table 7.3. Comparative Biface: Core Ratio Data from Parry and Kelly (1987)	7-4
Table 7.4. Ratio of Debitage to Tools by Component on the Snakeskin Bluff Site	7-5

ata Recovery Excavations at the Snakeskin Bluff Site (41GU177)	
his page intentionally left blank.	

CHAPTER 1. INTRODUCTION

On behalf of the Central Texas Regional Water Supply Corporation (CTRWSC) and VRRSP Consultants, LLC (VRRSP), SWCA Environmental Consultants (SWCA) has prepared this report presenting the results of data recovery excavations at prehistoric site 41GU177 (Snakeskin Bluff site) in Guadalupe County, Texas. The site was recorded by SWCA during Phase I survey investigations that occurred between June 2015 and March 2018 for the proposed Vista Ridge Regional Water Supply (Vista Ridge) Project (Figure 1.1). Investigations were conducted in compliance with Section 106 of the National Historic Preservation Act (NHPA) (54 United States Code [USC] 306108) and its implementing regulations (36 Code of Federal Regulations [CFR] 800), in anticipation of a Nationwide Permit 12 from the U.S. Army Corps of Engineers (USACE) in accordance with Section 404 of the Clean Water Act. In addition, the work is subject to compliance with the Antiquities Code of Texas (ACT), as the Vista Ridge Project will be ultimately owned by CTRWSC, a political subdivision of the State of Texas. The survey and testing investigations were conducted under ACT Permit No. 7295, and the subsequent data recovery was under Permit No. 8231.

The Vista Ridge project will involve installation of a 140-mile-long, 60-inch-diameter water pipeline from north-central San Antonio, Bexar County, to Deanville, Burleson County, Texas (see Figure 1.1). The area of potential effects (APE) for the Phase I survey efforts included the proposed centerline alignment and a 100-foot-wide corridor (50 feet on either side of centerline), as well as temporary and permanent construction easements, and aboveground facilities, such as pump stations and the northern and southern termini sites. Between June 2015 and March 2018, the cultural resources survey identified 78 cultural resources (i.e., 64 archaeological sites and 14 isolated finds). Included in that inventory was site 41GU177, originally discovered on August 31, 2015, on the west bank of the Guadalupe River.

Site 41GU177 is a stratified prehistoric site on the western high bank of the Guadalupe River southeast of New Braunfels, Texas, near the community of McQueeney (Figure 1.2). The site contains components deposited intermittently from approximately the Late Archaic to Transitional Archaic periods through to Late Prehistoric times. The primary components investigated in the excavations span the final Late Archaic period and into the Austin phase of the Late Prehistoric, a timeframe from approximately 2,600 to 900 years ago. The field investigations, conducted between October 2016 and December 2017, included intensive shovel testing, geomorphological study with mechanical excavations, and subsequent hand excavations. This report presents the results of the data recovery investigations conducted from November to December 2017. The survey results and testing results have been previously reported (Acuña et al. 2016; Rodriguez et al. 2017); the testing results are also presented in Appendix A. Below is a chronology of investigations at 41GU177 to contextualize the data recovery excavations presented in this report.

OVERVIEW OF INVESTIGATIONS AT 41GU177

Based upon the nature and depth of the soils identified during Phase I survey efforts at 41GU177 in August 2015, and the assemblage of artifacts noted during shovel testing, a second phase of survey-level investigations consisting of systematic backhoe trenching occurred at the site on October 16, 2015 (Figure 1.3). Trench excavations near the northeastern end of the site contained a partially intact burned rock feature and a moderate density of chipped-stone debitage and faunal remains. Ultimately, the 2015 investigations revealed intact prehistoric subsurface cultural materials and a buried cultural feature in the northeastern/eastern portion of the site. Given the apparent integrity of the cultural deposits and the depth of observed artifacts, SWCA recommended that a phase of test excavations was warranted to better explore the cultural deposits through hand excavations and to determine if the cultural deposits retained sufficient integrity to warrant designation as a State Antiquities Landmark (SAL).

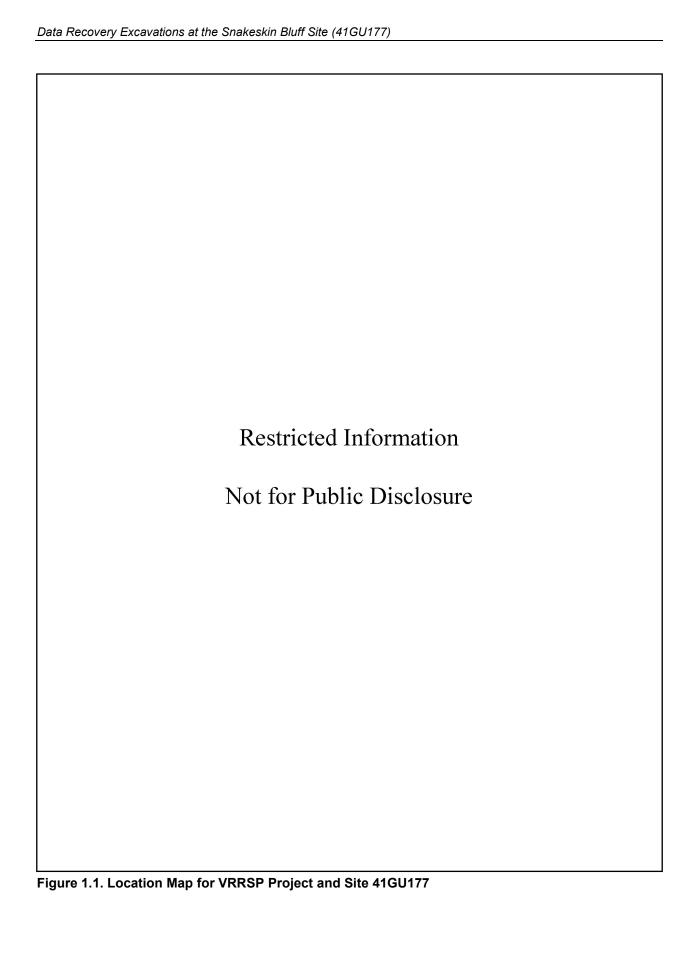


Figure 1.2. Site 41GU177 Area

Data Recovery Excavations at the Snakeskin Bluff Site (41GU177)

Figure 1.3. Site 41GU177 Previous Work

Data Recovery Excavations at the Snakeskin Bluff Site (41GU177)

Test excavations occurred October 12–14, 2016, until work was halted at the request of the landowner due to the recovery of a possible human bone from one of the excavation units on October 13; at that time, excavations were also halted to contact the Guadalupe County Sheriff's office. Ultimately, the bone was determined to not be human; however, the landowner halted all archaeological activity on the site. Access to continue work at the site was eventually obtained in June 2017. SWCA returned to site 41GU177 in June 2017 to complete the excavation units originally established in 2016, as well as excavate two additional backhoe trenches at the location of a proposed bore pit for a planned horizontal directional drill [HDD] that would impact parts of the site. During the excavation of the two additional backhoe trenches, *in situ* cultural materials were observed in the trench profiles and SWCA excavated a fifth hand excavation unit at the intersection of the two new trenches to explore the artifact and burned rock feature. Following completion of the limited excavations on July 6, 2017, there was sufficient evidence to recommend that portions of the site potentially warranted SAL designation and a phase of data recovery excavations.

In September and October 2017, SWCA conducted a program of close-interval shovel testing followed by additional backhoe trenching at the site to better determine the nature, depth, and extent of its cultural deposits (i.e., investigate if more than one temporal component was represented) and to ultimately refine the proposed data recovery areas. Following completion of the close-interval shovel testing, SWCA then proceeded to complete additional mechanical trenching on the site in October 2017. The locations of the backhoe trenches were determined by the results of the close-interval shovel testing (i.e., areas where shovel testing revealed potentially deeply buried artifacts and possible cultural features). SWCA excavated seven additional trenches across the site, which revealed similar stratigraphy and artifact densities to those observed during the close-interval shovel testing; however, several artifacts were noted at significantly deeper depths (i.e., close to 200 centimeters below surface [cmbs]) than those in the shovel tests.

Complete avoidance of the site was not possible, due to the necessary boring of the Guadalupe River (adjacent to the site) that required an approximately 50×50 -foot bore pit area, a $300 \times 8 \times 10$ -foot construction trench, a 65×200 -foot temporary workspace, a 20- to 25-foot-wide haul road for construction activities, vegetation/tree clearing, and the HDD within portions of site 41GU177 considered to have a high density of cultural materials. Based on the results of the phased investigations at the site, SWCA refined the location and extent of potential data recovery efforts, focusing on the more significant and intact parts of the site identified during the various investigations that would be impacted by construction-related activities.

Rather than opt for mitigation of the entire site, the VRRSP team wanted to preserve and protect parts of 41GU177 in place *in conjunction* with limited data recovery excavations within the 50 × 50-foot bore pit area. Coordination with VRRSP, SWCA, and the Texas Historical Commission (THC) resulted in the determination that preservation in place was a viable option. SWCA subsequently prepared a preservation plan, establishing a process for protecting parts of the site in place and allowing construction to proceed following the completion of limited data recovery within the bore pit location. SWCA consulted with Dr. Christopher Mathewson from Texas A&M University (an acknowledged expert in archaeological site capping for in place preservations) to develop the plan.

Data recovery excavations at 41GU1277 began the last week of November 2017 and extended through December 28, 2017, authorized by the THC through issuance of ACT Permit No. 8231 to Principal Investigator (PI), Brandon S. Young. Preservation in place involved a multistep process following the limited data recovery to ensure protection of the buried cultural materials, the process included carefully prescribed methods for vegetation clearing (with an archaeological monitor present at all times), the covering of sensitive areas outside the bore pit locale with geotechnical fabric, 18 inches of fill, and 6

inches of rock/gravel to allow construction activities to proceed in the $300 \times 8 \times 10$ -foot construction trench, the 65×200 -foot temporary workspace, and the 20- to 25-foot-wide haul road.

PROJECT PERSONNEL

Brandon S. Young, M.A., RPA, served as the initial PI and project manager (PM) for the 41GU177 field investigations, overseeing overall logistics and organization, managing reporting, and agency consultation. Christina Nielsen, M.A., served as the Project Archaeologist (PA) in the field and took over as PM and PI for the final reporting stages of the project. The data recovery was completed by Brandon Young; Christina Nielsen; and SWCA archaeologists Jessica Ulmer, Ashley Eyeington, Daniel Rodriguez, Mary Rodriguez, Ben Morton, Michael Golden, Sophia Salgado, Stefan Barker, Brooke Bonorden, Zach Overfield, Cody Roush, and Jonathan Welch, between November 27 and December 28, 2017, under Permit No. 8231. Archaeologists Virginia Moore, Jake Sullivan, and Megan Veltri from Pape-Dawson Engineers, Inc. (Pape Dawson) also assisted with the excavations during the last week of December 2017. Christina Nielsen, Ashley Eyeington, Ken Lawrence, Chris Shelton, Mercedes C. Cody, and Brandon S. Young undertook the reporting effort, while Carole Carpenter and Jason Kainer expertly produced all field and report maps for the project, and Lauri Logan provided technical editing and document preparation.

STRUCTURE OF REPORT

The following report presents the environmental setting of site 41GU177 (Chapter 2) followed by a cultural history of the site and region (Chapter 3). Chapter 4 provides a discussion of methods utilized to accomplish the data recovery. Chapter 5 offers a general overview of the data recovery as it relates to excavation units, chronology, and general level of effort. Chapter 6 presents a detailed examination of excavated cultural features, recovered artifacts, faunal remains, and special samples obtained during excavations. The report ends with Chapter 7, which provides a synthesis of the site and special analyses and samples, as well as addressing and answering the research questions posited for the data recovery and offering recommendations for site protection and preservation. Supporting data are presented in seven appendices to this report. The majority of the appendices are special study results and the various analytical data.

CHAPTER 2. ENVIRONMENTAL SETTING

Site 41GU177 in Guadalupe County is located in central Texas near a junction of varied geology and diverse vegetation regions. Specifically, the site is situated in the Blackland Prairies physiographic region, which parallels the base of the Balcones Escarpment of the Edwards Plateau (Wermund 2018). Accordingly, the site is positioned within two intermingled floral communities, namely the Post Oak Savannah and the Blackland Prairies regions (Correll and Johnston 1979:3–7).

This chapter provides an overview of the present-day environmental setting of 41GU177 and a review of the regional paleoenvironmental record. The discussion is based on the results of field investigations performed by SWCA archaeologists and a review of relevant literature.

SITE SETTING

The site is located approximately 2.9 miles north of McQueeney in Guadalupe County, Texas. Site 41GU177 is on the western (right) high bank of the Guadalupe River, with a 9- to 12-meter (m) vertical drop to the river bottom to the east and gently sloping (2–5 percent slope) terrain to the west. SWCA's investigations were confined to the portion of the site within the project area; however, SWCA suspects the site continues beyond the limits of the project area to the east and west.

Site 41GU177 is located within forested rangeland with mixed hardwood trees, large live oak trees, and moderately dense shrub undergrowth. Ground surface visibility ranges from 0 to 20 percent, with limestone gravels and cobbles exposed on the ground surface. Vegetation clearing and grading, fence line construction, and natural erosion have impacted site integrity to varying degrees. One property fence and private cemetery (Hoffman Cemetery) borders the northwestern site boundary (see Figure 1.2), and natural erosion from the high bank of the Guadalupe River has impacted the northeastern site boundary.

OVERVIEW OF GEOMORPHOLOGY

SWCA reviewed the local geology and soils as mapped by the Bureau of Economic Geology; the U.S. Department of Agriculture's Soil Conservation Service; and local U.S. Geological Survey (USGS) quadrangle maps, aerial photographs, and excavation and site profiles, which provided the basis for the general geomorphology of site 41GU177.

The surface geology for this area indicates that the project alignment crosses Pleistocene-age terrace deposits (Barnes 1983). These deposits are characterized as gravel, sand, silt, and clay largely derived from the Edwards Plateau situated a few miles upstream (Barnes 1983). These deposits in local areas have calcium carbonate-cemented quartz sand, silt, clay, and gravel intermixed and interbedded in terraces along streams. Low terraces of major rivers are capped by 2 to 4 m of clayey sand and silt. Sandy gravel on higher terraces varies somewhat in composition from river to river.

The soils at 41GU177 are mapped as Sunev loam (1 to 5 percent slopes) (Natural Resources Conservation Service [NRCS] 2018; Ramsey and Bade 1977). Briefly, the Sunev loams are occasionally identified as Venus loams (Sunev spelled backward) in older soil surveys (Ramsey and Bade 1977; Taylor et al. 1991). These are characterized as occurring on terraces or alluvial fans of rivers and large streams and composed of calcareous brown to dark brown loams and clay loams (Ramsey and Bade 1977; Taylor et al. 1991).

At 41GU177, the Guadalupe River is a competent drainage with an approximately 43-m-wide (142-foot) base and a slow southeast-flowing channel. The Guadalupe River, as it winds past the site, has a high sinuosity ratio of 1.4, indicating that it is a sinuous waterway, which is apparent from the *New Braunfels*

East and McQueeney, Texas, 7.5-minute USGS quadrangle maps (Charlton 2008:138–139). This sinuosity suggests a partially dynamic depositional history where the channel has moved laterally. In this type of setting, the lateral movement can significantly erode the deposits of outside meander bends and, in contrast, deposit significant amounts of sediment upon interior meanders (Charlton 2008). Site 41GU177 is situated on an exterior bend of a meander. Not surprisingly, the right bank of the river, below 41GU177, does not contain broad alluvial landforms.

At this location, the Guadalupe River valley is an unpaired, stair-stepped terrace system consisting of a series of alluvial terraces that bracket the drainage created by various episodes of overbank deposition (Waters 1992:149–151). The left bank (east side) of the Guadalupe River exhibits three terrace landforms that from youngest (closest to the channel) to oldest consist of the T_0 , T_1 , and T_2 terraces. In contrast, the right bank, containing 41GU177, only has one apparent alluvial terrace landform (T_2).

On the right bank, the T_2 landform abruptly rises about 9.5 to 11 m (31 to 36 feet) above the Guadalupe River. The T_2 landform on both banks is broad (approximately 1 kilometer) and gradually grades into the valley margins aligning the drainage valley. Another landform occurs upon the T_2 terrace near site 41GU177, which could be part of the T_2 landform or remnants of an older alluvial landform (i.e., T_3). This landform parallels the Guadalupe River and is situated at approximately 580 to 585 feet above mean sea level (amsl) and about 1.5 m (5 feet) above the T_2 terrace that surrounds it. Site 41GU177 is primarily situated on the T_2 terrace between 575 to 580 feet amsl.

FLORA

The Blackland Prairie has rolling topography that supports a diverse assemblage including southern hackberry (*Celtis laevigata*), cedar elm (*Ulmus crassifolia*), bur oak (*Quercus macrocarpa*), post oak (*Quercus stellata*), blackjack oak (*Quercus marilandica*) with an understory of bunch grasses, shrubs, laurel greenbriar (*Smilax laurifolia*), yaupon holly (*Ilex vomitoria*), American beautyberry (*Callicarpa Americana*), and coralbean (*Erythrina herbacea*) (Kutac and Caran 1994; Petrides 1988; Simpson 1988). Originally, the Blackland Prairie region supported a tall grass prairie (Gould 1969).

The Post Oak Savannah region is characterized as a "Post Oak Woods, Forest and Grassland Mosaic" which supports several varieties of oaks, such as blackjack oak (*Quercus marilandica*), live oak (*Quercus virginiana*), and sandjack oak (*Quercus incana*) (Mahan et al. 1984:19). The Post Oak Savannah is also described as primarily containing grassy plains with confined stands or groves of trees (Kutac and Caran 1994:13). Other trees present in the area include mesquite (*Acacia* sp.), black hickory (*Carya texana*), and southern hackberry. Grassland flora includes little bluestem (*Schizachyrium scoparium*), silver bluestem (*Bothriochloa saccharoides*), and sand lovegrass (*Eragrostis trichodes*) (Gould 2002). Historic land use patterns have resulted in extensive clearing of large areas once dominated by the oak woodlands (Gould 1969). In addition, many of the prairie areas no longer support the native medium and tall grasses as they have been used for pasture and/or cultivated for various crops.

FAUNA

The intermingled floral communities of the Post Oak Savannah and the Blackland Prairies vegetation regions that surround the site area corresponds to the convergence of the broader Texan, Tamaulipan, and Balconian biotic provinces of Texas defined by Blair (1950). The site itself, however, is situated within the Texan biotic province.

The Texan biotic region is a region that is transitional between forested regions to the east and the grasslands to the west (Blair 1950). As such, the Texan biotic province contains a wide variety of native mammal species. Some mammals found within this biotic province include: opossum (*Didelphis*

virginiana), eastern mole (Scalopus aquaticus), Brazilian free-tailed bat (Tadarida brasiliensis), armadillo (Dasypus novemcinctus), swamp rabbit (Sylvilagus aquaticus), eastern cottontail (Sylvilagus floridanus), black-tailed jackrabbit (Lepus californicus), Attwater's pocket gopher (Geomys attwateri), fulvous harvest mouse (Reithrodontomys fulvescens), northern pygmy mouse (Baiomys taylori), gray fox (Urocyon cinereoargenteus), raccoon (Procyon lotor), and striped skunk (Mephitis mephitis) occur in suitable habitats throughout area (Davis and Schmidly 1994; Schmidly 1983). Large mammal species that occur or have the potential to occur within the project area include white-tailed deer (Odocoileus virginianus), coyote (Canis latrans), bobcat (Lynx rufus), and javelina (Tayassu tajacu) while red wolf, bison, and black bear are reported to have historically ranged into or near the project area (Anderson 1981; Burt and Grossenheider 1976; Schmidly 1983).

Birds of the Texan biotic region in the wooded areas include black vultures (*Coragyps atratus*), turkey vultures (*Cathartes aura*), northern bobwhite (*Colinus virginianus*), mourning dove (*Zanaida macroura*), chuck-will's-widow (Caprimulgus carolinensis), red-bellied woodpecker (*Melanerpes carolinus*), downy woodpecker (*Picoides pubescens*), scissor-tailed flycatcher (*Tyrannus forficatus*), blue jay (*Cyanocitta cristata*), tufted titmouse (*Parus bicolor*), red tailed hawk (*Buteo jamaicensis*), American robin (*Turdus migratorius*), and many sparrows (Bull and Farrand 1977; Kutac and Caran 1994; Short 1981).

In addition to the mammals and birds, various species of amphibians and reptiles can be found in the Texan biotic province. The reptilian assemblage includes the Great Plains rat snake (*Elaphe guttata emoryi*), eastern yellowbelly racer (*Coluber constrictor*), Mississippi mud turtle (*Kinosternon subrubrum hippocrepis*), bullfrog (*Rana catesbiana*), southern leopard frog (*Rana utricularia*), and the Gulf Coast toad (*Bufo valliceps*) (Blair 1950; Conant and Collins 1998; Kutac and Caran 1994).

PALEOENVIRONMENT

Over the past 12,000 years, the environmental and climatic conditions of the Central Texas region have varied considerably. There is some debate about the paleoenvironmental conditions ca. 12,000–10,000 years before present (B.P.), and two models are presently posited for the paleoenvironment of this early period. Bryant and Holloway (1985) have proposed that the Central Texas region was predominantly a deciduous forest 65,000–10,000 years ago, with a diverse assortment of tree and plant species. In contrast, more recent research by Hall and Valastro (1995) and Toomey et al. (1993) suggests that Central Texas was dominated by grassland and mesic climatic conditions during the late Pleistocene. This interpretation fits well with the regional faunal record since megafaunal species from this period, such as mastodon, mammoth, giant bison, camel, and horse, would have required substantial areas of grassland for grazing (Dillehay 1974; Graham 1987; Graham and Lundelius 1984; Toomey et al. 1993).

About 10,000 years ago, changes in palaeoclimatic conditions led to mass extinctions of megafauna across the region (Graham 1987; Graham and Lundelius 1984). Faunal records from the Edward's Plateau indicate the average seasonal temperature warmed, and climatic conditions became progressively drier (but still retained higher effective moisture than present day) throughout the early Holocene (Bement 1994; Toomey et al. 1993). As a result, vegetation cover diminished, and a degradation of the soil mantle ensued (Toomey et al. 1993:316). Johnson and Goode (1994:20) argue that the early Holocene warming and drying trend experienced on the Edwards Plateau did not impact the Post Oak Belt. Due to the wind currents and temperature patterns of the nearby Gulf of Mexico, palaeoclimatic conditions experienced east of the Edwards Plateau may have been relatively warm and moist during this time (Johnson and Goode 1994:20).

Toomey et al. (1993:309) propose that the early Holocene warming trend continued into the middle and late Holocene and peaked ca. 5000–2500 B.P. "when climatic conditions were drier than any time during the last 20,000 years." Johnson and Goode (1994:5) also recognize this extreme xeric period and describe

it as the "Dry Edward's Interval." Following this extensive dry period, the wetter and warmer conditions returned to the region until ca. 1500–1000 B.P. (Bryant and Holloway 1985; Johnson and Goode 1994; Toomey et al. 1993). From this time forward, present-day climatic and environmental conditions were firmly established for south-central Texas.

CHAPTER 3. CULTURAL SETTING

The following prehistoric cultural history derives its information from several central Texas regional chronologies: Black (1989), Collins (1995, 2004), and Johnson and Goode (1994), which build upon the seminal efforts of Suhm (1960) and Prewitt (1981, 1985). Furthermore, significant archaeological sites within the Central Texas archaeological region and the Edwards Plateau have contributed important information to understanding prehistory. The following prehistoric cultural sequence is divided into two periods: Archaic and Late Prehistoric. The Archaic period is subdivided into two subperiods; Late and Transitional; while the Late Prehistoric discussion is divided into the Austin and Toyah phases, respectively.

LATE ARCHAIC (CA. 4000 TO 1250 B.P.)

During the succeeding Late Archaic period (4000 B.P. to 1300–1200 B.P.), populations continued to increase (Prewitt 1985:217). As evidenced by stratified Archaic sites such as Loeve-Fox, Cibolo Crossing, and Panther Springs Creek, the Late Archaic components contain the densest concentrations of cultural materials of all the Archaic periods. Establishment of large cemeteries along drainages also suggests certain groups had strong territorial ties (Story 1985:40).

Middle Archaic subsistence technology, including the use of rock and earth ovens, continues into the Late Archaic period. Collins (2004:121) states that, at the beginning of the Late Archaic period, the use of rock ovens and the resultant formation of burned rock middens reached its zenith and that the use of rock and earth ovens declined during the latter half of the Late Archaic. There is, however, mounting chronological data that midden formation culminated much later and that this high level of rock and earth oven use continued into the early Late Prehistoric period (Black et al. 1997:270–284; Kleinbach et al. 1995:795). A picture of prevalent burned rock midden development in the eastern part of the Central Texas archaeological region after 2000 B.P. is gradually becoming clear. This scenario parallels the widely recognized occurrence of post-2000 B.P. middens in the western reaches of the Edwards Plateau (Goode 1991).

The use of rock and earth ovens (and the formation of burned rock middens) for processing and cooking plant foods suggests that this technology was part of a generalized foraging strategy. Considering the amount of energy involved in collecting plants, constructing hot rock cooking appliances, and gathering fuel, the caloric return of most plant foods is relatively low (Dering 1999). This suggests that plant foods were part of a broad-based diet (Kibler and Scott 2000:134) or part of a generalized foraging strategy, an idea Prewitt (1981) put forth earlier. At times during the Late Archaic, this generalized foraging strategy appears to have been marked by shifts to a specialized economy focused on bison hunting (Kibler and Scott 2000:125–137). Castroville, Montell, and Marcos dart points are elements of tool kits often associated with bison hunting (Collins 1968). Archaeological evidence of this association is seen at Bonfire Shelter in Val Verde County (Dibble and Lorrain 1968), Jonas Terrace in Medina County (Johnson 1995), Oblate Rockshelter in Comal County (Johnson et al. 1962:116), John Ischy in Williamson County (Sorrow 1969), and Panther Springs Creek in Bexar County (Black and McGraw 1985).

TRANSITIONAL ARCHAIC (CA. 2250 TO 1250 B.P.)

As Collins (2004:122–123) notes, diverse and comparatively complex archaeological manifestations toward the end of the Late Archaic attest to the emergence of kinds of human conduct without precedent in the area. This period (2250–1250 B.P.), referred to as the Transitional Archaic (Turner and Hester 1999) or Terminal Archaic (Black 1989), is not recognized by all researchers. Other chronologies

terminate the Late Archaic at around 1200–1250 B.P. (Collins 2004; Johnson and Goode 1994) to encompass this later subperiod. Johnson et al. (1962) originally designated the Transitional Archaic as a subperiod of the Archaic because of the similarities between the latest dart point types and the earliest arrow point types. Since then, however, the designation has failed to be universally accepted by researchers. In two recent chronologies for central Texas, Collins (2004) does not include the Transitional as a subperiod of the Archaic, and Johnson and Goode (1994) separate the Late Archaic into two subperiods designated Late Archaic I and Late Archaic II. The Transitional Archaic, as it is used here, closely corresponds to Johnson and Goode's (1994) Late Archaic II, but begins after the appearance of Marcos points, not with it. In this scheme, the Transitional Archaic coincides with the last two style intervals recognized by Collins (2004) for the Late Archaic subperiod.

During the Transitional Archaic, smaller dart point forms, such as Darl, Ensor, Fairland, and Frio, were developed (Turner and Hester 1999). These points were probably ancestral to the first Late Prehistoric arrow point types and may have overlapped temporally with them (Carpenter et al. 2006; Hester 1995; Houk and Lohse 1993). Several researchers believe that the increased interaction between groups at the end of the Late Archaic was an important catalyst for cultural change (Collins 2004; Johnson and Goode 1994). This change may have included increased regional stress and conflict between groups as interaction became more frequent (Houk et al. 1997). In Bexar County, for instance, researchers noted a distinct shift in settlement patterns during this period (Houk et al. 1997). Groups began to use hilltops as camps rather than just lithic procurement locations. These elevated locations would have provided points from which to observe game and other groups of humans as they moved through the surrounding creek valleys and upland prairies (Houk et al. 1997).

Overall, the Archaic period represents a hunting and gathering way of life that was successful and remained virtually unchanged for more than 7,500 years. This notion is based in part on consistent artifact and tool assemblages through time and place and on resource patches that were used continually for several millennia, as the formation of burned rock middens show. This pattern of generalized foraging, though marked by brief shifts to a heavy reliance on bison, continued almost unchanged into the succeeding Late Prehistoric period.

LATE PREHISTORIC (CA. 1250 TO 350 B.P.)

Introduction of the bow and arrow and, later, ceramics into the Central Texas archaeological region marks the Late Prehistoric period (1250–350 B.P.). Population densities dropped considerably from their Late Archaic peak (Prewitt 1985:217). Subsistence strategies did not differ greatly from the preceding period, although bison again became an important economic resource during the latter part of the Late Prehistoric period (Prewitt 1981:74). Rock and earth ovens were utilized for plant food processing (Black et al. 1997; Kleinbach et al. 1995:795). Horticulture came into play very late in the region but was of seemingly minor importance to overall subsistence strategies (Collins 1995:385). Artifact assemblages include Scallorn, Perdiz, and Edwards projectile points, worked stone, thermally altered stone, hematite, bone, and shell. The points are associated with the use of the bow and arrow in the region, probably introduced sometime around 1350–1150 B.P.

AUSTIN PHASE (CA. 1250 TO 650 B.P.)

The earlier Austin phase (identified by Scallorn and Edwards points) and the later Toyah phase (defined through Perdiz points) divide the Late Prehistoric period throughout central Texas (Black 1989; Story 1990). These divisions were originally recognized by Suhm (1960) and Jelks (1962), and remain an accepted separation of the period. Although a distinct change in the material culture between the two phases can be seen in the archaeological record, there is some debate over the cultural underpinnings that

prompted the change. The different arrow point styles (and other associated artifacts in the assemblage) may represent distinct cultural groups (Johnson 1994), but others challenge this view (e.g., Black and Creel 1997), and attribute the change to a spread of new technological ideas in response to the increase of a different economic resource in bison populations (Ricklis 1992). Nevertheless, prehistoric communities traced through cultural remains assigned to the Austin phase (1250–650 B.P.), like many of the Archaic period cultures before them, relied on a hunting and gathering subsistence with more of an emphasis on gathering (Prewitt 1981:83). Communities attributed to the Toyah phase (650–200 B.P.) relied more on bison procurement (Prewitt 1981:84).

TOYAH PHASE (CA. 650 TO 200 B.P.)

Around 1000–750 B.P., slightly more-xeric or drought-prone climatic conditions returned to the region, and bison came back in large numbers (Huebner 1991; Toomey 1993). Using this vast resource, Toyah peoples were equipped with Perdiz point-tipped arrows, end scrapers, four-beveled-edge knives, and plain bone tempered ceramics. Toyah technology and subsistence strategies represent a completely different tradition from the preceding Austin phase. Collins (1995:388) states that formation of burned rock middens ceased as bison hunting and group mobility obtained a level of importance not witnessed since Folsom times. Although the importance of bison hunting and high group mobility hardly can be disputed, the argument that burned rock midden development ceased during the Toyah phase is tenuous. An examination of Toyah-age radiocarbon assays and assemblages by Black et al. (1997) suggest that their association with burned rock middens represents more than a "thin veneer" capping Archaic-age features. Black et al. (1997) claim that burned rock midden formations, although not as prevalent as in earlier periods, was part of the adaptive strategies of Toyah peoples.

CHAPTER 4. RESEARCH DESIGN AND METHODS

The 41GU177 investigations entailed multiple phases, from survey, to testing, and finally to data recovery. At each phase, the fundamental objectives changed, and accordingly the means evolved to attain the changing ends. Techniques and methods were first adapted to define the limits and significance of site deposits, and then subsequently modified to gather solid, non-redundant data that would contribute to an understanding of the broad patterns of regional prehistory. This chapter presents a synopsis of the research objectives followed by a detailed review of the methods and techniques that SWCA used to investigate the site.

Due to some remaining uncertainties regarding the site's contextual integrity, SWCA proposed a flexible approach, whereby excavations could be scaled down if early results revealed poor preservation or other issues with the site. Overall, the investigations involved vegetation clearing, mechanical excavations, hand excavations, and special studies. The goal of SWCA's excavations was to perform data recovery excavations on the portions of the site that would be directly impacted by the undertaking. Specifically, the bore pit measured approximately 50×50 feet $(15.24 \times 15.24 \text{ m})$ in extent, which represented 232 m^2 . SWCA assumed a maximum depth of cultural deposits as 1.5 to 2.0 m depending upon recoveries, which equated to approximately 348 m^3 of potential cultural deposits at the bore pit. SWCA's prior investigations within the portion of the site that would be directly impacted resulted in the partial excavation of a single, 1×1 -m² unit and a total of 12 m^2 of mechanical trenches (or 20 m^3). That left approximately 328 m^3 to be sampled systematically. As part of the data recovery effort, SWCA proposed to excavate approximately 10.0 percent of this remaining volume, which would represent approximately thirty-two 1-m³ units. This allowed SWCA archaeologists to fully assess the integrity, data potential, and depositional setting of the site's cultural components and determine whether the relevant research issues could be addressed.

Work was performed by a crew of up to 10 archaeologists under the direction of the PI Brandon S. Young and Christina Nielsen. The PI provided project management, agency coordination, and overall quality control, while the PA supervised and directed all field investigations and all subsequent lab analyses and reporting. All work was conducted in compliance with applicable standards as defined or referenced in the ACT (13 Texas Administrative Code [TAC] 26.20) and elsewhere as appropriate.

RESEARCH DESIGN

The test investigations determined that the stratigraphic setting of site 41GU177 suggested multiple Holocene colluvial blankets of the toe slope from the older, upslope landform of possible Pleistocene age. Both landforms are capped by a thin veneer of recent deposition. Except for localized disturbances limited to, or near, the ground surface from bioturbation and landform modifications, the preservation and stratigraphic separation of the prehistoric occupations in this setting is most likely a direct result of the nature and timing of the sedimentation at the site. The cultural deposits observed at 41GU177 suggest at least two (and possibly up to four) cultural zones. Given the deep subsurface site component, dense artifact assemblage, buried hearth feature, and evidence for multiple cultural zones, SWCA recommended mitigation of the portion of the site within the APE that cannot be avoided by construction impacts, and therefore developed the following data recovery plan.

SWCA's focus during the data recovery was to address the environmental, technological, chronological, and adaptive changes during the transition from Archaic to Late Prehistoric patterns. The primary overarching goal was to discern the nature and timing of the transition from the end of the Archaic period to the beginning of the Late Prehistoric period on the eastern margins of the Balcones Escarpment. In addressing this issue, evidence of good faunal preservation and a diverse artifact assemblage derived from

the phased previous investigations on 41GU177 suggested SWCA would be able to explore the issues of site chronology, lithic technology (including hot rock cooking), subsistence strategies, and intrasite activity area patterns, and then compare these data with the known regional transition from the Late Archaic to the early Late Prehistoric periods. The following research topics were proposed for the data recovery investigations:

- 1) Regional Chronology and 41GU177: The data have the potential to address multiple Late Prehistoric occupations at the site, as well as the shift from the Transitional Archaic to the Late Prehistoric period. Such data could possibly refine or revise the regional chronology by clarifying when certain projectile point styles appeared on the eastern edge of the Edwards Plateau. Additionally, radiocarbon dates obtained from faunal and floral remains would augment these temporal definitions.
- 2) Lithic Technology: The data have the potential to elucidate what stage along the trajectory of lithic reduction and tool production the recovered artifacts represent and how this compares to other Transitional Archaic and Late Prehistoric sites in the region. For example, does the assemblage of debitage represent early reduction stages or later stages of reduction and tool production? What do the artifacts suggest regarding lithic raw material sources and transport? Given the presence of multiple occupations, can we identify changes in the lithic technology trajectories through time? Is there evidence of the transition from use of spears to those of the bow and arrow? The lithic analysis methodology was focused on gathering data to determine whether the lithic reduction strategies at 41GU177 are consistent with the findings from other Transitional Archaic to Late Prehistoric sites in the region.
- 3) Foraging Strategies: Through the analysis of feature technology (i.e., hot rock cooking), lithic materials, flora and faunal samples, and regional paleoenvironmental data, the investigations could identify variations in foraging strategies from the Transitional Archaic to the Late Prehistoric, as well as if there are any discernible changes amongst the Late Prehistoric occupations. Based on other studies of Transitional to early Late Prehistoric sites along the Edwards Plateau margin, foraging patterns of the times have been characterized as narrow diet breadth focused on seasonal (late fall to early winter) intensive exploitation of deer, a pattern indicated by archaeological assemblages with formal burned rock technology. However, these sites lack evidence of middens, bison, common geophytes, artiodactyl remains with evidence of intensive processing (i.e., marrow extraction and grease rendering of even low marrow utility elements), and relatively high biface-to-core ratios. Analysis focused on gathering data to determine whether the 41GU177 assemblage is consistent with these expectations or shows a different foraging strategy.

Based on the limited testing investigations conducted on the site, there was potential for better preservation of at least the later end of the occupational span, the Austin phase, although additional work was needed to clarify such potential. The recovery of several arrow points within the test units on the site indicated stratigraphically distinct Late Prehistoric occupations, as well as hints of an earlier Transitional Archaic occupation. The data recovery investigations were able to build upon this dataset through the correlation of stratigraphic profiles, identification of burned rock features, and the application of established and relevant research initiatives.

Although the initial focus was on the Late Prehistoric occupations, deeper units were excavated down to assess the possible Transitional Archaic occupation, as well as to provide views of the context and preservation of this earlier occupation. SWCA proposed to open broad horizontal exposures, where possible, to study spatial patterning across the site and recover a viable sample of the assemblage. This would allow excavators to expose the entirety of features or other anomalies to further address topics

relating to the subsistence economy, use of the landscape, and relative group size during the respective periods. Although the testing investigations revealed initial possibilities, the nature of the current level of understanding of the site necessitated a flexible approach to prioritize objectives as the information was acquired.

In summary, although the initial testing investigations on 41GU177 revealed substantial data on the Late Prehistoric occupations, the hints of the Transitional Archaic occupation were difficult to characterize, due to limited quantities of temporal diagnostics associated with that period. Given the preponderance of projectile points associated with the Late Prehistoric Austin phase, the early part of the Late Prehistoric was the initial focus of investigations, but the objectives would adapt to what the site could potentially offer. Specific data used to make the determinations included geoarchaeological information, preserved flora and faunal material, cooking features, and diagnostic implements that serve as indicators for the presence of intact occupations. Additional research issues included:

- Technological data regarding burned rock hearth features and possible data on what may have been processed in the features (i.e., fuel wood identification and possible subsistence data derived from macrobotanical samples recovered from feature fill, which could also provide insight into season[s] of site use).
- Examination of faunal resources exploited by site occupants based on the study of well-preserved faunal materials recovered from site, including bone and freshwater mussel shells that could also shed light on the issues of seasonality.
- Determination of seasonality of site use during the Late Archaic and Late Prehistoric periods through evidence derived from macrobotanical remains and analysis of faunal material (i.e., mussel shell and bone).
- Examination of freshwater mussel exploitation and possible shell working activities based on the common recovery of freshwater mussels in the cultural deposits, including a shell fragment recovered during the testing phase that appears to have been intentionally drilled for use as a bead.

Ultimately, data recovery efforts sought to provide information that contributed to the analytical model for the site, as well as address issues pertinent to the understanding of the prehistory of Texas. Although the research goals were straightforward and addressed issues pertaining to the presence or absence of specific cultural phenomena, more intensive research avenues (i.e., foraging theory and burned rock feature technology) were also pursued.

FIELD METHODS

Excavation Grid and Site Mapping

Prior to starting the data recovery excavations, a formal grid was established with grid north correlating with the bore area boundary. The primary site datum, a 24-inch-long, 0.5-inch diameter piece of rebar, was established at the North (N) 1000 East (E) 1000 grid point, located 1.5 m west and 0.5 m south of the southwestern bore pit area corner. A 100-m-long tape was pulled along the E1000 line, and secondary datums, also using rebar, were set every 5 m (at N1000 E1005, N1000 E1010, N1000 E1015, etc.).

Excavation units were established initially along the E1000 line, then subsequently on the E995, E1005, and E1010 lines (Figure 4.1). Each 1×1 -m excavation unit was designated by the coordinate of its southwestern corner. Vertical control was maintained relative to the primary site datum, a poured concrete casing around rebar located at N1000 E1000. The datum was assigned an arbitrary elevation of 100.00 m,



Figure 4.1. Site 41GU177 Data Recovery excavations plan map.

which correlates with an absolute elevation of about 173.74 m amsl. String line datums were established in 5-m intervals along the E1000 baseline and at similar intervals for the N995, N1005, and N1010 baselines. Elevations of artifacts and levels were maintained by these datums.

Hand Excavations

Hand excavation locations were selected at the discretion of the PI and PA to expose broad horizontal exposures and investigate cultural features. A total of 22 traditional 1 × 1-m units were initially excavated during the data recovery within six excavations blocks (Blocks A–F) (see Figure 4.1). In addition, six feature-focused units were excavated within Block C to explore the horizontal extents of Feature 4. When combined, the traditional and feature-focused units resulted in the excavation of approximately 34.1 m³. The distribution of excavation volume by block and unit is shown in Table 4.1.

Table 4.1. Excavation Volume by Blocks

Excavation Block	Excavation Unit Type	Excavation Unit Size	Northing	Easting	Top Elev. (m)	Bottom Elev. (m)	No. of Levels	Total m ³ Excavated
	Traditional	1×1m	995	1012	99.70	98.20	15	1.50
	Traditional	1×1m	995	1013	99.65	98.20	15	1.45
	Traditional	1×1m	995	1014	99.59	98.20	14	1.39
Α	Traditional	1×1m	996	1012	99.70	98.20	15	1.50
	Traditional	1×1m	996	1013	99.59	98.20	14	1.39
	Traditional	1×1m	996	1014	99.60	97.60	20	2.00
Б	Traditional	1×1m	999	1013	99.58	98.10	15	1.48
В	Traditional	1×1m	999	1014	99.55	98.10	15	1.45
	Traditional	1×1m	1000	1003	99.83	98.90	9	0.93
	Traditional	1×1m	1000	1004	99.77	98.30	15	1.47
	*Feature-Focused	1×1m	1000.5	1005.5	99.60	99.30	3	0.30
•	*Feature-Focused	1×1.5m	1001	1003	99.60	99.30	3	0.45
С	Feature-Focused	50cmx50cm	1001	1004	99.75	99.30	5	0.11
	Feature-Focused	3/4 unit	1001	1004.5	99.77	99.30	5	0.35
	*Feature-Focused	1×1m	1001.5	1004	99.60	99.30	3	0.30
	*Feature-Focused	1x.5m	1001.5	1005	99.50	99.30	2	0.10
	Traditional	1×1m	1000	1009	99.67	98.59	11	1.08
5	Traditional	1×1m	1000	1010	99.62	97.59	21	2.03
D	Traditional	1×1m	1001	1009	99.60	98.59	10	1.01
	Traditional	1×1m	1001	1010	99.59	97.59	20	2.00
	Traditional	1×1m	1003	1017	99.28	97.80	15	1.48
	Traditional	1×1m	1003	1018	99.23	97.80	15	1.43
_	Traditional	1×1m	1003	1019	99.22	97.80	15	1.42
Е	Traditional	1×1m	1004	1017	99.25	97.70	16	1.55
	Traditional	1×1m	1004	1018	99.22	97.80	15	1.42
	Traditional	1×1m	1004	1019	99.22	97.80	15	1.42
_	Traditional	1×1m	1009	1011	99.26	97.70	16	1.56
F -	Traditional	1×1m	1009	1012	99.21	97.70	15	1.51
Total								34.09

^{*} Level 1 of these units stripped off and not screened due to disturbance; level 1 not counted in total number of levels or m³ excavated

The hand excavation units were usually 1×1 -m in size and excavated up to 2 m deep in select units or to sterile deposits, whichever was encountered first (see Chapter 5). Using standard archaeological methods, the excavation units were systematically excavated in arbitrary 10-cm levels and documented using standardized field forms and photographs. All soils were screened through $\frac{1}{4}$ -inch hardware mesh. All artifacts and pertinent faunal or floral remains were collected for analysis and bagged separately to examine site stratigraphy and occupation levels. Features encountered during the investigations were carefully exposed, documented, and sampled.

Feature Excavation Methods

As an important data set, features were focal points of the archaeological investigations. Each of the three features discovered during hand excavations were numbered, with the PA maintaining the list of consecutive numbers. Each feature was exposed in plan, drawn, and photographed. Each feature was described and documented on a special feature form. Features were cross-sectioned, and samples for magnetic susceptibility (MS) and charcoal samples for radiocarbon dating were collected as determined by the PA. Bulk matrix samples were taken from various contexts, and the coarse matrix (burned rock) was size-sorted, counted, weighed, and discarded in the field. Approximately 2 gallons of matrix from each feature was reserved for flotation or pollen/phytolith analyses, and the remaining fine matrix was screen through ¼-inch mesh for full artifact recovery.

Modifications to Field Methodology

During the course of fieldwork, it became necessary to modify certain elements of the feature excavation methodology. Specifically, the significant modifications were related to the excavation and documentation of Feature 4, a large earth oven feature spanning numerous units in Block C.

FEATURE 4 METHODS

Feature 4 was first noted as a cluster of burned rocks in the northeast quadrant of unit N1000 E1004, Level 5 in Excavation Block C (Figure 4.2). The concentration appeared to extend to the north and east, outside of the original 1×1 -m unit. Due to time constraints, typical methodology of expanding the excavation with traditional units (i.e., 1×1 -m units) to the north and east was abandoned for a non-traditional, feature-focused approach consisting of excavation of a $\frac{3}{4}$ -sized unit (N1001 E1004.5) around the burned rock cluster (see Figure 4.2). Excavations in this feature-focused unit identified additional burned rock extending into the west wall, so SWCA opened another featured-focused unit. this unit (N1001 E1004) measured 50×50 cm.

Once excavations into the 50 × 50-cm unit reached the feature, it became apparent that the burned rock feature extended further outside the three units to the north, east, and west. As such, four addition feature-focused units of various sizes (N1001 E1003, N1001.5 E1004, N1001.5 E1005, and N1000.5 E1005.5) were opened to further investigate the extent, thickness, and composition of the feature and to identify potential drop zones and/or discard areas (see Figure 4.2). Due to modern disturbances and to expedite the feature investigations, Level 1 of each of these four units was stripped off without screening and excavations began just above Feature 4 at either 99.6 m (30 centimeters below datum [cmbd]) or 99.5 m (40 cmbd); this approach was approved by Jeff Durst, with the THC, who was on site that day. None of the feature-focused units were excavated further after Feature 4 was fully documented and removed.

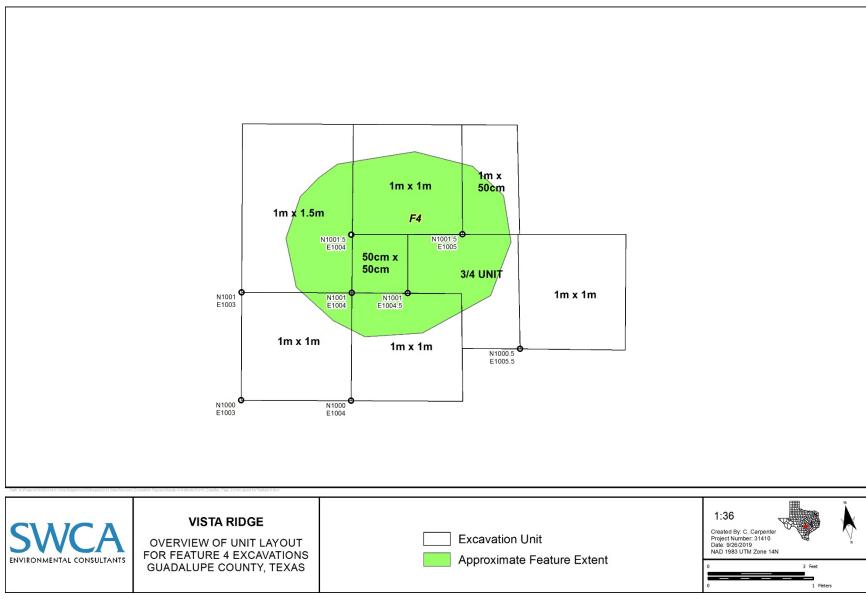


Figure 4.2. Overview of Unit Layout for Feature 4 Excavations

Artifact Collection and Sampling Strategy

All artifacts and samples recovered from each provenience unit and level were collected, bagged, and labeled accordingly, and were assigned a general bag number in the field inventory. Point provenience artifacts and samples were assigned an individual bag number in the field inventory. Additionally, most artifacts of special interest (e.g., projectile points, formal bifaces, formal scrapers, ground stone artifacts, and antler and bone tools, etc.) were assigned a unique item (UI) number in addition to the general or individual bag number. Burned rock was size-sorted, weighed, and counted for each unit by level and/or feature but not collected. The presence of snails was also noted on unit level forms but not collected.

In conjunction with the excavations, special samples were collected from appropriate contexts across the site. Special samples included materials for radiocarbon dating (from feature contexts), matrix samples for flotation, and geomorphic samples.

LABORATORY PROCESSING AND ANALYSIS METHODS

An important component of the data recovery investigations at 41GU177 was the laboratory processing and analyses conducted subsequent to the fieldwork. These disparate analyses performed separately were designed to provide a more thorough picture from which to interpret the significance of the site.

Artifact Processing

The artifact processing and cataloging system was done in compliance with the Center for Archaeological Research at The University of Texas-San Antonio (CAR-UTSA) curation standards and guidelines. Artifact processing included washing, sorting, and tabulating the recovered materials with the resulting data compiled into the specimen inventory cataloging system. The field inventory was applied to the specimen inventory, which included assigning lot numbers to the bag and UI numbers previously designated in the field and assigning specimen numbers to facilitate artifact analyses. The specimen inventory for the data recovery excavations are presented in Appendix B. All artifact processing was accomplished at SWCA's laboratory.

Artifact Analysis

Once the fieldwork was complete, SWCA analyzed all recovered artifacts from stratified deposits. This included washing all artifacts and sorting into analytical categories, including projectile points, bifaces, edge-modified flakes, cores, debitage, and ground stone. Analysis of lithic artifacts focused on recording basic attributes, examining function, and exploring raw material origins. SWCA measured the tools and ground stone, and recorded relevant attributes for each category; all analysis tables are presented in Appendix C. Faunal analysis focused on determining species, number of individuals, elements, seasonality, butchering practices, and effects of post-depositional processes (Appendix D). Data from the lithic and faunal analyses were then compared to information recovered from regional contexts. Site analysis included examining artifact distributions, running special samples, and comparing overall results with other relevant data.

Lithic Analysis

TAXONOMY

From field collection through final report production, the analytical process was inherently tied to the taxonomic classification of each artifact. Stone artifacts were classified essentially following Andrefsky's

general morphological model typology (Andrefsky 1998:74:Figure 4.7). At the broadest level, the stone artifact assemblage is divided into three primary types: chipped stone tools, non-chipped stone tools, and debitage. These three primary types are further defined and broken down by various functional types, when applicable, and characteristics reflecting nominal and metrical attributes specific to each class of artifacts. Based on this taxonomy, SWCA distinguished six categories of chipped stone tools: projectile points, bifaces, scrapers, modified flake, cores, and core tools, and two categories of non-chipped stone tools: ground stone and manuports (see Chapter 6).

NOMINAL AND METRIC ATTRIBUTES

The goal of SWCA's lithic analysis is to provide data consistent and comparable to existing data of the region; therefore, a variety of nominal and metric attributes were collected, pulling from techniques employed by Andrefsky (1998), Callahan (1979), Collins (1974), Fields and Gadus (2012), Perttula (2008), and Perttula and Nelson (2006). Attributes recorded were dependent on the established research questions and artifact types. Common recorded nominal attributes included information such as cortex, raw material type, color, patination, evidence of heat treatment, breakage, beveling, and reworking. Types of metrical attributes recorded for each specimen include maximum length, maximum width, maximum thickness, weight, as well as artifact type specific metrics such as, haft length, retouch height, angle of retouch, maximum flake scar length, and number of flake scars. The width-to-thickness ratios, based on Callahan (1979), were calculated for bifaces, as a contributing attribute for determining the reduction stage. The average edge angle of each biface was also measured using a contact goniometer.

As closely as practicable, artifact length was measured from the proximal to distal ends, width was measured perpendicular to this from the lateral margins, and thickness was measured from ventral to dorsal surfaces. In the case of lithic debitage, an analysis approach was taken focused on counts and weight of the lithic debitage with a simple sort into complete, proximal, and broken flakes types.

Faunal Analysis

The 41GU177 faunal analysis was conducted in SWCA's Austin office. The assemblage was sorted, analyzed and interpreted by Chris Shelton and reviewed by Kevin A. Miller. Each bone was individually examined and analyzed by hand. When possible, faunal identifications were made using comparative osteology manuals, such as Klein and Cruz-Uribe's *The Analysis of Animal Bones from Archaeological Sites* (1984), Lyman's *Vertebrate Taphonomy* (1994), Olsen's *Mammal Remains from Archaeological Sites* (1973) and Reitz and Wing's *Zooarchaeology* (2008), as well as comparative faunal collections housed in the SWCA Austin lab.

The faunal assemblage was computer catalogued using the Microsoft Excel program. The database consisted of 15 distinct criteria, including unique lot, bag, and specimen numbers; taxon identification; common name of animal; weight; body size; presence; cultural modification presence and type; bone element identification; location of bone; presence of growth plate fusion; fragment type; and margin angle. Human taphonomy processes, such as presence or absence of butchery in the form of cut marks, chop marks and percussion impact breakage were cataloged to examine foraging techniques. The combination of these criteria can be analyzed individually or as groups in order to determine important economic, preference, and social information in regard to the site.

Special Samples

As mentioned briefly above, special samples were systematically collected from appropriate contexts across the site. Special samples included materials for radiocarbon dating (from features, geomorphic units, and other contexts), matrix samples for flotation and/or fine screening (from features), and sediment

samples for geoarchaeological analysis (e.g., MS and phosphorus analysis). These types of samples, often critical in interpreting a site, were taken from both cultural and natural contexts. Special samples were immediately prepared and submitted to the appropriate laboratories for processing. Quick submittal of the samples ensured a fast turn-around time so that results were integrated into the report.

Radiocarbon Analysis

During the investigations at site 41GU177, several samples (n=6) of charred material, faunal remains, and plant material were collected for radiocarbon analysis. Select charcoal, bone, and flora assays were subsequently sent to Beta Analytic Inc. who conducted the analyses. Notably, radiocarbon years (¹⁴C) are not calendar years, but rather a measurement of remaining ¹⁴C isotopes (Bartlein et al. 1995; Blockley et al. 2007; McCormac and Baillie 1993; Mock and Bartlein 1995; Ramsey 2008, 2009:337; Stuiver and Suess 1966). Consequently, the ¹⁴C years must be converted to a calendrical format (i.e., calibrated) for general interpretation and comparison (Mook and Waterbolk 1985:20). This study employs the nomenclature proposed by Nordt (1992) and used by the journal *American Antiquity* for distinguishing between uncalibrated radiocarbon and calibrated radiocarbon results. Specifically, the results of these analyses are reported in both conventional radiocarbon age (¹⁴C yr B.P.) and the calendar calibrated (cal yr B.P.) results. The Gregorian calendar year A.D. 1950 is recognized as the beginning point of before present (B.P.) (Hua 2009; Mook and Waterbolk 1985; Stuiver and Polach 1977; Taylor 1997:67–68, 2009).

SWCA selected an initial batch of six radiocarbon samples from a variety of archaeological and geomorphological contexts for analysis by Beta-Analytic, Inc. Only five of the samples were determined large enough to be tested. The results of the radiocarbon analyses were then interpreted in regard to natural stratigraphy and associated cultural deposits to construct a chronostratigraphy. The radiocarbon assays from Beta Analytic Inc. are presented in Appendix E.

Flotation and Macrobotanical Analysis

Additional attempts were made to obtain plant-related subsistence data from 41GU177. In open, well-drained sites like 41GU177, plant remains rarely preserve unless they were previously exposed to 250–300°C temperatures with little oxygen, resulting in carbonization (Hard et al. 1996). Although resistant to biological deterioration once carbonized, they still may be destroyed by mechanical means (Miksicek 1987:20).

When possible, charred fragments visible to the naked eye ("macrofossils") were collected directly from the excavation units. Smaller remains go unnoticed during excavation and often slip through screens, so SWCA collected soil samples for processing by water separation, or *flotation* (Struever 1968), in order to maximize data recovery.

Five matrix soil samples were retained for this purpose from three features (i.e., F2–F4). The samples were processed in a 15-gallon metal wash pan filled about two-thirds with water. A large piece of fine window screen was clipped to the circumference of the rim, loose enough to hang well below the water surface. Individual soil samples were added to the water gradually and gently agitated by hand, allowing for the sediment matrix to break up and free any lightweight organic contents (light fraction) into the water column. The light fraction was then scooped from the water using a fine-mesh aquarium net. The procedure was repeated until the entire sample was processed, and the light fraction set to dry. The heavier materials caught in the window screen catchment (heavy fraction) were rinsed clean, dried, and bagged separately from the light fraction. Once dry, each of the light and heavy fractions were weighed (in grams) and the light fractions were packaged to be sent to Dr. Leslie Bush for macrobotanical analysis.

In addition to the analysis of light fractions from the feature matrix samples, SWCA sent Dr. Bush 10 fragments of wood charcoal collected directly from feature contexts for identification. The macrobotanical analysis report and analysis tables are included in Appendix F.

GEOARCHAEOLOGICAL INVESTIGATIONS

The geoarchaeological investigations involved thorough examination and select sampling of multiple exposed stratigraphic profiles across the site. Profiles along both the strike and dip axes across and adjacent to the site were characterized using a modified soil profile documentation advocated by Birkeland (1999). These investigations conducted by Ken Lawrence incorporated a documentation of the physical characteristics of the horizon matrices, as well as a suite of associated analyses (i.e., organic carbon, radiocarbon, particle size, and MS). All geoarchaeological analysis tables are presented in Appendix G.

Physical Characteristics

The stratigraphic investigations involved a thorough examination and documentation of multiple exposed profiles. All Munsell colors, unless indicated otherwise, were recorded dry.

Magnetic Susceptibility

MS analyses of soils have been utilized for archaeological investigations for several decades and have largely been directed toward surveys and prospection (e.g., Crowther and Barker 1995; Dalan 1996, 2008). More recently, these investigations have focused on archaeological site formation and associated depositional processes (Dalan 2006, 2008). In particular, these analyses have assisted in identifying buried or thermally-altered soils associated with cultural activities, as well as identifying the horizontal extent of cultural features (e.g., Dalan and Banerjee 1998; Dalan and Bevan 2002; Ellwood et al. 1995; Frederick 2010; Jones and Leffler 2003; Mauldin and Figueroa 2006; Nickels 2010; Peters and Thompson 1999; Rivers et al. 2004).

The processes of environmental magnetism and particularly the application of MS have been extensively reviewed (e.g., Dearing 1999a, 1999b; Gale and Hoare 1991:201–229; Maher et al. 1999; Thompson and Oldfield 1986; Verosub and Roberts 1995). Briefly, however, magnetic minerals are prevalent in the natural environment and are sensitive to environmental changes (Gale and Hoare 1991:202). The measurement of MS χ (Chi) is a quantification of the 'magnetizability' of the material (Dearing 1999b:5; Gale and Hoare 1991:202–204). The mineralogy, the size and shape of the grains, internal stress, and other factors can initially influence the susceptibility value (Dearing 1999a, 1999b; Gale and Hoare 1991:204). However, of relevance to this discussion, factors including organic content, pedogenesis, thermal alteration, and cultural activities (e.g., ash-charcoal and refuse) can subsequently alter (usually increase) the susceptibility values. The implications of using MS for archaeological research is that when examining either vertical or horizontal areas, the susceptibility values can assist in identifying cultural activity areas that may otherwise be blurred at a macro level. Horizontally, the application of MS analysis has been used to define the limits of cultural features and living spaces in excavation blocks (e.g., Mauldin and Figueroa 2006). Vertically, the MS results have been applied to recognizing and delineating cultural horizons (e.g., Frederick 2010, 2012; Lawrence et al. 2013; Lawrence and Frederick 2012).

For the investigations at site 41GU177, MS samples were collected from select excavation profiles (i.e., N1000 E1004, N996 E1014, N1004 E1017, N1009 E1012, and N1000 E1010) and one feature (Feature 4). Vertically, the MS samples were collected up profile in systematic 2–3 cm intervals. Each of the samples were mapped into the respective profiles, effectively correlating them to site stratigraphy and excavation elevation. These samples were packed in plastic cubes and subsequently analyzed using a

Bartington MS2 meter and MS2b sensor to examine both low (χ lf) and high (χ hf) frequency (470–4700 Hz, respectively) MS. The cube samples were measured at the high sensitivity setting (0.1) compared to the normal sensitivity setting (1.0). The high sensitivity setting was necessary since the frequency dependency of the MS samples were also calculated (Gale and Hoare 1991:223–224). The values for each cube sample were catalogued twice at both the low and high frequencies to provide an average value using the *Système International* (SI) scale. SWCA recorded the χ lf, χ hf, the average values, and each sample's weight in an Excel table. After every five readings, the Bartington MS2 meter was "zeroed" out to recalibrate the meter.

The cube samples from this analysis were subsequently calculated using the methods outlined by Gale and Hoare (1991:223–226). Briefly however, the primary metric for recognizing MS values of interest is the coefficient of frequency dependency (χ fd). This calculation is indicated as:

$\chi fd = 100 \left[\left(\chi lf - \chi hf \right) / \chi lf \right]$

This calculation uses χlf as the 'normal' sensitivity value and contrasts it with the χhf value to reveal significant values of difference in percentages (Dearing 1999a:47, 1999b:17–18; Gale and Hoare 1991:226). Elevated values of χfd can represent concentrations of ultrafine magnetic grains (e.g., maghemite), which are commonly associated with pedogenesis (Dalan 2006:164; 2008:22). A number of factors may cause an increase in χlf values including biological (e.g., bacteria) or inorganic (e.g., natural weathering of iron minerals) processes. In an archaeological context, an increase in χlf values may reflect cultural activities from thermal features and general refuse (Dalan 2008; Dalan and Banerjee 1998; Frederick 2012). Ideally, when applied to a vertical profile, collected in systematic intervals (e.g., 2–3cm), and contrasted with cultural data (e.g., artifact frequencies) and other analyses (e.g., Loss on Ignition), this analysis can provide valuable data to interpret site formation and cultural activities.

CURATION

Per specifications of the ACT permit issued for the data recovery, all project documents and artifacts must be curated at an approved curatorial facility. Artifacts recovered during the investigations were prepared for permanent storage (e.g., washing, labeling, and cataloguing) and curation using state archaeological standards. All curated artifacts will be housed at CAR-UTSA.

CHAPTER 5. OVERVIEW OF DATA RECOVERY INVESTIGATIONS

This chapter summarizes the results of SWCA's data recovery excavations at the Snakeskin Bluff site (41GU177). Data recovery investigations to mitigate project effects were conducted from November 27 to December 28, 2017, within the proposed bore bit area. A discussion of the overall site stratigraphy and cultural strata are discussed followed by results from the hand unit excavations undertaken at the site. An overview of the various analyses results, particularly regarding site formation processes are also provided. More detailed information on recovered materials and cultural features encountered during these excavations are within Chapter 6. Previous work at the site, including initial survey and testing phase investigations, was summarized in Chapter 1 and were previously reported in an interim report and are presented in Appendix A (Rodriguez et al. 2017).

SITE STRATIGRAPHY

Natural Strata

As previously reported in the interim report, the excavation and documentation of 58 shovel tests, 13 backhoe trenches (i.e., BHT01–BHT13) and five test units (i.e., TU01–TU05) during the test excavations, observed a distinctly different stratigraphy across 41GU177 depending on topography and proximity to the Guadalupe River (Rodriguez et al. 2017). The excavations on the western end of the site (i.e., BHTs 01, 03, 09, and 13) suggest an older deposition than those trenches on the eastern portions of the site (i.e., BHTs 02, 04, 05–08, and 10–12). The western trenches are situated on a landform approximately 580 to 585 feet amsl and about 5 feet above the eastern trenches. These trenches contain relatively shallow calcium carbonate (CaCO₃) filaments and nodules beginning around 30 to 40 cmbs, which appear to be Pleistocene terrace deposits. The eastern trenches coincide with the T₂ terrace landform at 575 to 580 feet amsl, whereas the western trenches are situated on the adjacent landform that could be part of the T₂ landform or remnants of an older alluvial landform (i.e., T₃). The stratigraphy in the eastern trenches have deep alluvial deposits that appear younger in age (Holocene) than the western trenches on the adjacent landform.

The data recovery excavations at 41GU177 all occurred on the T_2 terrace landform centered around BHT05 and BHT06. Prior to the data recovery excavations, a backhoe was used to reopen BHT05 and BHT06 initial opened during the testing phase (see Figure 4.1). The stratigraphy observed in the excavation units correlated with the stratigraphy observed during the test excavations.

T₂ terrace (Excavation Blocks A-F)

With some exceptions, SWCA observed six strata in the excavations (Excavation Blocks A–F) on the T_2 terrace that correlated with the earlier test excavations (i.e., BHTs 2, 4, 5–8, 10–12) at 41GU177 (Figures 5.1–5.3). The test excavations extended to 330 cmbs while the data recovery excavations extended to no more than 200 cmbs.

Stratum I is an approximately 2–6-cm-thick horizon of very dark grayish brown (10YR 3/2) silt loam humate soil with partially decomposing organics and a clear and slightly wavy lower boundary. The second horizon (Stratum II) ranges in thickness from 14–35 cm and is a very dark grayish brown to dark grayish brown (10YR 3/2–4/2) silt loam with friable consistency, a crumb to subangular blocky structure, and a clear and smooth lower boundary. Inclusions observed within the stratum include white filaments that are interpreted to be mycorrhizal fungi (1 percent) and *Heliodiscus singleyanus* and *Rabdotus mooreanus* snail shell (10 percent).

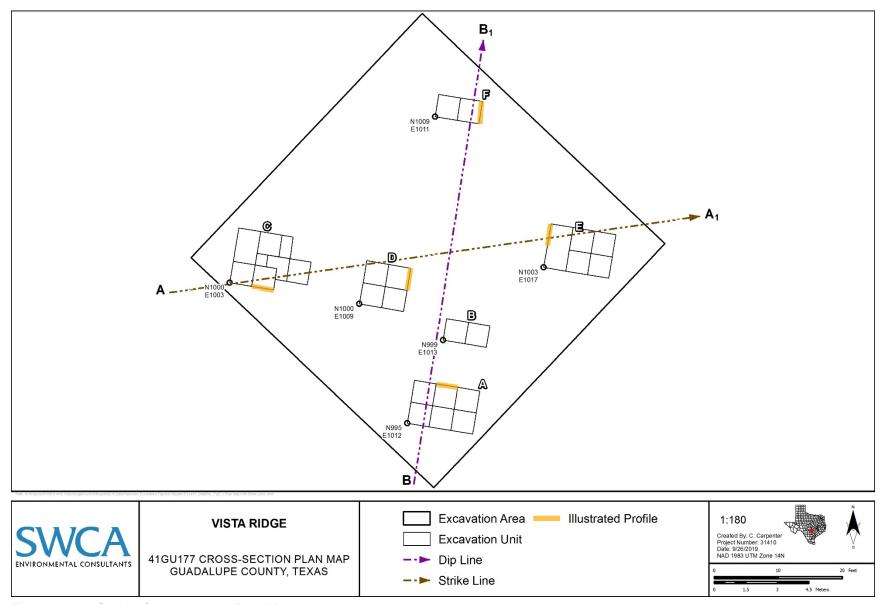


Figure 5.1. 41GU177 Cross-section Plan Map.

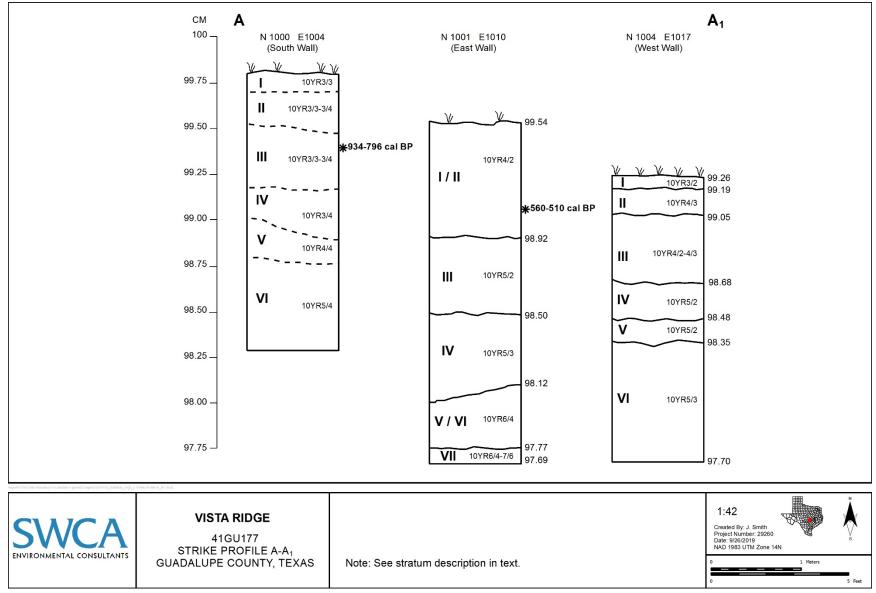


Figure 5.2. 41GU177 Strike Profile Map.

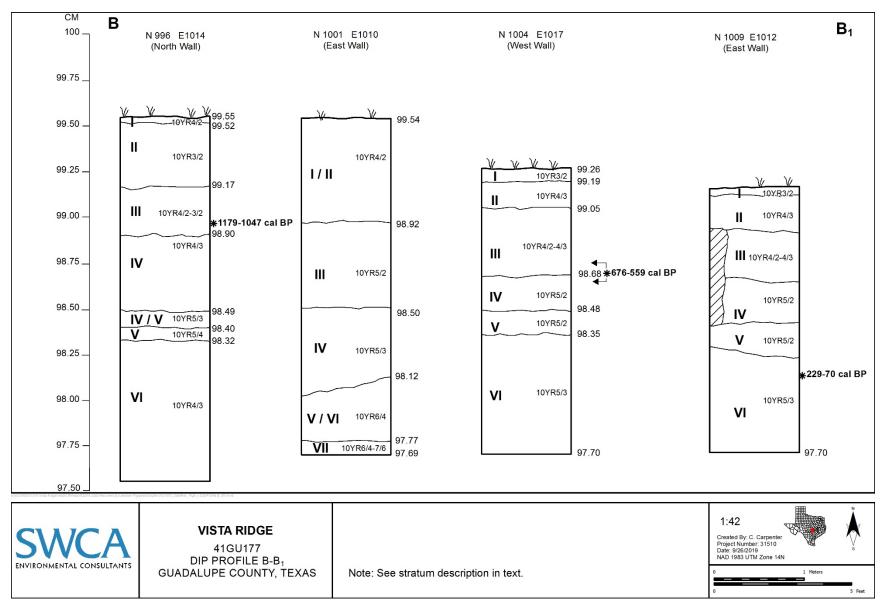


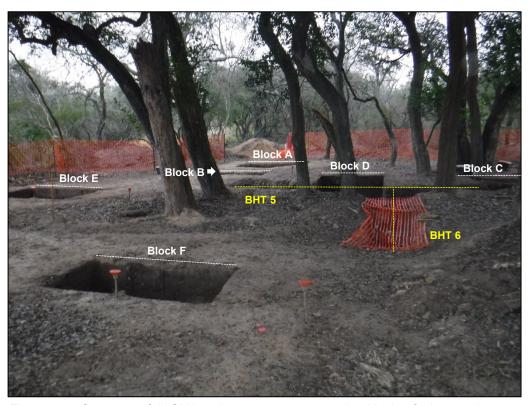
Figure 5.3. 41GU177 Dip Profile Map.

Underlying this horizon is Stratum III, an approximately 27–42-cm-thick horizon of dark grayish brown to grayish brown (10YR 4/2–5/2) silt loam with a subangular blocky structure and friable consistency with a gradual and smooth lower boundary. Inclusions observed include common roots/rootlets (15 to 20 percent), common insect and worm burrows (10 to 15 percent), white filaments that are interpreted to be mycorrhizal fungi (<1 percent), and *Heliodiscus singleyanus* (1 to 5 percent) and *Rabdotus mooreanus* (1 to 3 percent) snail shell.

The fourth horizon (Stratum IV) was observed to range from 20–41 cm in thickness and consists of a grayish brown to brown (10YR 5/2–5/3) silt loam with a friable consistency, a subangular blocky structure, and exhibited a gradual and smooth lower boundary. Inclusions included roots/rootlets (5 to 15 percent), insect and worm burrows (5 to 10 percent), white filaments that are interpreted to be mycorrhizal fungi (<1 percent), and *Heliodiscus singleyanus* (10 percent) and *Rabdotus mooreanus* (2 percent) snail shell.

The underlying horizon (Stratum V) was approximately 13–18 cm thick and consists of a grayish brown (10YR 5/2) silt loam with a friable consistency and subangular structure with a gradual and smooth to slightly sloping lower boundary. Stratum V appears to be a transitional horizon as it was not easily discernable in some excavation profiles.

Below Stratum V, the sixth horizon (Stratum VI) was observed to range in thickness from 53 cm to greater than 82 cm as the base of the stratum was not observed in most excavations. Stratum VI consists of yellowish brown to light yellowish brown (10YR 5/4–6/4) sandy loam with a friable to loose consistency, a subangular blocky parting to crumb structure, and where observed, a gradual and smooth lower boundary. Inclusions within Stratum VI included rootlets (15 percent), insect and worm burrows (5 percent), and *Heliodiscus singleyanus* (3 percent).


In select excavations in Block D, a seventh horizon was observed (Stratum VII). Stratum VII is a light yellowish brown to very pale brown (10YR 6/4–7/4) fine to very fine silt loam. This horizon extends beyond 330 cmbs (measuring over 130 cm thick) has a friable consistency and a crumb parting to subangular blocky structure. Observed inclusions included insect burrows (10 percent), *Heliodiscus singleyanus* (<2 percent) and *Rabdotus mooreanus* (<5 percent) snail shell, and CaCO₃ filaments (3–5 percent). The lower boundary of this horizon was unobserved during data recovery excavations.

Summary of Natural Strata

In summary, the natural strata (I–VII) observed at 41GU177 suggests some disturbances localized at or near the ground surface. The disturbances are primarily associated with extensive tree root growth, possible earth movement, and erosion. The vertical extent of evident disturbance across the site varied. The excavation areas amongst extensive trees (i.e., BHT05 and Excavation Blocks C and D) had moderate, localized disturbance to approximately 40 cmbs. The underlying strata (Strata III–VI) across 41GU177 appears generally intact with some localized disturbance from tree roots and small burrows. Comparing the pedon at 41GU177 to that of the soil series mapped in the area, the site stratigraphy matches that attributed to the Sunev series. The pedon for the Sunev series is an Ap, A, Bk1, Bk2, and Bk3 (NRCS 2018). A discussion of the cultural stratigraphy at the site is presented in Chapter 6.

EXCAVATIONS BLOCKS

As mentioned in Chapter 4, the data recovery excavation units were laid out in six blocks, designated as excavation blocks A–F (see Figure 4.1; Figure 5.4). The excavations included 22 traditional 1×1 -m units and six feature-focused units; with a total excavated volume of approximately 34.09 m³ (see Table 4.1). The following sections summarize the results of the investigations within each of the excavation blocks.

Figure 5.4. Overview of 41GU177 data recovery excavation blocks, facing south, upslope, away from drainage.

Block A

Based on the results of the close-interval shovel testing, the southwestern-most portion of the bore pit area was predicted to have the highest artifact density. As such, a block of units was opened up in this area and designated as Block A. Six traditional 1 × 1-m excavation units were opened in Block A along the N995 and N996 lines at E1012, E1013, and E1014 (see Figure 4.1). Five of the units were excavated in 14 to 15 levels, with all units terminating at 98.2 m, while the sixth unit (N996 E1014) was excavated in 20 levels and terminated at 97.6 m, for a total excavated volume of 9.23 m³ (Figure 5.5).

One feature (Feature 3) was recorded in this block and consisted of two discrete burned chert clusters with an associated diffuse chert scatter. The feature spanned units N995–996 E1013 (Cluster 1) and N996 E1012–1013 (Cluster 2) and is discussed in further detail in Chapter 6. One radiocarbon sample from Feature 3 (Beta 492584) was analyzed and returned a broad calibrated age of 1173–1058 cal B.P. at 68.2 percent probability (Appendix E). No temporally diagnostic artifacts were recovered in association with the feature.

Figure 5.5. Overview of Block A after all units at termination level and geoarchaeological samples collected, facing northeast.

Artifacts encountered in Block A included 13 bifaces, one scraper, eight cores, two core tools, one battered stone, one ground stone, 26 modified flakes, one historical ceramic, 38 clay artifacts (i.e., burned clay), 16 thermally altered stones, over 45 kg of burned rock, nearly 3,100 pieces of debitage, one shell ornament, 22 unmodified shell, and 164 unmodified animal bones (Table 5.1). In addition, three charcoal samples, two feature matrix samples, and 76 geoarchaeological samples (64 MS and 12 bulk matrix samples) were collected from Block A.

Table 5.1. Block A Artifact Assemblage

Artifact Type	Count	Weight (g)
Battered Stone	1	183.52
Biface	13	613.11
Bone	164	120.11
Historical Ceramic	1	0.82
Clay Artifact	38	235.24
Core	8	705.11
Core Tool	2	848.72
Debitage	3,088	4,775.35
Ground stone	1	185.48
Modified Flake	26	730.37
Scraper	1	20.12
Shell	22	84.51
Shell Ornament	1	0.06
Thermally Altered Stone	16	725.44
Total	3,382	9,227.96

Samples	Count	Weight (g)
Charcoal Samples	3	1.54
Feature Matrix	2	7,300.00
Geoarch MS Samples	64	N/A
Geoarch Bulk Matrix	12	N/A
Total	81	7,301.54

Burned Rock Size (cm)	Count	Weight (kg)
0–5	1549	13.65
5–10	245	31.20
10–15	4	1.00
15+	0	0
Total	1798	45.85

Block B

Two traditional 1×1 -m excavation units were opened in Block B along the N999 line at E1013 and E1014 (see Figure 4.1). Both units were excavated in 15 levels, terminating at 98.1 m, for a total excavated volume of 2.93 m³ (Figure 5.6). No features were encountered in this block and no radiocarbon samples were submitted for this area.

Figure 5.6. Overview of N999 E1014 in Block B at termination level (98.10 m), facing northeast.

Artifact densities in Block B were relatively low compared to the other excavation blocks and included one biface, two modified flakes, 490 pieces of debitage, two unmodified shell, and three unmodified animal bones (Table 5.2). In addition, only 8.3 kg of burned rock was recovered and no charcoal samples or thermally altered stones were recovered. No geoarchaeological samples were collected from Block B.

Table 5.2. Block B Artifact Assemblage

Artifact Type	Count	Weight (g)
Biface	1	15.46
Bone	3	2.52
Debitage	490	908.46
Modified Flake	2	77.53
Shell	2	9.86
Total	498	1,013.83

Burned Rock Size (cm)	Count	Weight (kg)
0–5	72	6.71
5–10	8	1.60
10–15	0	0
15+	0	0
Total	80	8.31

Block C

Two traditional 1×1 -m excavation units were opened in Block C along the N1000 line at E1003 and E1004 (see Figure 4.1). One unit (N1000 E1003) was excavated in nine levels, terminating at 98.9 m and the other unit (N1000 E1004) was excavated in 15 levels terminating at 98.3 m, for a total excavated volume of 4.01 m³. One feature, Feature 4, was recorded in this block. The feature spanned both units and appeared to continue into the northern walls, therefore additional feature-focused units were opened up to fully explore the extent of the Feature 4. Over the course of the feature excavation, an additional six feature-focused units were opened, including one 50×50 -cm unit (N1001 E1004), one $\frac{3}{4}$ unit (N1001 E1004.5), two 1×1 -m units (N1000.5 E1005.5 and N1001.5 E1004), and two 1×1 .5-m units (N1001 E1003 and N1001.5 E1005). The feature-focused units were excavated in three to five levels, and all terminated at 99.3 m (Figure 5.7).

Figure 5.7. Overview of Block C after all units at termination level and geoarchaeological samples collected, facing southeast.

One feature (Feature 4) was recorded in Block C and consisted of a burned rock earth oven. The feature spanned numerous units, including two traditional 1×1 -m units and six non-traditional feature-focused units of various sizes; an explanation of the methodology used for documentation and excavation of this feature was presented in Chapter 4 (see Figure 4.2). Layer 1 of Feature 4 extended into units N1000–1001 E1003–1005 and Layer 2 spanned units N1000–1001 E1004; this feature is discussed in further detail in Chapter 6. One radiocarbon sample from Feature 4 (Beta 492583) was analyzed and returned a calibrated age of 929–802 cal B.P. at 68.2 percent probability (Appendix E). In addition, one temporally diagnostic artifact, a Late Prehistoric Toyah Phase Perdiz Point, was recovered in association with the feature.

Artifacts encountered in Block C included one arrow point, four bifaces, one core, five modified flakes, eight prehistoric ceramics, one historical ceramic, three historical metal fragments, three pieces of ochre, six clay artifacts (i.e., burned clay), three miscellaneous stone/minerals (i.e., manuports), 14 thermally altered stones, over 52 kg of burned rock, 871 pieces of debitage, 11 unmodified shell, and 303 unmodified animal bones (Table 5.3). Of note, the majority of the burned rock came from in and around

Feature 4 and the only large burned rock (i.e., over 15 cm in diameter) encountered during the data recovery excavations also came from Feature 4. In addition, seven charcoal samples, two feature matrix samples, and 45 geoarchaeological samples (38 MS and seven bulk matrix samples) were collected from Block C.

Table 5.3. Block C Artifact Assemblage

Artifact Type	Count	Weight (g)
Arrow Point	1	1.43
Biface	4	93.21
Bone	303	362.59
Historical Ceramic	1	2.73
Clay Artifact	6	5.36
Core	1	188.54
Debitage	871	1,239.18
Historical Metal	3	1.40
Misc. Stone/ Mineral	3	180.97
Modified Flake	5	105.75
Ochre	3	1.03
Prehistoric Ceramic	8	12.39
Shell	11	43.58
Thermally Altered Stone	14	87.64
Total	1,234	2,325.80

Samples	Count	Weight (g)
Charcoal Samples	7	3.79
Feature Matrix	2	5,400
Geoarch MS Samples	38	N/A
Geoarch Bulk Matrix	7	N/A
Total	54	5,403.79

Burned Rock Size (cm)	Count	Weight (kg)
0–5	530	6.35
5–10	143	16.15
10–15	26	14.20
15+	12	15.50
Total	711	52.20

Block D

Four traditional 1×1 -m excavation units were opened in Block D along the N1000 and N1001 lines at E1009 and E1010 (see Figure 4.1). Two of the units were excavated in 10 to 11 levels terminating at 98.59 m and the other two units were excavated in 20 to 21 levels and terminated at 97.59 m, for a total excavated volume of 6.12 m³ (Figure 5.8). No features were encountered in this block and the radiocarbon sample that was collected was too small to be submitted for analysis. Instead, SWCA submitted a large mammal bone (Beta 492587) from N1001 E1009 Level 5 (99.15 m) for radiocarbon dating; the bone collagen was analyzed and returned a calibrated age of 552–518 cal B.P. at 68.2 percent probability (Figure 5.9; Appendix E).

Artifacts encountered in Block D included three arrow points, seven bifaces, three cores, two ground stone, six modified flakes, three historical ceramics, 23 kg of burned rock, 1,782 pieces of debitage, four unmodified shell, and 168 unmodified animal bones (Table 5.4). In addition, one charcoal sample and 44 geoarchaeological samples (34 MS and 10 bulk matrix samples) were collected from Block D.

Figure 5.8. Overview of Block D after all units at termination level and geoarchaeological samples collected, facing east.

Figure 5.9. Large mammal bone recovered from N1001 E1009, Level 5 at 99.15 m and submitted for radiocarbon dating (Beta 492587).

Table 5.4. Block D Artifact Assemblage

Artifact Type	Count	Weight (g)
Arrow Point	3	2.00
Biface	7	57.91
Bone	168	181.86
Historical Ceramic	3	9.26
Core	3	501.49
Debitage	1782	2,898.36
Ground stone	2	221.77
Modified Flake	6	323.07
Shell	4	11.67
Total	1978	4,207.39

Samples	Count	Weight (g)
Charcoal Samples	1	0.01
Geoarch MS Samples	34	N/A
Geoarch Bulk Matrix	10	N/A
Total	45	0.01

Burned Rock Size (cm)	Count	Weight (kg)
0–5	345	12.46
5–10	56	10.15
10–15	2	0.40
15+	0	0
Total	403	23.01

Block E

Six traditional 1×1 -m excavation units were opened in Block E along the N1003 and N1004 lines at E1017, E1018, and E1019 (see Figure 4.1). Five of the six units were excavated in 15 levels, terminating at 97.8 m and the sixth unit (N1004 E1017) was excavated in 16 levels and terminated at 97.7 m, for a total excavated volume of 8.72 m³ (Figure 5.10). Feature 2 was recorded in this block within units N1003 to N1004 and E1018 to E1019.

Figure 5.10. Overview of Block E after all units at termination level and geoarchaeological samples collected, facing north.

One feature (Feature 2) was recorded in Block E and consisted of a small burned rock concentration. The feature spans units N1003–1004 E1018–1019 and is centered just southwest of the N1004 and E1019 grid intersection. One radiocarbon sample obtained from the Feature 2 flotation sample (Beta 492582) was analyzed and returned a broad calibrated age of 670–566 cal B.P. at 68.2 percent probability (Appendix E). A Fresno point was recovered from the screen in Unit N1003 E1018 at the same elevation as the feature and a Zephyr dart point and an Edwards arrow point were recovered in levels below the feature.

Artifacts encountered in Block E included two arrow points, one dart point, 10 bifaces, nine cores, two core tools, 26 modified flakes, one miscellaneous stone/mineral (i.e., manuport), 28 thermally altered stones, 25.5 kg of burned rock, nearly 2,500 pieces of debitage, 87 unmodified shell, and 19 unmodified animal bones (Table 5.5). In addition, one feature matrix sample and 65 geoarchaeological samples (52 MS and 13 bulk matrix samples) were collected from Block E.

Table 5.5. Block E Artifact Assemblage

Artifact Type	Count	Weight (g)
Arrow Point	2	4.01
Biface	10	198.12
Bone	19	16.13
Core	9	1,263.20
Core Tool	2	636.46
Dart Point	1	3.86
Debitage	2,485	4,218.52
Misc. Stone/ Mineral	1	18.50
Modified Flake	26	621.98
Shell	87	263.39
Thermally Altered Stone	28	8.00
Total	2,670	7,252.17

Samples	Count	Weight (g)
Feature Matrix	1	5,100
Geoarch MS Samples	52	N/A
Geoarch Bulk Matrix	13	N/A
Total	66	5,100

Burned Rock Size (cm)	Count	Weight (kg)
0–5	447	11.26
5–10	124	11.97
10–15	17	2.30
15+	0	0
Total	588	25.53

Block F

Two traditional 1×1 -m excavation units were opened in Block F along the N1009 line at E1011 and E1012 (see Figure 4.1). The units were excavated in 15 to 16 levels, with all units terminating at 97.7 m, for a total excavated volume of 3.07 m³ (Figure 5.11). No features were encountered in this block and no radiocarbon samples were collected. Instead, SWCA submitted a deer bone (Beta 492588) recovered from N1009 E1012 Level 11 (98.19 m) for radiocarbon dating; the bone collagen was analyzed and returned a calibrated age of 282 cal B.P. to the present at 68.2 percent probability (Appendix E).

Figure 5.11. Overview of N1009 E1012 in Block F at termination level (97.70 m), facing north.

Artifacts densities in Block F were the lowest out of all of the excavation blocks and included one core, two modified flakes, one historical metal fragment, one historical glass fragment, only 7.3 kg of burned rock, 138 pieces of debitage, five unmodified shell, and eight unmodified animal bones (Table 5.6). In addition, SWCA collected 58 geoarchaeological samples from Block F, including 49 MS and nine bulk matrix samples.

Table 5.6. Block F Artifact Assemblage

Artifact Type	Count	Weight (g)
Bone	8	21.47
Core	1	18.02
Debitage	138	348.56
Glass	1	0.79
Metal	1	0.64
Modified Flake	2	40.71
Shell	5	8.17
Total	156	438.36

Samples	Count	Weight (g)
Geoarch MS Samples	49	N/A
Geoarch Bulk Matrix	9	N/A
Total	58	N/A

Burned Rock Size (cm)	Count	Weight (kg)
0–5	91	5.4
5–10	6	1.9
10–15	0	0
15+	0	0
Total	97	7.3

SITE FORMATION ANALYSES

This section summarizes the results of radiocarbon, particle size distribution, and MS analyses conducted at 41GU177.

Radiocarbon Analysis

As stated previously, SWCA collected 11 samples of charred material during the investigations at the Snakeskin Bluff site. Of these, five samples were sent to Beta Analytic Inc. to conduct radiocarbon dating analysis (Table 5.7; Appendix E). These assays were selected based upon the combination of cultural context (e.g., feature matrix) and stratigraphic location. These analyses focused on the stratigraphy and cultural zones seemingly affiliated with the Late Prehistoric or Archaic horizons. Specifically, radiocarbon analyses were conducted on samples from Feature 2 (Beta-492582), Feature 3 (Beta-492584), Feature 4 (Beta-492583), a faunal fragment in Unit N1001 E1009 (Beta-492587), and a faunal fragment in Unit N1009 E1012 (Beta-492588) (see Figure 4.1). Each of these five assays are discussed below.

The results of the radiocarbon analyses from the charcoal sample in Feature 2 returned a broad calibrated age of 670–566 cal B.P. at 68.2 percent probability (see Table 5.7). The broad range of the radiocarbon results is due to the sample's position on the calibration curve. Specifically, the sample falls on two peaks in the curve and the bimodal range of the results cluster at 670–645 cal B.P. (38.6% certainty) or 586–566 cal B.P. (29.6% certainty). Chronologically, this places the Feature 2 sample collected at 98.77–98.5 m elevation in the Late Prehistoric. Also, the radiocarbon sample was identified as charred vetch (*Vicia ludoviciana*) with a δ^{13} C value of -22.3.

The results of the radiocarbon analyses from the charcoal sample in Feature 3 returned a broad calibrated age of 1173-1058 cal B.P. at 68.2 percent probability (see Table 5.7). The broad range of the radiocarbon results is due to the sample's position on the calibration curve. Specifically, the sample falls on several peaks in the curve and the multimodal range of the results cluster at 1149-1058 cal B.P. (57.1% certainty) or 1173-1157 cal B.P. (11.1% certainty). Chronologically, this places the Feature 3 sample collected at 99.0-98.94 m elevation in the Late Prehistoric. Notably, the radiocarbon sample was identified as charred bluewood condalia ($Condalia\ hookeri$) with a δ^{13} C value of -25.2.

The results of the radiocarbon analyses from the charcoal sample in Feature 4 returned a calibrated age of 929–802 cal B.P. at 68.2 percent probability (see Table 5.7). The sample results fall on several peaks in the curve and the multimodal range of the results cluster at 862–828 cal B.P. (31.4% certainty), 929–902 cal B.P. (28.3% certainty), or 812–802 cal B.P. (8.4% certainty). Chronologically, this places the Feature 4 sample collected at 99.3–99.21 m elevation in the Late Prehistoric. The radiocarbon sample was identified as charred camas bulb (*Camassia sp.*) with a δ^{13} C value of -25.5.

The results of the radiocarbon analyses of collagen from a faunal fragment in Unit N1001 E1009 returned a calibrated age of 552-518 cal B.P. at 68.2 percent probability (see Table 5.7). Chronologically, this places the mammal bone fragment collected at 99.15 m elevation in the Late Prehistoric, more specifically the Toyah phase. The radiocarbon sample had a δ^{13} C value of -11.1.

Table 5.7. Radiocarbon Assays

Cultural Component	Lot No.	Beta No.	Elevation (m)	Context	Material	Measured 14C (B.P.)	13C/12C Ratio	Conventional 14C (B.P.)	2-Sigma Calibrated Age (95%)	1-Sigma Calibrated Age (68%)
Austin Phase	421-1	492584	99.0-98.94	Feature 3, Cluster 2; Strat III	Bluewood condalia (Condalia hookeri)	1170 ± 30	-25.2 o/oo	1170 ± 30	80.8%: Cal AD 771-903 (1179-1047 cal B.P.); 14.6%: Cal AD 918-965 (1032-985 cal B.P.)	57.1%: Cal AD 801-892 (1149-1058 cal B.P.); 11.1%: Cal AD 777-793 (1173-1157 cal B.P.)
Austin Phase	529-1	492583	99.3-99.21	Feature 4, Layer 2; Strat III	Camas bulb scale (<i>Camassia</i> sp.)	980 ± 30	-25.5 o/oo	970 ± 30	Cal AD 1016-1154 (934- 796 cal B.P.)	31.4%: Cal AD 1088-1122 (862-828 cal B.P.); 28.3%: Cal AD 1021-1048 (929-902 cal B.P.); 8.4%: Cal AD 1138-1148 (812-802 cal B.P.)
Austin Phase	672-1	492582	98.77-98.5	Feature 2; N1003- 1004 E1018- 1019; Strat III/ IV	Charred Vetch (<i>Vicia</i> <i>Iudoviciana</i>)	630 ± 30	-22.3 o/oo	670 ± 30	53.1%: Cal AD 1274-1320 (676-630 cal B.P.); 42.3%: Cal AD 1350-1391 (600-559 cal B.P.)	38.6%: Cal AD 1280-1305 (670-645 cal B.P.); 29.6%: Cal AD 1364-1384 (586-566 cal B.P.)
Toyah	549-1	492587	99.15	N1001.07 E1009.42 L.5; Strat I/ II	Mammal Bone Collagen	300 ± 30	-11.1 o/oo	530 ± 30	75.9%: Cal AD 1390-1440 (560-510 cal B.P.); 19.5%: Cal AD 1320-1350 (630-600 cal B.P.)	Cal AD 1398-1432 (552- 518 cal B.P.)
Historic/ Modern	697-1	492588	98.19	N1009.16 E1012.67 L.11; Strat VI	Deer (<i>Odocoileus</i> sp.) Bone Collagen	90 ± 30	-19.9 o/oo	170 ± 30	51.6%: Cal AD 1721-1818 (229-132 cal B.P.); 17.9%: 1916- post Cal AD 1950 (34-post cal B.P. 0); 17.7%: Cal AD 1659-1699 (291-251 cal B.P.); 8.2%: Cal AD 1832-1880 (118-70 cal B.P.)	35.4%: Cal AD 1732-1782 (218-168 cal B.P.); 14.2%: 1928-post Cal AD 1950 (22-post Cal B.P. 0); 11.7%: Cal AD 1668-1685 (282-265 cal B.P.); 7%: Cal AD 1797-1808 (153-142 cal B.P.)

Finally, the results of the radiocarbon analyses of collagen from a faunal fragment in Unit N1009 E1012 returned a calibrated age of 282 cal B.P. to the present at 68.2 percent probability (see Table 5.7). The broad range of the radiocarbon results for this sample is due to the sample's position on a dynamic portion of the calibration curve. Specifically, the sample falls on several peaks in the curve and the multimodal range of the results cluster at 218–168 cal B.P. (35.4% certainty), 22 cal B.P. to present (14.2% certainty), 282–265 cal B.P. (11.7% certainty), or 153–142 cal B.P. (7% certainty). Chronologically, this places the mammal bone fragment collected at 98.19 m elevation in the historic to modern era. The radiocarbon sample was identified as deer (*Odocoileus sp.*) with a δ¹³C value of -19.9.

Considering the overall radiocarbon results, the chronometric data indicate prehistoric occupations from the Late Prehistoric to modern times. However, comparing the chronometric results stratigraphically across the site, the results are seemingly not in an appropriate sequence. The youngest assay (282 cal B.P. to the present) came from Unit N1009 E1012 (Beta-492588) at an elevation of 98.19 m (see Table 5.7). Although downslope from the other radiocarbon samples, this assay is noticeably lower than the other chronometric data (see Figures 5.2 and 5.3). Additionally, the oldest assay (1173–1058 cal B.P.) recovered from the site is from Feature 3 (Beta-492584) at an elevation of 99.0–98.94 m. The dissonance in chronostratigraphy for these results appears to suggest some translocation (i.e., vertical displacement), contamination, or a combination of factors. Therefore, the radiocarbon sample from Unit N1009 E1012 (Beta-492588) is rejected as the results do not correlate with the other radiocarbon data or with the cultural assemblage at the site.

For the site's chronostratigraphy, the remaining four radiocarbon assays are associated with Strata II and III. Stratum II only contains the faunal fragment in Unit N1001 E1009 that returned a calibrated age of 552–518 cal B.P. (see Table 5.7). Stratum III contains the samples from the three features (i.e., Features 2–4) dating at 1173–1058 cal B.P. in Feature 3 (Beta-492584), 929–802 cal B.P. in Feature 4 (Beta-492583), and 670–566 cal B.P. in Feature 2 (Beta-492582). Accordingly, Stratum III appears to date to approximately 1200–600 B.P., while the overlying Stratum II dates from 600 B.P. to sometime before the present. Both of these strata are associated with the Late Prehistoric, but there appears to be a cultural distinction. Based solely on the radiocarbon data, Stratum III may be associated with the Austin Phase, whereas Stratum II appears to be associated with the Toyah Phase (Collins 2004; Gadus et al. 2006; Johnson 1994; Johnson and Goode 1994; Ricklis and Collins 1995). Accordingly, the deposits underlying Stratum III precede the Late Prehistoric Austin Phase and certainly encompass the Late Archaic.

Particle Size Distribution

Particle size and texture analysis was conducted on samples from two excavation blocks (Excavation Block A and E). These columns, near the southern and northern areas of the excavation, were selected to determine if any evident differences were present. The data generally indicate both columns are very consistent. The percentages of very coarse and coarse sand decreases with depth, the percentages of medium and fine sand increases, and fine sand remains relatively consistent (Figures 5.12 and 5.13; Appendix G1). Interestingly, the silt and clay particle size percentages steadily decrease with depth in each profile. This coarsening upward sequence in the particle size distribution is not what is commonly associated with a fluvial depositional environment. Rather, a fining upward sequence where larger clast particles increase with depth is to be expected in alluvial overbank flooding environments (Reading 1996; Reineck and Singh 1975). A generally coarsening upward sequence is typically associated with a regression or drop in water environments (e.g., sea level or coastal areas). The coarsening upward sequence at 41GU177 may be attributed to sediment contributions from upslope (i.e., colluvium) particularly for the upper three horizons (Strata I–III). Overall, these results do not indicate any dramatic natural or cultural disconformities.

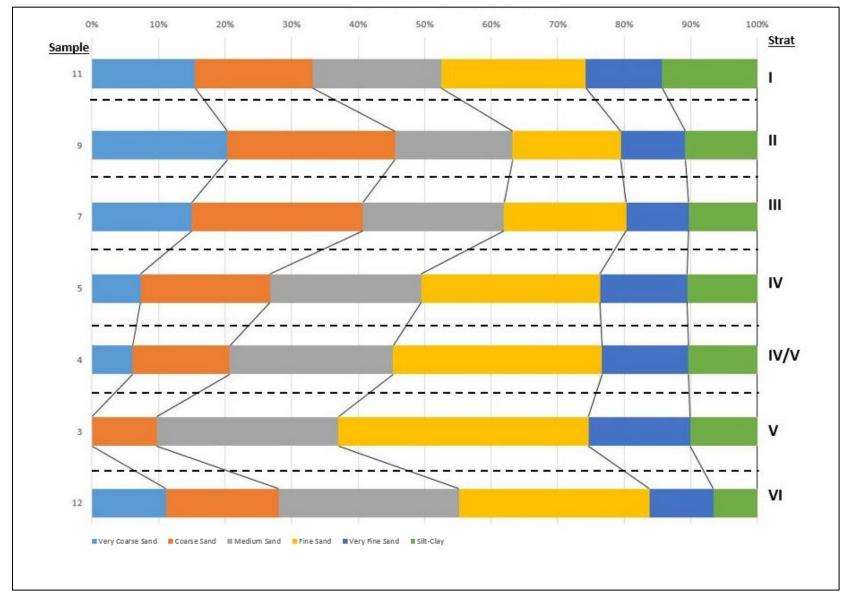
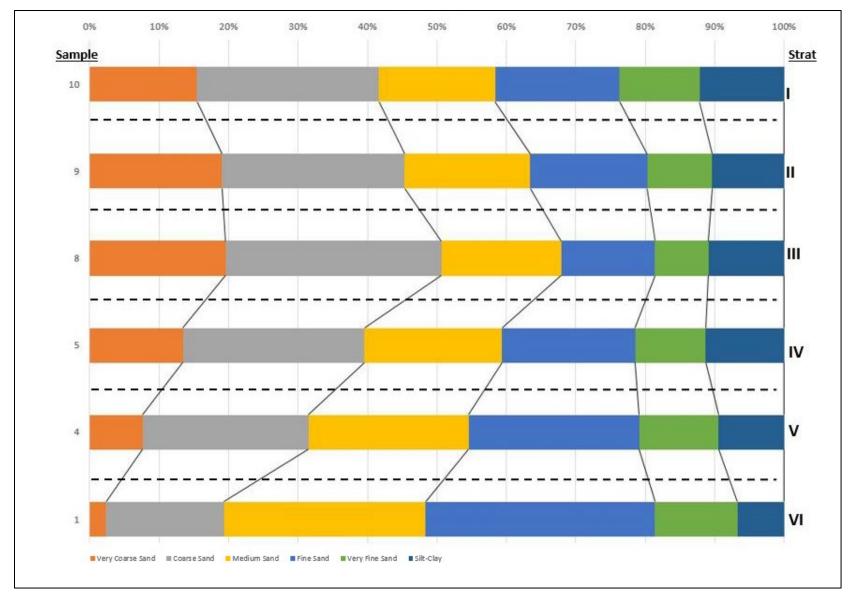



Figure 5.12. Unit N996 E1014 Particle Size distribution.

Figure 5.13. Unit N1004 E1017 Particle Size distribution.

Magnetic Susceptibility (MS)

SWCA collected five vertical cube columns and one horizontal column for MS analysis during the investigations at 41GU177. The vertical columns included N996 E1014 (Block A), N1000 E1004 (Block C), N1000 E1010 (Block D), N1004 E1017 (Block E), and N1009 E1012 (Block F), while the horizontal column was centered on Feature 4 (Block C). As mentioned briefly in the methods section, factors including organic content, pedogenesis, thermal alteration, and cultural activities (e.g., ash-charcoal and refuse) can subsequently alter (usually increase) susceptibility values. In archaeological contexts, particularly when examining vertical values, the MS analysis can assist in identifying cultural zones or disturbance.

N996 E1014 (Block A)

The results for the vertical column in Block A exhibits elevated χ lf values in Strata II–IV with a gradual decrease in values down profile (Figure 5.14 MS N996 E1014; Appendix G2). The elevated values coincide with the observed cultural materials in this excavation block. There are several subtle spikes in value exhibited at 98.54–98.5 m elevation (Stratum IV) and at 98.38–98.31 m elevation (Stratum V), which may correlate with discrete cultural activities. Interestingly at the base of the vertical column in Stratum VI, the χ lf values exhibit a gradual increase after a steady decline in values (see Figure 5.14). Extensive burrows were observed in Stratum VI that may account for the increase, but it is also possible that the increase in this horizon may be attributed to another zone of cultural activities.

N1000 E1004 (Block C)

The results for the vertical column in Block C exhibits elevated χ lf values in Strata II and IV with an overall gradual decrease in values down profile (Figure 5.15; Appendix G2). There is a noticeable spike in values at the transition from Stratum I to Stratum II, which may indicate a disconformity. This spike is likely the result of disturbance near the ground surface. There is an evident spike in value exhibited at 99.15–99.10 m elevation (Stratum IV), which may correlate with discrete cultural activities associated with Feature 4 (discussed further below). The decrease in χ lf values in Strata III is notable as cultural materials were present in this horizon. This incongruent data between the low values with cultural materials may indicate that the cultural activities in this area in Stratum III were not associated with thermal activities. Overall, the results in the vertical column show minor fluctuations associated with cultural activities down profile with a gradual and steady decrease in values. With the exception of the possible disconformity at the base of Stratum I, this is what would be expected in a natural soil cycle.

N1000 E1010 (Block D)

The results for the vertical column in Block D exhibits elevated χ lf values particularly in Strata I–III, with an overall gradual decrease in values down profile (Figure 5.16; Appendix G2). The elevated values in Strata I/II is close to the surface and may be attributed to disturbance in the upper 35 cmbs. In Stratum III, there is a large increase in χ lf values beginning around 98.70 m elevation that drops at the base of the horizon around 98.53 m elevation. This prominent Stratum III spike likely represents intensive cultural activities possibly associated with thermal activities. Notably, no cultural features were observed at these elevations in Block D. Overall, the results in the vertical column shows minor fluctuations associated with cultural activities down profile with a gradual and steady decrease in values that would be expected in a natural soil cycle.

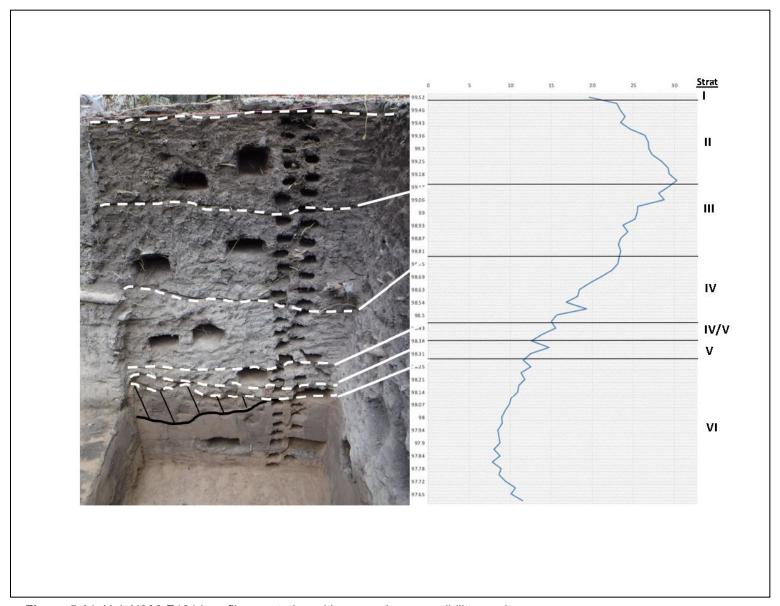


Figure 5.14. Unit N996 E1014 profile annotation with magnetic susceptibility results.

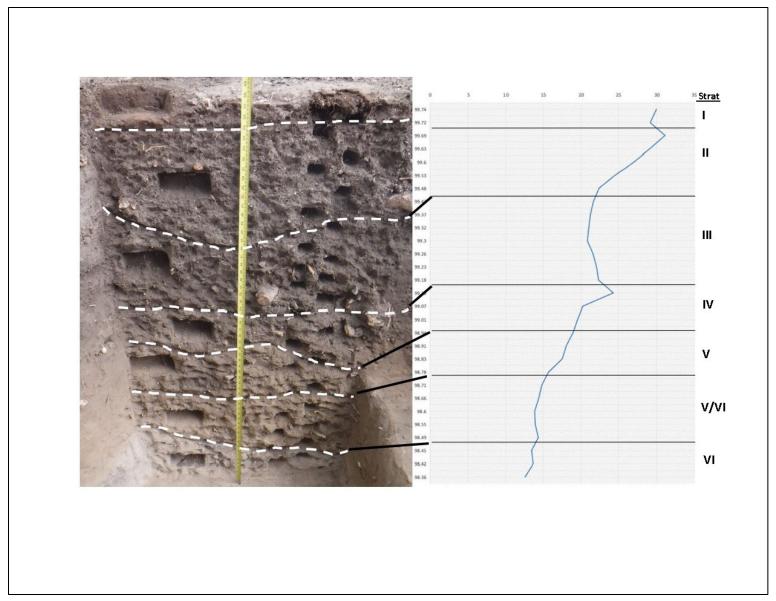


Figure 5.15. Unit N1000 E1004 profile annotation with magnetic susceptibility results.

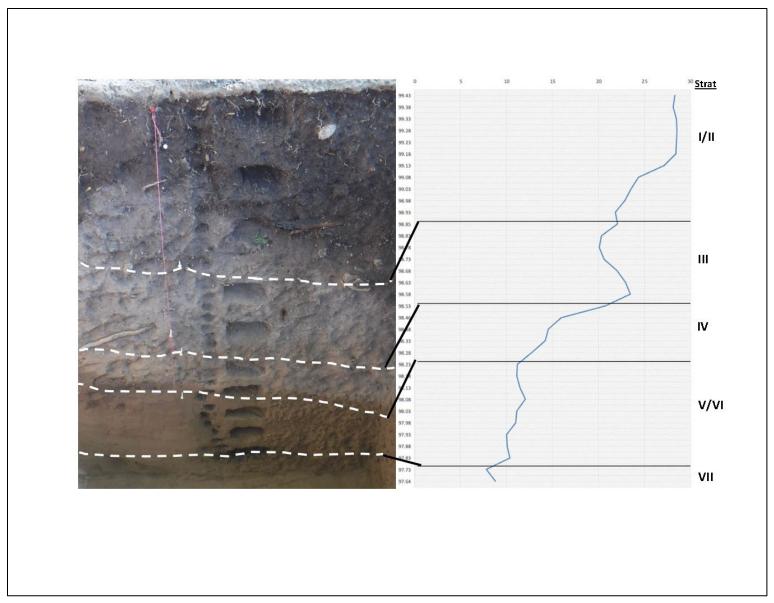


Figure 5.16. Unit N1000 E1010 profile annotation with magnetic susceptibility results.

N1004 E1017 (Block E)

The results for the vertical column in Block E exhibits χ lf values slightly different than the other vertical columns. Specifically, there is an apparent disconformity between Stratum II and Stratum III based on the sharp increase between the two strata (Figure 5.17; Appendix G2). Block E is in an area noted during test excavations as having had some disturbance from heavy equipment (Appendix A; Rodriguez et al. 2017). Therefore, the disconformity in χ lf values is attributed to this disturbance. Overall, the results in the vertical column shows minor fluctuations associated with cultural activities down profile with a gradual and steady decrease in values. With the exception of the disconformity at the base of Stratum II, this is what would be expected in a natural soil cycle.

N1009 E1012 (Block F)

The results for the vertical column in Block F exhibits elevated χ lf values particularly in Strata III–IV with an overall gradual decrease in values down profile (Figure 5.18; Appendix G2). There are some noticeable fluctuations in the upper Strata I and II close to the ground surface and may be attributed to disturbance in the upper 25 cmbs. In Stratum III, there is a large increase in χ lf values beginning around 98.80 m elevation that drops at the base of the horizon around 98.67 m elevation. In Stratum IV there is another increase in χ lf values between 98.64–98.55 m elevations. These prominent spikes likely represent intensive cultural activities possibly associated with thermal activities. Notably, no cultural features were observed at these elevations in Block F. Overall, the results in the vertical column show minor fluctuations associated with cultural activities down profile with a gradual and steady decrease in values that would be expected in a natural soil cycle.

Feature 4 (Block C)

Feature 4 in Block C was investigated with a horizontal MS sampling strategy. The samples were arranged along a cruciform pattern with a row of samples collected west to east along N1001.1 beginning at E1003.1 eastward to E1006.5, while a row of samples were collected south to north along E1004.9 beginning at N1000.3 northward to N1002.7 (Figure 5.19). The sample cruciform was centered on the feature at N1001.1 E1004.9. The samples were collected horizontally every 20 cm with two series of sampling (i.e., A and B series). The A series collected samples were collected at the surface depth of the feature (approximately 99.34 m elevation), while the B series were collected 4 cm below the A series (approximately 99.3 m elevation). These investigations were conducted in an attempt to identify isolated areas of χ If where there was an evident increase or decrease in values. Notably, due to large burned rocks at specific locations, several samples in the series were not collected. The west to east samples were the most complete only missing three samples in the B series, while the south to north column is unfortunately missing three samples in the A series and nine samples were not collected in the B series.

Despite these gaps in the horizontal MS data, the results are informative. The west to east sample column along N1001.1 starts outside of the observed burned rock feature with elevated χ lf values followed by a sharp drop in values around E1003.5 to E1004.1 (Figure 5.20; Appendix G3). Beginning around E1004.3 at the edge of the burned rock, the χ lf values dramatically increases and remains elevated eastward through the feature to the end of the sampling column. Interestingly, the trend in χ lf values was the same for the A and B series. The drop in χ lf values exhibited in the west to east sample column is interpreted to be evidence of a clean out activity of the feature.

The χ lf results for the south to north sample column along E1004.9 are less informative than the west to east column. The χ lf values are elevated and exhibit some variation, but only within a narrow range (< 3 χ lf). Further, the values trend consistently between the A and B series (Figure 5.21; Appendix G3). These data do not indicate any isolated areas of χ lf increases or decreases, but rather a consistent influence from

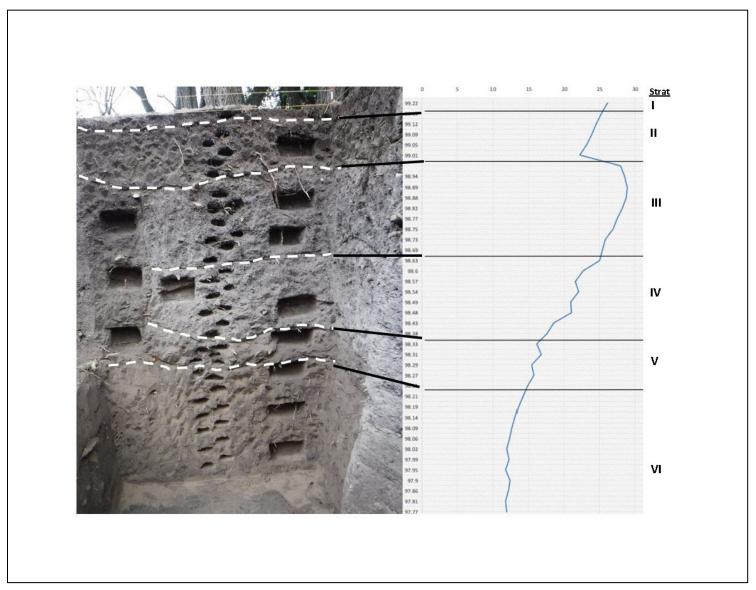


Figure 5.17. Unit N1004 E1017 profile annotation with magnetic susceptibility results.

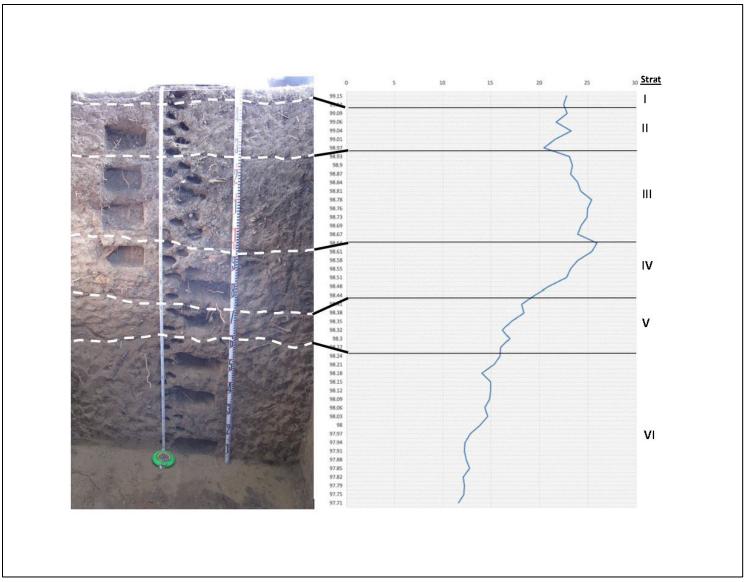


Figure 5.18. Unit N1009 E1012 profile annotation with magnetic susceptibility results.

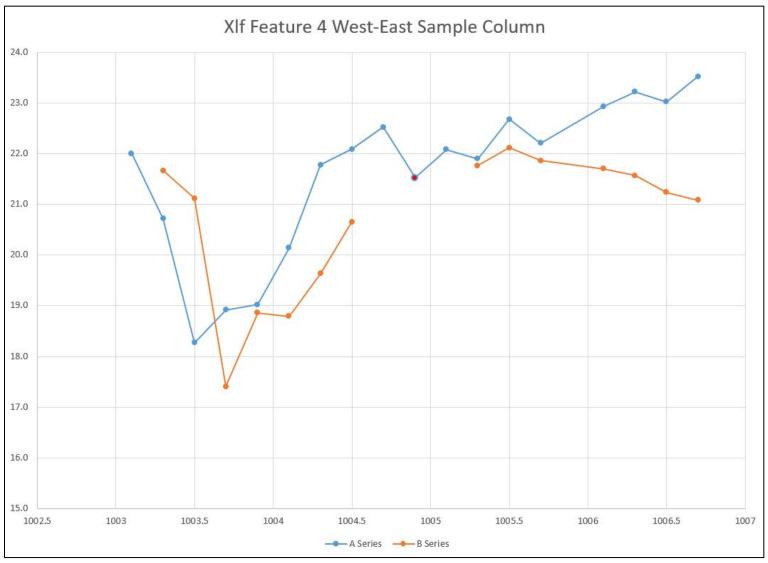
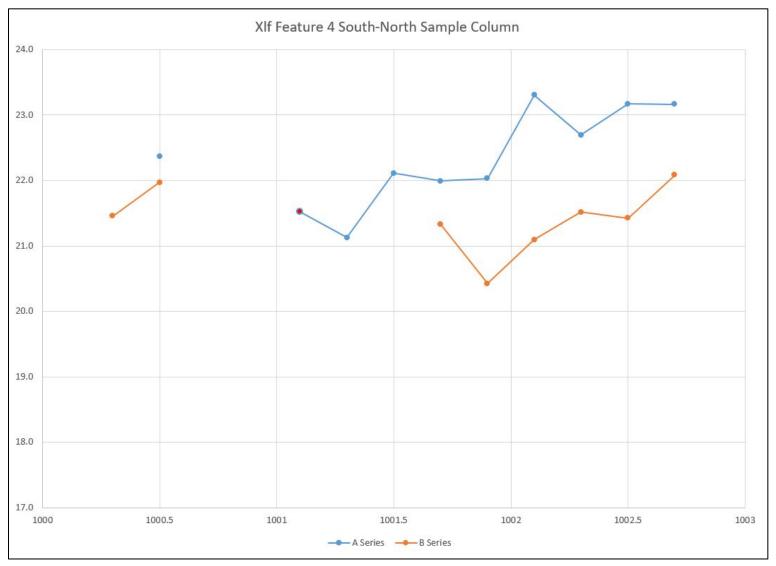


Figure 19. Feature 4 magnetic susceptibility sample cruciform.


thermal activities. The missing data points in the south to north series may have exhibited drastically different values than the available data set. Regardless, the south to north series indicates consistent elevated χ lf values that are interpreted to be influenced from thermal alteration. The widespread consistency of these values over this large area (about 2.4 m wide), may be inferred that the deposits were mixed from repeated use. The evidence of the feature clean out along the west to east line is consistent with this interpretation.

Site Formation Analysis Summary

Considering the combined results of radiocarbon, particle size distribution, and MS analyses at 41GU177, the data indicate generally intact alluvial deposits with some limited disturbance. The site deposits have been subjected to disturbance from bioturbation (e.g., burrows and tree roots) that have, to varying degrees, vertically displaced some deposits. Further, localized disturbance from heavy equipment or similar influence has affected the upper deposits on the eastern side of the site. Specifically, the MS results for the upper strata in the vertical columns at Excavation Blocks D, E, and F all suggested some disturbance, particularly within Excavation Block E (see Figure 5.17). The radiocarbon results also implied some slight mixing based on the dissonance in the stratigraphy and chronometric data. The youngest assay (282 cal B.P. to the present) came from Unit N1009 E1012 (Beta-492588) at an elevation of 98.19 m, which was the deepest of the samples. This radiocarbon sample was rejected for interpretation of the chronostratigraphy at 41GU177. The remaining four radiocarbon samples do align stratigraphically and indicate that Stratum III appears associated with the Austin Phase, while Stratum II appears to be associated with the Toyah Phase. The deposits underlying Stratum III precede the Late Prehistoric Austin Phase and encompass the Late Archaic and possibly earlier.

Figure 5.20. Feature 4 χ lf magnetic susceptibility results from west to east sample column.

Figure 5.21. Feature 4 χ lf magnetic susceptibility results from south to north sample column.

CHAPTER 6. ARTIFACTS, ECOFACTS, AND FEATURES

Archaeology is the study of the material record to derive interpretations of past societies and their contexts. But what endures through the destructive processes of time is often only a small fraction of the overall material culture. Items manufactured from hides, wood, and other perishables disintegrated long ago, and are generally lost to the archaeological record. In addition to natural processes that bias the archaeological record, there are social filters that influence what is discarded on residential sites and what is discarded elsewhere. Accordingly, archaeological assemblages are inaccurate reflections of the total material culture of any given past society.

This chapter presents descriptive data on the features, artifacts, and ecofacts that were investigated or recovered during the excavations. The materials are not organized by component or stratum, but rather by basic descriptive categories. The intent of this chapter is to present the data as objectively as possible with only brief chronological or stratigraphic divisions. A few low-level interpretations are provided on functions of tools and features, but these are kept at a minimal level. The subsequent chapter will develop more of an interpretive context that will address the issues of moving from the material record to inferences on prehistoric society and behavior.

Cultural materials recovered during the data recovery excavations on site 41GU177 include features and artifact categories composed of various materials, including stone, bone, shell, ceramic, wood, and other floral or faunal remains (Appendix B). However, as a result of depositional and post-depositional (e.g., preservation) site formation processes, stone comprises the vast majority of the artifact assemblage. Inorganic remains are enormously overrepresented in the archaeological record. Burned rock, lithic tools, as well as reduction debris are quite often the only things that endure, but ethnographic studies show hunter-gatherer occupations typically leave behind as much organic remains as non-organics. As a result, the total prehistoric material assemblage often has to be inferred from lithic remains and site structure. Site 41GU177, however, yielded a relatively good collection of some perishable materials, including bone and floral remains. Some of these are artifacts, and many are ecofacts, defined as plants, animals, or rocks that were not clearly cultural modified or produced but were nevertheless culturally introduced or otherwise part of the overall site context.

Charcoal, which forms the primary basis for determining the site's chronological parameters through radiocarbon dating, was abundant and well preserved. Dates reported in this chapter are corrected, 2-Sigma calibrated dates (cal B.P.). Both macro- and micro-floral remains were also well preserved.

ARTIFACTS

Over the course of the data recovery efforts, SWCA collected 9,917 artifacts (Table 6.1; Appendix B). Stone artifacts encompassed the majority of the artifact assemblage. Debitage accounted for almost 90 percent of the total assemblage. Burned rock was likewise abundant (n=3,677) but was counted and discarded in the field (and is not included in the total above). Faunal remains formed the next largest category, with a total of 666 bone fragments and 131 shells; however, the majority of bone were very fragmented and likely originated from relatively few individual specimens. Modified flakes formed the next largest stone artifact category, with a total of 67 specimens recovered. This was followed in quantity by bifaces (n=35) and cores (n=22); recovery of other stone tool categories (e.g., projectile points, scrapers) was minimal (see Table 6.1). In addition to the stone artifact assemblage, eight prehistoric ceramics and 10 historic-age artifacts were recovered. One of the more interesting finds included a single shell ornament that may have been a decorative bead.

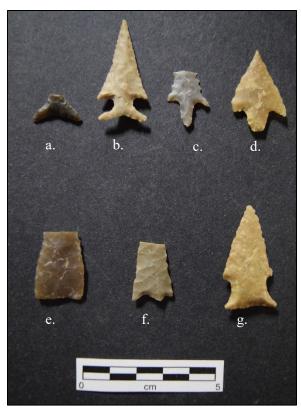
Table 6.1. 41GU177 Data Recovery Artifact Assemblage

Artifact Type	Count	Percent	Weight (g)
Battered Stone	1	0.01	183.52
Biface	35	0.35	977.81
Bone	666	6.72	704.68
Historic Ceramic	5	0.05	12.81
Core	22	0.22	2,676.36
Core Tool	4	0.04	1,485.18
Debitage	8,854	89.29	14,388.43
Historic Glass	1	0.01	0.79
Ground stone	3	0.03	407.25
Historic Metal	4	0.04	2.04
Misc. Stone/ Mineral	5	0.05	1,364.97
Modified Flake	67	0.68	1,899.41
Pigment	3	0.03	1.03
Projectile Point	7	0.07	7.44
Scraper	1	0.01	20.12
Shell	131	1.32	421.18
Shell Ornament	1	0.01	0.06
Thermally Altered Stone	58	0.58	821.08
Prehistoric Ceramic	8	0.08	12.39
Clay Artifact	41	0.41	239.57
Grand Total	9,917		25,626.12

Samples	Count	Weight (g)
Charcoal Samples	11	5.48
Feature Matrix	5	17,800.00
Geoarch MS Samples	237	N/A
Geoarch Bulk Matrix	51	N/A
Total	305	17,805.48

Burned Rock Size (cm)	Count	Percent	Weight (kg)
0–5	3034	82.51	55.83
5–10	582	15.83	72.97
10–15	49	1.33	17.90
15+	12	0.33	15.50
Total	3677		162.20

Projectile Points


An 11,000-year broad regional chronology has been established for Central Texas, and this broadly applicable chronology is primarily based on specific projectile point types (Collins 2004:113:Figure 3.9a). There are issues of inconsistency with this method of classification due to biases or the subjective decisions of the analyst (see Johnson 1995 and Tomka et al. 2003). Additionally, variability in form, style, blade retouch, or base treatment can be expected, making identifying a specific artifact to a specific type problematic. Nevertheless, the use of this cultural-historical approach has achieved many objectives for which it is designed, namely developing chronological schemes and culturo-temporal diagnostics throughout the state, especially the Central Texas, South Texas, and Lower Pecos regions (Hester 2004; Shafer 2005).

Chipped stone tools identified as projectile points were further classified by diagnostic types based on the original ordering provided by Suhm et al. (1954) and Turner et al. (2011). Overall technology, base and stem attributes, patterning in blade thinning and resharpening, were all taken into consideration when typological decisions were being made. Following typological designations, nominal (qualitative) and metrical (quantitative) attributes were recorded for each point specimen and entered into a database. Recorded nominal attributes included information such as cortex, raw material type, color, patination, evidence of heat treatment, breakage, beveling, and reworking. Metrical attributes recorded for each specimen were similar to those measured by Hudler (1997), including variables such as blade and stem dimensions (length, width, thickness, weight), haft length, base depth, base width, and neck width.

Seven projectile points, including both arrow point and dart point types, were recovered from the site (Table 6.2). The projectile point assemblage consists of six arrow point types and a single dart point type (Figure 6.1). Of the seven projectile points identified, six are diagnostic types and are designated as Edwards, Perdiz, Fresno, and Zephyr. The five diagnostic arrow points are all associated with the Late Prehistoric period (ca. 1250 to 350 B.P.) and the single diagnostic dart point is associated with the Late Archaic period (ca. 4000 to 1250 B.P.). Further chronological division can be found within the arrow points with the occurrence of the two Edwards and two Perdiz points, which are both commonly found points for the Austin and Toyah phases, or horizons, of central Texas. Spatially, the seven projectile points were found predominantly in excavation Blocks D and E, with only one Perdiz point found in Block C (see Figure 4.1).

Table 6.2. Chipped Stone Tool Assemblage

Category	Subcategory	Count	Percentage	Total Count	Total Percentage
	Edwards	2	1		
_	Perdiz	2	1	_	
Projectile Point	Fresno	1	1	7	5
_	Zephyr	1	1	_	
_	Indeterminate	1	1	_	
	Notched Biface Tool	1	1		
-	Gahagan Biface	1	1	_	
-	Stage 1	2	1	_	
-	Stage 2	2	1	- - 35 - -	26
Biface -	Stage 3	4	3		
-	Stage 4	0	0		
-	Stage 5	7	5		
-	Indeterminate	18	13		
Scrapers	End and Side-scraper	1	1	1	1
	Edge-modified	53	39		40
Modified Flakes -	Utilized	14	10	67	49
Cores -	Unifacial	1	1		
	Bifacial	5	4		40
	Multidirectional	16	12	- 26	19
	Choppers	4	3	-	
Total		_		136	

Figure 6.1. Edwards arrow points: a) Lot 552-8, b) Lot 668-6; Perdiz arrow points: c) Lot 559-7, d) Lot 579-10; Fresno arrow point: e) Lot 607-6; Indeterminate arrow point: f) Lot 550-69; Zephyr dart point: g) Lot 621-7.

Arrow Points

Six arrow points were recovered from the excavations. These six arrow points include two Edwards points, two Perdiz points, a Fresno point, and one indeterminate arrow point. All three point types are late Prehistoric in age (ca. 1250 to 350 B.P.) (Turner et al. 2011). Both Edwards and Perdiz points have strong cultural associations with two known phases or horizons in Central Texas, the Austin and the Toyah Phase, respectively (see Chapter 3).

EDWARDS

Two Edward points were encountered during the data recovery; one in unit N1001 E1009, Level 7 at an elevation of 98.99 to 98.89 m and one in unit N1004 E1019, Level 12 at an elevation of 98.2 to 98.1 m (see Figure 4.1). Edward points are common in south central Texas and portions of the south coastal plains, representing the earliest and largest arrow points in many areas (Turner et al. 2011:190). They are characterized as having straight to convex lateral edges, prominent shoulders and pointed barbs, and an expanding stem with a prominent recurved divide (Turner et al. 2011:190). Expanding stem points, such as Edwards and Scallorn, are type points associated with the Austin phase (Black 1989). They have been dated in archaeological contexts as early as the tenth century A.D., with a typical range from c.a. A.D. 900 to 1100 (ca. 1050 to 850 B.P.) (Black and McGraw 1985; Gerstle et al. 1978). This is contemporaneous with Scallorn points, but not included by Prewitt (1981, 1985) in the Austin phase toolkit.

Two specimens from the site have sufficient diagnostic attributes for typological assignment as Edwards points (see Figure 6.1; see Table 6.2). Specimen Lot 552-8 is an incomplete point fragment consisting of only the stem and base. The specimen is made from very dark gray (10YR 3/1) fine-grained chert. The break appears to be a snap fracture that may have resulted from use wear. Despite the small portion of the projectile point remaining, multiple Edwards characteristics are identifiable, such as a broad expanding stem and the prominent, deep concavity along the basal margin. The stem base has a maximum width of 18.04 millimeters (mm) and medial stem thickness of 2.76 mm (Appendix C1). These measurements are relative to the full Edwards point (Lot 668-6) discussed in detail below.

Specimen Lot 668-6 is a complete Edwards point made from grayish brown (10YR 5/2) fine-grained chert with slight gray (10YR 6/1) banding. Lot 668-6 has multiple identifiable Edwards characteristics, including a broad expanding stem, prominent and deep concavity along the basal margin, and fine, almost serrated, flaking along the lateral blade margins. The specimen has a maximum stem base width of 17.44 mm and a medial stem thickness of 3.37 mm (Appendix C1).

PERDIZ

Two Perdiz points were encountered during the data recovery; one in unit N1001 E1010, Level 4 at an elevation of 99.29 to 99.19 m and one in unit N1000.5 E1004, Level 3 at an elevation of 99.5 to 99.4 m (see Figure 4.1). Perdiz points are a common projectile point type found throughout most of Texas and are characterized as triangular with well-barbed shoulders and contracting stems (Turner et al. 2011:206). They may also be unifacial or bifacial modified (Suhm and Jelks 1962:283). Several subgroupings have been defined for Perdiz, including the *Whitney* and *Morgan* varieties (Jelks 1962; Suhm and Jelks 1962:24). The latter have shorter, more rounded bases. These points have long been considered diagnostic of the Toyah phase, horizon or other chronological division. They have been found in archaeological contexts that date to as early as ca. 1200 B.P. in Collins's (2004: Figure 3.9a) Central Texas chronology; however, they are more commonly dated from approximately 700/650 B.P. until 200/250 B.P. (Arnn 2012:64–65; Johnson 1994:87; Prewitt 1981:84).

Two projectile points within the assemblage have sufficient diagnostic attributes for typological assignment of Perdiz (see Figure 6.1; see Table 6.2). As commonly noted in the literature, there is quite a bit of variation in the technology and morphology of this type, and this variation is evident in the sample collected from the site (Jelks 1962; Suhm and Jelks 1962:24). Technologically, many are made on blade-flakes using reduction techniques ranging from minimal edge trimming, often unifacial, to complete bifacial working (Turner et al. 2011:206). Morphologically, the collection varies with one specimen having a classic thin and narrow body with fine flaking, while the second specimen exhibits typical Perdiz characteristics but has a broad and short body.

The narrow-bodied flake specimen (Lot 559-7) is incomplete, consisting of only the basal fragment with a portion of the blade (see Figure 6.1). Lot 559-7 is a greenish gray (10G 5/1) fine-grained chert. The break across the medial portion of the blade is a snap fracture and appears to have been caused by use wear due to break type and location. The specimen is only 14.44 mm at its maximum blade width. It exhibits the typical Perdiz style with a distinct contracting stem, sharp pointed barbs, is finely worked, and, in this case, has serrated blade edges (Turner et al. 2011:206). Lot 559-7 has two barbs, one long and sharply pointed and one that is short. The short barb appears to have been partially removed, as is evident from a transverse flake removed from one face of the blade, and it has been bifacially retouched. Although the long barb is twice the length of the short barb, 4 mm verses 2 mm, both notch depths and widths are relatively similar in morphology (Appendix C1).

The broad-bodied specimen (Lot 579-10) is a complete projectile point with only the tip of one barb missing (see Figure 6.1). This specimen was recovered from one level above Feature 4 in the

northeastern-most unit. Lot 579-10 is brown (10YR 5/3) fine-grained chert with mineral impurities evident in the stem. The break is small and the placement is too ambiguous to assess the cause of breakage. The maximum blade width of Lot 579-10 is 20.62 mm, which is significantly larger than the previously defined narrow-bodied Lot 559-7, which is only 14.44 mm. This specimen represents a common variation from the traditional long and narrow Perdiz points, being broader in body but still retaining the typical Perdiz characteristics of a distinct contracting stem, sharp pointed barbs, and finely worked blade edges.

FRESNO

A single Fresno point was encountered in unit N1003 E1018, Level 7 at an elevation of 98.7 to 98.6 m (see Figure 4.1). Feature 2 corresponds to this level in the northeast portion of the unit; unfortunately, the projectile point was not found *in situ*, and, as such, the provenience of the point in relation to the feature cannot be determined. Fresno points are poorly defined, unstemmed triangular points found throughout central and south Texas (Turner et al. 2011: 191). Unstemmed points such as Fresno are problematic, because stemmed projectile point preforms typically go through a similar morphological phase before being completed. One argument for why unstemmed points are common in the central and south Texas regions is the limited occurrence of high-quality material, which could indicate that the unstemmed point is an adaption to the available raw material of the region (Black and Quigg 2018). Fresno points are characterized as having straight to slightly convex or concave lateral margins, triangular, and unstemmed (Turner et al. 2011:191). They are similar to Cameron projectile points, found in far south Texas, but are generally larger. Fresno points have been found in archaeological contexts relating to Late Prehistoric occupations (Mallouf et al. 1977).

The single Fresno point (Lot 607-6) encountered is an incomplete point with a snap break across its upper medial portion, resulting in only the basal margin and an undetermined portion of the blade remaining intact (see Figure 6.1; see Table 6.2; Appendix C1). It is very dark gray (10YR 3/1) fine-grained chert. The breakage has been interpreted as use wear due to the snap break and its location at the distal end of the point. The lateral margins and slightly convex and the basal margin is straight. None of the three available margins appear retouched.

INDETERMINATE

A single Indeterminate arrow point (Lot 550-69) was encountered in unit N1001 E1009, Level 5 at an elevation of 99.19 to 99.09 m (see Figure 4.1). The specimen consists of a blade fragment with two intact barbs. It is grayish brown (10YR 5/2) in color and made from fine-grained chert (see Figure 6.1; see Table 6.2; Appendix C1). Both breaks at the distal tip and the stem appear to be snap breaks from use wear. Lot 550-69 is thin and finely worked with oblique subparallel flaking on one blade face. Notches appear to be on the side and one barb is long and sharply pointed, while the other is short and slightly less pointed. Due to the fragmented condition of specimen Lot 550-69 it is classified as Indeterminate in type and cultural association.

Dart Point

A single dart point was recovered from the excavations. The dart point has been identified as a Zephyr projectile point. Zephyr points are typically dated from 200 to 700 A.D., which is associated with the Late Archaic period (ca. 4000 to 1250 B.P.) in Central Texas (Turner et al. 2011:174).

ZEPHYR

A single dart point was encountered in unit N1003 E1019, Level 9 at an elevation of 98.5 to 98.4 m (see Figure 4.1). It has been identified as a Zephyr dart point, which are characterized as being small to medium lanceolate or triangular points (see Figure 6.1; see Table 6.2). Zephyr's typically have a gently expanding or parallel-sided stems with the edges exhibiting grinding, and concave basal margins with rounded edges (Turner et al. 2011:174). Previous Zephyr points, along with Mahomet points, were considered a subcategory of Darl types (Prewitt 1981). Zephyr points have since become their own classification based on their occurrence on numerous sites in north central Texas, including Stephen and Comanche Counties, Horn Shelter 2, and Rogers Springs (Turner at al. 2011:174).

The Zephyr dart point encountered during investigations is complete and created from brown (10YR 5/3) fine-grained chert that is speckled with slight gray (10YR 6/1) impurities (Appendix C1). The specimen exhibits many of the typical Zephyr characteristics, such as being a medium to small triangular point with gently expanding stem and slightly concave to straight basal margin. The stem is broad and the shoulders or barbs are weak and rounded. Fine flaking is noticeable along both lateral margins.

Bifaces

Simply defined, bifaces are characterized by sequential flake removal that has occurred on both surfaces of a flake or core to form a single edge. Bifacial tools include a variety of types, distinct in terms of function and/or morphology. Odell (2003:65) notes that these include "projectile points, drills, axes, adzes, and generic oval, rectangular, or triangular forms called simply bifaces". Of the total 35 bifaces encountered during the data recovery excavation, 33 are typed simply as bifaces; the remaining two include a notched biface tool and a fragmented Gahagan biface (see Table 6.2; Figure 6.2). To further define the 33 bifaces that do not have a subcategory, SWCA employed standards outlined by Andrefsky (1998) and Callahan (1979) to refine each specimen based on the level of reduction. In the case of bifaces, five stages of reduction are recognized, including: Stage 1: blank preparation, Stage 2: initial edging, Stage 3: biface thinning, Stage 4: preform, and Stage 5: finished biface. This is discussed further in the Biface Reduction Stages section below.

The 35 recovered bifaces exhibit a wide range of retouch or completion (see Figure 6.2). Only nine of the bifaces recovered are complete specimens (Appendix C2). The remainder of the specimens fall within various categories of condition with the most prominent conditions being complete (n=9), distal-medial fragments (n=9), and indeterminate fragments (n=8). Of the 26 broken or fragmented specimens, four exhibit breakage from use wear, 19 show breakage from the manufacturing process, and the three have indeterminate breakage patterns. The material most commonly utilized consists of fine-grained chert with only one specimen made from coarse-grained chert. The most prominent chert color is gray (10YR 5/1) or grayish brown (10YR 5/2) (n=11) with variations ranging from brown (10YR 5/3) to very dark gray (10YR 3/1) to pale red (2.5YR 6/2). Due to the number of broken or incomplete bifaces, many of the nominal and metrical attributes could not be discerned and were recorded in the database as Indeterminate (Appendix C2).

Figure 6.2. Representative sample of biface assemblage. Stage 5: a) Lot 403-9, b) Lot 620-1, c) Lot 661-7; Stage 1: d) Lot 341-1; Stage 2: e) Lot 360-1; Stage 3: f) Lot 404-1.

Biface Reduction Stages

Lithic bifacial reduction has consistently been viewed as a stage or step-like production process along a trajectory, from raw material to finished tool (Callahan 1974; Patterson 1977:60; Whittaker 1994). As a biface is reduced, it goes through several sequential stages or steps differentiated from one another by the manufacturing implement employed, the size and thickness of the biface, and its form. The sequence and nature of these stages or steps differ, depending on numerous variables, including the desired end product of the reduction process, the form and quality of the parent raw material, and the style or technique in which flint knapping is performed. Previously completed tools may be reintroduced into the production trajectory and be repaired, rejuvenated, or recycled into a different form.

Table 6.3 summarizes reduction stages based on Callahan's (1979) weight/thickness ratio index for biface reduction stage. Based on the stages defined by Callahan (1979), two bifaces are classified as Stage 1, two bifaces are Stage 2, four bifaces are Stage 3, and seven bifaces are Stage 5. The remaining 20 bifaces, including the two typed bifaces discussed below, were unable to be classified by reduction stage due to being fragmentary specimens (Appendix C2).

Table 6.3. Biface Reduction Stages

Biface Stage	Weight/Thickness Ratio	Description	
Stage 1	None	Blank stage: procurement of material	
Stage 2	2.00± to 3.00±	Edged biface: initial edge work along circumference	
Stage 3	3.00- to 4.00-	Primary thinning: most or all of cortex removed and thinning flakes to center of tool	
Stage 4	4.00- to 5.00	Secondary thinning: transverse flake removal and tool shaping	
Stage 5	4.00 to 6.00+	Shaping: final shaping and fine edge work	

Source: Callahan (1979) and Andrefsky (1998)

Typed Bifaces

Specimen Lot 316-7 is a thin, light yellowish brown (10YR 6/4) biface tool made from fine-grained chert with a single side notch (Figure 6.3; see Table 6.2). Lot 316-7 was recovered from N995 E1012, Level 3 at an elevation of 99.5 to 99.4 m (see Figure 4.1). It appears to be a broken fragment of a biface that was reworked into a notched tool. There is also evidence of intentional heat treatment, due to a reddened discoloration, particularly along the margins. Lot 316-7 is only a fragment and, as such, the tool function and possible cultural affiliation cannot be determined.

Figure 6.3. Side-notched biface: a) Lot 316-7 and Gahagan biface: b) Lot 552-9.

Lot 552-70 is a medial-basal fragment of a gray (10YR 5/1) fine-grained chert Gahagan biface (see Figure 6.3; see Table 6.2). It was recovered from N1001 E1009, Level 7 at an elevation of 98.99 to 98.98 m (see Figure 4.1). Gahagan bifaces are classified as long, triangular bifaces with elongated parallel sides and straight or moderately concave bases that have been thinned (Turner et al. 2011:230). They are associated with the Late Prehistoric and are found predominately in central or eastern Texas. Although not considered type artifacts, current research is in general agreement that Gahagan bifaces are typically associated with Caddoan sites such as the George C. Davis site (Turner et al. 2011:230).

Scrapers

Scrapers are defined as "unifacially flaked artifacts ... and unretouched flakes characterized by relatively acute working edges, often exhibiting unifacially distributed microflaking and more commonly edge rounding on either distal and/or lateral working edges" (Tomka et al. 1999:30). Scrapers are typically subdivided based on the location of retouch and/or use wear; categories include end scrapers, side scrapers, and end/side scrapers (Tomka et al. 1999:32). End scrapers are also a common component of Toyah assemblages. Johnson (1994) notes that during the Toyah period, end scrapers were heavily relied on to thin buffalo hides. They were often made from medium-sized flakes, and the tip opposite of the remnant striking platform was chipped into a scraping bit (Johnson 1994). In this case, the end scrapers, particularly those fashioned from blade flakes, are considered formal tools based on such elements as intentional tool shaping and extensive, continuous flaking along the use-areas.

A single end and side scraper (Lot 390-6) was recovered from N996 E1013, Level 6 at an elevation of 99.1 to 99.0 m (see Figure 4.1). The specimen was recovered one level above Feature 3, which is discussed later in this chapter. Specimen Lot 390-6 is in complete condition and derived from a reddish gray to reddish brown (5YR 5/2 to 5YR 4/3) fine grained chert (Figure 6.4; see Table 6.2). The reddish color appears to be the result of intentional heat treatment. Retouching along the distal and left lateral margin is continuously distributed and found unifacially on the dorsal face (Appendix C3). Possible breakage from post-depositional trauma was noted along the right lateral margin near the distal end. The specimen represents a typical Toyah style scraper.

Figure 6.4. End and Side Scraper: Lot 390-6.

Modified Flakes

Modified flake tools, also commonly referred to as edge-modified flakes, are flakes with intentionally retouched edges that lack standard formal and locational characteristics (Odell 2003). Also included in this category are flakes with edges that have been modified as a result of use as tools (also called utilized flakes). Both forms are considered informal tools, having been minimally modified through use or

minimally trimmed when manufactured. Typically, flaking scars do not extend into the interior of the flake surface and are confined to less than 10 mm of the lateral margins. Modification may be unifacial or bifacial, and these tools may have served multiple purposes as expedient knives, scrapers, or gravers. Utilized flakes can be the most difficult to identify accurately, since edge damage through use is created through intensity, duration, and type of use. Edge damage can also occur through post-depositional processes, such as trampling or crushing, mimicking use wear.

SWCA collected 67 modified flakes during the data recovery excavations (Figure 6.5; see Table 6.2). As the largest tool class, an attempt was made to further define the broad classification of modified flake into two sub-groups: edge-modified flakes and utilized flakes. For the purposes of this analysis the term *edge-modified* was used to distinguish flakes that exhibited flake removal and intentional retouching of the edges. Of the total modified flake assemblage, 53 were designated as edge-modified, and of these 53 only 18 were concluded to be culturally affiliated (Appendix C4). The remaining 35 edge-modified flakes were not complete enough or were lacking in other culturally defining traits (e.g., location and distribution of retouch, heat treatment, and breakage types). The classification of *utilized* flakes was used to distinguish flakes that exhibit modification from use or very fine edge modification that cannot be confirmed as culturally intentional. Of the total modified flake assemblage, only 14 were designated as utilized (Appendix C4).

Figure 6.5. Representative sample of edge-modified and utilized flake assemblage. Edge modified flakes: a) Lot 519-10, b) Lot 590-7, c) Lot 638-5; Utilized flakes: d) Lot 320-1, e) Lot 506-34, f) Lot 619-6.

Cores

A core is a mass of lithic material (also called an "objective piece") from which another piece is detached (Andrefsky 1998). Although they can be utilized as tools, they are considered part of the lithic debitage. They exhibit negative flake scars created by fracturing, a reductive process that involves the removal of flakes from the core by striking it with a percussor, such as a billet or hammer stone. Flakes may also be

detached through indirect percussion using a punch or through pressure. The primary purpose of cores is a source of flakes, which may be utilized or further reduced into stone tools. In some instances, a sharp margin of the core itself may be utilized as a stone tool. The butted or backed bifaces probably functioned in this role, as did the early manufacturing stage bifaces.

Similar to bifaces, cores cannot always be typed by function (e.g., expedient tools for use in cutting or chopping). To further define the core category, SWCA also used classification standards outlined by Andresky (1998) and Callhan (1979) to define each artifact based on a level of reduction. The subdivisions utilized for cores include multidirectional, bidirectional, bifacial, unifacial, bipolar, and indeterminate. Multidirectional cores have striking platforms on different axis, and flakes are removed in numerous directions. Bidirectional cores have opposing or perpendicular platform surfaces, with flakes detached in two different directions. Bifacial cores have flakes detached along both faces of an edge, with the edge serving as the platform. This category may have been used as tools more so than the other core types. Unifacial cores have flakes detached along both faces of an edge, with the edge serving as the platform. Bipolar cores are held against an anvil at the distal end as a flake is detached from the opposing ends. This can split the core longitudinally. The resulting pieces may then be used for further reduction, using the new ventral surface as a platform; in addition, small pebbles may also be split this way.

SWCA collected 22 cores from the data recovery excavations (Figure 6.6; see Table 6.2). The assemblage contained 19 complete cores, including 16 made from fine-grained chert and six from coarse-grained chert. Core sizes ranged from 18 grams to 240 grams. Of the 22 cores, 16 were categorized as multidirectional, five as bifacial, and a single core was designated as unifacial (Appendix C5).

Figure 6.6. Representative sample of core assemblage. Unifacial: a) Lot 650-5; Bifacial: b) Lot 500-5; Multidirectional: c) Lot 632-8.

Core Tools

As briefly mentioned above, cores can at times be utilized as tools; usually, as expedient cutting or chopping tools. Cores by definition are objective pieces that have undergone flake removal (Andrefsky 1998). If the material removed constitutes the desired working tool, then the core can simply be defined as a core; however, if the flake removal produced a working edge on the core that was then either used or intended for use, then the core can now be considered a tool (Andrefsky 1998). Core tools must have intentional modification (i.e., use wear or edge retouching) but cannot be typed as a flake tool or biface tool (Andrefsky 1998).

Four such core tools were identified during the data recovery excavations (Figure 6.7; see Table 6.2). These core tools are classified as choppers, which are expedient stone tools with a transverse edge utilized for cutting or chopping. All four specimens are nodule cobbles that exhibit 50 percent or more cortex. Large flakes were removed to create a sharp edge, along which lab analysis identified evidence of crushing and striations (Appendix C6). Three of the choppers were coarse-grained chert and the fourth was fine-grained chert.

Figure 6.7. Representative sample of core tool-chopper assemblage: a) Lot 427-1, b) Lot 624-1.

Lithic Debitage

SWCA recovered 8,716 pieces of lithic debitage from the data recovery efforts including 6,029 lithic flakes (69 percent) and 2,687 pieces of lithic shatter (31 percent) (Table 6.4; Appendix C7). The raw material consists of mostly fine-grained chert made available through local sources. The 6,029 lithic flakes collected during the data recovery were further defined by completion; 1,166 (19 percent) were complete flakes, 1,516 (25 percent) were proximal flakes, and 3,347 (56 percent) were broken or incomplete flakes. The remaining 2,687 pieces of debitage consist of lithic shatter categorized into two types: flaking shatter and thermal shatter. Only 89 pieces (3 percent) of the lithic shatter consisted of flaking shatter; the remaining 2,598 specimens (97 percent) were defined as thermal shatter.

Table 6.4. Lithic Debitage Assemblage

Category	Subcategory	Count	Percentage	Total Count	Total Percentage	
	Complete	1166	19			
Lithic Flakes	Proximal	1516	25	6,029	69	
	Broken	3347	56			
Lithia Chattan	Flaking	89	3	0.007	24	
Lithic Shatter	Thermal	2598	97	2,687	31	
Total				8,716		

Non-Chipped Stone Artifacts

Non-chipped stone tools, like chipped stone tools, have been altered and formed intentionally for use (Turner et al. 2011:251). They may function in food preparation (i.e., ground stones, manos, and metates), tool sharpening or maintenance (i.e., abraders or grooved stones), or as tools themselves (i.e., hammerstones and celts). Non-chipped stone tool assemblages can consist of multiple categories, determined by inferred function, as well as morphological and material attributes. For the purpose of this study, three main categories were used to classify the assemblage: ground stone, battered stone, or manuport. The assemblage was then subcategorized into various function specific types including mano, pestle, metate, grinding stone, notched stone, grooved stone, hammerstone, and others (Appendix C8). Five non-chipped stone artifacts were recovered during the data recovery investigations (Table 6.5).

Table 6.5. Non-Chipped Stone Artifact Assemblage

Category	Subcategory	Count	Total
	Grooved Stone	1	
Ground stone	Mano	1	3
	Indeterminate	1	
Manuport	Manuport	2	2
Total		5	5

Ground stone

Three ground stone artifacts were identified during the data recovery excavation (Figure 6.8; see Table 6.5). The three specimens were further defined as a grooved stone, a mano, and an indeterminate fragment of stone. Specimen Lot 416-1 is a grooved stone recovered from N0996 E1014, Level 16 at an elevation of 98.05 m (see Figure 4.1). It is an incomplete specimen with a single narrow trough along one face of the stone (Appendix C8). Due to the specimen being fragmented, it is difficult to discern the function. Grooved stones with similar morphology have been identified as abraders, which are stones utilized to sharpen, smooth, or shape bone and stone tools (Turner et al. 2011:252).

Specimen Lot 492-6 was recovered from unit N1000 E1009, Level 7 between an elevation of 99.09 to 98.99 m (see Figure 4.1). Lot 492-6 has been classified as a mano. Manos are small- to medium-sized oval to rounded cobbles that exhibit smoothing and pecking (Tomka et al. 1999:32). The smoothing is created as a result of grinding activities, while the pecking is used to rejuvenate use surfaces, making them rougher. The use of milling stones/manos is seen as a hallmark of an Archaic lifestyle (Collins 2004). Lot 492-6 was found to exhibit to smooth surfaces with intentional modification only occurring on

one face (Appendix C8). Residue was noted on the modified surface that appears organic. No further analysis was completed on the residue.

The third ground stone recovered from the data recover excavations were encountered in unit N1001 E1009, Level 10 between an elevation of 98.69 to 98.59 m (see Figure 4.1). Lot 555-5 is a very small medial limestone fragment (see Table 6.5). The medial fragment does consist of one smooth face with evidence of possible organic residue. Lot 555-5 is very dark gray, and the breakage is sharp and irregular, possibly indicating the stone was heat-treated (Appendix C8).

Manuport

Manuports are stones that have been brought into an archaeological site from somewhere else. This may be by natural or cultural processes. Manuports are not locally sourced and therefore stand apart from other rocks and stones in a particular cultural context. Two manuports were recovered from the data recovery excavations in units N1000 E1003 and N1000.5 and E 1005.5 at elevations of 99.65 m and 99.5 to 99.4 m, respectively (see Figure 4.1). Both manuports were recovered from Block C, which is associated with Feature 4. Neither manuport was found in association with the feature. Lot 461-1 and 518-10 are both rounded limestone rocks with no evidence of cultural modification (Figure 6.8; see Table 6.5).

Figure 6.8. Representative sample of non-chipped tool assemblage. Mano: a) Lot 492-6; Grooved Stone: b) Lot 416-1; Manuport: c) Lot 461-1.

Shell Ornament

One possible shell bead, of unknown species, was recovered from N0995 E1012, Level 7 between 99.1 and 99.0 m (see Figure 4.1). The shell (Lot 321-28) is round and measures approximately 9.15 mm in diameter and is 0.42 mm thick (Figure 6.9). The inner surface is a glossy, very pale brown (10YR 8/2 to 10YR 8/3) while the intact periostracum is white (10YR 8/1) in color. A 2.24-mm-diameter hole is present in the center of the specimen, possibly from intentional puncture or natural causes. The shell is

thin and drastically rounded, similar to the morphology of a rabdotus shell (*Bulimulidae* family), which was common across the site, but due to the small size of the specimen and lack of diagnostic features, it is problematic to confirm.

Figure 6.9. Shell bead: Lot 321-28.

Prehistoric Ceramic

Eight prehistoric ceramic sherds was recovered from site 41GU177 during the data recovery excavations (Figure 6.10). The eight sherds were all collected from Block C, Unit N1000 E1003; six were recovered in Level 3 between 99.6 to 99.5 m, one within Level 4 between 99.5 to 99.4 m, and one within Level 5 between 99.4 and 99.3 m. Two of the sherds recovered from Level 3 also refit. Analysis of the sherds included visual inspection and microscopic examination; however, no detailed petrochemical analysis was conducted.

All of the recovered ceramics are a quarter-size (24.3 mm) or smaller undecorated body sherds that appear to belong to the same vessel. However, the size and function of the vessel is indeterminate. No exotic wares were identified. The thickness of the sherds ranges from 8.39 to 9.58 mm. The sherds exhibit a reddish yellow (7.5YR 6/6) slip applied to the exterior surface and a strong brown (7.5YR 4/6) slip applied to the interior surface. The exterior surfaces appear smoothed and burnished, whereas the interior surfaces appear striated. The paste is a very dark grayish brown (10YR 3/2) to black (7.5YR 2.5/1) color and is the same for all of the sherds. All of the sherds contain bone and coarse quartz sand temper with some limestone inclusions. For the most part, the bone temper consists of small white bone fragments within the paste, as well as on both the exterior and interior surfaces, although there are a few larger angular bone fragments present (Figure 6.11). The sherds appear to have been fired in a reducing (i.e., without oxygen) atmosphere at relatively low temperatures. The ceramic sherds appear technologically similar to the Leon Plain pottery tradition which dates from A.D. 1300 to 1700 and is associated with the Late Prehistoric Toyah Phase (Boyd 2012; Perttula et al. 1995; Texas Beyond History 2018). A Perdiz point (Lot 579-10) was recovered within the same elevation in a nearby unit (i.e., N1001.5 E1004), which is considered to be contemporaneous (Turner et al. 2011).

Figure 6.10. Prehistoric ceramics: a–f) Lot 462-22, g) Lot 463-4, and h) Lot 464-5.

Figure 6.11. Microscopic image of prehistoric ceramic sherd temper with thermally altered angular bone fragment from Unit N1000 E1003, Level 3 (Lot 462-22).

Historic/Modern Materials

SWCA recovered 10 historic or modern artifacts, most of which are mid- to late-twentieth-century objects (Appendix B). These items include a colorless glass fragment, a bullet casing, three miscellaneous metal fragments, four sherds of undiagnostic whiteware, and a single Mayer China (1923–1968) ceramic fragment (Figure 6.12). The assemblage was recovered from across the site in the upper levels of the excavation units (99.7–99.1 m). Excavation Blocks C and D recovered a majority of the assemblage, approximately 70 percent.

Figure 6.12. Historic Assemblage: Non-diagnostic whiteware sherds: a) Lot 367-5, b) 488-4, c) 497-3, and d) 557-2; Colorless glass: e) Lot 673-5; Mayer China: f) Lot 578-6; Bullet casing: g) Lot 687-2; and Miscellaneous metal fragments: h) Lot 471-13, and i) Lot 540-6.

All four whiteware sherds (Lots 367-5, 488-4, 497-3, and 557-2) are medial fragments and cannot be identified (see Figure 6.12). The colorless glass fragment (Lot 673-5) is irregular in shape with no diagnostic features; it is thin (3 mm) and has patina on both faces (see Figure 6.12). The metal bullet casing (Lot 687-2) is a .22 caliber short cartridge casing (see Figure 6.12). These types of cartridges were introduced in 1857. Without the bullet, no further identification could be completed. The three miscellaneous metal fragments (Lots 471-13, 534-7, and 540-6) are small, together only weighing 1.67 grams (Appendix B). The metal fragments are heavily rusted and no identification of their original form or function can be discerned (see Figure 6.12). One piece of miscellaneous metal (Lot 534-7) was encountered in unit N1001 E1003, Level 3 (99.4–99.3 m), which encompasses the western edge and top layer of Feature 4. Feature 4 is discussed in detail later in this chapter.

The single diagnostic ceramic (Lot 578-6) was recovered from unit N1001.5 E1004, Level 2 at an elevation of 99.6 to 99.5 m (see Figure 4.2). Lot 578-6 is an earthenware rim fragment with a clear glaze and monochromatic green plant-like design (see Figure 6.12), and a very thin green annular ring along the rim. The sherd is thin, 4 mm at its thickest point, and very slightly curved. Due to the fragmented nature of the specimen, a specific pattern and manufacturing date could not be obtained. Analysis identified the

most probable manufacturer to be Mayer China (1923–1968), with the closest matching pattern to be the Princess pattern (Snedden 2018).

Burned Clay

SWCA recovered 41 pieces of burned clay during excavations conducted at the Snakeskin Bluff site (41GU177). All of the pieces of burned clay exhibited amorphous shapes, with sizes ranging from less than 3 cm (n=31) to greater than 5 cm (n=1), with several in between (n=9). A representative sampling of the pieces of burned clay is depicted in Figure 6.13. Most of the burned clay was recovered from in and around Feature 3 (discussed below), a single or limited-use hot rock cooking feature radiocarbon dated to 1179–985 cal B.P. (Austin Phase component).

Figure 6.13. Representative sample of pieces of burned clay. Lot 405-9.

In Feature 3 (unit N996 E1013), the pieces of burned clay were associated with lithic debitage, charcoal flecks, burned bone, snail and mussel shell fragments, and abundant fire-cracked rock (FCR). To the west, in unit N996 E1012, pieces of burned clay were associated with abundant burned bone fragments and charcoal flecking. To the east, in unit N996 E1014, pieces of burned clay were associated with abundant lithic debitage, snail shells, and FCR.

All of the pieces of burned clay contained areas of fire darkening. Fire darkening suggests that these pieces of burned clay continued to be heated or exposed to fire after they were initially baked (Simms et al. 2013:14). On most pieces, this darkening was subtle; however, one piece of burned clay exhibited more extreme darkening. This piece of burned clay was bisected and coronal heat alterations were observed (Figure 6.14). This color gradation, darker at the core and lighter at the surface, reflects differential heating from the core to the surface and suggests that the clay nodule was in its present shape prior to heating (Turpin 2011:287).

Given their association with a hot rock cooking feature, the pieces of burned clay were likely used as heating elements for earth ovens. Pieces of burned clay have been associated with earth ovens archaeologically at sites across North and Central America (Hays et al. 2016; Simms et al. 2013). In experimental recreations, amorphous clay balls have been found to retain heat longer than fire embers and serve to replenish stored heat through conduction (Hunter 1975:67; Hudgins 1993:51). Alternatively, the

pieces of burned clay could result from natural causes, such as burning brush or tree roots in clay or sandy soils (Hudgins 1993). At the Loeve-Fox site (41WM230) Prewitt (1982) identified a concentration of burned clay that was interpreted as a burned tree root. The pieces of burned clay depicted in the site report appear similar to those recovered from this site (Prewitt 1982:Figure 14a).

At this time, the function of the burned clay pieces remains unclear, although their small size suggests they may be a result of natural causes. Recent studies have shown that microbotanical residues from plants and other materials cooked in earth ovens become embedded in cook stones used as heating elements within the oven (Thoms et al. 2015). Additional research examining these pieces of burned clay for microbotanical residues could confirm whether they were used for cooking or simply a byproduct of brush burning.

Figure 6.14. Piece of burned clay with coronal heat alteration. Lot 538-6.

FAUNAL REMAINS

Bone

SWCA recovered and analyzed 650 vertebrate faunal remains from the excavations (Appendix D). An additional 16 specimens were recovered from the flotation heavy fraction; however, these specimens were not analyzed due to their small size. Each element within the assemblage was thoroughly analyzed by Chris Shelton, M.A., both macroscopically, and with the aid of a 10x microscope combined with an oblique angle light source. SWCA attempted to identify each specimen within the assemblage to skeletal element, as well as to the lowest level of taxonomic classification.

As a result of the high degree of fragmentation, poor preservation environment, and other taphonomic factors, few of the fragments could be attributed to specific elements and/or specific taxa (Appendix D). From the vertebrate assemblage, four specimens could be attributed to biological class Aves, 155 specimens could be attributed to class Mammalia, and 34 specimens of the biological order Testudines (turtle/tortoise). Only 11 specimens could be accurately attributed to the species level, all of which are *Odocoileus virginianus* (white-tailed deer). A total of 14 specimens could be attributed to large mammals (defined as weighing more than 250 pounds). The large mammal specimens are suspected to be *Bison*; however, species identification of these elements could not be made with certainty.

The most prevalent taphonomic processes identified during the analysis are general weathering, geogenic acid etching, and burning (Appendix D). Some form of weathering and/or geogenic acid etching is present on every specimen within the assemblage, and has distorted or obliterated most, if not all, of the cortical surface of the vast majority of the specimens. The poor preservation environment, and high degree of taphonomic processes may have biased the assemblage towards large cortical fragments and larger species. This is evidenced by the complete absence of microfaunal remains and the fact that only 5.6 percent of the assemblage consist of trabecular bone fragments.

Anthropogenic taphonomy is biased against in the assemblage due to the poor preservation of cortical surfaces; however, a total of three specimens were found to exhibit butchering and processing taphonomy (Figure 6.15; Appendix D). One deer metapodial fragment (Lot 576-1) had a distinct percussion notch with a spiral fracture indicative of marrow processing. This specimen also exhibited well-defined pot polish. One other long bone fragment (Lot 323-1) exhibited a percussion notch. This fragment was attributed to a deer-size mammal but could not be definitively attributed to a specific species. Finally, one small fragment (Lot 539-1) exhibited a total of three cut-marks. Non-anthropogenic surface modifications are also biased against in the assemblage, with only a single specimen exhibiting a distinct carnivore tooth pit, and four specimens exhibiting evidence of rodent gnawing.

Figure 6.15. Bone exhibiting butchering and processing taphonomy; Percussion notch: a) Lot 323-1; cutmarks: b) Lot 539-1; percussion notch and spiral fracture: c) Lot 576-1.

Although anthropogenic surface modification is biased against in the assemblage, anthropogenic processes can be inferred through the high degree of fragmentation and burning. A total of 98.3 percent of the assemblage consists of bone fragments. Of the fracture margins that can be observed, a high degree showed evidence of green (para-mortem) fracturing. The prevalence of fragmentation, as well as green fracturing, is suggestive of butchering and/or marrow processing. Evidence of burning is present on 13.1 percent of the assemblage and ranges from completely calcined to slight discoloration. The heat-related discoloration can indicate roasting and cooking, while the calcined and near-calcined elements can indicate the discard of specimens into a campfire. Although fracturing and burning can occur naturally, human processes can be more securely inferred through the presence and proximity of artifacts and thermal features within the site.

Shell

Other faunal remains encountered during excavations included 131 mussel shell umbos and numerous observed fragments (Figure 6.16). The mussel shells were collected from a number of contexts, and SWCA Biologist Stephen Van Kampen-Lewis conducted a brief analysis of the shell assemblage, focusing on identifying the various species of mussel shell commonly found in the Guadalupe River. A total of eight species were identified from 46 mussel shell within the 41GU177 assemblage; the remaining shells were too fragmented for a definitive identification (Table 6.6).

Figure 6.16. Representative sample of mussel shell: a) Lot 589-1 (two on left) and b) Lot 605-6 (two on right).

Table 6.6. Mussel Shell Species Identified within the 41GU177 Assemblage

Latin Name	Common Name	Notes	Identified Shells
Cyclonaias necki	Guadalupe orb		33
Cyrtonaias tampicoensis	Tampico pearlymussel		3
Fusconaia mitchelli	False spike		2
Megalonaias nervosa	Washboard	P-tooth angled less steeply, W-shaped sculpturing	1
Toxolasma texasiense	Texas liliput	P-teeth small, sculptured beak	1
Tritogonia verrucosa	Pistolgrip	Lower Guad	2
Uniomerus declivis	Tapered pondhorn		3
Uniomerus tetralasmus	Pondhorn	Lateral teeth more horizontal	1

Texas' freshwater mussels exhibit phenotypic plasticity depending on inhabited drainage and/or specific environmental conditions that can change the shell shape (e.g., elongate forms occurring in swiftwater and rounded forms occurring in slackwater). Some species are also sexually dimorphic, further complicating identification. As such, identifying individuals is often difficult, even when assessed by experts (Hess et al. 2018). However, knowing a mussel's home drainage greatly reduces the potential list of species and increases the potential for correct identification. SWCA assumed all shells are from the Guadalupe River and the species list was assembled using the North American Freshwater Mussel Identification Guide (application undergoing Beta testing from Science Apps) and Howells (2014).

Overall, the shells and shell fragments represent a mix of currently common and uncommon species known to inhabit the Guadalupe River drainage. Most identified species are from areas with stable substrate in moving water such as creeks or rivers. However, the pondhorn (*Uniomerus tetralasmus*) and paper pondshell (*Utterbackia imbecillis*) are usually found in slow-moving backwaters or impoundments with soft, muddy substrate. Interestingly, the most commonly found species is the Guadalupe orb (*Cyclonaias necki*), which was taxonomically split by Burlakova et al. (2018) from the Texas pimpleback (*Cyclonaias petrina*). The Texas pimpleback is rare enough to be considered a candidate species for protection under the Endangered Species Act and the Guadalupe orb may also qualify for such protection. The Guadalupe orb shell color can be a vibrant orange or yellow (Figure 6.17). In addition to a food source, these shells might have been selected for use as pendants or other adornments due to their bright color.

Vertical mussel migration within the substrate during stressful conditions is well documented throughout the United States, with many species burying themselves deeper during winter (Amyot and Downing 1997; Schwalb and Pusch 2007; Block et al. 2013). The Texas Parks and Wildlife Department (2018) prefers mussel relocations from April through November or when water temperatures are above 60°F, based on relocation protocol from Carlson et al. (2008) and Mackie et al (2008). However, very little research has been conducted on seasonal mussel assemblage movements in Central Texas. As such, it is unclear if any mussel species burrow deeper during winter than during other seasons. It is also unclear if stream dwelling species are physically capable of burrowing deeper, considering the generally rocky nature of Central Texas river substrate. The lack of clarity regarding seasonal vertical migration specifically in Central Texas makes it difficult to determine mussel availability to human gatherers throughout the year.

Figure 6.17. Modern Guadalupe orb shell from Palmetto State Park in Gonzales County, Texas. Note the vibrant orange color of the shell.

SPECIAL SAMPLES

The data recovery excavations at 41GU177 recovered 305 special samples from appropriate contexts across the site. These included materials for radiometric dating, matrix samples for flotation, flora and

wood identification samples, and geoarchaeological samples, which included bulk matrix and MS samples.

SWCA recovered 11 charcoal samples from various contexts throughout the site, with the majority procured directly from feature contexts. Of these, five samples were submitted for radiocarbon dating, including three from feature contexts. These results are provided in Appendix E . One additional sample was initially submitted for radiocarbon dating, but ended up being too small of a sample to be processed.

The five feature matrix samples were subjected to flotation. The heavy fraction of the flotation samples was sorted for debitage, bone, mussel shell, and burned rock. The light fraction of the flotation samples, as well as selected flora and wood identification samples recovered from the excavations, were subjected to macrobotanical analysis. The results of the macrobotanical analysis from each of the features, including the flora and wood identification samples, are discussed in the feature section below and are also presented in Appendix F.

SWCA collected 51 bulk matrix samples for particle size analysis and 237 geoarchaeological samples were collected for MS analysis. The bulk matrix and geoarchaeological samples were collected from feature contexts, when feasible, and from one profile in each excavation block. As mentioned in Chapter 5, particle size and texture analysis was conducted on samples from the southern and northern areas of the excavation area (Blocks A and E) and MS analysis was conducted on six vertical sample columns (Blocks A and C–E), and one horizontal column centered on Feature 4 (Block C). In addition, five feature matrix samples were collected from the site, with one sample from Feature 2 and two samples each from Features 3 and 4.

FEATURES

Three cultural features (Features 2–4) were documented over the course of the data recovery investigation across the site; all three features were documented within the Austin Phase component and yielded dates that are consistent with the prevailing chronological placement of the Austin Phase. Flotation samples were collected from each feature and the remaining feature matrix (if present) was screened out in the field and artifacts collected and bagged. It should be noted that an additional feature (Feature 1) was documented during the testing phase of the project and was reported on in the 41GU177 testing interim report in Appendix A (Rodriguez et al. 2017).

Feature 2

Feature 2, the smallest observed on the site, was a discrete, irregularly shaped, burned rock concentration associated with the end of the Austin Phase (Table 6.7). It was initially encountered in the southeast corner of excavation unit N1004 E1018 between elevations 99.8 and 99.7 m. Three additional 1×1 -m units (N1003 E1018, N1003 E1019, and N1004 E1019) were opened to explore the features extent. The burned rock concentration encompassed portions of the four excavation units centered just southwest of the N1004 and E1019 grid intersection from an elevation of 99.77 to 98.50 m (Figure 6.18). Feature 2 measured 53 cm north/south by 30 cm in size once fully exposed. Bioturbation, namely from roots, was noted within the feature.

The feature consisted of thermally altered limestone (n=11) of various shapes and sizes (see Table 6.7). Most of the altered limestone was 5 to 10 cm in diameter (n=7). Three of the limestone rocks exhibited pitting on their surfaces. One large (15 cm diameter) limestone cobble with multiple fractures was located at the center of the feature. Five additional rocks were located at the center of the feature with three observed overlapping each other beneath the large central cobble (Figure 6.19). The remaining five burned rocks were encountered scattered to the east in unit N1003 E1019.

Table 6.7. Feature 2

Туре	Diffuse burned rock cluster	
Geomorphic Stratum	III and IV	
Cultural Component	Austin Phase/ Toyah Transition	
Excavation Block	E	
Units	N1003-1004 E1018-1019	
Center	N1003.94 E1018.90	
Top Elev. (m)	98.77	
Bottom Elev. (m)	98.50	
Origination (m) Unknown		
Dimensions (cm)	53 × 30	
Bulk/Flotation Samples	F-2 and F-3	
Special Samples	None	
Geoarch Samples	S-1 through S-12: Magnetic Susceptibility samples	
C-14 Sample	Charred Vetch (<i>Vicia ludoviciana</i>) from flotation sample (Lot 672-1)	
Radiocarbon Age (Conventional B.P.)	Lot 672-1: 670 ± 30 (Beta 492582)	
Associated Diagnostic Artifacts (Lot No.)	Fresno Point (Lot 607-6)	

Burned Rock Characteristics			
Burned Rock Size (cm)	Count	Weight (kg)	
0–5	3	0.2	
5–10	7	1	
10–15	1	1.8	
15+	-	-	
Total	11	3	

Figure 6.18. Feature 2 plan view.

Figure 6.19. Feature 2, northwest profile showing overlapping burned rock, facing south.

Once the feature was exposed in planview, it was bisected, and SWCA collected two gallon-size bags of matrix for flotation and macrobotanical analysis. The remaining matrix was screened in the field; however, no cultural materials were recovered. Additionally, 12 vertical MS samples were collected from the feature bisection profile.

The internal matrix of Feature 2 between 53–80 cmbd (98.77–98.5 m elevation) did not contain any evidence of burning (e.g., charcoal, burned soil, ash) and no evidence of *in situ* thermal alteration (e.g., reddening) of the Feature 2 soils was observed. However, the macrobotanical analysis of the floated fine fraction from the feature matrix identified several species of charred wood, including elm (*Ulmus* spp.), mesquite (*Prosopis glandulosa*), sugarberry (*Celtis* sp.), acacia/mesquite (*Vachellia/Prosopis* sp.), hickory/pecan (*Carya* sp.), grape (*Vitis* spp.), and an indeterminable hardwood (Appendix F). Charred vetch identified within the flotation sample (Lot 672-1) was submitted for radiocarbon dating and returned a calibrated age range of 676–559 cal B.P. (see Table 6.7). Chronologically, this places Feature 2 within the later part of the Austin Phase or early part of the Toyah Component.

Although no cultural material was encountered from the feature matrix screened in the field, artifacts were recovered from the Feature 2 flotation samples. The assemblage consists of 34 pieces of debitage (4 proximal flakes, 3 broken flakes, 19 flaking shatter, and 8 thermal shatter), and one manuport, as well as 28 pieces of small thermally altered stone (FCR). In addition to the artifacts, ecofacts recovered from Feature 2 include one piece of bone and two mussel shell umbos. No temporally diagnostic artifacts were found in direct association with the feature; however, a Late Prehistoric Fresno arrow point was recovered from unit N1003 E1018 between 98.7 and 98.6 m, which is contiguous.

Summary

Feature 2 is a discrete burned rock cluster located at the transition of Strata III and IV, within the Austin Phase. The lack of a pit or basin and the absence of obvious thermally altered sediment suggests that

Feature 2 may represent a peripheral clean out area near a cooking locus; however, no feature of this type was identified within excavation Block E.

Feature 3

Feature 3 consisted of two discrete burned rock and chert clusters (Cluster 1 and 2) with an associated diffuse chert and burned rock scatter within the Austin Phase component (Table 6.8). Burned rock from Cluster 1 was initially encountered in the north wall of excavation unit N995 E1013 between elevations 99.0 and 98.9 m. One additional 1 × 1-m unit (N996 E1013) was initially opened to the north to explore the feature. A second burned rock cluster (Cluster 2) was encountered in the west wall of this unit, so SWCA subsequently opened two additional 1 × 1-m units (N996 E1012 and N995 E1012) to further explore the features extent. Cluster 1, in units N995 E1013 and N996 E1013, measured 12 cm north/south by 22 cm east/west in size and Cluster 2 in units N996 E 1012 and N996 E1013 measured 35 cm north/south by 26 cm east/west (Figure 6.20). Bioturbation from roots and rodents was noted around the feature clusters.

Table 6.8. Feature 3

Туре	Two discrete burned chert clusters with associated diffuse chert scatter		
Geomorphic Stratum	III		
Cultural Component	Austin Phase		
Excavation Block	Α		
Cluster	Cluster 1	Cluster 2	
Units	N995-996 E1013	N996 E1012-1013	
Center	N996.00 E1013.37	N996.48 E1013.08	
Top Elev. (m)	98.98	99.00	
Bottom Elev. (m)	98.90	98.90	
Origination (m)	Unknown	Unknown	
Dimensions (cm)	35 × 26	12 × 22	
Bulk/Flotation Samples	s F-4 F-5		
Special Samples	None	None	
Geoarch Samples	None	None	
C-14 Sample	C-11 (bone); Bluewood condalia (<i>Condalia hookeri</i>) from flotation sample (Lot 421-1)	None within cluster; C-12 to C-14 collected north and west of cluster	
Radiocarbon Age (Conventional B.P.)	Lot 421-1: 1170 ± 30 (Beta 492584)	None	
Associated Diagnostic Artifacts (Lot No.)	None	None	

Burned Rock Characteristics			
Burned Rock Size (cm)	Count*	Weight (kg)	
0–5	2	0.2	
5–10	21	2.4	
10–15	2	0.5	
15+	_	_	
Total	25	3.1	

^{*}burned rock total includes both clusters and associated scatter

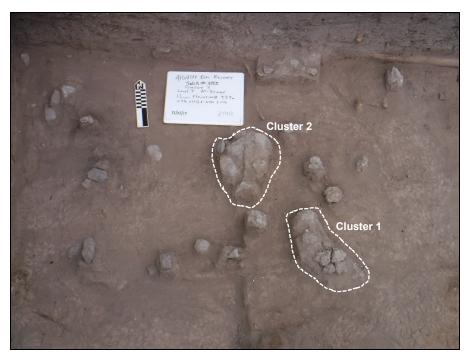


Figure 6.20. Feature 3 plan view showing location of Clusters 1 and 2.

The feature consisted of a single layer of thermally altered limestone (n=16), silicified limestone (n=1), and burned chert (n=8) of various shapes and sizes. Most of the altered limestone was 5 to 10 cm in diameter (n=21) (see Table 6.8). The burned rocks were primarily rounded, while approximately 25 percent were angular. Most of the rocks within Cluster 1 appeared to be fractured *in situ*, but due to erosion appeared very pitted. Cluster 2 consisted of mostly rounded, unfractured burned chert cobbles with a few adjacent angular limestone. The remaining feature rocks were diffusely scattered throughout units N996 E1012 and N996 E1013 and were a mixture of rounded and pitted limestone, angular limestone, and burned chert, a few of which were also fractured *in situ* or had refits in proximity. The majority of Feature 3 burned rocks are located within Stratum III between 74 to 77 cmbd (98.96 to 98.97 m elevation), suggesting a consistent occupation surface with no apparent basin morphology.

Once the feature was uncovered, each of the clusters was bisected, and the matrix was collected for flotation. The internal matrix of Feature 3 between 99.9–98.9 contained small flecks of burned bone and charcoal indicating burning. In addition, evidence of *in situ* thermal alteration was observed and consisted of burned soil around the feature rock, as well as flecks of charcoal below and around the burned rock. One charcoal sample (Sample No. C-11) was collected from Cluster 1; however, analysis determined the sample was burned bone rather than charcoal. No additional radiocarbon samples were taken directly from the feature clusters, as no charcoal large enough for dating was visible during recording and sampling. Three radiocarbon samples (Sample Nos. C-12 through C-14) were collected northeast and west of Cluster 2 and additional charred macrobotanical remains were recovered from within the feature matrix fine fraction (see Table 5.7 and Appendix F).

Charred bluewood condalia from the floatation sample light fraction from Cluster 2 (Lot 421-1) was submitted for radiocarbon dating and produced a calibrated age range of 1179–985 cal B.P.; this date falls within the Austin Phase (see Table 5.7). In addition to the charred bluewood condalia submitted for radiocarbon dating, the macrobotanical analysis of the floated fine fraction from the feature matrix identified several species of charred wood, including red mulberry (*Morus rubra*), juniper (*Juniperus* spp.), sugarberry, silktassel (*Garrya ovata*), and indeterminable hardwood (Appendix F).

Artifacts recovered from the Cluster 1 flotation sample consisted of 23 pieces of debitage (1 complete flake, 1 proximal flake, 12 flaking shatter, and 9 thermal shatter), and nine pieces of bone. The Cluster 2 flotation sample contained 20 pieces of debitage (1 broken flake, 6 flaking shatter, and 13 thermal shatter), and one bone. Additionally, over 150 pieces of debitage were recovered from the surrounding units, of which almost 50 percent consisted of thermal shatter, as well as two cores, one chopper, one edge-modified flake; 11 pieces of burned clay were also recovered from within the feature's extent. No temporally diagnostic artifacts were found in direct association with the feature or within any of the excavation units within Block A.

Summary

Feature 3 consists of two discrete burned rock and chert clusters and a burned rock and chert scatter located within Stratum III within the Austin Phase component. No pit or basin was observed but the presence of thermally altered sediment and rocks fractured *in situ* suggests Feature 3 represents a single or limited use hot rock cooking event during the Austin Phase. Subsequent disturbance from rodents likely dispersed portions of the feature rock, resulting in the peripheral scatter observed around the two clusters.

Feature 4

Feature 4 was a shallow, basin-shaped cooking feature in the Austin Phase component within Block C (Table 6.9). As mentioned in Chapter 4, Feature 4 was first noted as a cluster of burned rocks in the northeast quadrant of unit N1000 E1004, Level 5 in Excavation Block C. Numerous non-traditional, feature-focused units were opened around the initial cluster to further investigate the extent, thickness, and composition of the feature and to identify potential drop zones and/or discard areas (see Figure 4.2). In addition, Level 1 of some of these units was stripped off without screening to just above Feature 4 and were not excavated below Feature 4 after it was documented and removed.

The feature was located primarily within units N1000 E1004, N1001 E1004, and N1001 E1004.5 with the extreme western and northern portions extending into units N1001 E1003 and N1001.5 E1004. The concentration was principally two layers of burned limestone rocks in a slight basin shape with a circular to oval shape.

Layer 1 measured 106 cm north/south and 96 cm east/west, and ranged in elevation from 99.42 m to 99.28 m and was a mixture of angular and rounded limestone (Figures 6.21 and 6.22; see Table 6.9). Most of the rocks in this layer slanted down slightly towards the center of the burned rock concentration. Another cluster of burned rocks was encountered in Layer 1 just west of the main feature concentration and measured 58 cm north/south and 68 cm east/west. These rocks appeared to be in secondary deposition, possibly discarded lid rocks, based on their lack of uniform orientation and lack of *in situ* thermal alteration in the immediate area (see Figure 6.21).

Layer 2 was primarily located in units N1000 E1004, N1001 E1004, and N1001 E1004.5 and measured 55 cm north/south and 68 cm east/west and ranged in elevation from 99.28 m to 99.20 m (Figures 6.23 and 6.24). Most of the rocks in this layer also slanted down slightly towards the center of the burned rock concentration.

Table 6.9. Feature 4

Туре	Earth Oven			
Geomorphic Stratum	III			
Cultural Component	Austin Phase	Austin Phase		
Excavation Block	С			
Layer	Layer 1	Layer 2		
Units	N1000 E1004; N1001 E1003; N1001 E1004; N1001 E1004.5; N1001.5 E1004	N1000 E1004; N1001 E1004; N1001 E1004.5		
Center	N1001.20 E1004.60	N1001.15 E1004.70		
Top Elev. (m)	99.42	99.28		
Bottom Elev. (m)	99.28	99.20		
Origination (m)	N/A	99.20		
Dimensions (cm)	106 × 96 (heating element); 58 × 68 (possible discard area)	55 × 68		
Bulk/Flotation Samples	F-6 and F-7	F-8 and F-9		
Special Samples	None	None		
Geoarch Samples	M-1 to M-5	M-1A to M4A		
C-14 Sample	C-14 Sample C-15 to C-19 Cama (Cama flotation 529-1			
Radiocarbon Age (Conventional B.P.)	None	Lot 529-1: 970 ± 30 (Beta 492583)		
Associated Diagnostic Artifacts (Lot No.)	None	None		

Burned Rock Characteristics				
Burned Rock Size (cm)	Count*	Weight (kg)		
0–5	75	0.8		
5–10	78	12.6		
10–15	26	14.2		
15+	12	15.5		
Total	191	43.1		

^{*}burned rock total includes both rock layers

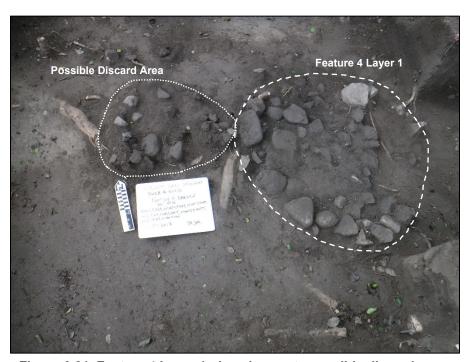


Figure 6.21. Feature 4 Layer 1 plan view, note possible discard area to west.

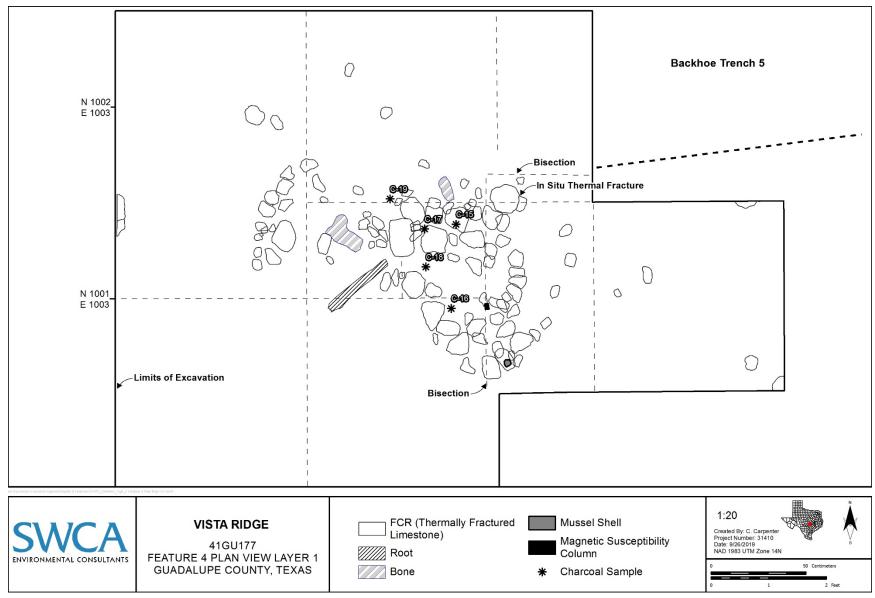


Figure 6.22. Feature 4 Layer 1 Plan map.

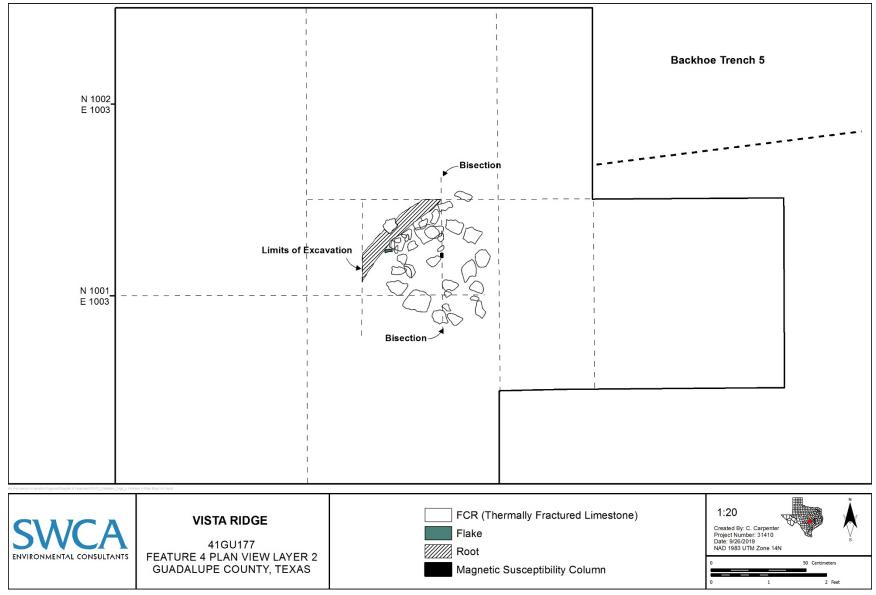


Figure 6.23. Feature 4 Layer 2 Plan map.

Figure 6.24. Feature 4 Layer 2 plan view.

Charcoal flecking was observed between and around the periphery of the feature. Larger charcoal pieces were recovered from below the rocks in both Layer 1 and 2, and a dark soil stain was observed below the Layer 2 rocks. One radiocarbon sample (Lot 529-1) collected from the feature returned a calibrated age range of 934–796 cal B.P., which falls within the Austin Phase; the sample was a charred camas bulb scale.

In addition to the charred camas bulb submitted for radiocarbon dating, the macrobotanical analysis of the floated fine fraction from the feature matrix identified several species of charred wood including elm, mesquite, red mulberry, juniper, ash (*Fraxinus* sp.), and indeterminable hardwood, as well as a sugarberry seed and an indeterminable plant part (Appendix F). Artifacts recovered from the Feature include 79 pieces of debitage (over 50 percent of which was thermal shatter), one edge-modified flake, nine pieces of bone, and one burned clay. No temporally diagnostic artifacts were found in direct association with the feature; however, a Toyah Phase Perdiz arrow point was recovered just above the feature in unit N1001.5 E101004 between 99.5 and 99.4 m and Leon Plain ceramics were found in N1000 E1003 from 99.6–99.3 m.

Summary

Feature 4 comprised burned rocks placed in a shallow basin forming a basal heating element. The presence of a lid in close proximity to the primary feature element further supports this categorization. Overall, Feature 4 is the most substantial burned rock feature identified on the site. The size of the feature

(1 m maximum diameter), quantity of rocks, and basin shape indicate the highest investment of labor of any of the thermal features on the site.

CULTURAL STRATA

The investigations across the Snakeskin Bluff site (41GU177) encountered cultural components encompassing the Late Archaic to Late Prehistoric periods. A majority of the cultural assemblage at the site was observed intermixed at or near the surface with multiple time periods present. Despite these factors, a cultural stratigraphy could be discerned using the temporally diagnostic artifacts and radiocarbon results at 41GU177.

As mentioned above, the radiocarbon results at the site indicate that there is an association between Stratum II and the Toyah Phase of the Late Prehistoric, while the underlying Stratum III is associated with the Late Prehistoric. More specifically, the upper portions of Stratum III are associated with the Austin Phase of the Late Prehistoric. Additional stratigraphic resolution is provided when overlaying the temporally diagnostic artifacts to the site stratigraphy. Near the base of Stratum II, a Perdiz arrow point was recovered in Unit N1001 E1004 (Excavation Block C), which correlates with the Toyah Phase. Near the base of Stratum III and top of Stratum IV in Unit N1003 E1018 (Excavation Block E), a Fresno projectile point was recovered. This artifact is commonly associated with the Late Prehistoric. Underlying this projectile point near the base of Stratum IV and top of Stratum V in Unit N1003 E1019 (Excavation Block E), a Zephyr projectile point was encountered. The Zephyr projectile point is commonly identified as a Transitional Archaic artifact. Finally, the one anomalous stratigraphic position for a temporally diagnostic artifact was an Edwards point at the top of Stratum VI in Unit N1004 E1019 (Excavation Block E). This Late Prehistoric Austin Phase artifact appears to be stratigraphically out of context as it is chronologically younger than the projectile points above it. Accordingly, the Edwards projectile point in this unit is interpreted to be vertically displaced (i.e., translocated) due to bioturbation (e.g., burrows or tree roots).

In summary, the cultural strata observed at 41GU177 have some localized areas of distinct stratification and recognizable contextual integrity, but the predominance of the cultural assemblage closer to the ground surface is an intermixed palimpsest. From the surface downward, Stratum I is modern in age and disturbed. Based on temporally diagnostic artifacts (i.e., Perdiz) and radiocarbon data, Stratum II is associated with the Late Prehistoric Toyah Phase and has some areas (particularly the eastern side of the site) that have been disturbed. The underlying Stratum III is definitively associated with the Austin Phase and all of the Late Prehistoric, based on a temporally diagnostic artifact (i.e., Fresno) and radiocarbon data. Based on the Zephyr projectile point, Strata IV–V are associated with the Transitional Archaic. Therefore, the lowermost horizons (Strata VI–VII) predate the Transitional Archaic and are assuredly associated with the Late Archaic or earlier.

Various analyses (e.g., MS, discussed above) corroborate the stratigraphic interpretations during the site excavations. Specifically, the uppermost horizons (Strata I and II) appear to have been affected by earth movement or comparable influences.

CHAPTER 7. SYNTHESIS AND RECOMMENDATIONS

SITE SUMMARY

The Snakeskin Bluff site (41GU177) is a multi-component prehistoric residential camp on the terraces of the Guadalupe River in Guadalupe County, Texas. The uppermost cultural deposits at the site (Stratum I) are a disturbed palimpsest with both modern and prehistoric materials. The Late Prehistoric Toyah Phase component (Stratum II), just below these deposits, exhibited some evidence of disturbance (e.g., bioturbation and heavy equipment); however, these disturbances were primarily observed within the eastern portions of the site. The Austin Phase component (Stratum III) contained intact, well-preserved archaeological deposits that were the primary focus of investigations. Immediately underlying the Austin Phase component, a zone of Transitional Archaic deposits (Strata IV–V) were identified. Below the Transitional Archaic zone, Late Archaic (or possibly earlier) components were also identified (Strata VI–VII); however, no temporally diagnostic artifacts were recovered from this earlier component and the dated radiocarbon sample was rejected due to probable translocation, so the actual occupation period for this component is unknown.

Overall, SWCA excavated 34.1 m³ of sediment from the site through both traditional and feature-focused unit excavations. During these excavations, approximately 22 m² of Late Prehistoric components were exposed, consisting of rock-lined hearths and 6,496 artifacts. The Late Prehistoric artifacts included Edwards points, Perdiz points, a Fresno point, ceramics, bifaces, an end scraper, a shell bead, various informal lithic tools, ground stone, choppers, debitage, and faunal remains. The Late Prehistoric component was approximately 40–80 cm thick. No cultural features were identified within the underlying Archaic components of the site; however, 3,421 artifacts were recovered including a Zephyr point, bifaces, ground stone, various informal lithic tools, choppers, debitage, and faunal remains. The Transitional Archaic component was approximately 35–60 cm thick; however, the underlying Archaic (and possible older) components were not defined.

The excavations were limited to the right-of-way and the exposure afforded only a partial glimpse of the overall site. Based on the assemblage, the site is interpreted as a logistical base camp, as indicated by both formal and informal tool forms and associated site furniture. Small groups exploited the abundance of lithic raw material and riparian zone resources, making forays into the landscape to hunt and forage. Four radiocarbon dates from the Late Prehistoric components reveal several short-term encampments over the course of several centuries from approximately 600 to 1200 B.P. (A.D. 750 to 1350). The Toyah Phase component has some noted disturbances (especially towards the ground surface), but good stratigraphic integrity from where the radiocarbon sample was collected. The Austin Phase component is vertically and horizontally discrete, contains a substantial amount of archaeological materials, and the site structure and radiocarbon dates suggest multiple, discrete occupations.

REVIEW OF RESEARCH QUESTIONS AND FINDINGS

The research objectives in the study of the Snakeskin Bluff site were structured around three specific questions that pertain to chronology, lithic technology, and foraging strategies. SWCA designed the specific research questions to address the environmental, technological, chronological, and adaptive changes during the transition from Archaic to Late Prehistoric patterns. The artifact recovery at the site was not as robust as hoped for and disturbances were noted, especially within the upper deposits of the site. Nonetheless, some interpretations on context and site function were possible, despite the relatively small dataset from the site.

Research Issue 1: Regional Chronology and 41GU177

The cultural and natural depositional sequence in Central Texas during the shift from the end of the Archaic to Late Prehistory has long been a difficult one to sort out. The lack of well-dated sites with components from this time has been a main contributing factor. We were hopeful that additional radiocarbon data and recovered temporarily diagnostic projectile points from the Snakeskin Bluff site would aid in refining the regional chronology. Unfortunately, a low density of charcoal samples and temporally diagnostic artifacts were recovered within the investigated portions of the site, providing a limited dataset. SWCA submitted five samples from the Snakeskin Bluff site for radiocarbon dating analysis. The samples primarily came from cultural contexts (e.g., feature matrix) and focused on the stratigraphy and cultural zones seemingly affiliated with the Late Prehistoric and older Archaic horizons. Radiocarbon results from the lowest deposits at the site indicate that vertical displacement and/or contamination of archaeological materials (including diagnostics and faunal materials) likely occurred in portions of the site; therefore, one of the radiocarbon dates was rejected.

As mentioned in Chapter 5, the remaining four radiocarbon assays are associated with the Late Prehistoric component in Strata II and III. The faunal sample from Stratum II returned a calibrated age of 552–518 cal B.P. and samples from the three features (i.e., Features 2–4) in Stratum III returned calibrated dates of 1173–1058 cal B.P. (Feature 3), 929–802 cal B.P. (Feature 4), and 670–566 cal B.P. (Feature 2). Based on these data, as well as the recovered temporally diagnostic artifacts, Stratum III appears to date to approximately 1200–600 B.P., while the overlying Stratum II dates from 600 B.P. to sometime before the present. In addition, the radiocarbon data indicate Stratum III may be associated with the Austin Phase, whereas Stratum II appears to be associated with the Toyah Phase (see Collins 2004; Gadus et al. 2006; Johnson 1994; Johnson and Goode 1994; Ricklis and Collins 1995). Recovery of a temporally diagnostic artifact (Zephyr point) at the base of Stratum IV suggests the deposits underlying Stratum III encompass the Transitional Archaic, with possible Late Archaic deposits situated underneath; however, the radiocarbon date from Stratum VI was rejected and no other radiocarbon dates were obtained, so the date range of the underlying components is currently unknown.

In comparing these dates to regional chronologies, the Snakeskin Bluff site supports a growing consensus of chronological breaks at or near 1250 and 650 B.P. All chronologies place the advent of the Scallorn and Edwards stylistic interval at around 1250 B.P. Four chronologies define this as the end of the Archaic and start of the Late Prehistoric, while Johnson and Goode (1994) indicate the Post-Archaic perhaps began earlier with smaller dart points. Snakeskin Bluff dates concur with 1250 B.P. as the earliest extreme of the break, although most of the Austin Phase dates are between 1175 and 670 B.P. (Collins 2004; Prewitt 1985; Black 1989; Johnson 1995; Johnson and Goode 1994; Turner et al. 2011; Carpenter et al. 2013:Figure 9.8). The date for the strata containing Perdiz points on the Snakeskin Bluff site ranges from 518 to 552 B.P., which is consistent with models for the Toyah Phase (Arnn 2012:64–65; Johnson 1994:87; Prewitt 1981:84).

Research Issue 2: Lithic Technology

The lithic analysis for 41GU177 was focused on determining if lithic reduction strategies and tool production at the site were consistent with other Transitional Archaic and Late Prehistoric sites in the region. The lithic tool assemblage for the individual Late Prehistoric components (i.e., Toyah Phase and Austin Phase) was fairly small and would not be statistically significant, so the following discussion relates to the combined Late Prehistoric components and combined Archaic components.

In broad terms, an assemblage refers to the collective material culture of a community (Deetz 1967:109). Assemblage-based systematics analyze the relative frequency among artifact classes to infer behavioral implications, especially through comparative studies. The basic assumption underlying such studies is

that "variation in the structure and content of an archaeological assemblage is directly related to the form, nature, and spatial arrangement of human activities" (Binford and Binford 1966:241). The objective in the study of lithic assemblages from the Snakeskin Bluff site is to identify differences in organization of technology and strategies between the Late Prehistoric and Archaic components. The interpretive weight of the analysis of Snakeskin Bluff site assemblages needs to be tempered by a strong word of caution. The components of the site have reasonably good stratigraphic integrity, but the artifacts are more subject to movement. The artifact assemblages for each component, therefore, are undoubtedly mixed to varying degrees, rendering their study a somewhat blunt instrument. These are coarse-grained assemblages, the cumulative debris from repeated occupations. Within this overarching consideration, the patterns are explored here to search for broad trends that can contribute to the overall picture. That said, there are various comparative categories that can be used to assess behavioral change but this section focuses on three specific variables: 1) relative frequency of tool categories; 2) ratio of bifaces and cores; and 3) ratio of debitage to stone tools.

In terms of the first set of variables, a primary consideration is the ratio among cores, bifaces, and flake tools. A more equitable statistical distribution among the forms would be expected at longer-term collector base camps, partly because repeated occupations causes coarse-grained assemblages. Table 7.1 shows the percentages of the various tool categories by component. Several trends are notable:

- Bifaces, as a percentage of each component's assemblage, slightly decrease through time; they compose 25.58 percent of the artifact assemblage in the Late Prehistoric, but only 24.53 percent in the Archaic.
- Cores tend to be underrepresented in the younger component (12.79 percent) and overrepresented in the older component (20.75 percent). In other words, cores are 200 percent more represented in the Archaic.
- Modified flakes tend to be overrepresented in the younger component (52.33 percent) and underrepresented in the older component (41.51 percent), which equates to modified flakes being 127 percent more represented in the Late Prehistoric.

Table 7.1. Summary of Lithic Assemblage from Snakeskin Bluff Components

Artifact Type	Late Prehistoric	Component	Archaic C	Component	Total	Relative Assemblage Percent*
	Count	Percent*	Count	Percent*	Count	Percent*
Projectile Points	4	4.65	3	5.66	7	5.04
Scrapers	1	1.16	0	0.00	1	0.72
Bifaces	22	25.58	13	24.53	35	25.18
Cores	11	12.79	11	20.75	22	15.83
Core Tools	1	1.16	3	5.66	4	2.88
Ground Stones	2	2.33	1	1.89	3	2.16
Modified Flakes	45	52.33	22	41.51	67	48.20
Debitage	5,732	N/A	3,122	N/A	8,854	N/A
Total [‡]	86		53		139	

^{*} Percentage of total component's lithic assemblage, excluding debitage

[‡] Total does not include debitage

Some observations are suspect because of low numbers. For example, in terms of assemblage diversity, the component with the highest numbers of tools have the greatest diversity of tools forms, and so the richness index is likely subject to critical thresholds of population size. Additionally, categories such as projectile points, ground stone, core tools, and scrapers, have sample sizes that may be too small to explore trends.

The ratio of bifaces to cores shows a distinct difference in bifacial technology between the components (Table 7.2). The Late Prehistoric component has a much higher ratio of bifaces to cores than the Archaic component, indicating an emphasis on bifacial technology in the Late Prehistoric. Compared to a collector base camp, a forager residential base ought to reveal a decrease in cores relative to bifaces. In general, biface use increases with mobility, although Tomka (2001) identifies mitigating circumstances, and flake-core use increases with longer occupations. While it depends on the site function, if the Snakeskin Bluff site is a residential base camp in both collector and foraging strategies, then the ratio of cores to bifaces should be an indicator of the changing strategies over time.

Table 7.2. Biface to Core Ratio among Snakeskin Bluff Components

Artifact Type	Late Prehistoric Component	Archaic Component
Bifaces	22	13
Cores	11	11
Ratio	2:1	1.2:1

Comparing the biface-to-core ratios to other regional data, a two-to-one ratio is within reasonable expectations of quasi-sedentary pattern according to North American data compiled by Parry and Kelly (1987) (Table 7.3). The ratio for the Archaic components suggest a more sedentary pattern, and reliance on bifacial technology appears to have decreased quite a bit during this time.

Table 7.3. Comparative Biface: Core Ratio Data from Parry and Kelly (1987)

Archaeological Group	Sedentism/Mobility Pattern	Biface to Core ratio according to Parry and Kelly (1987)
Oaxaca Archaic	Quasi-sedentism	1.09
Oaxaca Formative	Sedentism	0.03
Black Mesa Archaic	Mobile hunter-gatherers	5.75
Black Mesa BMII	Quasi-sedentism	2.38
Black Mesa Pl	Sedentism	0.45
Black Mesa PII	Sedentism	0.04
SW Colorado Archaic	Mobile hunter-gatherers	5.75
SW Colorado BMII	Early quasi-sedentism	2.83
SW Colorado BMIII	Quasi-sedentism	0.71
SW Colorado PI	Sedentism	0.95
SW Colorado PII	Sedentism	0.7
Chaco Preceramic	Quasi-sedentism	0.8
Chaco Puebloan	Sedentism	0.13
Knife River ND Paleo/EA	Mobile hunter-gatherers	3.52
Knife River ND Archaic	Mobile hunter-gatherers	2.92
Knife River ND Plains Village	Sedentism	1.34

The ratio of debitage-to-lithic tools seems to correlate with the biface-to-core ratios; however, there are multiple variables that may affect this ratio. Occupational redundancy, for one, tends to increase the ratio and contributes to a coarser grained assemblage. Raw material availability is likewise a more significant influence, but many of the environmental factors remain fairly constant when looking at a single site, indicating differences throughout the components should reflect technological variation. One important factor is that bifacial reduction yields quite a bit of debitage compared to expedient core-flake production. Along this line, Late Prehistoric yielded the highest ratio of debitage to tools, perhaps correlating with and corroborating the high biface to core ratio in the same component (Table 7.4). Conversely, the Archaic component has a lower debitage-to-tool ratio, and it also has a lower biface-to-core ratio.

Table 7.4. Ratio of Debitage to Tools by Component on the Snakeskin Bluff Site

Artifact Type	Late Prehistoric Component	Archaic Component	Relative Assemblage
Debitage	5,732	3,122	8,854
Total No. of Tools	86	53	139
Ratio of Debitage to Tools - No. of Debitage per Tool	66.65	58.91	63.70

Research Issue 3: Foraging Strategies

Foraging strategies pertain to the ways in which the site occupants organized themselves and their technology to interact with their physical setting. The archaeological materials at the Snakeskin Bluff site indicate variation in ecological adaptations through time. The research question on the topic regards the comparison of Snakeskin Bluff site patterns to prevailing models, particularly the transition from Archaic to Late Prehistoric lifeways in the eastern Edwards Plateau cultures. The general approach to the analysis of these strategies at the Snakeskin Bluff site was to look at the relationships among three data sets: 1) environmental data; 2) subsistence-related data; and 3) technological data.

Based on these relationships, the Snakeskin Bluff site data show pronounced diachronic shifts in the long-term subsistence strategies. In the Archaic deposits (approximately 1,320 years ago and older), the site shows minimal occupational evidence. No cultural features were identified and artifact densities were relatively low. Based on the site evidence as well as the regional record, this period is inferred to be a period of generalized foraging with relatively low occupational intensity. Much of the faunal assemblage (n=98) was unidentifiable due to the high level of fragmentation; however, the Archaic assemblage appears to show a relatively low diet breadth, as most of the fragments are suspected to be deer. The high degree of green (para-mortem) fracturing and prevalent fragmentation in the Archaic assemblage suggests butchering and/or marrow processing was occurring at the site during this period. Four fragments of turtle shell were also recovered, along with 80 freshwater mussel shell umbo fragments. As mentioned in Chapter 6, seasonal vertical migration of freshwater mussel shells in Central Texas is not clear, making it difficult to determine if mussels would have been available to human gatherers throughout the year or if they were only available in the warmer months.

This time of low archaeological visibility is followed by a prominent shift in patterns and much higher archaeological visibility in the Austin Phase of the Late Prehistoric, from 1,270 to 670 years ago. The faunal assemblage still shows a low diet breadth, once again focusing on deer. The faunal assemblage indicates groups likely occupied the site on a seasonal basis in the late fall to early winter, intensively harvesting deer. Similar to the Archaic deposits, the faunal assemblage in the Austin Phase deposits also exhibited a high degree of green fracturing and fragmentation, suggesting butchering and/or marrow processing was still occurring at the site during this period. Over a 600 percent increase in exploitation of

turtles and a 162 percent decrease in the exploitation of freshwater mussels compared to the Archaic was also noted.

Rather than logistical groups moving in for a short duration to exploit deer, the Late Prehistoric Austin phase groups appear to have more substantial occupational debris, notably marked by formal site furniture (e.g., cooking features). SWCA identified three cultural features within the Austin Phase component: Feature 2 is a peripheral clean-out area presumably near a cooking locus (though the cooking locus was not encountered within the project area); Feature 3 is a discrete, burned rock cluster interpreted to be a single- or limited-use hot rock cooking event; and Feature 4 was a large earth oven. The size of Feature 4 (1 m maximum diameter), as well as quantity of rocks and basin shape, indicate a high investment of labor for food processing.

The results of the macrobotanical analysis revealed the archaeological plant remains associated with the cultural features at the Snakeskin Bluff site consist primarily of wood charcoal, interpreted as fuel wood most likely used in earth oven cooking, such as with Feature 4 described above (Appendix F). The most common fuel sources identified from feature contexts at the site include red mulberry, elm, mesquite, juniper, sugarberry, and indeterminable hardwoods. Less-common woods present in smaller numbers and only a single feature context were bluewood, ash, silktassel, pecan/hickory, and grape. However, some findings from the macrobotanical analysis clearly reflect subsistence resources; geophytes and seeds are likely economic resources with traces in the archaeological record. One camas bulb fragment, one sugarberry seed, and two deer pea vetch seeds were identified from direct feature contexts and all were burned (Appendix F).

Overall, the floral subsistence evidence suggests a moderately diverse exploitation of locally available resources but no intensive processing. Caution is warranted, since such remains are the most perishable of all, but the material assemblage partially supports such a view. Classic signatures of plant processing, such as manos, metates, or nutting stones, are not prominent parts of the assemblage, even in relative terms, as only one ground stone specimen (an indeterminate fragment) was recovered from the site that may have been used for plant processing.

The patterns in the Toyah Phase component (670 to 270 years ago) were similar to the Austin Phase; however, bison now appears in the faunal assemblage and cultural features are absent. When the landscape offers a more equitable distribution of critical resources or a higher availability of high-ranking resources (e.g., bison), groups often respond by increasing mobility and exploiting the increased biomass availability, dropping the more intensive processing of low ranked resources. So residential mobility increases, and logistical mobility declines. These economic strategies are the driving force in subsistence selection and the organization of technology (Binford 1980; Kelly 1992; Winterhalder and Smith 1981). As mentioned in the Lithic Technology section above, the biface-to-core ratios increased at the site in the Late Prehistoric, supporting the idea that mobility and biface use increased at the site. Deer is still present in the Toyah Phase assemblage; however, these faunal remains are primarily in mixed contexts and may have come from the overlying historic/modern deposits and/or the underlying Austin Phase component. Based on the site evidence, as well as the regional record, this period is inferred to be a period focused on bison hunting with relatively low occupational intensity and higher mobility.

SUMMARY AND RECOMMENDATIONS

The data recovery investigations at the Snakeskin Bluff site sought to address environmental, technological, chronological, and adaptive changes during the transition from Archaic to Late Prehistoric. As mentioned, the overall artifact and feature recovery at the site was low and disturbances and mixing of components was noted, especially within the upper deposits of the site. Disturbances within the Late Prehistoric Toyah Phase were most prevalent in the eastern portions of the site. The Late Prehistoric Austin Phase component contained intact, well-preserved archaeological deposits containing preserved flora and faunal material, cooking features, and diagnostic implements. The Transitional Archaic (and older) occupations were difficult to characterize, due to limited quantities of temporal diagnostic artifacts, lack of cultural features, and low artifact recovery. Despite these limitations, the data recovered from the cultural components show diachronic shifts between the technological and foraging strategies of the Archaic and Late Prehistoric.

The Archaic appears to be a period of relatively low occupational intensity and the faunal assemblages indicate groups had a relatively low diet breadth focused on deer as well as freshwater mussels. Fracturing and fragmentation of the faunal remains suggests butchering and intensive processing (e.g., marrow extraction) was occurring at the site during this period. The Late Prehistoric Austin Phase groups were continuing to exploit mostly deer and local freshwater mussel; however, these groups had more substantial occupational debris, including several cooking features. The Austin Phase groups were exploiting locally available floral resources for both fuel and food sources but intensive processing of plant materials does not appear to have occurred at the site. Bison appear in the faunal assemblage in the Toyah Phase; the lack of cultural features and increase in bifacial technology during this period suggests these groups were becoming more mobile, likely as a response to the availability of high-ranking resources (e.g., bison) and reduced need for intensive processing of lower ranked resources. The suite of radiocarbon and temporally diagnostic artifacts at the site was not robust; however, the Late Prehistoric dates for the Austin and Toyah Phases coincide with accepted regional chronologies for the area.

In concurrence with the 2016–2017 testing recommendations, the Snakeskin Bluff site is considered eligible for designation as an SAL and for the NRHP. Although not all cultural components of the site were stratigraphically discrete, the Late Prehistoric Austin Phase component revealed intact, well-preserved archaeological deposits that significantly contributed to our understanding of Late Prehistoric patterns. Given the sensitive nature of the cultural deposits at 41GU177, the main concern following the completion of data recovery excavations was the prevention of significant surface and subsurface impacts to the site during clearing and pipeline construction. As such, SWCA developed a site monitoring protocol; methods and results of the monitoring efforts are provided in Appendix H. Contributing components beyond the impact area will not be affected and will be preserved by avoidance; however, it is important to note that these investigations mitigated the project-specific effects, not the entire site. Any future project that could impact the site's deeper deposits, or those beyond the current right-of-way, warrant further consideration to assess the possibilities for additional contributing components. With these considerations, no further work is recommended.

CHAPTER 8. LITERATURE CITED

Acuña, Laura I., Brandon Young, and Rhiana D. Ward

2016 Cultural Resources Investigations of the Vista Ridge Regional Water Supply Project in Burleson, Lee, Bastrop, Caldwell, Guadalupe, Comal and Bexar Counties, Texas. SWCA Cultural Resources Report No. 15-548. Austin, Texas.

Amyot, J., and J. Downing

1997 Seasonal variation in vertical and horizontal movement of the freshwater bivalve Elliptio complanata (Mollusca: Unionidae). *Freshwater Biology* 37:345–354.

Anderson, S.

Mammals. In *Harper & Row's Complete Field Guide to North American Wildlife: Eastern Edition.* by Lester L. Short, S. Anderson, Patricia G. Haneline, Franklin C. Daiber, Harald A. Rehder, and Robert D. Barnes, pp. 221–306. Harper & Row Publishers, New York, Hagerstown, Philadelphia, San Francisco, Cambridge, London, Mexico City, São Paulo, and Sydney.

Andrefsky, W.

1998 Lithics: Macroscopic Approaches to Analysis. Cambridge University Press, Cambridge.

Arnn, John W.

2012 Land of the Tejas: Native American Identity and Interaction in Texas, A.D. 1300 to 1700. University of Texas Press, Austin.

Ashman, M. R., and G. Puri

2002 Essential Soil Science: A Clear and Concise Introduction to Soil Science. Blackwell Publishing, Malden, MA.

Baker, Frank E.

1979 *Soil Survey of Bastrop County, Texas.* United States Department of Agriculture, Washington, D.C.

Barnes, V. E.

1983 *Geologic Atlas of Texas: San Antonio Sheet.* Robert Hamilton Cuyler Memorial Edition, Bureau of Economic Geology, University of Texas, Austin.

Bartlein, Patrick J., Mary E. Edwards, Sarah L. Shafer, and Edward D. Barker, Jr.

1995 Calibration of Radiocarbon Ages and the Interpretation of Paleoenvironmental Records. *Quaternary Research* 44:417–424.

Bement, L.C.

1994 *Hunter-Gatherer Mortuary Practices During the Archaic in Central Texas*. Unpublished Ph.D. dissertation, The University of Texas, Austin.

Binford, L. R.

1980 Willow Smoke and Dogs' Tails: Hunter-Gatherer Settlement Systems and Archaeological Site Formation. *American Antiquity* 45: 4–20.

Binford, L., and S. Binford

1966 A Preliminary Analysis of Functional Variability in the Mousterian of Levallois Facies. American Anthropologist 68(2):238–295.

Birkeland, Peter W.

1999 Soils and Geomorphology. Third Edition, Oxford University Press, New York and Oxford.

Black, S. L.

1989 Environmental Setting. In *From the Gulf to the Rio Grande: Human Adaptation in Central, South, and Lower Pecos Texas*, by Thomas R. Hester, Stephen L. Black, D. Gentry Steele, Ben W. Olive, Anne A. Fox, Karl J. Reinhard, and Leland C. Bement, pp. 5–16. Research Series No. 33. Arkansas Archeological Survey, Fayetteville.

Black, S. L., and D. C. Creel

The Central Texas Burned Rock Midden Reconsidered. In *Hot Rock Cooking on the Greater Edwards Plateau: Four Burned Rock Midden Sites in West Central Texas*, Volume 1, by S. L. Black, L. W. Ellis, D. G. Creel, and G. T. Goode, pp. 269-306. Studies in Archeology 22. Texas Archeological Research Laboratory, The University of Texas at Austin. Archeology Studies Program, Report 2. Environmental Affairs Department, Texas Department of Transportation, Austin.

Black, S. L., and M. Quigg

2018 Unstemmed Point Tradition. Available at: https://www.texasbeyondhistory.net/st-plains/prehistory/images/unstemmed.html. Accessed August 2018.

Black, S. L., and A. J. McGraw

1985 The Panther Springs Creek Site: Cultural Change and Continuity within the Upper Salado Creek Watershed, South-Central Texas. Archeological Survey Report No. 100. Center for Archeological Research, The University of Texas at San Antonio.

Black, S. L., L. W. Ellis, D. G. Creel, and G. T. Goode

1997 Hot Rock Cooking on the Greater Edwards Plateau: Four Burned Rock Midden Sites in West Central Texas, Volumes 1 and 2. Studies in Archeology 22. Texas Archeological Research Laboratory, The University of Texas at Austin. Archeology Studies Program, Report 2. Environmental Affairs Department, Texas Department of Transportation, Austin.

Blair, W. F.

1950 The Biotic Provinces of Texas. *The Texas Journal of Science* 2(1):93–117.

Block, J., G. Gerald, and T. Levine

Temperature effects on burrowing behaviors and performance in a freshwater mussel. *Journal of Freshwater Ecology* 28(3): 375–384.

Blockley, S. P. E., M. Blaauw, C. Bronk Ramsey, and J. van der Plicht

Building and Testing Age Models for Radiocarbon Dates in Lateglacial and Early Holocene Sediments. *Quaternary Science Reviews* 26:1915–1926.

Boyd, Douglas K.

What Is Northern Toyah Phase? The Toyah Phenomenon on the Texas Southern Plains. In The Toyah Phase of Central Texas: Late Prehistoric Economic and Social Processes, edited by Nancy A. Kenmotsu and Douglas K. Boyd, pp. 128–151. Texas A&M University Press. College Station, Texas.

Bryant, Jr., Vaughn M., and Richard G. Holloway

1985 A Late-Quaternary Paleoenvironmental Record of Texas: An Overview of the Pollen Evidence. In *Pollen Records of Late-Quaternary North American Sediments*, by Vaughn M. Bryant, Jr. and Richard G. Holloway (editors) pp. 39–70. American Association of Stratigraphic Palynologists Foundation, Austin, Texas.

Bull, J., and J. Farrand, Jr.

1977 *The Audubon Society Field Guide to North American Birds: Eastern Region.* Fourth Edition. Alfred A. Knopf, Inc. New York.

Burlakova, L., A. Karatayev, E. Froufe, A.E. Bogan, and M. Lopes-Lima

A new freshwater bivalve species of the genus *Cyclonaias* from Texas (Unionidae: Ampleminae: Quadrulini). *The Nautilus* 132(2):45–50.

Burt, W. H., and R. P. Grossenheider

1976 Peterson Field Guides: Mammals. Houghton Mifflin Company, Boston and New York.

Callahan, E. C.

- 1974 A Guide for Flintworking: Stages of Manufacture. *Experimental Archeology Papers* 3:185–192.
- 1979 The Basics of Biface Knapping in the Eastern Fluted Point Tradition: A Manual for Flintknappers and Lithic Analysts. *Archaeology of Eastern North America* 7:1–180.

Carlson, S., A. Lawrence, H. Blalock-Herod, K. McCafferty, and S. Abbott

2008 Freshwater mussel survey protocol for the southeastern Atlantic slope and northeastern Gulf drainages in Florida and Georgia. United States Fish and Wildlife Service, Ecological Services and Fisheries Resources Offices. Georgia Department of Transportation, Office of Environment and Location.

Carpenter, S., M. Chavez, K. Miller, and K. Lawrence

2006 The McKinney Roughs Site 41BP627: A Stratified Late Archaic II Site on the Colorado River Terraces Bastrop County, Texas. SWCA Cultural Resources Report No. 02-313, SWCA Environmental Consultants, Austin.

Carpenter, Stephen M., Kevin A. Miller, Mary Jo Galindo, Brett A. Houk, Charles D. Frederick,

Mercedes C. Cody, John Lowe, Ken Lawrence, Kevin Hanselka, and Abby Peyton

2013 The Siren Site and the Long Transitional from Archaic to Late Prehistoric Lifeways on the Eastern Edwards Plateau of Central Texas. SWCA Cultural Resources Report No. 12-93, SWCA Environmental Consultants, Austin.

Charlton, R.

2008 Fundamentals of Fluvial Geomorphology. Routledge, London and New York.

Collins, M. B.

- 1968 A Note on the Broad Corner-Notched Projectile Points Used In Bison Hunting in Western Texas. *The Bull Roarer 3(2) 13–14*. The University of Texas Anthropology Society, Department of Anthropology, The University of Texas at Austin.
- 1974 A Functional Analysis of Lithic Technology among Prehistoric Hunter-Gatherers of Southwestern France and Western Texas. Ph.D. dissertation, University of Arizona, Tuscon.
- Forty Years of Archeology in Central Texas. *Bulletin of the Texas Archeological Society* 66:361–400.
- Archeology in Central Texas. In *The Prehistory of Texas*. Edited by Timothy K. Perttula, pp. 101–126. Texas A&M University Press, College Station.

Conant, R., and J. T. Collins

1998 Peterson Field Guides: Reptiles and Amphibians Eastern and Central North America. Third Edition. Houghton Mifflin Company, Boston and New York.

Correll, Donovan S., and Marshall C. Johnston

1979 Manual of the Vascular Plants of Texas. University of Texas at Dallas.

Crowther, J., and P. Barker

1995 Magnetic Susceptibility: Distinguishing Anthropogenic Effects from the Natural. *Archaeological Prospection* 2:207–215.

Dalan, R. A.

- 1996 Soil Magnetism, An Approach for Examining Archaeological Landscapes. *Geophysical Research Letters* 23(2): 185–188.
- 2006 Magnetic Susceptibility. In *Remote Sensing in Archaeology: An Explicitly North American Perspective*. J. Johnson, M. Giardano, and K. Kvamme (editors), pp. 161–203. University of Alabama Press, Tuscaloosa, Alabama.
- A Review of the Role of Magnetic Susceptibility in Archaeologeophysical Studies in the USA: Recent Developments and Prospects. *Archaeological Prospection* 15: 1–31.

Dalan, Rinita A., and Subir K. Banerjee

1998 Solving Archaeological Problems Using Techniques of Soil Magnetism. *Geoarchaeology: An International Journal* 13: 3–36.

Dalan, R. A., and B. W. Bevan

2002 Geophysical Indicators of Culturally Embraced Soils and Sediments. *Geoarchaeology: An International Journal* 17 (8): 779–810.

Davis, W. B., and D. J Schmidly

1994 The Mammals of Texas. Texas Parks and Wildlife Department, Austin.

Dearing, J.

1999a Magnetic Susceptibility. In *Environmental Magnetism: A Practical Guide*. J. Walden, F. Oldfield, and J. Smith (editors), pp. 35–62. Technical Guide No. 6. Quaternary Research Association, London.

1999b Environmental Magnetic Susceptibility Using the Bartington MS2 System. Available at: http://www.gmw.com/magnetic properties/MS2 support.html. Accessed August 2018.

Deetz, J.

1967 *Invitation to Archaeology*. Ameri-can Museum Science Books, Natu-ral History Press, Garden City, New York.

Dering, P

Earth-Oven Plant Processing in Archaic Period Economies: An Example from a Semi-arid Savannah in South-Central North America. *American Antiquity* 64(4):659–674.

Dibble, D. S., and D. Lorrain

1968 *Bonfire Shelter: A Stratified Bison Kill Site, Val Verde County, Texas.* Miscellaneous Papers No. 1. Texas Memorial Museum, The University of Texas at Austin.

Dillehay, T. D.

1974 Late Quaternary Bison Population Changes on the Southern Plains. *Plains Anthropologist* 19(65):180–196.

Ellwood, B. B., D. E. Peter, W. Balsam, and J. Schieber

1995 Magnetic and Geochemical Variations as Indicators of Palaeoclimate and Archaeological Site Evolution: Examples from 41TR68, Fort Worth, Texas. *Journal of Archaeological Science* 22: 409–415.

Fields, Ross C., and Eloise F. Gadus (editors)

Archeology of the Nadaco Caddo: The View from the Pine Tree Mound Site (41HS15), Harrison County, Texas. Reports of Investigations 164, Prewitt and Associates, Inc., Austin.

Frederick, Charles D

- 2010 Geoarchaeological Investigations. In *Archaeological Data Recovery on Three Sites Along the San Antonio River, Bexar County, Texas*, by Antonio E. Padilla and David L. Nickels, pp. 449–462. Ecological Communications, Corporation, Austin, Texas.
- Site Formation Processes and Implications for Archeology in the South Fork of the San Gabriel. In The Siren Site (41WM1126) and the Long Transition from Archaic to Late Prehistoric Lifeways on the Eastern Edwards Plateau, Williamson County, Texas, by Steve Carpenter, Kevin A. Miller, Brett Houk, Mary Jo Galindo, Charles Frederick, John Lowe, Ken Lawrence, Kevin Hanselka, and Abby Peyton, pp. 8-1–8-24. SWCA Environmental Consultants, Austin, Texas.

Gadus, E. Frances, Ross C. Fields, and Karl W. Kibler

Data Recovery Excavations at the J. B. White Site (41MM341), Milam County, Texas. Research Report No. 145. Prewitt & Associates, Inc. Austin, Texas.

Gale, S. J., and P. G. Hoare

1991 *Quaternary Sediments: Petrographic Methods for the Study of Unlithified Rocks.* Bellhaven Press and Halsted, Press, New York and Toronto.

Gerstle, A., T. C. Kelly, and C. Assad

1978 The Fort Sam Houston Project: An Archaeological and Historical Assessment.

Archaeological Survey Report 40, Center for Archaeological Research. The University of Texas at San Antonio.

Goode, G. T.

1991 Late Prehistoric Burned Rock Middens in Central Texas. In *The Burned Rock Middens of Texas: An Archeological Symposium*, edited by Thomas R. Hester, pp. 71–93. Studies in Archeology 13. Texas Archeological Research Laboratory, The University of Texas at Austin.

Gould, F. W.

1969 *Texas Plants: A Checklist and Ecological Survey*. Texas Agricultural Extension Service, Texas A&M University, College Station.

Graham, R.W.

1987 Environmental Fluctuations and Evolution of Mammal Faunas during the Last Deglaciation in North America. In *North America and Adjacent Oceans during the Last Deglaciation* by W. F. Ruddiman and H.E. Wright (editors), pp. 371–402. Geological Society of America. Boulder, Colorado.

Graham, R.W., and E. L. Lundelius

1984 Coevolutionary Disequilibrium and Pleistocene Extinctions. In *Quaternary Extinctions: A Prehistoric Revolution*, by P.S. Martin and R.G. Klein (editors), pp. 223–249. University of Arizona Press, Tucson.

Hall, Stephen A., and Salvatore Valastro, Jr.

1995 Grassland Vegetation in the Southern Great Plains during the Last Glacial Maximum. Quaternary Research 44:237–245.

Hard, Robert J., Raymond P. Mauldin, and Gerry R. Raymond

1996 Mano Size, Stable Carbon Isotope Ratios, and Macrobotanical Remains as Multiple Lines of Evidence of Maize Dependence in the American Southwest. *Journal of Archaeological Method and Theory* 3:253–318.

Hays, Christopher T., Richard A. Weinstein, and James B. Stoltman

2016 Poverty Point Objects Reconsidered. Southeastern Archaeology 2016:1-24.

Hess, M.C., K. Inoue, E.T. Tsakiris, M. Hart, J. Morton, and J. Dudding

2018 Misidentification of Sex for *Lampsilis teres*, Yellow Sandshell, and its Implications for Mussel Conservation and Wildlife Management. *PloS one* 13(5):e0197107.

Hester, T. R.

- 1995 The Prehistory of South Texas. Bulletin of the Texas Archeological Society 66:427–459.
- The Prehistory of South Texas. In *The Prehistory of Texas*, edited by T. K. Perttula, pp. 127–154. Texas A&M University Press, College Station.

Houk, B. A., and J. C. Lohse

1993 Archeological Investigations at the Mingo Site, Bandera County, Texas. *Bulletin of the Texas Archeological Society* 61:193–247.

Houk, B. A., S. Tomka, B. Bousman, C. K. Chandler, B. Moses, M. Renner, and M. Lyons

The Greenbelt Core: A Polyhedral Blade Core from San Antonio, Texas. *Current Research in the Pleistocene* 14:104–106.

Howells, R.G.

2014 Field guide to Texas Freshwater Mussels. BioStudies. Kerrville, Texas.

Hua, Quan

2009 Radiocarbon: A Chronological Tool for the Recent Past. Quaternary Geochronology 4:378–390.

Hudgins, Joe D.

1993 Cooking with Clay Balls. In The Cache: Collected Papers on Texas Archeology, by Cathryn A. Hoyt (editor), pp. 47-52. Texas Historical Commission, Austin.

Hudler, D. B.

1997 Determining Clear Fork Tool Function through Use-Wear Analysis: A Discussion of Use-Wear Methods and Clear Fork Tools. Studies in Archeology 25. Texas Archeological Research Laboratory, The University of Texas at Austin.

Huebner, J. A.

1991 Late Prehistoric Bison Populations in Central and South Texas. *Plains Anthropologist* 36(137):343–358.

Hunter, Donald G.

1975 Functional Analysis of Poverty Point Clay Objects. *Florida Anthropologist* 28(1):57-71. Jelks, E. B.

1962 *The Kyle Site: A Stratified Central Texas Aspect Site in Hill County, Texas.* Archaeology Series No. 5. Department of Anthropology, The University of Texas at Austin.

Johnson, L, and G. T. Goode

1994 A New Try at Dating and Characterizing Holocene Climates, as well as Archeological Periods, on the Eastern Edwards Plateau. *Bulletin of the Texas Archeological Society* 65:1–51

Johnson, L, Jr., D. A. Suhm, and C. D. Tunnell

1962 Salvage Archeology of Canyon Reservoir: The Wunderlich, Footbridge, and Oblate Sites. Bulletin No. 5. Texas Memorial Museum, The University of Texas at Austin.

Johnson, L., Jr.

- 1994 The Life and Times of Toyah-Culture Folk as Seen from the Buckhollow Encampment, Site 31KM16, of Kimble County, Texas. Office of the State Archeologist Report 38. Texas Department of Transportation and Texas Historical Commission, Austin.
- 1995 *Past Cultures and Climates at Jonas Terrace: 41ME29 of Medina County, Texas.* Report No. 40. Office of the State Archeologist, Texas Historical Commission, Austin.

Jones, R. S., and J. J. Leffler

2003 Phase I and II Archaeological Investigations on Camp Mabry, Travis County, Texas, Archaeological Studies Report No. 2. Center for Archaeological Studies, Texas State University-San Marcos, Texas.

Kelly, R. L.

1992 Mobility/Sedentism: Concepts, Archaeological Measures, and Effects. *Annual Review of Anthropology* 21:43–66.

Kibler, K. W., and A. M. Scott

2000 Archaic Hunters and Gatherers of the Balcones Canyonlands: Data Recovery Excavations at the Cibolo Crossing Site (41BX377), Camp Bullis Military Reservation, Bexar County, Texas. Reports of Investigations No. 126. Prewitt and Associates, Inc., Austin.

Klein, Richard G., and L. Kathryn Cruz-Uribe

1984 The Analysis of Animal Bones from Archeological Sites. University of Chicago Press.

Kleinbach, K., G. Mehalchick, J. T. Abbott, and J. M. Quigg

Other Analyses. In *NRHP Significance Testing of 57 Prehistoric Archeological Sites on Fort Hood, Texas*, Volume II, edited by James T. Abbott and W. Nicholas Trierweiler, pp. 765–842. Archeological Resource Management Series, Research Report No. 34. United States Army Fort Hood.

Kutac, E. A., and S. C. Caran

1994 Birds and Other Wildlife of South Central Texas. University of Texas Press, Austin.

Lawrence, Ken, and Charles Frederick

2012 Geomorphology-Geoarchaeology: Site Formation and Chronostratigraphy. In Data Recovery Investigations on the Eastern Side of the Siren Site (41WM1126), Williamson County, Texas. A. Peyton, S. Carpenter, J. D. Lowe, and K. Lawrence. SWCA Cultural Resource Report No. 12-236. SWCA Environmental Consultants, Austin.

Lawrence, Ken, J. Kevin Hanselka, John D. Lowe, Christina Nielsen, and Kevin A. Miller

2013 Results of Archaeological Significance Testing at the Turkey Terrace Site (41FR70), Frio County, Texas. SWCA Environmental Consultants, Archaeological Report 12-518 Austin, Texas.

Lowther, A. C., and Werchan, Leroy E.

1978 Soil Survey of Caldwell County, Texas. United States Department of Agriculture, Washington, D.C.

Lyman, R. L.

1994 Vertebrate Taphonomy. Cambridge University Press, Cambridge.

Mackie, G., T. Morris, and D. Ming

2008 Protocol for the Detection and Relocation of Freshwater Mussel Species at Risk in Ontario-Great Lakes Area (OGLA). Canadian Manuscript Report of Fisheries and Aquatic Sciences 2790. Fisheries and Oceans Canada.

Maher, Barbara A., Roy Thompson, and Mark W. Hounslow

1999 Introduction. In *Quaternary Climates, Environments, and Magnetism*. B.A. Maher and R. Thompson (editors), pp. 1–48. Cambridge University Press. Cambridge.

Mallouf, R. J., B. J. Baskin, and K. L. Killen

1977 A Predictive Assessment of Cultural Resources in Hidalgo and Willacy Counties, Texas. Survey Report 23. Office of the State Archeologist, Texas Historical Commission, Austin.

Mauldin, R. P., and A. L. Figueroa

2006 Data Recovery Excavations at 41PR44, Fort Wolters, Parker County, Texas, Archaeological Report, No. 369, Center for Archaeological Research, University of Texas at San Antonio, San Antonio, Texas.

McCormac, F. Gerry, and Mike G. Baillie

1993 Radiocarbon to Calendar Date Conversion: Calendrical Band Widths as a Function of Radiocarbon Precision. *Radiocarbon* 35(2):311–316.

Miksicek, Charles

Formation Processes of the Archaeobotanical Record. In *Advances in Archaeological Method and Theory*, Vol. 10, edited by M. B. Schiffer, pp. 211–247. Academic Press, New York.

Mock, Cary J., and Patrick J. Bartlein

1995 Spatial Variability of Late-Quaternary Paleoclimates in the Western United States. *Quaternary Research* 44:425–433.

Mook, W. G., and H. T. Waterbolk

1985 *Handbooks for Archaeologists*, No. 3 Radiocarbon Dating. European Science Foundation, Strasbourg.

Natural Resources Conservation Service (NRCS)

Web Soil Survey 2.1. National Cooperative Soil Survey. Available at: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx. Accessed January 2018.

Nelson, D. W., and L. E. Sommers

Total Carbon, Organic Carbon, and Organic Matter. In *Methods of Soil Analysis Part 2: Chemical and Microbiological Properties*. Second Edition. A. L. Page, R. H. Miller, and D. R. Keeney (editors), pp. 539–579. American Society of Agronomy, Inc. and Soil Science Society of America, Inc. Publisher, Madison, Wisconsin.

Nickels, D. L.

2010 Stratigraphy, Chronology, and Site Formation Processes. In *Archaeological Testing at the San Marcos Springs (41HY160) for the Texas River Center, Hays County, Texas*, by David L. Nickels and C. Britt Bousman, pp. 61–82. Archaeological Studies Report No. 13. Center for Archaeological Studies, Texas State University-San Marcos, Texas.

Nordt, Lee C.

1992 Archaeological Geology of the Ft. Hood Military Reservation, Fort Hood, Texas. United States Army Fort Hood, Archeological Resource Management Series, Research Report No. 25. Prewitt & Associates, Inc. Austin, Texas.

Odell, George H.

2003 *Lithic Analysis*. Manuals in Archaeological Method, Theory, and Technique Series. Springer, New York.

Olsen, Stanley John

1973 Mammal Remains from Archaeological Sites. Papers of the Peabody Museum of Archaeology and Ethnology Volume 56, Issue 1. Harvard University.

Patterson, Leland W.

1977 An Archeological Complex in Kendall County, Texas. *La Tierra* 4(2):6–16.

Perttula, Timothy K., M. R. Miller, R. A. Ricklis, D. J. Prikryl, and C. Lintz

1995 Prehistoric and Historic Aboriginal Ceramics in Texas. *Bulletin of the Texas Archaeological Society* 66:175–235.

Perttula, Timothy K.

2008 Lake Naconiche Archeology, Nacogdoches County, Texas: Results of the Data Recovery Excavations at Five Prehistoric Sites Vol. II. Report of Investigations No. 60. Archaeological & Environmental Consultants, LLC. Austin, Texas.

Perttula, Timothy K., and Bo Nelson

2006 Test Excavations at Three Caddo Sites at Mission Tejas State Park, Houston County, Texas. Report of Investigations No. 76. Archeological & Environmental Consultants, LLC. Austin, Texas.

Peters, Clare, and Roy Thompson

1999 Supermagnetic Enhancement, Superparamagnetism, and Archaeological Soils. *Geoarchaeology: An International Journal* 14 (5): 401–413.

Petrides, G. A.

1988 Peterson Field Guides: A Guide to Eastern Trees. Houghton Mifflin Company, Boston and New York.

Prewitt, E. R.

- 1981 Cultural Chronology in Central Texas. Bulletin of the Texas Archeological Society 52:65–89.
- 1982 Archeological Investigations at the Loeve-Fox Site, Williamson County, Texas. Reprints in Archeology No. 1. Prewitt and Associates, Inc. Austin, Texas.
- 1985 From Circleville to Toyah: Comments on Central Texas Chronology. *Bulletin of the Texas Archeological Society* 54:201–238.

Ramsey, C. B.

2008 Deposition Models for Chronological Records. Quaternary Science Reviews 27:42–60.

2009 Bayesian Analysis of Radiocarbon Dates. Radiocarbon 51(1):337–360.

Ramsey, R.N., and N. P. Bade

1977 *Soil Survey of Guadalupe County, Texas.* United States Department of Agriculture, Washington, D.C.

Reitz and Wing

2008 Zooarchaeology. Cambridge Manuals in Archaeology, second edition.

Ricklis, R. A.

The Spread of Late Prehistoric Bison Hunting Complex: Evidence from the South-Central Coastal Prairie of Texas. *Plains Anthropologist* 37(140):261-273.

Ricklis, Robert A., and Michael B. Collins

1995 Archaic and Late Prehistoric Human Ecology in the Middle Onion Creek Valley, Hays County, Texas. 2 vols. Studies in Archeology No. 19. Austin: Texas Archeological Research Laboratory, University of Texas at Austin.

Rivers, J.M., J.E. Nyquist, Y. Roh, D.O. Terry Jr., and W.E. Doll

Investigation into the Origin of Magnetic Soils on the Oak Ridge Reservation, Tennessee. Soil Science of America Journal 68(5): 1772–1779.

Rodriguez, Daniel, Ken Lawrence, and Brandon S. Young

2017 Interim Report: Archaeological Investigations at 41GU177 on the Guadalupe River, Guadalupe County, Texas. SWCA Environmental Consultants. Austin, Texas.

Rosendahl, Daniel, Kelsey M. Lowe, Lynley A. Wallis, and Sean Ulm

2014 Integrating Geoarchaeology and Magnetic Susceptibility at Three Shell Mounds: A Pilot Study from Mornington Island, Gulf of Carpentaria, Australia. *Journal of Archaeological Science* 49:21–32.

Schmidly, D. J.

1983 Texas Mammals East of the Balcones Fault Zone. Texas A&M Press, College Station.

Schwalb, A., and M. Pusch

2007 Horizontal and Vertical Movements of Unionid Mussels in a Lowland River. *Journal of the North American Benthological Society* 26(2):261–272.

Shafer, H. J.

There is More to Langtry than Looks: The Uses and Abuses of Texas Point Typology. *La Tierra* 31(2):9–14.

Short, L.

Birds. In *Harper & Row's Complete Field Guide to North American Wildlife: Eastern Edition.* by Lester L. Short, S. Anderson, Patricia G. Haneline, Franklin C. Daiber, Harald A. Rehder, and Robert D. Barnes, pp. 221–306. Harper & Row Publishers, New York, Hagerstown, Philadelphia, San Francisco, Cambridge, London, Mexico City, São Paulo, and Sydney.

Simms, Stephanie R., Francesco Berna and George J. Bey, III

A Prehispanic Maya Pit Oven Microanalysis of Fired Clay Balls from the Puuc Region, Yucatan, Mexico. *Journal of Archaeological Science* 40(2):1144-57.

Simpson, B. J.

1988 A Field Guide to Texas Trees. Texas Monthly Field Guide Series. Texas Monthly Press, Austin, Texas.

Snedden, Jeffrey

2018 Legacy of Mayer China Extends Worldwide. *The Times* online. Available at: https://www.timesonline.com/7b0cf620-aa79-11e6-aefa-673d9e8dd1bd.html. Accessed July 2018.

Sorrow, W. M.

1969 Archeological Investigations at the John Ischy Site: A Burned Rock Midden in Williamson County, Texas. Papers of the Texas Archeological Salvage Project No. 18. The University of Texas at Austin.

Story, D. A.

Adaptive Strategies of Archaic Cultures of the West Gulf Coastal Plain. In *Prehistoric Food Production in North America*, edited by R. I. Ford, pp. 19–56. Anthropological Papers 75. Museum of Anthropology, University of Michigan, Ann Arbor.

Cultural History of the Native Americans. In *The Archeology and Bioarcheology of the Gulf Coastal Plain*, by Dee Ann Story, Janice A. Guy, Barbara A. Burnett, Martha Doty Freeman, Jerome C. Rose, D. Gentry Steele, Ben W. Olive, and Karl J. Reinhard, pp. 163–366. Research Series No. 38. Arkansas Archeological Survey, Fayetteville.

Struever, Stuart

1968 Flotation Techniques for the Recovery of Small-Scale Archaeological Remains. *American Antiquity* 33:353–362.

Stuiver, Minze, and Henry A. Polach

1977 Discussion: Reporting of ¹⁴C Data. *Radiocarbon* 19 (3):355–363.

Stuiver, M., and H. S. Suess

On the Relationship Between Radiocarbon Dates and True Sample Ages. *Radiocarbon* 8:534–540.

Suhm, D. A.

1960 A Review of Central Texas Archeology. *Bulletin of the Texas Archeological Society* 29:63–107.

Suhm, Dee Ann, Alex D. Krieger, and Edward B. Jelks

1954 An Introductory Handbook of Texas Archeology. *Bulletin of the Texas Archeological Society*, Vol. 25.

Suhm, Dee Ann, and Ed B. Jelks (editors)

1962 *Handbook of Texas Archeology: Type Descriptions*. Texas Archaeological Society Special Publications No. 1 and Texas Memorial Museum Bulletin No. 4. Austin.

Taylor, R. E.

- 1997 Radiocarbon Dating. In: *Chronometric Dating in Archaeology: Advances in Archaeological and Museum Science Vol. 2.* (R. E. Taylor and M. J. Aitken editors) 3:65–96. Plenum Press, New York and London.
- 2009 Six Decades of Radiocarbon Dating in New World Archaeology. *Radiocarbon* 51(1):173–212.

Taylor, F. B., R. B. Hailey, and D. L. Richmond

1991 *Soil Survey of Bexar County, Texas.* United States Department of Agriculture, Washington, D.C.

Texas Beyond History

2018 Toyah Culture. Available at:

<u>https://www.texasbeyondhistory.net/plateaus/prehistory/images/toyah.html</u>. Accessed August 2018.

Texas Parks and Wildlife Department

2018 Guidelines for Aquatic Resource Relocation Plan for Fish and Shellfish, Including Freshwater Mussels. Austin, Texas. Available at https://tpwd.texas.gov/publications/pwdpubs/media/pwd_lf_t3200_1958_arrp_guidelines_packet.pdf. Accessed August 2018.

Thompson, R., and F. Oldfield

1986 Environmental Magnetism. Allen & Unwin Press. London, Boston, and Sydney.

Thoms, Alston, Andrew R. Laurence, Laura Short, and Masahiro Kamiya

2015 Baking Geophytes and Tracking Microfossils: Taphonomic Implications for Earth-Oven and Paleodietary Research. *Journal of Archaeological Method and Theory* 22(4): 1038-1070.

Tomka, S. A.

2001 The Effect of Processing Require-ments on Reduction Strategies and Tool Form: A New Perspective. In *Lithic Debitage: Context, Form, Meaning*, edited by W. Andrefsky Jr., pp. 207–224. University of Utah Press, Salt Lake City.

Tomka, S. A., G Mehalchick, K. Kleinbach, and D. K. Boyd

1999 Methods of Investigation. In *National Register Testing of 19 Prehistoric Archeological Sites at Fort Hood, Texas: The 1995 Season*, by G. Mehalchick, K Kleinbach, D. K. Boyd, S. A. Tomka, and K. W. Kibler, pp. 21–40. Archeological Resource Management Series Research Report No. 37. United States Army, Fort Hood.

Tomka, S. A., H. J. Shafer, and R. P. Mauldin

2003 Chapter 12: Lithic Technology at 41MM340. In *Data Recovery Excavations at 41MM340: A Late Archaic Site along Little River in Milam County, Texas*, by R. B. Mahoney, S. A. Tomka, R. P. Mauldin, H. J. Shafer, L. C. Nordt, R. D. Greaves, and R. R. Galdeano, pp. 133–155. Archaeological Survey Report 340. Center for Archaeological Research, The University of Texas at San Antonio. Archeological Studies Program, Report No. 54. Environmental Affairs Division, Texas Department of Transportation, Austin.

Toomey III, Rickard S

1993 Late Pleistocene and Holocene Faunal and Environmental Changes at Hall's Cave, Kerr County, Texas. Vols. 1 and 2 Unpublished Ph.D. dissertation, Department of Geology, The University of Texas at Austin.

Toomey III, Rickard S., Michael D. Blum, and Salvatore Valastro Jr.

1993 Late Quaternary Climates and Environments of the Edwards Plateau, Texas. *Global and Planetary Change* 7:299–320.

Turner, E. S., and T. R. Hester

1999 A Field Guide to Stone Artifacts of Texas Indians. Third Edition. Texas Monthly Field Guide Series. Gulf Publishing Company, Houston, Texas.

Turner, E. S., T. R. Hester, and R. McReynolds

2011 Stone Artifacts of Texas Indians. Taylor Trade Publishing, New York.

Turpin, Jeff P.

2011 Uncommon Cooking Technologies at Two Prehistoric Sites in South-Central Texas. *Plains Anthropologist* 56(219):285-292.

Van Leusen, P. M., A. Kattenberg, and K. Armstrong

2014 Magnetic Susceptibility Detection of Small Protohistoric Sites in the Raganello Basin, Calabria (Italy). *Archaeological Prospection* (in press).

Verosub, K. L., and A. P. Roberts

1995 Environmental Magnetism: Past, Present, and Future. *Journal of Geophysical Research* 100(B2): 2175–2192.

Waters, Michael R.

1992 Principles of Geoarchaeology: A North American Perspective. University of Arizona Press, Tucson.

Wermund, Edmund G.

2018 *"Physiography of Texas,"* Bureau of Economic Geology. Available at: http://www.beg.utexas.edu/UTopia/images/pagesizemaps/physiography.pdf. Accessed February 2018.

Whittaker, J. C.

1994 Flintknapping: Making and Understanding Stone Tools. University of Texas Press, Austin.

Wiewel, Adam S., and Kenneth L. Kvamme

2014 Magnetic Investigations of Nomadic Group Encampments at Fort Clark State Historic Site, North Dakota. *Plains Anthropologist* 59(231):261–278.

Winterhalder, B., and E. A. Smith

1981 Hunter-Gatherer Foraging Strategies: Ethnographic and Archeological Analyses. University of Chicago Press, Chicago.

Data Recovery Excavations at the Snakeskin Bluff Site (41GU177)
This page intentionally left blank.

APPENDIX A

41GU177 Testing Interim Report

Interim Report: Archaeological Investigations at 41GU177 on the Guadalupe River, Guadalupe County, Texas

Texas Antiquities Permit No. 7295

November 2017

SUBMITTED TO:

VRRSP Consultants, LLC.

SUBMITTED BY:

SWCA Environmental Consultants 4407 Monterey Oaks Boulevard Building 1, Suite 110 Austin, Texas 78749

INTERIM REPORT: ARCHAEOLOGICAL INVESTIGATIONS AT 41GU177 ON THE GUADALUPE RIVER, GUADALUPE COUNTY, TEXAS

Prepared for

VRRSP CONSULTANTS, LLC.

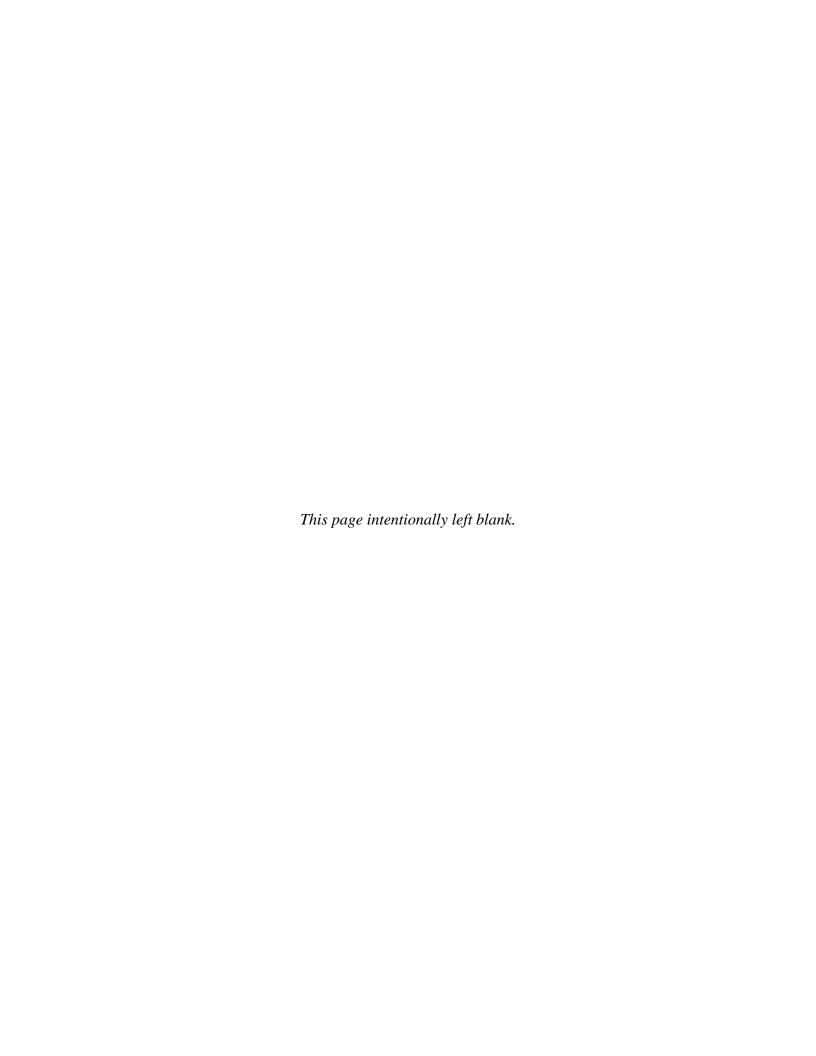
2000 NW Loop 410 San Antonio, Texas 78213

Prepared by

Daniel Rodriguez, Ken Lawrence, and Brandon S. Young

Principal Investigator Brandon Young, M.A., RPA

SWCA ENVIRONMENTAL CONSULTANTS


4407 Monterey Oaks Boulevard Building 1, Suite 110 Austin, Texas 78749

www.swca.com

Texas Antiquities Permit No. 7295

SWCA Project No. 31410

November 2, 2017

TABLE OF CONTENTS

Introduction	
Site 41GU177	1
Summary of Investigations	5
Site Setting	e
Overview of Geomorphology	
Results	8
2015 Investigations	8
2016 Investigations	10
Test Unit 1	10
Test Unit 2	10
Test Unit 3	12
Test Unit 4	13
Summary	13
2017 Investigations	14
Test Unit 1 continued	14
Test Unit 2 continued	14
Test Unit 3 continued	18
Test Unit 4 continued	18
Test Unit 5	18
Close Interval Shovel Test Data	18
Natural Strata	20
Magnetic Susceptibility	21
Summary Site Discussion	28
References	34

LIST OF FIGURES

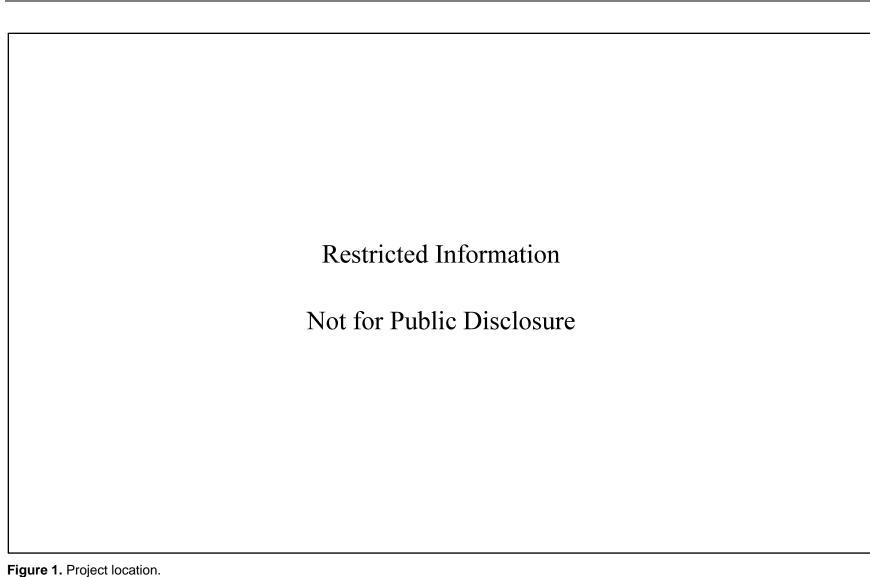
Figure 1. Project location.	2
Figure 2. Project area.	3
Figure 3. Site area.	4
Figure 4. Typical site conditions	5
Figure 5. 2015 investigations at 41GU177.	9
Figure 6. 2016 investigations at 41GU177.	11
Figure 7. Arrow points and arrow point fragments recovered from 41GU177: a–c. corner- notched, broad stem variant Scallorn arrow points; d. Scallorn preform; e. untyped arrow point fragment; f. untyped arrow point fragment; g. untyped arrow point (possible Sabinal specimen); h. Untyped arrow point preform; i–j. distal tips of an untyped arrow points; k. untyped arrow point fragment; and l. untyped arrow point fragment	12
Figure 8. Fresh water mussel shell bead fragment.	13
Figure 9. 2017 additional excavations in the proposed bore pit and adjacent work area	15
Figure 10. 2017 close interval shovel test and additional backhoe trench plots.	16
Figure 11. Artifact density plot generated from close interval shovel testing data, backhoe trench excavations, and hand excavated units	17
Figure 12. Dart point fragments recovered from 41GU177: a. Montell dart point base; b. Possible Frio or Ensor dart point fragment; and c. untyped dart point distal tip	19
Figure 13. Unifacial axe recovered from TU05 excavations	19
Figure 14. Magnetic susceptibility results from BHT04	23
Figure 15. Magnetic susceptibility results from BHT05	24
Figure 16. Magnetic susceptibility results from BHT10	25
Figure 17. Magnetic susceptibility results from BHT11	
Figure 18. BHT11 profile.	27
Figure 19. BHT11 overview. The zip-ties in the trench walls are marking artifacts	27
Figure 20. Construction options for 41GU177.	31

LIST OF APPENDICES

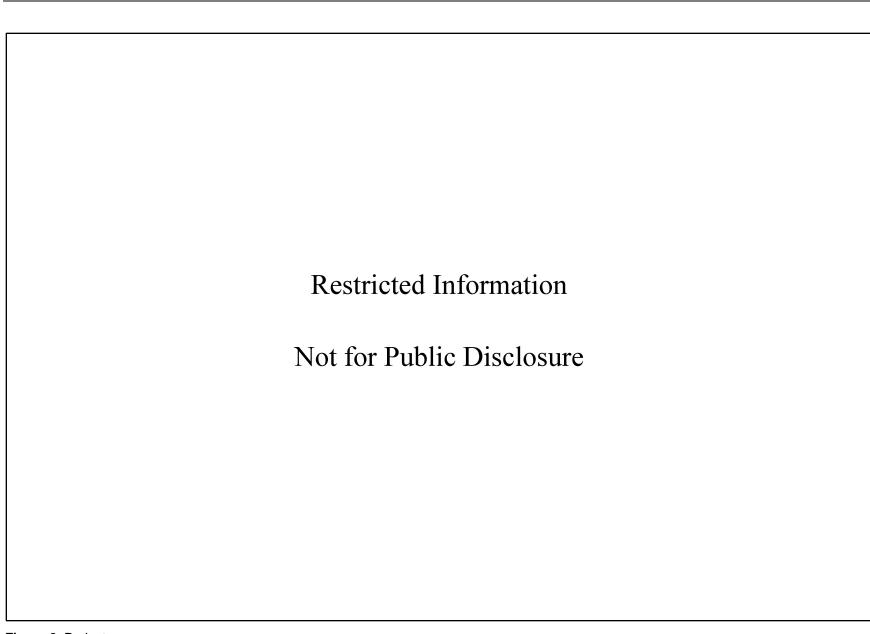
APPENDIX A Shovel Test Results

APPENDIX B Backhoe Trench Results

APPENDIX C Test Unit Specimen Inventory


Introduction

On behalf of VRRSP Consultants, LLC and the Central Texas Regional Water Supply Corporation (CTRWSC), SWCA Environmental Consultants (SWCA) has prepared this interim report to present the findings of SWCA's ongoing investigations at prehistoric site 41GU177 on project parcel 50360 (Guadalupe County) and the implications of these investigations regarding potential site preservation and/or data recovery excavations at the site. It is the professional opinion of SWCA that the site warrants State Antiquities Landmark (SAL) designation, based on the density and quality of data recovered from the site to date, as well as the overall integrity of the site's natural and cultural stratigraphy. These investigations are one component of the larger overarching cultural resources investigations for the proposed Vista Ridge Regional Water Supply (Vista Ridge) Project. The project will involve installation of a 140-mile-long, 60inch-diameter water pipeline from north-central San Antonio, Bexar County to Deanville, Burleson County, Texas (Figure 1). The project will also include three pump station locations in Guadalupe, Bastrop, and Burleson Counties. Most of the alignment will follow existing utilities and traverse undeveloped, agricultural parcels in rural settings. The area of potential effects (APE) will consist of the proposed centerline alignment and a 100-foot corridor (50 feet on either side of centerline) for temporary and permanent construction easements. Between June 2015 and the present, the cultural resources inventory has identified 69 cultural resources, including 61 archaeological sites and eight isolated finds. All investigations described in this interim report were conducted under Texas Antiquities Permit No. 7295 issued to Principal Investigator Brandon S. Young. All work has been and will continue to be conducted in accordance with the Antiquities Code of Texas (ACT).


SITE 41GU177

This report presents the results of a series of investigations at prehistoric site 41GU177 in Guadalupe County (Figure 2). Site 41GU177 is a prehistoric campsite on forested rangeland in northwestern Guadalupe County (Figure 3). The site is on the western high bank of the Guadalupe River with a 30- to 40-foot vertical drop to the river bottom to the east and gently sloping (2–5 percent slope) terrain to the west. Vegetation consists of mixed hardwood trees, large live oak trees, and moderately dense shrub undergrowth (Figure 4). Ground surface visibility ranges from 0 to 20 percent with limestone gravels and cobbles at ground surface. The Guadalupe River is the nearest natural water source, forming the eastern boundary of the site. Soils of the site consist of very dark grayish brown to brown silt loams with 1 to 5 percent inclusions. Inclusions vary with depth, but include limestone cobbles, gravels, *Rabdotus* snail shell, a variety of other snail shell, and calcium carbonates. Previous impacts to the site area include natural erosion, vegetation clearing, grading, fence lines, and residential house and drive construction.

Certain potential adverse impacts have been proposed (i.e., an approximately $300 \times 8 \times 10$ -foot construction trench, a 65×200 -foot temporary workspace, a 20- to 25-foot-wide haul road for construction activities, vegetation/tree clearing, and a horizontal directional drill [HDD] bore pit) to those portions of the site within the 85-foot-wide pipeline easement (see Figure 3). These impacts will result from work areas needed to tunnel the pipeline beneath the adjacent Guadalupe River and install the 60-inch diameter pipeline. Preliminary survey-level investigations indicated potential for intact, subsurface cultural components. As described in this interim report, SWCA conducted a series of phased survey investigations to fully assess the significance and potential eligibility of site 41GU177 for listing as a SAL.

Interim Report: Archaeological Investigations at 41GU177 on the Guadalupe River

Interim Report: Archaeological Investigations at 41GU177 on the Guadalupe River

Figure 2. Project area.

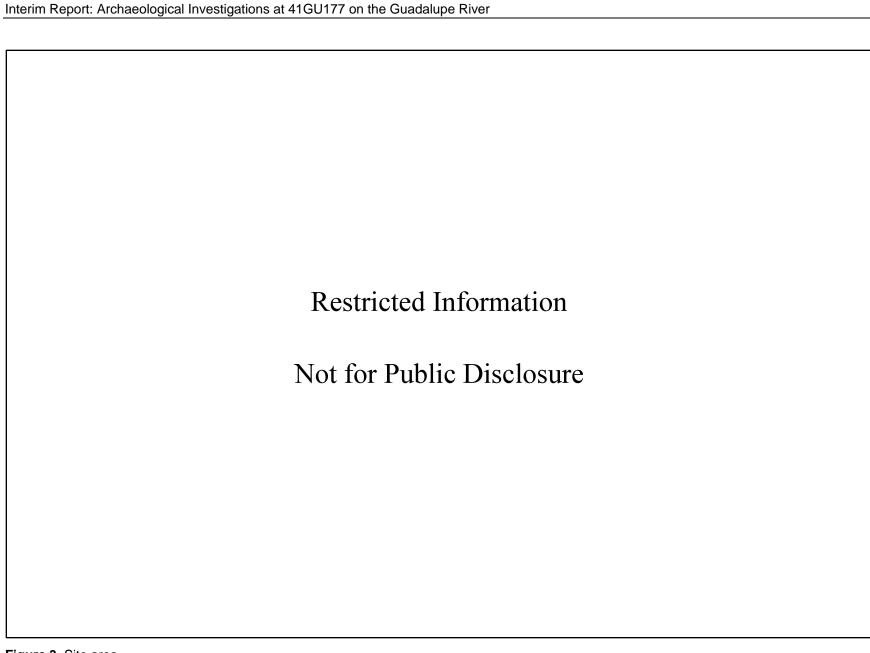


Figure 3. Site area.

Figure 4. Typical site conditions.

SUMMARY OF INVESTIGATIONS

Site 41GU177 measures 137 meters (m) northeast/southwest by 30 m northwest/southeast; however, the site likely extends to the northwest and southeast beyond the project boundaries (see Figure 3). The site was originally discovered on August 31, 2015, during SWCA's initial Phase I pedestrian survey of the proposed water pipeline alignment. Site boundaries were determined by shovel testing for subsurface cultural deposits within project area boundaries during survey efforts. SWCA initially excavated five shovel tests across the site; however, based upon the nature and depth of the soils identified at the site and the assemblage of artifacts noted during shovel testing, a second phase of survey-level investigations consisting of systematic backhoe trenching occurred at the site on October 16, 2015. Those initial backhoe excavations were limited due to landowner access and clearing restrictions (i.e., no trees could be removed or damaged); as such, the excavation of three backhoe trenches (BHT01–BHT03) occurred only where access was practical. BHT01 and BHT03 contained no cultural materials; however, BHT02, near the northeastern end of the site, contained a partially intact burned rock feature and a moderate density of chipped-stone debitage and faunal remains. Ultimately, the 2015 investigations revealed intact prehistoric subsurface cultural materials and a buried cultural feature in the northeastern/eastern portion of the site.

Given the apparent integrity of the cultural deposit and the depth of observed artifacts, SWCA recommended that a phase additional work was warranted to better explore the cultural deposits through hand excavations and to determine if the cultural deposits retained sufficient integrity to warrant SAL designation. This phase occurred on October 12–14, 2016, until work was halted at the request of the landowner. Investigations involved reopening BHT02 (and extending it for several meters), the excavation of BHT04 that intersected at a right angle with BHT02, and the hand excavation of four, 1×1-m units (Test Units [TUs] 1–4) off BHT02 and BHT04. Due to the recovery of a possible human bone from TU03 on October 13, excavations were halted to contact the Guadalupe County Sheriff's office. Ultimately, the bone was determined to be not human; however, the landowner halted all activity on the site.

Following negotiations with the landowner, the proposed easement on parcel 50360 was purchased for the project and access was again made available to the site beginning in June 2017. SWCA returned to site 41GU177 on June 28, 2017, to complete the excavation units originally established in 2016, as well as excavate two additional backhoe trenches (BHT05 and BHT06) at the location of a proposed bore pit for a planned HDD that could impact parts of the site. During the excavation of BHT05 and BHT06, *in situ* cultural materials (including a very large chipped-stone axe and burned rock) were observed in the trench profiles and SWCA excavated a fifth hand excavation unit (TU05) at the intersection of BHT05 and BHT06 to explore the artifact and burned rock feature. Following completion of the limited excavations on July 6, 2017, there was sufficient evidence to recommend that portions of the site warranted SAL designation and potentially a phase of data recovery excavations. However, due to the previous landowner access restrictions, the remaining portions of the site still needed systematic examination to determine the integrity and potential significance of those areas. To accomplish this, in August 2017, SWCA proposed a program of close interval shovel testing and additional backhoe trenching across the remaining site area.

In September and October 2017, SWCA conducted a program of close interval shovel testing followed by additional backhoe trenching at the site to better determine the nature, depth, and extent of its cultural deposits (i.e., was there more than one temporal component represented) and to ultimately refine the proposed data recovery areas. SWCA performed the close interval shovel testing to determine the presence/absence and depth of cultural materials in parts of the site that were not previously subject to intensive examination. SWCA initiated the close interval shovel testing the week of September 10, 2017, and that was completed the following week. The hand excavations involved 53 shovel tests on an approximate 10×10 m grid. One of the primary goals of the shovel testing was to excavate all shovel tests to a depth of at least 100 centimeters (cm) below ground surface (cmbs), based on the known depth of artifacts determined from previous work on the site. As artifacts were also discovered to extend to depths of 160 cmbs during the previous investigations, every fifth shovel test was extended to a depth of 200 cmbs via a hand auger, to test for more deeply buried cultural materials. The results of the close interval shovel testing and augering indicate that artifacts extend from ground surface to a maximum depth of 140 cmbs. All artifacts from the shovel tests were collected and have been processed, washed and analyzed; these artifacts will be curated with the artifacts recovered from the prior investigations, as well as the artifacts that may be collected during any potential future data recovery excavations.

Following completion of the close interval shovel testing, SWCA was scheduled to complete additional mechanical trenching on the site the week of September 24, 2017; due to heavy rains and thunderstorms, those investigations were rescheduled and completed on October 4–5, 2017. The locations of the backhoe trenches were determined by the results of the close interval shovel testing (i.e., areas where shovel testing revealed potentially deeply buried artifacts and possible cultural features). Seven additional trenches (i.e., BHT07–BHT13) were excavated across the site. These deeper excavations revealed similar stratigraphy and artifact densities to those observed during the close interval shovel testing; however, several artifacts were noted at significantly deeper depths (i.e., close to 200 cmbs) than those in the shovel tests.

Based on the results of the phased investigations at the site, SWCA has refined the location and extent of any proposed data recovery effort, focusing efforts on the more significant and intact parts of the site that may be impacted by construction-related activities. The primary objective for the proposed undertaking is to collect data that complements and expands on what is already known about the site from SWCA's prior investigations between 2015 and 2017. Following is a detailed synopsis of SWCA's phased investigations on 41GU177 between August 2015 and October 2017.

SITE SETTING

The site is located approximately 4.7 kilometers (km) (2.9 miles) north of McQueeney in Guadalupe Counties, Texas. Site 41GU177 is on the western high bank of the Guadalupe River, with a 30- to 40-foot

vertical drop to the river bottom to the east and gently sloping (2–5 percent slope) terrain to the west. SWCA's investigations were confined to the portion of the site within the project area; however, SWCA suspects the site continues beyond the limits of the project area to the east and west.

Site 41GU177 is located within forested rangeland with mixed hardwood trees, large live oak trees, and moderately dense shrub undergrowth. Ground surface visibility ranges from 0 to 20 percent, with limestone gravels and cobbles exposed on the ground surface. Vegetation clearing and grading, fence line construction, and natural erosion have impacted site integrity to varying degrees. One property fence and private cemetery borders the northwestern site boundary, and natural erosion from the high bank of the Guadalupe River has impacted the northeastern site boundary.

OVERVIEW OF GEOMORPHOLOGY

SWCA reviewed the local geology and soils as mapped by the Bureau of Economic Geology and the U.S. Department of Agriculture's Soil Conservation Service, as well as local U.S. Geological Survey (USGS) topographic maps, aerial photographs, and excavation and site profiles, which provided the basis for the general geomorphology of site 41GU177. The site is located on the right bank (west side) of the Guadalupe River, situated roughly 30 to 35 feet above the river.

The surface geology for this area indicates that the project alignment crosses Pleistocene-age terrace deposits (Barnes 1983). These deposits are characterized as gravel, sand, silt, and clay largely derived from the Edwards Plateau situated a few miles upstream (Barnes 1983). These deposits in local areas have calcium carbonate-cemented quartz sand, silt, clay, and gravel intermixed and interbedded in terraces along streams. Low terraces of major rivers are capped by 2 to 4 m of clayey sand and silt. Sandy gravel on higher terraces varies somewhat in composition from river to river.

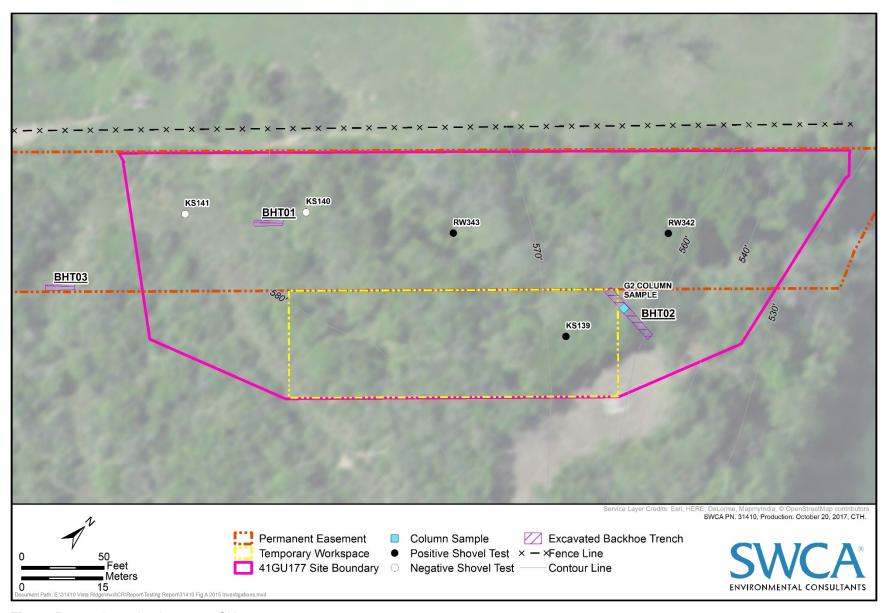
The soils at 41GU177 are mapped as Sunev loam (1 to 5 percent slopes) (Natural Resources Conservation Service 2017; Ramsey and Bade 1977). Briefly, the Sunev loams are occasionally identified as Venus loams (Sunev spelled backward) in older soil surveys (Ramsey and Bade 1977; Taylor et al. 1991). These are characterized as occurring on terraces or alluvial fans of rivers and large streams and composed of calcareous brown-dark brown loams and clay loams (Ramsey and Bade 1977; Taylor et al. 1991).

At 41GU177, the Guadalupe River is a competent drainage with an approximately 43-m-wide (142-foot) base and a slow southeast flowing channel. The Guadalupe River, as it winds past the site, has a high sinuosity ratio of 1.4 indicating that it is a sinuous waterway, which is apparent from the New Braunfels East and McQueeney 7.5-minute USGS topographic quadrangle maps (Charlton 2008:138–139). This sinuosity suggests a partially dynamic depositional history where the channel has moved laterally. In this type of setting, the lateral movement can significantly erode the deposits of outside meander bends and, in contrast, deposit significant amounts of sediment upon interior meanders (Charlton 2008). Site 41GU177 is situated on an exterior bend of a meander. Not surprisingly, the right bank of the river, below 41GU177, does not contain broad alluvial landforms.

At this location, the Guadalupe River valley is an unpaired, stair-stepped terrace system consisting of a series of alluvial terraces that bracket the drainage created by various episodes of overbank deposition (Waters 1992:149–151). The left bank (east side) of the Guadalupe River exhibits three terrace landforms that from youngest (closest to the channel) to oldest consist of the T_0 , T_1 , and T_2 terraces. In contrast, the right bank, containing 41GU177, has one apparent alluvial terrace landform (T_2).

On the right bank, the T_2 landform abruptly rises about 9.5 to 11 m (31 to 36 feet) above the Guadalupe River. The T_2 landform on both banks is broad (roughly 1 km) and gradually grades into the valley margins aligning the drainage valley. Another landform occurs upon the T_2 terrace near site 41GU177, which could

be part of the T_2 landform or remnants of an older alluvial landform (i.e., T_3). This landform parallels the Guadalupe River and is situated at roughly 580 to 585 feet above mean sea level (amsl) and about 1.5 m (5 feet) above the T_2 terrace that surrounds it. Site 41GU177 is primarily situated on the T_2 terrace between 575 to 580 feet amsl.


RESULTS

2015 Investigations

SWCA discovered 41GU177 on August 31, 2015, as part of the intensive pedestrian survey of the Vista Ridge project area. The site was initially identified by a scatter of surface artifacts (Figure 5). SWCA excavated five shovel tests (KS139–KS141 and RW342–RW343), with three (KS139 and RW342–RW343) being positive for cultural materials (Appendix A). Subsurface materials ranged from the ground surface to beyond 80 cmbs and consisted primarily of tertiary flakes with a few secondary flakes and cultural shatter also observed. Materials observed during the ground surface inspection consisted of: two fragmented untyped projectile points (not collected), five to 10 scrapers, two to four choppers, 50 to 80 primary flakes, 100 to 200 secondary flakes, and 100 to 200 pieces of lithic shatter. All lithic materials observed were composed of chert raw material types. SWCA also observed fragments of iridescent water mussel shells during shovel testing. No diagnostic materials or cultural features were observed during these initial shovel test excavations.

Due to the potential for deeply buried cultural deposits, backhoe trench investigations were then conducted at the site on October 16, 2015. A total of three backhoe trenches (BHT01– BHT03) were excavated; BHT01 and BHT02 were excavated within the site boundary and BHT03 was excavated approximately 40 m southwest of the site (see Figure 5). Due to landowner restrictions (i.e., no damage to oak trees) and the forested terrain, the placement of backhoe trenches was constrained. BHT01 and BHT03 encountered friable brown (10YR 5/3) silt loam overlying light yellowish brown (10YR 6/4) to very pale brown (10YR 7/4) silt loam with increasing gravel and pebble inclusions (Appendix B). In contrast, BHT02 encountered friable very dark grayish brown (10YR 3/2) to brown (10YR 4/3) silt loam horizons containing cultural materials separated by a sterile loose brown (10YR 4/3) silt loam horizon (see Appendix B). Artifacts in BHT02, including numerous lithic flakes and three burned rocks, which were initially observed in the trench wall profile between 0 and 60 cmbs. A second cultural horizon, containing lithic flakes and a blade, was observed from 90 to 120 cmbs.

To investigate the nature of the burned rock and determine if a cultural feature was present, a column sample was excavated off the north wall of BHT02. A total of 10 flakes, two animal bone fragments, one small piece of charcoal, and two burned rocks were recovered from the column sample between 0 and 55 cmbs (Appendix A). In addition, SWCA encountered four small- to medium-sized burned rocks (one 0–5 cm diameter and three 5–10 cm diameter) in a cluster at the base of the column sample. The feature was truncated on the south side by the backhoe; however, a large burned rock appears to continue into the column sample wall, suggesting portions of the feature may remain intact. After documentation was complete, the feature and associated artifacts were covered with soil and the trench was backfilled.

Figure 5. 2015 investigations at 41GU177.

2016 INVESTIGATIONS

SWCA revisited site 41GU177 between October 12–14, 2016, to further evaluate the site's significance and potential for deeply buried deposits through further mechanical trenching and hand excavations. SWCA reopened one of the original survey trenches (BHT02) from 2015 and excavated BHT04, which intersected BHT02 (Figure 6). These two trenches bisect each other in a cruciform formation in the eastern-most portion of the site, surrounded by the positive shovel tests and the densest amount of cultural materials observed. The trenches revealed moderately dense cultural materials and one cultural burned rock feature.

BHT02 was originally roughly 5 m long and excavated to a depth of approximately 180 cmbs during survey investigations (Appendix B). The trench was reopened and extended to the east to a total length of roughly 9 m long and approximately 122 cmbs. Most of the cultural materials were identified along the north wall profile in two cultural zones identified from 0 to 60 cmbs and 90 to 120 cmbs during survey efforts; SWCA observed a similar range and density of artifacts during the subsequent reopening of BHT02. One of the goals of reopening the trench was to locate the previously excavated column sample and truncated partial feature from previous survey investigations and to then establish a 1×1-m excavation unit over it, which was accomplished. BHT04, placed in the southwestern portion of the designated test area, was 8 m long and excavated to a depth of approximately 120 cmbs (see Figure 6). BHT04 served as an expansion of the trenching area, which allowed for the placement of test units off the east wall. Investigations in October 2016 involved the excavation of four hand excavated 1×1-m test units (i.e., TU01–TU04); SWCA excavated TU01 and TU02 along the north wall of BHT02, and excavated TU03 and TU04 along the east wall of BHT04 (see Figure 6). SWCA excavated the test units to varying depths before the landowner revoked land access on October 14, 2016.

TEST UNIT 1

TU01 was hand excavated to a depth of 150 cmbs (98.5 cm below datum [cmbd]). TU01 was located on the north wall of BHT02, west of TU02 (see Figure 6). Lithic artifacts include 80 primary lithic flakes, 128 secondary flakes, 574 tertiary flakes, a mano (ground stone artifact) fragment, two utilized flakes, an early-stage biface, a lithic core, a tested cobble, and three projectile points, as well as 75 faunal bones. The projectile points and point fragments consist of two untyped arrow point fragments (Figure 7, Specimens e and k) and one corner-notched, broad stem Scallorn arrow point variant (see Figure 7, Specimen a) (Appendix C). Other artifacts include burned rock between 20 and 90 cmbs, a burned nut shell at 70 to 80 cmbs, two fragments of burned seed at 140 to 150 cmbs, and freshwater mussel shell throughout.

TEST UNIT 2

TU02 was hand excavated to a depth of 140 cmbs (98.6 cmbd). TU02 was also located on the north wall of BHT02, east of TU01 (see Figure 6). Lithic artifacts include 129 primary lithic flakes, 217 secondary flakes, 873 tertiary flakes, two blades, one core, two utilized flakes, one hammerstone, one bifacial distal tip, and two projectile points. The projectile points and point fragments include one corner-notched, broad stem Scallorn arrow point variant (see Figure 7, Specimen b), an untyped arrow point preform that may be a Scallorn preform (see Figure 7, Specimen d), and the distal tip of an untyped arrow point (see Figure 7, Specimen i). Other artifacts include 10 animal bone fragments, a probable shell bead fragment (Figure 8), and burned rock at approximately 60 to 70 cmbs (Appendix C)

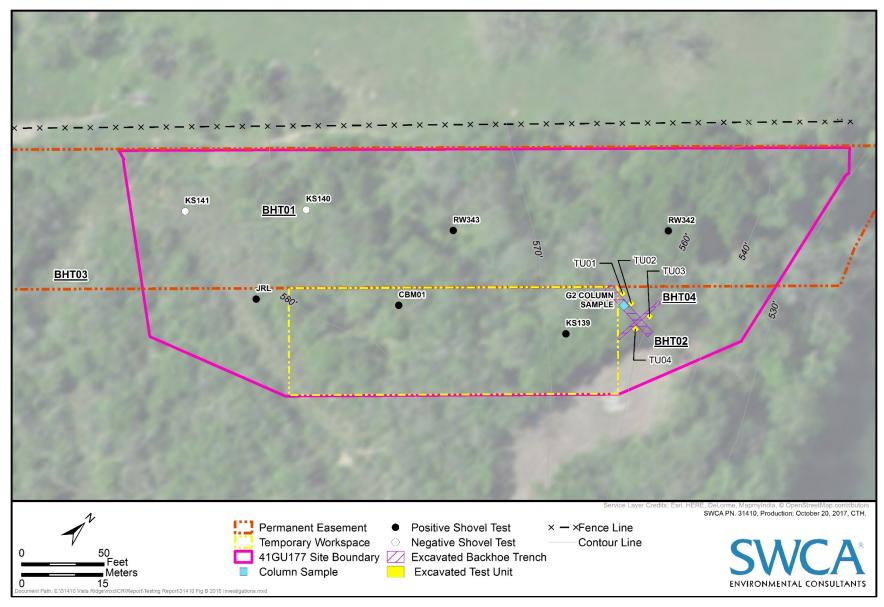


Figure 6. 2016 investigations at 41GU177.

Figure 7. Arrow points and arrow point fragments recovered from 41GU177: a–c. corner-notched, broad stem variant Scallorn arrow points; d. Scallorn preform; e. untyped arrow point fragment; f. untyped arrow point fragment; g. untyped arrow point (possible Sabinal specimen); h. Untyped arrow point preform; i–j. distal tips of an untyped arrow points; k. untyped arrow point fragment; and l. untyped arrow point fragment

TEST UNIT 3

TU03 was excavated to a depth of 40 cmbs (99.6 cmbd). The unit was located on the east wall of BHT04, just north of the intersection of BHT02 and BHT04 (see Figure 6). Lithic artifacts include nine primary flakes, 21 secondary flakes, 84 tertiary flakes, a utilized flake, several burned rocks, and one large bone initially thought to have the potential to be human (Appendix C).

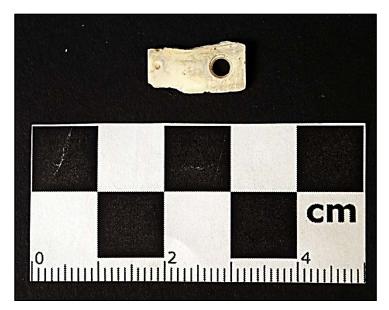


Figure 8. Fresh water mussel shell bead fragment.

Following recovery of the large bone on October 13, 2017, SWCA contacted the Guadalupe County Sheriff's Office and the landowner to inform them of the bone. The Guadalupe County Sheriff's Office assumed custody of the bone to determine if it was human and if the excavation area represented a crime scene. At this point, the landowner revoked access to the site and a 6-week process to definitively identify the bone as human or non-human began. As such, TU03 was only minimally investigated before access to the site was revoked. SWCA's osteologist initially identified the bone as potentially human based on examination of photographs; however, once the Guadalupe County Sheriff's department assumed custody of the bone, they sent photographs to an osteologist at Texas State University, who indicated the bone was not human and probably belonged to a deer. Given that there were two conflicting opinions as to whether the bone was human or not, a third opinion was solicited from osteologist Dr. Michelle D. Hamilton of Texas State University. Following her examination of the bone, Dr. Hamilton indicated that the specimen was non-human and is likely from a bovid/ungulate (i.e., cow, bison, etc.). Given that two of the three osteologists agreed that the specimen was non-human, the bone is not considered a human remain.

TEST UNIT 4

TU04 was excavated to a depth of 30 cmbs (99.7 cmbd). The unit was located on the east wall of BHT04, just south of the intersection of BHT02 and BHT04 (see Figure 6). Lithic artifacts include 27 primary flakes, 15 secondary flakes, 171 tertiary flakes, and one unifacial scraper (Appendix C). The majority of tertiary flakes came from Level 3, 20 to 30 cmbs, with a total of 145 tertiary flakes recovered. As with TU03, this unit was minimally excavated before access to the site was revoked.

SUMMARY

The phase of site assessment occurred on October 12–14, 2016, until work was halted at the request of the landowner. Due to the recovery of a possible human bone from TU03 on October 13, excavations were stopped to contact the Guadalupe County Sheriff's office. Ultimately, the bone was determined not to be human; however, the landowner had additional concerns and would not allow any further investigations.

2017 INVESTIGATIONS

SWCA returned to site 41GU177 from June 28–July 6, 2017 (following VRRSP's purchase of the easement from the private landowner), to complete the hand excavation units started in 2016 and continue to assess the site and its potential for deeply buried deposits. SWCA cleaned the four excavation units that had been left open from the prior year and continued the excavations to a maximum depth of 180 cmbs. In addition to completing the open units, investigators excavated two more trenches (BHT05 and BHT06) in a cruciform pattern to the northwest of the open excavation area, in and adjacent to the proposed bore pit for the HDD. This phase of investigations also excavated a fifth test unit (TU05) based on those results (Figure 9). After hand excavations were complete, SWCAs geoarchaeologist, Ken Lawrence (MA), conducted geoarchaeological analyses of the soil consisting of soil and stratigraphic documentation and magnetic susceptibility testing.

Following completion of hand excavations on July 6, 2017, SWCA determined that additional data from across the site was warranted to further test the site and narrow down the potential data recovery areas. SWCA returned to the site in late September and from October 4–5, 2017, to conduct systematic close interval shovel testing on a 10×10-m grid across the site to further test the depth, nature, and extent of the cultural deposits (Figure 10). During the late September 2017 mobilization, 53 shovel tests were systematically excavated across the site and, based on the results, SWCA created an artifact density plot map to illustrate where artifacts were recovered (Figure 11; Appendix A). Based on that data, additional backhoe trenches (BHT07–BHT13) were then excavated on October 4–5, 2017, to explore the site further (see Figure 10; Appendix B). SWCA also conducted additional magnetic susceptibility testing during this later phase.

As Figure 11 illustrates, there is an area of high to moderate artifact density in the north-central part of the site. The portion of the site within the high and moderate density areas appears to contain intact archaeological deposits that could be impacted during construction-related activities associated with right-of-way clearing, bore hole excavation, haul road construction and use, and machinery and equipment laydown. Based on the density of cultural materials recovered, and the degree of preservation observed in the high and moderate density areas, it is SWCA's professional opinion that the parts of 41GU177 within those areas may warrant designation as a SAL. The following provides a summary of the completed test unit excavations and additional backhoe trenching results from the 2017 investigations.

TEST UNIT 1 CONTINUED

TU01 was extended from a depth of 150 cmbs to a maximum depth of 170 cmbs (98.3 cmbd). These lower levels contained one secondary lithic flake, six tertiary lithic flakes, and five bone fragments (Appendix C). Due to the sparse number of artifacts within the lower levels, it was determined that the unit was below any occupation level and those artifacts within were likely from a secondary context, possibly due to artifact migration and/or bioturbation.

TEST UNIT 2 CONTINUED

TU02 was extended from a depth of 140 cmbs to a maximum depth of 160 cmbs (98.4 cmbd). These lower levels contained four secondary lithic flakes and three tertiary lithic flakes (see Appendix C). Like TU01, the lower excavation levels were determined to be below any occupation level, due to the paucity of artifacts, and the unit was terminated.

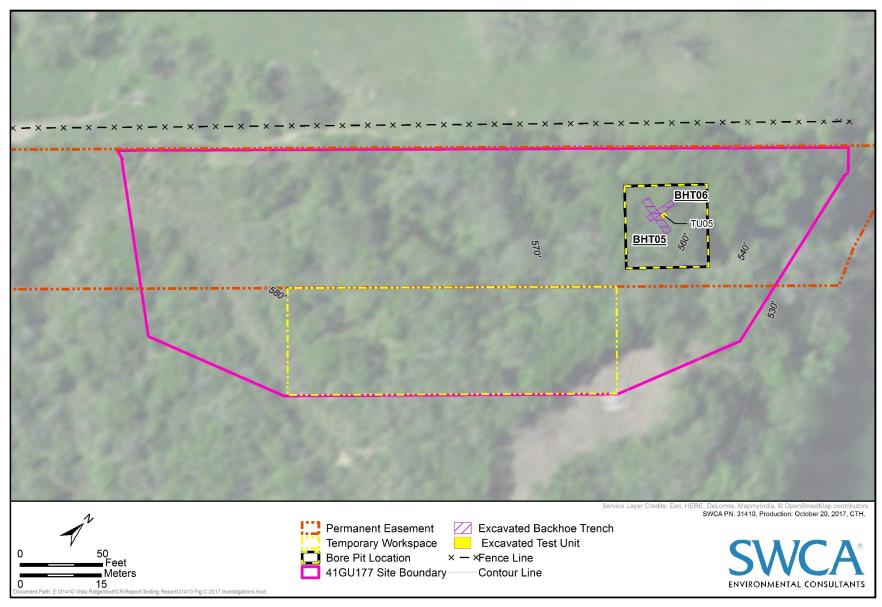


Figure 9. 2017 additional excavations in the proposed bore pit and adjacent work area.

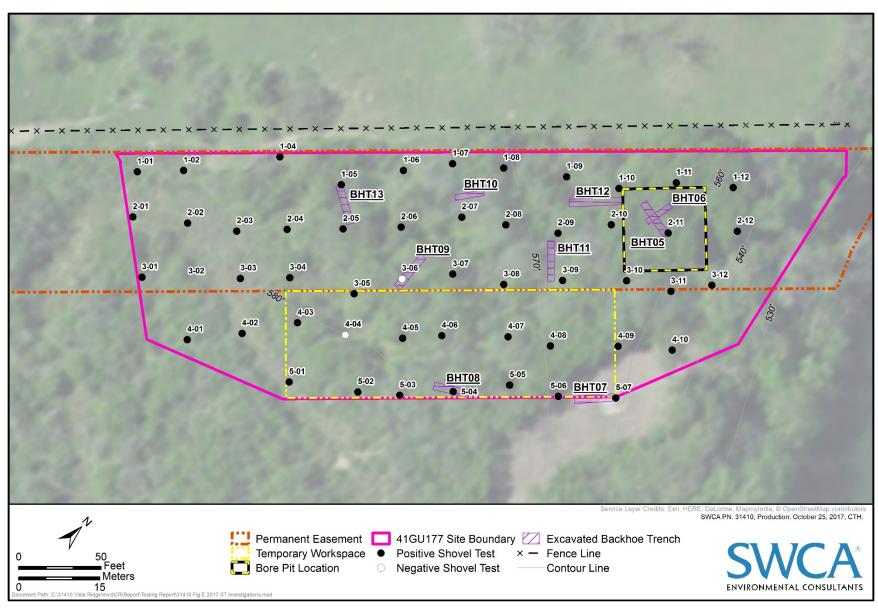


Figure 10. 2017 close interval shovel test and additional backhoe trench plots.

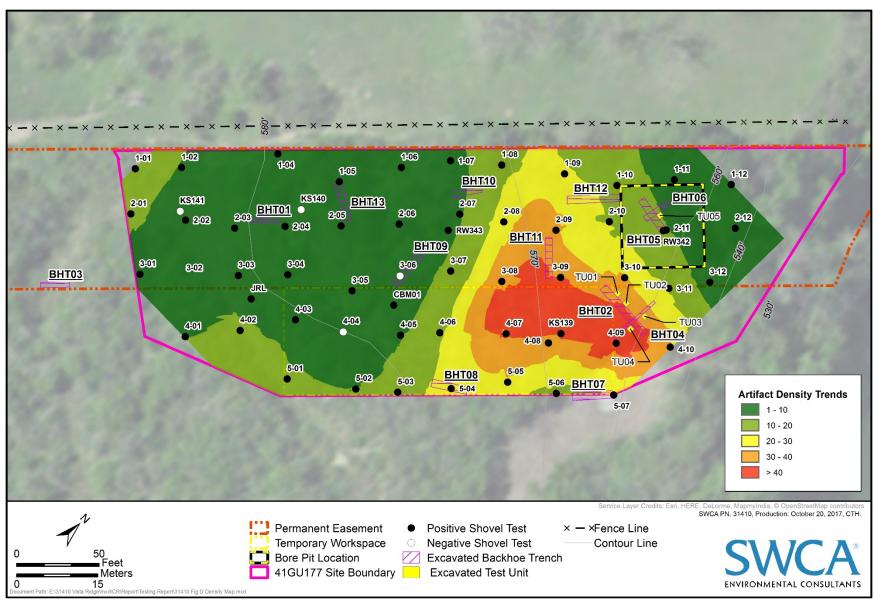


Figure 11. Artifact density plot generated from close interval shovel testing data, backhoe trench excavations, and hand excavated units.

TEST UNIT 3 CONTINUED

TU03 was continued from a depth of 40 cmbs to a maximum depth of 180 cmbs (98.2 cmbd). The prehistoric artifact assemblage of the continued levels includes 37 primary lithic flakes, 134 secondary flakes, 553 tertiary flakes, two ground stone fragments, one bifacial tool fragment, two modified flakes, one core, and three projectile points; two untyped arrow point fragments (see Figure 7, Specimens f and j) and an untyped dart point that is possibly a Frio or Ensor specimen (see Figure 12, Specimen b). Additional artifacts include 34 bone fragments and two fresh water mussel shell (Appendix C). The mussel shell was observed between 40 to 50 cmbs and 60 to 70 cmbs, while faunal bone fragments were collected throughout the levels. Like TU01 and TU02, the lower excavation levels were determined to be below any occupation level, due to the paucity of recovered artifacts and the unit was terminated.

TEST UNIT 4 CONTINUED

TU04 was continued from a depth of 30 cmbs to a maximum depth of 160 cmbs (98.4 cmbd). The prehistoric artifact assemblage of the continued levels includes 51 primary lithic flakes, 148 secondary flakes, 466 tertiary flakes, five bifacial fragments, one bifacial blank, six ground stone fragments, one utilized flake, two lithic choppers, and one untyped arrow point preform (see Figure 7, Specimen h and Appendix C). Additional artifacts include 114 bone fragments, 11 freshwater mussel shell fragments, and eight pieces of burned clay (Appendix C). The mussel shell fragments and burned clay were observed above 90 cmbs, whereas bone fragments were observed throughout the unit. Most of the unit below 50 cmbs has been heavily bioturbated by rodent burrowing activities. Excavations encountered a hollow rodent den between 50 and 60 cmbs, with numerous infilled tunnels above and below the den. Due to the heavy bioturbation and paucity of cultural material in the lower levels, excavations in TU04 was terminated.

TEST UNIT 5

TU05 was excavated at the northeastern corner of the intersection of BHT05 and BHT06. The unit was placed to investigate a small cluster of burned rocks exposed in the corner of the trenches. TU05 was excavated from surface to a depth of 110 cmbs (98.9 cmbd). The prehistoric artifact assemblage includes 15 primary lithic flakes, 29 secondary flakes, 122 tertiary flakes, one lithic core, four bone fragments, and one fresh water mussel shell fragment (Appendix C). Additionally, during excavation of BHT06, a lithic unifacial axe was uncovered on the E wall near the intersection of BHT05 and BHT06 at a depth of 65 to 70 cmbs (Figure 13). Prehistoric artifacts within the unit become sparse below 70 cmbs, and the unit was terminated at the depth of BHT05 (i.e., 150 cmbs).

CLOSE INTERVAL SHOVEL TEST DATA

During the close interval shovel testing program conducted on September 15 and 20–22, 2017, SWCA excavated a total of 53 additional shovel tests on a 10×10-m grid to further refine the subsurface data and provide a guide for the backhoe trenching that followed on October 4–5, 2017. Due to variations in the underlying eroded limestone bedrock, the 53 shovel tests ranged in depth from surficial bedrock to as deep as 250 cmbs with the aid of a hand auger. Archaeologists observed cultural material within the shovel tests on surface to a depth of 200 cmbs, with most of material located between 20 and 100 cmbs. Stratigraphy observed during the shovel testing generally correlated with the strata recorded during the previous phases of investigations (see Natural Strata discussion, below).

Figure 12. Dart point fragments recovered from 41GU177: a. Montell dart point base; b. Possible Frio or Ensor dart point fragment; and c. untyped dart point distal tip.

Figure 13. Unifacial axe recovered from TU05 excavations

Artifactual recovery from the 53 additional shovel tests consist of a total 1,027 pieces of lithic debitage, which included 47 primary flakes, 162 secondary flakes, 758 tertiary flakes, and 60 pieces of lithic shatter. Within the shovel tests of 41GU177, SWCA also recovered five projectile point fragments, one lithic core, one flake toolmodified flake, two ground stone fragments, seven pieces of faunal remains, and 108 pieces of burned rock. The projectile points recovered from these shovel tests include the base of a Montell dart point (see Figure 12, Specimen a); the distal tip of a dart point (see Figure 12, Specimen c); one cornernotched, broad stem Scallorn arrow point variant (see Figure 7, Specimen c); one translucent untyped arrow point that may be a Sabinal specimen (see Figure 7, Specimen g); and one medial section of an untyped arrow point (see Figure 7, Specimen k).

NATURAL STRATA

As previously indicated, 58 shovel tests, 13 backhoe trenches (BHT01–BHT13) and five test units (TU01–TU05) have been excavated at 41GU177 (see Figure 10). The stratigraphy is distinctly different across the site depending on topography and proximity to the Guadalupe River. Specifically, the backhoe trenches on the western end of the site (BHTs 1, 3, 9, and 13) suggest an older deposition than those trenches on the eastern portions of the site (BHTs 2, 4, 5–8, 10–12). The western trenches are situated on a landform roughly 580 to 585 feet amsl and about 1.5 m (5 feet) above the eastern trenches. These trenches contain relatively shallow CaCO₃ filaments and nodules beginning around 30 to 40 cmbs, which appear to be Pleistocene terrace deposits. The eastern trenches coincide with the T₂ terrace landform at 575 to 580 feet amsl (discussed above), whereas the western trenches are situated on the adjacent landform that could be part of the T₂ landform or remnants of an older alluvial landform (i.e., T₃). The stratigraphy in the eastern trenches have deep alluvial deposits that appear younger in age (Holocene) than the western trenches on the adjacent landforms.

EASTERN TRENCHES (T₂ TERRACE)

Overall, SWCA observed six strata in the excavations on the T₂ terrace (BHTs 2, 4, 5–8, 10–12) (see Figure 10) at 41GU177 extending to 330 cmbs. Below the 6-cm-thick root zone, the upper two horizons (Strata I and II) extending to roughly 52 cmbs are dark gray brown to brown (10YR 4/2–4/3) fine silt loam with a subangular blocky structure, friable consistency, common roots-rootlets (20–30 percent), and *Heliodiscus singleyanus* snail shell (10 percent). The second horizon (Stratum II) contains some white filaments that are interpreted to be michoryzal fungi (1 percent) and *Heliodiscus singleyanus* and *Rabdotus mooreanus* snail shell (10 percent). The lower boundary of Stratum I was clear and slightly wavy, while Stratum II was clear and smooth. Notably, the lower boundary in BHT04 was abrupt and smooth, reflecting the disturbances in the area (e.g., vegetation clearing and earth movement) that likely truncated a portion of Stratum III.

The roughly 35- to 50-cm-thick third horizon (Stratum III) begins at roughly 50 to 75 cmbs and exhibits grayish brown (10YR 5/2) silt loam with a subangular blocky structure, friable consistency; with common roots-rootlets (15 to 20 percent), common insect and worm burrows (10 to 15 percent), and white filaments that are interpreted to be michoryzal fungi (<1 percent), and *Heliodiscus singleyanus* (1 to 5 percent) and *Rabdotus mooreanus* (1 to 3 percent) snail shell. SWCA observed rare (<1 percent) subrounded cobbles at the top and bottom of this horizon. The lower boundary of Stratum III was gradual and smooth.

The roughly 50- to 70-cm thick Stratum IV begins at 75 to 85 cmbs and is brown to pale brown (10YR 5/3–6/3) silt loam with a friable consistency, a subangular blocky structure; with roots-rootlets (5 to 15 percent), insect and worm burrows (5 to 10 percent), and white filaments that are interpreted to be michoryzal fungi (<1 percent), and *Heliodiscus singleyanus* (10 percent) and *Rabdotus mooreanus* (2 percent) snail shell. The lower boundary of Stratum IV was gradual and smooth.

Stratum V generally begins at 151 cmbs and is a light yellowish brown (10YR 6/4) silt loam with a friable-loose consistency and a subangular blocky structure parting to crumb structure; with rootlets (15 percent), insect and worm burrows (5 percent), and *Heliodiscus singleyanus* (3 percent). This horizon was observed to extend to roughly 230 cmbs and had a gradual and smooth lower boundary.

The last observed stratum (VI) was observed only in BHT06 and BHT07. This horizon typically begins at roughly 230 cmbs and is a light yellowish brown to very pale brown (10YR 6/4–7/4) fine to very fine silt loam. This horizon has a friable consistency, a crumb parting to subangular blocky structure, insect burrows (10 percent), *Heliodiscus singleyanus* (<2 percent) and *Rabdotus mooreanus* (<5 percent) snail shell, and calcium carbonate (CaCO₃) filaments (3–5 percent). The lower boundary of this horizon was unobserved.

WESTERN TRENCHES (T_3 TERRACE?)

In general, SWCA observed five strata in the western excavations (BHTs 1, 3, 9, and 13) (see Figure 10) at 41GU177 extending to 253 cmbs. Notably, the upper three horizons are similar to that observed in the eastern trenches (BHTs 2, 4, 5–8, 10–12), but are thinner and shallower that the stratigraphy observed down slope.

The fourth horizon (Stratum IV) typically begins at roughly 40 to 50 cmbs and exhibits brown to light yellowish brown (10YR 5/4–6/4) silt loam with a crumb to subangular blocky structure, friable consistency; with roots-rootlets (3 to 10 percent), common (5 percent) infilled burrows containing Strat II matrix, small (3 to 4 millimeters) diameter CaCO₃ nodules (2 percent), and a gradual and smooth lower boundary.

The fifth horizon (Stratum V) begins around 80 cmbs and contains a light yellowish brown to very pale brown ($10YR\ 6/4-7/6$) silt loam with a subangular blocky structure, friable to firm consistency, rootlets (5 percent), $CaCO_3$ nodules (2 to 3 cm) diameter (3 to 5 percent) that increase in size and prevalence with depth. The lower boundary of this stratum was unobserved, extending to at least 253 cmbs. Notably, the horizon appeared to lighten in color toward a very pale brown to yellow ($10YR\ 8/4-8/6$) beginning around $140\ cmbs$.

SUMMARY OF NATURAL STRATA

In summary, the natural strata (I–VI) observed at 41GU177 suggests some disturbances localized at or near the ground surface. The disturbances are primarily associated with extensive tree root growth, possible earth movement, and erosion. The vertical extent of evident disturbance across the site varied. The excavation areas amongst extensive trees (i.e., BHT05 and BHT06) had moderate, localized disturbance to approximately 75 cmbs. In contrast, the excavation areas in proximity to existing roads and previously cleared areas (i.e., BHT02 and BHT04) displayed evidence related to vegetation clearing and earth movement. These disturbances, suggested by the abrupt lower boundary of Stratum II, were shallower (32 cmbs), but more extensive, and may have truncated the upper horizon of Stratum III. The underlying strata (Strata III–VI) across 41GU177 appears generally intact with some disturbance from tree roots and small burrows.

MAGNETIC SUSCEPTIBILITY

Magnetic susceptibility (MS) analyses of soils have been utilized in archaeological investigations for several decades, and have largely been directed toward surveys (e.g., Crowther and Barker 1995; Dalan 1996, 2008; Rosendahl et al. 2014; Van Leusen et al. 2014; Wiewel and Kvamme 2014). More recently, these investigations have focused on archaeological site formation and associated depositional processes (Dalan 2006, 2008). These analyses have assisted in identifying buried or thermally altered soils associated with cultural activities, as well as identifying the horizontal extent of cultural features (e.g., Dalan and

Banerjee 1998; Dalan and Bevan 2002; Ellwood et al. 1995; Frederick 2010; Jones and Leffler 2003; Nickels 2010; Peters and Thompson 1999; Mauldin and Figueroa 2006; Rivers et al. 2004).

Extensive reviews of the processes of environmental magnetism and particularly the application of MS have been produced (e.g., Dearing 1999a, 1999b; Gale and Hoare 1991:201-229; Maher et al. 1999; Thompson and Oldfield 1986; Verosub and Roberts 1995). Briefly, magnetic minerals are prevalent in the natural environment and are sensitive to environmental changes (Gale and Hoare 1991:202). The measurement of MS γ (Chi) is a quantification of the 'magnetisability' of the material (Dalan 2008; Dalan and Baneriee 1998; Dearing 1999b;5; Gale and Hoare 1991;202–204). The mineralogy, the size and shape of the grains, internal stress, and other factors can initially influence the susceptibility value (Dearing 1999a, 1999b; Gale and Hoare 1991:204). However, of relevance to this discussion, factors including organic content, pedogenesis, thermal alteration, and cultural activities (e.g., ash-charcoal and refuse) can subsequently alter (usually increase) the susceptibility values. The implications of using MS for archaeological research is that when examining either vertical or horizontal areas, the susceptibility values can assist in identifying cultural activities areas that may otherwise be blurred at a macro level. Horizontally, the application of MS analysis has been used to define the limits of cultural features and living spaces in excavation blocks (e.g., Mauldin and Figueroa 2006; Wiewel and Kvamme 2014). Vertically, the MS results have been applied to recognizing and delineating cultural horizons (e.g., Frederick 2010, 2012; Lawrence et al. 2013).

Notably, this form of *in situ* analysis of MS is unable to differentiate between low (χ lf) and high (χ hf) frequency (470 to 4700 Hz, respectively) and does not examine mass-specific susceptibility. Rather, the *in situ* analysis examines the volume susceptibility of a specific radius around the probe. Although not as accurate, these analyses are beneficial in that the data can be quickly collected and analyzed in real-time. Although the data derived with this type of analysis (*in situ* MS) within this setting may not provide definitive identification of cultural versus natural influences, the analysis can be informative regarding integrity of the deposits and the presence of high or low MS values. Specifically, elevated values of MS can suggest an influence by factors including organic content, pedogenesis, thermal alteration, and cultural activities (e.g., ash-charcoal and refuse). Typically, the upper horizons closer to the ground surface will have higher values of MS from the presence of organic matter. Conversely, a stable, intact profile typically has steadily decreasing MS values. Further, "wiggles" are expected in these analyses, but dramatic, sustained changes (increase or decrease) in values may suggest cultural activities or disturbance. This is particularly applicable at recognized horizon boundaries.

MS analysis of four vertical columns were conducted at 41GU177 using either *in situ* analysis or matrix analysis in the lab. The *in situ* MS analyses were conducted using a Bartington MS2F probe that collected two readings of data in 2- to 5-cm intervals down profile for each backhoe trench. Briefly, the MS2F probe is 1.5 cm in diameter and is inserted 2 cm deep into an exposed profile to collect MS readings. The MS analyses were collected down profile (ground surface to base of exposed profile) at the high sensitivity (0.1) setting at three locations (BHT4 in TU03, BHT5 near TU05, and in BHT10). Due to Occupational Safety and Health Administration (OSHA) safety requirements, these recordings were only able to examine the *in situ* profile down to a maximum depth of 180 cmbs (6 feet). In contrast, the MS analyses in the fourth column consisted of collecting matrix in 4 to 5 cm in the western profile of BHT11 (n=33).

MS RESULTS

BHT04 (TU03)

Regarding the vertical MS results in BHT4/TU03 area, the *in situ* MS values had several apparent spikes and trends (Figure 14). Examining the MS data down profile, Strata I and II exhibit dynamic fluctuations supporting the interpretation that it is disturbed from recent landform modification. The underlying

Stratum III exhibits values ranging from 30 to 40 throughout the horizon. The Stratum III results do exhibit two prominent spikes between 70 and 83 cmbs that may coincide with cultural activities. At the transition of Strata III/IV, there is a dramatic drop in values until roughly 103 cmbs. At this depth, the values spike until 130 cmbs where the values gradually decrease and transition into Stratum V. The Stratum IV elevated values between 103 and 130 cmbs is likely attributed to cultural activities. Within the underlying Stratum V, a very subtle increase in values occurs around 155 to 170 cmbs. Although intriguing, this increase in MS value is inconclusive as to whether this could be attributed to cultural activity or something else with the present data.

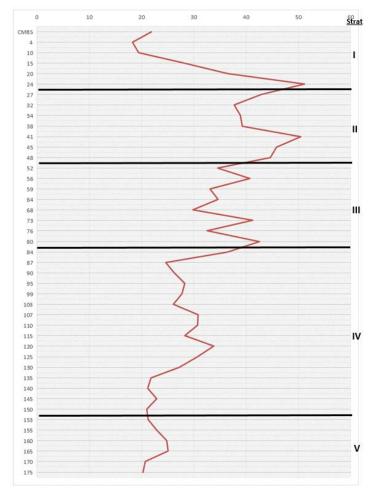
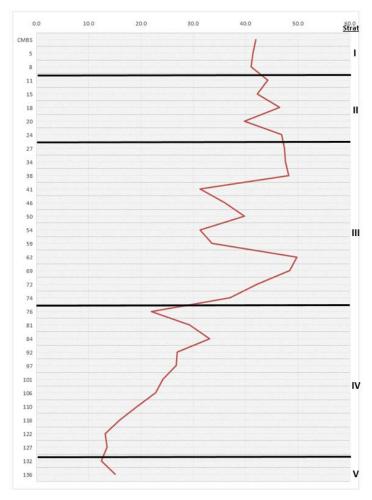



Figure 14. Magnetic susceptibility results from BHT04.

BHT05

Regarding the vertical MS results in the BHT05 area, the *in situ* MS values are similar to that exhibited in BHT04 (Figure 15). Interestingly, in Strata I and II (where tree roots and bioturbation were the most extensive) the values are high, but do not have dramatic fluctuations that may indicate a highly organic and homogenous mix. The underlying Stratum III exhibits two prominent spikes. One spike is between 27 and 46 cmbs, while the second spike is between 59 and 74 cmbs. Since these two "plateaus" are derived from several contiguous readings and separated by consistent decreases, one or both plateaus may indicate distinct cultural zones. Similar to the trends observed in BHT4, the transition between Strata III/IV exhibits a drop-in value from above 48 to below 30 and gradually decreases in values with depth. The underlying Stratum IV does have an increase in values between 81 and 92 cmbs. This plateau is like that observed in

Stratum IV of BHT04 (between 103 and 130 cmbs), as it has several contiguous readings of higher values and could suggest the presence of cultural activities. Below this slight increase and continuing into Stratum V, no evident values are present to suggest extensive cultural activities in this area. However, the beginnings of an increase in values is evident in Stratum V between 132 and 136 cmbs. This increase in MS value is inconclusive as to whether this could be attributed to cultural activity or something else with the present data.

Figure 15. Magnetic susceptibility results from BHT05.

BHT10

Regarding the vertical MS results in the BHT10 area, the *in situ* MS values are similar to that exhibited in BHT04 and BHT05 (Figure 16). The upper Strata I and II (where tree roots and bioturbation were again the most extensive) have MS values exhibiting dramatic fluctuations. This likely indicates a highly organic and disturbed mix with cultural activities present. Specifically, a fragment of fire-cracked rock was observed in Stratum II at 39 to 42 cmbs that seems to coincide with the prominent spike in MS values in the horizon (see Figure 16). The underlying Stratum III contains several prominent spikes. One spike is between 65 and 80 cmbs, while the second spike is between 95 and 115 cmbs. SWCA observed individual fragments of fire-cracked rock in Stratum III at 76 cmbs and at 103 cmbs, respectively, which coincides with these two spikes in MS value. Interestingly, there is a gradual decrease in values between Stratum III and Stratum IV, but then the MS values increase. Stratum IV has one very prominent spike in value between 135 and 145 cmbs (see Figure 16). Not surprisingly, a fragment of fire-cracked rock was observed at 139 cmbs that

coincides with the prominent spike in MS values for the horizon. Below the spike, the values steadily decrease and transition into Stratum V. This base horizon, Stratum V, contains a very subtle increase in values around 160 to 170 cmbs. Although intriguing, this increase in MS value is inconclusive as to whether this could be attributed to cultural activity or something else with the present data.

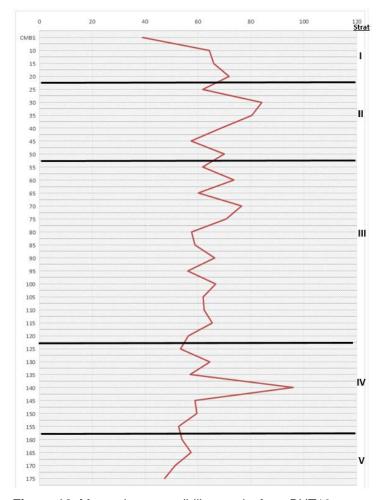


Figure 16. Magnetic susceptibility results from BHT10.

BHT11

As mentioned above, the MS analysis in BHT11 was conducted differently from the other vertical column analyses that used *in situ* analysis. The MS analysis in BHT11 utilized collected matrix from the profile that were subsequently examined in the lab. The results of the MS analysis exhibited several notable items (Figure 17). The upper Strata I and II (where tree roots and bioturbation were the most extensive) have MS values that were relatively stable with no dramatic fluctuations. These data suggest a relatively homogenous matrix. The underlying Stratum III exhibited a gradual decrease in values until 45 to 50 cmbs, where a slight increase is present. Below that, the gradual decrease in MS values continues into Stratum IV to roughly 55 to 70 cmbs, where another spike in value occurs. Below that spike in Stratum IV, the MS values steadily decrease until 120 to 125 cmbs, where a prominent spike in value occurs. At this depth in BHT11, SWCA observed a discontinuous and sloping lens of dark matrix (Figure 18). The lens (also observed in BHT12) is interpreted to be a thin cultural zone, a thin buried soil, or both. Because the lens contained at least one fragment of fire-cracked rock, it is more likely interpreted as a cultural horizon. Below the lens, the MS values decrease until 135 to 160 cmbs, where another prominent spike in MS values is evident.

Most notable about these MS value spikes is that SWCA observed scattered fragments of fire-cracked rock throughout the trench that coincided with most of these spikes. The one exception is the prominent MS value spike in Stratum V at 135 to 160 cmbs (Figure 19), where no fire-cracked rock fragments were observed in BHT11 at this depth.

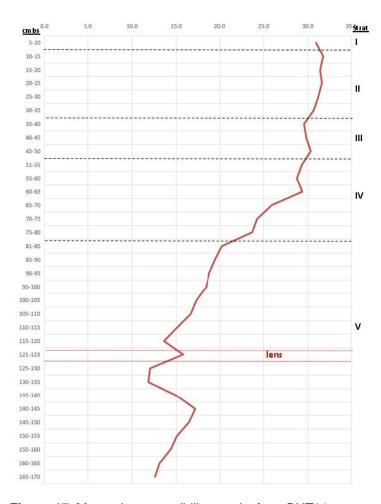


Figure 17. Magnetic susceptibility results from BHT11.

SUMMARY MS RESULTS

The results of the MS analyses at four different locations across the site provide some interesting data. When the strata and MS results of each vertical column are compared against each other, the data suggests similar factors affecting all the deposits. Specifically, in Stratum II there is an increase in MS values exhibited in BHT04, BHT10, and possibly BHT05 (see Figures 14–16). In Stratum III across all four vertical columns there is at least one plateau exhibited around 70 to 80 cmbs; conversely, this occurs at 45 to 50 cmbs in BHT11. Similarly, in Stratum IV, a consistent increase in values is exhibited at roughly 100 to 130 in BHT04, BHT05, and BHT10, while a similar spike is represented from 55 to 70 cmbs in BHT11 (see Figures 14–17). Finally, in Stratum V, an increase in MS is evident in BHT04, BHT10, and BHT11 at roughly 130 to 160 cmbs (see Figures 14–17). Although BHT05 did not extend this deep, there is the beginnings of an increase in MS values between 132 and 136 cmbs. Of note, the increase in Stratum V MS values across all trenches was not directly associated with cultural materials. This increase in MS value in Stratum V is inconclusive as to whether this could be attributed to cultural activity or something else with the present data.

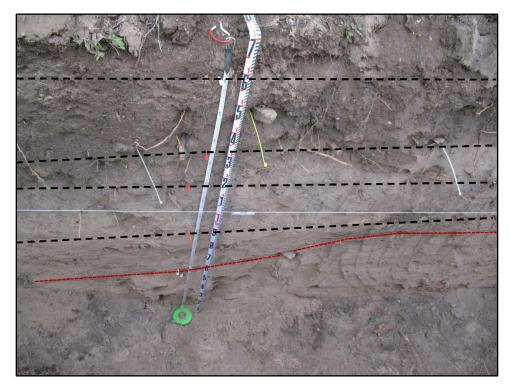


Figure 18. BHT11 profile.

Figure 19. BHT11 overview. The zip-ties in the trench walls are marking artifacts.

Overall, the data from the MS analyses suggests that although some disturbances from bioturbation and landform modification have disturbed portions of 41GU177, there does appear to be several well-defined, stratified cultural zones present.

SUMMARY SITE DISCUSSION

From the data collected to date, several data realms have been preliminarily addressed, which in turn have implications for more detailed research questions and concerns. The phased investigations have allowed preliminary determinations of the general integrity of the cultural deposits, site chronology, and potential data yield.

Based on the site's natural stratigraphy and tentatively identified cultural zones, the cultural deposits at 41GU177 are relatively intact, with some disturbances from tree roots and krotovina observed. The natural stratigraphy (Strata I–VI) observed at 41GU177 suggests some localized disturbances at or near the ground surface from previous vegetation clearing, extensive tree root growth, possible earth movement, and erosion. The vertical extent of evident disturbance across the site varies. The excavation areas amongst extensive trees (i.e., BHT05 and BHT06) exhibited moderate, localized disturbance to approximately 75 cmbs. In contrast, the excavation areas in proximity to existing roads and previously cleared areas (i.e., BHT02 and BHT04) had evidence that may be related to vegetation clearing and earth movement. These disturbances, suggested by the abrupt lower boundary of Strata II, were shallower (32 cmbs), but more extensive and may have truncated the upper horizon of Strat III. The underlying strata (III–VI) across 41GU177 appear generally intact, with some minor disturbance from tree roots and small burrows.

Investigations to date have yielded a relatively dense assemblage of cultural materials, given that only approximately 7.8 cubic meters have been hand excavated from 1×1-m test units and 3.9 cubic meters from the close interval shovel testing (for a total of 11.7 cubic meters). The total assemblage encompasses 5,406 artifacts and floral/faunal specimens, including abundant chipped-stone debitage, formal and informal chipped-stone tools (i.e., projectile points, one chipped-stone axe, utilized flakes, bifaces, etc.), ground stone specimens (i.e., mano fragments), and the well-preserved faunal and floral specimens mentioned below (Appendix C). The artifact assemblage is predominately (91 percent) debitage, with a total of 3,897 debitage specimens recovered to date from TU01–TU05 and 1,043 from the shovel testing.

As Appendix C indicates, the majority (n=4,469 [83 percent]) of the debitage assemblage reflects middle to late reduction activities, with secondary and tertiary flakes, and decorticate chips and chunks representing the bulk of the specimens. This suggests that much of the initial reduction of lithic raw materials was occurring off site at raw material source locations, which appear, based on cortex analysis, to include both fluvial gravels (i.e., corticate specimens exhibit smooth water-worn cortex) and *in situ* outcrops (i.e., corticate specimens exhibiting coarse and/or weathered cortex). Incomplete and complete bifaces (other than projectile points) are poorly represented in the assemblage. Given the preponderance of later-stage reduction debitage (particularly tertiary specimens that represent 67 percent of the debitage assemblage) and the general lack of complete and incomplete bifaces (except occasional broken preforms and the finished and broken projectile points), biface and projectile point manufacturing was a common activity on site, with the completed bifaces (complete projectile points, preforms, and Stage IV bifaces) leaving the site.

In terms of site chronology, temporally diagnostic artifacts recovered from the site to date indicate a general Late Prehistoric use of the site, including a probable Austin Phase (ca. A.D. 600–1200) occupation and hints of an earlier Transitional Archaic (ca. 200 BC to AD 600) occupation. A total of 15 projectile points or point fragments were recovered during the phased investigations. The majority (n=10) are identified as untyped arrow point fragments, whereas three specimens are typed as corner-notched, broad stemmed Scallorn arrow point variants associated with Austin phase occupations. Additional recovered arrow points,

due to missing bases or reworked bases and stems, are untyped but indicate general Late Prehistoric (ca. A.D. 600–1700) occupations. Traces of earlier site use is potentially evident in the recovery of a dart point fragment identified as belonging to the Montell type that dates to the Late Archaic (ca. 800–400 B.C.), as well as an untyped dart point fragment that may represent a Frio or Ensor type projectile point (Transitional Archaic, ca. 200 B.C. – A.D. 600).

The temporally diagnostic data, when considered in conjunction with the stratigraphic analyses and MS data, suggests site 41GU177 contains evidence for at least two stratified cultural zones with hints of possibly two additional, deeper stratified cultural zones. In the upper reaches of the deposits from roughly 45 to 80 cmbs there are several Scallorn arrow points, suggesting a probable Austin phase occupation that contains some stratigraphic disturbances as previously described. Additionally, a possible trace of an underlying Transitional Archaic occupation is marked by the presence of a possible Frio or Ensor dart point fragment, burned rock, and a spike in the MS data at a depth of approximately 60 to 80 cmbs. At this juncture, given the variable depth and thickness of the site stratigraphy and cultural zones due to undulations, data recovery would clarify the actual number of stratified cultural zones, as there is also some evidence of two possible deeper occupations, based on the presence of burned rock and spikes and dips in the MS data from roughly 120 to 150 cmbs.

Within the strata, floral and faunal preservation is good, with a total of 274 recovered faunal remains (262 bones and bone fragments, and 12 mussel shells and shell fragments) recovered from approximately 11.7 cubic meters of hand excavated sediments. TU01 yielded a burned nut shell from 70 to 80 cmbs in the upper possible Austin phase occupation, as well as two burned seed fragments from a depth of 140 to 150 cmbs in the deeper, suggest a possible Transitional Archaic occupation. The recovery of those well-preserved faunal and floral specimens suggests that additional charred macrobotanical remains are present on site that can be recovered and analyzed to help build a picture of site use and foraging strategies.

A total of 574 burned rock fragments, weighing approximately 27.1 kilograms, were recovered within the five excavation units. All the test units show a rise in burned rock count and weight at approximately 60 cmbs. In addition, TU01 and TU04 display an increase in burned rock counts and weights at approximately 90 to 100 cmbs, with TU01 and TU02 indicating a third spike in burned rock weights at 120 to 140 cmbs. Although the charred floral remains and the scattered burned rocks and burned rock fragments recovered during excavations suggest that burned rock features (i.e., hearths) were utilized on site, the densities of burned and fire-cracked rock from various excavation contexts has thus far been relatively low and specimens were typically not clustered. This may suggest some degree of disturbance, but the presence of several clustered burned rocks in BHT02 and TU01 also shows that some feature integrity remains and that additional features and/or feature remnants are anticipated. Investigations to date have not identified any evidence for large thermal features, such as a burned rock midden or slab-lined hearths, not uncommon in similar Late Archaic to Transitional Archaic and Late Prehistoric period camp sites.

Following completion of the hand excavations and additional trenching, SWCA proposes that, horizontally, the core of the site/densest cultural materials are concentrated in the area around BHT11, and extending to the east-southeast to BHT02 (TU01 and TU02) and BHT04 (TU03), with TU04 containing compromised data from extensive bioturbation stemming from rodent activities (see Figure 11). The TU05 area exhibits a significantly lower artifact density than the BHT02, BHT04, and TU01–TU03 areas; however, excavations there were halted at 110 cmbs, due to time constraints. Similarly, the excavation of close-interval shovel tests and BHT07–BHT10 to the south and west of BHT11 did not identify a high density of cultural materials. Vertically, cultural materials in the upper 50 to 75 cm (0 to 75 cmbs) exhibit some disturbance from tree roots, rodents, and, in some areas, mechanical impacts from prior vegetation clearing. Below 75 cmbs, the natural stratigraphy and cultural materials appear relatively intact and have a potential to contain significant intact cultural deposits when considered in conjunction with the stratigraphic,

artifactual, and MS data collected from the site to date. Based on these data, it is the opinion of SWCA that the site warrants listing as a SAL.

To reiterate, construction impacts to 41GU177 would include the excavation and use of the 50×50-ft bore pit area for tunneling the adjacent Guadalupe River, open cut trenching, a 65×200-ft temporary work space, and a temporary haul road for construction activities. Based on the recovered data, the north-central portions of the site, in SWCA's opinion, represent the core of the potentially significant cultural deposits. In contrast, the parts of the site west-southwest of STs 1-08, 2-08, 3-07, and 4-06 are low artifact density areas with poor preservation and few cultural materials that, in the opinion of SWCA, do not contribute to the site's overall potential SAL eligibility; as a result, SWCA recommends no further investigations are warranted for the southern two-thirds of the site.

Understanding the sensitive nature of the cultural deposits at 41GU177, VRRSP have developed two construction options to minimize construction impacts to the core of the site considered potentially significant by SWCA; Figure 20 was prepared by VRRSP to illustrate those options. As Figure 20 displays, VRRSP has arbitrarily labeled the moderate to high density artifact concentration areas within the existing easement and proposed temporary workspace as Area A. In addition, Area B on the figure denotes portions of the planned construction centerline and associated impact area, while Area C represents a small area that VRRSP proposes does not need additional work as it would be outside of any surface (i.e., haul road) and subsurface construction impacts, and has been previously investigated. The two construction options (1 and 2) and their respective steps are presented below:

Option 1—Open Cut Trenching Through the Site

- 1. Vegetation would be mechanically cleared in Areas A and B using a rubber-tired grinder (feller-buncher) to not disturb the ground surface and subsurface.
- 2. Area A would be covered with geotechnical fabric to establish a boundary between the existing ground surface and a 1-foot-thick cap of fill would be placed over the geotechnical fabric to avoid subsurface impacts. An archaeological monitor would be present; the contractor would be responsible for ensuring there would be no impacts to the ground surface and subsurface.
- 3. Bore pit excavation would proceed, as well as installation of pipe via the open trench in Area B; all areas would then be backfilled upon completion.
- 4. The protective cap of fill and geotechnical fabric would be carefully removed from Area A with an archaeological monitor present; the contractor would be responsible for ensuring there would be no impacts to the ground surface and subsurface.

Option 2—Tunneling and Limited Open Cut Trenching:

- 1. Vegetation would be mechanically cleared in Areas A and B using a rubber-tired grinder (feller-buncher) to not disturb the ground surface and subsurface.
- 2. Areas A and B would be covered with geotechnical fabric to establish a boundary between the existing ground surface and a 1-foot-thick cap of fill to be placed over the geotechnical fabric to avoid subsurface impacts.
- 3. Contractor excavates bore pit, installs tunnel, installs pipe via open trench to the southwest of the delineated sensitive site area, and backfills all areas. The top of the tunnel casing pipe will be at least 6.5 feet below the existing ground surface to avoid disruption to the lower cultural deposits. Potentially significant cultural deposits along the centerline within Area B are therefore avoided.
- 4. The protective cap of fill and geotechnical fabric would be carefully removed from Area A with an archaeological monitor present; the contractor would be responsible for ensuring there would be no impacts to the ground surface and subsurface.

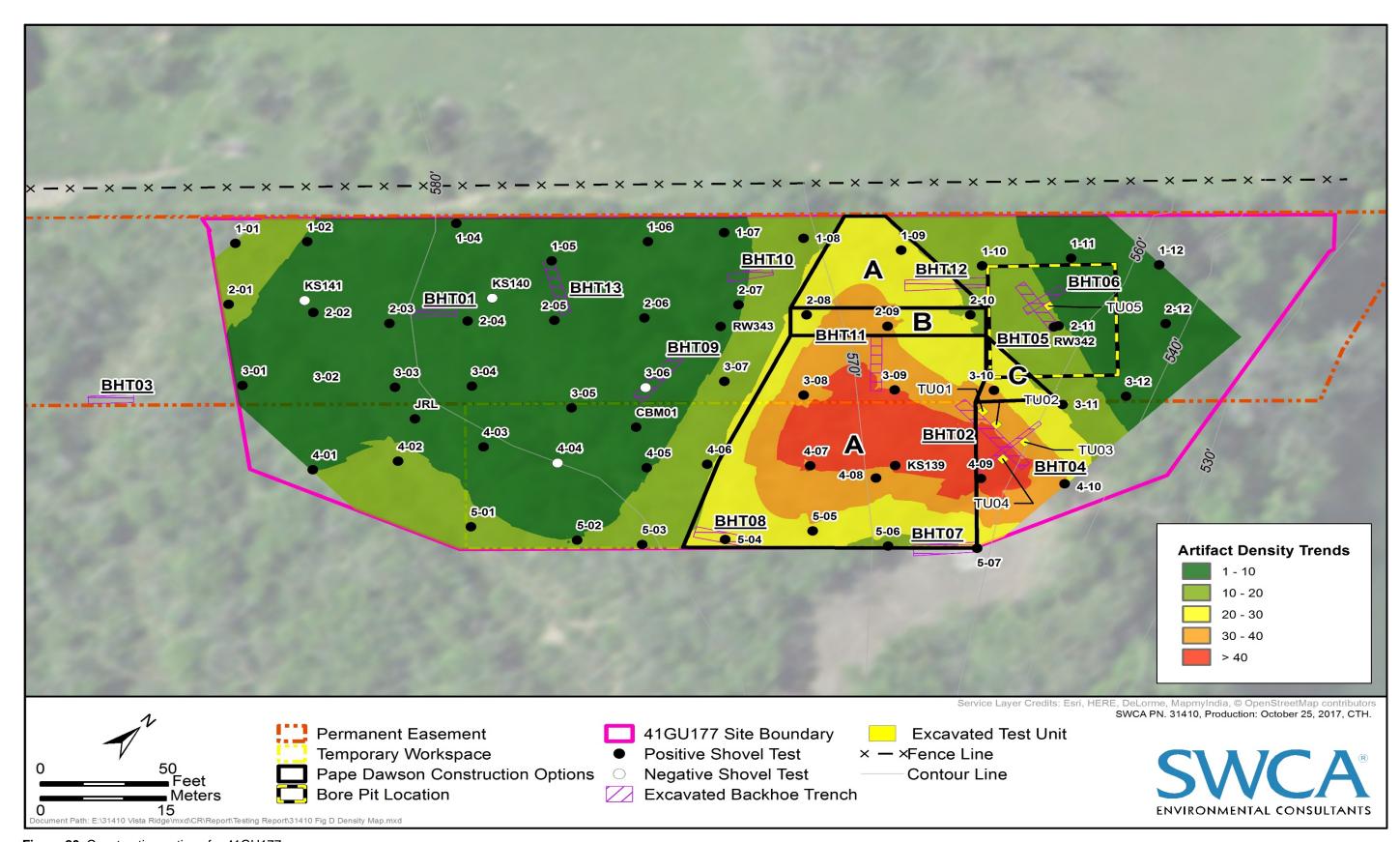


Figure 20. Construction options for 41GU177.

Given the silty soils on the site, the option to cap the site with fill must consider the potential effects of soil compaction on those cultural materials buried close to the surface. Site capping or burial involves carefully covering an archaeological site with fill to allow project construction or other activities to proceed unimpeded over the site. However, site capping is only an appropriate mitigative measure when it can be demonstrated that important site data will not be lost through soil compaction, accelerated decomposition, horizontal displacement of cultural materials, or changes in soil chemistry. Investigations to date on 41GU177 suggest that approximately the upper 75 centimeters of the site have experienced some localized impacts from bioturbation (i.e., tree roots and burrowing animals) and mechanical impacts during vegetation clearing; however, the extent of the impacts appear moderate and there remain partially intact cultural deposits that should be protected, if the site is capped with fill.

RECOMMENDATIONS

Given the chronological data currently available from the site, the relative degree of intactness of the natural stratigraphy and cultural deposits, good macrobotanical preservation, and the types and densities of cultural materials recovered during the phased investigations, site 41GU177 appears to have the potential to yield new or important data regarding the Late Prehistoric period from the eastern margins of the Balcones Escarpment. Additionally, the deeper cultural occupation(s) may represent a Transitional Archaic use of the site and may provide valuable information concerning the shift from the Transitional Archaic to the Late Prehistoric period. Based on these data, it is the opinion of SWCA that the site is eligible for listing as a SAL and therefore warrants data recovery in the areas described above, if construction impacts cannot be avoided.

Complete avoidance of the site is currently not possible. The parts of the site west-southwest of STs 1-08, 2-08, 3-07, and 4-06 are low artifact density areas with poor preservation and few cultural materials that, in SWCA's opinion, do not contribute to the site's overall potential SAL eligibility; as a result, no further investigations are recommended for this area. In contrast, the north-central portions of site 41GU177 exhibit a much higher density of cultural materials and good stratigraphic integrity and faunal and floral preservation; this area is associated with tunneling of the Guadalupe River (adjacent to the site) and, in SWCA's opinion, additional investigations are warranted in the bore pit, associated temporary work space, and a proposed haul road.

Although the bore pit area exhibits a relatively lower artifact density, only one controlled hand unit was excavated to a depth of 110 cmbs within the bore pit area; BHTs 5 and 6 were excavated for exploratory purposes. The presence of the unusual unifacial, large chipped-stone axe and potentially associated burned and fire-cracked rocks from TU05 suggests an entirely different activity from the other site activity areas (i.e., tool manufacture and possible mussel shell work areas) may have occurred in the bore pit area. Data recovery here would provide a sample from outside the presumed concentrated core of the site (where multiple living surfaces may be compressed), providing access to potentially more discrete activities and isolable components. Initial MS data collected from BHT 5 also suggests that there is a potential for deeper cultural deposits in this area. As there was a time limitation influencing the work in the bore pit area, we do not feel it has been adequately sampled, considering the potential for the complete destruction of this 50×50 -foot area due to the bore excavation. Including portions of this area for data recovery would allow a further sample of the location; if initial data recovery excavations there determined the location to not be as productive, or the activity areas poorly defined, investigations would then be halted for lack of data.

Based on all the available data collected to date, it is the opinion of SWCA that the cultural deposits at 41GU177 within the identified high and moderate density area in the north-central part of the site (including the bore pit area) is eligible for SAL designation and warrants some level of data recovery investigations and/or measures to minimize site impacts prior to the potential construction impacts. Successful solutions for the treatment of 41GU177 will require discussions amongst VRRSP, SWCA, and THC to ensure a

balance between construction needs and schedule, and regulatory compliance. For both construction options, technical discussions will be necessary with THC to address the proposed temporary capping of the site with fill to ensure an appropriate process and suitable materials are used to preserve portions of the site in place, should that be determined a feasible option.

REFERENCES

- Ashman, M. R. and G. Puri
 - 2002 Essential Soil Science: A Clear and Concise Introduction to Soil Science. Blackwell Publishing, Malden, MA.
- Barnes, V. E.
 - 1983 *Geologic Atlas of Texas: San Antonio Sheet.* Robert Hamilton Cuyler Memorial Edition, Bureau of Economic Geology, University of Texas, Austin.
- Charlton, R.
 - 2008 Fundamentals of Fluvial Geomorphology, Routledge, London and New York.
- Crowther, J., and P. Barker
 - 1995 Magnetic Susceptibility: Distinguishing Anthropogenic Effects from the Natural. *Archaeological Prospection* 2:207–215.
- Dalan, R. A.
 - 1996 Soil Magnetism, An Approach for Examining Archaeological Landscapes. *Geophysical Research Letters* 23(2): 185–188.
 - 2006 Magnetic Susceptibility. In *Remote Sensing in Archaeology: An Explicitly North American Perspective*. J. Johnson, M. Giardano, and K. Kvamme (editors), pp. 161–203. University of Alabama Press, Tuscaloosa, Alabama.
 - A Review of the Role of Magnetic Susceptibility in Archaeologeophysical Studies in the USA: Recent Developments and Prospects. *Archaeological Prospection* 15: 1–31.
- Dalan, Rinita A. and Subir K. Banerjee
 - 1998 Solving Archaeological Problems Using Techniques of Soil Magnetism. *Geoarchaeology: An International Journal* 13: 3–36.
- Dalan, R. A. and B. W. Bevan
 - 2002 Geophysical Indicators of Culturally Embraced Soils and Sediments. *Geoarchaeology: An International Journal* 17 (8): 779–810.
- Dearing, J.
 - 1999a Magnetic Susceptibility. In *Environmental Magnetism: A Practical Guide*. J. Walden, F. Oldfield, and J. Smith (editors), pp. 35–62. Technical Guide No. 6. Quaternary Research Association, London.
 - 1999b *Environmental Magnetic Susceptibility Using the Bartington MS2 System.* Available at: http://www.gmw.com/magnetic properties/MS2 support.html. Accessed 10/20/17.
- Ellwood, B. B., D. E. Peter, W. Balsam, and J. Schieber.
 - 1995 Magnetic and Geochemical Variations as Indicators of Palaeoclimate and Archaeological Site Evolution: Examples from 41TR68, Fort Worth, Texas. *Journal of Archaeological Science* 22: 409–415.
- Frederick, Charles D
 - 2010 Geoarchaeological Investigations. In *Archaeological Data Recovery on Three Sites Along the San Antonio River, Bexar County, Texas*, by Antonio E. Padilla and David L. Nickels, pp. 449–462. Ecological Communications, Corporation, Austin, Texas.

2012 Site Formation Processes and Implications for Archeology in the South Fork of the San Gabriel. In The Siren Site (41WM1126) and the Long Transition from Archaic to Late Prehistoric Lifeways on the Eastern Edwards Plateau, Williamson County, Texas, by Steve Carpenter, Kevin A. Miller, Brett Houk, Mary Jo Galindo, Charles Frederick, John Lowe, Ken Lawrence, Kevin Hanselka, and Abby Peyton, pp. 8-1–8-24. SWCA Environmental Consultants, Austin, Texas.

Gale, S. J. and P. G. Hoare

1991 *Quaternary Sediments: Petrographic Methods for the Study of Unlithified Rocks.* Bellhaven Press and Halsted, Press, New York and Toronto.

Jones, R. S., and J. J. Leffler

2003 Phase I and II Archaeological Investigations on Camp Mabry, Travis County, Texas, Archaeological Studies Report No. 2. Center for Archaeological Studies, Texas State University-San Marcos, Texas.

Lawrence, Ken, J. Kevin Hanselka, John D. Lowe, Christina Nielsen, and Kevin A. Miller

2013 Results of Archaeological Significance Testing at the Turkey Terrace Site (41FR70), Frio County, Texas. SWCA Environmental Consultants, Archaeological Report 12-518 Austin, Texas.

Maher, Barbara A., Roy Thompson, and Mark W. Hounslow

1999 Introduction. In *Quaternary Climates, Environments, and Magnetism*. B.A. Maher and R. Thompson (editors), pp. 1–48. Cambridge University Press. Cambridge.

Mauldin, R. P., and A. L. Figueroa

2006 Data Recovery Excavations at 41PR44, Fort Wolters, Parker County, Texas, Archaeological Report, No. 369, Center for Archaeological Research, University of Texas at San Antonio, San Antonio, Texas.

Natural Resources Conservation Service (NRCS)

Web Soil Survey 2.1. National Cooperative Soil Survey. Available at: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx, Accessed July 2017.

Nickels, D. L.

2010 Stratigraphy, Chronology, and Site Formation Processes. In *Archaeological Testing at the San Marcos Springs* (41HY160) for the Texas River Center, Hays County, Texas, by David L. Nickels and C. Britt Bousman, pp. 61–82. Archaeological Studies Report No. 13. Center for Archaeological Studies, Texas State University-San Marcos, Texas.

Peters, Clare, and Roy Thompson

1999 Supermagnetic Enhancement, Superparamagnetism, and Archaeological Soils. *Geoarchaeology: An International Journal* 14 (5): 401–413.

Ramsey, R.N. and N. P. Bade

1977 Soil Survey of Guadalupe County, Texas. United States Department of Agriculture, Washington, D.C.

Rivers, J.M., J.E. Nyquist, Y. Roh, D.O. Terry Jr., and W.E. Doll

2004 Investigation into the Origin of Magnetic Soils on the Oak Ridge Reservation, Tennessee. *Soil Science of America Journal* 68(5): 1772–1779.

Rosendahl, Daniel, Kelsey M. Lowe, Lynley A. Wallis, and Sean Ulm

2014 Integrating Geoarchaeology and Magnetic Susceptibility at Three Shell Mounds: A Pilot Study from Mornington Island, Gulf of Carpentaria, Australia. *Journal of Archaeological Science* 49:21–32.

Taylor, F. B., R. B. Hailey, and D. L. Richmond

1991 *Soil Survey of Bexar County, Texas.* United States Department of Agriculture, Washington, D.C.

Thompson, R. and F. Oldfield

1986 Environmental Magnetism. Allen & Unwin Press. London, Boston, and Sydney.

Van Leusen, P. M., A. Kattenberg, and K. Armstrong

2014 Magnetic Susceptibility Detection of Small Protohistoric Sites in the Raganello Basin, Calabria (Italy). *Archaeological Prospection* (in press).

Verosub, K. L. and A. P. Roberts

1995 Environmental Magnetism: Past, Present, and Future. *Journal of Geophysical Research* 100(B2): 2175–2192.

Waters, Michael R.

1992 Principles of Geoarchaeology: A North American Perspective. University of Arizona Press, Tucson.

Wiewel, Adam S., and Kenneth L. Kvamme

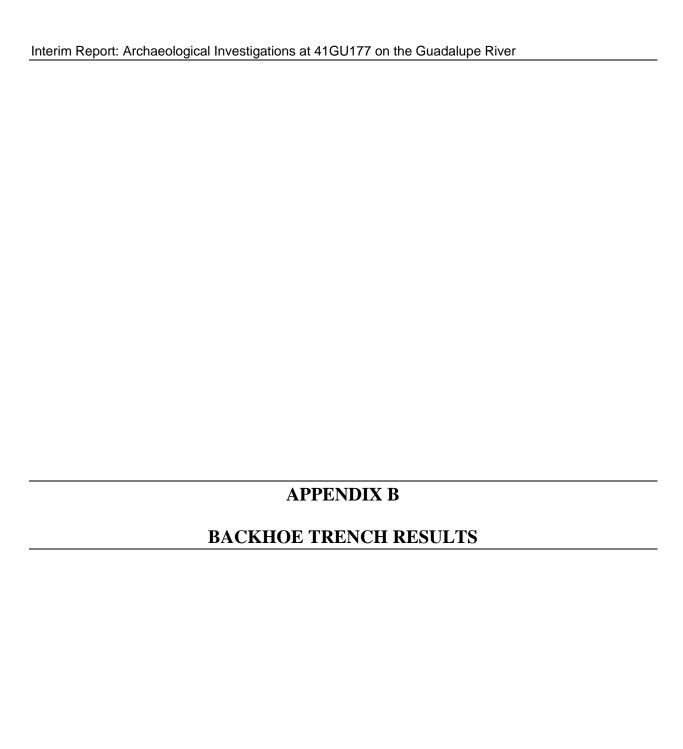
2014 Magnetic Investigations of Nomadic Group Encampments at Fort Clark State Historic Site, North Dakota. *Plains Anthropologist* 59(231):261–278.

Interim Repo	ort: Archaeologica	l Investigations a	t 41GU177 on	the Guadalupe	River	
		AF	PENDIX A	1		
		SHOVEI	L TEST RE	SIILTS		
		<u> </u>		BCLID		

ST	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
1-1	1	0-10	Debitage	Tertiary	Lithic	1	1.94	JU	9/18/2017	
1-1	3	20-30	Debitage	Primary	Lithic	2	3.03	JU	9/18/2017	
1-1	3	20-30	Debitage	Secondary	Lithic	1	3.37	JU	9/18/2017	
1-1	3	20-30	Debitage	Tertiary	Lithic	3	1.52	JU	9/18/2017	3 bifacial thinning flakes
1-1	4	30-40	Debitage	Secondary	Lithic	1	0.37	JU	9/18/2017	1 bifacial thinning flake
1-1	4	30-40	Debitage	Tertiary	Lithic	5	1.38	JU	9/18/2017	4 bifacial thinning flakes
1-1	5	40-50	Debitage	Secondary	Lithic	1	0.77	JU	9/18/2017	,
1-1	5	40-50	Debitage	Tertiary	Lithic	5	1.71	JU	9/18/2017	4 bifacial thinning flakes
1-1	6	50-60	Debitage	Tertiary	Lithic	4	0.94	JU	9/18/2017	4 bifacial thinning flakes
1-2	2	10-20	Debitage	Secondary	Lithic	1	5.16	JU	9/18/2017	1 bifacial thinning flake
1-2	2	10-20	Debitage	Tertiary	Lithic	1	0.17	JU	9/18/2017	1 bifacial thinning flake
1-2	5	40-50	Debitage	Tertiary	Lithic	2	0.91	JU	9/18/2017	1 bifacial thinning flake
1-2	6	50-60	Debitage	Secondary	Lithic	1	0.24	JU	9/18/2017	1 bifacial thinning flake
1-2	6	50-60	Debitage	Tertiary	Lithic	1	1.78	JU	9/18/2017	1 bifacial thinning flake
1-4	1	0-10	Glass	Colorless	Glass	1	2.61	JU	9/18/2017	1 blidelal tillilling liake
1-4	1	0-10	Glass	Milk	Glass	3	4.55	JU	9/18/2017	
1-4	2		Glass	Colorless	Glass	2	1.25	JU		
1-4	2	10-20 10-20	Glass	Milk	Glass	1	1.47	JU	9/18/2017 9/18/2017	
	-		ł							
1-4	3	20-30	Glass	Colorless	Glass	2	3.84	JU	9/18/2017	
1-4	3	20-30	Glass	Milk	Glass	1	0.48	JU	9/18/2017	4 hife sight things in - fl-1;-
1-4	3	20-30	Debitage	Tertiary	Lithic	1	1.76	JU	9/18/2017	1 bifacial thinning flake
1-4	4	30-40	Glass	Colorless	Glass	1	0.9	JU	9/18/2017	417 111 1 7
1-5	1	0-10	Debitage	Tertiary	Lithic	2	0.49	JU	9/18/2017	1 bifacial thinning flake
1-5	2	10-20	Debitage	Tertiary	Lithic	1	0.29	JU	9/18/2017	
1-6	7	60-70	Debitage	Secondary	Lithic	1	8.32	JU	9/18/2017	1 bifacial thinning flake
1-6	8	70-80	Debitage	Secondary	Lithic	1	1.07	JU	9/18/2017	
1-6	9	80-90	Burned Rock	Burned Rock	Lithic	2	4.33	JU	9/18/2017	
1-7	3	20-30	Debitage	Tertiary	Lithic	2	0.33	JU	9/18/2017	
1-8	2	10-20	Debitage	Tertiary	Lithic	1	0.95	JU	9/18/2017	1 bifacial thinning flake
1-8	3	20-30	Debitage	Tertiary	Lithic	1	0.46	JU	9/18/2017	1 bifacial thinning flake
1-8	4	30-40	Debitage	Secondary	Lithic	1	0.86	JU	9/18/2017	
1-8	4	30-40	Debitage	Tertiary	Lithic	2	0.57	JU	9/18/2017	2 bifacial thinning flakes
1-9	1	0-10	Debitage	Tertiary	Lithic	1	2.34	JU	9/18/2017	1 bifacial thinning flake
1-9	5	40-50	Faunal Remains	Bone		3	2.25	JU	9/18/2017	
1-9	6	50-60	Debitage	Secondary	Lithic	1	22.86	JU	9/18/2017	
1-9	6	50-60	Debitage	Tertiary	Lithic	1	0.91	JU	9/18/2017	1 bifacial thinning flake
1-9	7	60-70	Debitage	Primary	Lithic	1	0.23	JU	9/18/2017	
1-9	7	60-70	Debitage	Tertiary	Lithic	1	0.24	JU	9/18/2017	1 bifacial thinning flake
1-9	8	70-80	Debitage	Tertiary	Lithic	1	0.47	JU	9/18/2017	
1-9	9	80-90	Debitage	Tertiary	Lithic	1	0.47	JU	9/18/2017	1 bifacial thinning flake
1-10	1	0-10	Debitage	Tertiary	Lithic	1	0.19	JU	9/27/2017	_
1-10	2	10-20	Debitage	Primary	Lithic	1	15.98	JU	9/27/2017	
1-10	4	40-50	Faunal Remains	Mussel Shell	Shell	1	7.27	JU	9/27/2017	Complete
1-10	4	40-50	Debitage	Secondary	Lithic	1	11.03	JU	9/27/2017	1 bifacial thinning flake
1-10	4	40-50	Debitage	Tertiary	Lithic	1	0.07	JU	9/27/2017	3 2
1-10	8	70-80	Debitage	Secondary	Lithic	1	2.15	JU	9/27/2017	
1-11	6	50-60	Faunal Remains	Mussel Shell	Shell	2	1.29	JU	9/27/2017	1 umbo
1-12	1	0-10	Glass	Colorless	Glass	1	1.08	JU	9/27/2017	
2-1	1	0-10	Metal	Staple	Metal	1	1	JU	9/18/2017	Fence Staple
2-1	1	0-10	Debitage	Tertiary	Lithic	3	0.58	JU	9/18/2017	3 bifacial thinning flakes
2-1	2	10-20	Debitage	Secondary	Lithic	1	2.8	JU	9/18/2017	1 bifacial thinning flake
2-1	2	10-20	Debitage	Tertiary	Lithic	2	1.27	JU	9/18/2017	1 bifacial thinning flake
2-1	3	20-30	Debitage	Secondary	Lithic	4	4.38	JU	9/18/2017	. shada shiring hallo
2-1	3	20-30	Debitage	Tertiary	Lithic	3	1.11	JU	9/18/2017	3 bifacial thinning flakes
2-1	5	46	Projectile	Montell Point	Lithic	1	4.93	JU	9/18/2017	Proximal point base
			Point			<u>'</u>			3, 10, 2011	Tamilla point baco

ST	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
2-1	5	40-50	Debitage	Tertiary	Lithic	2	0.54	JU	9/18/2017	
2-1	6	50-60	Debitage	Secondary	Lithic	1	0.23	JU	9/18/2017	1 bifacial thinning flake
2-2	1	0-10	Debitage	Secondary	Lithic	1	0.48	JU	9/18/2017	1 bifacial thinning flake
2-2	1	0-10	Debitage	Tertiary	Lithic	4	3.23	JU	9/18/2017	3 bifacial thinning flakes
2-2	2	10-20	Debitage	Tertiary	Lithic	1	1.12	JU	9/18/2017	
2-3	1	0-10	Debitage	Secondary	Lithic	2	0.9	JU	9/18/2017	
2-3	1	0-10	Debitage	Tertiary	Lithic	2	0.23	JU	9/18/2017	2 bifacial thinning flakes
2-3	3	20-30	Debitage	Tertiary	Lithic	2	1.54	JU	9/18/2017	2 bifacial thinning flakes
2-4	2	10-20	Debitage	Tertiary	Lithic	1	0.79	JU	9/18/2017	
2-4	3	20-30	Debitage	Secondary	Lithic	1	0.96	JU	9/18/2017	1 bifacial thinning flake
2-4	3	20-30	Debitage	Tertiary	Lithic	1	0.29	JU	9/18/2017	1 bifacial thinning flake
2-5	3	20-30	Debitage	Secondary	Lithic	1	0.75	JU	9/19/2017	
2-5	3	20-30	Debitage	Tertiary	Lithic	1	0.18	JU	9/19/2017	1 bifacial thinning flake
2-5	4	30-40	Debitage	Primary	Lithic	1	0.75	JU	9/19/2017	
2-5	4	30-40	Debitage	Tertiary	Lithic	1	0.85	JU	9/19/2017	
2-6	1	0-10	Historic Ceramic	Stoneware	Ceramic	1	3.87	JU	9/18/2017	Light blue slip
2-6	1	0-10	Debitage	Secondary	Lithic	1	5.98	JU	9/18/2017	1 bifacial thinning flake
2-6	1	0-10	Debitage	Tertiary	Lithic	3	1.69	JU	9/18/2017	3 bifacial thinning flakes
2-6	2	10-20	Debitage	Primary	Lithic	2	22.62	JU	9/18/2017	5
2-6	2	10-20	Debitage	Secondary	Lithic	1	0.69	JU	9/18/2017	
2-6	2	10-20	Debitage	Tertiary	Lithic	7	3.2	JU	9/18/2017	5 bifacial thinning flakes
2-6	3	20-30	Faunal Remains	Bone		2	<.01	JU	9/18/2017	2 burned
2-6	3	20-30	Debitage	Primary	Lithic	1	0.19	JU	9/18/2017	
2-6	3	20-30	Debitage	Secondary	Lithic	1	0.14	JU	9/18/2017	
2-6	4	30-40	Faunal Remains	Bone	20	1	0.03	JU	9/18/2017	1 burned
2-6	4	30-40	Debitage	Secondary	Lithic	2	13.63	JU	9/18/2017	
2-6	5	40-50	Debitage	Tertiary	Lithic	1	0.2	JU	9/18/2017	1 bifacial thinning flake
2-6	6	50-60	Burned Rock	Burned Rock	Lithic	1	12.98	JU	9/18/2017	, and an
2-6	6	50-60	Debitage	Secondary	Lithic	1	0.74	JU	9/18/2017	
2-6	6	50-60	Debitage	Tertiary	Lithic	3	2.79	JU	9/18/2017	3 bifacial thinning flakes
2-7	1	0-10	Debitage	Tertiary	Lithic	2	1.22	JU	9/18/2017	1 bifacial thinning flake
2-7	4	30-40	Debitage	Secondary	Lithic	1	1.11	JU	9/18/2017	3
2-7	4	30-40	Debitage	Tertiary	Lithic	2	0.23	JU	9/18/2017	2 bifacial thinning flakes
2-7	5	40-50	Debitage	Tertiary	Lithic	2	0.53	JU	9/18/2017	2 bifacial thinning flakes
2-7	6	50-60	Debitage	Tertiary	Lithic	1	0.11	JU	9/18/2017	1 bifacial thinning flake
2-7	8	70-80	Debitage	Secondary	Lithic	1	2.09	JU	9/18/2017	3
2-8	1	0-10	Debitage	Tertiary	Lithic	3	1.12	JU	9/19/2017	1 bifacial thinning flake
2-8	2	10-20	Debitage	Tertiary	Lithic	1	0.66	JU	9/19/2017	1 bifacial thinning flake
2-8	3	20-30	Debitage	Tertiary	Lithic	5	4.2	JU	9/19/2017	
2-8	4	30-40	Debitage	Primary	Lithic	1	0.54	JU	9/19/2017	
2-8	4	30-40	Debitage	Tertiary	Lithic	2	2.55	JU	9/19/2017	2 bifacial thinning flakes
2-8	5	40-50	Debitage	Primary	Lithic	1	0.43	JU	9/19/2017	
2-8	5	40-50	Debitage	Tertiary	Lithic	3	1.86	JU	9/19/2017	3 bifacial thinning flakes
2-8	6	50-60	Debitage	Primary	Lithic	1	0.24	JU	9/19/2017	
2-8	6	50-60	Debitage	Tertiary	Lithic	2	2.88	JU	9/19/2017	2 bifacial thinning flakes
2-8	7	60-70	Debitage	Tertiary	Lithic	1	0.37	JU	9/19/2017	Burned
2-8	8	70-80	Debitage	Tertiary	Lithic	1	0.27	JU	9/19/2017	1 bifacial thinning flake
2-8	9	80-90	Debitage	Tertiary	Lithic	3	0.86	JU	9/19/2017	3 bifacial thinning flakes
2-8	10	90-100	Debitage	Tertiary	Lithic	5	6.45	JU	9/19/2017	3 bifacial thinning flakes
2-8	12	110-120	Debitage	Tertiary	Lithic	1	0.23	JU	9/19/2017	1 bifacial thinning flake
2-8	14	130-140	Debitage	Secondary	Lithic	1	4.28	JU	9/19/2017	_
2-8	14	130-140	Debitage	Tertiary	Lithic	1	0.25	JU	9/19/2017	1 bifacial thinning flake
2-9	3	20-30	Debitage	Secondary	Lithic	1	0.44	JU	9/19/2017	
2-9	3	20-30	Debitage	Tertiary	Lithic	4	0.99	JU	9/19/2017	3 bifacial thinning flakes
2-9	4	30-40	Faunal Remains	Mussel Shell	Shell	1	1.48	JU	9/19/2017	

ST	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
2-9	4	30-40	Debitage	Tertiary	Lithic	4	2.31	JU	9/19/2017	3 bifacial thinning flakes
2-9	5	40-50	Debitage	Secondary	Lithic	1	5.71	JU	9/19/2017	1 bifacial thinning flake
2-9	6	50-60	Debitage	Secondary	Lithic	1	2.06	JU	9/19/2017	
2-9	6	50-60	Debitage	Tertiary	Lithic	6	4.2	JU	9/19/2017	3 bifacial thinning flakes
2-9	7	60-70	Debitage	Tertiary	Lithic	3	3.54	JU	9/19/2017	2 bifacial thinning flakes
2-9	8	70-80	Debitage	Secondary	Lithic	1	4.41	JU	9/19/2017	
2-9	8	70-80	Debitage	Tertiary	Lithic	2	1.66	JU	9/19/2017	2 bifacial thinning flakes
2-10	1	0-10	Debitage	Secondary	Lithic	1	1.1	JU	9/27/2017	
2-10	2	10-20	Ground Stone	Ground Stone	Lithic	1	35.06	JU	9/27/2017	
2-10	3	20-30	Burned Rock	Burned Rock	Lithic	1	42.57	JU	9/27/2017	
2-10	3	20-30	Debitage	Tertiary	Lithic	2	2.55	JU	9/27/2017	1 bifacial thinning flake
2-10	4	30-40	Debitage	Tertiary	Lithic	5	2.53	JU	9/27/2017	3 bifacial thinning flakes
2-10	5	40-50	Debitage	Secondary	Lithic	1	50.5	JU	9/27/2017	
2-10	5	40-50	Debitage	Tertiary	Lithic	8	3.39	JU	9/27/2017	5 bifacial thinning flakes
2-10	7	60-70	Debitage	Tertiary	Lithic	7	11.85	JU	9/27/2017	6 bifacial thinning flakes
2-10	7	60-70	Debitage	Shatter	Lithic	1	1.21	JU	9/27/2017	
2-10	8	70-80	Debitage	Secondary	Lithic	1	1.22	JU	9/27/2017	1 bifacial thinning flake
2-10	8	70-80	Debitage	Tertiary	Lithic	3	3.06	JU	9/27/2017	1 burned, 2 bifacial thinning flakes
2-10	9	80-90	Debitage	Tertiary	Lithic	1	2.36	JU	9/27/2017	
2-10	10	90-100	Debitage	Secondary	Lithic	1	1.32	JU	9/27/2017	
2-10	10	90-100	Debitage	Shatter	Lithic	1	0.08	JU	9/27/2017	
2-11	5	40-50	Debitage	Tertiary	Lithic	2	1.61	JU	9/27/2017	2 bifacial thinning flakes
2-11	6	50-60	Debitage	Primary	Lithic	1	11.82	JU	9/27/2017	
2-11	6	50-60	Debitage	Secondary	Lithic	1	1.42	JU	9/27/2017	1 bifacial thinning flake
2-11	6	50-60	Debitage	Tertiary	Lithic	1	0.14	JU	9/27/2017	1 bifacial thinning flake
2-11	8	70-80	Debitage	Secondary	Lithic	1	0.29	JU	9/27/2017	1 bifacial thinning flake
2-11	8	70-80	Debitage	Tertiary	Lithic	2	0.52	JU	9/27/2017	2 bifacial thinning flakes
2-12	6	50-60	Debitage	Secondary	Lithic	1	0.9	JU	9/27/2017	
3-1	3	20-30	Debitage	Tertiary	Lithic	2	0.28	JU	9/19/2017	1 bifacial thinning flake
3-1	5	40-50	Debitage	Tertiary	Lithic	2	0.32	JU	9/19/2017	
3-1	6	50-60	Debitage	Tertiary	Lithic	1	0.08	JU	9/19/2017	
3-2	1	0-10	Debitage	Tertiary	Lithic	1	2.48	JU	9/19/2017	1 bifacial thinning flake
3-2	2	10-20	Debitage	Tertiary	Lithic	1	5.81	JU	9/19/2017	
3-3	1	0-10	Debitage	Primary	Lithic	1	0.98	JU	9/19/2017	
3-3	1	0-10	Debitage	Tertiary	Lithic	1	0.36	JU	9/19/2017	1 bifacial thinning flake
3-3	2	10-20	Debitage	Tertiary	Lithic	3	0.73	JU	9/19/2017	2 bifacial thinning flakes
3-3	3	20-30	Debitage	Secondary	Lithic	2	3.05	JU	9/19/2017	
3-3	3	20-30	Debitage	Tertiary	Lithic	3	0.74	JU	9/19/2017	3 bifacial thinning flakes
3-3	4	30-40	Debitage	Primary	Lithic	1	4.31	JU	9/19/2017	
3-3	4	30-40	Debitage	Tertiary	Lithic	1	0.43	JU	9/19/2017	
3-4	2	10-20	Debitage	Secondary	Lithic	1	0.09	JU	9/19/2017	4 hife sight things in a figure
3-4	3	20-30	Debitage	Tertiary	Lithic	1	1.81	JU	9/19/2017	bifacial thinning flake bifacial thinning flake
3-5 3-5	4	20-30 30-40	Debitage Debitage	Tertiary	Lithic Lithic	2	0.37 0.46	JU	9/19/2017 9/19/2017	1 bifacial thinning flake
3-5	5	40-50	Debitage	Tertiary Tertiary		1	0.46	JU		i bilaciai tillillillig llake
3-5	6	50-60	Debitage	Tertiary	Lithic Lithic	1	0.17	JU	9/19/2017 9/19/2017	
3-5	3	20-30	Debitage	Secondary	Lithic	1	0.63	JU	9/19/2017	
3-7	4	30-40	Core	Core	Lithic	1	52.67	JU	9/19/2017	Exhausted
3-7	5	40-50	Debitage	Tertiary	Lithic	1	3.96	JU	9/19/2017	1 bifacial thinning flake
3-7	8	70-80	Debitage	Secondary	Lithic	1	6.46	JU	9/19/2017	. Shaolai tiliiliing liake
3-8	2	10-80	Debitage	Secondary	Lithic	1	0.23	JU	9/19/2017	
3-8	2	10-20	Debitage	Tertiary	Lithic	4	3.7	JU	9/19/2017	2 bifacial thinning flakes
3-8	3	20-30	Debitage	Tertiary	Lithic	4	6.47	JU	9/19/2017	1 bifacial thinning flake
3-8	4	30-40	Debitage	Primary	Lithic	1	0.5	JU	9/19/2017	i Shaciai uliilililii y llake
3-8	4	30-40	Debitage	Tertiary	Lithic	3	9.38	JU	9/19/2017	2 bifacial thinning flakes
3-8	5	40-50	Debitage	Secondary	Lithic	7	20.21	JU	9/19/2017	2 bifacial thinning flakes
3-8	5	40-50	Debitage	Tertiary	Lithic	11	7.2	JU	9/19/2017	8 bifacial thinning flakes
J-0	J	- U-0U	Denitage	1 Gruary	LittifC	_ ''	1.4	30	3/13/2017	o bilaciai tillillilly liakes


ST	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
3-8	6	50-60	Debitage	Secondary	Lithic	2	2.29	JU	9/19/2017	1 bifacial thinning flake
3-8	6	50-60	Debitage	Tertiary	Lithic	9	2.71	JU	9/19/2017	5 bifacial thinning flakes
3-8	7	60-70	Debitage	Secondary	Lithic	1	1.27	JU	9/19/2017	
3-8	7	60-70	Debitage	Tertiary	Lithic	5	4.49	JU	9/19/2017	3 bifacial thinning flakes
3-8	8	70-80	Debitage	Primary	Lithic	2	1.36	JU	9/19/2017	
3-8	8	70-80	Debitage	Secondary	Lithic	4	8.61	JU	9/19/2017	1 bifacial thinning flake
3-8	8	70-80	Debitage	Tertiary	Lithic	11	3.48	JU	9/19/2017	7 bifacial thinning flakes
3-8	9	80-90	Debitage	Primary	Lithic	1	0.85	JU	9/19/2017	
3-8	9	80-90	Debitage	Tertiary	Lithic	12	14.98	JU	9/19/2017	8 bifacial thinning flakes
3-9	2	10-20	Debitage	Secondary	Lithic	3	9.23	JU	9/19/2017	1 bifacial thinning flake
3-9	2	10-20	Debitage	Tertiary	Lithic	1	0.29	JU	9/19/2017	1 bifacial thinning flake
3-9	3	20-30	Debitage	Primary	Lithic	1	0.62	JU	9/19/2017	
3-9	3	20-30	Debitage	Tertiary	Lithic	1	0.6	JU	9/19/2017	
3-9	4	30-40	Debitage	Secondary	Lithic	2	40.47	JU	9/19/2017	1 bifacial thinning flake
3-9	4	30-40	Debitage	Tertiary	Lithic	7	13.24	JU	9/19/2017	3 bifacial thinning flakes
3-9	5	40-50	Core	Core	Lithic	1	331.27	JU	9/19/2017	
3-9	5	40-50	Debitage	Tertiary	Lithic	10	7	JU	9/19/2017	9 bifacial thinning flakes
3-9	6	50-60	Debitage	Primary	Lithic	1	0.25	JU	9/19/2017	
3-9	6	50-60	Debitage	Secondary	Lithic	1	3.36	JU	9/19/2017	
3-9	6	50-60	Debitage	Tertiary	Lithic	11	2.55	JU	9/19/2017	7 bifacial thinning flakes
3-9	7	60-70	Debitage	Secondary	Lithic	1	41.72	JU	9/19/2017	
3-9	7	60-70	Debitage	Tertiary	Lithic	6	2.05	JU	9/19/2017	6 bifacial thinning flakes
3-9	8	70-80	Debitage	Secondary	Lithic	2	3.29	JU	9/19/2017	1 bifacial thinning flake
3-9	8	70-80	Debitage	Tertiary	Lithic	4	4.98	JU	9/19/2017	3 bifacial thinning flakes
3-9	9	80-90	Debitage	Primary	Lithic	1	0.38	JU	9/19/2017	
3-9	9	80-90	Debitage	Secondary	Lithic	1	18.71	JU	9/19/2017	1 bifacial thinning flake
3-9	9	80-90	Debitage	Tertiary	Lithic	5	7.25	JU	9/19/2017	3 bifacial thinning flakes
3-9	10	90-100	Debitage	Tertiary	Lithic	2	0.84	JU	9/19/2017	2 bifacial thinning flakes
3-10	5	40-50	Debitage	Tertiary	Lithic	2	7.96	JU	9/27/2017	1 bifacial thinning flake
3-10	7	60-70	Debitage	Tertiary	Lithic	5	43.88	JU	9/27/2017	3 bifacial thinning flakes
3-10	8	70-80	Debitage	Tertiary	Lithic	8	3.76	JU	9/27/2017	6 bifacial thinning flakes
3-10	9	80-90	Debitage	Tertiary	Lithic	4	4.93	JU	9/27/2017	3 bifacial thinning flakes
3-10	9	80-90	Debitage	Shatter	Lithic	1	0.4	JU	9/27/2017	
3-10	9	80-90	Faunal Remains	Mussel Shell	Shell	1	0.44	JU	9/27/2017	No umbo
3-10	10	90-100	Debitage	Tertiary	Lithic	1	0.87	JU	9/27/2017	1 bifacial thinning flake
3-11	4	30-40	Debitage	Secondary	Lithic	2	1.41	JU	9/27/2017	
3-11	4	30-40	Debitage	Tertiary	Lithic	1	0.47	JU	9/27/2017	1 bifacial thinning flake
3-11	5	40-50	Debitage	Secondary	Lithic	2	4.09	JU	9/27/2017	1 bifacial thinning flake
3-11	5	40-50	Debitage	Tertiary	Lithic	2	4.95	JU	9/27/2017	2 bifacial thinning flakes
3-11	6	50-60	Debitage	Tertiary	Lithic	2	0.83	JU	9/27/2017	1 bifacial thinning flake
3-11	8	70-80	Debitage	Secondary	Lithic	3	5.24	JU	9/27/2017	1 bifacial thinning flake
3-11	8	70-80	Debitage	Tertiary	Lithic	15	12.38	JU	9/27/2017	10 bifacial thinning flakes
3-11	8	70-80	Debitage	Shatter	Lithic	2	3.71	JU	9/27/2017	A bits sist abinatis (0.1)
3-11	9	80-90	Debitage	Tertiary	Lithic	4	2.32	JU	9/27/2017	4 bifacial thinning flakes
3-11	10	90-100	Debitage	Secondary	Lithic	1	0.53	JU	9/27/2017	1 bifacial thinning flake
3-12	8	70-80	Debitage	Tertiary	Lithic	3	2.11	JU	9/27/2017	1 bifacial thinning flake
3-12	9	80-90	Debitage	Tertiary	Lithic	3	2.04	JU	9/27/2017	2 bifacial thinning flakes
3-12	10	90-100	Debitage	Tertiary	Lithic	1	2.72	JU	9/27/2017	1 bifacial thinning flake
3-12	16	150-160	Debitage Debitage	Tertiary	Lithic	3	6.2		9/27/2017	1 bifacial thinning flake
4-1 4-1	2	10-20		Tertiary	Lithic	3 1	2.35 0.5	JU	9/27/2017	3 bifacial thinning flakes
4-1	1	10-20 0-10	Debitage Debitage	Shatter	Lithic Lithic	1	2.07	JU	9/27/2017 9/27/2017	1 bifacial thinning flake
4-2	2	10-10	Debitage	Tertiary Secondary	Lithic	1	0.56	JU	9/27/2017	т ыпастаг инглипу паке
4-2	2	10-20	Debitage	Tertiary	Lithic	8	3.86	JU	9/27/2017	5 bifacial thinning flakes
4-2	2	10-20	Debitage	Shatter	Lithic	1	0.29	JU	9/27/2017	o bilaciai triffilling flakes
4-2	3	20-30	Debitage	Secondary	Lithic	1	0.29	JU	9/27/2017	
4-2	3	20-30	Debitage	Tertiary	Lithic	1	0.13	JU	9/27/2017	
4-2	5	40-50	Debitage	Secondary	Lithic	1	0.13	JU	9/27/2017	
7-2	J	70-00	Debitage	Jecondary	Little	_ '	0.03	10	3/2//2011	

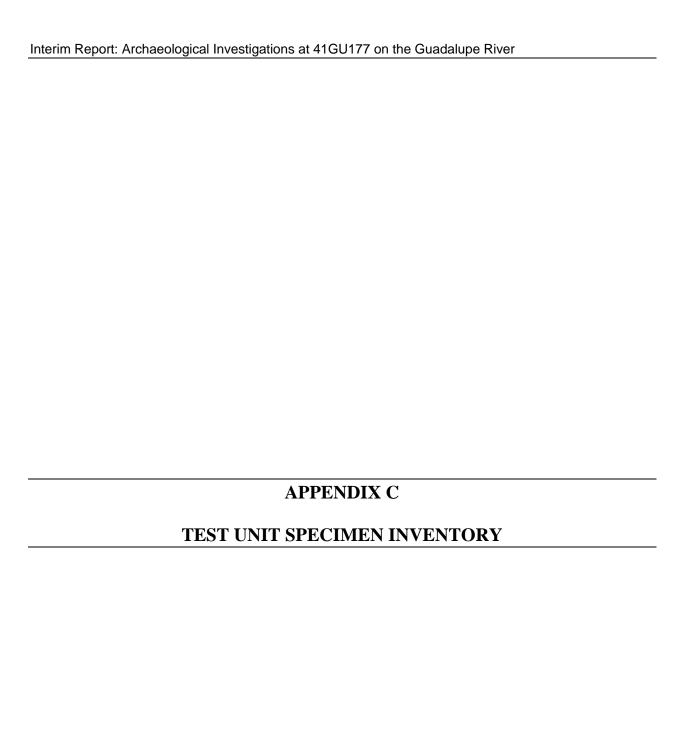
ST	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
4-2	5	40-50	Debitage	Tertiary	Lithic	4	1.96	JU	9/27/2017	2 bifacial thinning flakes
4-2	6	50-60	Debitage	Secondary	Lithic	2	1.4	JU	9/27/2017	1 bifacial thinning flake
4-2	6	50-60	Debitage	Tertiary	Lithic	3	1.04	JU	9/27/2017	2 bifacial thinning flakes
4-2	9	80-90	Debitage	Secondary	Lithic	1	1.09	JU	9/27/2017	1 bifacial thinning flake
4-3	1	0-10	Debitage	Tertiary	Lithic	2	0.27	JU	9/27/2017	1 bifacial thinning flake
4-3	3	20-30	Debitage	Tertiary	Lithic	3	2.64	JU	9/27/2017	3 bifacial thinning flakes
4-5	3	20-30	Debitage	Tertiary	Lithic	2	0.86	JU	9/27/2017	1 bifacial thinning flake
4-6	2	10-20	Debitage	Tertiary	Lithic	1	15.67	JU	9/27/2017	1 bifacial thinning flake
4-6	3	20-30	Debitage	Secondary	Lithic	1	30.7	JU	9/27/2017	
4-6	5	40-50	Debitage	Tertiary	Lithic	1	0.35	JU	9/27/2017	1 bifacial thinning flake
4-6	5	40-50	Debitage	Shatter	Lithic	2	1.92	JU	9/27/2017	
4-6	6	50-60	Debitage	Tertiary	Lithic	2	2.25	JU	9/27/2017	2 bifacial thinning flakes
4-7	1	0-10	Debitage	Primary	Lithic	1	1.15	JU	9/27/2017	
4-7	1	0-10	Debitage	Secondary	Lithic	2	1.83	JU	9/27/2017	
4-7	1	0-10	Debitage	Tertiary	Lithic	14	23.12	JU	9/27/2017	9 bifacial thinning flakes
4-7	2	10-20	Projectile Point	Scallorn Point	Lithic	1	1.55	JU	9/27/2017	Corner-notched broad stemmed variant
4-7	2	10-20	Debitage	Secondary	Lithic	4	5.64	JU	9/27/2017	2 bifacial thinning flakes
4-7	2	10-20	Debitage	Tertiary	Lithic	5	2.58	JU	9/27/2017	3 bifacial thinning flakes
4-7	4	30-40	Debitage	Secondary	Lithic	4	2.41	JU	9/27/2017	1 bifacial thinning flake
4-7	4	30-40	Debitage	Tertiary	Lithic	9	4.71	JU	9/27/2017	6 bifacial thinning flakes
4-7	4	30-40	Debitage	Shatter	Lithic	2	1.73	JU	9/27/2017	
4-7	5	40-50	Debitage	Secondary	Lithic	1	5.07	JU	9/27/2017	
4-7	5	40-50	Debitage	Tertiary	Lithic	3	3.45	JU	9/27/2017	2 bifacial thinning flakes
4-7	6	50-60	Debitage	Tertiary	Lithic	11	17.96	JU	9/27/2017	7 bifacial thinning flakes
4-7	6	50-60	Debitage	Shatter	Lithic	2	1.29	JU	9/27/2017	
4-7	7	60-70	Debitage	Tertiary	Lithic	2	0.68	JU	9/27/2017	2 bifacial thinning flakes
4-7	8	70-80	Debitage	Primary	Lithic	1	2.32	JU	9/27/2017	
4-7	8	70-80	Debitage	Secondary	Lithic	2	2.93	JU	9/27/2017	1 bifacial thinning flake
4-7	8	70-80	Debitage	Tertiary	Lithic	4	9.66	JU	9/27/2017	2 bifacial thinning flakes
4-7	9	80-90	Debitage	Tertiary	Lithic	4	6.13	JU	9/27/2017	2 bifacial thinning flakes
4-7	10	90-100	Debitage	Secondary	Lithic	2	21.51	JU	9/27/2017	
4-7	10	90-100	Debitage	Tertiary	Lithic	3	0.59	JU	9/27/2017	4 bifacial thinning flakes
4-8	1	0-10	Debitage	Secondary	Lithic	2	2.74	JU	9/27/2017	
4-8	1	0-10	Debitage	Tertiary	Lithic	18	23.21	JU	9/27/2017	10 bifacial thinning flakes
4-8	1	0-10	Debitage	Shatter	Lithic	2	2.42	JU	9/27/2017	
4-8	1	0-10	Burned Rock	Burned Rock	Lithic	2	8	JU	9/27/2017	
4-8	2	10-20	Faunal Remains	Bone		1	0.39	JU	9/27/2017	
4-8	2	10-20	Debitage	Secondary	Lithic	1	2.82	JU	9/27/2017	
4-8	2	10-20	Debitage	Tertiary	Lithic	9	13.88	JU	9/27/2017	4 bifacial thinning flakes
4-8	3	20-30	Debitage	Primary	Lithic	1	0.74	JU	9/28/2017	
4-8	3	20-30	Debitage	Secondary	Lithic	4	10.01	JU	9/28/2017	2 bifacial thinning flakes
4-8	3	20-30	Debitage	Tertiary	Lithic	8	13.15	JU	9/28/2017	5 bifacial thinning flakes
4-8	3	20-30	Debitage	Shatter	Lithic	5	5.06	JU	9/28/2017	
4-8	4	30-40	Debitage	Primary	Lithic	1	1.39	JU	9/28/2017	
4-8	4	30-40	Debitage	Tertiary	Lithic	10	6.47	JU	9/28/2017	7 bifacial thinning flakes
4-8	4	30-40	Debitage	Shatter	Lithic	5	3.62	JU	9/28/2017	
4-8	5	40-50	Debitage	Secondary	Lithic	1	0.54	JU	9/28/2017	
4-8	5	40-50	Debitage	Tertiary	Lithic	6	2.39	JU	9/28/2017	3 bifacial thinning flakes
4-8	6	50-60	Debitage	Primary	Lithic	2	37.56	JU	9/28/2017	
4-8	6	50-60	Debitage	Tertiary	Lithic	1	2.3	JU	9/28/2017	
4-8	7	60-70	Debitage	Tertiary	Lithic	4	3.05	JU	9/28/2017	3 bifacial thinning flakes
4-8	8	70-80	Debitage	Primary	Lithic	1	0.53	JU	9/28/2017	
4-8	8	70-80	Debitage	Secondary	Lithic	1	0.13	JU	9/28/2017	
4-8	8	70-80	Debitage	Tertiary	Lithic	8	3.57	JU	9/28/2017	5 bifacial thinning flakes
4-8	8	70-80	Debitage	Shatter	Lithic	3	6.33	JU	9/28/2017	
4-8	9	80-90	Debitage	Secondary	Lithic	1	0.19	JU	9/28/2017	
4-8	9	80-90	Debitage	Tertiary	Lithic	7	4.14	JU	9/28/2017	3 bifacial thinning flakes

ST	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
4-8	10	90-100	Debitage	Primary	Lithic	1	1.88	JU	9/28/2017	
4-8	10	90-100	Debitage	Secondary	Lithic	4	5.76	JU	9/28/2017	2 bifacial thinning flakes
4-8	10	90-100	Debitage	Tertiary	Lithic	2	1.95	JU	9/28/2017	1 bifacial thinning flake
4-9	1	0-10	Debitage	Secondary	Lithic	1	0.46	JU	9/28/2017	
4-9	1	0-10	Debitage	Tertiary	Lithic	3	4.56	JU	9/28/2017	1 bifacial thinning flake
4-9	2	10-20	Debitage	Tertiary	Lithic	2	0.75	JU	9/28/2017	2 bifacial thinning flakes
4-9	3	20-30	Debitage	Tertiary	Lithic	4	1.48	JU	9/28/2017	3 bifacial thinning flakes
4-9	4	30-40	Debitage	Secondary	Lithic	2	1.42	JU	9/28/2017	1 bifacial thinning flake
4-9	4	30-40	Debitage	Tertiary	Lithic	3	0.63	JU	9/28/2017	2 bifacial thinning flakes
4-9	5	40-50	Debitage	Secondary	Lithic	1	8.29	JU	9/28/2017	1 bifacial thinning flake
4-9	5	40-50	Debitage	Tertiary	Lithic	5	2.76	JU	9/28/2017	3 bifacial thinning flakes
4-9	6	50-60	Debitage	Secondary	Lithic	1	12.19	JU	9/28/2017	1 bifacial thinning flake
4-9	6	50-60	Debitage	Tertiary	Lithic	5	2.95	JU	9/28/2017	4 bifacial thinning flakes
4-9	8	70-80	Debitage	Primary	Lithic	2	4.55	JU	9/28/2017	
4-9	8	70-80	Debitage	Tertiary	Lithic	4	3.11	JU	9/28/2017	3 bifacial thinning flakes
4-9	8	70-80	Debitage	Shatter	Lithic	1	0.46	JU	9/28/2017	
4-9	10	90-100	Debitage	Primary	Lithic	1	1.56	JU	9/28/2017	
4-9	10	90-100	Debitage	Secondary	Lithic	1	0.27	JU	9/28/2017	1 bifacial thinning flake
4-9	10	90-100	Debitage	Tertiary	Lithic	1	0.13	JU	9/28/2017	
4-10	6	50-60	Projectile Point	Untyped Arrow Point	Lithic	1	1	JU	9/28/2017	Missing proximal end of base; translucent; probable Sabinal
4-10	6	50-60	Debitage	Primary	Lithic	1	22.75	JU	9/28/2017	
4-10	6	50-60	Debitage	Secondary	Lithic	1	0.43	JU	9/28/2017	
4-10	6	50-60	Debitage	Tertiary	Lithic	2	0.18	JU	9/28/2017	1 bifacial thinning flake
4-10	7	60-70	Debitage	Secondary	Lithic	1	17.54	JU	9/28/2017	
4-10	8	70-80	Debitage	Tertiary	Lithic	2	0.88	JU	9/28/2017	2 bifacial thinning flakes
4-10	9	80-90	Debitage	Secondary	Lithic	1	0.71	JU	9/28/2017	
4-10	10	90-100	Debitage	Shatter	Lithic	1	0.09	JU	9/28/2017	
5-1	1	0-10	Debitage	Primary	Lithic	1	3.68	JU	9/28/2017	
5-1	1	0-10	Debitage	Tertiary	Lithic	1	0.39	JU	9/28/2017	
5-1	2	10-20	Debitage	Tertiary	Lithic	1	0.62	JU	9/28/2017	1 bifacial thinning flake
5-1	3	20-30	Debitage	Secondary	Lithic	1	10.3	JU	9/28/2017	
5-1	3	20-30	Debitage	Tertiary	Lithic	2	3.38	JU	9/28/2017	1 bifacial thinning flake
5-1	4	30-40	Debitage	Tertiary	Lithic	3	2.16	JU	9/28/2017	3 bifacial thinning flakes
5-1	5	40-50	Debitage	Secondary	Lithic	1	1.04	JU	9/28/2017	
5-1	5	40-50	Debitage	Tertiary	Lithic	2	1.62	JU	9/28/2017	1 bifacial thinning flake
5-2	2	10-20	Debitage	Tertiary	Lithic	2	0.69	JU	9/28/2017	2 bifacial thinning flakes
5-2	2	10-20	Debitage	Shatter	Lithic	1	0.86	JU	9/28/2017	
5-2	3	20-30	Debitage	Shatter	Lithic	2	0.88	JU	9/28/2017	
5-2	4	30-40	Debitage	Tertiary	Lithic	2	2.28	JU	9/28/2017	2 bifacial thinning flakes
5-2	5	40-50	Debitage	Secondary	Lithic	1	2	JU	9/28/2017	
5-3	1	0-10	Debitage	Secondary	Lithic	2	1.4	JU	9/28/2017	
5-3	1	0-10	Debitage	Tertiary	Lithic	14	5.68	JU	9/28/2017	11 bifacial thinning flakes
5-3	1	0-10	Debitage Projectile	Shatter Untyped Arrow	Lithic	2	0.67	JU	9/28/2017	Modicul agation
5-3 5-3	2	10-20	Point Debitage	Point Secondary	Lithic Lithic	1	2.62	JU	9/28/2017	Medial section 1 bifacial thinning flake
5-3	2	10-20	Debitage	Tertiary	Lithic	12	20.39	JU	9/28/2017	5 bifacial thinning flakes
5-3	2	10-20	Debitage	Shatter	Lithic	2	0.72	JU	9/28/2017	
5-3	4	30-40	Debitage	Secondary	Lithic	2	6.81	JU	9/28/2017	
5-3	4	30-40	Debitage	Tertiary	Lithic	2	1.21	JU	9/28/2017	2 bifacial thinning flakes
5-3	6	50-60	Debitage	Secondary	Lithic	1	0.76	JU	9/28/2017	
5-3	6	50-60	Debitage	Tertiary	Lithic	2	2.75	JU	9/28/2017	2 bifacial thinning flakes
5-3	7	60-70	Debitage	Tertiary	Lithic	2	1.17	JU	9/28/2017	2 bifacial thinning flakes
5-4	1	0-10	Debitage	Secondary	Lithic	4	2.23	JU	9/28/2017	1 bifacial thinning flake
5-4	1	0-10	Debitage	Tertiary	Lithic	15	11.7	JU	9/28/2017	10 bifacial thinning flakes
5-4	1	0-10	Debitage	Shatter	Lithic	4	9.92	JU	9/28/2017	
5-4	2	10-20	Debitage	Primary	Lithic	1	4.97	JU	9/28/2017	
5-4	2	10-20	Debitage	Secondary	Lithic	5	11.48	JU	9/28/2017	
J-4		10-20	Debitage	Jecondary	Little		11.40	1 30	3/20/2017	1

ST	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
5-4	2	10-20	Debitage	Tertiary	Lithic	13	14.74	JU	9/28/2017	8 bifacial thinning flakes
5-4	2	10-20	Debitage	Shatter	Lithic	4	1.64	JU	9/28/2017	<u> </u>
5-4	3	20-30	Debitage	Primary	Lithic	2	1.03	JU	9/28/2017	
5-4	3	20-30	Debitage	Secondary	Lithic	3	5.18	JU	9/28/2017	
5-4	3	20-30	Debitage	Tertiary	Lithic	6	12.22	JU	9/28/2017	5 bifacial thinning flakes
5-4	3	20-30	Debitage	Shatter	Lithic	2	3.34	JU	9/28/2017	-
5-4	4	30-40	Debitage	Tertiary	Lithic	1	0.24	JU	9/28/2017	1 bifacial thinning flake
5-4	8	70-80	Debitage	Tertiary	Lithic	3	8.26	JU	9/28/2017	2 bifacial thinning flakes
5-4	9	80-90	Debitage	Tertiary	Lithic	4	0.62	JU	9/28/2017	2 bifacial thinning flakes
5-4	10	90-100	Debitage	Primary	Lithic	1	4.52	JU	9/28/2017	3
5-4	10	90-100	Debitage	Tertiary	Lithic	1	1.79	JU	9/28/2017	1 bifacial thinning flake
5-5	1	0-10	Debitage	Secondary	Lithic	1	5.25	JU	9/28/2017	- consistent annual grants
5-5	1	0-10	Debitage	Tertiary	Lithic	10	14.78	JU	9/28/2017	7 bifacial thinning flakes
5-5	2	10-20	Debitage	Primary	Lithic	1	1.86	JU	9/28/2017	- Finderial timming harres
5-5	2	10-20	Debitage	Secondary	Lithic	1	1.36	JU	9/28/2017	
5-5	2	10-20	Debitage	Tertiary	Lithic	3	1.78	JU	9/28/2017	2 bifacial thinning flakes
5-5	4	30-40	Debitage	Primary	Lithic	1	4.41	JU	9/28/2017	2 bilaciai tiliililiig liakes
5-5	4		_	-	Lithic	10	22.1	JU		7 hifagial thinning flakes
-	7	30-40	Debitage	Tertiary					9/28/2017	7 bifacial thinning flakes
5-5		60-70	Debitage	Primary	Lithic	1	6.27	JU	9/28/2017	1 hifogial thinning flate
5-5	7	60-70	Debitage	Secondary	Lithic	3	10.9	JU	9/28/2017	1 bifacial thinning flake
5-5	7	60-70	Debitage	Tertiary	Lithic	9	4.12	JU	9/28/2017	8 bifacial thinning flakes
5-5	8	70-80	Debitage	Secondary	Lithic	1	0.36	JU	9/28/2017	
5-5	9	80-90	Debitage	Secondary	Lithic	1	1.67	JU	9/28/2017	
5-5	9	80-90	Debitage	Tertiary	Lithic	1	0.43	JU	9/28/2017	1 bifacial thinning flake
5-6	1	0-10	Debitage	Secondary	Lithic	1	45.91	JU	9/28/2017	
5-6	2	10-20	Debitage	Tertiary	Lithic	4	3.27	JU	9/28/2017	4 bifacial thinning flakes
5-6	2	10-20	Debitage	Shatter	Lithic	1	0.93	JU	9/28/2017	
5-6	3	20-30	Modified Flake	Modified Flake	Lithic	1	11.91	JU	9/28/2017	
5-6	4	30-40	Debitage	Tertiary	Lithic	7	2.76	JU	9/28/2017	5 bifacial thinning flakes
5-6	4	30-40	Debitage	Shatter	Lithic	2	0.98	JU	9/28/2017	
5-6	4	30-40	Burned Rock	Burned Rock	Lithic	1	5.13	JU	9/28/2017	
5-6	5	40-50	Debitage	Tertiary	Lithic	4	5.64	JU	9/28/2017	2 bifacial thinning flakes
5-6	6	50-60	Debitage	Secondary	Lithic	1	16.99	JU	9/28/2017	1 bifacial thinning flake
5-6	6	50-60	Debitage	Tertiary	Lithic	15	19.16	JU	9/28/2017	12 bifacial thinning flakes
5-6	6	50-60	Ground Stone	Ground Stone	Lithic	1	285.57	JU	9/28/2017	
5-6	7	60-70	Projectile Point	Untyped Point Tip	Lithic	1	1.66	JU	9/28/2017	Distal end
5-6	7	60-70	Debitage	Tertiary	Lithic	6	2.97	JU	9/28/2017	4 bifacial thinning flakes
5-6	7	60-70	Debitage	Shatter	Lithic	1	0.63	JU	9/28/2017	
5-6	8	70-80	Debitage	Tertiary	Lithic	4	1.49	JU	9/28/2017	3 bifacial thinning flakes
5-6	9	80-90	Debitage	Secondary	Lithic	1	5.94	JU	9/28/2017	3
5-6	9	80-90	Debitage	Tertiary	Lithic	10	15.02	JU	9/28/2017	7 bifacial thinning flakes
5-6	9	80-90	Burned Rock	Burned Rock	Lithic	1	3.33	JU	9/28/2017	
5-6	10	90-100	Debitage	Tertiary	Lithic	3	0.69	JU	9/28/2017	2 bifacial thinning flakes
5-7	1	0-10	Debitage	Tertiary	Lithic	3	3.54	JU	9/29/2017	3 bifacial thinning flakes
5-7	2	10-20	Debitage	Tertiary	Lithic	2	11.14	JU	9/29/2017	2 bifacial thinning flakes
5-7	5	40-50	Debitage	-	Lithic	3	1.14	JU		2 bifacial thinning flakes
5-7	5	40-50	Debitage	Tertiary	Lithic		0.23	JU	9/29/2017 9/29/2017	2 bhaciai umming hakes
-			_	Shatter		1				2 hifacial thinning flates
5-7	8	70-80	Debitage	Tertiary	Lithic	3	1.18	JU	9/29/2017	2 bifacial thinning flakes
5-7	14	130-140	Debitage	Tertiary	Lithic	1	0.13	JU	9/29/2017	Not collected
KS139	1	0-10	Debitage	Tertiary	Lithic	13	-	DR	10/19/2017	Not collected
KS139	2	10-20	Debitage	Primary	Lithic	6	-	DR	10/19/2017	Not collected
KS139	3	20-30	Debitage	Tertiary	Lithic	9	-	DR	10/19/2017	Not collected
KS139	4	30-40	Debitage	Tertiary	Lithic	15	-	DR	10/19/2017	Not collected
KS139	5	40-50	Debitage	Tertiary	Lithic	10	-	DR	10/19/2017	Not collected
KS139	6	50-60	Debitage	Tertiary	Lithic	6	-	DR	10/19/2017	Not collected

ST	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
KS139	7	70-80	Debitage	Tertiary	Lithic	5	-	DR	10/19/2017	Not collected
RW342	4-8	30-80	Debitage	Tertiary	Lithic	6	-	DR	10/19/2017	Not collected
RW342	4-8	30-80	Debitage	Shatter	Lithic	4	-	DR	10/19/2017	Not collected
RW343	3-4	20-40	Debitage	Tertiary	Lithic	1	-	DR	10/19/2017	Not collected

внт	Depth (cmbs)	Munsell*	Soil Color*	Soil Texture	Consistency	Structure Type	Grade	Inclusions	Lower Boundary	Comments
	0-58	10YR3/2	very dark grayish brown	silt loam	Friable	Subangular Blocky to Angular Blocky	Weak to moderate	roots-rootlets 15-20%, few snail shell (Helio), 30% pin holes, 5% worm burrows, 5% snail fragments	Gradual and Smooth	Root zone 0-9cmbs
	58-99	10YR4/3	brown	Loam	Friable	Subangular Blocky	Weak to moderate	5-10% rootlets, 30% pin holes, 5% worm burrows, 1% snail fragments	Gradual and Smooth	Transitional
BHT01	99-183	10YR5/4	yellowish brown	Silt Loam	Friable	Subangular Blocky	Moderate	3-5% rootlets, 30% pin holes, 5% worm burrows, 10% snail - Rabdotus, 1% snail fragments	Clear and smooth	
	183-326	10YR5/6 to 10YR6/6	yellowish brown to brownish yellow	Clay loam	Friable	Angular Blocky	Moderate	1% rootlets, 5-10% pin holes, 1% white filament (1mm), 20-30% snail - helio and rabdotus, 10% snail fragments	Unobserved	CaCO ₃ filaments increase with depth 3-4mm (5%) ~280cmbs, clay content increases with depth
	0-41	10YR3/2	very dark grayish brown	silt loam	Friable	Subangular Blocky to Angular Blocky	Weak to moderate	roots-rootlets 15-20%, few snail shell (Helio), 30% pin holes, 5% worm burrows, 5% snail fragments	Gradual and Smooth	Root zone 0-9cmbs
	41-93	10YR4/3	brown	Loam	Friable	Subangular Blocky	Weak to moderate	5-10% rootlets, 30% pin holes, 5% worm burrows, 1% snail fragments	Gradual to clear and slightly wavy	Transitional
BHT02	93-196	10YR5/4	yellowish brown	Silt Loam	Friable	Subangular Blocky	Moderate	3-5% rootlets, 30% pin holes, 5% worm burrows, 10% snail - Rabdotus, 1% snail fragments, pockets of snail - rabdotus, Insect burrows - 6mm -1%	Clear and smooth	
	196-306	10YR5/6 to 10YR6/6	yellowish brown to brownish yellow	Clay loam	Friable	Angular Blocky	Moderate	1% rootlets, 3% pin holes, 1% white filament (1cm), 20-30% snail - helio and rabdotus, 10% snail fragments, large insect burrows	Unobserved	CaCO ₃ filaments increase with depth 3-4mm (5%) ~280cmbs, clay content increases with depth
	0-26	10YR 5/3	brown	Silty clay loam	Friable to Firm	Subangular Blocky	Moderate	5% roots, 5% rootlets, rare gravels, rare insect casts, 10% white filament	Clear and irregular	No snail shell observed
ВНТ03	26-149	10YR 6/4	Light yellowish brown	Silt loam	Friable	Subangular Crumb	Weak to moderate	1% roots, 1% rootlets, 25% limestone gravels, rare insect casts	Gradual and smooth	5% CaCO₃ filaments decrease with depth starting at approximately 70 cmbs
	149-170	10YR 7/4	Very pale brown	Silt loam	Friable	Platy	Weak to moderate	>1% rootlets, 20% limestone gravels, 1% white filament	Unobserved	
	0-11	10YR3/2	very dark grayish brown	silt loam	Friable	Subangular Blocky to Angular Blocky	Weak to moderate	roots-rootlets 15-20%, few snail shell (Helio), 30% pin holes, 5% worm burrows, 5% snail fragments	Gradual and Smooth	Root zone 0-9cmbs
	11-35	10YR4/3	brown	Loam	Friable	Subangular Blocky	Weak to moderate	5-10% rootlets, 30% pin holes, 5% worm burrows, 1% snail fragments	Gradual to clear and slightly wavy	Transitional
BHT04	35-83	10YR5/4	yellowish brown	Silt Loam	Friable	Subangular Blocky	Moderate	3-5% rootlets, 30% pin holes, 5% worm burrows, 10% snail - Rabdotus, 1% snail fragments, pockets of snail - rabdotus, Insect burrows - 6mm -1%	Clear and smooth	
	83-130	10YR5/6 to 10YR6/6	yellowish brown to brownish yellow	Clay loam	Friable	Angular Blocky	Moderate	1% rootlets, 3% pin holes, 1% white filament (1cm), 20-30% snail - helio and rabdotus, 10% snail fragments, large insect burrows	Unobserved	CaCO ₃ filaments increase with depth 3-4mm (5%) ~280cmbs, clay content increases with depth
	130-170	10YR6/2- 6/3	Light brownish gray	Silt Loam	Friable	Subangular, medium	moderate	rootlets 5-10%, rabdotus <3%, white filaments 10% - dispersed, limestone subangular fragments <19%	Unobserved	


ВНТ	Depth (cmbs)	Munsell*	Soil Color*	Soil Texture	Consistency	Structure Type	Grade	Inclusions	Lower Boundary	Comments
	0-12	10YR3/2	very dark grayish brown	silt loam	Friable	Subangular Blocky to Angular Blocky	Weak to moderate	roots-rootlets 15-20%, few snail shell (Helio), 30% pin holes, 5% worm burrows, 5% snail fragments	Gradual and Smooth	Root zone 0-9cmbs
	12-40	10YR4/3	brown	Loam	Friable	Subangular Blocky	Weak to moderate	5-10% rootlets, 30% pin holes, 5% worm burrows, 1% snail fragments	Gradual to clear and slightly wavy	Transitional
BHT05	40-76	10YR5/4	yellowish brown	Silt Loam	Friable	Subangular Blocky	Moderate	3-5% rootlets, 30% pin holes, 5% worm burrows, 10% snail - Rabdotus, 1% snail fragments, pockets of snail - rabdotus, Insect burrows - 6mm -1%	Clear and smooth	
	76-128	10YR5/6 to 10YR6/6	yellowish brown to brownish yellow	Clay loam	Friable	Angular Blocky	Moderate	1% rootlets, 3% pin holes, 1% white filament (1cm), 20-30% snail - helio and rabdotus, 10% snail fragments, large insect burrows	Unobserved	CaCO ₃ filaments increase with depth 3-4mm (5%) ~280cmbs, clay content increases with depth
	128-138	10YR6/2- 6/3	Light brownish gray	Silt Loam	Friable	Subangular, medium	moderate	rootlets 5-10%, rabdotus <3%, white filaments 10% - dispersed, limestone subangular fragments <19%	Unobserved	
	0-10	10YR3/2	very dark grayish brown	silt loam	Friable	Subangular Blocky to Angular Blocky	Weak to moderate	roots-rootlets 15-20%, few snail shell (Helio), 30% pin holes, 5% worm burrows, 5% snail fragments	Gradual and Smooth	Root zone 0-9cmbs
	10-38	10YR4/3	brown	Loam	Friable	Subangular Blocky	Weak to moderate	5-10% rootlets, 30% pin holes, 5% worm burrows, 1% snail fragments	Gradual to clear and slightly wavy	Transitional
ВНТ06	38-80	10YR5/4	yellowish brown	Silt Loam	Friable	Subangular Blocky	Moderate	3-5% rootlets, 30% pin holes, 5% worm burrows, 10% snail - Rabdotus, 1% snail fragments, pockets of snail - rabdotus, Insect burrows- 6mm -1%	Clear and smooth	
	08-132	10YR5/6 to 10YR6/6	yellowish brown to brownish yellow	Clay loam	Friable	Angular Blocky	Moderate	1% rootlets, 3% pin holes, 1% white filament (1cm), 20-30% snail - helio and rabdotus, 10% snail fragments, large insect burrows	Unobserved	CaCO ₃ filaments increase with depth 3-4mm (5%) ~280cmbs, clay content increases with depth
	132-140	10YR6/2- 6/3	Light brownish gray	Silt Loam	Friable	Subangular, medium	moderate	rootlets 5-10%, rabdotus <3%, white filaments 10% - dispersed, limestone subangular fragments <19%	Unobserved	

внт	Depth (cmbs)	Munsell*	Soil Color*	Soil Texture	Consistency	Structure Type	Grade	Inclusions	Lower Boundary	Comments
	0-21	10YR3/2- 2/3	Very dark grayish brown	Silt Loam	Friable	crumb to subangular, fine	weak	Roots 3%, rootlets 2%, worm burrows 5%, pin holes 5-10%, limestone pebbles 3% (subangular)	clear, sloping to east	Mottled 10YR 5/3 (disturbed), secondary colors as lenses 20%, cultural material: debitage, some fire cracked rock (FCR), and burned chert
	21-39	10YR4/2- 5/2	Dark grayish brown	Silt Loam	Friable to firm	subangular to angular, medium	moderate	Roots 10%, rootlets 15-20%, rabdotus 3%, snail fragments 20%, worm 3-5%, pinhole 5-10%, limestone subangular pebbles 3%	clear, smooth to slightly sloping	No secondary colors, possibly truncated from above, Cultural material: debitage and occasional FCR fragment
	39-71	10YR 5/3	Brown	Silt Loam	Friable	Subangular to angular, medium	moderate	Roots 5-10%, rootlets 15%, snail fragments 15%, rabdotus 3%, pinholes 5%	clear, smooth to slightly sloping	Cultural material: scattered debitage, no concentrations
BHT07	71-101	10YR 5/3- 5/4	Brown	Silt Loam	Friable	Subangular, fine to medium	moderate	Rootlets 15%, pinholes 5%, white filaments 3-5%, rabdotus 3-5%, vertically arranged and clustered (root activity), heliodiscus 1%, snail fragments 5%	Gradual, smooth	Cultural material: small scattered FCR, low density debitage,
	101-139	10YR6/2- 6/3	Light brownish gray	Silt Loam	Friable	Subangular, medium	moderate	rootlets 5-10%, rabdotus <3%, white filaments 10% - dispersed, limestone subangular fragments <19%	Gradual, smooth	Cultural material; FCR, larger debitage than strats above, calcine coated artifacts, several large FCR at 131 cmbs
	139-183	10YR7/3	Very pale brown	Fine Silt Loam	Loose to Friable	Crumb to subangular, fine	weak	root <1%, rootlets <5%, snail <1%	Gradual, smooth	
	183-253	10YR6/4- 7/4	Light yellowish brown	Very Fine Silt Loam	Loose	Crumb, fine	Weak	Heliodiscus <5%, rabdotus <2%, amorphous gravels, pebbles 3%,	Unobserved	No cultural material found
	0-17	10YR3/2- 4/2	Very dark grayish brown	Silt Loam	Loose to Friable	crumb to subangular, fine	weak	Roots 5%, rootlets 20%, rabdotus 10%, worm 5%, pinholes 15-20%, partially decomposed vegetation in upper 4cm	Clear, slightly wavy	
	17-42	10YR5/2- 5/3	Brown	Silt Loam	Friable	Subangular, fine to medium	weak	Roots 3%, rootlets 15%, rabdotus 10- 15%, limestone gravels and cobbles 3%, pinholes 10-15%	Clear, slightly irregular	Flake at 28 cmbs (chert) early stage (secondary 1 or 3), one FCR at 28-32 cmbs
BHT08	42-84	10YR5/3	Brown	Silt Loam	Friable	Subangular, medium	Weak	Roots 1%, rootlets 10%, rabdotus 3-5%, white filaments 3%, worm burrows 5-6 cm diameter 3-5%	Clear, irregular	10YR6/2 15% mottles, Flake/debitage at 62cmbs, many roots/burrows
	84- 302+	10YR7/3- 7/4	Very pale brown	Silt Loam	Friable	Subangular, fine	Weak	Rootlets 15%, subangular limestone gravels and pebbles 20-30%, no large cobbles of limestone, prominent burrows with strat 2/3 matrix, large chamber/den or burrow 38x44 cm in size, rabdotus 10%, rootlets in clustered burrows	Unobserved	

внт	Depth (cmbs)	Munsell*	Soil Color*	Soil Texture	Consistency	Structure Type	Grade	Inclusions	Lower Boundary	Comments
	0-14	10YR4/2	Dark grayish brown	Silt Loam	Loose to Friable	Crumb, fine	Weak	Roots 5%, rootlets 20%, rabdotus 10%, worm burrows 5%, pinholes 5-10%	Clear, slightly wavy	O horizon (decomposing vegetation), Base at Strat 1 = Fist size FCR (limestone)
	14-37	10YR4/3	Brown	Silt Loam	Friable	crumb to subangular, fine to medium	weak	Roots 5%, rootlets 20%, rabdotus 5%, subangular limestone pebbles 5-10%, worm 5%, pinholes 10%	Gradual - slopes to N	Artifact
	37-56	10YR5/3- 5/4	Brown	Silt Loam	Friable	Subangular, fine to medium	Weak to moderate	Roots 5-10%, rootlets 15-10%, rabdotus 10%, worms 3-5%, pinholes 3-5%, subangular limestone pebbles (5-10%)	Gradual, slightly wavy	
внто9	56-78	10YR6/3	Pale brown	Silt Loam	Loose to Friable	Crumb to subangular, fine	Weak	Roots 3%, rootlets 10-15%, rabdotus 5%, heliodiscus 1-2%, pinholes 5-10%, worm burrows <3%, white filaments <5%	Clear, slightly irregular	Bottom of Strat 4: 1 debitage specimen in situ in west wall, this may be a transition strat
	78-141	10YR6/4- 7/4	Light yellowish brown	Silt Loam	Friable	Subangular, fine to medium	Weak to moderate	Rootlets 10%, pinholes 5%, roots <1%, no earth worms, subangular limestone pebbles (10-15%), gravels 5-10%, snail fragments 5%	Gradual, smooth	No cultural material, small burrows 2% infilled with strat 3 or 4 matrix
	141- 176+	10YR8/4	Very pale brown	Silt Loam	Friable to Slightly firm	subangular to angular, medium	moderate	Rootlets 5%, pinholes 3%, white filaments 5%, worm burrows 3%, No pebbles or rabdotus	Unobserved	No Cultural material
	0-22	10YR3/2	Very dark grayish brown	Silt Loam	Loose	Crumb, fine	Weak	Roots 3%, rootlets 15-20%, pinholes 5%, worm burrows 5%, rabdotus 5-10%	Clear, slightly wavy	Partially decomposed vegetation O horizon
	22-54	10YR4/2- 4/3	Dark grayish brown	Silt Loam	Loose to Friable	Crumb to subangular, fine	Weak	Roots 10%, rootlets 20%, pinholes 5- 10%, worm burrows 5%, rabdotus 3-5%	Gradual, smooth	Cultural Material: 1 FCR 39-42
BHT10	54-122	10YR5/3- 5/4	Brown	Silt Loam	Friable	Subangular, fine to medium	Weak	Root 5%, Rootlets 20%, worm burrows 10%, rabdotus 5%, pinholes 20%, white filaments 10-15%	Gradual, smooth	FCR fragment 103 cmbs, one FCR 76 cmbs
	122-159	10YR5/4- 6/4	Yellowish brown	Silt Loam	Friable	subangular to angular, medium	moderate	Root <1%, rootlets <1%, Rabdotus 5%, pinhole <1%, worm burrows 5%, white filaments <10%	Clear, smooth	One FCR at 139 cmbs
	159-185	10YR7/3	Very pale brown	Silt Loam	Loose to Friable	subangular to angular, medium	moderate	Limestone pebble subangular <2%, snail fragments 5%, filaments <5%, heliodiscus	Unobserved	Single FCR at 179 cmbs

ВНТ	Depth (cmbs)	Munsell*	Soil Color*	Soil Texture	Consistency	Structure Type	Grade	Inclusions	Lower Boundary	Comments
	0-9	10Y3/2	Very dark grayish brown	Loam	Loose	Crumb, fine	Weak	snail rabdotus 5%	Gradual, wavy	Decomposing vegetation O horizon
	9-35	10YR4/2- 4/3	Dark grayish brown	Silt Loam	Friable	Subangular, fine	weak	Root 5%, Rootlets 20%, rabdotus 15%, heliodiscus 3%, pinholes 15%, worm burrows 5-10%, roots are clustered at base of strat	Clear, slightly wavy	
	35-51	10YR4/2- 4/3	Dark grayish brown	Silt Loam	Friable	Subangular, medium	Weak to moderate	Roots 3-5%, rootlets 15%, pinholes 15%, worm burrows 5%, white filaments 5-10% dendritic, rabdotus 5% fragments 15-20%, subangular pebbles <1% transitional?	Clear, slightly wavy	
BHT11	51-81	10YR5/3	Brown	Silt Loam	Friable	subangular to angular, medium	moderate	Roots 3%, rootlets 10%, worm burrows 3-5%, pinholes 10-15%, white filaments 5-10% dendritic, rabdotus 3-5%, snail fragments 5%, unidentified snail <1%	Gradual, slightly wavy	
	81-243	10YR 6/3	Pale brown	Silt Loam	Friable	Subangular, medium	moderate	Roots 2%, rootlets 5%, pinholes 5-10%, worm burrows <3%, white filaments <5%, rabdotus 3%, snail fragments 10%	Gradual, smooth	Lenses of 10YR 4/2 - silt loam, friable, subangular, fine, weak, rootlets 3%, abrupt sloping eastward, variable thickness, averaging 3 cmbs, one burned rock at 121 cmbs, ranged from 89 cmbs at W end to 144 on east end and dives to floor stops 1/3 of way to east end of trench
	243- 244+	10YR6/4- 7/4	Light yellowish brown	Silt Loam	Firm	Subangular, coarse	moderate	pinholes 10%, worm burrows <3%, white filaments (CaCO3) 5-10% increases (1-3mm), rabdotus 3-5%, snail fragments 5%	Unobserved	No cultural material, slightly inundated
	0-11	10YRY3/2	Very dark grayish brown	Loam	Loose	Crumb, fine	Weak	snail rabdotus 5%	Gradual, wavy	Decomposing vegetation O horizon
	11-39	10YR4/2- 4/3	Dark grayish brown	Silt Loam	Friable	Subangular, fine	weak	Root 5%, Rootlets 20%, rabdotus 15%, heliodiscus 3%, pinholes 15%, worm burrows 5-10%, roots are clustered at base of strat	Clear, slightly wavy	
BHT12	39-54	10YR4/2- 4/3	Dark grayish brown	Silt Loam	Friable	Subangular, medium	Weak to moderate	Roots 3-5%, rootlets 15%, pinholes 15%, worm burrows 5%, white filaments 5-10% dendritic, rabdotus 5% fragments 15-20%, subangular pebbles <1% transitional?	Clear, slightly wavy	
	54-73	10YR5/3	Brown	Silt Loam	Friable	subangular to angular, medium	moderate	Roots 3%, rootlets 10%, worm burrows 3-5%, pinholes 10-15%, white filaments 5-10% dendritic, rabdotus 3-5%, snail fragments 5%, unidentified snail <1%	Gradual, slightly wavy	insect burrows infilled with strat 5 matrix
	73-126	10YR5/3	Brown	Silt Loam	Friable	subangular to angular, medium	moderate	pinholes 3%, worm burrows <3%, white filaments <3%, snail fragments 5%	Clear, smooth	Lenses prominent
	126-156	10YR6/3- 6/4	Pale brown	Silt Loam	Loose to Friable	crumb to subangular, fine to medium	Weak	rootlets 5%, snail rabdotus 3%, root burrows 1%, white filaments 1% (very diffuse)	Unobserved	Gritty matrix, became denser and none compact around 200 cmbs very similar to basal strat BHT11, Lens 10YR4/2-5/2 sloping to NE, discontinuous horizon in all directions

внт	Depth (cmbs)	Munsell*	Soil Color*	Soil Texture	Consistency	Structure Type	Grade	Inclusions	Lower Boundary	Comments
	0-9	10YR 3/1- 3/2	very dark grayish brown	Loam	Loose	Crumb, fine	Weak	snail rabdotus 5%	Gradual, wavy	Decomposing vegetation O horizon
	9-32	10YR 4/3	dark grayish brown	Silty clay loam	Loose to Friable	Crumb to Subangular	Weak	5% Roots, 20% Rootlets, 10% Worm casts, 10% pin holes, insect burrows, 10% limestone pebbles (subangular to sub rounded)	Clear, Slightly wavy due to bioturbation	Some Rabdotus (3-5%)
BHT13	32-59	10YR 6/4- 6/6	Pale brown	Silt loam	Friable	Crumb to Subangular	Weak	3% roots, 10% rootlets, 2% small nodules (3-4mm) of CaCO ₃ , 5% pin holes, 5% worm casts, 5% krotovina infilled with Strat II	Gradual, smooth	Transitional
	59-253	10YR 7/4- 7/6	Very pale brown to yellow brown	Silt loam	Friable to Firm	Subangular to angular	Moderate	5% rootlets decreasing with depth, 3-5% CaCO ₃ nodules (2-3mm), 5% pin holes, 3% worm burrows	Unobserved	Hue is lighter with depth

Unit	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
1	1	0–10	Debitage	Primary	Lithic	2	7.28	JL	10/13/2016	Shatter
1	1	0–10	Debitage	Tertiary	Lithic	14	14.4	JL	10/13/2016	Shatter
1	1	0–10	Faunal Remains	Mussel Shell	Shell	1	0.38	JL	10/12/2016	Unmodified fragment
1	1	3	Groundstone	Mano	Lithic	1	304.81	JL	10/12/2016	Roughly half complete
1	2	10–20	Biface	Early-stage biface	Lithic	1	61.97	JL	10/13/2016	Thick and Crude
1	2	10-20	Debitage	Primary	Lithic	7	8.19	JL	10/13/2016	
1	2	10–20	Debitage	Secondary	Lithic	15	35.9	JL	10/13/2016	4 Bifacial thinning flakes
1	2	10–20	Debitage	Tertiary	Lithic	71	47.54	JL	10/13/2016	56 Bifacial thinning flakes
1	2	10–20	Faunal Remains	Burned Bone		1	0.17	JL	10/13/2016	
1	3	20-30	Blade	Blade		1	9.08	JL	10/12/2016	
1	3	20–30	Burned Rock	Burned Rock	Lithic	4	18.26	JL	10/12/2016	
1	3	20–30	Debitage	Primary	Lithic	12	23.63	JL	10/12/2016	
1	3	20–30	Debitage	Secondary	Lithic	10	14.05	JL	10/12/2016	7 Bifacial thinning flakes
1	3	20–30	Debitage	Tertiary	Lithic	38	28.86	JL	10/12/2016	30 Bifacial thinning flakes
1	4	30–40	Debitage	Primary	Lithic	6	62.4	JL	10/12/2016	
1	4	30–40	Debitage	Secondary	Lithic	10	26.3	JL	10/12/2016	7 Bifacial thinning flakes
1	4	30–40	Debitage	Tertiary	Lithic	53	54.92	JL	10/12/2016	48 Bifacial thinning flakes
1	4	30–40	Burned Rock	Burned Rock	Lithic	6	14.5	JL	10/12/2016	
1	4	30–40	Faunal Remains	Mussel Shell	Shell	2	0.69	JL	10/12/2016	Unmodified
1	4	30–40	Projectile Point	Untyped Arrow Point	Lithic	1	2.15	JL	10/12/2016	Missing distal tip and base
1	5	50	Charcoal	Charcoal		4	0.15	JL	10/13/2016	
1	5	40–50	Faunal Remains	Bone		3	4.63	JL	10/13/2016	1 Burned fragment
1	5	40–50	Debitage	Primary	Lithic	2	9.25	JL	10/13/2016	Shatter
1	5	40–50	Debitage	Secondary	Lithic	11	54.3	JL	10/13/2016	2 Bifacial thinning flakes
1	5	40–50	Debitage	Tertiary	Lithic	37	37.57	JL	10/13/2016	23 Bifacial thinning flakes
1	5	40–50	Utilized Flake	Utilized Flake	Lithic	1	1.15	JL	10/13/2016	
1	6	50–60	Biface	Bifacial Fragment	Lithic	1	53.15	JL	10/13/2016	
1	6	50–60	Core	Core	Lithic	1	133.85	JL	10/13/2016	
1	6	50–60	Debitage	Primary	Lithic	18	29.95	JL	10/13/2016	
1	6	50–60	Debitage	Secondary	Lithic	24	113.78	JL	10/13/2016	8 Bifacial thinning flakes
1	6	50–60	Debitage	Tertiary	Lithic	100	84.23	JL	10/13/2016	76 Bifacial thinning flakes
1	6	50–60	Faunal Remains	Bone		5	3.33	JL	10/13/2016	
1	6	50–60	Tested Cobble	Tested Cobble	Lithic	1	163.13	JL	10/13/2016	
1	7	60–70	Burned Rock	Burned Rock	Lithic	1	1.3	JL	10/12/2016	
1	7	60–70	Debitage	Primary	Lithic	1	0.67	JL	10/12/2016	
1	7	60–70	Debitage	Secondary	Lithic	11	11.22	JL	10/12/2016	7 Bifacial thinning flakes
1	7	60–70	Debitage	Tertiary	Lithic	60	64.2	JL	10/12/2016	48 Bifacial thinning flakes
1	7	60–70	Faunal Remains	Bone		6	7.57	JL	10/12/2016	
1	7	60–70	Projectile Point	Scallorn Point	Lithic	1	1.25	JL	10/12/2016	Missing distal tip; corner-notched broad stemmed variant

Unit	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
1	8	70–80	Debitage	Primary	Lithic	8	36.06	JL	10/14/2016	2 Bifacial thinning flakes
1	8	70–80	Debitage	Secondary	Lithic	13	59.03	JL	10/14/2016	6 Bifacial thinning flakes
1	8	70–80	Debitage	Tertiary	Lithic	64	96.89	JL	10/14/2016	49 Bifacial thinning flakes
1	8	70–80	Faunal Remains	Bone		13	6.48	JL	10/14/2016	1 Burned fragment
1	8	70–80	Faunal Remains	Mussel Shell	Shell	2	33.36	JL	10/14/2016	Unmodified fragments
1	8	70–80	Organic remains	Burned Nut Shell		2	0.27	JL	10/14/2016	
1	8	70–80	Utilized Flake	Utilized Flake	Lithic	1	6.52	JL	10/14/2016	
1	9	80-90	Burned Rock	Burned Rock	Lithic	3	28.34	JL	10/14/2016	
1	9	80–90	Core	Core	Lithic	1	68.3	JL	10/14/2016	Broken into 3 pieces
1	9	80–90	Debitage	Primary	Lithic	3	28.58	JL	10/14/2016	1 Bifacial thinning flake
1	9	80–90	Debitage	Secondary	Lithic	4	30.54	JL	10/14/2016	1 Bifacial thinning flake
1	9	80–90	Debitage	Tertiary	Lithic	24	47.94	JL	10/14/2016	20 Bifacial thinning flakes
1	9	80–90	Faunal Remains	Bone		3	0.96	JL	10/14/2016	1 Burned fragment
1	9	80–90	Faunal Remains	Mussel Shell	Shell	3	15.35	JL	10/14/2016	Unmodified fragments
1	10	90–100	Debitage	Primary	Lithic	7	20.05	JL	10/12/2016	1 Bifacial thinning flake
1	10	90–100	Debitage	Secondary	Lithic	10	36.96	JL	10/12/2016	7 Bifacial thinning flakes
1	10	90–100	Debitage	Tertiary	Lithic	33	64	JL	10/12/2016	31 Bifacial thinning flakes
1	10	90–100	Faunal Remains	Bone		5	0.07	JL	10/12/2016	
1	11	100– 110	Debitage	Primary	Lithic	1	0.91	JL	10/13/2016	
1	11	100– 110	Debitage	Secondary	Lithic	7	20.15	JL	10/13/2016	3 Bifacial thinning flakes
1	11	100– 110	Debitage	Tertiary	Lithic	33	35.1	JL	10/13/2016	25 Bifacial thinning flakes
1	11	100– 110	Faunal Remains	Bone		8	1.57	JL	10/13/2016	
1	11	100– 110	Faunal Remains	Mussel Shell	Shell	3	6.32	JL	10/13/2016	Unmodified fragments
1	12	110– 120	Debitage	Primary	Lithic	7	54.47	JL	10/14/2016	4 Bifacial thinning flakes
1	12	110– 120	Debitage	Secondary	Lithic	6	39.54	JL	10/14/2016	4 Bifacial thinning flakes
1	12	110– 120	Debitage	Tertiary	Lithic	15	8.52	JL	10/14/2016	13 Bifacial thinning flakes
1	12	110– 120	Faunal Remains	Bone		12	8.31	JL	10/14/2016	
1	13	120– 130	Debitage	Primary	Lithic	2	3.12	JL	10/13/2016	
1	13	120– 130	Debitage	Tertiary	Lithic	6	5.9	JL	10/13/2016	5 Bifacial thinning flakes
1	13	120– 130	Faunal Remains	Mussel Shell	Shell	1	9.52	JL	10/13/2016	Unmodified fragments
1	14	130– 140	Debitage	Primary	Lithic	4	82.57	JL	10/13/2016	
1	14	130- 140	Debitage	Secondary	Lithic	5	110.35	JL	10/13/2016	2 Bifacial thinning flakes
1	14	130– 140	Debitage	Tertiary	Lithic	17	19.68	JL	10/13/2016	16 Bifacial thinning flakes
1	14	130- 140	Faunal Remains	Bone		14	5.83	JL	10/13/2016	

Unit	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
1	15	140– 150	Debitage	Secondary	Lithic	2	2.4	JL	10/13/2016	
1	15	140– 150	Debitage	Tertiary	Lithic	9	9.74	JL	10/13/2016	8 Bifacial thinning flakes
1	15	140– 150	Faunal Remains	Bone		5	3.05	JL	10/13/2016	
1	15	140– 150	Organic remains	Burned Seed		2	0.04	JL	10/13/2016	
1	15	140– 150	Projectile Point	Untyped Arrow Point	Lithic	1	0.25	JL	10/13/2016	Serrated medial arrow point fragment
1	16	150- 160	Faunal Remains	Bone		5	15.75	JU	8/31/2017	
1	16	150- 160	Debitage	Secondary	Lithic	1	6.28	JU	8/31/2017	1 bifacial thinning flake
1	16	150- 160	Debitage	Tertiary	Lithic	2	2.75	JU	8/31/2017	1 bifacial thinning flake
1	17	160- 170	Debitage	Tertiary	Lithic	4	5.98	JU	8/31/2017	3 bifacial thinning flakes
1	6, 7	56–70	Soil Sample	Matrix Sample						3 gal. bags
2	1	0–10	Debitage	Primary	Lithic	1	10.76	JL	10/14/2016	
2	1	0–10	Debitage	Tertiary	Lithic	16	11.48	JL	10/14/2016	14 Bifacial thinning flakes
2	2	10–20	Debitage	Primary	Lithic	1	89.07	JL	10/13/2016	
2	2	10–20	Debitage	Secondary	Lithic	6	34.9	JL	10/13/2016	4 Bifacial thinning flakes
2	2	10–20	Debitage	Tertiary	Lithic	19	23.15	JL	10/13/2016	18 Bifacial thinning flakes
2	3	20–30	Debitage	Primary	Lithic	2	19.64	JL	10/13/2016	
2	3	20–30	Debitage	Secondary	Lithic	3	4.56	JL	10/13/2016	1 Bifacial thinning flake
2	3	20–30	Debitage	Tertiary	Lithic	8	3.66	JL	10/13/2016	4 Bifacial thinning flakes
2	4	30–40	Debitage	Secondary	Lithic	2	1.16	JL	10/14/2016	
2	4	30–40	Debitage	Tertiary	Lithic	2	0.3	JL	10/14/2016	2 Bifacial thinning flakes
2	5	40–50	Blade	Blade		1	22.17	JL	10/14/2016	
2	5	40–50	Core	Core	Lithic	1	44.26	JL	10/14/2016	4 Diferial thinning
2	5	40–50	Debitage	Primary	Lithic	21	154.45	JL	10/14/2016	1 Bifacial thinning flake
2	5	40–50	Debitage	Secondary	Lithic	24	70.78	JL	10/14/2016	13 Bifacial thinning flakes
2	5	40–50	Debitage	Tertiary	Lithic	88	76.77	JL 	10/14/2016	70 Bifacial thinning flakes
2	6	50-60	Charcoal	Charcoal		4	0.27	JL	10/14/2016	E Diferial thinning
2	6	50–60	Debitage	Primary	Lithic	23	115.08	JL	10/14/2016	5 Bifacial thinning flakes
2	6	50–60	Debitage	Secondary	Lithic	28	211.09	JL	10/14/2016	14 Bifacial thinning flakes
2	6	50–60	Debitage	Tertiary	Lithic	149	119.02	JL	10/14/2016	126 Bifacial thinning flakes
2	6	50–60	Projectile Point	Scallorn Point	Lithic	1	3.79	JL	10/14/2016	Missing distal tip; corner-notched broad stemmed variant; very large for arrow point
2	7	60–70	Burned Rock	Burned Rock	Lithic	21	270.5	JL	10/12/2016	
2	7	60–70	Charcoal	Charcoal		6	0.71	JL	10/12/2016	
2	7	60–70	Debitage	Primary	Lithic	53	389.05	JL	10/12/2016	11 Bifacial thinning flakes
2	7	60–70	Debitage	Secondary	Lithic	86	418.54	JL	10/12/2016	46 Bifacial thinning flakes
2	7	60–70	Debitage	Tertiary	Lithic	226	200.05	JL	10/12/2016	194 Bifacial thinning flakes
2	7	60–70	Faunal Remains	Burned Bone		8	6.93	JL	10/12/2016	1 Calcified fragment

Unit	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
2	7	60–70	Shell Artifact	Shell Bead	Shell	1	0.3	JL	10/12/2016	Modified shell bead with beveled drill hole and an another decorative incised drill mark
2	8	70–80	Debitage	Primary	Lithic	10	20.9	JL	10/12/2016	4 Bifacial thinning flakes
2	8	70–80	Debitage	Secondary	Lithic	19	41.23	JL	10/12/2016	8 Bifacial thinning flakes
2	8	70–80	Debitage	Tertiary	Lithic	77	50.01	JL	10/12/2016	66 Bifacial thinning flakes
2	8	70–80	Projectile Point	Untyped Arrow Point Preform	Lithic	1	5.4	JL	10/12/2016	Missing distal tip; incomplete manufacturing failure?; unifacially trimmed; likely Scallorn preform
2	8	70–80	Projectile Point	Untyped Arrow Point	Lithic	1	1.41	JL	10/12/2016	Distal arrow point frag missing base
2	8	70–80	Utilized Flake	Utilized Flake	Lithic	1	4.96	JL	10/12/2016	
2	9	80–90	Blade	Blade		1	5.29	JL	10/13/2016	
2	9	80–90	Debitage	Primary	Lithic	7	21.69	JL	10/13/2016	
2	9	80–90	Debitage	Secondary	Lithic	12	23.21	JL	10/13/2016	8 Bifacial thinning flakes
2	9	80–90	Debitage	Tertiary	Lithic	63	49.64	JL	10/13/2016	60 Bifacial thinning flakes
2	9	80–90	Utilized Flake	Utilized Flake	Lithic	1	11.6	JL	10/13/2016	
2	10	90–100	Debitage	Primary	Lithic	1	0.79	JL	10/12/2016	
2	10	90–100	Debitage	Secondary	Lithic	7	51.83	JL	10/12/2016	4 Bifacial thinning flakes
2	10	90–100	Debitage	Tertiary	Lithic	52	73.71	JL	10/12/2016	38 Bifacial thinning flakes
2	11	100– 110	Charcoal	Charcoal		5	0.59	JL	10/13/2016	
2	11	100– 110	Debitage	Primary	Lithic	4	49.89	JL	10/13/2016	
2	11	100– 110	Debitage	Secondary	Lithic	8	100.74	JL	10/13/2016	3 Bifacial thinning flakes
2	11	100– 110	Debitage	Tertiary	Lithic	36	52.51	JL	10/13/2016	25 Bifacial thinning flakes
2	12	110– 120	Debitage	Primary	Lithic	2	0.61	JL	10/14/2016	2 Bifacial thinning flakes
2	12	110– 120	Debitage	Secondary	Lithic	18	23.2	JL	10/14/2016	6 Bifacial thinning flakes
2	12	110– 120	Debitage	Tertiary	Lithic	64	37.15	JL	10/14/2016	40 Bifacial thinning flakes
2	12	110– 120	Faunal Remains	Bone		2	2.18	JL	10/14/2016	
2	12	110– 120	Hammerstone	Hammerstone	Lithic	1	434.52	JL	10/14/2016	
2	13	120– 130	Charcoal	Charcoal		1	0.23	JL	10/14/2016	
2	13	120– 130	Debitage	Primary	Lithic	2	4.35	JL	10/14/2016	
2	13	120– 130	Debitage	Secondary	Lithic	3	13.48	JL	10/14/2016	
2	13	120– 130	Debitage	Tertiary	Lithic	59	46.88	JL	10/14/2016	36 Bifacial thinning flakes
2	14	130– 140	Biface	Bifacial Fragment	Lithic	1	56.08	JL	10/14/2016	
2	14	130– 140	Debitage	Primary	Lithic	2	5.78	JL	10/14/2016	
2	14	130– 140	Debitage	Secondary	Lithic	1	0.72	JL	10/14/2016	
2	14	130- 140	Debitage	Tertiary	Lithic	14	12	JL	10/14/2016	10 Bifacial thinning flakes

Unit	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
2	15	140- 150	Faunal Remains	Snail Shell	Shell	1	3.21	JU	8/31/2017	Unknown, complete shell
2	15	140- 150	Debitage	Secondary	Lithic	3	3.76	JU	8/31/2017	1 bifacial thinning flake
2	15	140- 150	Debitage	Tertiary	Lithic	3	0.88	JU	8/31/2017	1 bifacial thinning flake
2	16	150- 160	Debitage	Secondary	Lithic	1	2.94	JU	8/31/2017	
3	1	0–10	Debitage	Primary	Lithic	1	50.16	JL	10/14/2016	
3	1	0–10	Debitage	Secondary	Lithic	1	0.35	JL	10/14/2016	
3	1	0–10	Debitage	Tertiary	Lithic	6	2.44	JL	10/14/2016	5 Bifacial thinning flakes
3	1	0–10	Utilized Flake	Utilized Flake	Lithic	1	2.58	JL	10/14/2016	
3	2	10–20	Debitage	Secondary	Lithic	2	1.6	JL	10/14/2016	
3	2	10–20	Debitage	Tertiary	Lithic	6	0.98	JL	10/14/2016	6 Bifacial thinning flakes
3	3	20–30	Debitage	Primary	Lithic	1	0.19	JL	10/14/2016	
3	3	20–30	Debitage	Tertiary	Lithic	12	2.9	JL	10/14/2016	10 Bifacial thinning flakes
3	4	30–40	Burned Rock	Burned Rock	Lithic	2	18.18	JL	10/14/2016	
3	4	30–40	Debitage	Primary	Lithic	7	48.46	JL	10/14/2016	1 Bifacial thinning flake
3	4	30–40	Debitage	Secondary	Lithic	18	36.29	JL	10/14/2016	6 Bifacial thinning flakes
3	4	30–40	Debitage	Tertiary	Lithic	60	31.1	JL	10/14/2016	54 Bifacial thinning flakes
3	5	40-50	Faunal Remains	Mussel Shell	Shell	1	2.47	JU	8/31/2017	
3	5	40-50	Ground Stone	Ground Stone		1	85.14	JU	8/31/2017	
3	5	40-50	Modified Flake	Modified Flake	Lithic	1	10.33	JU	8/31/2017	
3	5	40-50	Debitage	Primary	Lithic	6	63.93	JU	8/31/2017	
3	5	40-50	Debitage	Secondary	Lithic	21	238.78	JU	8/31/2017	8 bifacial thinning flakes
3	5	40-50	Debitage	Tertiary	Lithic	74	112.97	JU	8/31/2017	53 bifacial thinning flakes
3	6	50-60	Faunal Remains	Bone		9	0.94	JU	8/31/2017	
3	6	50-60	Debitage	Primary	Lithic	8	32.41	JU	8/31/2017	
3	6	50-60	Debitage	Secondary	Lithic	43	122.26	JU	8/31/2017	15 bifacial thinning flakes
3	6	50-60	Debitage	Tertiary	Lithic	128	119.41	JU	8/31/2017	85 bifacial thinning flakes
3	6	50-60	Tool	Biface	Lithic	1	5.13	JU	8/31/2017	thin, proximal
3	6	50-60	Projectile Point	Untyped Arrow Point Tip	Lithic	1	0.63	JU	8/31/2017	Distal tip; serrated; well-thinned
3	6	50-60	Projectile Point	Untyped Arrow Point	Lithic	1	3.07	JU	8/31/2017	Nearly complete
3	7	60-70	Projectile Point	Untyped Dart Point	Lithic	1	4.5	JU	8/31/2017	Proximal half of point; heavily burned; probable Frio or Ensor
3	7	60-70	Faunal Remains	Mussel Shell	Shell	1	0.21	JU	8/31/2017	
3	7	60-70	Debitage	Primary	Lithic	3	55.44	JU	8/31/2017	1 bifacial thinning flake
3	7	60-70	Debitage	Secondary	Lithic	7	21.6	JU	8/31/2017	2 bifacial thinning flakes
3	7	60-70	Debitage	Tertiary	Lithic	18	22.47	JU	8/31/2017	13 bifacial thinning flakes
3	8	70-80	Debitage	Primary	Lithic	3	51.34	JU	8/31/2017	
3	8	70-80	Debitage	Secondary	Lithic	12	76.02	JU	8/31/2017	6 bifacial thinning flakes
3	8	70-80	Debitage	Tertiary	Lithic	27	36.42	JU	8/31/2017	19 bifacial thinning flakes

Unit	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
3	9	80-90	Faunal Remains	Bone		2	0.12	JU	8/31/2017	
3	9	80-90	Debitage	Secondary	Lithic	4	45.03	JU	8/31/2017	2 bifacial thinning flakes
3	9	80-90	Debitage	Tertiary	Lithic	25	20.72	JU	8/31/2017	13 bifacial thinning flakes
3	10	90-100	Organic Remains	Charcoal		1	0.71	JU	8/31/2017	
3	10	90-100	Ground Stone	Ground Stone		3	62.89	JU	8/31/2017	
3	10	90-100	Debitage	Secondary	Lithic	7	19.02	JU	8/31/2017	1 bifacial thinning flake
3	10	90-100	Debitage	Tertiary	Lithic	25	17.51	JU	8/31/2017	17 bifacial thinning flakes
3	10	90-100	Modified Flake	Modified Flake	Lithic	1	3.05	JU	8/31/2017	
3	11	100- 110	Debitage	Primary	Lithic	3	111.05	JU	8/31/2017	
3	11	100- 110	Debitage	Secondary	Lithic	10	31.49	JU	8/31/2017	3 bifacial thinning flakes
3	11	100- 110	Debitage	Tertiary	Lithic	55	81.03	JU	8/31/2017	38 bifacial thinning flakes
3	12	110- 120	Faunal Remains	Bone		5	1.04	JU	8/31/2017	2 burned
3	12	110- 120	Debitage	Primary	Lithic	5	107.78	JU	8/31/2017	
3	12	110- 120	Debitage	Secondary	Lithic	5	22.76	JU	8/31/2017	2 bifacial thinning flakes
3	12	110- 120	Debitage	Tertiary	Lithic	62	41.93	JU	8/31/2017	43 bifacial thinning flakes
3	12	110- 120	Core	Core	Lithic	1	217.1	JU	8/31/2017	
3	13	120- 130	Debitage	Primary	Lithic	3	12.55	JU	8/31/2017	
3	13	120- 130	Debitage	Secondary	Lithic	4	3.81	JU	8/31/2017	2 bifacial thinning flakes
3	13	120- 130	Debitage	Tertiary	Lithic	25	22.88	JU	8/31/2017	17 bifacial thinning flakes
3	14	130- 140	Faunal Remains	Bone		9	3.16	JU	8/31/2017	
3	14	130- 140	Faunal Remains	Bone		1	0.12	JU	8/31/2017	
3	14	130- 140	Debitage	Secondary	Lithic	2	1.68	JU	8/31/2017	
3	14	130- 140	Debitage	Tertiary	Lithic	23	18.76	JU	8/31/2017	17 bifacial thinning flakes
3	15	140- 150	Faunal Remains	Bone		3	0.85	JU	8/31/2017	
3	15	140- 150	Debitage	Secondary	Lithic	4	4.72	JU	8/31/2017	1 bifacial thinning flake
3	15	140- 150	Debitage	Tertiary	Lithic	19	17.18	JU	8/31/2017	11 bifacial thinning flakes
3	16	150- 160	Debitage	Primary	Lithic	5	12.33	JU	8/31/2017	
3	16	150- 160	Debitage	Secondary	Lithic	10	30.48	JU	8/31/2017	4 bifacial thinning flakes
3	16	150- 160	Debitage	Tertiary	Lithic	44	26.89	JU	8/31/2017	25 bifacial thinning flakes
3	17	160- 170	Faunal Remains	Bone		2	0.85	JU	8/31/2017	
3	17	160- 170	Debitage	Primary	Lithic	1	3.42	JU	8/31/2017	
3	17	160- 170	Debitage	Secondary	Lithic	3	3.26	JU	8/31/2017	1 bifacial thinning flake
3	17	160- 170	Debitage	Tertiary	Lithic	15	15.66	JU	8/31/2017	8 bifacial thinning flakes
3	18	170- 180	Faunal Remains	Bone		3	2.88	JU	8/31/2017	

Unit	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
3	18	170- 180	Debitage	Secondary	Lithic	2	1.62	JU	8/31/2017	1 bifacial thinning flake
3	18	170- 180	Debitage	Tertiary	Lithic	13	24.8	JU	8/31/2017	9 bifacial thinning flakes
4	1	0–10	Debitage	Primary	Lithic	1	12.19	JL	10/14/2016	
4	1	0–10	Debitage	Tertiary	Lithic	14	7.15	JL	10/14/2016	12 Bifacial thinning flakes
4	2	10–20	Debitage	Primary	Lithic	1	3.81	JL	10/13/2016	
4	2	10–20	Debitage	Secondary	Lithic	1	35.43	JL	10/13/2016	40 Dife elel
4	2	10–20	Debitage	Tertiary	Lithic	12	10.11	JL	10/13/2016	10 Bifacial thinning flakes
4	3	20–30	Debitage	Primary	Lithic	25	29.05	JL	10/12/2016	11 Bifacial thinning flakes
4	3	20–30	Debitage	Secondary	Lithic	14	11.42	JL	10/12/2016	4 Bifacial thinning flakes
4	3	20–30	Debitage	Tertiary	Lithic	145	68.05	JL	10/12/2016	129 Bifacial thinning flakes
4	3	20–30	Scraper	Unifacial scraper	Lithic	1	4.07	JL	10/13/2016	Unifacially worked
4	4	30-40	Tool	Biface	Lithic	1	3.74	JU	8/30/2017	thin, proximal
4	4	30-40	Faunal Remains	Mussel Shell	Shell	2	7.76	JU	8/30/2017	Shell with hole
4	4	30-40	Ground Stone	Ground Stone		4	143.67	JU	8/30/2017	
4	4	30-40	Organic Remains	Charcoal		3	0.4	JU	8/30/2017	From screen
4	4	30-40	Special Sample	DAUB	Clay	5	6.45	JU	8/30/2017	
4	4	30-40	Faunal Remains	Bone		7	4.96	JU	8/30/2017	1 burned
4	4	30-40	Debitage	Primary	Lithic	7	72.6	JU	8/30/2017	1 bifacial thinning flake
4	4	30-40	Debitage	Secondary	Lithic	27	75.38	JU	8/30/2017	9 bifacial thinning flakes
4	4	30-40	Debitage	Tertiary	Lithic	121	151.42	JU	8/30/2017	70 bifacial thinning flakes
4	5	40-50	Ground Stone	Ground Stone		1		JU	8/30/2017	
4	5	40-50	Faunal Remains	Bone		1	7.14	JU	8/30/2017	
4	5	40-50	Debitage	Primary	Lithic	8	55.47	JU	8/30/2017	2 bifacial thinning flakes
4	5	40-50	Debitage	Secondary	Lithic	17	33.69	JU	8/30/2017	9 bifacial thinning flakes
4	5	40-50	Debitage	Tertiary	Lithic	69	56.92	JU	8/30/2017	39 bifacial thinning flakes
4	6	50-60	Organic Remains	Charcoal		3	0.37	JU	8/30/2017	
4	6	50-60	Tool	Biface	Lithic	1	6.36	JU	8/30/2017	thin, proximal
4	6	50-60	Special Sample	DAUB	Clay	3	20.61	JU	8/30/2017	
4	6	50-60	Faunal Remains	Bone		12	13.34	JU	8/30/2017	1 burned
4	6	50-60	Debitage	Primary	Lithic	8	10.49	JU	8/30/2017	1 bifacial thinning flake
4	6	50-60	Debitage	Secondary	Lithic	18	114.01	JU	8/30/2017	5 bifacial thinning flakes
4	6	50-60	Debitage	Tertiary	Lithic	49	44.32	JU	8/30/2017	26 bifacial thinning flakes
4	7	60-70	Faunal Remains	Mussel Shell	Shell	1	2.57	JU	8/30/2017	
4	7	60-70	Organic Remains	Charcoal		5	2.19	JU	8/30/2017	
4	7	60-70	Ground Stone	Ground Stone		1	46.81	JU	8/30/2017	
4	7	60-70	Debitage	Primary	Lithic	3	14.9	JU	8/30/2017	0.1%
4	7	60-70	Debitage	Secondary	Lithic	11	59.73	JU	8/30/2017	2 bifacial thinning flakes

Unit	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
4	7	60-70	Debitage	Tertiary	Lithic	17	42.08	JU	8/30/207	12 bifacial thinning flakes
4	8	70-80	Faunal Remains	Mussel Shell	Shell	3	6.86	JU	8/30/2017	
4	8	70-80	Faunal Remains	Bone		3	5.3	JU	8/30/2017	
4	8	70-80	Debitage	Primary	Lithic	2	5.13	JU	8/30/2017	
4	8	70-80	Debitage	Secondary	Lithic	10	60.67	JU	8/30/2017	3 bifacial thinning flakes
4	8	70-80	Debitage	Tertiary	Lithic	27	60.79	JU	8/30/2017	15 bifacial thinning flakes
4	9	80-90	Faunal Remains	Mussel Shell	Shell	4	8.46	JU	8/30/2017	
4	9	80-90	Faunal Remains	Tooth	Bone	1	2.52	JU	8/30/2017	
4	9	80-90	Faunal Remains	Bone		18	36.17	JU	8/30/2017	
4	9	80-90	Debitage	Primary	Lithic	13	80.91	JU	8/30/2017	1 bifacial thinning flake
4	9	80-90	Debitage	Secondary	Lithic	27	176.2	JU	8/30/2017	7 bifacial thinning flakes
4	9	80-90	Debitage	Tertiary	Lithic	61	110.78	JU	8/30/2017	39 bifacial thinning flakes
4	10	90-100	Tool	Biface	Lithic	1	0.51	JU	8/30/2017	Distal
4	10	90-100	Faunal Remains	Bone		10	17.02	JU	8/30/2017	
4	10	90-100	Debitage	Primary	Lithic	6	36.61	JU	8/30/2017	1 bifacial thinning flake
4	10	90-100	Debitage	Secondary	Lithic	11	62.59	JU	8/30/2017	4 bifacial thinning flakes
4	10	90-100	Debitage	Tertiary	Lithic	33	62.77	JU	8/30/2017	25 bifacial thinning flakes
4	11	100- 110	Faunal Remains	Bone		3	2.85	JU	8/30/2017	
4	11	100- 110	Tool	Biface	Lithic	1	4.74	JU	8/30/2017	thin, distal
4	11	100- 110	Debitage	Primary	Lithic	3	6.97	JU	8/30/2017	
4	11	100- 110	Debitage	Secondary	Lithic	8	38.54	JU	8/30/2017	3 bifacial thinning flakes
4	11	100- 110	Debitage	Tertiary	Lithic	24	15.09	JU	8/30/2017	17 bifacial thinning flakes
4	11	100- 110	Tool	Biface	Lithic	1	116.2	JU	8/30/2017	Biface blank, chunky
4	12	110- 120	Debitage	Secondary	Lithic	7	31.4	JU	8/30/2017	3 bifacial thinning flakes
4	12	110- 120	Debitage	Tertiary	Lithic	18	20.9	JU	8/30/2017	15 bifacial thinning flakes
4	13	120- 130	Projectile Point	Untyped Arrow Point Preform	Lithic	1	4.45	JU	8/30/2017	probable unfinished preform-failure to thin; unifacial
4	13	120- 130	Faunal Remains	Bone		1	0.47	JU	8/30/2017	
4	13	120- 130	Debitage	Secondary	Lithic	9	52.35	JU	8/30/2017	2 bifacial thinning flakes
4	13	120- 130	Debitage	Tertiary	Lithic	14	29.85	JU	8/30/2017	12 bifacial thinning flakes
4	13	120- 130	Tool	Biface	Lithic	1	35.09	JU	8/30/2017	thin, proximal
4	13	120- 130	Tool	Utilized Flake	Lithic	1	23.13	JU	8/30/2017	
4	14	130- 140	Debitage	Tertiary	Lithic	11	14.25	JU	8/30/2017	8 bifacial thinning flakes
4	14	130- 140	Faunal Remains	Bone		6	1.53	JU	8/30/2017	

Unit	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
4	14	130- 140	Organic Remains	Charcoal		4	0.28	JU	8/30/2017	
4	14	130- 140	Tool	Chopper	Lithic	1	91.32	JU	8/30/2017	
4	15	140- 150	Faunal Remains	Bone		9	3.64	JU	8/30/2017	
4	15	140	Faunal Remains	Bone		13	10.13	JU	8/30/2017	
4	15	140	Tool	Chopper	Lithic	1	152.49	JU	8/30/2017	
4	15	140- 150	Faunal Remains	Tooth	Bone	1	0.86	JU	8/30/2017	
4	15	140- 150	Faunal Remains	Bone		29	8.94	JU	8/30/2017	
4	15	140- 150	Debitage	Primary	Lithic	1	5.92	JU	8/30/2017	
4	15	140- 150	Debitage	Secondary	Lithic	2	18.65	JU	8/30/2017	
4	15	140- 150	Debitage	Tertiary	Lithic	13	12.45	JU	8/30/2017	9 bifacial thinning flakes
4	16	150- 160	Faunal Remains	Bone		2	0.48	JU	8/31/2017	
4	16	150- 160	Debitage	Secondary	Lithic	1	75.89	JU	8/31/2017	
4	16	150- 160	Debitage	Tertiary	Lithic	9	12.33	JU	8/31/2017	8 bifacial thinning flakes
4	5-6	-	Faunal Remains	Mussel Shell	Shell	1	7.13	JU	8/30/2017	In rodent burrow between levels 5 and 6
5	1	0-10	Debitage	Secondary	Lithic	1	18.24	JU	9/1/2017	
5	2	10-20	Debitage	Tertiary	Lithic	3	1.48	JU	9/1/2017	1 bifacial thinning flake
5	2	10-20	Core	Core	Lithic	1	150.39	JU	9/1/2017	
5	3	20-30	Faunal Remains	Bone		1	0.73	JU	9/1/2017	
5	3	20-30	Debitage	Secondary	Lithic	1	0.35	JU	9/1/2017	2 bifacial thinning
5	3	20-30	Debitage Faunal	Tertiary	Lithic	3	6.1	JU	9/1/2017	flakes
5	4	30-40	Remains	Mussel Shell	Shell	1	4.32	JU	9/1/2017	
5	4	30-40	Debitage	Primary	Lithic	3	4.3	JU	9/1/2017	
5	4	30-40	Debitage	Secondary	Lithic	5	36.14	JU	9/1/2017	1 bifacial thinning flake
5	4	30-40	Debitage	Tertiary	Lithic	18	33.86	JU	9/1/2017	11 bifacial thinning flakes
5	5	40-50	Debitage	Primary	Lithic	2	3.25	JU	9/1/2017	1 bifacial thinning flake
5	5	40-50	Debitage	Secondary	Lithic	7	13.98	JU	9/1/2017	3 bifacial thinning flakes
5	5	40-50	Debitage	Tertiary	Lithic	34	20.32	JU	9/1/2017	21 bifacial thinning flakes
5	6	50-60	Faunal Remains	Bone		2	0.51	JU	9/1/2017	1 burned
5	6	50-60	Debitage	Primary	Lithic	3	3.56	JU	9/1/2017	
5	6	50-60	Debitage	Secondary	Lithic	4	1.35	JU	9/1/2017	1 bifacial thinning flake
5	6	50-60	Debitage	Tertiary	Lithic	28	29.77	JU	9/1/2017	21 bifacial thinning flakes
5	7	60-70	Faunal Remains	Bone		1	0.26	JU	9/1/2017	Burned
5	7	60-70	Debitage	Primary	Lithic	5	34.48	JU	9/1/2017	1 bifacial thinning flake
5	7	60-70	Debitage	Secondary	Lithic	4	20.65	JU	9/1/2017	2 bifacial thinning flakes
5	7	60-70	Debitage	Tertiary	Lithic	19	22.87	JU	9/1/2017	8 bifacial thinning flakes
5	8	70-80	Debitage	Secondary	Lithic	1	1.74	JU	9/1/2017	

Unit	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
5	8	70-80	Debitage	Tertiary	Lithic	5	2.59	JU	9/1/2017	3 bifacial thinning flakes
5	9	80-90	Debitage	Primary	Lithic	1	1.04	JU	9/1/2017	
5	9	80-90	Debitage	Secondary	Lithic	2	4.8	JU	9/1/2017	
5	9	80-90	Debitage	Tertiary	Lithic	6	11.15	JU	9/1/2017	5 bifacial thinning flakes
5	10	90-100	Debitage	Primary	Lithic	1	17.5	JU	9/1/2017	
5	10	90-100	Debitage	Secondary	Lithic	2	8.49	JU	9/1/2017	
5	10	90-100	Debitage	Tertiary	Lithic	3	5.45	JU	9/1/2017	1 bifacial thinning flake
5	11	100- 110	Debitage	Secondary	Lithic	2	7.61	JU	9/1/2017	
5	11	100- 110	Debitage	Tertiary	Lithic	3	8.4	JU	9/1/2017	2 bifacial thinning flakes
1	2	10–20	Burned Rock	Burned Rock	Lithic	7	500	DR	10/19/2017	Not collected
1	3	20–30	Burned Rock	Burned Rock	Lithic	1	<100	DR	10/19/2017	Not collected
1	4	30–40	Burned Rock	Burned Rock	Lithic	4	200	DR	10/19/2017	Not collected
1	5	40–50	Burned Rock	Burned Rock	Lithic	8	800	DR	10/19/2017	Not collected
1	6	50–60	Burned Rock	Burned Rock	Lithic	11	600	DR	10/19/2017	Not collected
1	7	60–70	Burned Rock	Burned Rock	Lithic	8	600	DR	10/19/2017	Not collected
1	8	70–80	Burned Rock	Burned Rock	Lithic	13	600	DR	10/19/2017	Not collected
1	9	80–90	Burned Rock	Burned Rock	Lithic	12	750	DR	10/19/2017	Not collected
1	10	90–100	Burned Rock	Burned Rock	Lithic	17	1250	DR	10/19/2017	Not collected
1	11	100– 110	Burned Rock	Burned Rock	Lithic	8	600	DR	10/19/2017	Not collected
1	13	120– 130	Burned Rock	Burned Rock	Lithic	7	205	DR	10/19/2017	Not collected
2	1	0–10	Burned Rock	Burned Rock	Lithic	2	100	DR	10/19/2017	Not collected
2	2	10–20	Burned Rock	Burned Rock	Lithic	16	300	DR	10/19/2017	Not collected
2	3	20–30	Burned Rock	Burned Rock	Lithic	2	110	DR	10/19/2017	Not collected
2	5	40–50	Burned Rock	Burned Rock	Lithic	15	300	DR	10/19/2017	Not collected
2	6	50–60	Burned Rock	Burned Rock	Lithic	4	250	DR	10/19/2017	Not collected
2	7	60–70	Burned Rock	Burned Rock	Lithic	5	>600	DR	10/19/2017	Not collected
2	8	70–80	Burned Rock	Burned Rock	Lithic	12	400	DR	10/19/2017	Not collected
2	9	80–90	Burned Rock	Burned Rock	Lithic	6	100	DR	10/19/2017	Not collected
2	10	90–100	Burned Rock	Burned Rock	Lithic	11	500	DR	10/19/2017	Not collected
2	11	100– 110	Burned Rock	Burned Rock	Lithic	5	400	DR	10/19/2017	Not collected
2	12	110– 120	Burned Rock	Burned Rock	Lithic	7	2700	DR	10/19/2017	Not collected
2	13	120– 130	Burned Rock	Burned Rock	Lithic	7	500	DR	10/19/2017	
3	1 -	0–10	Burned Rock	Burned Rock	Lithic	2	<100	DR		Not collected
3	5	40-50	Burned Rock	Burned Rock	Lithic	5	150	DR	10/19/2017	Not collected
3	6	50-60	Burned Rock	Burned Rock	Lithic	32	200	DR	10/19/2017	Not collected
3	9	80-90 100-	Burned Rock Burned Rock	Burned Rock Burned Rock	Lithic	5	100 200	DR DR	10/19/2017	Not collected Not collected
3	12	110 110-	Burned Rock	Burned Rock	Lithic	5	600	DR	10/19/2017	Not collected
3	13	120 120-	Burned Rock	Burned Rock	Lithic	13	100	DR	10/19/2017	Not collected
3	16	130 150- 160	Burned Rock	Burned Rock	Lithic	2	200	DR	10/19/2017	Not collected
4	3	20–30	Burned Rock	Burned Rock	Lithic	4	100	DR	10/19/2017	Not collected
4	4	30-40	Burned Rock	Burned Rock	Lithic	16	600	DR	10/19/2017	Not collected
4	5	40-50	Burned Rock	Burned Rock	Lithic	21	1000	DR	10/19/2017	Not collected
4	6	50-60	Burned Rock	Burned Rock	Lithic	20	800	DR	10/19/2017	Not collected
4	7	60-70	Burned Rock	Burned Rock	Lithic	17	600	DR	10/19/2017	Not collected
4	8	70-80	Burned Rock	Burned Rock	Lithic	21	400	DR	10/19/2017	Not collected
4	9	80-90	Burned Rock	Burned Rock	Lithic	60	1100	DR	10/19/2017	Not collected
4	10	90-100	Burned Rock	Burned Rock	Lithic	20	1300	DR	10/19/2017	Not collected
	10	00 100	Samou Rook	Danied Rock	LIGHO	20	.000	DIX	10/10/2017	or oonoorou

Unit	Level	Depth (cmbs)	Artifact Type	Artifact Description	Material	Artifact No.	Weight (g)	Recorders	Date	Comments
4	11	100- 110	Burned Rock	Burned Rock	Lithic	14	600	DR	10/19/2017	Not collected
4	12	110- 120	Burned Rock	Burned Rock	Lithic	9	200	DR	10/19/2017	Not collected
4	13	120- 130	Burned Rock	Burned Rock	Lithic	14	400	DR	10/19/2017	Not collected
4	14	130- 140	Burned Rock	Burned Rock	Lithic	6	100	DR	10/19/2017	Not collected
4	15	140- 150	Burned Rock	Burned Rock	Lithic	8	100	DR	10/19/2017	Not collected
4	16	150- 160	Burned Rock	Burned Rock	Lithic	3	200	DR	10/19/2017	Not collected
5	4	30-40	Burned Rock	Burned Rock	Lithic	3	100	DR	10/19/2017	Not collected
5	5	40-50	Burned Rock	Burned Rock	Lithic	17	1000	DR	10/19/2017	Not collected
5	6	50-60	Burned Rock	Burned Rock	Lithic	31	2200	DR	10/19/2017	Not collected
5	7	60-70	Burned Rock	Burned Rock	Lithic	17	1200	DR	10/19/2017	Not collected
5	8	70-80	Burned Rock	Burned Rock	Lithic	2	100	DR	10/19/2017	Not collected
5	9	80-90	Burned Rock	Burned Rock	Lithic	13	100	DR	10/19/2017	Not collected
5	10	90-100	Burned Rock	Burned Rock	Lithic	2	100	DR	10/19/2017	Not collected
5	11	100- 110	Burned Rock	Burned Rock	Lithic	2	100	DR	10/19/2017	Not collected
Surface	Surface		Biface	Late-stage, thin biface	Lithic	1	56.3	JL	10/14/2016	Surface collection. Thin biface.

APPENDIX B 41GU177 Data Recovery Specimen Inventory and Burned Rock Tables

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
314	1	467	-	-	-	A	ı	N0995	E1012	1	99.7-99.6	0-10	-	Detritus	Debitage	Complete Flake	Lithic	1	1.39		12/11/2017
314	2	467	-	_	-	Α	1	N0995	E1012	1	99.7-99.6	0-10	-	Detritus	Debitage	Broken Flake	Lithic	3	6.99		12/11/2017
314	3	467	-	-	-	А	ı	N0995	E1012	1	99.7-99.6	0-10	-	Detritus	Debitage	Thermal Shatter	Lithic	2	8.18		12/11/2017
315	1	475	-	-	-	А	ı	N0995	E1012	2	99.6-99.5	10-20	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.27		12/11/2017
316	1	480	-	-	-	Α	Ш	N0995	E1012	3	99.5-99.4	20-30	-	Detritus	Debitage	Complete Flake	Lithic	1	0.14		12/11/2017
316	2	480	-	-	-	А	П	N0995	E1012	3	99.5-99.4	20-30	-	Detritus	Debitage	Proximal Flake	Lithic	3	2.03		12/11/2017
316	3	480	-	-	-	Α	Ш	N0995	E1012	3	99.5-99.4	20-30	-	Detritus	Debitage	Broken Flake	Lithic	3	0.92		12/11/2017
316	4	480	-	-	-	А	II	N0995	E1012	3	99.5-99.4	20-30	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.29		12/11/2017
316	5	480	-	-	-	Α	II	N0995	E1012	3	99.5-99.4	20-30	-	Faunal Remains	Shell	Mussel Shell	Shell	1	3.69		12/11/2017
316	7	480	-	-	-	Α	II	N0995	E1012	3	99.5-99.4	20-30	-	Formal Tool	Biface	Notched Tool	Fine Grain Chert	1	4.72		12/11/2017
317	1	485	-	-	-	Α	II	N0995	E1012	4	99.4-99.3	30-40	-	Detritus	Debitage	Complete Flake	Lithic	5	29.72		12/11/2017
317	2	485	-	-	-	Α	II	N0995	E1012	4	99.4-99.3	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	6	4.35		12/11/2017
317	3	485	-	-	-	Α	II	N0995	E1012	4	99.4-99.3	30-40	-	Detritus	Debitage	Broken Flake	Lithic	12	13.88		12/11/2017
317	4	485	-	-	-	Α	II	N0995	E1012	4	99.4-99.3	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	4	4.58		12/11/2017
317	5	485	-	-	-	А	П	N0995	E1012	4	99.4-99.3	30-40	-	Faunal Remains	Shell	Mussel Shell	Shell	1	0.49		12/11/2017
318	1	492	-	-	-	Α	II	N0995	E1012	5	99.3-99.2	40-50	-	Detritus	Debitage	Complete Flake	Lithic	9	15.27		12/12/2017
318	2	492	-	-	-	Α	II	N0995	E1012	5	99.3-99.2	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	8	7.1		12/12/2017
318	3	492	-	-	-	Α	II	N0995	E1012	5	99.3-99.2	40-50	-	Detritus	Debitage	Broken Flake	Lithic	22	61.31		12/12/2017
318	4	492	-	-	-	Α	Ш	N0995	E1012	5	99.3-99.2	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	10	7.51		12/12/2017
318	5	492	-	-	-	Α	II	N0995	E1012	5	99.3-99.2	40-50	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	23.74		12/12/2017
318	6	492	-	-	-	Α	II	N0995	E1012	5	99.3-99.2	40-50	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	1.21		12/12/2017
319	1	501	-	-	-	Α	III	N0995	E1012	6	99.2-99.1	50-60	-	Detritus	Debitage	Complete Flake	Lithic	6	69.41		12/12/2017
319	2	501	-	-	-	Α	III	N0995	E1012	6	99.2-99.1	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	5	8.28		12/12/2017
319	3	501	-	-	-	Α	III	N0995	E1012	6	99.2-99.1	50-60	-	Detritus	Debitage	Broken Flake	Lithic	22	76.09		12/12/2017
319	4	501	-	-	-	Α	III	N0995	E1012	6	99.2-99.1	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	4	2.53		12/12/2017
319	5	501	-	-	-	Α	III	N0995	E1012	6	99.2-99.1	50-60	-	Faunal Remains	Shell	Mussel Shell	Shell	4	0.84		12/12/2017
320	1	501	-	-	-	Α	Ш	N0995	E1012	6	99.17	53	N995.50 E1012.34	Informal Tool	Modified Flake	Utilized Flake	Fine Grain Chert	1	43.57		12/12/2017
321	1	506	-	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Mammal	Bone	1	0.55		12/13/2017
321	2	506	-	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.61		12/13/2017
321	3	506	-	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Mammal	Bone	1	0.74		12/13/2017
321	4	506	-	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.45		12/13/2017
321	5	506	1	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.48		12/13/2017
321	6	506	-	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.4		12/13/2017
321	7	506	-	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.29		12/13/2017
321	8	506	1	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.57		12/13/2017
321	9	506	-	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.28		12/13/2017
321	10	506	-	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.35		12/13/2017
321	11	506	-	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.23		12/13/2017
321	12	506	-	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Mammal	Bone	1	0.56		12/13/2017
321	13	506	-	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.46		12/13/2017
321	14	506	-	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.29		12/13/2017
321	15	506	-	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.1		12/13/2017
321	16	506	-	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.1		12/13/2017
321	17	506	-	-	-	Α	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.17		12/13/2017

321	No.		UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
	18	506	-	-	-	А	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.12		12/13/2017
321	19	506	-	-	-	А	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.05		12/13/2017
321	20	506	-	-	-	А	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.18		12/13/2017
321	21	506	-	-	-	А	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.11		12/13/2017
321	22	506	-	-	-	А	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/13/2017
321	23	506	-	-	-	А	III	N0995	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/13/2017
321	24	506	-	-	-	А	III	N0995	E1012	7	99.1-99.0	60-70	-	Detritus	Debitage	Complete Flake	Lithic	6	98.18		12/13/2017
321	25	506	-	-	-	А	III	N0995	E1012	7	99.1-99.0	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	8	6		12/13/2017
321	26	506	-	-	-	А	III	N0995	E1012	7	99.1-99.0	60-70	-	Detritus	Debitage	Broken Flake	Lithic	37	59.02		12/13/2017
321	27	506	-	-	-	А	III	N0995	E1012	7	99.1-99.0	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	19	27.33		12/13/2017
321	28	506	25	-	-	А	III	N0995	E1012	7	99.1-99.0	60-70	-	Worked Shell	Shell Ornament	Shell Bead	Shell	1	0.06	Rounded rabdotus like shell	12/13/2017
322	1	508	-	-	-	А	III	N0995	E1012	7	99.07	63	N995.36 E1012.90	Faunal Remains	Shell	Mussel Shell	Shell	1	24.05	1 bivalve shell half	12/13/2017
323	1	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Mammal	Bone	1	0.55		12/13/2017
323	2	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.37		12/13/2017
323	3	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.63		12/13/2017
323	4	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.15		12/13/2017
323	5	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Mammal	Bone	1	0.49		12/13/2017
323	6	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Mammal	Bone	1	2.6		12/13/2017
323	7	524	-	-	-	Α	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.88		12/13/2017
323	8	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.24		12/13/2017
323	9	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Mammal	Bone	1	0.33		12/13/2017
323	10	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.25		12/13/2017
323	11	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.37		12/13/2017
323	12	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.21		12/13/2017
323	13	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.25		12/13/2017
323	14	524	-	-	-	Α	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.28		12/13/2017
323	15	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.15		12/13/2017
323	16	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.21		12/13/2017
323	17	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.15		12/13/2017
323	18	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.11		12/13/2017
323	19	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.08		12/13/2017
323	20	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.29		12/13/2017
323	21	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.14		12/13/2017
323	22	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.18		12/13/2017
323	23	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.06		12/13/2017
323	24	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/13/2017
323	25	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Detritus	Debitage	Complete Flake	Lithic	4	23.33		12/13/2017
323	26	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	4	5.76		12/13/2017
323	27	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Detritus	Debitage	Broken Flake	Lithic	57	24.02		12/13/2017
323	28	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Detritus	Debitage	Flaking Shatter	Lithic	2	0.67		12/13/2017
323	29	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	44	48.06		12/13/2017
323	30	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	5.38		12/13/2017
323	31	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Informal Tool	Modified Flake	Edge-modified	Coarse Grain Chert	1	5.38		12/13/2017
323	32	524	-	-	-	А	III	N0995	E1012	8	99.0-98.9	70-80	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	2.75		12/13/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
324	1	525	-	-	-	Α	Ш	N0995	E1012	8	98.9	80	N995.79 E1012.13	Other Lithic	Thermally Altered Stone	FCR	Lithic	2	132.57	Originally classified as a Core	12/13/2017
325	1	578	-	-	-	Α	IV	N0995	E1012	9	98.9-98.8	80-90	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.41		12/18/2017
325	2	578	-	-	-	Α	IV	N0995	E1012	9	98.9-98.8	80-90	-	Detritus	Debitage	Complete Flake	Lithic	4	46.2		12/18/2017
325	3	578	-	-	-	А	IV	N0995	E1012	9	98.9-98.8	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.26		12/18/2017
325	4	578	-	-	-	А	IV	N0995	E1012	9	98.9-98.8	80-90	-	Detritus	Debitage	Broken Flake	Lithic	31	18.54		12/18/2017
325	5	578	-	-	-	Α	IV	N0995	E1012	9	98.9-98.8	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	14	13.19		12/18/2017
326	1	590	-	-	-	Α	IV	N0995	E1012	9	98.83	87	N996.0 E1012.43	Ground/ Battered Stone	Battered Stone	Tested Cobble		1	183.52	Originally classified as a Core	12/18/2017
327	1	589	-	-	-	Α	IV	N0995	E1012	10	98.8-98.7	90-100	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.38	1 burned	12/18/2017
327	2	589	-	-	-	Α	IV	N0995	E1012	10	98.8-98.7	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.52	1 burned	12/18/2017
327	3	589	-	-	-	Α	IV	N0995	E1012	10	98.8-98.7	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.28	1 burned	12/18/2017
327	4	589	-	-	-	Α	IV	N0995	E1012	10	98.8-98.7	90-100	-	Detritus	Debitage	Complete Flake	Lithic	5	5.32		12/18/2017
327	5	589	-	-	-	Α	IV	N0995	E1012	10	98.8-98.7	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	2	0.68		12/18/2017
327	6	589	-	-	-	Α	IV	N0995	E1012	10	98.8-98.7	90-100	-	Detritus	Debitage	Broken Flake	Lithic	27	15.89		12/18/2017
327	7	589	-	-	-	Α	IV	N0995	E1012	10	98.8-98.7	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	52	71.42		12/18/2017
327	8	589	-	-	-	Α	IV	N0995	E1012	10	98.8-98.7	90-100	-	Formal Tool	Biface	Indeterminate Fragment	Fine Grain Chert	1	7.39	Distal end	12/18/2017
327	9	589	-	-	-	Α	IV	N0995	E1012	10	98.8-98.7	90-100	-	Other Lithic	Thermally Altered Stone	FCR	Lithic	1	10.48		12/18/2017
328	1	619	-	-	-	Α	IV	N0995	E1012	11	98.7-98.6	100-110	-	Detritus	Debitage	Complete Flake	Lithic	3	12.19		12/20/2017
328	2	619	-	-	-	Α	IV	N0995	E1012	11	98.7-98.6	100-110	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.79		12/20/2017
328	3	619	-	-	-	Α	IV	N0995	E1012	11	98.7-98.6	100-110	-	Detritus	Debitage	Broken Flake	Lithic	18	2.75		12/20/2017
328	4	619	-	-	-	Α	IV	N0995	E1012	11	98.7-98.6	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	9	4.66		12/20/2017
329	1	628	-	-	-	Α	IV	N0995	E1012	12	98.6-98.5	110-120	-	Faunal Remains	Bone	Mammal	Tooth	1	0.06		12/20/2017
329	2	628	-	-	-	Α	IV	N0995	E1012	12	98.6-98.5	110-120	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.11		12/20/2017
329	3	628	-	-	-	А	IV	N0995	E1012	12	98.6-98.5	110-120	-	Detritus	Debitage	Broken Flake	Lithic	8	22.95		12/20/2017
329	4	628	-	-	-	Α	IV	N0995	E1012	12	98.6-98.5	110-120	-	Detritus	Debitage	Thermal Shatter	Lithic	9	11.23		12/20/2017
330	1	639	-	-	-	Α	IV/V	N0995	E1012	13	98.5-98.4	120-130	-	Detritus	Debitage	Complete Flake	Lithic	1	11.24	Complete flake is 95% complete	12/20/2017
330	2	639	-	-	-	А	IV/V	N0995	E1012	13	98.5-98.4	120-130	-	Detritus	Debitage	Proximal Flake	Lithic	2	1.52		12/20/2017
330	3	639	-	-	-	Α	IV/V	N0995	E1012	13	98.5-98.4	120-130	-	Detritus	Debitage	Broken Flake	Lithic	3	1.85		12/20/2017
331	1	642	-	-	-	А	V	N0995	E1012	14	98.4-98.3	130-140	-	Detritus	Debitage	Complete Flake	Lithic	1	1.41		12/20/2017
331	2	642	-	-	-	Α	V	N0995	E1012	14	98.4-98.3	130-140	-	Detritus	Debitage	Proximal Flake	Lithic	1	46.49		12/20/2017
332	1	653	-	-	-	Α	VI	N0995	E1012	15	98.3-98.2	140-150	-	Detritus	Debitage	Complete Flake	Lithic	1	7.58		12/21/2017
332	2	653	-	-	-	Α	VI	N0995	E1012	15	98.3-98.2	140-150	-	Detritus	Debitage	Proximal Flake	Lithic	4	9.64		12/21/2017
332	3	653	ı	-	-	Α	VI	N0995	E1012	15	98.3-98.2	140-150	-	Detritus	Debitage	Broken Flake	Lithic	5	1.22		12/21/2017
333	1	350	-	-	-	Α	- 1	N0995	E1013	1	99.65-99.6	5-10	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.45		11/29/2017
333	2	350	1	-	-	Α	I	N0995	E1013	1	99.65-99.6	5-10	-	Detritus	Debitage	Broken Flake	Lithic	2	3.87		11/29/2017
334	1	358	-	-	-	Α	1	N0995	E1013	2	99.6-99.5	10-20	-	Detritus	Debitage	Complete Flake	Lithic	2	0.35		11/29/2017
334	2	358	-	-	-	Α	1	N0995	E1013	2	99.6-99.5	10-20	-	Detritus	Debitage	Proximal Flake	Lithic	2	1.47		11/29/2017
334	3	358	ı	-	-	Α	1	N0995	E1013	2	99.6-99.5	10-20	-	Detritus	Debitage	Broken Flake	Lithic	5	5.01		11/29/2017
335	1	378	1	-	-	Α	II	N0995	E1013	3	99.5-99.4	20-30	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.42		11/30/2017
335	2	378	-	-	-	Α	II	N0995	E1013	3	99.5-99.4	20-30	-	Detritus	Debitage	Complete Flake	Lithic	2	14.26		11/30/2017
335	3	378	-	-	-	Α	II	N0995	E1013	3	99.5-99.4	20-30	-	Detritus	Debitage	Proximal Flake	Lithic	2	2.99		11/30/2017
335	4	378	-	-	-	Α	II	N0995	E1013	3	99.5-99.4	20-30	-	Detritus	Debitage	Broken Flake	Lithic	2	1.5		11/30/2017
336	1	388	-	-	-	Α	II	N0995	E1013	4	99.4-99.3	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	6.94		11/30/2017
336	2	388	-	-	-	Α	II	N0995	E1013	4	99.4-99.3	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.96		11/30/2017
336	3	388	-	-	-	Α	II	N0995	E1013	4	99.4-99.3	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.42		11/30/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
336	4	388	-	-	-	A	П	N0995	E1013	4	99.4-99.3	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.35		11/30/2017
336	5	388	-	-	-	Α	П	N0995	E1013	4	99.4-99.3	30-40	-	Detritus	Debitage	Complete Flake	Lithic	5	2.02		11/30/2017
336	6	388	-	-	-	Α	П	N0995	E1013	4	99.4-99.3	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	9	3.99		11/30/2017
336	7	388	-	-	-	Α	II	N0995	E1013	4	99.4-99.3	30-40	-	Detritus	Debitage	Broken Flake	Lithic	17	12.99		11/30/2017
336	8	388	-	-	-	Α	Ш	N0995	E1013	4	99.4-99.3	30-40	-	Detritus	Debitage	Flaking Shatter	Lithic	1	1.6		11/30/2017
336	9	388	-	-	-	Α	Ш	N0995	E1013	4	99.4-99.3	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	9	6.66		11/30/2017
336	10	388	-	-	-	Α	Ш	N0995	E1013	4	99.4-99.3	30-40	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	2.07		11/30/2017
336	11	388	-	-	-	Α	Ш	N0995	E1013	4	99.4-99.3	30-40	-	Formal Tool	Biface	Marginal Fragment	Fine Grain Chert	1	6.31	Medial to proximal end	11/30/2017
337	1	399	-	-	-	Α	II	N0995	E1013	5	99.3-99.2	40-50	-	Detritus	Debitage	Complete Flake	Lithic	17	14.74		12/1/2017
337	2	399	-	-	-	Α	II	N0995	E1013	5	99.3-99.2	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	17	74.62		12/1/2017
337	3	399	-	-	-	Α	II	N0995	E1013	5	99.3-99.2	40-50	-	Detritus	Debitage	Broken Flake	Lithic	41	40.17		12/1/2017
337	4	399	-	-	-	Α	II	N0995	E1013	5	99.3-99.2	40-50	-	Detritus	Debitage	Flaking Shatter	Lithic	4	3.95		12/1/2017
337	5	399	-	-	-	Α	II	N0995	E1013	5	99.3-99.2	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	21	20.23		12/1/2017
337	6	399	-	-	-	Α	II	N0995	E1013	5	99.3-99.2	40-50	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	33.73		12/1/2017
337	7	399	-	-	-	Α	=	N0995	E1013	5	99.3-99.2	40-50	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	2.01		12/1/2017
337	8	399	-	1	-	Α	II	N0995	E1013	5	99.3-99.2	40-50	-	Informal Tool	Modified Flake	Utilized Flake	Coarse Grain Chert	1	60.49		12/1/2017
338	1	405	-	-	-	Α	Ш	N0995	E1013	6	99.2-99.1	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.45		12/4/2017
338	2	405	-	-	-	Α	Ш	N0995	E1013	6	99.2-99.1	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.38		12/4/2017
338	3	405	-	-	-	Α	Ш	N0995	E1013	6	99.2-99.1	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.17		12/4/2017
338	4	405	-	-	-	Α	Ш	N0995	E1013	6	99.2-99.1	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.34		12/4/2017
338	5	405	-	-	-	Α	Ш	N0995	E1013	6	99.2-99.1	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.17		12/4/2017
338	6	405	-	-	-	Α	III	N0995	E1013	6	99.2-99.1	50-60	-	Faunal Remains	Shell	Mussel Shell	Shell	1	0.46		12/4/2017
338	7	405	-	-	-	Α	III	N0995	E1013	6	99.2-99.1	50-60	-	Detritus	Debitage	Complete Flake	Lithic	14	39.25		12/4/2017
338	8	405	-	-	-	Α	III	N0995	E1013	6	99.2-99.1	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	13	10.05		12/4/2017
338	9	405	-	-	-	Α	III	N0995	E1013	6	99.2-99.1	50-60	-	Detritus	Debitage	Broken Flake	Lithic	32	12.96		12/4/2017
338	10	405	-	-	-	Α	III	N0995	E1013	6	99.2-99.1	50-60	-	Detritus	Debitage	Flaking Shatter	Lithic	2	1.71		12/4/2017
338	11	405	-	-	-	Α	Ш	N0995	E1013	6	99.2-99.1	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	15	12.62		12/4/2017
339	1	410	-	-	-	Α	Ш	N0995	E1013	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Avian	Bone	1	0.28	2 burned	12/4/2017
339	2	410	-	-	-	Α	Ш	N0995	E1013	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.29	2 burned	12/4/2017
339	3	410	-	-	-	Α	III	N0995	E1013	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Mammal	Bone	1	0.6	2 burned	12/4/2017
339	4	410	-	-	-	Α	III	N0995	E1013	7	99.1-99.0	60-70	-	Formal Tool	Biface	Distal-Medial Fragment	Fine Grain Chert	1	21.61	Distal end	12/4/2017
339	5	410	-	-	-	Α	III	N0995	E1013	7	99.1-99.0	60-70	-	Detritus	Debitage	Complete Flake	Lithic	19	37.67		12/4/2017
339	6	410	-	-	-	Α	III	N0995	E1013	7	99.1-99.0	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	17	9.68		12/4/2017
339	7	410	-	-	-	Α	III	N0995	E1013	7	99.1-99.0	60-70	-	Detritus	Debitage	Broken Flake	Lithic	41	15.89		12/4/2017
339	8	410	-	-	-	Α	III	N0995	E1013	7	99.1-99.0	60-70	-	Detritus	Debitage	Flaking Shatter	Lithic	4	1.65		12/4/2017
339	9	410	-	-	-	Α	Ш	N0995	E1013	7	99.1-99.0	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	29	20.37		12/4/2017
339	10	410	-	-	-	Α	Ш	N0995	E1013	7	99.1-99.0	60-70	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	10.26		12/4/2017
339	11	410	-	-	-	Α	III	N0995	E1013	7	99.1-99.0	60-70	- NOOE 57	Detritus	Core	Bifacial	Fine Grain Chert	1	57.01	Fragment	12/4/2017
340	1	410	-	-	-	Α	III	N0995	E1013	7	99.05	65	N995.57 E1013.81 N995.04	Faunal Remains	Shell	Mussel Shell	Shell	4	21.57		12/4/2017
341	1	421	-	-	-	Α	III	N0995	E1013	8	98.93	77	N995.04 E1013.32	Formal Tool	Biface	Complete	Fine Grain Chert	1	157.9	Early stage biface	12/4/2017
342	1	422	-	-	-	Α	III	N0995	E1013	8	99.0-98.9	70-80	-	Detritus	Debitage	Complete Flake	Lithic	2	39.52		12/4/2017
342	2	422	-	-	-	Α	III	N0995	E1013	8	99.0-98.9	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	4	34.46		12/4/2017
342	3	422	-	-	-	Α	III	N0995	E1013	8	99.0-98.9	70-80	-	Detritus	Debitage	Broken Flake	Lithic	5	5.22		12/4/2017
342	4	422	-	-	-	Α	III	N0995	E1013	8	99.0-98.9	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	6	3.41		12/4/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
342	5	422	-	-	-	Α	III	N0995	E1013	8	99.0-98.9	70-80	-	Informal Tool	Modified Flake	Utilized Flake	Fine Grain Chert	1	86.18		12/4/2017
343	1	607	-	-	-	А	IV	N0995	E1013	9	98.9-98.8	80-90	-	Detritus	Debitage	Complete Flake	Lithic	4	2.48		12/20/2017
343	2	607	-	-	-	Α	IV	N0995	E1013	9	98.9-98.8	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	1	8.74		12/20/2017
343	3	607	-	-	-	Α	IV	N0995	E1013	9	98.9-98.8	80-90	-	Detritus	Debitage	Broken Flake	Lithic	13	22.8		12/20/2017
343	4	607	-	-	-	Α	IV	N0995	E1013	9	98.9-98.8	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	7	4.87		12/20/2017
344	1	610	-	-	-	Α	IV	N0995	E1013	10	98.8-98.7	90-100	-	Faunal Remains	Bone	Mammal	Bone	1	2.36		12/20/2017
344	2	610	-	-	-	Α	IV	N0995	E1013	10	98.8-98.7	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	2	0.44		12/20/2017
344	3	610	-	-	-	Α	IV	N0995	E1013	10	98.8-98.7	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	2	0.1		12/20/2017
344	4	610	-	-	-	Α	IV	N0995	E1013	10	98.8-98.7	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.44		12/20/2017
344	5	610	-	-	-	Α	IV	N0995	E1013	10	98.8-98.7	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.13		12/20/2017
344	6	610	-	-	-	Α	IV	N0995	E1013	10	98.8-98.7	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/20/2017
344	7	610	-	-	-	Α	IV	N0995	E1013	10	98.8-98.7	90-100	-	Detritus	Debitage	Complete Flake	Lithic	5	26		12/20/2017
344	8	610	-	-	-	Α	IV	N0995	E1013	10	98.8-98.7	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.32		12/20/2017
344	9	610	-	-	-	Α	IV	N0995	E1013	10	98.8-98.7	90-100	-	Detritus	Debitage	Broken Flake	Lithic	8	2.62		12/20/2017
344	10	610	-	-	-	Α	IV	N0995	E1013	10	98.8-98.7	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	7	12.11		12/20/2017
344	11	610	-	-	-	Α	IV	N0995	E1013	10	98.8-98.7	90-100	-	Faunal Remains	Shell	Mussel Shell	Shell	1	4.99		12/20/2017
345	1	614	-	-	-	Α	IV	N0995	E1013	11	98.7-98.6	100-110	-	Detritus	Debitage	Complete Flake	Lithic	1	0.59		12/20/2017
345	2	614	-	-	-	Α	IV	N0995	E1013	11	98.7-98.6	100-110	-	Detritus	Debitage	Broken Flake	Lithic	4	5.34		12/20/2017
345	3	614	-	-	-	Α	IV	N0995	E1013	11	98.7-98.6	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	2	1.11		12/20/2017
346	1	626	-	-	-	Α	IV	N0995	E1013	12	98.6-98.5	110-120	-	Faunal Remains	Bone	Odocoileus sp.	Bone	1	13.06		12/20/2017
346	2	626	-	-	-	Α	IV	N0995	E1013	12	98.6-98.5	110-120	-	Faunal Remains	Bone	Mammal	Bone	1	2.79		12/20/2017
346	3	626	-	-	-	Α	IV	N0995	E1013	12	98.6-98.5	110-120	-	Faunal Remains	Bone	Mammal	Bone	1	0.4		12/20/2017
346	4	626	-	-	-	Α	IV	N0995	E1013	12	98.6-98.5	110-120	-	Detritus	Debitage	Complete Flake	Lithic	2	24.97		12/20/2017
346	5	626	ı	-	-	Α	IV	N0995	E1013	12	98.6-98.5	110-120	-	Detritus	Debitage	Broken Flake	Lithic	1	0.87		12/20/2017
346	6	626	-	-	-	Α	IV	N0995	E1013	12	98.6-98.5	110-120	-	Detritus	Debitage	Flaking Shatter	Lithic	1	0.15		12/20/2017
346	7	626	ı	-	1	Α	IV	N0995	E1013	12	98.6-98.5	110-120	-	Detritus	Debitage	Thermal Shatter	Lithic	8	34.88		12/20/2017
346	8	626	ı	-	1	Α	IV	N0995	E1013	12	98.6-98.5	110-120	-	Detritus	Core	Multidirectional	Fine Grain Chert	1	29.85	Exhausted Core	12/20/2017
347	1	636	ı	-	-	Α	IV/V	N0995	E1013	13	98.5-98.4	120-130	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	3.12		12/20/2017
347	2	636	-	-	-	Α	IV/V	N0995	E1013	13	98.5-98.4	120-130	-	Detritus	Debitage	Complete Flake	Lithic	1	4.17		12/20/2017
347	3	636	-	-	-	Α	IV/V	N0995	E1013	13	98.5-98.4	120-130	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.16		12/20/2017
347	4	636	-	-	-	Α	IV/V	N0995	E1013	13	98.5-98.4	120-130	-	Detritus	Debitage	Broken Flake	Lithic	2	0.36		12/20/2017
347	5	636	-	-	-	Α	IV/V	N0995	E1013	13	98.5-98.4	120-130	-	Detritus	Debitage	Thermal Shatter	Lithic	2	4.2		12/20/2017
348	1	644	-	-	-	Α	V	N0995	E1013	14	98.4-98.3	130-140	-	Faunal Remains	Bone	Odocoileus sp.	Bone	1	8.19		12/21/2017
348	2	644	-	-	-	Α	V	N0995	E1013	14	98.4-98.3	130-140	-	Detritus	Debitage	Proximal Flake	Lithic	1	12.38		12/21/2017
348	3	644	-	-	-	Α	V	N0995	E1013	14	98.4-98.3	130-140	-	Detritus	Debitage	Broken Flake	Lithic	1	2.3		12/21/2017
349	1	670	-	-	-	Α	VI	N0995	E1013	15	98.3-98.2	140-150	-	Detritus	Debitage	Broken Flake	Lithic	1	2.28		12/28/2017
349	2	670	-	-	-	Α	VI	N0995	E1013	15	98.3-98.2	140-150	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.41		12/28/2017
350	1	354	-	-	-	Α	I	N0995	E1014	1	99.59-99.5	11-20	-	Faunal Remains	Bone	Mammal	Bone	1	0.71		11/29/2017
350	2	354	-	-	-	Α	I	N0995	E1014	1	99.59-99.5	11-20	-	Detritus	Debitage	Broken Flake	Lithic	3	1.91		11/29/2017
351	1	370	-	-	-	Α	II	N0995	E1014	2	99.5-99.4	20-30	-	Detritus	Debitage	Broken Flake	Lithic	3	0.75		11/30/2017
351	2	370	-	-	-	Α	II	N0995	E1014	2	99.5-99.4	20-30	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	5.24		11/30/2017
352	1	382	-	-	-	Α	II	N0995	E1014	3	99.4-99.3	30-40	-	Detritus	Debitage	Complete Flake	Lithic	2	1.72		11/30/2017
352	2	382	-	-	-	Α	II	N0995	E1014	3	99.4-99.3	30-40	-	Detritus	Debitage	Broken Flake	Lithic	5	2.31		11/30/2017
352	3	382	-	-	-	Α	II	N0995	E1014	3	99.4-99.3	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	2	2.22		11/30/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
353	1	394	-	-	-	Α	II	N0995	E1014	4	99.3-99.2	40-50	-	Faunal Remains	Bone	Mammal	Bone	1	5.72		12/1/2017
353	2	394	-	-	-	Α	П	N0995	E1014	4	99.3-99.2	40-50	-	Faunal Remains	Bone	Mammal	Bone	1	3.18		12/1/2017
353	3	394	-	-	-	Α	П	N0995	E1014	4	99.3-99.2	40-50	-	Detritus	Debitage	Complete Flake	Lithic	11	6.63		12/1/2017
353	4	394	-	-	-	Α	Ш	N0995	E1014	4	99.3-99.2	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	18	11.63		12/1/2017
353	5	394	-	-	-	Α	II	N0995	E1014	4	99.3-99.2	40-50	-	Detritus	Debitage	Broken Flake	Lithic	32	39.05		12/1/2017
353	6	394	-	-	-	Α	П	N0995	E1014	4	99.3-99.2	40-50	-	Detritus	Debitage	Flaking Shatter	Lithic	3	1.2		12/1/2017
353	7	394	-	-	-	Α	П	N0995	E1014	4	99.3-99.2	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	11	15.32		12/1/2017
354	1	326	-	-	-	Α	III	N0995	E1014	5	99.2-99.1	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.13		12/1/2017
354	2	326	-	-	-	Α	III	N0995	E1014	5	99.2-99.1	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.57		12/1/2017
354	3	326	-	-	-	Α	III	N0995	E1014	5	99.2-99.1	50-60	-	Detritus	Debitage	Complete Flake	Lithic	21	93.4		12/1/2017
354	4	326	-	-	-	Α	III	N0995	E1014	5	99.2-99.1	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	15	14.3		12/1/2017
354	5	326	-	-	-	Α	III	N0995	E1014	5	99.2-99.1	50-60	-	Detritus	Debitage	Broken Flake	Lithic	55	24.44		12/1/2017
354	6	326	-	-	-	Α	III	N0995	E1014	5	99.2-99.1	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	20	18.25		12/1/2017
354	7	326	-	-	-	Α	III	N0995	E1014	5	99.2-99.1	50-60	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	10.97		12/1/2017
354	8	326	-	-	-	Α	Ш	N0995	E1014	5	99.2-99.1	50-60	-	Faunal Remains	Shell	Mussel Shell	Shell	1	3.43		12/1/2017
355	1	407	-	-	-	Α	III	N0995	E1014	6	99.1-99.0	60-70	-	Faunal Remains	Bone	Mammal	Bone	1	3.42		12/4/2017
355	2	407	-	-	-	Α	III	N0995	E1014	6	99.1-99.0	60-70	-	Faunal Remains	Bone	Mammal	Bone	1	1.27		12/4/2017
355	3	407	-	-	-	Α	III	N0995	E1014	6	99.1-99.0	60-70	-	Detritus	Debitage	Complete Flake	Lithic	21	43.1		12/4/2017
355	4	407	-	-	-	Α	III	N0995	E1014	6	99.1-99.0	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	18	14.52		12/4/2017
355	5	407	-	-	-	А	III	N0995	E1014	6	99.1-99.0	60-70	-	Detritus	Debitage	Broken Flake	Lithic	46	45.15		12/4/2017
355	6	407	-	-	-	А	III	N0995	E1014	6	99.1-99.0	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	22	18.31		12/4/2017
355	7	407	-	-	-	Α	III	N0995	E1014	6	99.1-99.0	60-70	-	Faunal Remains	Shell	Mussel Shell	Shell	2	3.81		12/4/2017
356	1	414	-	-	-	Α	III	N0995	E1014	7	98.96	74	N995.97 E1014.38	Formal Tool	Biface	Complete	Fine Grain Chert	1	108.64	Early stage biface	12/4/2017
357	1	415	-	-	-	А	III	N0995	E1014	7	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.19		12/4/2017
357	2	415	-	-	-	Α	III	N0995	E1014	7	99.0-98.9	70-80	-	Detritus	Debitage	Complete Flake	Lithic	17	73.22		12/4/2017
357	3	415	-	-	-	Α	III	N0995	E1014	7	99.0-98.9	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	17	6.64		12/4/2017
357	4	415	-	-	-	А	III	N0995	E1014	7	99.0-98.9	70-80	-	Detritus	Debitage	Broken Flake	Lithic	37	27.46		12/4/2017
357	5	415	-	-	-	Α	III	N0995	E1014	7	99.0-98.9	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	31	22.39		12/4/2017
358	1	426	-	-	-	Α	IV	N0995	E1014	8	98.9-98.8	80-90	-	Detritus	Debitage	Complete Flake	Lithic	7	54.15		12/5/2017
358	2	426	-	-	-	Α	IV	N0995	E1014	8	98.9-98.8	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	9	10.78		12/5/2017
358	3	426	-	-	-	А	IV	N0995	E1014	8	98.9-98.8	80-90	-	Detritus	Debitage	Broken Flake	Lithic	10	4.5		12/5/2017
358	4	426	-	-	-	Α	IV	N0995	E1014	8	98.9-98.8	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	21	19.62		12/5/2017
359	1	427	-	-	-	Α	IV	N0995	E1014	8	98.85	85	N995.53 E1014.60	Detritus	Core	Multidirectional	Fine Grain Chert	1	240.97	Core	12/5/2017
360	1	428	-	-	-	А	IV	N0995	E1014	8	98.86	84	N995.05 E1014.82	Formal Tool	Biface	Complete	Fine Grain Chert	1	181.21	Biface-early stage	12/5/2017
361	1	516	-	-	-	А	IV	N0995	E1014	9	98.8-98.7	90-100	-	Detritus	Debitage	Complete Flake	Lithic	1	1.78		12/13/2017
361	2	516	-	-	-	Α	IV	N0995	E1014	9	98.8-98.7	90-100	-	Detritus	Debitage	Broken Flake	Lithic	3	2.9		12/13/2017
361	3	516	-	-	-	А	IV	N0995	E1014	9	98.8-98.7	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	1	2.93		12/13/2017
362	1	532	-	-	-	Α	IV	N0995	E1014	10	98.7-98.6	100-110	-	Detritus	Debitage	Complete Flake	Lithic	3	17.45		12/14/2017
362	2	532	-	-	-	Α	IV	N0995	E1014	10	98.7-98.6	100-110	-	Detritus	Debitage	Broken Flake	Lithic	6	2.48		12/14/2017
362	3	532	-	-	-	Α	IV	N0995	E1014	10	98.7-98.6	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.28		12/14/2017
363	1	634	-	-	-	А	IV	N0995	E1014	11	98.6-98.5	110-120	-	Faunal Remains	Bone	Mammal	Bone	1	1.25		12/20/2017
363	2	634	-	-	-	Α	IV	N0995	E1014	11	98.6-98.5	110-120	-	Detritus	Debitage	Complete Flake	Lithic	3	7.43		12/20/2017
363	3	634	-	-	-	Α	IV	N0995	E1014	11	98.6-98.5	110-120	-	Detritus	Debitage	Broken Flake	Lithic	1	0.4		12/20/2017
363	4	634	-	-	-	Α	IV	N0995	E1014	11	98.6-98.5	110-120	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.46		12/20/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
364	1	647	-	-	-	A	IV/V	N0995	E1014	12	98.5-98.4	120-130	-	Detritus	Debitage	Proximal Flake	Lithic	2	1.63		12/21/2017
364	2	647	-	-	-	Α	IV/V	N0995	E1014	12	98.5-98.4	120-130	-	Detritus	Debitage	Thermal Shatter	Lithic	1	2.74		12/21/2017
365	1	650	-	-	-	Α	V	N0995	E1014	13	98.4-98.3	130-140	-	Detritus	Debitage	Complete Flake	Lithic	2	36.85		12/21/2017
365	2	650	-	-	-	Α	V	N0995	E1014	13	98.4-98.3	130-140	-	Detritus	Debitage	Proximal Flake	Lithic	1	4.73		12/21/2017
365	3	650	-	-	-	Α	٧	N0995	E1014	13	98.4-98.3	130-140	-	Detritus	Debitage	Broken Flake	Lithic	1	0.17		12/21/2017
366	1	470	-	-	-	Α	I	N0996	E1012	1	99.7-99.6	0-10	-	Faunal Remains	Bone	Mammal	Bone	1	0.07		12/11/2017
366	2	470	-	-	-	Α	I	N0996	E1012	1	99.7-99.6	0-10	-	Detritus	Debitage	Complete Flake	Lithic	1	2.42		12/11/2017
366	3	470	-	-	-	Α	I	N0996	E1012	1	99.7-99.6	0-10	-	Detritus	Debitage	Broken Flake	Lithic	1	1.05		12/11/2017
366	4	470	-	-	-	Α	I	N0996	E1012	1	99.7-99.6	0-10	-	Detritus	Debitage	Thermal Shatter	Lithic	1	12.24		12/11/2017
367	1	477	-	-	-	Α	1	N0996	E1012	2	99.6-99.5	10-20	-	Detritus	Debitage	Complete Flake	Lithic	1	4.57		12/11/2017
367	2	477	-	-	-	Α	1	N0996	E1012	2	99.6-99.5	10-20	-	Detritus	Debitage	Proximal Flake	Lithic	3	1.88		12/11/2017
367	3	477	-	-	-	Α	1	N0996	E1012	2	99.6-99.5	10-20	-	Detritus	Debitage	Broken Flake	Lithic	2	0.25		12/11/2017
367	4	477	-	-	-	Α	I	N0996	E1012	2	99.6-99.5	10-20	-	Detritus	Debitage	Thermal Shatter	Lithic	3	0.88		12/11/2017
367	5	477	-	-	1	Α	1	N0996	E1012	2	99.6-99.5	10-20	-	Historic Artifact	Ceramic	Whiteware	Ceramic	1	0.82	1 Whiteware	12/11/2017
368	1	481	-	-	-	Α	II	N0996	E1012	3	99.5-99.4	20-30	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.22		12/11/2017
368	2	481	-	-	-	Α	II	N0996	E1012	3	99.5-99.4	20-30	-	Detritus	Debitage	Complete Flake	Lithic	1	16.39		12/11/2017
368	3	481	-	-	-	Α	П	N0996	E1012	3	99.5-99.4	20-30	-	Detritus	Debitage	Proximal Flake	Lithic	2	11.95		12/11/2017
368	4	481	-	-	-	Α	II	N0996	E1012	3	99.5-99.4	20-30	-	Detritus	Debitage	Broken Flake	Lithic	5	1.9		12/11/2017
368	5	481	-	-	-	Α	II	N0996	E1012	3	99.5-99.4	20-30	-	Detritus	Debitage	Thermal Shatter	Lithic	7	7.68		12/11/2017
369	1	487	-	-	-	Α	II	N0996	E1012	4	99.4-99.3	30-40	-	Detritus	Debitage	Complete Flake	Lithic	7	13.52		12/12/2017
369	2	487	-	-	-	Α	II	N0996	E1012	4	99.4-99.3	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	10	10.19		12/12/2017
369	3	487	-	-	-	Α	II	N0996	E1012	4	99.4-99.3	30-40	-	Detritus	Debitage	Broken Flake	Lithic	21	8.87		12/12/2017
369	4	487	-	-	-	Α	II	N0996	E1012	4	99.4-99.3	30-40	-	Detritus	Debitage	Flaking Shatter	Lithic	2	0.76		12/12/2017
369	5	487	-	-	-	Α	II	N0996	E1012	4	99.4-99.3	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	12	13.22		12/12/2017
369	6	487	-	-	-	Α	II	N0996	E1012	4	99.4-99.3	30-40	-	Faunal Remains	Shell	Mussel Shell	Shell	1	0.17		12/12/2017
369	7	487	-	-	-	Α	II	N0996	E1012	4	99.4-99.3	30-40	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	3.16		12/12/2017
370	1	496	-	-	-	Α	II	N0996	E1012	5	99.3-99.2	40-50	-	Detritus	Debitage	Complete Flake	Lithic	11	57.41		12/12/2017
370	2	496	-	-	-	Α	II .	N0996	E1012	5	99.3-99.2	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	14	15.37		12/12/2017
370	3	496	-	-	-	Α	II	N0996	E1012	5	99.3-99.2	40-50	-	Detritus	Debitage	Broken Flake	Lithic	29	15.7		12/12/2017
370	4	496	-	-	-	Α	II	N0996	E1012	5	99.3-99.2	40-50	-	Detritus	Debitage	Flaking Shatter	Lithic	1	0.56		12/12/2017
370	5	496	-	-	-	Α	II	N0996	E1012	5	99.3-99.2	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	11	26.35		12/12/2017
370	6	496	-	-	-	Α	II	N0996	E1012	5	99.3-99.2	40-50	- N996.42	Faunal Remains	Shell	Mussel Shell	Shell	1	0.95		12/12/2017
371	1	497	-	-	-	Α	II	N0996	E1012	5	99.26	44	N996.42 E1012.23	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	59.86		12/12/2017
372	1	502	-	-	-	Α	III	N0996	E1012	6	99.2-99.1	50-60	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.24		12/12/2017
372	2	502	-	-	-	Α	III	N0996	E1012	6	99.2-99.1	50-60	-	Detritus	Debitage	Complete Flake	Lithic	6	32.33		12/12/2017
372	3	502	-	-	-	Α	III	N0996	E1012	6	99.2-99.1	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	6	8.51		12/12/2017
372	4	502	-	-	-	Α	III	N0996	E1012	6	99.2-99.1	50-60	-	Detritus	Debitage	Broken Flake	Lithic	23	28.37		12/12/2017
372	5	502	-	-	-	Α	III	N0996	E1012	6	99.2-99.1	50-60	-	Detritus	Debitage	Flaking Shatter	Lithic	1	0.53		12/12/2017
372	6	502	-	-	-	A	III	N0996	E1012	6	99.2-99.1	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	20	54.18		12/12/2017
373	1	517	-	-	-	A	III	N0996	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.26		12/13/2017
373	2	517	-	-	-	Α	III	N0996	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	3.48		12/13/2017
373	3	517	-	-	-	A	III	N0996	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.39		12/13/2017
373	4	517	-	-	-	A	III	N0996	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.19		12/13/2017
373	5	517	-	-	-	Α	III	N0996	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.23		12/13/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
373	6	517	-	-	-	A	Ш	N0996	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.58		12/13/2017
373	7	517	-	_	-	Α	III	N0996	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.27		12/13/2017
373	8	517	-	-	-	А	III	N0996	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.34		12/13/2017
373	9	517	-	-	-	А	III	N0996	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.36		12/13/2017
373	10	517	-	-	-	Α	III	N0996	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.22		12/13/2017
373	11	517	-	-	-	А	III	N0996	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.96		12/13/2017
373	12	517	-	-	-	Α	III	N0996	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.73		12/13/2017
373	13	517	-	-	-	Α	III	N0996	E1012	7	99.1-99.0	60-70	-	Detritus	Debitage	Complete Flake	Lithic	12	36.48		12/13/2017
373	14	517	-	-	-	Α	III	N0996	E1012	7	99.1-99.0	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	21	32.82		12/13/2017
373	15	517	-	-	-	Α	III	N0996	E1012	7	99.1-99.0	60-70	-	Detritus	Debitage	Broken Flake	Lithic	59	38.36		12/13/2017
373	16	517	-	-	-	Α	III	N0996	E1012	7	99.1-99.0	60-70	-	Detritus	Debitage	Flaking Shatter	Lithic	2	2.9		12/13/2017
373	17	517	-	-	-	Α	III	N0996	E1012	7	99.1-99.0	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	52	51.75		12/13/2017
373	18	517	-	-	-	Α	Ш	N0996	E1012	7	99.1-99.0	60-70	-	Faunal Remains	Shell	Mussel Shell	Shell	1	2.63		12/13/2017
373	19	517	-	-	-	Α	III	N0996	E1012	7	99.1-99.0	60-70	-	Other Lithic	Thermally Altered Stone	FCR	Lithic	2	85.54	Originally classified as a Core	12/13/2017
373	20	517	-	-	-	Α	III	N0996	E1012	7	99.1-99.0	60-70	-	Detritus	Core	Multidirectional	Fine Grain Chert	1	60.38	Exhausted Core	12/13/2017
373	21	517	-	-	-	Α	III	N0996	E1012	7	99.1-99.0	60-70	-	Clay	Clay Artifact	Burned Clay	Clay	5	18.47		12/13/2017
374	1	549	-	FTR3	C-13	Α	Ш	N0996	E1012	8	99.0-98.9	70-80	N996.53 F1012.07	Archaeological Sample	C-14	not ID'd		6	0.03		12/13/2017
375	1	549	-	FTR3	-	Α	Ш	N0996	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.26		12/15/2017
375	2	549	-	FTR3	-	Α	III	N0996	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.06		12/15/2017
375	3	549	-	FTR3	-	Α	III	N0996	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.29		12/15/2017
375	4	549	-	FTR3	-	Α	III	N0996	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.61		12/15/2017
375	5	549	-	FTR3	-	Α	III	N0996	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.06		12/15/2017
375	6	549	-	FTR3	-	Α	Ш	N0996	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.46		12/15/2017
375	7	549	-	FTR3	-	Α	III	N0996	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.11		12/15/2017
375	8	549	-	FTR3	-	Α	III	N0996	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.03		12/15/2017
375	9	549	-	FTR3	-	А	III	N0996	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/15/2017
375	10	549	-	FTR3	-	Α	III	N0996	E1012	8	99.0-98.9	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/15/2017
375	11	549	-	FTR3	-	Α	III	N0996	E1012	8	99.0-98.9	70-80	-	Detritus	Debitage	Complete Flake	Lithic	7	65.15		12/15/2017
375	12	549	-	FTR3	-	Α	Ш	N0996	E1012	8	99.0-98.9	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	5	7.52		12/15/2017
375	13	549	-	FTR3	-	Α	III	N0996	E1012	8	99.0-98.9	70-80	-	Detritus	Debitage	Broken Flake	Lithic	23	17.78		12/15/2017
375	14	549	-	FTR3	-	Α	Ш	N0996	E1012	8	99.0-98.9	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	48	21.64		12/15/2017
376	1	573	-	-	-	Α	IV	N0996	E1012	9	98.8	90	N996.66 E1012.55	Faunal Remains	Shell	Mussel Shell	Shell	1	14.85		12/18/2017
377	1	573	-	-	-	Α	IV	N0996	E1012	9	98.9-98.8	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.06		12/18/2017
377	2	573	-	-	-	Α	IV	N0996	E1012	9	98.9-98.8	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.17		12/18/2017
377	3	573	-	-	-	Α	IV	N0996	E1012	9	98.9-98.8	80-90	-	Detritus	Debitage	Complete Flake	Lithic	4	6.51		12/18/2017
377	4	573	-	-	-	Α	IV	N0996	E1012	9	98.9-98.8	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	5	12.43		12/18/2017
377	5	573	-	-	-	Α	IV	N0996	E1012	9	98.9-98.8	80-90	-	Detritus	Debitage	Broken Flake	Lithic	34	10.31		12/18/2017
377	6	573	-	-	-	Α	IV	N0996	E1012	9	98.9-98.8	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	83	51.17		12/18/2017
378	1	586	-	-	-	Α	IV	N0996	E1012	10	98.8-98.7	90-100	-	Detritus	Debitage	Complete Flake	Lithic	7	31.79		12/18/2017
378	2	586	-	-	-	Α	IV	N0996	E1012	10	98.8-98.7	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	5	5.19		12/18/2017
378	3	586	-	-	-	Α	IV	N0996	E1012	10	98.8-98.7	90-100	-	Detritus	Debitage	Broken Flake	Lithic	9	11.83		12/18/2017
378	4	586	-	-	-	Α	IV	N0996	E1012	10	98.8-98.7	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	5	1.19		12/18/2017
378	5	586	-	-	-	Α	IV	N0996	E1012	10	98.8-98.7	90-100	-	Formal Tool	Biface	Indeterminate Fragment	Fine Grain Chert	1	14.5		12/18/2017
379	1	621	-	-	-	Α	IV	N0996	E1012	11	98.7-98.6	100-110	-	Detritus	Debitage	Complete Flake	Lithic	1	2.06		12/20/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
379	2	621	-	-	-	A	IV	N0996	E1012	11	98.7-98.6	100-110	-	Detritus	Debitage	Proximal Flake	Lithic	2	3.21		12/20/2017
379	3	621	-	-	-	Α	IV	N0996	E1012	11	98.7-98.6	100-110	-	Detritus	Debitage	Broken Flake	Lithic	4	8.63		12/20/2017
379	4	621	-	-	-	Α	IV	N0996	E1012	11	98.7-98.6	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	5	7.54		12/20/2017
380	1	627	-	-	-	Α	IV	N0996	E1012	12	98.6-98.5	110-120	-	Detritus	Debitage	Complete Flake	Lithic	2	7.05		12/20/2017
380	2	627	-	-	-	Α	IV	N0996	E1012	12	98.6-98.5	110-120	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.72		12/20/2017
380	3	627	-	-	-	Α	IV	N0996	E1012	12	98.6-98.5	110-120	-	Detritus	Debitage	Broken Flake	Lithic	4	7.21		12/20/2017
380	4	627	-	-	-	Α	IV	N0996	E1012	12	98.6-98.5	110-120	-	Detritus	Debitage	Thermal Shatter	Lithic	5	16.55		12/20/2017
380	5	627	-	-	-	Α	IV	N0996	E1012	12	98.6-98.5	110-120	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	4.55		12/20/2017
381	1	635	-	-	-	Α	IV/V	N0996	E1012	13	98.5-98.4	120-130	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.03		12/20/2017
381	2	635	-	-	-	Α	IV/V	N0996	E1012	13	98.5-98.4	120-130	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.13		12/20/2017
381	3	635	-	-	-	Α	IV/V	N0996	E1012	13	98.5-98.4	120-130	-	Detritus	Debitage	Broken Flake	Lithic	1	6.22		12/20/2017
381	4	635	-	-	-	Α	IV/V	N0996	E1012	13	98.5-98.4	120-130	-	Detritus	Debitage	Thermal Shatter	Lithic	4	12.85		12/20/2017
382	1	652	-	-	-	Α	VI	N0996	E1012	15	98.3-98.2	140-150	-	Faunal Remains	Bone	Mammal	Bone	1	0.65		12/21/2017
382	2	652	-	-	-	Α	VI	N0996	E1012	15	98.3-98.2	140-150	-	Faunal Remains	Bone	Mammal	Bone	1	0.09		12/21/2017
382	3	652	-	-	1	Α	VI	N0996	E1012	15	98.3-98.2	140-150	-	Detritus	Debitage	Proximal Flake	Lithic	2	3.51		12/21/2017
382	4	652	-	-	-	Α	VI	N0996	E1012	15	98.3-98.2	140-150	-	Detritus	Debitage	Thermal Shatter	Lithic	2	0.35		12/21/2017
383	1	433	-	-	1	Α	1	N0996	E1013	1	99.59-99.5	11-20	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.17		12/5/2017
383	2	433	-	-	1	Α	1	N0996	E1013	1	99.59-99.5	11-20	-	Detritus	Debitage	Broken Flake	Lithic	4	3.23		12/5/2017
383	3	433	-	-	-	Α	1	N0996	E1013	1	99.59-99.5	11-20	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.19		12/5/2017
384	1	439	-	-	-	Α	II	N0996	E1013	2	99.5-99.4	20-30	-	Detritus	Debitage	Complete Flake	Lithic	1	3.07		12/5/2017
384	2	439	-	-	1	Α	II	N0996	E1013	2	99.5-99.4	20-30	-	Detritus	Debitage	Broken Flake	Lithic	3	0.74		12/5/2017
384	3	439	-	-	1	Α	II	N0996	E1013	2	99.5-99.4	20-30	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.77		12/5/2017
385	1	444	-	-	-	Α	II	N0996	E1013	3	99.32	38	N996.45 E1013.37	Detritus	Core	Multidirectional	Coarse Grain Chert	1	103.99	Exhausted Core	12/5/2017
386	1	445	-	-	-	Α	II	N0996	E1013	3	99.4-99.3	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.35		12/5/2017
386	2	445	-	-	-	Α	II	N0996	E1013	3	99.4-99.3	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.52		12/5/2017
386	3	445	-	-	-	Α	II	N0996	E1013	3	99.4-99.3	30-40	-	Detritus	Debitage	Complete Flake	Lithic	7	40.35		12/5/2017
386	4	445	-	-	-	Α	II	N0996	E1013	3	99.4-99.3	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	7	2.76		12/5/2017
386	5	445	-	-	-	Α	II	N0996	E1013	3	99.4-99.3	30-40	-	Detritus	Debitage	Broken Flake	Lithic	8	3.81		12/5/2017
386	6	445	-	-	-	Α	II	N0996	E1013	3	99.4-99.3	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	10	18.95		12/5/2017
386	7	445	-	-	-	Α	II	N0996	E1013	3	99.4-99.3	30-40	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	33.3		12/5/2017
387	1	452	-	-	-	Α	II	N0996	E1013	3	99.3	40	N996.99 E1013.88	Formal Tool	Biface	Distal-Medial Fragment	Fine Grain Chert	1	37.78	Distal - Medial	12/8/2017
388	1	362	-	-	-	Α	II	N0996	E1013	4	99.3-99.2	40-50	-	Detritus	Debitage	Complete Flake	Lithic	10	25.34		12/5/2017
388	1	362	-	-	-	Α	II	N0996	E1013	4	99.3-99.2	40-50	-	Faunal Remains	Bone	Mammal	Bone	1	2.38		12/5/2017
388	2	362	-	-	-	Α	II	N0996	E1013	4	99.3-99.2	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	8	13.89		12/5/2017
388	3	362	-	-	-	Α	II	N0996	E1013	4	99.3-99.2	40-50	-	Detritus	Debitage	Broken Flake	Lithic	33	31.74		12/5/2017
388	4	362	-	-	-	Α	II	N0996	E1013	4	99.3-99.2	40-50	-	Detritus	Debitage	Flaking Shatter	Lithic	2	0.7		12/5/2017
388	5	362	-	-	-	Α	II	N0996	E1013	4	99.3-99.2	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	17	17.91		12/5/2017
388	6	362	-	-	-	Α	II	N0996	E1013	4	99.3-99.2	40-50	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	42.64		12/5/2017
389	1	451	-	-	-	Α	III	N0996	E1013	5	99.2-99.1	50-60	-	Faunal Remains	Bone	Odocoileus sp.	Tooth	1	2.3		12/8/2017
389	2	451	-	-	-	Α	III	N0996	E1013	5	99.2-99.1	50-60	-	Detritus	Debitage	Complete Flake	Lithic	7	65.01		12/8/2017
389	3	451	-	-	-	Α	III	N0996	E1013	5	99.2-99.1	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	9	33.63		12/8/2017
389	4	451	-	-	-	Α	III	N0996	E1013	5	99.2-99.1	50-60	-	Detritus	Debitage	Broken Flake	Lithic	28	25.75		12/8/2017
389	5	451	-	-	-	Α	III	N0996	E1013	5	99.2-99.1	50-60	-	Detritus	Debitage	Flaking Shatter	Lithic	1	0.49		12/8/2017
389	6	451	-	-	-	Α	III	N0996	E1013	5	99.2-99.1	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	9	6.03		12/8/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
389	7	451	-	-	-	A	III	N0996	E1013	5	99.2-99.1	50-60	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	1.54		12/8/2017
389	8	451	-	-	-	А	III	N0996	E1013	5	99.2-99.1	50-60	-	Faunal Remains	Shell	Mussel Shell	Shell	1	1.64		12/8/2017
390	1	458	-	-	-	А	III	N0996	E1013	6	99.1-99.0	60-70	-	Detritus	Debitage	Complete Flake	Lithic	5	15.32		12/8/2017
390	2	458	-	-	-	А	III	N0996	E1013	6	99.1-99.0	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	14	5.55		12/8/2017
390	3	458	-	-	-	Α	III	N0996	E1013	6	99.1-99.0	60-70	-	Detritus	Debitage	Broken Flake	Lithic	23	15.02		12/8/2017
390	4	458	-	-	-	Α	Ш	N0996	E1013	6	99.1-99.0	60-70	-	Detritus	Debitage	Flaking Shatter	Lithic	2	16.53		12/8/2017
390	5	458	-	-	-	Α	Ш	N0996	E1013	6	99.1-99.0	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	30	23.48		12/8/2017
390	6	458	-	-	-	А	Ш	N0996	E1013	6	99.1-99.0	60-70	-	Formal Tool	Scraper	End and Side Scraper	Fine Grain Chert	1	20.12		12/8/2017
391	1	465	-	FTR3	-	А	Ш	N0996	E1013	7	99.0-98.9	70-80	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.46		12/11/2017
391	2	465	-	FTR3	-	А	Ш	N0996	E1013	7	99.0-98.9	70-80	-	Detritus	Debitage	Complete Flake	Lithic	8	4.49		12/11/2017
391	3	465	-	FTR3	-	А	Ш	N0996	E1013	7	99.0-98.9	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	11	7.75		12/11/2017
391	4	465	-	FTR3	-	Α	III	N0996	E1013	7	99.0-98.9	70-80	-	Detritus	Debitage	Broken Flake	Lithic	23	15.71		12/11/2017
391	5	465	-	FTR3	-	Α	Ш	N0996	E1013	7	99.0-98.9	70-80	-	Detritus	Debitage	Flaking Shatter	Lithic	1	1.24		12/11/2017
391	6	465	-	FTR3	-	Α	III	N0996	E1013	7	99.0-98.9	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	21	19.96		12/11/2017
391	7	465	-	FTR3	1	Α	III	N0996	E1013	7	99.0-98.9	70-80	1	Clay	Clay Artifact	Burned Clay	Clay	11	147.96		12/8/2017
392	1	608	-	-	-	Α	IV	N0996	E1013	8	98.9-98.8	80-90	-	Detritus	Debitage	Complete Flake	Lithic	4	55.68		12/20/2017
392	2	608	-	-	-	Α	IV	N0996	E1013	8	98.9-98.8	80-90	1	Detritus	Debitage	Proximal Flake	Lithic	3	5.22		12/20/2017
392	3	608	-	1	1	Α	IV	N0996	E1013	8	98.9-98.8	80-90	1	Detritus	Debitage	Broken Flake	Lithic	5	8.69		12/20/2017
392	4	608	-	-	-	Α	IV	N0996	E1013	8	98.9-98.8	80-90	1	Detritus	Debitage	Flaking Shatter	Lithic	2	13.99		12/20/2017
392	5	608	-	-	-	Α	IV	N0996	E1013	8	98.9-98.8	80-90	1	Detritus	Debitage	Thermal Shatter	Lithic	4	1.77		12/20/2017
393	1	608	-	FTR3	C-14	Α	IV	N0996	E1013	8	98.86	84	N996.86 E1013.50	Archaeological Sample	C-14	Red mulberry (Morus rubra)		13	0.21		12/14/2017
393	2	608	-	FTR3	C-14	Α	IV	N0996	E1013	8	98.86	84	N996.86 E1013.50	Archaeological Sample	Examined Residue <2mm				0.03		12/14/2017
394	1	612	-	-	-	А	IV	N0996	E1013	9	98.8-98.7	90-100	-	Detritus	Debitage	Complete Flake	Lithic	2	23.71		12/20/2017
394	2	612	-	-	-	Α	IV	N0996	E1013	9	98.8-98.7	90-100	-	Detritus	Debitage	Broken Flake	Lithic	2	12.27		12/20/2017
394	3	612	-	-	-	Α	IV	N0996	E1013	9	98.8-98.7	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	4	6.56		12/20/2017
395	1	617	-	-	-	Α	IV	N0996	E1013	10	98.7-98.6	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.14		12/20/2017
395	2	617	-	-	-	Α	IV	N0996	E1013	10	98.7-98.6	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.17		12/20/2017
395	3	617	-	-	-	Α	IV	N0996	E1013	10	98.7-98.6	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.46		12/20/2017
395	4	617	-	-	-	Α	IV	N0996	E1013	10	98.7-98.6	100-110	1	Faunal Remains	Bone	Indeterminate	Bone	1	0.14		12/20/2017
395	5	617	-	-	-	А	IV	N0996	E1013	10	98.7-98.6	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.19		12/20/2017
395	6	617	-	-	-	Α	IV	N0996	E1013	10	98.7-98.6	100-110	-	Detritus	Debitage	Proximal Flake	Lithic	2	0.42		12/20/2017
395	7	617	-	-	-	А	IV	N0996	E1013	10	98.7-98.6	100-110	-	Detritus	Debitage	Broken Flake	Lithic	2	2.12		12/20/2017
396	1	624	-	-	-	А	IV	N0996	E1013	11	98.6-98.5	110-120	-	Detritus	Debitage	Broken Flake	Lithic	1	0.22		12/20/2017
397	1	632	-	-	-	Α	IV/V	N0996	E1013	12	98.5-98.4	120-130	-	Detritus	Debitage	Complete Flake	Lithic	1	0.16		12/20/2017
397	2	632	-	-	-	Α	IV/V	N0996	E1013	12	98.5-98.4	120-130	-	Detritus	Debitage	Broken Flake	Lithic	2	0.88		12/20/2017
398	1	645	-	-	-	Α	V	N0996	E1013	13	98.4-98.3	130-140	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.25		12/21/2017
398	2	645	-	-	-	Α	V	N0996	E1013	13	98.4-98.3	130-140	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.13		12/21/2017
398	3	645	-	-	-	Α	V	N0996	E1013	13	98.4-98.3	130-140	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.12		12/21/2017
399	1	667	-	-	-	Α	VI	N0996	E1013	14	98.3-98.2	140-150	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.81		12/27/2017
399	2	667	-	-	-	Α	VI	N0996	E1013	14	98.3-98.2	140-150	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.62		12/27/2017
399	3	667	-	-	-	Α	VI	N0996	E1013	14	98.3-98.2	140-150	-	Detritus	Debitage	Broken Flake	Lithic	1	2.45		12/27/2017
400	1	483	-	-	-	А	II	N0996	E1014	2	99.5-99.4	20-30	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.67		12/11/2017
400	2	483	-	-	-	Α	II	N0996	E1014	2	99.5-99.4	20-30	-	Detritus	Debitage	Complete Flake	Lithic	1	0.67		12/11/2017
400	3	483	-	-	-	Α	II	N0996	E1014	2	99.5-99.4	20-30	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.75		12/11/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
400	4	483	-	-	-	A	Ш	N0996	E1014	2	99.5-99.4	20-30	-	Detritus	Debitage	Broken Flake	Lithic	2	1		12/11/2017
400	5	483	-	-	-	А	Ш	N0996	E1014	2	99.5-99.4	20-30	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.6		12/11/2017
401	1	488	-	-	-	А	Ш	N0996	E1014	3	99.4-99.3	30-40	-	Detritus	Debitage	Complete Flake	Lithic	1	9.02		12/12/2017
401	2	488	-	-	-	А	Ш	N0996	E1014	3	99.4-99.3	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	3	2.45		12/12/2017
401	3	488	-	-	-	Α	II	N0996	E1014	3	99.4-99.3	30-40	-	Detritus	Debitage	Broken Flake	Lithic	10	6.65		12/12/2017
401	4	488	-	-	-	Α	11	N0996	E1014	3	99.4-99.3	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	3	0.61		12/12/2017
401	5	488	-	-	-	А	Ш	N0996	E1014	3	99.4-99.3	30-40	-	Detritus	Core	Multidirectional	Fine Grain Chert	1	46.94		12/12/2017
401	6	488	-	-	-	А	Ш	N0996	E1014	3	99.4-99.3	30-40	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	4.7		12/12/2017
402	1	490	ı	-	-	Α	II	N0996	E1014	4	99.3-99.2	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.92		12/12/2017
402	2	490	ı	-	-	Α	Ш	N0996	E1014	4	99.3-99.2	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.38		12/12/2017
402	3	490	ı	1	-	Α	Ш	N0996	E1014	4	99.3-99.2	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.26		12/12/2017
402	4	490	ı	-	-	Α	II	N0996	E1014	4	99.3-99.2	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.74		12/12/2017
402	5	490	-	-	-	Α	II	N0996	E1014	4	99.3-99.2	40-50	-	Detritus	Debitage	Complete Flake	Lithic	4	25.19		12/12/2017
402	6	490	-	-	-	Α	11	N0996	E1014	4	99.3-99.2	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	8	4.09		12/12/2017
402	7	490	-	-	-	Α	Ш	N0996	E1014	4	99.3-99.2	40-50	-	Detritus	Debitage	Broken Flake	Lithic	23	38.05		12/12/2017
402	8	490	-	-	-	Α	II	N0996	E1014	4	99.3-99.2	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	7	3.01		12/12/2017
403	1	495	-	-	-	Α	III	N0996	E1014	5	99.2-99.1	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.34		12/12/2017
403	2	495	-	-	-	Α	III	N0996	E1014	5	99.2-99.1	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.13		12/12/2017
403	3	495	-	-	-	Α	III	N0996	E1014	5	99.2-99.1	50-60	-	Detritus	Debitage	Complete Flake	Lithic	16	106.41		12/12/2017
403	4	495	-	-	-	Α	Ш	N0996	E1014	5	99.2-99.1	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	26	88.75		12/12/2017
403	5	495	-	-	-	Α	III	N0996	E1014	5	99.2-99.1	50-60	-	Detritus	Debitage	Broken Flake	Lithic	62	47.28		12/12/2017
403	6	495	-	-	-	А	III	N0996	E1014	5	99.2-99.1	50-60	-	Detritus	Debitage	Flaking Shatter	Lithic	4	11.87		12/12/2017
403	7	495	-	-	-	А	III	N0996	E1014	5	99.2-99.1	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	24	50.33		12/12/2017
403	9	495	23	-	-	Α	III	N0996	E1014	5	99.2-99.1	50-60	- N996.71	Formal Tool	Biface	Complete	Fine Grain Chert	1	53.3		12/12/2017
404	1	494	24	-	-	Α	III	N0996	E1014	6	99.0	70	E1014.16	Formal Tool	Biface	Complete	Fine Grain Chert	1	12.5		12/12/2017
405	1	500	-	-	-	Α	III	N0996	E1014	6	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.31		12/12/2017
405	2	500	-	-	-	Α	III	N0996	E1014	6	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.04		12/12/2017
405	3	500	-	-	-	Α	III	N0996	E1014	6	99.1-99.0	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.13		12/12/2017
405	4	500	-	-	-	Α	III	N0996	E1014	6	99.1-99.0	60-70	-	Detritus	Debitage	Complete Flake	Lithic	6	10.71		12/12/2017
405	5	500	-	-	-	A	III	N0996	E1014	6	99.1-99.0	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	18	10.17		12/12/2017
405	6	500	-	-	-	A	III	N0996	E1014	6	99.1-99.0	60-70	-	Detritus	Debitage	Broken Flake	Lithic	49	49.58		12/12/2017
405	7	500	-	-	-	Α .	III 	N0996	E1014	6	99.1-99.0	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	21	9.39		12/12/2017
405	8	500	-	-	-	A	III 	N0996	E1014	6	99.1-99.0	60-70	-	Faunal Remains	Shell	Mussel Shell	Shell	1	0.94		12/12/2017
405	9	500	-	-	-	A	III	N0996	E1014	6	99.1-99.0	60-70	-	Clay	Clay Artifact	Burned Clay	Clay	10	15.79	1 Carried transfe	12/12/2017
406 406	2	503 503	-	-	-	A	III	N0996 N0996	E1014 E1014	7	99.0-98.9	70-80 70-80	-	Faunal Remains Detritus	Bone Debitage	Odocoileus sp. Complete Flake	Tooth	7	1.79 8.87	1 Cervid tooth	12/12/2017
406	3	503	-	-		A	III	N0996 N0996	E1014	7	99.0-98.9	70-80	_				Lithic	13			12/12/2017
406	4	503	_	_	_	A	III	N0996 N0996	E1014	7	99.0-98.9	70-80	_	Detritus Detritus	Debitage Debitage	Proximal Flake Broken Flake	Lithic	49	12.27 38.21		12/12/2017
406	5	503	-	-	_	A	III	N0996 N0996	E1014	7	99.0-98.9	70-80	_	Detritus	Debitage	Flaking Shatter	Lithic	3	2.53		12/12/2017
406	6	503	_	_	_	A	III	N0996 N0996	E1014	7	99.0-98.9	70-80	_	Detritus	Debitage	Thermal Shatter	Lithic	42	48.23		12/12/2017
406	7	503	_	_	_	A	III	N0996 N0996	E1014	7	99.0-98.9	70-80	_	Informal Tool	Modified Flake	Utilized Flake	Coarse Grain	1	47.3		12/12/2017
406	8	503		-	_	A	III	N0996 N0996	E1014	7	99.0-98.9	70-80	-	Informal Tool	Modified Flake	Edge-modified	Chert Fine Grain Chert	1	47.3		12/12/2017
406	9	503	_	_	_	A	111	N0996 N0996	E1014	7	99.0-98.9	70-80	_	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	9.55		12/12/2017
406	11	503	-	_	_	A	III	N0996	E1014	7	99.0-98.9	70-80	_	Formal Tool	Biface	Distal-Medial	Fine Grain Chert	1	0.81		12/12/2017
400	11	503	_	_	_	A		MOSSO	E1014	'	99.0-90.9	70-00	_	ronnai 100l	Dilace	Fragment	rine Grain Chert	1	0.01		12/12/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
407	1	507	-	-	-	A	IV	N0996	E1014	8	98.9-98.8	80-90	-	Faunal Remains	Bone	Mammal	Bone	1	1.33		12/13/2017
407	2	507	-	-	-	Α	IV	N0996	E1014	8	98.9-98.8	80-90	-	Detritus	Debitage	Complete Flake	Lithic	11	24.16		12/13/2017
407	3	507	-	-	-	А	IV	N0996	E1014	8	98.9-98.8	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	7	5.78		12/13/2017
407	4	507	-	-	-	Α	IV	N0996	E1014	8	98.9-98.8	80-90	-	Detritus	Debitage	Broken Flake	Lithic	19	9.25		12/13/2017
407	5	507	-	-	-	Α	IV	N0996	E1014	8	98.9-98.8	80-90	-	Detritus	Debitage	Flaking Shatter	Lithic	2	9.72		12/13/2017
407	6	507	-	-	-	Α	IV	N0996	E1014	8	98.9-98.8	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	12	29.31		12/13/2017
407	7	507	-	-	-	Α	IV	N0996	E1014	8	98.9-98.8	80-90	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	45.94		12/13/2017
407	8	507	-	-	-	Α	IV	N0996	E1014	8	98.9-98.8	80-90	-	Clay	Clay Artifact	Burned Clay	Clay	8	33.27		12/13/2017
408	1	507	-	-	-	Α	IV	N0996	E1014	8	98.87	83	N996.86 E1014.37	Detritus	Core	Multidirectional	Fine Grain Chert	1	96.23		12/13/2017
409	1	514	-	-	-	Α	IV	N0996	E1014	9	98.8-98.7	90-100	-	Detritus	Debitage	Complete Flake	Lithic	6	56.27		12/13/2017
409	2	514	-	-	-	Α	IV	N0996	E1014	9	98.8-98.7	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	6	17.44		12/13/2017
409	3	514	-	-	-	Α	IV	N0996	E1014	9	98.8-98.7	90-100	-	Detritus	Debitage	Broken Flake	Lithic	12	14.51		12/13/2017
409	4	514	-	-	-	Α	IV	N0996	E1014	9	98.8-98.7	90-100	-	Detritus	Debitage	Flaking Shatter	Lithic	2	1.48		12/13/2017
409	5	514	-	-	1	Α	IV	N0996	E1014	9	98.8-98.7	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	27	70.74		12/13/2017
409	6	514	-	-	-	Α	IV	N0996	E1014	9	98.8-98.7	90-100	-	Clay	Clay Artifact	Burned Clay	Clay	2	3.87		12/13/2017
410	1	528	-	-	1	Α	IV	N0996	E1014	10	98.7-98.6	100-110	-	Detritus	Debitage	Complete Flake	Lithic	2	11.76		12/13/2017
410	2	528	-	-	-	Α	IV	N0996	E1014	10	98.7-98.6	100-110	-	Detritus	Debitage	Proximal Flake	Lithic	14	43.22		12/13/2017
410	3	528	-	-	-	Α	IV	N0996	E1014	10	98.7-98.6	100-110	-	Detritus	Debitage	Broken Flake	Lithic	23	22.02		12/13/2017
410	4	528	-	-	-	Α	IV	N0996	E1014	10	98.7-98.6	100-110	-	Detritus	Debitage	Flaking Shatter	Lithic	1	7.53		12/13/2017
410	5	528	-	-	-	Α	IV	N0996	E1014	10	98.7-98.6	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	30	37.36		12/13/2017
410	6	528	-	-	-	Α	IV	N0996	E1014	10	98.7-98.6	100-110	-	Clay	Clay Artifact	Burned Clay	Clay	2	15.88		12/13/2017
411	1	537	-	-	-	Α	IV	N0996	E1014	11	98.6-98.5	110-120	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.18		12/14/2017
411	2	537	-	-	-	Α	IV	N0996	E1014	11	98.6-98.5	110-120	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.24		12/14/2017
411	3	537	-	-	-	Α	IV	N0996	E1014	11	98.6-98.5	110-120	-	Detritus	Debitage	Complete Flake	Lithic	5	14.17		12/14/2017
411	4	537	-	-	-	Α	IV	N0996	E1014	11	98.6-98.5	110-120	-	Detritus	Debitage	Proximal Flake	Lithic	6	7.54		12/14/2017
411	5	537	-	-	-	Α	IV	N0996	E1014	11	98.6-98.5	110-120	-	Detritus	Debitage	Broken Flake	Lithic	4	6.44		12/14/2017
411	6	537	-	-	-	Α	IV	N0996	E1014	11	98.6-98.5	110-120	-	Detritus	Debitage	Flaking Shatter	Lithic	1	0.33		12/14/2017
411	7	537	-	-	-	Α	IV	N0996	E1014	11	98.6-98.5	110-120	-	Detritus	Debitage	Thermal Shatter	Lithic	24	27.53		12/14/2017
412	1	567	-	-	-	Α	IV/V	N0996	E1014	12	98.5-98.4	120-130	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.11		12/14/2017
412	2	567	-	-	-	Α	IV/V	N0996	E1014	12	98.5-98.4	120-130	-	Detritus	Debitage	Complete Flake	Lithic	1	68.47		12/14/2017
412	3	567	-	-	-	Α	IV/V	N0996	E1014	12	98.5-98.4	120-130	-	Detritus	Debitage	Proximal Flake	Lithic	2	3.76		12/14/2017
412	4	567	-	-	-	Α	IV/V	N0996	E1014	12	98.5-98.4	120-130	-	Detritus	Debitage	Broken Flake	Lithic	3	0.75		12/14/2017
412	5	567	-	-	-	Α	IV/V	N0996	E1014	12	98.5-98.4	120-130	-	Detritus	Debitage	Thermal Shatter	Lithic	8	2.28		12/14/2017
413	1	540	-	-	-	Α	V	N0996	E1014	13	98.4-98.3	130-140	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.38		12/14/2017
413	2	540	-	-	-	Α	V	N0996	E1014	13	98.4-98.3	130-140	-	Detritus	Debitage	Complete Flake	Lithic	2	11.29		12/14/2017
413	3	540	-	-	-	Α	V	N0996	E1014	13	98.4-98.3	130-140	-	Detritus	Debitage	Proximal Flake	Lithic	2	0.42		12/14/2017
413	4	540	-	-	-	Α	V	N0996	E1014	13	98.4-98.3	130-140	-	Detritus	Debitage	Broken Flake	Lithic	2	2		12/14/2017
413	5	540	-	-	-	Α	V	N0996	E1014	13	98.4-98.3	130-140	-	Detritus	Debitage	Thermal Shatter	Lithic	6	2.42		12/14/2017
414	1	543	-	-	-	Α	VI	N0996	E1014	14	98.3-98.2	140-150	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.09		12/15/2017
414	2	543	-	-	-	Α	VI	N0996	E1014	14	98.3-98.2	140-150	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.26		12/15/2017
414	3	543	-	-	-	Α	VI	N0996	E1014	14	98.3-98.2	140-150	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.41		12/15/2017
414	4	543	-	-	-	Α	VI	N0996	E1014	14	98.3-98.2	140-150	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.7		12/15/2017
414	5	543	-	-	-	Α	VI	N0996	E1014	14	98.3-98.2	140-150	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.18		12/15/2017
414	6	543	-	-	-	Α	VI	N0996	E1014	14	98.3-98.2	140-150	-	Detritus	Debitage	Broken Flake	Lithic	2	0.66		12/15/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
415	1	547	-	-	-	Α	VI	N0996	E1014	15	98.2-98.1	150-160	-	Detritus	Debitage	Broken Flake	Lithic	1	0.06		12/15/2017
416	1	553	29	-	-	Α	VI	N0996	E1014	16	98.055	164.5	N996.93 E1014.16	Ground/ Battered Stone	Groundstone	Grooved Stone	Limestone	1	185.48		12/15/2017
417	1	561	ı	-	-	Α	VI	N0996	E1014	17	98.0-97.9	170-180	-	Faunal Remains	Bone	Mammal	Bone	1	4.43		12/15/2017
417	2	561	-	-	-	Α	VI	N0996	E1014	17	98.0-97.9	170-180	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.47		12/15/2017
417	3	561	ı	-	-	Α	VI	N0996	E1014	17	98.0-97.9	170-180	-	Detritus	Debitage	Proximal Flake	Lithic	2	0.29		12/15/2017
417	4	561	-	-	-	Α	VI	N0996	E1014	17	98.0-97.9	170-180	-	Detritus	Debitage	Broken Flake	Lithic	2	2.31		12/15/2017
417	5	561	-	-	-	Α	VI	N0996	E1014	17	98.0-97.9	170-180	-	Formal Tool	Biface	Indeterminate Fragment	Fine Grain Chert	1	6.44		12/15/2017
418	1	673	-	-	-	Α	VI	N0996	E1014	19	97.8-97.7	190-200	-	Detritus	Debitage	Thermal Shatter	Lithic	1	1.44		12/28/2017
419	1	555.1	-	FTR3 Cluster 1	C-11	А	III	N0996	E1012-1013	7	98.95	75	N996.00 E1013.37	Faunal Remains	Bone			1	0.16	From Cluster 1; collected as charcoal sample C-11 but actually bone; not analyzed	12/15/2017
420	1	555.1	-	FTR3 Cluster 1	F-4	А	III	N0995-0996	E1012-1013	7-8	98.97-98.9	73-80	N995.92- 996.07 E1013.28- 1013.50	Macrobotanical Remains	Charcoal	Red mulberry (Morus rubra)		16	1.45		12/15/2017
420	2	555.1	-	FTR3 Cluster 1	F-4	А	III	N0995-0996	E1012-1013	7-8	98.97-98.9	73-80	N995.92- 996.07 E1013.28- 1013.50	Macrobotanical Remains	Charcoal	Juniper (Juniperus spp.)		2	0.01		12/15/2017
420	3	555.1	-	FTR3 Cluster 1	F-4	Α	Ш	N0995-0996	E1012-1013	7-8	98.97-98.9	73-80	N995.92- 996.07 E1013.28- 1013.50	Macrobotanical Remains	Charcoal	Hardwood, indeterminable		1	0.01		12/15/2017
420	4	555.1	-	FTR3 Cluster 1	F-4	А	III	N0995-0996	E1012-1013	7-8	98.97-98.9	73-80	N995.92- 996.07 E1013.28- 1013.50	Macrobotanical Remains	Contamination >2mm				5.2		12/15/2017
420	5	555.1	-	FTR3 Cluster 1	F-4	А	Ш	N0995-0996	E1012-1013	7-8	98.97-98.9	73-80	N995.92- 996.07 E1013.28- 1013.50	Macrobotanical Remains	Examined Residue <2mm				2.14		12/15/2017
420	6	555.1	-	FTR3 Cluster 1	F-4	Α	Ш	N0995-0996	E1012-1013	7-8	98.97-98.9	73-80	N995.92- 996.07 E1013.28- 1013.50	Other Lithic	Thermally Altered Stone	FCR		7	2.5		12/15/2017
420	7	555.1	-	FTR3 Cluster 1	F-4	А	Ш	N0995-0996	E1012-1013	7-8	98.97-98.9	73-80	N995.92- 996.07 E1013.28- 1013.50	Macrobotanical Remains	residual from heavy fraction				36.5		12/15/2017
420	8	555.1	-	FTR3 Cluster 1	F-4	А	Ш	N0995-0996	E1012-1013	7-8	98.97-98.9	73-80	N995.92- 996.07 E1013.28- 1013.50	Faunal Remains	Bone			9	0.5	From flotation heavy fraction, not analyzed	12/15/2017
420	9	555.1	ı	FTR3 Cluster 1	F-4	А	III	N0995-0996	E1012-1013	7-8	98.97-98.9	73-80	N995.92- 996.07 E1013.28- 1013.50	Detritus	Debitage	Complete Flake		1	0.2		12/15/2017
420	10	555.1	ı	FTR3 Cluster 1	F-4	A	III	N0995-0996	E1012-1013	7-8	98.97-98.9	73-80	N995.92- 996.07 E1013.28- 1013.50	Detritus	Debitage	Proximal Flake		1	0.05		12/15/2017
420	11	555.1	ı	FTR3 Cluster 1	F-4	A	III	N0995-0996	E1012-1013	7-8	98.97-98.9	73-80	N995.92- 996.07 E1013.28- 1013.50	Detritus	Debitage	Flaking Shatter		12	3.01		12/15/2017
420	12	555.1	ı	FTR3 Cluster 1	F-4	А	III	N0995-0996	E1012-1013	7-8	98.97-98.9	73-80	N995.92- 996.07 E1013.28- 1013.50	Detritus	Debitage	Thermal Shatter		9	1.43		12/15/2017
420	N/A	555.1	ı	FTR3 Cluster 1	F-4	A	III	N0995-0996	E1012-1013	7-8	98.97-98.9	73-80	N995.92- 996.07 E1013.28- 1013.50	Archaeological Sample	Soil	Feature Matrix		4.0L	3700	ALL FLOATED-NO MATRIX REMAINING	12/15/2017
421	1 *radiocarbo n dated	555.2	1	FTR3 Cluster 2	F-5	А	III	N0995-0996	E1012-1013	7-8	99.0-98.94	70-76	N996.32- 996.59 E1012.56- 1013.19	Macrobotanical Remains	Charcoal	Bluewood condalia (Condalia hookeri)		6	0.04	*sent for radiocarbon dating	12/15/2017
421	2	555.2	-	FTR3 Cluster 2	F-5	А	III	N0995-0996	E1012-1013	7-8	99.0-98.94	70-76	N996.32- 996.59 E1012.56- 1013.19	Macrobotanical Remains	Charcoal	Sugarberry (Celtis sp.)		2	0.01		12/15/2017
421	3	555.2	1	FTR3 Cluster 2	F-5	А	III	N0995-0996	E1012-1013	7-8	99.0-98.94	70-76	N996.32- 996.59 E1012.56- 1013.19	Macrobotanical Remains	Charcoal	Silk tassel (Garrya ovata)		1	0.01		12/15/2017
421	4	555.2	-	FTR3 Cluster 2	F-5	А	III	N0995-0996	E1012-1013	7-8	99.0-98.94	70-76	N996.32- 996.59 E1012.56- 1013.19	Macrobotanical Remains	Charcoal	not id'd	_		0.01		12/15/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
421	5	555.2	-	FTR3 Cluster 2	F-5	А	III	N0995-0996	E1012-1013	7-8	99.0-98.94	70-76	N996.32- 996.59 E1012.56- 1013.19	Macrobotanical Remains	Contamination >2mm				31.72		12/15/2017
421	6	555.2	-	FTR3 Cluster 2	F-5	А	III	N0995-0996	E1012-1013	7-8	99.0-98.94	70-76	N996.32- 996.59 E1012.56-	Macrobotanical Remains	Examined Residue <2mm				5.81		12/15/2017
421	7	555.2	_	FTR3	F-5	A	III	N0995-0996	E1012-1013	7-8	99.0-98.94	70-76	1013.19 N996.32- 996.59	Macrobotanical	residual from				17		12/15/2017
				Cluster 2									E1012.56- 1013.19 N996.32-	Remains	heavy fraction						
421	8	555.2	-	FTR3 Cluster 2	F-5	А	III	N0995-0996	E1012-1013	7-8	99.0-98.94	70-76	996.59 E1012.56- 1013.19	Faunal Remains	Bone			1	0.1	From flotation heavy fraction, not analyzed	12/15/2017
421	9	555.2	-	FTR3 Cluster 2	F-5	А	III	N0995-0996	E1012-1013	7-8	99.0-98.94	70-76	N996.32- 996.59 E1012.56- 1013.19	Detritus	Debitage	Broken Flake		1	0.25		12/15/2017
421	10	555.2	-	FTR3 Cluster 2	F-5	А	Ш	N0995-0996	E1012-1013	7-8	99.0-98.94	70-76	N996.32- 996.59 E1012.56-	Detritus	Debitage	Flaking Shatter		6	0.05		12/15/2017
421	11	555.2	-	FTR3 Cluster 2	F-5	A	III	N0995-0996	E1012-1013	7-8	99.0-98.94	70-76	1013.19 N996.32- 996.59 E1012.56-	Detritus	Debitage	Thermal Shatter		13	1.22		12/15/2017
421	N/A	555.2	_	FTR3 Cluster 2	F-5	A	III	N0995-0996	E1012-1013	7-8	99.0-98.94	70-76	1013.19 N996.32- 996.59 E1012.56-	Archaeological Sample	Soil	Feature Matrix		3.5L	3600	ALL FLOATED-NO MATRIX REMAINING	12/15/2017
				FTR3	C-12		III		F1013	7	98 91	79	1013.19 N996.90	Archaeological	C-14	Red mulberry		15	1 44	From below Artifact #1; northeast of	
422	1	555.2	-		-	A	***	N0996		-			E1013.35 N996.90	Sample Archaeological	C-14 Examined	(Morus rubra)		15		Cluster 2 From below Artifact #1; northeast of	12/15/2017
422	2	555.2	-	FTR3	C-12	Α	III	N0996	E1013	7	98.91	79	E1013.35 N996.90	Sample	Residue <2mm				0.12	Cluster 2	12/15/2017
424	1	595 596	-	FTR3	-	A	III	N0996 N0996	E1013	7	98.92 98.95	78	E1013.37 N996.91	Detritus Detritus	Debitage	Proximal Flake	Lithic Lithic	1	32.73	Lithic 1: flake	12/15/2017
425	1	601	_	FTR3	_	A		N0996 N0996	E1013	7	98.95	75 72	E1013.09 N996.53	Detritus	Debitage Debitage	Complete Flake	Lithic	1	29.63	Lithic 2: flake	12/15/2017
427	1	602	_	FTR3	_	A	III	N0996	E1013	7	98.94	76	E1013.09 N996.53	Informal Tool	Core Tool	Chopper	Fine Grain Chert	1	355.4	Lithic 8: Core	12/15/2017
428	1	604	_	FTR3	_	A	III	N0996	E1013	7	98.98	72	E1013.14 N996.57	Other Lithic	Thermally Altered Stone	FCR	Lithic	1	14.1	Lithic 10: Core	12/15/2017
429	1	597	-	FTR3	-	А	III	N0996	E1012	8	98.91	79	E1013.07 N996.37 E1012.38	Informal Tool	Modified Flake	Edge-modified	Coarse Grain Chert	1	180.45	Lithic 3:flake/ core refit; burned	12/15/2017
430	1	598	-	FTR3	-	А	III	N0996	E1012	8	98.94	76	N996.11 E1012.36	Other Lithic	Thermally Altered Stone	FCC	Lithic	2	335.35	Lithic 4: Burned Chert Cobble	12/15/2017
431	1	599	-	FTR3	-	Α	III	N0996	E1012	8	98.97	73	N996.05 E1012.67	Other Lithic	Thermally Altered Stone	FCR	Lithic	1	144.9	Lithic 5: Abrader	12/15/2017
432	1	600	-	FTR3	-	Α	IV	N0996	E1013	8	98.83	87	N996.66 E1013.31	Informal Tool	Core Tool	Chopper	Coarse Grain Chert	1	493.32	Lithic 6: Chopper	12/15/2017
433	1	603	-	FTR3	-	Α	III	N0996	E1012	8	98.95	75	N996.51 E1012.98	Detritus	Core	Multidirectional	Fine Grain Chert	1	69.74	Lithic 9: Core	12/15/2017
434	1	408	-	-	-	В	I/II	N0999	E1013	2	99.5-99.4	10-20	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.26		12/4/2017
434	2	408	-	-	-	В	1/11	N0999	E1013	2	99.5-99.4	10-20	-	Detritus	Debitage	Broken Flake	Lithic	3	22.49		12/4/2017
435	1	412	-	-	-	В	III	N0999	E1013	3	99.4-99.3	20-30	-	Detritus	Debitage	Complete Flake	Lithic	1	1.12		12/4/2017
435	2	412	-	-	-	В	III	N0999	E1013	3	99.4-99.3	20-30	-	Detritus	Debitage	Broken Flake	Lithic	2	1.55		12/4/2017
436	1	423	-	-	-	В	111	N0999	E1013	4	99.3-99.2	30-40	-	Detritus	Debitage	Complete Flake	Lithic	1	0.57		12/5/2017
436	2	423 423	-	_	-	В	III	N0999 N0999	E1013	4	99.3-99.2	30-40 30-40	-	Detritus Detritus	Debitage	Proximal Flake Broken Flake	Lithic Lithic	3	27.51		12/5/2017
436	4	423	_	_	_	В		N0999 N0999	E1013	4	99.3-99.2	30-40	_	Detritus	Debitage Debitage	Thermal Shatter	Lithic	3	1.08		12/5/2017
437	1	423	_	_	_	В	IV	N0999 N0999	E1013	5	99.3-99.2	40-50	_	Detritus	Debitage	Complete Flake	Lithic	10	40.32		12/5/2017
437	2	429	_	-	-	В	IV	N0999	E1013	5	99.2-99.1	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	3	5.65		12/5/2017
437	3	429	-	-	-	В	IV	N0999	E1013	5	99.2-99.1	40-50	-	Detritus	Debitage	Broken Flake	Lithic	28	26.73		12/5/2017
437	4	429	-	-	-	В	IV	N0999	E1013	5	99.2-99.1	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	7	8.33		12/5/2017
438	1	437	-	-	-	В	IV	N0999	E1013	6	99.1-99.0	50-60	-	Detritus	Debitage	Complete Flake	Lithic	6	44.45		12/5/2017
438	2	437	-	-	-	В	IV	N0999	E1013	6	99.1-99.0	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.56		12/5/2017
438	3	437	-	-	-	В	IV	N0999	E1013	6	99.1-99.0	50-60	-	Detritus	Debitage	Broken Flake	Lithic	17	5.72		12/5/2017
438	4	437	-	-	-	В	IV	N0999	E1013	6	99.1-99.0	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	23	22.37		12/5/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
439	1	442	-	-	-	В	IV	N0999	E1013	7	99.0-98.9	60-70	-	Faunal Remains	Bone	Mammal	Bone	1	1.9		12/5/2017
439	2	442	-	_	-	В	IV	N0999	E1013	7	99.0-98.9	60-70	-	Detritus	Debitage	Complete Flake	Lithic	5	2		12/5/2017
439	3	442	-	-	-	В	IV	N0999	E1013	7	99.0-98.9	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	4	5.49		12/5/2017
439	4	442	-	-	-	В	IV	N0999	E1013	7	99.0-98.9	60-70	-	Detritus	Debitage	Broken Flake	Lithic	19	8.66		12/5/2017
439	5	442	-	-	-	В	IV	N0999	E1013	7	99.0-98.9	60-70	-	Detritus	Debitage	Flaking Shatter	Lithic	3	1.43		12/5/2017
439	6	442	-	-	-	В	IV	N0999	E1013	7	99.0-98.9	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	48	51.06		12/5/2017
439	7	442	-	-	-	В	IV	N0999	E1013	7	99.0-98.9	60-70	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	0.54		12/5/2017
440	1	448	-	-	-	В	V	N0999	E1013	8	98.9-98.8	70-80	-	Detritus	Debitage	Complete Flake	Lithic	2	10.57		12/5/2017
440	2	448	-	-	-	В	V	N0999	E1013	8	98.9-98.8	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	5	21.5		12/5/2017
440	3	448	-	-	-	В	V	N0999	E1013	8	98.9-98.8	70-80	-	Detritus	Debitage	Broken Flake	Lithic	19	27.54		12/5/2017
440	4	448	-	-	-	В	V	N0999	E1013	8	98.9-98.8	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	21	28.39		12/5/2017
440	5	448	-	-	-	В	V	N0999	E1013	8	98.9-98.8	70-80	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	76.99		12/5/2017
441	1	453	-	-	-	В	V	N0999	E1013	9	98.8-98.7	80-90	-	Detritus	Debitage	Broken Flake	Lithic	2	1.47		12/8/2017
441	2	453	-	-	-	В	V	N0999	E1013	9	98.8-98.7	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	5	8.15		12/8/2017
442	1	460	-	-	-	В	VI	N0999	E1013	10	98.7-98.6	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	2	4.03		12/8/2017
442	2	460	-	-	-	В	VI	N0999	E1013	10	98.7-98.6	90-100	-	Detritus	Debitage	Broken Flake	Lithic	2	2.42		12/8/2017
442	3	460	-	-	-	В	VI	N0999	E1013	10	98.7-98.6	90-100	-	Detritus	Debitage	Flaking Shatter	Lithic	1	1.94		12/8/2017
443	1	476	-	-	-	В	VI	N0999	E1013	12	98.5-98.4	110-120	-	Faunal Remains	Bone	Mammal	Bone	1	0.51		12/11/2017
443	2	476	-	-	-	В	VI	N0999	E1013	12	98.5-98.4	110-120	-	Detritus	Debitage	Proximal Flake	Lithic	3	13.71		12/11/2017
443	3	476	-	-	-	В	VI	N0999	E1013	12	98.5-98.4	110-120	-	Detritus	Debitage	Broken Flake	Lithic	6	5.62		12/11/2017
443	4	476	-	-	-	В	VI	N0999	E1013	12	98.5-98.4	110-120	-	Detritus	Debitage	Thermal Shatter	Lithic	3	5.96		12/11/2017
444	1	482	-	-	-	В	VII	N0999	E1013	13	98.4-98.3	120-130	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.65		12/11/2017
444	2	482	-	-	-	В	VII	N0999	E1013	13	98.4-98.3	120-130	-	Detritus	Debitage	Broken Flake	Lithic	1	0.57		12/11/2017
444	3	482	-	-	-	В	VII	N0999	E1013	13	98.4-98.3	120-130	-	Detritus	Debitage	Thermal Shatter	Lithic	2	3.79		12/11/2017
444	4	482	-	-	-	В	VII	N0999	E1013	13	98.4-98.3	120-130	-	Formal Tool	Biface	Indeterminate Fragment	Fine Grain Chert	1	15.46		12/11/2017
445	1	489	-	-	-	В	VII	N0999	E1013	14	98.3-98.2	130-140	-	Detritus	Debitage	Broken Flake	Lithic	1	1.63		12/12/2017
445	2	489	-	-	-	В	VII	N0999	E1013	14	98.3-98.2	130-140	-	Detritus	Debitage	Thermal Shatter	Lithic	2	1.13		12/12/2017
446	1	498	-	-	-	В	VII	N0999	E1013	15	98.2-98.1	140-150	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.11		12/12/2017
446	2	498	-	-	-	В	VII	N0999	E1013	15	98.2-98.1	140-150	-	Detritus	Debitage	Complete Flake	Lithic	1	0.2		12/12/2017
446	3	498	-	-	1	В	VII	N0999	E1013	15	98.2-98.1	140-150	-	Detritus	Debitage	Flaking Shatter	Lithic	1	0.14		12/12/2017
447	1	406	-	-	-	В	1/11	N0999	E1014	2	99.5-99.4	10-20	-	Detritus	Debitage	Broken Flake	Lithic	1	3.58		12/4/2017
447	2	406	-	-	ı	В	I/II	N0999	E1014	2	99.5-99.4	10-20	-	Faunal Remains	Shell	Mussel Shell	Shell	2	9.86		12/4/2017
448	1	417	-	-	-	В	III	N0999	E1014	3	99.4-99.3	20-30	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.33		12/4/2017
449	1	419	-	-	-	В	III	N0999	E1014	4	99.3-99.2	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	2	1.35		12/4/2017
450	1	431	-	-	-	В	IV	N0999	E1014	5	99.2-99.1	40-50	-	Detritus	Debitage	Complete Flake	Lithic	7	9.15		12/5/2017
450	2	431	-	-	-	В	IV	N0999	E1014	5	99.2-99.1	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	3	7.62		12/5/2017
450	3	431	-	-	-	В	IV	N0999	E1014	5	99.2-99.1	40-50	-	Detritus	Debitage	Broken Flake	Lithic	27	18.68		12/5/2017
450	4	431	-	-	-	В	IV	N0999	E1014	5	99.2-99.1	40-50	-	Detritus	Debitage	Flaking Shatter	Lithic	2	11.21		12/5/2017
450	5	431	-	-	-	В	IV	N0999	E1014	5	99.2-99.1	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	20	10.22		12/5/2017
451	1	434	-	-	-	В	IV	N0999	E1014	6	99.1-99.0	50-60	-	Detritus	Debitage	Complete Flake	Lithic	13	36.02		12/5/2017
451	2	434	-	-	1	В	IV	N0999	E1014	6	99.1-99.0	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	6	6.92		12/5/2017
451	3	434	-	-	-	В	IV	N0999	E1014	6	99.1-99.0	50-60	-	Detritus	Debitage	Broken Flake	Lithic	13	14.11		12/5/2017
451	4	434	-	-	-	В	IV	N0999	E1014	6	99.1-99.0	50-60	-	Detritus	Debitage	Flaking Shatter	Lithic	1	14.37		12/5/2017
451	5	434	-	-	-	В	IV	N0999	E1014	6	99.1-99.0	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	4	21.31		12/5/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
452	1	440	-	-	-	В	IV	N0999	E1014	7	99.0-98.9	60-70	-	Detritus	Debitage	Complete Flake	Lithic	1	2.16		12/5/2017
452	2	440	-	-	-	В	IV	N0999	E1014	7	99.0-98.9	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.33		12/5/2017
452	3	440	-	-	-	В	IV	N0999	E1014	7	99.0-98.9	60-70	-	Detritus	Debitage	Broken Flake	Lithic	2	3.2		12/5/2017
453	1	449	-	-	-	В	V	N0999	E1014	8	98.9-98.8	70-80	-	Detritus	Debitage	Complete Flake	Lithic	2	95.96		12/8/2017
453	2	449	-	-	-	В	V	N0999	E1014	8	98.9-98.8	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	5	17.48		12/8/2017
453	3	449	-	-	-	В	V	N0999	E1014	8	98.9-98.8	70-80	-	Detritus	Debitage	Broken Flake	Lithic	42	18.2		12/8/2017
453	4	449	-	-	-	В	V	N0999	E1014	8	98.9-98.8	70-80	-	Detritus	Debitage	Flaking Shatter	Lithic	2	2.73		12/8/2017
453	5	449	-	-	-	В	V	N0999	E1014	8	98.9-98.8	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	28	39.5		12/8/2017
454	1	457	-	-	-	В	V	N0999	E1014	9	98.8-98.7	80-90	-	Detritus	Debitage	Complete Flake	Lithic	3	21.37		12/8/2017
454	2	457	-	-	-	В	V	N0999	E1014	9	98.8-98.7	80-90	-	Detritus	Debitage	Broken Flake	Lithic	4	1.13		12/8/2017
454	3	457	-	-	-	В	V	N0999	E1014	9	98.8-98.7	80-90	-	Detritus	Debitage	Flaking Shatter	Lithic	2	44.8		12/8/2017
454	4	457	-	-	-	В	V	N0999	E1014	9	98.8-98.7	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	5	6.45		12/8/2017
455	1	462	-	-	-	В	VI	N0999	E1014	10	98.7-98.6	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	2	22.04		12/8/2017
455	2	462	-	-	-	В	VI	N0999	E1014	10	98.7-98.6	90-100	-	Detritus	Debitage	Broken Flake	Lithic	3	6.06		12/8/2017
455	3	462	-	-	-	В	VI	N0999	E1014	10	98.7-98.6	90-100	-	Detritus	Debitage	Flaking Shatter	Lithic	1	0.63		12/8/2017
455	4	462	-	-	-	В	VI	N0999	E1014	10	98.7-98.6	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	4	9.06		12/8/2017
456	1	474	-	-	-	В	VI	N0999	E1014	12	98.5-98.4	110-120	-	Detritus	Debitage	Complete Flake	Lithic	1	3.01		12/11/2017
456	2	474	-	-	-	В	VI	N0999	E1014	12	98.5-98.4	110-120	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.23		12/11/2017
456	3	474	-	-	-	В	VI	N0999	E1014	12	98.5-98.4	110-120	-	Detritus	Debitage	Broken Flake	Lithic	2	1.16		12/11/2017
456	4	474	-	-	-	В	VI	N0999	E1014	12	98.5-98.4	110-120	-	Detritus	Debitage	Flaking Shatter	Lithic	1	35.72		12/11/2017
456	5	474	-	-	-	В	VI	N0999	E1014	12	98.5-98.4	110-120	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.46		12/11/2017
457	1	484	-	-	-	В	VII	N0999	E1014	13	98.4-98.3	120-130	-	Detritus	Debitage	Broken Flake	Lithic	2	0.62		12/11/2017
457	2	484	-	-	-	В	VII	N0999	E1014	13	98.4-98.3	120-130	-	Detritus	Debitage	Thermal Shatter	Lithic	3	1.79		12/11/2017
458	1	491	-	-	-	В	VII	N0999	E1014	14	98.3-98.2	130-140	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.35		12/12/2017
459	1	505	-	-	-	С	I	N1000	E1003	1	99.83-99.7	7-20	-	Detritus	Debitage	Broken Flake	Lithic	2	1.26		12/13/2017
460	1	511	-	-	-	С	II	N1000	E1003	2	99.7-99.6	20-30	-	Detritus	Debitage	Broken Flake	Lithic	5	1.56		12/13/2017
460	2	511	-	-	-	С	П	N1000	E1003	2	99.7-99.6	20-30	-	Detritus	Debitage	Thermal Shatter	Lithic	1	1.56		12/13/2017
461	1	512	-	-	-	С	П	N1000	E1003	2	99.65	25	N1000.65 E1003.81	Other Lithic	Misc. Stone/ Mineral	Manuport	Limestone	1	92.83		12/13/2017
462	1	526	-	-	-	С	П	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	3.87		12/13/2017
462	2	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	4.19		12/13/2017
462	3	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	3.12		12/13/2017
462	4	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.29		12/13/2017
462	5	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.68		12/13/2017
462	6	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.34		12/13/2017
462	7	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.14		12/13/2017
462	8	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.34		12/13/2017
462	9	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.27		12/13/2017
462	10	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.4		12/13/2017
462	11	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.27		12/13/2017
462	12	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.28		12/13/2017
462	13	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.64		12/13/2017
462	14	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	12.44		12/13/2017
462	15	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	8.48		12/13/2017
462	16	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.9		12/13/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
462	17	526	-	-	-	С	Ш	N1000	E1003	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	12.2		12/13/2017
462	18	526	-	-	-	С	П	N1000	E1003	3	99.6-99.5	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	6	29.14		12/13/2017
462	19	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Detritus	Debitage	Broken Flake	Lithic	11	11.29		12/13/2017
462	20	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	16	17.89		12/13/2017
462	21	526	-	-	-	С	II	N1000	E1003	3	99.6-99.5	30-40	-	Formal Tool	Biface	Medial Fragment	Fine Grain Chert	1	0.16		12/13/2017
462	22	526	-	-	1	С	Ш	N1000	E1003	3	99.6-99.5	30-40	-	Prehistoric Ceramic	Undecorated Body Sherd	Bone and coarse sand temper	Ceramic	6	8.2	2 sherds refit	12/13/2017
463	1	529	-	-	-	С	11/111	N1000	E1003	4	99.5-99.4	40-50	-	Detritus	Debitage	Complete Flake	Lithic	6	16.23		12/13/2017
463	2	529	-	-	-	С	II/III	N1000	E1003	4	99.5-99.4	40-50	-	Detritus	Debitage	Broken Flake	Lithic	13	5.34		12/13/2017
463	3	529	-	-	-	С	11/111	N1000	E1003	4	99.5-99.4	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	24	16.89		12/13/2017
463	4	529	-	-	-	С	11/111	N1000	E1003	4	99.5-99.4	40-50	-	Prehistoric Ceramic	Undecorated Body Sherd	Bone and coarse sand temper	Ceramic	1	2.46		12/13/2017
464	1	536	-	-	-	С	III	N1000	E1003	5	99.4-99.3	50-60	-	Detritus	Debitage	Complete Flake	Lithic	3	3.15		12/14/2017
464	2	536	-	-	-	С	III	N1000	E1003	5	99.4-99.3	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	2	2.53		12/14/2017
464	3	536	-	-	-	С	III	N1000	E1003	5	99.4-99.3	50-60	-	Detritus	Debitage	Broken Flake	Lithic	4	2.14		12/14/2017
464	4	536	-	-	-	С	III	N1000	E1003	5	99.4-99.3	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	22	20.93		12/14/2017
464	5	536	-	-	-	С	III	N1000	E1003	5	99.4-99.3	50-60	-	Prehistoric Ceramic	Undecorated Body Sherd	Bone and coarse sand temper	Ceramic	1	1.73		12/14/2017
465	1	661	-	-	-	С	III	N1000	E1003	6	99.3-99.2	60-70	-	Detritus	Debitage	Complete Flake	Lithic	5	110.68		12/27/2017
465	2	661	-	-	-	С	III	N1000	E1003	6	99.3-99.2	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	2	0.99		12/27/2017
465	3	661	-	-	-	С	III	N1000	E1003	6	99.3-99.2	60-70	-	Detritus	Debitage	Broken Flake	Lithic	14	11.25		12/27/2017
465	4	661	-	-	-	С	III	N1000	E1003	6	99.3-99.2	60-70	- N1000.40	Detritus	Debitage	Thermal Shatter	Lithic	4	16.23		12/27/2017
466	1	661	-	-	-	С	III	N1000	E1003	6	99.18	72	E1003.64	Detritus	Core	Multidirectional	Fine Grain Chert	1	188.54		12/27/2017
467	1	663	-	-	-	С	III	N1000	E1003	7	99.2-99.1	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.43		12/27/2017
467	2	663	-	-	-	С	III	N1000	E1003	7	99.2-99.1	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.09		12/27/2017
467	3	663	-	-	-	С	III	N1000	E1003	7	99.2-99.1	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.27		12/27/2017
467	4	663	-	-	-	С	III	N1000	E1003	7	99.2-99.1	70-80	-	Detritus	Debitage	Complete Flake	Lithic	6	17.46		12/27/2017
467	5 6	663 663	-	-	-	С	III	N1000 N1000	E1003	7	99.2-99.1	70-80	-	Detritus Detritus	Debitage Debitage	Proximal Flake Broken Flake	Lithic	16	1.75 7.72		12/27/2017
467	7	663	_	_	-	С		N1000		7	99.2-99.1	70-80	_	Detritus		Thermal Shatter	Lithic	14	6.85		12/27/2017
467	8	663	_	_	_	С	"	N1000	E1003	7	99.2-99.1	70-80	_	Clay	Debitage Pigment	Red Ochre	Ochre	2	0.69		12/27/2017
468	1	665				С	III/IV	N1000	E1003	8	99.1-99.0	80-90		Detritus	Debitage	Complete Flake	Lithic	5	20.62		12/27/2017
468	2	665	_	_	_	С	III/IV	N1000	E1003	8	99.1-99.0	80-90	_	Detritus	Debitage	Proximal Flake	Lithic	3	5.34		12/27/2017
468	3	665	-	_	-	С	III/IV	N1000	E1003	8	99.1-99.0	80-90	-	Detritus	Debitage	Broken Flake	Lithic	7	8.09		12/27/2017
468	4	665	-	-	-	С	III/IV	N1000	E1003	8	99.1-99.0	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	2	1.46		12/27/2017
469	1	668	-	-	-	С	IV	N1000	E1003	9	99.0-98.9	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.19		12/28/2017
469	2	668	-	-	-	С	IV	N1000	E1003	9	99.0-98.9	90-100	-	Detritus	Debitage	Complete Flake	Lithic	3	12.74		12/28/2017
469	3	668	-	-	-	С	IV	N1000	E1003	9	99.0-98.9	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	2	0.61		12/28/2017
469	4	668	-	-	-	С	IV	N1000	E1003	9	99.0-98.9	90-100	-	Detritus	Debitage	Broken Flake	Lithic	10	7.82		12/28/2017
469	5	668	-	-	-	С	IV	N1000	E1003	9	99.0-98.9	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	5	6.39		12/28/2017
469	6	668	-	-	-	С	IV	N1000	E1003	9	99.0-98.9	90-100	-	Faunal Remains	Shell	Untyped Shell	Shell	2	6.36	Burned Oyster?	12/28/2017
470	1	509	-	-	-	С	I	N1000	E1004	1	99.77-99.7	13-20	-	Detritus	Debitage	Broken Flake	Lithic	1	0.18		12/13/2017
471	1	515	-	-	-	С	II	N1000	E1004	2	99.7-99.6	20-30	-	Faunal Remains	Bone	Mammal	Bone	1	4.16		12/13/2017
471	2	515	-	-	-	С	II	N1000	E1004	2	99.7-99.6	20-30	-	Faunal Remains	Bone	Mammal	Bone	1	4.39		12/13/2017
471	3	515	-	-	-	С	II	N1000	E1004	2	99.7-99.6	20-30	-	Faunal Remains	Bone	Indeterminate	Bone	1	2.07		12/13/2017
471	4	515	-	-	-	С	П	N1000	E1004	2	99.7-99.6	20-30	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.29		12/13/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
471	5	515	-	-	-	C	П	N1000	E1004	2	99.7-99.6	20-30	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.32		12/13/2017
471	6	515	-	-	-	С	Ш	N1000	E1004	2	99.7-99.6	20-30	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.62		12/13/2017
471	7	515	-	-	-	С	Ш	N1000	E1004	2	99.7-99.6	20-30	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.68		12/13/2017
471	8	515	-	-	-	С	II	N1000	E1004	2	99.7-99.6	20-30	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.22		12/13/2017
471	9	515	-	-	-	С	Ш	N1000	E1004	2	99.7-99.6	20-30	-	Faunal Remains	Bone	Mammal	Bone	1	0.95		12/13/2017
471	10	515	-	-	-	С	Ш	N1000	E1004	2	99.7-99.6	20-30	-	Detritus	Debitage	Proximal Flake	Lithic	3	0.95		12/13/2017
471	11	515	-	-	-	С	Ш	N1000	E1004	2	99.7-99.6	20-30	-	Detritus	Debitage	Broken Flake	Lithic	4	5.61		12/13/2017
471	12	515	-	-	-	С	Ш	N1000	E1004	2	99.7-99.6	20-30	-	Detritus	Debitage	Thermal Shatter	Lithic	5	3.57		12/13/2017
471	13	515	-	-	-	С	Ш	N1000	E1004	2	99.7-99.6	20-30	-	Historic Artifact	Metal	Miscellaneous Metal	Metal	1	0.22		12/13/2017
472	1	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	21.43		12/13/2017
472	2	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	19.95		12/13/2017
472	3	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.75		12/13/2017
472	4	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	2.11		12/13/2017
472	5	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	8.58		12/13/2017
472	6	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	13.23		12/13/2017
472	7	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	5.7		12/13/2017
472	8	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	1.92		12/13/2017
472	9	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	4.18		12/13/2017
472	10	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.71		12/13/2017
472	11	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.66		12/13/2017
472	12	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	3.77		12/13/2017
472	13	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	3.77		12/13/2017
472	14	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	3.9		12/13/2017
472	15	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	1.13		12/13/2017
472	16	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	5.52		12/13/2017
472	17	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	1.19		12/13/2017
472	18	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.99		12/13/2017
472	19	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.43		12/13/2017
472	20	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.71		12/13/2017
472	21	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.25		12/13/2017
472	22	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.31		12/13/2017
472	23	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.72		12/13/2017
472	24	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	2.53		12/13/2017
472	25	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	2.13		12/13/2017
472	26	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.75		12/13/2017
472	27	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.28		12/13/2017
472	28	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.72		12/13/2017
472	29	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.36		12/13/2017
472	30	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	1.21		12/13/2017
472	31	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.42		12/13/2017
472	32	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.4		12/13/2017
472	33	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.68		12/13/2017
472	34	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.92		12/13/2017
472	35	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.7		12/13/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
472	36	520	-	-	-	С	П	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	6.84		12/13/2017
472	37	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	2.78		12/13/2017
472	38	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.58		12/13/2017
472	39	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.21		12/13/2017
472	40	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.44		12/13/2017
472	41	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.39		12/13/2017
472	42	520	-	-	-	С	П	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	1.48		12/13/2017
472	43	520	-	-	-	С	П	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.61		12/13/2017
472	44	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	1.15		12/13/2017
472	45	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.43		12/13/2017
472	46	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.98		12/13/2017
472	47	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	1.07		12/13/2017
472	48	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.97		12/13/2017
472	49	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.19		12/13/2017
472	50	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.81		12/13/2017
472	51	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.6		12/13/2017
472	53	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.61		12/13/2017
472	54	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.23		12/13/2017
472	55	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.47		12/13/2017
472	56	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.56		12/13/2017
472	57	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.31		12/13/2017
472	58	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.35		12/13/2017
472	59	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.77		12/13/2017
472	60	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.12		12/13/2017
472	61	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.32		12/13/2017
472	62	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.87		12/13/2017
472	63	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.6		12/13/2017
472	64	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.12		12/13/2017
472	65	520	-	-	1	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.16		12/13/2017
472	66	520	-	1	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.15		12/13/2017
472	67	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.29		12/13/2017
472	68	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.61		12/13/2017
472	69	520	-	-	-	С	П	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.18		12/13/2017
472	70	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.18		12/13/2017
472	71	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.16		12/13/2017
472	72	520	-	-	-	С	П	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.23		12/13/2017
472	73	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.29		12/13/2017
472	74	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.25		12/13/2017
472	75	520	-	-	-	С	П	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.16		12/13/2017
472	76	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.24		12/13/2017
472	77	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.44		12/13/2017
472	78	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.53		12/13/2017
472	79	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.36		12/13/2017
472	80	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.11		12/13/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
472	81	520	-	-	-	C	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.23		12/13/2017
472	82	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.27		12/13/2017
472	83	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.24		12/13/2017
472	84	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.73		12/13/2017
472	85	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.46		12/13/2017
472	86	520	-	-	-	С	П	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.55		12/13/2017
472	87	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.12		12/13/2017
472	88	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.2		12/13/2017
472	89	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.12		12/13/2017
472	90	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.17		12/13/2017
472	91	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.12		12/13/2017
472	92	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.57		12/13/2017
472	93	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.14		12/13/2017
472	94	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.51		12/13/2017
472	95	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	0.78		12/13/2017
472	96	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.09		12/13/2017
472	97	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.51		12/13/2017
472	98	520	-	-	-	С	Ш	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.16		12/13/2017
472	99	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.09		12/13/2017
472	100	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.07		12/13/2017
472	101	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.23		12/13/2017
472	102	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.18		12/13/2017
472	103	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.23		12/13/2017
472	104	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.34		12/13/2017
472	105	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.51		12/13/2017
472	106	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.11		12/13/2017
472	107	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.06		12/13/2017
472	108	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.11		12/13/2017
472	109	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.07		12/13/2017
472	110	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.17		12/13/2017
472	111	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.07		12/13/2017
472	112	520	-	-	-	С	П	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.12		12/13/2017
472	113	520	-	-	-	С	П	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.16		12/13/2017
472	114	520	-	-	-	С	П	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.09		12/13/2017
472	115	520	-	-	-	С	П	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.03		12/13/2017
472	116	520	-	-	-	С	П	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.10		12/13/2017
472	117	520	1	-	1	С	П	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.06		12/13/2017
472	118	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.07		12/13/2017
472	119	520	-	-	-	С	П	N1000	E1004	3	99.6-99.5	30-40	-	Detritus	Debitage	Complete Flake	Lithic	3	22.76		12/13/2017
472	120	520	-	-	-	С	П	N1000	E1004	3	99.6-99.5	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.51		12/13/2017
472	121	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Detritus	Debitage	Broken Flake	Lithic	10	6.31		12/13/2017
472	122	520	-	-	-	С	II	N1000	E1004	3	99.6-99.5	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	11	19.17		12/13/2017
473	1	521	-	-	-	С	II	N1000	E1004	3	99.57	33	N1000.17 E1004.07	Faunal Remains	Bone	Mammal	Bone	1	12.47	Bone #1	12/13/2017
474	1	522	-	-	-	С	II	N1000	E1004	3	99.53	37	N1000.94 E1004.42	Faunal Remains	Bone	Mammal	Bone	1	36.4	Bone #2	12/13/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
474	2	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 E1004.42	Faunal Remains	Bone	Mammal	Bone	1	10.39	Bone #2	12/13/2017
474	3	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 E1004.42	Faunal Remains	Bone	Mammal	Bone	1	5.55	Bone #2	12/13/2017
474	4	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 E1004.42	Faunal Remains	Bone	Indeterminate	Bone	1	0.13	Bone #2	12/13/2017
474	5	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 E1004.42	Faunal Remains	Bone	Indeterminate	Bone	1	0.35	Bone #2	12/13/2017
474	6	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 F1004.42	Faunal Remains	Bone	Indeterminate	Bone	1	0.18	Bone #2	12/13/2017
474	7	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 E1004.42	Faunal Remains	Bone	Indeterminate	Bone	1	0.01	Bone #2	12/13/2017
474	8	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 F1004.42	Faunal Remains	Bone	Indeterminate	Bone	1	0.13	Bone #2	12/13/2017
474	9	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 E1004.42	Faunal Remains	Bone	Indeterminate	Bone	1	0.01	Bone #2	12/13/2017
474	10	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 F1004.42	Faunal Remains	Bone	Indeterminate	Bone	1	1.82	Bone #2	12/13/2017
474	11	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 E1004.42	Faunal Remains	Bone	Indeterminate	Bone	1	1.23	Bone #2	12/13/2017
474	12	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 E1004.42	Faunal Remains	Bone	Indeterminate	Bone	1	0.01	Bone #2	12/13/2017
474	13	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 E1004.42	Faunal Remains	Bone	Indeterminate	Bone	1	1.6	Bone #2	12/13/2017
474	14	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 E1004.42	Faunal Remains	Bone	Indeterminate	Bone	1	0.25	Bone #2	12/13/2017
474	15	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 E1004.42	Faunal Remains	Bone	Indeterminate	Bone	1	0.42	Bone #2	12/13/2017
474	16	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 E1004.42	Faunal Remains	Bone	Indeterminate	Bone	1	1.04	Bone #2	12/13/2017
474	17	522	-	-	-	С	Ш	N1000	E1004	3	99.53	37	N1000.94 F1004.42	Faunal Remains	Bone	Indeterminate	Bone	1	0.01	Bone #2	12/13/2017
475	1	534	-	-	-	С	II/III	N1000	E1004	4	99.5-99.4	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.56		12/14/2017
475	2	534	-	-	-	С	II/III	N1000	E1004	4	99.5-99.4	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.2		12/14/2017
475	3	534	-	-	-	С	II/III	N1000	E1004	4	99.5-99.4	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.3		12/14/2017
475	4	534	-	-	-	С	II/III	N1000	E1004	4	99.5-99.4	40-50	-	Detritus	Debitage	Complete Flake	Lithic	3	9.61		12/14/2017
475	5	534	-	-	-	С	II/III	N1000	E1004	4	99.5-99.4	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.35		12/14/2017
475	6	534	-	-	-	С	II/III	N1000	E1004	4	99.5-99.4	40-50	-	Detritus	Debitage	Broken Flake	Lithic	13	8.98		12/14/2017
475	7	534	-	-	-	С	11/111	N1000	E1004	4	99.5-99.4	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	13	7.61		12/14/2017
475	8	534	-	-	-	С	II/III	N1000	E1004	4	99.5-99.4	40-50	-	Formal Tool	Biface	Indeterminate Fragment	Fine Grain Chert	1	0.86		12/14/2017
476	1	538	-	-	-	С	III	N1000	E1004	5	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.51		12/14/2017
476	2	538	-	-	-	С	III	N1000	E1004	5	99.4-99.3	50-60	-	Detritus	Debitage	Complete Flake	Lithic	6	108.43		12/14/2017
476	3	538	-	-	-	С	III	N1000	E1004	5	99.4-99.3	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	1	1.2		12/14/2017
476	4	538	-	-	-	С	III	N1000	E1004	5	99.4-99.3	50-60	-	Detritus	Debitage	Broken Flake	Lithic	16	19.07		12/14/2017
476	5	538	-	-	-	С	III	N1000	E1004	5	99.4-99.3	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	17	43.28		12/14/2017
477	1	669	-	-	-	С	III	N1000	E1004	6	99.3-99.2	60-70	-	Detritus	Debitage	Complete Flake	Lithic	1	3.24		12/28/2017
477	2	669	-	-	-	С	III	N1000	E1004	6	99.3-99.2	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	4	7		12/28/2017
477	3	669	-	-	-	С	III	N1000	E1004	6	99.3-99.2	60-70	-	Detritus	Debitage	Broken Flake	Lithic	7	2.15		12/28/2017
477	4	669	-	-	-	С	III	N1000	E1004	6	99.3-99.2	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	5	2.39		12/28/2017
478	1	671	-	-	-	С	III	N1000	E1004	7	99.2-99.1	70-80	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.32		12/28/2017
478	2	671	-	-	-	С	III	N1000	E1004	7	99.2-99.1	70-80	-	Detritus	Debitage	Complete Flake	Lithic	7	32.07		12/28/2017
478	3	671	-	-	-	С	III	N1000	E1004	7	99.2-99.1	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	2	2.15		12/28/2017
478	4	671	-	-	-	С	III	N1000	E1004	7	99.2-99.1	70-80	-	Detritus	Debitage	Broken Flake	Lithic	15	5.24		12/28/2017
478	5	671	-	-	-	С	III	N1000	E1004	7	99.2-99.1	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	14	10.95		12/28/2017
479	1	672	-	-	-	С	III/IV	N1000	E1004	8	99.1-99.0	80-90	-	Detritus	Debitage	Complete Flake	Lithic	3	6.44		12/28/2017
479	2	672	-	-	-	С	III/IV	N1000	E1004	8	99.1-99.0	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	5	1.93		12/28/2017
479	3	672	-	-	-	С	III/IV	N1000	E1004	8	99.1-99.0	80-90	-	Detritus	Debitage	Broken Flake	Lithic	7	2.25		12/28/2017
479	4	672	-	-	-	С	III/IV	N1000	E1004	8	99.1-99.0	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	10	4.07		12/28/2017
479	5	672	-	-	-	С	III/IV	N1000	E1004	8	99.1-99.0	80-90	-	Faunal Remains	Shell	Mussel Shell	Shell	4	3.49	1 umbo	12/28/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
480	1	674	-	-	-	С	IV	N1000	E1004	9	99.0-98.9	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.12		12/28/2017
480	2	674	-	-	-	С	IV	N1000	E1004	9	99.0-98.9	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.35		12/28/2017
480	3	674	-	-	-	С	IV	N1000	E1004	9	99.0-98.9	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.16		12/28/2017
480	4	674	-	-	-	С	IV	N1000	E1004	9	99.0-98.9	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.39		12/28/2017
480	5	674	-	-	-	С	IV	N1000	E1004	9	99.0-98.9	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.76		12/28/2017
480	6	674	-	-	-	С	IV	N1000	E1004	9	99.0-98.9	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.15		12/28/2017
480	7	674	-	-	-	С	IV	N1000	E1004	9	99.0-98.9	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.4		12/28/2017
480	8	674	-	-	-	С	IV	N1000	E1004	9	99.0-98.9	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.09		12/28/2017
480	9	674	-	-	-	С	IV	N1000	E1004	9	99.0-98.9	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.56		12/28/2017
480	10	674	-	-	-	С	IV	N1000	E1004	9	99.0-98.9	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.6		12/28/2017
480	11	674	-	-	-	С	IV	N1000	E1004	9	99.0-98.9	90-100	-	Detritus	Debitage	Complete Flake	Lithic	5	11.7		12/28/2017
480	12	674	-	-	-	С	IV	N1000	E1004	9	99.0-98.9	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	2	1.34		12/28/2017
480	13	674	-	-	-	С	IV	N1000	E1004	9	99.0-98.9	90-100	-	Detritus	Debitage	Broken Flake	Lithic	14	16.28		12/28/2017
480	14	674	-	-	-	С	IV	N1000	E1004	9	99.0-98.9	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	17	3.92		12/28/2017
481	1	675	-	-	-	С	V	N1000	E1004	10	98.9-98.8	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	3.61		12/28/2017
481	2	675	-	-	-	С	V	N1000	E1004	10	98.9-98.8	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.66		12/28/2017
481	3	675	-	-	-	С	V	N1000	E1004	10	98.9-98.8	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.33		12/28/2017
481	4	675	-	-	-	С	V	N1000	E1004	10	98.9-98.8	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/28/2017
481	5	675	-	-	-	С	V	N1000	E1004	10	98.9-98.8	100-110	-	Detritus	Debitage	Complete Flake	Lithic	3	2.63		12/28/2017
481	6	675	-	-	-	С	V	N1000	E1004	10	98.9-98.8	100-110	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.35		12/28/2017
481	7	675	-	-	-	С	V	N1000	E1004	10	98.9-98.8	100-110	-	Detritus	Debitage	Broken Flake	Lithic	4	1.9		12/28/2017
481	8	675	-	-	-	С	V	N1000	E1004	10	98.9-98.8	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	7	2.23		12/28/2017
482	1	676	-	-	-	С	VI	N1000	E1004	11	98.8-98.7	110-120	-	Detritus	Debitage	Complete Flake	Lithic	1	0.12		12/28/2017
482	2	676	-	-	-	С	VI	N1000	E1004	11	98.8-98.7	110-120	-	Detritus	Debitage	Broken Flake	Lithic	4	6.04		12/28/2017
482	3	676	-	-	-	С	VI	N1000	E1004	11	98.8-98.7	110-120	-	Detritus	Debitage	Thermal Shatter	Lithic	3	5.11		12/28/2017
483	1	677	-	-	-	С	VI	N1000	E1004	12	98.7-98.6	120-130	-	Detritus	Debitage	Broken Flake	Lithic	3	3.06		12/28/2017
484	1	678	-	-	-	С	VI	N1000	E1004	13	98.6-98.5	130-140	-	Faunal Remains	Bone	Mammal	Bone	1	1.17		12/28/2017
484	2	678	-	-	-	С	VI	N1000	E1004	13	98.6-98.5	130-140	-	Detritus	Debitage	Broken Flake	Lithic	2	4.41		12/28/2017
485	1	679	-	-	-	С	VI	N1000	E1004	14	98.5-98.4	140-150	-	Faunal Remains	Bone	Mammal	Bone	1	1.94		12/28/2017
485	2	679	-	-	-	С	VI	N1000	E1004	14	98.5-98.4	140-150	-	Faunal Remains	Bone	Mammal	Bone	1	1.41		12/28/2017
485	3	679	-	-	-	С	VI	N1000	E1004	14	98.5-98.4	140-150	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.05		12/28/2017
486	1	315	-	-	-	D	1/11	N1000	E1009	1	99.67-99.59	2-10	-	Detritus	Debitage	Broken Flake	Lithic	1	0.46		11/27/2017
486	2	315	18	-	-	D	1/11	N1000	E1009	1	99.67-99.59	2-10	-	Formal Tool	Biface	Distal-Medial Fragment	Fine Grain Chert	1	6		11/27/2017
487	1	317	-	-	-	D	I/II	N1000	E1009	2	99.59-99.49	10-20	-	Detritus	Debitage	Complete Flake	Lithic	1	1.01		11/27/2017
488	1	319	-	-	-	D	I/II	N1000	E1009	3	99.49-99.39	20-30	-	Detritus	Debitage	Complete Flake	Lithic	1	1.14		11/27/2017
488	2	319	-	-	-	D	I/II	N1000	E1009	3	99.49-99.39	20-30	-	Detritus	Debitage	Broken Flake	Lithic	6	3.23		11/27/2017
488	3	319	_	-	-	D	I/II	N1000	E1009	3	99.49-99.39	20-30	-	Detritus	Debitage	Thermal Shatter	Lithic	2	1.21		11/27/2017
488	4	319	_	-	-	D	I/II	N1000	E1009	3	99.49-99.39	20-30	-	Historic Artifact	Ceramic	Whiteware	Ceramic	1	2.24		11/27/2017
489	1	322	_	-	-	D	1/11	N1000	E1009	4	99.39-99.29	30-40	-	Detritus	Debitage	Complete Flake	Lithic	3	7.68		11/27/2018
489	2	322	-	-	-	D	1/11	N1000	E1009	4	99.39-99.29	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	2	2.37		11/27/2018
489	3	322	_	_	_	D	1/11	N1000	E1009	4	99.39-99.29	30-40	_	Detritus	Debitage	Broken Flake	Lithic	13	11.14		11/27/2018
489	4	322	_	_	_	D	1/11	N1000	E1009	4	99.39-99.29	30-40	_	Detritus	Debitage	Thermal Shatter	Lithic	7	7.26		11/27/2018

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
490	1	324	-	-	-	D	1/11	N1000	E1009	5	99.29-99.19	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.14		11/28/2017
490	2	324	-	-	-	D	I/II	N1000	E1009	5	99.29-99.19	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.17		11/28/2017
490	3	324	-	-	-	D	I/II	N1000	E1009	5	99.29-99.19	40-50	-	Detritus	Debitage	Complete Flake	Lithic	6	14.02		11/28/2017
490	4	324	-	-	-	D	I/II	N1000	E1009	5	99.29-99.19	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	6	11.48		11/28/2017
490	5	324	-	-	-	D	I/II	N1000	E1009	5	99.29-99.19	40-50	-	Detritus	Debitage	Broken Flake	Lithic	35	18.96		11/28/2017
490	6	324	-	-	-	D	I/II	N1000	E1009	5	99.29-99.19	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	26	37.44		11/28/2017
491	1	329	-	-	-	D	1/11	N1000	E1009	6	99.19-99.09	50-60	-	Detritus	Debitage	Complete Flake	Lithic	6	11.77		11/28/2017
491	2	329	-	-	-	D	I/II	N1000	E1009	6	99.19-99.09	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	8	13.07		11/28/2017
491	3	329	-	-	-	D	I/II	N1000	E1009	6	99.19-99.09	50-60	-	Detritus	Debitage	Broken Flake	Lithic	7	12.99		11/28/2017
491	4	329	-	-	-	D	I/II	N1000	E1009	6	99.19-99.09	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	4	5.25		11/28/2017
492	1	332	-	-	-	D	I/II	N1000	E1009	7	99.09-98.99	60-70	-	Faunal Remains	Bone	Mammal	Bone	1	1.22		11/28/2017
492	2	332	-	-	-	D	I/II	N1000	E1009	7	99.09-98.99	60-70	-	Detritus	Debitage	Complete Flake	Lithic	16	70.88		11/28/2017
492	3	332	-	-	-	D	I/II	N1000	E1009	7	99.09-98.99	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	9	29.54		11/28/2017
492	4	332	-	-	-	D	I/II	N1000	E1009	7	99.09-98.99	60-70	-	Detritus	Debitage	Broken Flake	Lithic	40	33.78		11/28/2017
492	5	332	-	-	-	D	I/II	N1000	E1009	7	99.09-98.99	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	31	21.89		11/28/2017
492	6	332	-	-	-	D	I/II	N1000	E1009	7	99.09-98.99	60-70	-	Ground/ Battered Stone	Groundstone	Mano	Limestone	1	214.62		11/28/2017
493	1	335	-	-	-	D	1/11/111	N1000	E1009	8	98.99-98.89	70-80	-	Detritus	Debitage	Complete Flake	Lithic	4	44.57		11/28/2017
493	2	335	-	-	-	D	1/11/111	N1000	E1009	8	98.99-98.89	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	8	25.42		11/28/2017
493	3	335	-	-	-	D	I/II/III	N1000	E1009	8	98.99-98.89	70-80	-	Detritus	Debitage	Broken Flake	Lithic	8	5.26		11/28/2017
493	4	335	-	-	-	D	1/11/111	N1000	E1009	8	98.99-98.89	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	3	12.61		11/28/2017
494	1	340	ı	-	-	D	III	N1000	E1009	9	98.89-98.79	80-90	-	Detritus	Debitage	Complete Flake	Lithic	3	9.43		11/29/2017
494	2	340	-	-	-	D	III	N1000	E1009	9	98.89-98.79	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	7	6.91		11/29/2017
494	3	340	ı	-	-	D	III	N1000	E1009	9	98.89-98.79	80-90	-	Detritus	Debitage	Broken Flake	Lithic	16	22.52		11/29/2017
494	4	340	ı	-	-	D	III	N1000	E1009	9	98.89-98.79	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	9	7.79		11/29/2017
495	1	368	-	-	-	D	III	N1000	E1009	10	98.79-98.69	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.16		11/30/2017
495	2	368	ı	-	-	D	III	N1000	E1009	10	98.79-98.69	90-100	-	Detritus	Debitage	Complete Flake	Lithic	6	25.83		11/30/2017
495	3	368	ı	-	-	D	III	N1000	E1009	10	98.79-98.69	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	6	7		11/30/2017
495	4	368	ı	-	-	D	III	N1000	E1009	10	98.79-98.69	90-100	-	Detritus	Debitage	Broken Flake	Lithic	8	12.89		11/30/2017
495	5	368	-	-	-	D	III	N1000	E1009	10	98.79-98.69	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	3	4.76		11/30/2017
496	1	404	-	-	-	D	III	N1000	E1009	11	98.69-98.59	100-110	-	Detritus	Debitage	Complete Flake	Lithic	5	18.4		12/4/2017
496	2	404	-	-	-	D	III	N1000	E1009	11	98.69-98.59	100-110	-	Detritus	Debitage	Proximal Flake	Lithic	5	4.11		12/4/2017
496	3	404	-	-	-	D	III	N1000	E1009	11	98.69-98.59	100-110	-	Detritus	Debitage	Broken Flake	Lithic	19	18.57		12/4/2017
496	4	404	-	-	-	D	III	N1000	E1009	11	98.69-98.59	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	4	2.04		12/4/2017
497	1	318	-	-	-	D	I/II	N1000	E1010	2	99.59-99.49	10-20	-	Detritus	Debitage	Complete Flake	Lithic	1	0.2		11/27/2017
497	2	318	-	-	-	D	I/II	N1000	E1010	2	99.59-99.49	10-20	-	Detritus	Debitage	Proximal Flake	Lithic	2	1.13		11/27/2017
497	3	318	-	-	-	D	I/II	N1000	E1010	2	99.59-99.49	10-20	-	Historic Artifact	Ceramic	Whiteware	Ceramic	1	1.59		11/27/2017
498	1	320	-	-	-	D	I/II	N1000	E1010	3	99.49-99.39	20-30	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.43		11/27/2017
498	2	320	-	-	-	D	I/II	N1000	E1010	3	99.49-99.39	20-30	-	Detritus	Debitage	Broken Flake	Lithic	3	4.57		11/27/2017
499	1	321	-	-	-	D	I/II	N1000	E1010	4	99.39-99.29	30-40	-	Detritus	Debitage	Complete Flake	Lithic	2	3.53		11/27/2017
499	2	321	-	-	-	D	I/II	N1000	E1010	4	99.39-99.29	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	3	0.93		11/27/2017
499	3	321	ı	-	-	D	I/II	N1000	E1010	4	99.39-99.29	30-40	-	Detritus	Debitage	Broken Flake	Lithic	3	2.01		11/27/2017
499	4	321	-	-	-	D	I/II	N1000	E1010	4	99.39-99.29	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	8	3.03		11/27/2017
500	1	323	-	-	-	D	I/II	N1000	E1010	5	99.29-99.19	40-50	-	Detritus	Debitage	Complete Flake	Lithic	13	37.57		11/27/2017
500	2	323	-	-	-	D	I/II	N1000	E1010	5	99.29-99.19	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	9	6.52		11/27/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
500	3	323	-	-	-	D	1/11	N1000	E1010	5	99.29-99.19	40-50	-	Detritus	Debitage	Broken Flake	Lithic	13	6.36		11/27/2017
500	4	323	-	-	-	D	I/II	N1000	E1010	5	99.29-99.19	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	22	49.77		11/27/2017
500	5	323	-	-	-	D	1/11	N1000	E1010	5	99.29-99.19	40-50	-	Detritus	Core	Bifacial	Fine Grain Chert	1	116.04	Fragment	11/27/2017
501	1	328	-	-	-	D	1/11	N1000	E1010	6	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	15.84		11/28/2017
501	2	328	-	-	-	D	I/II	N1000	E1010	6	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	6.08		11/28/2017
501	3	328	-	-	-	D	1/11	N1000	E1010	6	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	3.06		11/28/2017
501	4	328	-	-	-	D	I/II	N1000	E1010	6	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	1.32		11/28/2017
501	5	328	-	-	-	D	I/II	N1000	E1010	6	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.73		11/28/2017
501	6	328	-	-	-	D	1/11	N1000	E1010	6	99.19-99.09	50-60	-	Detritus	Debitage	Complete Flake	Lithic	11	37.91		11/28/2017
501	7	328	-	-	-	D	1/11	N1000	E1010	6	99.19-99.09	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	7	15.26		11/28/2017
501	8	328	-	-	-	D	1/11	N1000	E1010	6	99.19-99.09	50-60	-	Detritus	Debitage	Broken Flake	Lithic	24	10.4		11/28/2017
501	9	328	-	-	-	D	1/11	N1000	E1010	6	99.19-99.09	50-60	-	Detritus	Debitage	Flaking Shatter	Lithic	1	23.26		11/28/2017
501	10	328	-	-	-	D	1/11	N1000	E1010	6	99.19-99.09	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	22	60.81		11/28/2017
502	1	331	-	-	1	D	1/11	N1000	E1010	7	99.09-98.99	60-70	-	Detritus	Debitage	Complete Flake	Lithic	12	98.38		11/28/2017
502	1	331	-	1	ı	D	1/11	N1000	E1010	7	99.09-98.99	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.31		11/28/2017
502	2	331	-	-	-	D	I/II	N1000	E1010	7	99.09-98.99	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	12	21.58		11/28/2017
502	2	331	-	-	-	D	I/II	N1000	E1010	7	99.09-98.99	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.21		11/28/2017
502	3	331	-	-	-	D	I/II	N1000	E1010	7	99.09-98.99	60-70	-	Detritus	Debitage	Broken Flake	Lithic	18	8.32		11/28/2017
502	4	331	-	-	-	D	I/II	N1000	E1010	7	99.09-98.99	60-70	-	Detritus	Debitage	Flaking Shatter	Lithic	1	7.12		11/28/2017
502	5	331	-	-	-	D	I/II	N1000	E1010	7	99.09-98.99	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	20	32.18		11/28/2017
503	1	334	-	-	-	D	1/11/111	N1000	E1010	8	98.99-98.89	70-80	-	Faunal Remains	Bone	Mammal	Bone	1	0.38		11/28/2017
503	2	334	-	-	-	D	I/II/III	N1000	E1010	8	98.99-98.89	70-80	-	Detritus	Debitage	Complete Flake	Lithic	15	32.27		11/28/2017
503	3	334	-	-	-	D	1/11/111	N1000	E1010	8	98.99-98.89	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	15	12.16		11/28/2017
503	4	334	-	-	-	D	1/11/111	N1000	E1010	8	98.99-98.89	70-80	-	Detritus	Debitage	Broken Flake	Lithic	25	19.77		11/28/2017
503	5	334	-	-	-	D	1/11/111	N1000	E1010	8	98.99-98.89	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	24	14.31		11/28/2017
504	1	336	-	-	-	D	III	N1000	E1010	9	98.89-98.79	80-90	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.15		11/28/2017
504	2	336	-	-	-	D	III	N1000	E1010	9	98.89-98.79	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.25		11/28/2017
504	3	336	-	-	-	D	III	N1000	E1010	9	98.89-98.79	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.46		11/28/2017
504	4	336	-	-	-	D	III	N1000	E1010	9	98.89-98.79	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.32		11/28/2017
504	5	336	-	-	-	D	Ш	N1000	E1010	9	98.89-98.79	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.10		11/28/2017
504	6	336	-	-	-	D	III	N1000	E1010	9	98.89-98.79	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.16		11/28/2017
504	7	336	-	-	-	D	Ш	N1000	E1010	9	98.89-98.79	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.13		11/28/2017
504	8	336	-	-	-	D	III	N1000	E1010	9	98.89-98.79	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.31		11/28/2017
504	9	336	-	-	-	D	III	N1000	E1010	9	98.89-98.79	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.04		11/28/2017
504	10	336	-	-	-	D	III	N1000	E1010	9	98.89-98.79	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.61		11/28/2017
504	11	336	-	-	-	D	III	N1000	E1010	9	98.89-98.79	80-90	-	Detritus	Debitage	Complete Flake	Lithic	16	81.69		11/28/2017
504	12	336	-	-	-	D	III	N1000	E1010	9	98.89-98.79	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	18	15.41		11/28/2017
504	13	336	-	-	-	D	III	N1000	E1010	9	98.89-98.79	80-90	-	Detritus	Debitage	Broken Flake	Lithic	35	17.2		11/28/2017
504	14	336	-	-	-	D	III	N1000	E1010	9	98.89-98.79	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	25	15.28		11/28/2017
505	1	342	-	-	-	D	III	N1000	E1010	10	98.79-98.69	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.23		11/29/2017
505	2	342	-	-	-	D	III	N1000	E1010	10	98.79-98.69	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.16		11/29/2017
505	3	342	-	-	-	D	III	N1000	E1010	10	98.79-98.69	90-100	-	Faunal Remains	Bone	Indeterminate	Bone	1	80.0		11/29/2017
505	4	342	-	-	-	D	III	N1000	E1010	10	98.79-98.69	90-100	-	Detritus	Debitage	Complete Flake	Lithic	15	79.87		11/29/2017
505	5	342	-	-	-	D	III	N1000	E1010	10	98.79-98.69	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	22	18.19		11/29/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
505	6	342	-	-	-	D	Ш	N1000	E1010	10	98.79-98.69	90-100	-	Detritus	Debitage	Broken Flake	Lithic	18	14.82		11/29/2017
505	7	342	-	-	-	D	III	N1000	E1010	10	98.79-98.69	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	19	18.3		11/29/2017
505	8	342	-	-	-	D	Ш	N1000	E1010	10	98.79-98.69	90-100	-	Faunal Remains	Shell	Mussel Shell	Shell	1	4.26		11/29/2017
506	1	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.67		12/1/2017
506	2	339	-	-	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.62		12/1/2017
506	3	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.29		12/1/2017
506	4	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.27		12/1/2017
506	5	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.24		12/1/2017
506	6	339	-	-	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.16		12/1/2017
506	7	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.29		12/1/2017
506	8	339	-	-	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.33		12/1/2017
506	9	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.13		12/1/2017
506	10	339	-	-	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.23		12/1/2017
506	11	339	-	-	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.24		12/1/2017
506	12	339	-	-	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.18		12/1/2017
506	13	339	-	-	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.17		12/1/2017
506	14	339	-	-	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.09		12/1/2017
506	15	339	-	-	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.37		12/1/2017
506	16	339	-	-	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.34		12/1/2017
506	17	339	-	-	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.18		12/1/2017
506	18	339	-	-	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.29		12/1/2017
506	19	339	-	-	-	D	=	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.1		12/1/2017
506	20	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/1/2017
506	21	339	-	-	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.03		12/1/2017
506	22	339	-	1	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.16		12/1/2017
506	23	339	-	1	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.07		12/1/2017
506	24	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/1/2017
506	25	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/1/2017
506	26	339	-	-	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.03		12/1/2017
506	27	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/1/2017
506	28	339	-	-	-	D	Ш	N1000	E1010	11	98.69-98.59	100-110	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/1/2017
506	29	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Detritus	Debitage	Complete Flake	Lithic	25	37.98		12/1/2017
506	30	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Detritus	Debitage	Proximal Flake	Lithic	33	38.36		12/1/2017
506	31	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Detritus	Debitage	Broken Flake	Lithic	44	31.26		12/1/2017
506	32	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Detritus	Debitage	Flaking Shatter	Lithic	4	15.25		12/1/2017
506	33	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	21	20.73		12/1/2017
506	34	339	-	-	-	D	III	N1000	E1010	11	98.69-98.59	100-110	-	Informal Tool	Modified Flake	Utilized Flake	Fine Grain Chert	1	42.88		12/1/2017
507	1	361	-	-	-	D	III	N1000	E1010	11	98.57	113	N1000.25 E1010.26	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	235.17		12/1/2017
508	1	411	-	-	-	D	III	N1000	E1010	12	98.59-98.49	110-120	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.23		12/4/2017
508	2	411	-	-	-	D	III	N1000	E1010	12	98.59-98.49	110-120	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.17		12/4/2017
508	3	411	-	-	-	D	III	N1000	E1010	12	98.59-98.49	110-120	-	Detritus	Debitage	Complete Flake	Lithic	13	48.47		12/4/2017
508	4	411	-	-	-	D	III	N1000	E1010	12	98.59-98.49	110-120	-	Detritus	Debitage	Proximal Flake	Lithic	29	25.05		12/4/2017
508	5	411	-	-	-	D	III	N1000	E1010	12	98.59-98.49	110-120	-	Detritus	Debitage	Broken Flake	Lithic	50	64.53		12/4/2017
508	6	411	-	-	-	D	III	N1000	E1010	12	98.59-98.49	110-120	-	Detritus	Debitage	Flaking Shatter	Lithic	4	2.53		12/4/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
508	7	411	-	-	-	D	Ш	N1000	E1010	12	98.59-98.49	110-120	-	Detritus	Debitage	Thermal Shatter	Lithic	11	11.84		12/4/2017
509	1	420	-	_	-	D	IV	N1000	E1010	13	98.49-98.39	120-130	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.43		12/4/2017
509	2	420	-	-	-	D	IV	N1000	E1010	13	98.49-98.39	120-130	-	Detritus	Debitage	Complete Flake	Lithic	12	20.99		12/4/2017
509	3	420	-	-	-	D	IV	N1000	E1010	13	98.49-98.39	120-130	-	Detritus	Debitage	Proximal Flake	Lithic	15	26.14		12/4/2017
509	4	420	-	-	-	D	IV	N1000	E1010	13	98.49-98.39	120-130	-	Detritus	Debitage	Broken Flake	Lithic	18	22.06		12/4/2017
509	5	420	-	-	-	D	IV	N1000	E1010	13	98.49-98.39	120-130	-	Detritus	Debitage	Thermal Shatter	Lithic	5	2.06		12/4/2017
510	1	430	-	-	-	D	IV	N1000	E1010	14	98.39-98.29	130-140	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.24		12/5/2017
510	2	430	-	-	-	D	IV	N1000	E1010	14	98.39-98.29	130-140	-	Detritus	Debitage	Complete Flake	Lithic	16	34.82		12/5/2017
510	3	430	-	-	-	D	IV	N1000	E1010	14	98.39-98.29	130-140	-	Detritus	Debitage	Proximal Flake	Lithic	21	32.35		12/5/2017
510	4	430	-	-	-	D	IV	N1000	E1010	14	98.39-98.29	130-140	-	Detritus	Debitage	Broken Flake	Lithic	17	19.98		12/5/2017
510	5	430	-	-	-	D	IV	N1000	E1010	14	98.39-98.29	130-140	-	Detritus	Debitage	Thermal Shatter	Lithic	7	2.89		12/5/2017
511	1	438	-	-	-	D	IV	N1000	E1010	15	98.29-98.19	140-150	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.24		12/5/2017
511	2	438	-	-	-	D	IV	N1000	E1010	15	98.29-98.19	140-150	-	Detritus	Debitage	Complete Flake	Lithic	5	70.19		12/5/2017
511	3	438	-	-	-	D	IV	N1000	E1010	15	98.29-98.19	140-150	-	Detritus	Debitage	Proximal Flake	Lithic	10	12.94		12/5/2017
511	4	438	-	-	-	D	IV	N1000	E1010	15	98.29-98.19	140-150	-	Detritus	Debitage	Broken Flake	Lithic	23	28.91		12/5/2017
511	5	438	-	-	-	D	IV	N1000	E1010	15	98.29-98.19	140-150	-	Detritus	Debitage	Thermal Shatter	Lithic	6	14.16		12/5/2017
511	6	438	-	-	-	D	IV	N1000	E1010	15	98.29-98.19	140-150	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	13.23		12/5/2017
512	1	447	-	-	-	D	IV	N1000	E1010	16	98.19-98.09	150-160	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.03		12/5/2017
512	2	447	-	-	-	D	IV	N1000	E1010	16	98.19-98.09	150-160	-	Detritus	Debitage	Complete Flake	Lithic	3	19.85		12/5/2017
512	3	447	-	-	-	D	IV	N1000	E1010	16	98.19-98.09	150-160	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.17		12/5/2017
512	4	447	-	-	-	D	IV	N1000	E1010	16	98.19-98.09	150-160	-	Detritus	Debitage	Broken Flake	Lithic	9	15.99		12/5/2017
512	5	447	-	-	-	D	IV	N1000	E1010	16	98.19-98.09	150-160	-	Detritus	Debitage	Thermal Shatter	Lithic	3	11.04		12/5/2017
512	6	447	-	-	-	D	IV	N1000	E1010	16	98.19-98.09	150-160	-	Formal Tool	Biface	Marginal-Distal Fragment	Fine Grain Chert	1	0.86		12/5/2017
512	7	447	-	-	-	D	IV	N1000	E1010	16	98.19-98.09	150-160	-	Faunal Remains	Shell	Mussel Shell	Shell	1	1.6		12/5/2017
513	1	552	-	-	-	D	V/VI	N1000	E1010	17	98.09-97.99	160-170	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/15/2017
513	2	552	-	-	-	D	V/VI	N1000	E1010	17	98.09-97.99	160-170	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.15		12/15/2017
513	3	552	-	-	-	D	V/VI	N1000	E1010	17	98.09-97.99	160-170	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.1		12/15/2017
513	4	552	-	-	-	D	V/VI	N1000	E1010	17	98.09-97.99	160-170	-	Detritus	Debitage	Complete Flake	Lithic	1	0.38		12/15/2017
513	5	552	-	-	-	D	V/VI	N1000	E1010	17	98.09-97.99	160-170	-	Detritus	Debitage	Proximal Flake	Lithic	1	9.28		12/15/2017
513	6	552	-	-	-	D	V/VI	N1000	E1010	17	98.09-97.99	160-170	-	Detritus	Debitage	Broken Flake	Lithic	1	0.37		12/15/2017
513	7	552	-	-	-	D	V/VI	N1000	E1010	17	98.09-97.99	160-170	-	Detritus	Debitage	Thermal Shatter	Lithic	1	1.06		12/15/2017
513	8	552	-	-	C-22	D	V/VI	N1000	E1010	17	98.09-97.99	160-170	-	Archaeological Sample	C-14	not ID'd		1	0.01	*not sent for ID-too small	12/15/2017
514	1	554	-	-	-	D	V/VI	N1000	E1010	18	97.99-97.89	170-180	-	Detritus	Debitage	Complete Flake	Lithic	3	27.25		12/15/2017
514	2	554	-	-	-	D	V/VI	N1000	E1010	18	97.99-97.89	170-180	-	Detritus	Debitage	Broken Flake	Lithic	1	0.43		12/15/2017
514	3	554	-	-	-	D	V/VI	N1000	E1010	18	97.99-97.89	170-180	-	Detritus	Debitage	Thermal Shatter	Lithic	4	16.75		12/15/2017
515	1	558	-	-	-	D	V/VI	N1000	E1010	19	97.89-97.79	180-190	-	Detritus	Debitage	Complete Flake	Lithic	1	2.92		12/15/2017
515	2	558	-	-	-	D	V/VI	N1000	E1010	19	97.89-97.79	180-190	-	Detritus	Debitage	Proximal Flake	Lithic	2	13.54		12/15/2017
516	1	623	-	-	-	D	VII	N1000	E1010	21	97.69-97.59	200-210	-	Detritus	Debitage	Complete Flake	Lithic	2	1.89		12/20/2017
516	2	623	-	-	-	D	VII	N1000	E1010	21	97.69-97.59	200-210	-	Detritus	Debitage	Proximal Flake	Lithic	2	11.72		12/20/2017
517	1	633	-	-	-	С	II	N1000.5	E1005.5	2	99.6-99.5	30-40	-	Detritus	Debitage	Complete Flake	Lithic	1	5.28		12/20/2017
517	2	633	-	-	-	С	II	N1000.5	E1005.5	2	99.6-99.5	30-40	-	Other Lithic	Misc. Stone/ Mineral	Silt Stone	Lithic	1	29.75		12/20/2017
518	1	640	-	-	-	С	11/111	N1000.5	E1005.5	3	99.5-99.4	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.13		12/20/2017
518	2	640	-	-	-	С	11/111	N1000.5	E1005.5	3	99.5-99.4	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.19		12/20/2017
518	3	640	-	-	-	С	II/III	N1000.5	E1005.5	3	99.5-99.4	40-50	-	Detritus	Debitage	Complete Flake	Lithic	5	54.74		12/20/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
518	4	640	-	-	-	C	11/111	N1000.5	E1005.5	3	99.5-99.4	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	4	1.96		12/20/2017
518	5	640	-	-	-	С	11/111	N1000.5	E1005.5	3	99.5-99.4	40-50	-	Detritus	Debitage	Broken Flake	Lithic	9	4.76		12/20/2017
518	6	640	-	-	-	С	11/111	N1000.5	E1005.5	3	99.5-99.4	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	11	22.29		12/20/2017
518	7	640	-	-	-	С	11/111	N1000.5	E1005.5	3	99.5-99.4	40-50	-	Informal Tool	Modified Flake	Utilized Flake	Fine Grain Chert	1	14.56		12/20/2017
518	9	640	-	-	-	С	11/111	N1000.5	E1005.5	3	99.5-99.4	40-50	-	Informal Tool	Modified Flake	Utilized Flake	Coarse Grain Chert	1	44.44		12/20/2017
518	10	640	-	-	-	С	11/111	N1000.5	E1005.5	3	99.5-99.4	40-50	-	Other Lithic	Misc. Stone/ Mineral	Manuport	Limestone	1	58.39		12/20/2017
519	1	646	-	-	-	С	III	N1000.5	E1005.5	4	99.4-99.3	50-60	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.18		12/21/2017
519	2	646	-	-	-	С	III	N1000.5	E1005.5	4	99.4-99.3	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	2.02		12/21/2017
519	3	646	-	-	-	С	III	N1000.5	E1005.5	4	99.4-99.3	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.29		12/21/2017
519	4	646	-	-	-	С	III	N1000.5	E1005.5	4	99.4-99.3	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.33		12/21/2017
519	5	646	-	-	-	С	III	N1000.5	E1005.5	4	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.13		12/21/2017
519	6	646	-	-	-	С	III	N1000.5	E1005.5	4	99.4-99.3	50-60	-	Detritus	Debitage	Complete Flake	Lithic	7	8.79		12/21/2017
519	7	646	-	-	-	С	III	N1000.5	E1005.5	4	99.4-99.3	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	8	5.34		12/21/2017
519	8	646	-	-	-	С	III	N1000.5	E1005.5	4	99.4-99.3	50-60	-	Detritus	Debitage	Broken Flake	Lithic	9	3.87		12/21/2017
519	9	646	-	-	1	С	Ш	N1000.5	E1005.5	4	99.4-99.3	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	14	11.91		12/21/2017
519	10	646	-	-	1	С	III	N1000.5	E1005.5	4	99.4-99.3	50-60	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	44.49		12/21/2017
519	11	646	-	-	1	С	III	N1000.5	E1005.5	4	99.4-99.3	50-60	-	Faunal Remains	Shell	Mussel Shell	Shell	1	4.71		12/21/2017
520	1	656	-	FTR4 Layer 1	-	С	III	N1000-1001	E1003-1005	Layer 1	99.42	48	N1001.57 E1004.72	Faunal Remains	Bone	Mammal	Bone	1	1.53	Fragmented during excavation; sent for radiocarbon, not enough collagen for a date	12/21/2017
521	1	658	-	FTR4 Layer 1	-	С	III	N1000-1001	E1003-1005	Layer 1	99.42-99.28	48-62	-	Detritus	Debitage	Complete Flake	Lithic	3	1.07		12/27/2017
521	2	658	-	FTR4 Layer 1	-	С	III	N1000-1001	E1003-1005	Layer 1	99.42-99.28	48-62	-	Detritus	Debitage	Proximal Flake	Lithic	2	0.41		12/27/2017
521	3	658	-	FTR4 Layer 1	-	С	III	N1000-1001	E1003-1005	Layer 1	99.42-99.28	48-62	-	Detritus	Debitage	Broken Flake	Lithic	2	0.73		12/27/2017
521	4	658	-	FTR4 Layer 1	-	С	III	N1000-1001	E1003-1005	Layer 1	99.42-99.28	48-62	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.81		12/27/2017
521	5	658	-	FTR4 Layer 1	-	С	Ш	N1000-1001	E1003-1005	Layer 1	99.42-99.28	48-62	-	Faunal Remains	Shell	Untyped Shell	Shell	2	25.24	Oyster?	12/27/2017
522	1	658	-	FTR4 Layer 1	F-6/ F-7	С	III	N1000-1001	E1003-1005	Layer 1	99.45-99.3	45-60	N1000.58- 1001.73 E1003.82- 1005.41	Macrobotanical Remains	Other Plant Parts	Sugarberry seed (Celtis laevigata)		1	0.01	*sent for radiocarbon dating, but too small too date	12/27/2017
522	2	658	-	FTR4 Layer 1	F-6/ F-7	С	III	N1000-1001	E1003-1005	Layer 1	99.45-99.3	45-60	N1000.58- 1001.73 E1003.82- 1005.41	Macrobotanical Remains	Charcoal	Red mulberry (Morus rubra)		4	0.01		12/27/2017
522	3	658	-	FTR4 Layer 1	F-6/ F-7	С	III	N1000-1001	E1003-1005	Layer 1	99.45-99.3	45-60	N1000.58- 1001.73 E1003.82- 1005.41	Macrobotanical Remains	Charcoal	Elm (<i>Ulmus</i> spp.)		20	2.62		12/27/2017
522	4	658	-	FTR4 Layer	F-6/ F-7	С	III	N1000-1001	E1003-1005	Layer 1	99.45-99.3	45-60	N1000.58- 1001.73 E1003.82-	Macrobotanical Remains	Charcoal	Mesquite (Prosopis glandulosa)		13	0.53		12/27/2017
522	5	658	-	FTR4 Layer	F-6/ F-7	С	III	N1000-1001	E1003-1005	Layer 1	99.45-99.3	45-60	1005.41 N1000.58- 1001.73 E1003.82-	Macrobotanical Remains	Charcoal	Juniper (Juniperus spp.)		6	0.18		12/27/2017
522	6	658	-	FTR4 Layer	F-6/ F-7	С	III	N1000-1001	E1003-1005	Layer 1	99.45-99.3	45-60	1005.41 N1000.58- 1001.73 E1003.82-	Macrobotanical Remains	Charcoal	Ash (Fraxinus sp.)		2	0.01		12/27/2017
522	7	658	-	FTR4 Layer	F-6/ F-7	С	III	N1000-1001	E1003-1005	Layer 1	99.45-99.3	45-60	1005.41 N1000.58- 1001.73 E1003.82-	Macrobotanical Remains	Other Plant Parts	Indeterminable		1	0.01		12/27/2017
522	8	658	-	FTR4 Layer 1	F-6/ F-7	С	III	N1000-1001	E1003-1005	Layer 1	99.45-99.3	45-60	1005.41 N1000.58- 1001.73 E1003.82-	Macrobotanical Remains	Contamination >2mm				30.52		12/27/2017
522	9	658	-	FTR4 Layer 1	F-6/ F-7	С	III	N1000-1001	E1003-1005	Layer 1	99.45-99.3	45-60	1005.41 N1000.58- 1001.73 E1003.82- 1005.41	Macrobotanical Remains	Examined Residue <2mm				7.52		12/27/2017
522	10	658	-	FTR4 Layer 1	F-6/ F-7	С	III	N1000-1001	E1003-1005	Layer 1	99.45-99.3	45-60	N1000.58- 1001.73 E1003.82- 1005.41	Other Lithic	Thermally Altered Stone	FCR		5	0.01		12/27/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
522	11	658	-	FTR4 Layer 1	F-6/ F-7	С	III	N1000-1001	E1003-1005	Layer 1	99.45-99.3	45-60	N1000.58- 1001.73 E1003.82- 1005.41	Macrobotanical Remains	residual from heavy fraction				8.5		12/27/2017
522	12	658	ı	FTR4 Layer 1	F-6/ F-7	С	III	N1000-1001	E1003-1005	Layer 1	99.45-99.3	45-60	N1000.58- 1001.73 E1003.82- 1005.41	Detritus	Debitage	Thermal Shatter		3	0.01		12/27/2017
522	n/a	658	-	FTR4 Layer 1	F-6/ F-7	С	III	N1000-1001	E1003-1005	Layer 1	99.45-99.3	45-60	N1000.58- 1001.73 E1003.82- 1005.41	Archaeological Sample	Soil	Feature Matrix		3.0L	3000	all matrix floated	12/27/2017
523	1	658	-	FTR4 Layer 1	C-15	С	III	N1000-1001	E1003-1005	Layer 1	99.3	57	N1001.39 E1004.78	Archaeological Sample	C-14	Juniper (Juniperus sp.)		5	0.17		12/27/2017
524	1	658	-	FTR4 Layer 1	C-16	С	III	N1000-1001	E1003-1005	Layer 1	99.3	60	N1000.96 E1004.76	Archaeological Sample	C-14	mesquite (Prosopis sp.)		4	0.31		12/27/2017
524	2	658	-	FTR4 Layer 1	C-16	С	III	N1000-1001	E1003-1005	Layer 1	99.3	60	N1000.96 E1004.76	Archaeological Sample	Examined Residue <2mm				0.14		12/27/2017
525	1	658	-	FTR4 Layer 1	C-17	С	III	N1000-1001	E1003-1005	Layer 1	99.33	57	N1001.36 E1004.62	Archaeological Sample	C-14	elm (Ulmus sp.)		14	0.35		12/27/2017
525	2	658	-	FTR4 Layer 1	C-17	С	III	N1000-1001	E1003-1005	Layer 1	99.33	57	N1001.36 E1004.62	Archaeological Sample	Examined Residue <2mm				0.23		12/27/2017
526	1	658	-	FTR4 Layer 1	C-18	С	III	N1000-1001	E1003-1005	Layer 1	99.28	62	N1001.16 E1004.62	Archaeological Sample	C-14	Mesquite (Prosopis sp.)		8	0.21		12/27/2017
526	2	658	-	FTR4 Layer 1	C-18	С	III	N1000-1001	E1003-1005	Layer 1	99.28	62	N1001.16 E1004.62	Archaeological Sample	Examined Residue <2mm				0.22		12/27/2017
527	1	658	-	FTR4 Layer 1	C-19	С	III	N1000-1001	E1003-1005	Layer 1	99.3	60	N1001.52 E1004.44	Archaeological Sample	C-14	Elm (ulmus sp.)		5	2.26		12/27/2017
527	2	658	-	FTR4 Layer 1	C-19	С	III	N1000-1001	E1003-1005	Layer 1	99.3	60	N1001.52 E1004.44	Archaeological Sample	Examined Residue <2mm				1.67		12/27/2017
528	1	666	-	FTR4 Layer	-	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.45		12/28/2017
528	2	666	-	FTR4 Layer	-	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.33		12/28/2017
528	3	666	-	FTR4 Layer 2 FTR4 Layer	-	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.25		12/28/2017
528	4	666	-	2 FTR4 Layer	-	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.06		12/28/2017
528	5	666	-	2 FTR4 Layer	-	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/28/2017
528	7	666	_	2 FTR4 Layer	_	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70		Detritus	Debitage	Complete Flake	Lithic Lithic	4	4.94		12/28/2017
528 528	8	666	_	2 FTR4 Layer	_	С		N1000-1001 N1000-1001	E1004	Layer 2	99.28-99.21	62-70 62-70	_	Detritus Detritus	Debitage Debitage	Broken Flake Thermal Shatter	Lithic	18 30	13.73 24.52		12/28/2017
528	9	666	_	FTR4 Layer	_	С	111	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	_	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	1.2		12/28/2017
529	1	666	-	2 FTR4 Layer 2	F-8/ F-9	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	N1000.86- 1001.54 E1004.41- 1004.96	Macrobotanical Remains	Other Plant Parts	Camas bulb scale (Camassia sp.)		1	0.01	*sent for radiocarbon dating	12/27/2017
529	2	666	-	FTR4 Layer 2	F-8/ F-9	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	N1000.86- 1001.54 E1004.41- 1004.96	Macrobotanical Remains	Charcoal	Red mulberry (Morus rubra)		5	0.02		12/27/2017
529	3	666	-	FTR4 Layer 2	F-8/ F-9	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	N1000.86- 1001.54 E1004.41- 1004.96	Macrobotanical Remains	Charcoal	Elm (Ulmus spp.)		11	0.5		12/27/2017
529	4	666	-	FTR4 Layer 2	F-8/ F-9	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	N1000.86- 1001.54 E1004.41- 1004.96	Macrobotanical Remains	Charcoal	Mesquite (Prosopis glandulosa)		1	0.01		12/27/2017
529	5	666	-	FTR4 Layer 2	F-8/ F-9	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	N1000.86- 1001.54 E1004.41- 1004.96	Macrobotanical Remains	Charcoal	Juniper (Juniperus spp.)		2	0.01		12/27/2017
529	6	666	-	FTR4 Layer 2	F-8/ F-9	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	N1000.86- 1001.54 E1004.41- 1004.96	Macrobotanical Remains	Charcoal	Hardwood, indeterminable		3	0.01		12/27/2017
529	7	666	-	FTR4 Layer 2	F-8/ F-9	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	N1000.86- 1001.54 E1004.41- 1004.96	Macrobotanical Remains	Contamination >2mm				15.33		12/27/2017
529	8	666	1	FTR4 Layer 2	F-8/ F-9	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	N1000.86- 1001.54 E1004.41- 1004.96	Macrobotanical Remains	Examined Residue <2mm				3.35		12/27/2017
529	9	666	-	FTR4 Layer 2	F-8/ F-9	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	N1000.86- 1001.54 E1004.41- 1004.96	Macrobotanical Remains	residual from heavy fraction				29		12/27/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
529	10	666	-	FTR4 Layer 2	F-8/ F-9	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	N1000.86- 1001.54 E1004.41- 1004.96	Other Lithic	Thermally Altered Stone	FCR		8	6.5		12/27/2017
529	11	666	- 1	FTR4 Layer 2	F-8/ F-9	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	N1000.86- 1001.54 E1004.41- 1004.96	Clay	Clay Artifact	Burned Clay		1	1.5		12/27/2017
529	12	666	-	FTR4 Layer 2	F-8/ F-9	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	N1000.86- 1001.54 E1004.41- 1004.96	Faunal Remains	Bone			3	0.5	From flotation heavy fraction, not analyzed	12/27/2017
529	13	666	-	FTR4 Layer 2	F-8/ F-9	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	N1000.86- 1001.54 E1004.41-	Detritus	Debitage	Flaking Shatter		4	0.1		12/27/2017
529	14	666	-	FTR4 Layer 2	F-8/ F-9	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	1004.96 N1000.86- 1001.54 E1004.41-	Detritus	Debitage	Thermal Shatter		12	0.01		12/27/2017
529	n/a	666	-	FTR4 Layer 2	F-8/ F-9	С	III	N1000-1001	E1004	Layer 2	99.28-99.21	62-70	1004.96 N1000.86- 1001.54 E1004.41-	Archaeological Sample	Soil	Feature Matrix		2.5L	2400	all matrix floated	12/27/2017
530	1	666	_	FTR4 Layer	C-20	С		N1000-1001	E1004	Layer 2	99.26	64	1004.96 N1001.13	Archaeological	C-14	Elm (ulmus sp.)		6	0.25		12/27/2017
531	1	666	-	FTR4 Layer	C-21	С	III	N1000-1001	E1004	Layer 2	99.27	63	E1004.47 N1001.18 F1004.45	Sample Archaeological Sample	C-14	Elm (ulmus sp.)		4	0.24		12/27/2017
532	1	631	-	-	-	С	Ш	N1001	E1003	2	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	1.74		12/20/2017
532	2	631	-	-	-	С	Ш	N1001	E1003	2	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	1.67		12/20/2017
532	3	631	-	-	-	С	Ш	N1001	E1003	2	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	1.93		12/20/2017
532	4	631	-	-	-	С	II	N1001	E1003	2	99.6-99.5	30-40	-	Faunal Remains	Bone	Mammal	Bone	1	3.2		12/20/2017
532	5	631	-	-	-	С	Ш	N1001	E1003	2	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.44		12/20/2017
532	6	631	-	-	-	С	Ш	N1001	E1003	2	99.6-99.5	30-40	-	Detritus	Debitage	Complete Flake	Lithic	2	0.77		12/20/2017
533	1	641	-	-	-	С	II/III	N1001	E1003	3	99.5-99.4	40-50	-	Faunal Remains	Bone	Mammal	Bone	1	6.98		12/20/2017
533	2	641	ı	-	-	С	11/111	N1001	E1003	3	99.5-99.4	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.53		12/20/2017
533	3	641	-	-	-	С	II/III	N1001	E1003	3	99.5-99.4	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	9	32.41		12/20/2017
533	4	641	ı	-	-	С	11/111	N1001	E1003	3	99.5-99.4	40-50	-	Detritus	Debitage	Broken Flake	Lithic	4	2.33		12/20/2017
533	5	641	-	-	-	С	II/III	N1001	E1003	3	99.5-99.4	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	23	33.15		12/20/2017
533	7	641	-	-	-	С	II/III	N1001	E1003	3	99.5-99.4	40-50	-	Clay	Pigment	Red Ochre	Ochre	1	0.34		12/20/2017
533	8	641	-	-	-	С	II/III	N1001	E1003	3	99.5-99.4	40-50	-	Formal Tool	Biface	Basal Fragment	Fine Grain Chert	1	1.51		12/20/2017
534	1	649	-	-	-	С	Ш	N1001	E1003	4	99.4-99.3	50-60	-	Detritus	Debitage	Complete Flake	Lithic	1	3.86		12/21/2017
534	2	649	-	-	-	С	III	N1001	E1003	4	99.4-99.3	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	5	3.41		12/21/2017
534	3	649	-	-	-	С	III	N1001	E1003	4	99.4-99.3	50-60	-	Detritus	Debitage	Broken Flake	Lithic	7	2.05		12/21/2017
534	4	649	-	-	-	С	III	N1001	E1003	4	99.4-99.3	50-60	-	Detritus	Debitage	Flaking Shatter	Lithic	1	1.36		12/21/2017
534	5	649	-	-	-	С	III	N1001	E1003	4	99.4-99.3	50-60	-	Detritus	Debitage	Thermal Shatter Miscellaneous	Lithic	4	5.04		12/21/2017
534	7	649	-	-	-	С	III	N1001	E1003	4	99.4-99.3	50-60	- N1001.4	Historic Artifact	Metal	Metal	Metal	1	1.03		12/21/2017
535	1	657	-	-	-	С	III	N1001	E1003	4	99.4-99.36	50-54	E1003.9 N1001.4	Faunal Remains	Bone	Indeterminate	Bone	1	0.13		12/21/2017
535	2	657	-	-	-	С	III 	N1001	E1003	4	99.4-99.36	50-54	E1003.9 N1001.4	Faunal Remains	Bone	Indeterminate	Bone	1	0.12		12/21/2017
535	3	657	-	-	-	С		N1001	E1003	4	99.4-99.36	50-54	E1003.9 N1001.4	Faunal Remains	Bone	Indeterminate	Bone	1	0.09		12/21/2017
535	4	657	-	-	-	С	III	N1001	E1003	4	99.4-99.36	50-54	E1003.9 N1001.4	Faunal Remains	Bone	Indeterminate	Bone	1	0.11		12/21/2017
535 535	6	657 657	-	-	-	С	III	N1001 N1001	E1003	4	99.4-99.36 99.4-99.36	50-54 50-54	E1003.9 N1001.4	Faunal Remains	Bone Bone	Indeterminate	Bone	1	0.05		12/21/2017
535	7	657	_	_	_	С		N1001 N1001	E1003	4	99.4-99.36	50-54	E1003.9 N1001.4	Faunal Remains	Bone	Indeterminate	Bone	1	0.04		12/21/2017
535	8	657	-	_	_	С	"	N1001	E1003	4	99.4-99.36	50-54	E1003.9 N1001.4	Faunal Remains	Bone	Indeterminate	Bone	1	0.05		12/21/2017
535	9	657	_	_	_	С	111	N1001	E1003	4	99.4-99.36	50-54	E1003.9 N1001.4	Faunal Remains	Bone	Indeterminate	Bone	1	0.03		12/21/2017
535	10	657	_	_	_	С	III	N1001	E1003	4	99.4-99.36	50-54	E1003.9 N1001.4	Faunal Remains	Bone	Indeterminate	Bone	1	0.03		12/21/2017
535	11	657	_	_	_	С	III	N1001	E1003	4	99.4-99.36	50-54	E1003.9 N1001.4	Faunal Remains	Bone	Indeterminate	Bone	1	0.10		12/21/2017
		1		<u> </u>	<u> </u>	L			500	<u> </u>	00.00	1	E1003.9	reamaille			_3110	· · · · · · · · · · · · · · · · · · ·	1	<u>l</u>	1

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
535	12	657	-	-	-	C	Ш	N1001	E1003	4	99.4-99.36	50-54	N1001.4 F1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.12		12/21/2017
535	13	657	-	-	-	С	III	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.07		12/21/2017
535	14	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	N1001.4 F1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.06		12/21/2017
535	15	657	-	-	-	С	III	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.04		12/21/2017
535	16	657	-	-	-	С	III	N1001	E1003	4	99.4-99.36	50-54	N1001.4 F1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.05		12/21/2017
535	17	657	-	-	-	С	III	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.03		12/21/2017
535	18	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.03		12/21/2017
535	19	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.03		12/21/2017
535	20	657	-	-	-	С	III	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.03		12/21/2017
535	21	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.03		12/21/2017
535	22	657	-	-	-	С	III	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	23	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	24	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	25	657	-	-	-	С	III	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	26	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	27	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	28	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	29	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	30	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	31	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	32	657	-	-	-	С	III	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	33	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	34	657	-	-	-	С	III	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	35	657	-	-	-	С	III	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	36	657	-	-	-	С	III	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	37	657	-	-	-	С	III	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	38	657	-	-	-	С	III	N1001	E1003	4	99.4-99.36	50-54	N1001.4 E1003.9 N1001.4	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	39	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	E1003.9 N1001.4	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	40	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	E1003.9 N1001.4	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
535	41	657	-	-	-	С	Ш	N1001	E1003	4	99.4-99.36	50-54	E1003.9	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
536	1	572	-	-	-	С	II	N1001	E1004	2	99.7-99.6	20-30	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.45		12/18/2017
537	1	576	-	-	-	С	II	N1001	E1004	3	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	2.12		12/18/2017
537	2	576	-	-	-	С	II	N1001	E1004	3	99.6-99.5	30-40	-	Detritus	Debitage	Broken Flake	Lithic	1	2.23		12/18/2017
537	3	576	-	-	-	С	II	N1001	E1004	3	99.6-99.5	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.48		12/18/2017
538	1	579	-	-	-	С	11/111	N1001	E1004	4	99.5-99.4	40-50	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.13		12/18/2017
538	2	579	-	-	-	С	11/111	N1001	E1004	4	99.5-99.4	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.59		12/18/2017
538	3	579	-	-	-	С	11/111	N1001	E1004	4	99.5-99.4	40-50	-	Detritus	Debitage	Complete Flake	Lithic	2	0.86		12/18/2017
538	4	579	-	-	-	С	11/111	N1001	E1004	4	99.5-99.4	40-50	-	Detritus	Debitage	Broken Flake	Lithic	3	0.45		12/18/2017
538	5	579	_	-		С	11/111	N1001	E1004	4	99.5-99.4	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	8	6.2	2 fra amounta antiit	12/18/2017
538 539	6	579 592	-	-	-		11/111	N1001	E1004	4	99.5-99.4	40-50	-	Clay	Clay Artifact	Burned Clay	Clay	2	2.83	2 fragments refit	12/18/2017
	•			-	-	С		N1001	E1004	5	99.4-99.3	50-60	-	Faunal Remains	Bone			1	0.77		12/18/2017
539 539	3	592 592	-	-	-	С	III	N1001	E1004	5	99.4-99.3 99.4-99.3	50-60 50-60	-	Faunal Remains Faunal Remains	Bone	Indeterminate	Bone	1	0.79		12/18/2017
		592 592		-		С		N1001		5					Bone			1	0.05		12/18/2017
539	4	592	-	-	-	С	III	N1001	E1004	5	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.08		12/18/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
539	5	592	-	-	-	C	Ш	N1001	E1004	5	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.16		12/18/2017
539	6	592	-	-	-	С	III	N1001	E1004	5	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.06		12/18/2017
539	7	592	-	-	-	С	Ш	N1001	E1004	5	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.03		12/18/2017
539	8	592	-	-	-	С	III	N1001	E1004	5	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.09		12/18/2017
539	9	592	-	-	-	С	III	N1001	E1004	5	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.03		12/18/2017
539	10	592	-	-	-	С	III	N1001	E1004	5	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/18/2017
539	11	592	-	-	-	С	Ш	N1001	E1004	5	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/18/2017
539	12	592	-	-	-	С	Ш	N1001	E1004	5	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/18/2017
539	13	592	-	-	-	С	III	N1001	E1004	5	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/18/2017
539	14	592	-	-	-	С	Ш	N1001	E1004	5	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.06		12/18/2017
539	15	592	1	1	1	С	Ш	N1001	E1004	5	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.07		12/18/2017
539	16	592	-	-	-	С	Ш	N1001	E1004	5	99.4-99.3	50-60	-	Detritus	Debitage	Broken Flake	Lithic	2	0.46		12/18/2017
539	17	592	-	-	-	С	III	N1001	E1004	5	99.4-99.3	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	12	16.39		12/18/2017
539	18	592	-	-	-	С	Ш	N1001	E1004	5	99.4-99.3	50-60	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	1.06		12/18/2017
539	19	592	-	-	-	С	Ш	N1001	E1004	5	99.4-99.3	50-60	-	Faunal Remains	Shell	Mussel Shell	Shell	1	2.2		12/18/2017
540	1	542	-	-	-	С	II	N1001	E1004.5	2	99.7-99.6	20-30	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/14/2017
540	2	542	-	-	-	С	II	N1001	E1004.5	2	99.7-99.6	20-30	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.21		12/14/2017
540	3	542	-	-	-	С	II	N1001	E1004.5	2	99.7-99.6	20-30	-	Detritus	Debitage	Broken Flake	Lithic	1	0.21		12/14/2017
540	4	542	-	-	-	С	II	N1001	E1004.5	2	99.7-99.6	20-30	-	Detritus	Debitage	Flaking Shatter	Lithic	1	4.48		12/14/2017
540	5	542	-	-	-	С	II	N1001	E1004.5	2	99.7-99.6	20-30	-	Detritus	Debitage	Thermal Shatter	Lithic	2	0.61		12/14/2017
540	6	542	-	-	-	С	II	N1001	E1004.5	2	99.7-99.6	20-30	-	Historic Artifact	Metal	Miscellaneous Metal	Metal	1	0.15		12/14/2017
541	1	544	-	-	-	С	II	N1001	E1004.5	3	99.6-99.5	30-40	-	Detritus	Debitage	Complete Flake	Lithic	1	1.59		12/15/2017
541	2	544	-	-	-	С	II	N1001	E1004.5	3	99.6-99.5	30-40	-	Detritus	Debitage	Broken Flake	Lithic	5	2.98		12/15/2017
541	3	544	-	-	-	С	II	N1001	E1004.5	3	99.6-99.5	30-40	-	Detritus	Debitage	Flaking Shatter	Lithic	1	0.75		12/15/2017
541	4	544	-	-	-	С	II	N1001	E1004.5	3	99.6-99.5	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	2	4.35		12/15/2017
542	1	546	-	-	-	С	11/111	N1001	E1004.5	4	99.5-99.4	40-50	-	Faunal Remains	Bone	Mammal	Bone	1	0.46		12/15/2017
542	2	546	-	-	-	С	11/111	N1001	E1004.5	4	99.5-99.4	40-50	-	Faunal Remains	Bone	Mammal	Bone	1	0.82		12/15/2017
542	3	546	-	-	-	С	11/111	N1001	E1004.5	4	99.5-99.4	40-50	-	Faunal Remains	Bone	Mammal	Bone	1	2.26		12/15/2017
542	4	546	-	-	-	С	II/III	N1001	E1004.5	4	99.5-99.4	40-50	-	Faunal Remains	Bone	Mammal	Bone	1	1.2		12/15/2017
542	5	546	-	-	-	С	11/111	N1001	E1004.5	4	99.5-99.4	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.32		12/15/2017
542	6	546	-	-	-	С	11/111	N1001	E1004.5	4	99.5-99.4	40-50	-	Faunal Remains	Bone	Mammal	Bone	1	0.48		12/15/2017
542 542	7	546 546	-	-	-	С	11/111	N1001	E1004.5	4	99.5-99.4	40-50 40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.29		12/15/2017
542		546					11/111	N1001	E1004.5	4	99.5-99.4			Faunal Remains	Bone	Indeterminate	Bone	1	0.16		12/15/2017
542	10	546	-	-	-	С	11/111	N1001 N1001	E1004.5	4	99.5-99.4	40-50 40-50	_	Faunal Remains Faunal Remains	Bone Bone	Indeterminate Odocoileus sp.	Bone	1	0.66 0.54		12/15/2017 12/15/2017
542	11	546	_	_	_	С	11/111	N1001	E1004.5	4	99.5-99.4	40-50	_	Detritus	Debitage	Complete Flake	Lithic	4	2.71		12/15/2017
542	12	546				С	11/111	N1001	E1004.5	4	99.5-99.4	40-50		Detritus	Debitage	Proximal Flake	Lithic	5	3.82		12/15/2017
542	13	546	_	_	_	С	11/111	N1001	E1004.5	4	99.5-99.4	40-50	_	Detritus	Debitage	Broken Flake	Lithic	11	10.15		12/15/2017
542	14	546	_	_	_	С	11/111	N1001	E1004.5	4	99.5-99.4	40-50	_	Detritus	Debitage	Thermal Shatter	Lithic	23	27.54		12/15/2017
542	15	546	_	_		С	11/111	N1001	E1004.5	4	99.5-99.4	40-50	_	Other Lithic	Thermally	FCR	Lithic	1	81.13		12/15/2017
542	16	546	_	_		С	11/111	N1001	E1004.5	4	99.5-99.4	40-50	_	Faunal Remains	Altered Stone Shell	Mussel Shell	Shell	1	1.58		12/15/2017
543	1	560	_	_	_	С	III	N1001	E1004.5	5	99.4-99.3	50-60	_	Faunal Remains	Bone	Indeterminate	Bone	1	1.75		12/15/2017
543	2	560	_	_	_	С	111	N1001	E1004.5	5	99.4-99.3	50-60	_	Faunal Remains	Bone	Indeterminate	Bone	1	0.33		12/15/2017
543	3	560	_	_		С	111	N1001	E1004.5	5	99.4-99.3	50-60	_	Faunal Remains	Bone	Indeterminate	Bone	1	0.21		12/15/2017
540	J	- 550		-	-				L 1007.0	,	55.1-55.5	00-00		. Juna Remails	23116	aotominate	Bolle	- '	J.21		12, 10/2011

543 543	No.				No.	Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
543		560	-	-	-	C	III	N1001	E1004.5	5	99.4-99.3	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.04		12/15/2017
	5	560	-	-	-	С	III	N1001	E1004.5	5	99.4-99.3	50-60	-	Detritus	Debitage	Broken Flake	Lithic	6	6.56		12/15/2017
543	6	560	-	-	-	С	III	N1001	E1004.5	5	99.4-99.3	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	13	44.02		12/15/2017
544	1	325	-	-	-	D	I/II	N1001	E1009	1	99.60-99.49	9-20	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.76		11/28/2017
545	1	327	-	-	-	D	I/II	N1001	E1009	2	99.49-99.39	20-30	-	Detritus	Debitage	Proximal Flake	Lithic	1	1.99		11/28/2017
545	2	327	-	-	-	D	1/11	N1001	E1009	2	99.49-99.39	20-30	-	Detritus	Debitage	Broken Flake	Lithic	2	0.92		11/28/2017
545	3	327	-	-	-	D	I/II	N1001	E1009	2	99.49-99.39	20-30	-	Detritus	Debitage	Flaking Shatter	Lithic	1	0.16		11/28/2017
546	1	327	-	-	-	D	I/II	N1001	E1009	2	99.40	21	N1001.30 E1009.98	Detritus	Core	Bifacial	Fine Grain Chert	1	100.34	possible tested cobble	11/28/2017
547	1	330	-	-	-	D	1/11	N1001	E1009	3	99.39-99.29	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	2	7.21		11/28/2017
547	2	330	-	-	-	D	I/II	N1001	E1009	3	99.39-99.29	30-40	-	Detritus	Debitage	Broken Flake	Lithic	5	5.07		11/28/2017
547	3	330	-	-	-	D	1/11	N1001	E1009	3	99.39-99.29	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	7	14.98		11/28/2017
547	4	330	-	-	-	D	I/II	N1001	E1009	3	99.39-99.29	30-40	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	2.29		11/28/2017
547	5	330	-	-	-	D	I/II	N1001	E1009	3	99.39-99.29	30-40	-	Faunal Remains	Shell	Mussel Shell	Shell	1	4.98		11/28/2017
548	1	333	-	-	-	D	I/II	N1001	E1009	4	99.29-99.19	40-50	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	6.86		11/28/2017
548	2	333	-	-	-	D	I/II	N1001	E1009	4	99.29-99.19	40-50	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.97		11/28/2017
548	3	333	-	-	-	D	I/II	N1001	E1009	4	99.29-99.19	40-50	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.47		11/28/2017
548	4	333	-	-	-	D	I/II	N1001	E1009	4	99.29-99.19	40-50	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.36		11/28/2017
548	5	333	-	-	-	D	1/11	N1001	E1009	4	99.29-99.19	40-50	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.46		11/28/2017
548	6	333	-	-	-	D	1/11	N1001	E1009	4	99.29-99.19	40-50	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.22		11/28/2017
548	7	333	-	-	-	D	I/II	N1001	E1009	4	99.29-99.19	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.46		11/28/2017
548	8	333	-	-	-	D	I/II	N1001	E1009	4	99.29-99.19	40-50	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.15		11/28/2017
548	9	333	-	-	-	D	I/II	N1001	E1009	4	99.29-99.19	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.12		11/28/2017
548	10	333	-	-	-	D	I/II	N1001	E1009	4	99.29-99.19	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.21		11/28/2017
548	11	333	-	-	-	D	1/11	N1001	E1009	4	99.29-99.19	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.2		11/28/2017
548	12	333	-	-	-	D	1/11	N1001	E1009	4	99.29-99.19	40-50	-	Detritus	Debitage	Complete Flake	Lithic	5	8.37		11/28/2017
548 548	13	333	-	-	-	D	1/11	N1001	E1009	4	99.29-99.19	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	14	8.79 7.35		11/28/2017
548	14	333	-	-	-	D	1/11	N1001	E1009	4	99.29-99.19	40-50	_	Detritus	Debitage	Broken Flake	Lithic	8			11/28/2017
	15 1 radiocarbo	333	_	_	_	D D	1/11	N1001 N1001	E1009	5	99.29-99.19	40-50 54	N1001.07	Detritus Faunal Remains	Debitage Bone	Thermal Shatter Mammal	Lithic Bone	8	108.9	*sent for radiocarbon dating	11/28/2017
	n dated												E1009.42								
550	1	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.17		11/28/2017
550 550	3	338	_		_	D D	I/II I/II	N1001 N1001	E1009	5	99.19-99.09	50-60 50-60	_	Faunal Remains Faunal Remains	Bone Bone	Mammal Mammal	Bone Bone	1	0.92		11/28/2017
550	4	338	_	_	_	D	1/11	N1001	F1009	5	99.19-99.09	50-60	_	Faunal Remains	Bone	Mammal	Bone	1	0.63		11/28/2017
550	5	338		_	_	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	1.67		11/28/2017
550	6	338	_	_	_	D	1/11	N1001	E1009	5	99.19-99.09	50-60	_	Faunal Remains	Bone	Mammal	Bone	1	0.89		11/28/2017
550	7	338	_	_	_	D	1/11	N1001	E1009	5	99.19-99.09	50-60	_	Faunal Remains	Bone	Mammal	Bone	1	1.61		11/28/2017
550	8	338	-	-	_	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.81		11/28/2017
550	9	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.49		11/28/2017
550	10	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.52		11/28/2017
550	11	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.81		11/28/2017
550	12	338	_	-	_	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.39		11/28/2017
550	13	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.26		11/28/2017
550	14	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.19		11/28/2017
550	15	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.14		11/28/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
550	16	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.35		11/28/2017
550	17	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.31		11/28/2017
550	18	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.15		11/28/2017
550	19	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.12		11/28/2017
550	20	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.21		11/28/2017
550	21	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.26		11/28/2017
550	22	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.42		11/28/2017
550	23	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.11		11/28/2017
550	24	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.23		11/28/2017
550	25	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.25		11/28/2017
550	26	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.16		11/28/2017
550	27	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.11		11/28/2017
550	28	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.13		11/28/2017
550	29	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.31		11/28/2017
550	30	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.15		11/28/2017
550	31	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.11		11/28/2017
550	32	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.25		11/28/2017
550	33	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.13		11/28/2017
550	34	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.14		11/28/2017
550	35	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.11		11/28/2017
550	36	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.13		11/28/2017
550	37	338	-	1	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.16		11/28/2017
550	38	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	0.19		11/28/2017
550	39	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.32		11/28/2017
550	40	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.04		11/28/2017
550	41	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.12		11/28/2017
550	42	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.11		11/28/2017
550	43	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.07		11/28/2017
550	44	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.06		11/28/2017
550	45	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.04		11/28/2017
550	46	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.10		11/28/2017
550	47	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.09		11/28/2017
550	48	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.06		11/28/2017
550	49	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.03		11/28/2017
550	50	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		11/28/2017
550	51	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.09		11/28/2017
550	52	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.07		11/28/2017
550	53	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.12		11/28/2017
550	54	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.09		11/28/2017
550	55	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.05		11/28/2017
550	56	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.07		11/28/2017
550	57	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.08		11/28/2017
550	58	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.06		11/28/2017
550	59	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.06		11/28/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
550	60	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.08		11/28/2017
550	61	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.04		11/28/2017
550	62	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.03		11/28/2017
550	63	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		11/28/2017
550	64	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Detritus	Debitage	Complete Flake	Lithic	11	14.97		11/28/2017
550	65	338	-	-	-	D	1/11	N1001	E1009	5	99.19-99.09	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	11	11.23		11/28/2017
550	66	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Detritus	Debitage	Broken Flake	Lithic	21	14.3		11/28/2017
550	67	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Detritus	Debitage	Flaking Shatter	Lithic	1	0.71		11/28/2017
550	68	338	-	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	14	24.23		11/28/2017
550	69	338	19	-	-	D	I/II	N1001	E1009	5	99.19-99.09	50-60	-	Formal Tool	Arrow Point	Indeterminate	Fine Grain Chert	1	1.1		11/28/2017
551	1	341	-	-	-	D	I/II	N1001	E1009	6	99.09-98.99	60-70	-	Faunal Remains	Bone	Mammal	Bone	1	3.36		11/29/2017
551	2	341	-	-	-	D	I/II	N1001	E1009	6	99.09-98.99	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.26		11/29/2017
551	3	341	-	-	-	D	1/11	N1001	E1009	6	99.09-98.99	60-70	-	Detritus	Debitage	Complete Flake	Lithic	5	29.69		11/29/2017
551	4	341	-	-	-	D	1/11	N1001	E1009	6	99.09-98.99	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	11	9.69		11/29/2017
551	5	341	-	-	-	D	I/II	N1001	E1009	6	99.09-98.99	60-70	-	Detritus	Debitage	Broken Flake	Lithic	34	16.7		11/29/2017
551	6	341	-	-	-	D	1/11	N1001	E1009	6	99.09-98.99	60-70	-	Detritus	Debitage	Flaking Shatter	Lithic	2	0.72		11/29/2017
551	7	341	-	-	-	D	1/11	N1001	E1009	6	99.09-98.99	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	17	16.93		11/29/2017
552	1	347	-	-	-	D	1/11/111	N1001	E1009	7	98.99-98.89	70-80	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.13		11/29/2017
552	2	347	-	-	-	D	1/11/111	N1001	E1009	7	98.99-98.89	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.3		11/29/2017
552	3	347	-	-	-	D	1/11/111	N1001	E1009	7	98.99-98.89	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.71		11/29/2017
552	4	347	-	-	-	D	1/11/111	N1001	E1009	7	98.99-98.89	70-80	-	Detritus	Debitage	Complete Flake	Lithic	10	51.98		11/29/2017
552	5	347	-	-	-	D	1/11/111	N1001	E1009	7	98.99-98.89	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	26	46.75		11/29/2017
552	6	347	-	-	-	D	1/11/111	N1001	E1009	7	98.99-98.89	70-80	-	Detritus	Debitage	Broken Flake	Lithic	10	12.44		11/29/2017
552	7	347	-	-	-	D	1/11/111	N1001	E1009	7	98.99-98.89	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	34	25.39		11/29/2017
552	8	347	20	-	-	D	1/11/111	N1001	E1009	7	98.99-98.89	70-80	-	Formal Tool	Arrow Point	Edwards Point	Fine Grain Chert	1	0.32	Basal Fragment	11/29/2017
552	9	347	-	-	-	D	1/11/111	N1001	E1009	7	98.99-98.89	70-80	-	Formal Tool	Biface	Gahagan Biface	Fine Grain Chert	1	19	: Medial-Basal Fragment	11/29/2017
552	10	347	-	-	-	D	1/11/111	N1001	E1009	7	98.99-98.89	70-80	-	Faunal Remains	Shell	Mussel Shell	Shell	1	0.83	,	11/29/2017
553	1	392	-	-	-	D	III	N1001	E1009	8	98.89-98.79	80-90	-	Detritus	Debitage	Complete Flake	Lithic	1	0.34		12/1/2017
553	2	392	-	-	-	D	III	N1001	E1009	8	98.89-98.79	80-90	-	Detritus	Debitage	Broken Flake	Lithic	5	21.12		12/1/2017
553	3	392	-	-	-	D	III	N1001	E1009	8	98.89-98.79	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	3	2.78		12/1/2017
554	1	395	-	-	-	D	III	N1001	E1009	9	98.79-98.69	90-100	-	Detritus	Debitage	Complete Flake	Lithic	2	2.63		12/1/2017
554	2	395	-	-	-	D	III	N1001	E1009	9	98.79-98.69	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	3	14.69		12/1/2017
554	3	395	-	-	-	D	Ш	N1001	E1009	9	98.79-98.69	90-100	-	Detritus	Debitage	Broken Flake	Lithic	4	3.15		12/1/2017
554	4	395	-	-	-	D	III	N1001	E1009	9	98.79-98.69	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	5	3.16		12/1/2017
554	5	395	-	-	-	D	III	N1001	E1009	9	98.79-98.69	90-100	-	Informal Tool	Modified Flake	Utilized Flake	Fine Grain Chert	1	20.56		12/1/2017
555	1	400	-	-	-	D	III	N1001	E1009	10	98.69-98.59	100-110	-	Detritus	Debitage	Complete Flake	Lithic	1	9.29		12/1/2017
555	2	400	-	-	-	D	III	N1001	E1009	10	98.69-98.59	100-110	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.56		12/1/2017
555	3	400	-	-	-	D	III	N1001	E1009	10	98.69-98.59	100-110	-	Detritus	Debitage	Broken Flake	Lithic	5	4.32		12/1/2017
555	4	400	-	-	-	D	III	N1001	E1009	10	98.69-98.59	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	6	24.16		12/1/2017
555	5	400	-	-	-	D	III	N1001	E1009	10	98.69-98.59	100-110	-	Ground/ Battered Stone	Groundstone	Indeterminate	Limestone	1	7.15		12/1/2017
556	1	349	-	-	-	D	1/11	N1001	E1010	1	99.59-99.49	10-20	-	Detritus	Debitage	Complete Flake	Lithic	1	10.43		11/29/2017
556	2	349	-	-	-	D	1/11	N1001	E1010	1	99.59-99.49	10-20	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.12		11/29/2017
556	3	349	-	-	-	D	1/11	N1001	E1010	1	99.59-99.49	10-20	-	Detritus	Debitage	Broken Flake	Lithic	7	6.13		11/29/2017
556	4	349	-	-	-	D	1/11	N1001	E1010	1	99.59-99.49	10-20	-	Detritus	Debitage	Flaking Shatter	Lithic	2	0.81		11/29/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
557	1	353	-	-	-	D	1/11	N1001	E1010	2	99.49-99.39	20-30	-	Detritus	Debitage	Broken Flake	Lithic	1	0.4		11/29/2017
557	2	353	-	-	-	D	I/II	N1001	E1010	2	99.49-99.39	20-30	-	Historic Artifact	Ceramic	Whiteware	Ceramic	1	5.43		11/29/2017
558	1	356	-	-	-	D	1/11	N1001	E1010	3	99.39-99.29	30-40	-	Detritus	Debitage	Complete Flake	Lithic	1	0.08		11/29/2017
558	2	356	-	-	-	D	1/11	N1001	E1010	3	99.39-99.29	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	2	0.9		11/29/2017
558	3	356	-	-	-	D	1/11	N1001	E1010	3	99.39-99.29	30-40	-	Detritus	Debitage	Broken Flake	Lithic	7	9.79		11/29/2017
559	1	360	-	-	-	D	I/II	N1001	E1010	4	99.29-99.19	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.2		11/29/2017
559	2	360	-	-	-	D	1/11	N1001	E1010	4	99.29-99.19	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.21		11/29/2017
559	3	360	-	-	-	D	1/11	N1001	E1010	4	99.29-99.19	40-50	-	Detritus	Debitage	Complete Flake	Lithic	3	6.7		11/29/2017
559	4	360	-	-	-	D	1/11	N1001	E1010	4	99.29-99.19	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	9	17.43		11/29/2017
559	5	360	-	-	-	D	1/11	N1001	E1010	4	99.29-99.19	40-50	-	Detritus	Debitage	Broken Flake	Lithic	15	11.15		11/29/2017
559	6	360	-	-	-	D	1/11	N1001	E1010	4	99.29-99.19	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	19	26.31		11/29/2017
559	7	360	21	-	-	D	1/11	N1001	E1010	4	99.29-99.19	40-50	-	Formal Tool	Arrow Point	Perdiz Point	Fine Grain Chert	1	0.58		11/29/2017
560	1	363	22	-	-	D	1/11	N1001	E1010	4	99.22	47	N1001.85 E1010.05	Formal Tool	Biface	Distal-Medial Fragment	Fine Grain Chert	1	10.38		11/29/2017
561	1	367	-	-	-	D	1/11	N1001	E1010	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.22		11/29/2017
561	2	367	-	-	-	D	1/11	N1001	E1010	5	99.19-99.09	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.21		11/29/2017
561	3	367	-	-	-	D	1/11	N1001	E1010	5	99.19-99.09	50-60	-	Detritus	Debitage	Complete Flake	Lithic	8	13.22		11/29/2017
561	4	367	-	-	-	D	1/11	N1001	E1010	5	99.19-99.09	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	9	6.74		11/29/2017
561	5	367	-	-	-	D	1/11	N1001	E1010	5	99.19-99.09	50-60	-	Detritus	Debitage	Broken Flake	Lithic	12	21.74		11/29/2017
561	6	367	-	-	-	D	1/11	N1001	E1010	5	99.19-99.09	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	15	32.36		11/29/2017
561	7	367	-	-	-	D	1/11	N1001	E1010	5	99.19-99.09	50-60	-	Formal Tool	Biface	Indeterminate Fragment	Fine Grain Chert	1	0.64		11/29/2017
562	1	371	-	-	-	D	1/11	N1001	E1010	6	99.03	66	N1001.98 E1010.29	Detritus	Core	Bifacial	Fine Grain Chert	1	285.11		11/30/2017
563	1	372	-	1	-	D	1/11	N1001	E1010	6	99.04	65	N1001.05 E1010.38	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	8.94		11/30/2017
564	1	373	-	-	-	D	1/11	N1001	E1010	6	90.1	68	N1001.27 E1010.87	Faunal Remains	Bone	Indeterminate	Bone	1	1.14		11/30/2017
564	2	373	-	-	-	D	1/11	N1001	E1010	6	90.1	68	N1001.27 E1010.87	Faunal Remains	Bone	Indeterminate	Bone	1	1.38		11/30/2017
564	3	373	-	-	-	D	1/11	N1001	E1010	6	90.1	68	N1001.27 E1010.87	Faunal Remains	Bone	Indeterminate	Bone	1	0.26		11/30/2017
564	4	373	-	-	-	D	I/II	N1001	E1010	6	90.1	68	N1001.27 E1010.87	Faunal Remains	Bone	Indeterminate	Bone	1	0.3		11/30/2017
564	5	373	-	-	-	D	I/II	N1001	E1010	6	90.1	68	N1001.27 E1010.87	Faunal Remains	Bone	Indeterminate	Bone	1	0.33		11/30/2017
564	6	373	-	-	-	D	I/II	N1001	E1010	6	90.1	68	N1001.27 E1010.87	Faunal Remains	Bone	Indeterminate	Bone	1	0.22		11/30/2017
564	7	373	-	-	-	D	1/11	N1001	E1010	6	90.1	68	N1001.27 E1010.87	Faunal Remains	Bone	Indeterminate	Bone	1	0.19		11/30/2017
564	8	373	-	-	-	D	1/11	N1001	E1010	6	90.1	68	N1001.27 E1010.87	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		11/30/2017
564	9	373	-	-	-	D	1/11	N1001	E1010	6	90.1	68	N1001.27 E1010.87	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		11/30/2017
564	10	373	-	-	-	D	1/11	N1001	E1010	6	90.1	68	N1001.27 E1010.87	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		11/30/2017
565	1	374	-	-	-	D	1/11	N1001	E1010	6	99.09-98.99	60-70	-	Detritus	Debitage	Complete Flake	Lithic	8	16.81		11/30/2017
565	2	374	-	-	-	D	1/11	N1001	E1010	6	99.09-98.99	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	3	1.32		11/30/2017
565	3	374	-	-	-	D	1/11	N1001	E1010	6	99.09-98.99	60-70	-	Detritus	Debitage	Broken Flake	Lithic	21	11.47		11/30/2017
565	4	374	-	-	-	D	I/II	N1001	E1010	6	99.09-98.99	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	10	12.64		11/30/2017
565	5	374	-	-	-	D	I/II	N1001	E1010	6	99.09-98.99	60-70	-	Formal Tool	Biface	Distal-Medial Fragment	Fine Grain Chert	1	20.35		11/30/2017
566	1	379	-	-	-	D	1/11/111	N1001	E1010	7	98.99-98.89	70-80	-	Detritus	Debitage	Complete Flake	Lithic	4	2.86		11/30/2017
566	2	379	-	-	-	D	1/11/111	N1001	E1010	7	98.99-98.89	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	5	2.06		11/30/2017
566	3	379	-	-	-	D	1/11/111	N1001	E1010	7	98.99-98.89	70-80	-	Detritus	Debitage	Broken Flake	Lithic	14	11.97		11/30/2017
566	4	379	-	-	-	D	1/11/111	N1001	E1010	7	98.99-98.89	70-80	-	Detritus	Debitage	Flaking Shatter	Lithic	3	4.78		11/30/2017
566	5	379	-	-	-	D	1/11/111	N1001	E1010	7	98.99-98.89	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	12	32.31		11/30/2017
567	1	384	-	-	-	D	Ш	N1001	E1010	8	98.89-98.79	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.08		11/30/2017
567	2	384	-	-	-	D	III	N1001	E1010	8	98.89-98.79	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.16		11/30/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
567	3	384	-	-	-	D	Ш	N1001	E1010	8	98.89-98.79	80-90	-	Detritus	Debitage	Complete Flake	Lithic	4	37.75		11/30/2017
567	4	384	-	-	-	D	III	N1001	E1010	8	98.89-98.79	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	13	5.14		11/30/2017
567	5	384	-	-	-	D	III	N1001	E1010	8	98.89-98.79	80-90	-	Detritus	Debitage	Broken Flake	Lithic	12	10.53		11/30/2017
567	6	384	-	-	-	D	III	N1001	E1010	8	98.89-98.79	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	7	5.51		11/30/2017
568	1	386	-	-	-	D	III	N1001	E1010	9	98.79-98.69	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	2	0.75		11/30/2017
568	2	386	-	-	-	D	III	N1001	E1010	9	98.79-98.69	90-100	-	Detritus	Debitage	Broken Flake	Lithic	2	6.38		11/30/2017
568	3	386	-	-	-	D	III	N1001	E1010	9	98.79-98.69	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	3	3.4		11/30/2017
569	1	389	-	-	-	D	III	N1001	E1010	10	98.69-98.59	100-110	-	Detritus	Debitage	Complete Flake	Lithic	2	0.38		11/30/2017
569	2	389	-	-	-	D	Ш	N1001	E1010	10	98.69-98.59	100-110	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.18		11/30/2017
569	3	389	-	-	-	D	III	N1001	E1010	10	98.69-98.59	100-110	-	Detritus	Debitage	Broken Flake	Lithic	1	6.34		11/30/2017
569	4	389	-	-	-	D	III	N1001	E1010	10	98.69-98.59	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	2	0.98		11/30/2017
569	5	389	-	-	-	D	Ш	N1001	E1010	10	98.69-98.59	100-110	-	Formal Tool	Biface	Distal-Medial Fragment	Fine Grain Chert	1	0.68	Originally collected as Projectile Point	t 11/30/2017
570	1	416	-	-	-	D	IV	N1001	E1010	12	98.49-98.39	120-130	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.73		12/4/2017
570	2	416	-	-	-	D	IV	N1001	E1010	12	98.49-98.39	120-130	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.74		12/4/2017
570	3	416	-	-	-	D	IV	N1001	E1010	12	98.49-98.39	120-130	-	Detritus	Debitage	Proximal Flake	Lithic	2	29.57		12/4/2017
570	4	416	-	-	-	D	IV	N1001	E1010	12	98.49-98.39	120-130	-	Detritus	Debitage	Broken Flake	Lithic	1	0.24		12/4/2017
570	5	416	-	-	-	D	IV	N1001	E1010	12	98.49-98.39	120-130	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.16		12/4/2017
571	1	425	-	-	-	D	IV	N1001	E1010	13	98.39-98.29	130-140	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.25		12/5/2017
571	2	425	-	-	-	D	IV	N1001	E1010	13	98.39-98.29	130-140	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.13		12/5/2017
571	3	425	-	-	-	D	IV	N1001	E1010	13	98.39-98.29	130-140	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.13		12/5/2017
571	4	425	-	-	-	D	IV	N1001	E1010	13	98.39-98.29	130-140	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.36		12/5/2017
571	5	425	-	-	-	D	IV	N1001	E1010	13	98.39-98.29	130-140	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.09		12/5/2017
571	6	425	-	-	-	D	IV	N1001	E1010	13	98.39-98.29	130-140	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.26		12/5/2017
572	1	435	-	-	-	D	IV	N1001	E1010	14	98.29-98.19	140-150	-	Detritus	Debitage	Complete Flake	Lithic	1	2.38		12/5/2017
573	1	443	-	-	-	D	IV	N1001	E1010	15	98.19-98.09	150-160	-	Detritus	Debitage	Complete Flake	Lithic	1	0.63		12/5/2017
573	2	443	-	-	-	D	IV	N1001	E1010	15	98.19-98.09	150-160	-	Detritus	Debitage	Proximal Flake	Lithic	3	54.64		12/5/2017
573	3	443	-	-	-	D	IV	N1001	E1010	15	98.19-98.09	150-160	-	Detritus	Debitage	Broken Flake	Lithic	2	0.39		12/5/2017
574	1	606	-	-	-	D	V/VI	N1001	E1010	16	98.09-97.99	160-170	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.12		12/20/2017
574	2	606	-	-	-	D	V/VI	N1001	E1010	16	98.09-97.99	160-170	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.05		12/20/2017
574	3	606	-	-	-	D	V/VI	N1001	E1010	16	98.09-97.99	160-170	-	Detritus	Debitage	Complete Flake	Lithic	1	0.93		12/20/2017
574	4	606	-	-	-	D	V/VI	N1001	E1010	16	98.09-97.99	160-170	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.74		12/20/2017
574	5	606	-	-	-	D	V/VI	N1001	E1010	16	98.09-97.99	160-170	-	Detritus	Debitage	Broken Flake	Lithic	1	0.85		12/20/2017
574	6	606	-	-	-	D	V/VI	N1001	E1010	16	98.09-97.99	160-170	-	Detritus	Debitage	Thermal Shatter	Lithic	1	3.17		12/20/2017
575	1	611	-	-	-	D	V/VI	N1001	E1010	18	97.89-97.79	180-190	-	Detritus	Debitage	Broken Flake	Lithic	1	0.47	North wall alumns do as a state of the last	12/20/2017
576	1	616	-	-	-	D	V/VI	N1001	E1010	14-16	98.09-97.99	140-170	-	Faunal Remains	Bone	Odocoileus sp.	Bone	1	4.65	North wall slump; deer metapodial w/ green breaks & pot polish	12/20/2017
577	1	620	-	-	-	D	VII	N1001	E1010	20	97.69-97.59	200-210	-	Detritus	Debitage	Complete Flake	Lithic	2	8.41		12/20/2017
577	2	620	-	-	-	D	VII	N1001	E1010	20	97.69-97.59	200-210	-	Detritus	Debitage	Broken Flake	Lithic	1	0.04		12/20/2017
577	3	620	-	-	-	D	VII	N1001	E1010	20	97.69-97.59	200-210	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.12		12/20/2017
578	1	637	-	-	-	С	II	N1001.5	E1004	2	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.17		12/20/2017
578	2	637	-	-	-	С	II	N1001.5	E1004	2	99.6-99.5	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.61		12/20/2017
578	3	637	-	-	-	С	II	N1001.5	E1004	2	99.6-99.5	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	3	2.14		12/20/2017
578	4	637	-	-	-	С	II	N1001.5	E1004	2	99.6-99.5	30-40	-	Detritus	Debitage	Broken Flake	Lithic	3	0.93		12/20/2017
578	5	637	-	-	-	С	Ш	N1001.5	E1004	2	99.6-99.5	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	1	2.01		12/20/2017
578	6	637	-	-	-	С	II	N1001.5	E1004	2	99.6-99.5	30-40	-	Historic Artifact	Ceramic	Whiteware	Ceramic	1	2.73	Whiteware with green pattern décor	12/20/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
579	1	643	-	-	-	C	11/111	N1001.5	E1004	3	99.5-99.4	40-50	-	Faunal Remains	Bone	Odocoileus sp.	Bone	1	3.63		12/21/2017
579	2	643	-	-	-	С	II/III	N1001.5	E1004	3	99.5-99.4	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.41		12/21/2017
579	3	643	-	-	-	С	11/111	N1001.5	E1004	3	99.5-99.4	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.1		12/21/2017
579	4	643	-	-	-	С	11/111	N1001.5	E1004	3	99.5-99.4	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
579	5	643	-	-	-	С	11/111	N1001.5	E1004	3	99.5-99.4	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
579	6	643	-	-	-	С	11/111	N1001.5	E1004	3	99.5-99.4	40-50	-	Detritus	Debitage	Complete Flake	Lithic	2	0.16		12/21/2017
579	7	643	-	-	-	С	11/111	N1001.5	E1004	3	99.5-99.4	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	6	1.93		12/21/2017
579	8	643	-	-	-	С	11/111	N1001.5	E1004	3	99.5-99.4	40-50	-	Detritus	Debitage	Broken Flake	Lithic	4	1.01		12/21/2017
579	9	643	-	-	-	С	11/111	N1001.5	E1004	3	99.5-99.4	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	7	3.71		12/21/2017
579	10	643	32	-	-	С	11/111	N1001.5	E1004	3	99.5-99.4	40-50	-	Formal Tool	Arrow Point	Perdiz Point	Fine Grain Chert	1	1.43		12/21/2017
580	1	648	-	-	-	С	Ш	N1001.5	E1004	4	99.4-99.3	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	7.62		12/21/2017
580	2	648	-	-	-	С	III	N1001.5	E1004	4	99.4-99.3	50-60	-	Faunal Remains	Bone	Mammal	Bone	1	4.23		12/21/2017
580	3	648	-	-	-	С	Ш	N1001.5	E1004	4	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.24		12/21/2017
580	4	648	-	-	1	С	III	N1001.5	E1004	4	99.4-99.3	50-60	-	Faunal Remains	Bone	Tortoise/Turtle	Bone	1	0.09		12/21/2017
580	5	648	-	-	-	С	Ш	N1001.5	E1004	4	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.14		12/21/2017
580	6	648	-	-	-	С	Ш	N1001.5	E1004	4	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.04		12/21/2017
580	7	648	-	-	-	С	III	N1001.5	E1004	4	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
580	8	648	-	-	-	С	III	N1001.5	E1004	4	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
580	9	648	-	-	-	С	Ш	N1001.5	E1004	4	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/21/2017
580	10	648	-	-	-	С	III	N1001.5	E1004	4	99.4-99.3	50-60	-	Detritus	Debitage	Complete Flake	Lithic	2	1.62		12/21/2017
580	11	648	-	-	-	С	III	N1001.5	E1004	4	99.4-99.3	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	4	20.21		12/21/2017
580	12	648	-	-	-	С	Ш	N1001.5	E1004	4	99.4-99.3	50-60	-	Detritus	Debitage	Broken Flake	Lithic	10	5.32		12/21/2017
580	13	648	-	-	-	С	Ш	N1001.5	E1004	4	99.4-99.3	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	15	15.47		12/21/2017
580	14	648	-	-	-	С	Ш	N1001.5	E1004	4	99.4-99.3	50-60	-	Formal Tool	Biface	Complete	Fine Grain Chert	1	90.68		12/21/2017
581	1	651	-	-	-	С	11/111	N1001.5	E1005	2	99.5-99.4	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.08		12/21/2017
581	2	651	-	-	-	С	II/III	N1001.5	E1005	2	99.5-99.4	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.26		12/21/2017
581	3	651	-	-	-	С	11/111	N1001.5	E1005	2	99.5-99.4	40-50	-	Detritus	Debitage	Complete Flake	Lithic	5	15.34		12/21/2017
581	4	651	-	-	-	С	II/III	N1001.5	E1005	2	99.5-99.4	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	1	1.71		12/21/2017
581	5	651	-	-	-	С	11/111	N1001.5	E1005	2	99.5-99.4	40-50	-	Detritus	Debitage	Broken Flake	Lithic	3	4.34		12/21/2017
581	6	651	-	-	-	С	II/III	N1001.5	E1005	2	99.5-99.4	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	3	0.51		12/21/2017
582	1	654	-	-	-	С	III	N1001.5	E1005	3	99.4-99.3	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.18		12/21/2017
582	2	654	-	-	-	С	Ш	N1001.5	E1005	3	99.4-99.3	50-60	-	Detritus	Debitage	Complete Flake	Lithic	1	0.39		12/21/2017
582	3	654	-	-	-	С	Ш	N1001.5	E1005	3	99.4-99.3	50-60	-	Detritus	Debitage	Broken Flake	Lithic	9	5.78		12/21/2017
582	4	654	-	-	-	С	III	N1001.5	E1005	3	99.4-99.3	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	11	6.94		12/21/2017
583	1	513	-	-	-	Е	I	N1003	E1017	1	99.28-99.2	2-10	-	Detritus	Debitage	Thermal Shatter	Lithic	1	2.77		12/13/2017
584	1	518	-	-	-	E	II	N1003	E1017	2	99.2-99.1	10-20	-	Detritus	Debitage	Broken Flake	Lithic	3	0.41		12/13/2017
585	1	519	-	-	-	E	11/111	N1003	E1017	3	99.1-99.0	20-30	-	Detritus	Debitage	Complete Flake	Lithic	3	2.97		12/13/2017
585	2	519	-	-	-	Е	11/111	N1003	E1017	3	99.1-99.0	20-30	-	Detritus	Debitage	Proximal Flake	Lithic	4	3.39		12/13/2017
585	3	519	-	-	-	E	11/111	N1003	E1017	3	99.1-99.0	20-30	-	Detritus	Debitage	Broken Flake	Lithic	8	26.82		12/13/2017
585	4	519	-	-	-	E	11/111	N1003	E1017	3	99.1-99.0	20-30	-	Detritus	Debitage	Thermal Shatter	Lithic	5	1.9		12/13/2017
586	1	523	-	-	-	E	III	N1003	E1017	4	99.0-98.9	30-40	-	Detritus	Debitage	Complete Flake	Lithic	5	3.36		12/13/2017
586	2	523	-	-	-	E	III	N1003	E1017	4	99.0-98.9	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	6	33.56		12/13/2017
586	3	523	-	-	-	E	III	N1003	E1017	4	99.0-98.9	30-40	-	Detritus	Debitage	Broken Flake	Lithic	21	5.64		12/13/2017
586	4	523	-	-	-	E	III	N1003	E1017	4	99.0-98.9	30-40	-	Detritus	Debitage	Flaking Shatter	Lithic	2	10.9		12/13/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
586	5	523	-	-	-	E	III	N1003	E1017	4	99.0-98.9	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	8	2.59		12/13/2017
587	1	527	-	-	-	Е	III	N1003	E1017	5	98.85	45	N1003.08 E1017.80	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	7.8		12/13/2017
588	1	527	-	-	-	Е	III	N1003	E1017	5	98.9-98.8	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.22		12/13/2017
588	2	527	-	-	-	Е	III	N1003	E1017	5	98.9-98.8	40-50	-	Detritus	Debitage	Complete Flake	Lithic	7	91.11		12/13/2017
588	3	527	-	-	-	Е	III	N1003	E1017	5	98.9-98.8	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	20	14.52		12/13/2017
588	4	527	-	-	-	E	III	N1003	E1017	5	98.9-98.8	40-50	-	Detritus	Debitage	Broken Flake	Lithic	26	14.33		12/13/2017
588	5	527	-	-	-	E	III	N1003	E1017	5	98.9-98.8	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	22	21.58		12/13/2017
589	1	557	-	-	-	E	III	N1003	E1017	6	98.77	53	N1003.22 E1017.93	Faunal Remains	Shell	Mussel Shell	Shell	2	11.7		12/15/2017
590	1	557	-	-	-	Е	III	N1003	E1017	6	98.8-98.7	50-60	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.28		12/15/2017
590	2	557	-	-	-	Е	III	N1003	E1017	6	98.8-98.7	50-60	-	Detritus	Debitage	Complete Flake	Lithic	11	28.69		12/15/2017
590	3	557	-	-	-	Е	III	N1003	E1017	6	98.8-98.7	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	22	51.94		12/15/2017
590	4	557	-	-	-	Е	III	N1003	E1017	6	98.8-98.7	50-60	-	Detritus	Debitage	Broken Flake	Lithic	19	7.03		12/15/2017
590	5	557	-	-	-	Е	III	N1003	E1017	6	98.8-98.7	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	34	65.88		12/15/2017
590	6	557	-	-	-	Е	III	N1003	E1017	6	98.8-98.7	50-60	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	3.63		12/15/2017
590	7	557	-	-	-	Е	III	N1003	E1017	6	98.8-98.7	50-60	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	40.92		12/15/2017
591	1	563	-	-	-	Е	IV	N1003	E1017	7	98.7-98.6	60-70	-	Detritus	Debitage	Complete Flake	Lithic	9	36.3		12/15/2017
591	2	563	-	-	-	Е	IV	N1003	E1017	7	98.7-98.6	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	28	129.27		12/15/2017
591	3	563	-	-	-	Е	IV	N1003	E1017	7	98.7-98.6	60-70	-	Detritus	Debitage	Broken Flake	Lithic	51	58.76		12/15/2017
591	4	563	-	-	-	Е	IV	N1003	E1017	7	98.7-98.6	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	32	31.66		12/15/2017
591	5	563	-	-	-	Е	IV	N1003	E1017	7	98.7-98.6	60-70	-	Faunal Remains	Shell	Snail Shell	Shell	1		1 Large snail collected for ID	12/15/2017
592	1	564	-	-	-	Е	IV	N1003	E1017	7	98.64	66	N1003.48 E1017.42	Informal Tool	Core Tool	Chopper	Coarse Grain Chert	1	401.29	Core tools are on Biface analysis sheet	12/15/2017
593	1	565	-	-	-	Е	IV	N1003	E1017	7	98.61	69	N1003.98 E1017.44	Formal Tool	Biface	Complete	Fine Grain Chert	1	52.29		12/15/2017
594	1	566	-	-	-	Е	IV	N1003	E1017	7	98.64	66	N1003.65 E1017.62	Formal Tool	Biface	Complete	Fine Grain Chert	1	36.81		12/15/2017
595	1	570	-	-	-	Е	IV	N1003	E1017	8	98.6-98.5	70-80	-	Detritus	Debitage	Complete Flake	Lithic	11	43.53		12/18/2017
595	2	570	-	-	-	Е	IV	N1003	E1017	8	98.6-98.5	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	13	10.51		12/18/2017
595	3	570	-	-	-	E	IV	N1003	E1017	8	98.6-98.5	70-80	-	Detritus	Debitage	Broken Flake	Lithic	40	39.39		12/18/2017
595	4	570	-	-	-	Е	IV	N1003	E1017	8	98.6-98.5	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	8	6.46		12/18/2017
596	1	574	-	-	-	Е	V	N1003	E1017	9	98.5-98.4	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.73		12/18/2017
596	2	574	-	-	-	E	V	N1003	E1017	9	98.5-98.4	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/18/2017
596	3	574	-	-	-	Е	V	N1003	E1017	9	98.5-98.4	80-90	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.01		12/18/2017
596	4	574	-	-	-	E	V	N1003	E1017	9	98.5-98.4	80-90	-	Detritus	Debitage	Complete Flake	Lithic	1	75.04		12/18/2017
596	5	574	-	-	-	Е	V	N1003	E1017	9	98.5-98.4	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	3	0.58		12/18/2017
596	6	574	-	-	-	Е	V	N1003	E1017	9	98.5-98.4	80-90	-	Detritus	Debitage	Broken Flake	Lithic	10	3.99		12/18/2017
596	7	574	-	-	-	Е	V	N1003	E1017	9	98.5-98.4	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	8	4.92		12/18/2017
597	1	575	-	-	-	Е	V/VI	N1003	E1017	10	98.4-98.3	90-100	-	Detritus	Debitage	Complete Flake	Lithic	2	1.21		12/18/2017
597	2	575	-	-	-	Е	V/VI	N1003	E1017	10	98.4-98.3	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	4	2.17		12/18/2017
597	3	575	-	-	-	Е	V/VI	N1003	E1017	10	98.4-98.3	90-100	-	Detritus	Debitage	Broken Flake	Lithic	5	2.54		12/18/2017
597	4	575	-	-	-	Е	V/VI	N1003	E1017	10	98.4-98.3	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	7	4.26		12/18/2017
597	5	575	-	-	-	Е	V/VI	N1003	E1017	10	98.4-98.3	90-100	-	Formal Tool	Biface	Indeterminate Fragment	Fine Grain Chert	1	31.38		12/18/2017
598	1	659	-	-	-	Е	VI	N1003	E1017	11	98.3-98.2	100-110	-	Detritus	Debitage	Proximal Flake	Lithic	2	4.38		12/27/2017
598	2	659	-	-	-	Е	VI	N1003	E1017	11	98.3-98.2	100-110	-	Detritus	Debitage	Broken Flake	Lithic	1	0.4		12/27/2017
598	3	659	-	-	-	Е	VI	N1003	E1017	11	98.3-98.2	100-110	-	Informal Tool	Modified Flake	Utilized Flake	Coarse Grain Chert	1	5.79		12/27/2017
599	1	660	-	-	-	Е	VI	N1003	E1017	12	98.2-98.1	110-120	-	Detritus	Debitage	Broken Flake	Lithic	1	0.08		12/27/2017
600	1	662	-	-	-	E	VI	N1003	E1017	13	98.1-98.0	120-130	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.15		12/27/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
601	1	664	-	-	-	E	VI	N1003	E1017	14	98.0-97.9	130-140	-	Detritus	Debitage	Complete Flake	Lithic	1	13.86		12/27/2017
601	2	664	-	-	-	E	VI	N1003	E1017	14	98.0-97.9	130-140	-	Detritus	Debitage	Proximal Flake	Lithic	2	6.3		12/27/2017
602	1	409	-	-	-	E	Ш	N1003	E1018	2	99.2-99.1	10-20	-	Detritus	Debitage	Proximal Flake	Lithic	1	2.48		12/4/2017
602	2	409	-	-	-	E	Ш	N1003	E1018	2	99.2-99.1	10-20	-	Detritus	Debitage	Broken Flake	Lithic	2	0.25		12/4/2017
603	1	424	-	-	-	Е	11/111	N1003	E1018	3	99.1-99.0	20-30	-	Detritus	Debitage	Proximal Flake	Lithic	5	7.09		12/5/2017
603	2	424	-	-	-	Е	11/111	N1003	E1018	3	99.1-99.0	20-30	-	Detritus	Debitage	Broken Flake	Lithic	8	4.69		12/5/2017
603	3	424	-	-	-	E	11/111	N1003	E1018	3	99.1-99.0	20-30	-	Detritus	Debitage	Thermal Shatter	Lithic	2	0.51		12/5/2017
604	1	436	-	-	-	Е	III	N1003	E1018	4	99.0-98.9	30-40	-	Detritus	Debitage	Complete Flake	Lithic	15	24.49		12/5/2017
604	2	436	-	-	-	Е	III	N1003	E1018	4	99.0-98.9	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	9	9.21		12/5/2017
604	3	436	-	-	-	Е	III	N1003	E1018	4	99.0-98.9	30-40	-	Detritus	Debitage	Broken Flake	Lithic	20	8.16		12/5/2017
604	4	436	-	-	-	Е	III	N1003	E1018	4	99.0-98.9	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	15	21.37		12/5/2017
604	5	436	-	-	-	Е	III	N1003	E1018	4	99.0-98.9	30-40	-	Faunal Remains	Shell	Mussel Shell	Shell	1	2.09		12/5/2017
605	1	450	-	-	-	Е	III	N1003	E1018	5	98.9-98.8	40-50	-	Detritus	Debitage	Complete Flake	Lithic	10	20.52		12/8/2017
605	2	450	-	-	-	Е	III	N1003	E1018	5	98.9-98.8	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	10	8.61		12/8/2017
605	3	450	-	-	-	Е	III	N1003	E1018	5	98.9-98.8	40-50	-	Detritus	Debitage	Broken Flake	Lithic	23	11.32		12/8/2017
605	4	450	-	-	-	Е	III	N1003	E1018	5	98.9-98.8	40-50	-	Detritus	Debitage	Flaking Shatter	Lithic	3	4.07		12/8/2017
605	5	450	-	-	-	Е	Ш	N1003	E1018	5	98.9-98.8	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	8	12.56		12/8/2017
605	6	450	-	-	-	E	III	N1003	E1018	5	98.9-98.8	40-50	-	Faunal Remains	Shell	Mussel Shell	Shell	3	6.22		12/8/2017
606	1	463	-	-	-	Е	III	N1003	E1018	6	98.8-98.7	50-60	-	Detritus	Debitage	Complete Flake	Lithic	15	104.1		12/8/2017
606	2	463	-	-	-	Е	III	N1003	E1018	6	98.8-98.7	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	19	19.37		12/8/2017
606	3	463	-	-	-	Е	III	N1003	E1018	6	98.8-98.7	50-60	-	Detritus	Debitage	Broken Flake	Lithic	48	33.69		12/8/2017
606	4	463	-	-	-	E	III	N1003	E1018	6	98.8-98.7	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	19	32.8		12/8/2017
606	5	463	-	-	-	Е	Ш	N1003	E1018	6	98.8-98.7	50-60	-	Faunal Remains	Shell	Mussel Shell	Shell	2	4.6		12/8/2017
607	1	472	-	-	-	E	IV	N1003	E1018	7	98.7-98.6	60-70	-	Detritus	Debitage	Complete Flake	Lithic	13	36.58		12/11/2017
607	2	472	-	-	-	E	IV	N1003	E1018	7	98.7-98.6	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	12	5.74		12/11/2017
607	3	472	-	-	-	Е	IV	N1003	E1018	7	98.7-98.6	60-70	-	Detritus	Debitage	Broken Flake	Lithic	35	22.14		12/11/2017
607	4	472	-	-	-	E	IV	N1003	E1018	7	98.7-98.6	60-70	-	Detritus	Debitage	Flaking Shatter	Lithic	2	12.68		12/11/2017
607	5	472	-	-	-	Е	IV	N1003	E1018	7	98.7-98.6	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	18	24.22		12/11/2017
607	6	472	-	-	-	E	III/IV	N1003	E1018	7	98.7-98.6	60-70	-	Formal Tool	Arrow Point	Fresno Point	Fine Grain Chert	1	2.19	Proximal end	12/11/2017
608	1	510	-	1	-	Е	IV	N1003	E1018	8	98.6-98.5	70-80	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.23		12/13/2017
608	2	510	-	-	-	E	IV	N1003	E1018	8	98.6-98.5	70-80	-	Faunal Remains	Shell	Mussel Shell	Shell	5	17.05		12/13/2017
608	3	510	-	-	-	E	IV	N1003	E1018	8	98.6-98.5	70-80	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	6.13		12/13/2017
608	4	510	-	-	-	Е	IV	N1003	E1018	8	98.6-98.5	70-80	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	24.05		12/13/2017
608	5	510	-	-	-	E	IV	N1003	E1018	8	98.6-98.5	70-80	-	Detritus	Debitage	Complete Flake	Lithic	13	16.02		12/13/2017
608	6	510	-	-	-	Е	IV	N1003	E1018	8	98.6-98.5	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	23	25.61		12/13/2017
608	7	510	-	-	-	Е	IV	N1003	E1018	8	98.6-98.5	70-80	-	Detritus	Debitage	Broken Flake	Lithic	41	48.34		12/13/2017
608	8	510	-	-	-	Е	IV	N1003	E1018	8	98.6-98.5	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	18	14.63		12/13/2017
609	1	545	-	-	-	Е	V	N1003	E1018	9	98.5-98.4	80-90	-	Detritus	Debitage	Complete Flake	Lithic	9	162.77		12/15/2017
609	2	545	-	-	-	E	V	N1003	E1018	9	98.5-98.4	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	21	27.7		12/15/2017
609	3	545	-	-	-	Е	V	N1003	E1018	9	98.5-98.4	80-90	-	Detritus	Debitage	Broken Flake	Lithic	32	21.25		12/15/2017
609	4	545	-	-	-	Е	V	N1003	E1018	9	98.5-98.4	80-90	-	Detritus	Debitage	Flaking Shatter	Lithic	6	55.85		12/15/2017
609	5	545	-	-	-	E	V	N1003	E1018	9	98.5-98.4	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	16	28.51		12/15/2017
610	1	550	-	-	-	Е	V/VI	N1003	E1018	10	98.4-98.3	90-100	-	Detritus	Debitage	Complete Flake	Lithic	4	5.96		12/15/2017
610	2	550	-	-	-	E	V/VI	N1003	E1018	10	98.4-98.3	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	5	3.64		12/15/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
610	3	550	-	-	-	E	V/VI	N1003	E1018	10	98.4-98.3	90-100	-	Detritus	Debitage	Broken Flake	Lithic	10	15.39		12/15/2017
610	4	550	-	-	-	Е	V/VI	N1003	E1018	10	98.4-98.3	90-100	-	Detritus	Debitage	Flaking Shatter	Lithic	2	5.24		12/15/2017
610	5	550	-	-	-	Е	V/VI	N1003	E1018	10	98.4-98.3	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	4	9.58		12/15/2017
611	1	618	-	-	-	Е	VI	N1003	E1018	11	98.3-98.2	100-110	-	Detritus	Debitage	Proximal Flake	Lithic	4	0.51		12/20/2017
611	2	618	-	-	-	Е	VI	N1003	E1018	11	98.3-98.2	100-110	-	Detritus	Debitage	Broken Flake	Lithic	2	2.43		12/20/2017
611	3	618	-	-	-	E	VI	N1003	E1018	11	98.3-98.2	100-110	-	Detritus	Debitage	Flaking Shatter	Lithic	1	17.99		12/20/2017
611	4	618	-	-	-	Е	VI	N1003	E1018	11	98.3-98.2	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	1	1.98		12/20/2017
612	1	629	-	-	-	Е	VI	N1003	E1018	13	98.1-98.0	120-130	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.21		12/20/2017
612	2	629	-	-	-	Е	VI	N1003	E1018	13	98.1-98.0	120-130	-	Detritus	Debitage	Complete Flake	Lithic	1	5.41		12/20/2017
613	1	638	-	-	-	Е	VI	N1003	E1018	15	97.9-97.8	140-150	-	Detritus	Debitage	Complete Flake	Lithic	3	34.39		12/20/2017
613	2	638	-	-	-	Е	VI	N1003	E1018	15	97.9-97.8	140-150	-	Detritus	Debitage	Flaking Shatter	Lithic	2	12.97		12/20/2017
613	3	638	-	-	-	E	VI	N1003	E1018	15	97.9-97.8	140-150	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.31		12/20/2017
614	1	413	-	-	-	Е	II	N1003	E1019	2	99.2-99.1	10-20	-	Detritus	Debitage	Proximal Flake	Lithic	3	1.21		12/4/2017
614	2	413	-	-	-	Е	II	N1003	E1019	2	99.2-99.1	10-20	-	Detritus	Debitage	Broken Flake	Lithic	2	0.45		12/4/2017
614	3	413	-	1	-	Е	II	N1003	E1019	2	99.2-99.1	10-20	-	Detritus	Debitage	Thermal Shatter	Lithic	2	0.76		12/4/2017
615	1	441	-	1	-	Е	Ш	N1003	E1019	4	99.0-98.9	30-40	-	Detritus	Debitage	Complete Flake	Lithic	3	0.4		12/5/2017
615	2	441	-	-	-	Е	Ш	N1003	E1019	4	99.0-98.9	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	6	2.28		12/5/2017
615	3	441	-	-	-	E	III	N1003	E1019	4	99.0-98.9	30-40	-	Detritus	Debitage	Broken Flake	Lithic	11	7.77		12/5/2017
615	4	441	-	-	-	Е	Ш	N1003	E1019	4	99.0-98.9	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	10	6.42		12/5/2017
615	5	441	-	-	-	Е	Ш	N1003	E1019	4	99.0-98.9	30-40	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	25.02		12/5/2017
615	6	441	-	-	-	E	Ш	N1003	E1019	4	99.0-98.9	30-40	-	Faunal Remains	Shell	Mussel Shell	Shell	1	1.66		12/5/2017
616	1	454	-	-	-	E	III	N1003	E1019	5	98.9-98.8	40-50	-	Detritus	Debitage	Complete Flake	Lithic	5	6		12/8/2017
616	2	454	-	-	-	Е	III	N1003	E1019	5	98.9-98.8	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	19	11.2		12/8/2017
616	3	454	-	-	-	E	III	N1003	E1019	5	98.9-98.8	40-50	-	Detritus	Debitage	Broken Flake	Lithic	17	12.06		12/8/2017
616	4	454	-	-	-	Е	III	N1003	E1019	5	98.9-98.8	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	15	33.83		12/8/2017
616	5	454	-	-	-	Е	III	N1003	E1019	5	98.9-98.8	40-50	-	Faunal Remains	Shell	Mussel Shell	Shell	1	2.61		12/8/2017
617	1	464	-	-	-	Е	Ш	N1003	E1019	6	98.8-98.7	50-60	-	Detritus	Debitage	Complete Flake	Lithic	2	0.87		12/11/2017
617	2	464	-	-	-	Е	Ш	N1003	E1019	6	98.8-98.7	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	14	12.4		12/11/2017
617	3	464	-	-	-	Е	Ш	N1003	E1019	6	98.8-98.7	50-60	-	Detritus	Debitage	Broken Flake	Lithic	14	16.83		12/11/2017
617	4	464	-	-	-	E	III	N1003	E1019	6	98.8-98.7	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	23	21.35		12/11/2017
617	5	464	-	-	-	E	III	N1003	E1019	6	98.8-98.7	50-60	-	Faunal Remains	Shell	Mussel Shell	Shell	2	1.86		12/11/2017
618	1	479	-	-	-	E	IV	N1003	E1019	7	98.7-98.6	60-70	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.07		12/11/2017
618	2	479	-	-	-	E	IV	N1003	E1019	7	98.7-98.6	60-70	-	Detritus	Debitage	Complete Flake	Lithic	14	96.06		12/11/2017
618	3	479	-	-	-	E	IV	N1003	E1019	7	98.7-98.6	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	20	16.66		12/11/2017
618	4	479	-	-	-	E	IV	N1003	E1019	7	98.7-98.6	60-70	-	Detritus	Debitage	Broken Flake	Lithic	37	29.37		12/11/2017
618	5	479	-	-	-	Е	IV	N1003	E1019	7	98.7-98.6	60-70	-	Detritus	Debitage	Flaking Shatter	Lithic	4	11.69		12/11/2017
618	6	479	-	-	-	Е	IV	N1003	E1019	7	98.7-98.6	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	12	7.04		12/11/2017
618	7	479	-	-	-	Е	IV	N1003	E1019	7	98.7-98.6	60-70	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	3.06		12/11/2017
618	8	479	-	-	-	Е	IV	N1003	E1019	7	98.7-98.6	60-70	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	24.17		12/11/2017
618	9	479	-	-	-	Е	IV	N1003	E1019	7	98.7-98.6	60-70	-	Faunal Remains	Shell	Mussel Shell	Shell	1	2.26		12/11/2017
619	1	530	-	-	-	Е	IV	N1003	E1019	8	98.6-98.5	80-90	-	Detritus	Debitage	Complete Flake	Lithic	7	27.92		12/13/2017
619	2	530	-	-	-	Е	IV	N1003	E1019	8	98.6-98.5	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	18	17.9		12/13/2017
619	3	530	-	-	-	Е	IV	N1003	E1019	8	98.6-98.5	80-90	-	Detritus	Debitage	Broken Flake	Lithic	29	29.58		12/13/2017
619	4	530	-	-	-	Е	IV	N1003	E1019	8	98.6-98.5	80-90	-	Detritus	Debitage	Flaking Shatter	Lithic	3	5.01		12/13/2017

Lot No.	Specimen	FS No.	UI No.	FTR No.	Sample	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
619	5	530	-	-	-	E	IV	N1003	E1019	8	98.6-98.5	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	6	4.89		12/13/2017
619	6	530	-	_	-	E	IV	N1003	E1019	8	98.6-98.5	80-90	-	Informal Tool	Modified Flake	Utilized Flake	Fine Grain Chert	1	7.7		12/13/2017
619	7	530	-	-	-	Е	IV	N1003	E1019	8	98.6-98.5	80-90	-	Detritus	Core	Multidirectional	Coarse Grain Chert	1	100.19		12/13/2017
619	8	530	-	-	-	Е	IV	N1003	E1019	8	98.6-98.5	80-90	-	Faunal Remains	Shell	Mussel Shell	Shell	4	16.31		12/13/2017
620	1	531	26	-	-	E	IV	N1003	E1019	8	98.53	77	N1003.75 E1019.40	Formal Tool	Biface	Distal-Medial Fragment	Coarse Grain Chert	1	38.43		12/13/2017
621	1	539	-	-	-	E	V	N1003	E1019	9	98.5-98.4	80-90	-	Detritus	Debitage	Complete Flake	Lithic	4	97.4		12/14/2017
621	2	539	-	-	-	E	V	N1003	E1019	9	98.5-98.4	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	10	15.59		12/14/2017
621	3	539	-	-	-	Е	٧	N1003	E1019	9	98.5-98.4	80-90	-	Detritus	Debitage	Broken Flake	Lithic	30	10.55		12/14/2017
621	4	539	-	-	-	Е	V	N1003	E1019	9	98.5-98.4	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	33	76.07		12/14/2017
621	5	539	-	-	-	Е	٧	N1003	E1019	9	98.5-98.4	80-90	-	Informal Tool	Modified Flake	Utilized Flake	Coarse Grain Chert	1	72.36		12/14/2017
621	6	539	-	-	-	E	V	N1003	E1019	9	98.5-98.4	80-90	-	Faunal Remains	Shell	Mussel Shell	Shell	4	9.96		12/14/2017
621	7	539	27	-	-	Е	V	N1003	E1019	9	98.5-98.4	80-90	-	Formal Tool	Dart Point	Zephyr Point	Fine Grain Chert	1	3.86		12/14/2017
622	1	541	-	-	-	E	V/VI	N1003	E1019	10	98.4-98.3	90-100	-	Detritus	Debitage	Complete Flake	Lithic	9	34.79		12/14/2017
622	2	541	-	-	-	E	V/VI	N1003	E1019	10	98.4-98.3	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	16	11.66		12/14/2017
622	3	541	-	-	-	E	V/VI	N1003	E1019	10	98.4-98.3	90-100	-	Detritus	Debitage	Broken Flake	Lithic	35	37.16		12/14/2017
622	4	541	-	-	-	E	V/VI	N1003	E1019	10	98.4-98.3	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	11	9.61		12/14/2017
623	1	581	-	-	-	E	VI	N1003	E1019	11	98.3-98.2	100-110	-	Detritus	Debitage	Complete Flake	Lithic	5	12.49		12/18/2017
623	2	581	-	-	-	E	VI	N1003	E1019	11	98.3-98.2	100-110	-	Detritus	Debitage	Proximal Flake	Lithic	2	3.41		12/18/2017
623	3	581	-	-	-	E	VI	N1003	E1019	11	98.3-98.2	100-110	-	Detritus	Debitage	Broken Flake	Lithic	10	14.14		12/18/2017
623	4	581	-	-	-	E	VI	N1003	E1019	11	98.3-98.2	100-110	-	Detritus	Debitage	Flaking Shatter	Lithic	1	58.17		12/18/2017
623	5	581	-	-	-	E	VI	N1003	E1019	11	98.3-98.2	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	7	8.78		12/18/2017
623	6	581	-	-	-	Е	VI	N1003	E1019	11	98.3-98.2	100-110	-	Informal Tool	Modified Flake	Utilized Flake	Fine Grain Chert	1	158.32		12/18/2017
623	7	581	-	-	-	Е	VI	N1003	E1019	11	98.3-98.2	100-110	-	Informal Tool	Modified Flake	Edge-modified	Coarse Grain Chert	1	11.21		12/18/2017
623	8	581	-	-	-	Е	VI	N1003	E1019	11	98.3-98.2	100-110	-	Faunal Remains	Shell	Mussel Shell	Shell	2	4.2		12/18/2017
623	9	581	30	-	-	E	VI	N1003	E1019	11	98.3-98.2	100-110	-	Formal Tool	Biface	Medial-Basal Fragment	Fine Grain Chert	1	12.13	Originally collected as Projectile Point	t 12/18/2017
624	1	593	-	-	-	E	VI	N1003	E1019	11	98.2	110	N1003.96 E1019.44	Informal Tool	Core Tool	Chopper	Coarse Grain Chert	1	235.17		12/18/2017
625	1	587	-	-	-	Е	VI	N1003	E1019	12	98.2-98.1	110-120	-	Detritus	Debitage	Complete Flake	Lithic	4	10.96		12/17/2017
625	2	587	-	-	-	Е	VI	N1003	E1019	12	98.2-98.1	110-120	-	Detritus	Debitage	Proximal Flake	Lithic	4	19.74		12/17/2017
625	3	587	-	-	-	E	VI	N1003	E1019	12	98.2-98.1	110-120	-	Detritus	Debitage	Broken Flake	Lithic	6	4.75		12/17/2017
625	4	587	-	-	-	E	VI	N1003	E1019	12	98.2-98.1	110-120	-	Detritus	Debitage	Thermal Shatter	Lithic	2	7.01		12/17/2017
626	1	591	-	-	-	E	VI	N1003	E1019	13	98.1-98.0	120-130	-	Faunal Remains	Bone	Odocoileus sp.	Bone	1	2.48	possible bison tooth	12/18/2017
626	2	591	-	-	-	Е	VI	N1003	E1019	13	98.1-98.0	120-130	-	Faunal Remains	Bone	Odocoileus sp.	Bone	1	0.59	possible bison tooth	12/18/2017
626	3	591	-	-	-	Е	VI	N1003	E1019	13	98.1-98.0	120-130	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.81	possible bison tooth	12/18/2017
626	4	591	-	-	-	Е	VI	N1003	E1019	13	98.1-98.0	120-130	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.28	possible bison tooth	12/18/2017
626	5	591	-	-	-	Е	VI	N1003	E1019	13	98.1-98.0	120-130	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.42	possible bison tooth	12/18/2017
626	6	591	-	-	-	Е	VI	N1003	E1019	13	98.1-98.0	120-130	-	Detritus	Debitage	Complete Flake	Lithic	3	28.66		12/18/2017
626	7	591	-	-	-	E	VI	N1003	E1019	13	98.1-98.0	120-130	-	Detritus	Debitage	Broken Flake	Lithic	4	3.82		12/18/2017
626	8	591	-	-	-	E	VI	N1003	E1019	13	98.1-98.0	120-130	-	Detritus	Debitage	Thermal Shatter	Lithic	2	1		12/18/2017
626	9	591	-	-	-	E	VI	N1003	E1019	13	98.1-98.0	120-130	-	Faunal Remains	Shell	Mussel Shell Seed	Shell	1	8.11		12/18/2017
626	10	591	-	-	-	E	VI	N1003	E1019	13	98.1-98.0	120-130	-	Macrobotanical Remains	Seed Concentration	Concentration and matrix	Seed	1	21.41	Not ID'd	12/18/2017
627	1	613	-	-	-	Е	VI	N1003	E1019	15	97.9-97.8	140-150	-	Detritus	Debitage	Complete Flake	Lithic	1	9.74		12/20/2017
627	2	613	-	-	-	E	VI	N1003	E1019	15	97.9-97.8	140-150	-	Detritus	Debitage	Proximal Flake	Lithic	1	22.52		12/20/2017
628	1	346	-	-	-	Е	=	N1004	E1017	2	99.2-99.1	10-20	-	Detritus	Debitage	Proximal Flake	Lithic	3	1.24		11/29/2017
628	2	346	-	-	-	Е	Ш	N1004	E1017	2	99.2-99.1	10-20	-	Detritus	Debitage	Flaking Shatter	Lithic	1	0.35		11/29/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
628	3	346	-	-	-	E	II	N1004	E1017	2	99.2-99.1	10-20	-	Detritus	Debitage	Thermal Shatter	Lithic	1	1.39		11/29/2017
629	1	355	-	-	-	Е	11/111	N1004	E1017	3	99.1-99.0	20-30	-	Detritus	Debitage	Complete Flake	Lithic	1	3.2		11/29/2017
629	2	355	-	-	-	Е	11/111	N1004	E1017	3	99.1-99.0	20-30	-	Detritus	Debitage	Proximal Flake	Lithic	5	3.4		11/29/2017
629	3	355	-	-	-	Е	11/111	N1004	E1017	3	99.1-99.0	20-30	-	Detritus	Debitage	Broken Flake	Lithic	3	1.12		11/29/2017
629	4	355	-	-	-	Е	II/III	N1004	E1017	3	99.1-99.0	20-30	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	1.8		11/29/2017
630	1	365	-	-	-	E	III	N1004	E1017	4	99.0-98.9	30-40	-	Detritus	Debitage	Complete Flake	Lithic	4	3.08		11/29/2017
630	2	365	-	-	-	Е	III	N1004	E1017	4	99.0-98.9	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	11	24.91		11/29/2017
630	3	365	-	-	-	Е	III	N1004	E1017	4	99.0-98.9	30-40	-	Detritus	Debitage	Broken Flake	Lithic	10	8.77		11/29/2017
630	4	365	-	-	-	Е	III	N1004	E1017	4	99.0-98.9	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	7	5.36		11/29/2017
631	1	376	-	-	-	Е	III	N1004	E1017	5	98.9-98.8	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.26		11/30/2017
631	2	376	-	-	-	Е	III	N1004	E1017	5	98.9-98.8	40-50	-	Detritus	Debitage	Complete Flake	Lithic	2	2.3		11/30/2017
631	3	376	-	-	-	E	III	N1004	E1017	5	98.9-98.8	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	14	6.37		11/30/2017
631	4	376	-	-	-	Е	III	N1004	E1017	5	98.9-98.8	40-50	-	Detritus	Debitage	Broken Flake	Lithic	16	11.36		11/30/2017
631	5	376	-	-	-	Е	III	N1004	E1017	5	98.9-98.8	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	10	2.67		11/30/2017
632	1	385	-	-	-	Е	III	N1004	E1017	6	98.8-98.7	50-60	-	Faunal Remains	Bone	Odocoileus sp.	Tooth	1	1.18		11/30/2017
632	2	385	-	-	-	E	III	N1004	E1017	6	98.8-98.7	50-60	-	Detritus	Debitage	Complete Flake	Lithic	9	12.83		11/30/2017
632	3	385	-	-	-	Е	III	N1004	E1017	6	98.8-98.7	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	10	6.47		11/30/2017
632	4	385	-	-	-	Е	III	N1004	E1017	6	98.8-98.7	50-60	-	Detritus	Debitage	Broken Flake	Lithic	23	15.4		11/30/2017
632	5	385	-	-	-	E	III	N1004	E1017	6	98.8-98.7	50-60	-	Detritus	Debitage	Flaking Shatter	Lithic	2	0.64		11/30/2017
632	6	385	-	-	-	Е	III	N1004	E1017	6	98.8-98.7	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	11	10.23		11/30/2017
632	7	385	-	-	-	Е	III	N1004	E1017	6	98.8-98.7	50-60	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	10.54		11/30/2017
632	8	385	-	1	-	Е	III	N1004	E1017	6	98.8-98.7	50-60	-	Detritus	Core	Multidirectional	Fine Grain Chert	1	301.02		11/30/2017
632	9	385	-	-	-	E	III	N1004	E1017	6	98.8-98.7	50-60	-	Formal Tool	Biface	Marginal Fragment	Fine Grain Chert	1	0.43		11/30/2017
633	1	396	-	-	-	Е	IV	N1004	E1017	7	98.7-98.6	60-70	-	Detritus	Debitage	Complete Flake	Lithic	8	35.29		12/1/2017
633	2	396	-	1	-	Е	IV	N1004	E1017	7	98.7-98.6	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	9	4.13		12/1/2017
633	3	396	-	1	-	Е	IV	N1004	E1017	7	98.7-98.6	60-70	-	Detritus	Debitage	Broken Flake	Lithic	30	21.12		12/1/2017
633	4	396	-	-	-	E	IV	N1004	E1017	7	98.7-98.6	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	16	14.31		12/1/2017
633	5	396	-	-	-	E	IV	N1004	E1017	7	98.7-98.6	60-70	-	Faunal Remains	Shell	Mussel Shell	Shell	2	4.72		12/1/2017
634	1	397	-	-	-	Е	IV	N1004	E1017	7	98.61	69	N1004.30 E1017.56	Formal Tool	Biface	Distal-Medial Fragment	Fine Grain Chert	1	12.14		12/1/2017
635	1	455	-	-	-	Е	IV	N1004	E1017	8	98.6-98.5	70-80	-	Detritus	Debitage	Complete Flake	Lithic	8	56.49		12/8/2017
635	2	455	-	-	-	Е	IV	N1004	E1017	8	98.6-98.5	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	6	22.92		12/8/2017
635	3	455	-	-	-	Е	IV	N1004	E1017	8	98.6-98.5	70-80	-	Detritus	Debitage	Broken Flake	Lithic	16	11.51		12/8/2017
635	4	455	-	-	-	E	IV	N1004	E1017	8	98.6-98.5	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	6	3.75		12/8/2017
635	5	455	-	-	-	Е	IV	N1004	E1017	8	98.6-98.5	70-80	-	Faunal Remains	Shell	Mussel Shell	Shell	1	0.53		12/8/2017
636	1	456	-	-	-	Е	IV	N1004	E1017	8	98.5	80	N1004.85 E1017.72	Detritus	Core	Multidirectional	Fine Grain Chert	1	150.7		12/8/2017
637	1	461	-	-	-	E	V	N1004	E1017	9	98.5-98.4	80-90	-	Detritus	Debitage	Complete Flake	Lithic	2	51.36		12/8/2017
637	2	461	-	-	-	E	V	N1004	E1017	9	98.5-98.4	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	7	2.39		12/8/2017
637	3	461	-	-	-	E	V	N1004	E1017	9	98.5-98.4	80-90	-	Detritus	Debitage	Broken Flake	Lithic	9	8.16		12/8/2017
637	4	461	-	-	-	E	V	N1004	E1017	9	98.5-98.4	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	11	85.8		12/8/2017
638	1	466	-	-	-	E	V/VI	N1004	E1017	10	98.4-98.3	90-100	-	Detritus	Debitage	Complete Flake	Lithic	2	8.56		12/11/2017
638	2	466	-	-	-	E	V/VI	N1004	E1017	10	98.4-98.3	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	3	3.63		12/11/2017
638	3	466	-	-	-	E	V/VI	N1004	E1017	10	98.4-98.3	90-100	-	Detritus	Debitage	Broken Flake	Lithic	2	0.61		12/11/2017
638	4	466	-	-	-	E	V/VI	N1004	E1017	10	98.4-98.3	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.44		12/11/2017
638	5	466	-	-	-	Е	V/VI	N1004	E1017	10	98.4-98.3	90-100	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	5		12/11/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
639	1	468	-	-	-	E	VI	N1004	E1017	11	98.3-98.2	100-110	-	Detritus	Debitage	Complete Flake	Lithic	1	0.12		12/11/2017
639	2	468	-	-	-	E	VI	N1004	E1017	11	98.3-98.2	100-110	-	Detritus	Debitage	Proximal Flake	Lithic	3	0.84		12/11/2017
639	3	468	-	-	-	E	VI	N1004	E1017	11	98.3-98.2	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	1	1.55		12/11/2017
640	1	471	-	-	-	E	VI	N1004	E1017	12	98.2-98.1	110-120	-	Detritus	Debitage	Proximal Flake	Lithic	3	8.24		12/11/2017
640	2	471	-	-	-	Е	VI	N1004	E1017	12	98.2-98.1	110-120	-	Detritus	Debitage	Broken Flake	Lithic	1	0.08		12/11/2017
640	3	471	-	-	-	Е	VI	N1004	E1017	12	98.2-98.1	110-120	-	Detritus	Debitage	Thermal Shatter	Lithic	1	118.93		12/11/2017
641	1	473	-	-	-	Е	VI	N1004	E1017	13	98.1-98.0	120-130	-	Detritus	Debitage	Proximal Flake	Lithic	2	1.95		12/11/2017
641	2	473	-	-	-	Е	VI	N1004	E1017	13	98.1-98.0	120-130	-	Detritus	Debitage	Broken Flake	Lithic	1	0.42		12/11/2017
641	3	473	-	-	-	E	VI	N1004	E1017	13	98.1-98.0	120-130	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.17		12/11/2017
642	1	478	-	-	-	E	VI	N1004	E1017	15	97.9-97.8	140-150	-	Detritus	Debitage	Broken Flake	Lithic	2	1.38		12/11/2017
643	1	345	-	-	-	E	ı	N1004	E1018	1	99.22-99.2	8-10	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.58		11/29/2017
644	1	351	-	-	-	E	II	N1004	E1018	2	99.2-99.1	10-20	-	Detritus	Debitage	Broken Flake	Lithic	1	0.66		11/29/2017
645	1	359	-	-	-	E	11/111	N1004	E1018	3	99.1-99.0	20-30	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.21		11/29/2017
645	2	359	-	-	-	E	11/111	N1004	E1018	3	99.1-99.0	20-30	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.75		11/29/2017
645	3	359	-	-	-	E	II/III	N1004	E1018	3	99.1-99.0	20-30	-	Detritus	Debitage	Broken Flake	Lithic	1	0.95		11/29/2017
646	1	369	-	-	-	Е	Ш	N1004	E1018	4	99.0-98.9	30-40	-	Detritus	Debitage	Complete Flake	Lithic	4	2.96		11/30/2017
646	2	369	-	-	-	Е	III	N1004	E1018	4	99.0-98.9	30-40	-	Detritus	Debitage	Proximal Flake	Lithic	6	27.35		11/30/2017
646	3	369	-	-	-	Е	III	N1004	E1018	4	99.0-98.9	30-40	-	Detritus	Debitage	Broken Flake	Lithic	6	1.97		11/30/2017
646	4	369	-	-	-	Е	III	N1004	E1018	4	99.0-98.9	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	1	1.23		11/30/2017
646	5	369	-	-	-	Е	III	N1004	E1018	4	99.0-98.9	30-40	-	Formal Tool	Biface	Basal Fragment	Fine Grain Chert	1	5.3		11/30/2017
646	6	369	-	-	-	Е	III	N1004	E1018	4	99.0-98.9	30-40	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	7.28		11/30/2017
647	1	381	-	-	-	E	III	N1004	E1018	5	98.9-98.8	40-50	-	Detritus	Debitage	Complete Flake	Lithic	5	20.33		11/30/2017
647	2	381	-	1	-	E	III	N1004	E1018	5	98.9-98.8	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	13	40.15		11/30/2017
647	3	381	-	1	-	E	III	N1004	E1018	5	98.9-98.8	40-50	-	Detritus	Debitage	Broken Flake	Lithic	9	3.81		11/30/2017
647	4	381	ı	1	-	Е	III	N1004	E1018	5	98.9-98.8	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	17	19.45		11/30/2017
647	5	381	ı	ı	-	ш	III	N1004	E1018	5	98.9-98.8	40-50	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	0.63		11/30/2017
647	6	381	1	1	-	E	III	N1004	E1018	5	98.9-98.8	40-50	-	Formal Tool	Biface	Distal Fragment	Fine Grain Chert	1	0.45		11/30/2017
648	1	390	-	-	-	Е	Ш	N1004	E1018	6	98.8-98.7	50-60	-	Detritus	Debitage	Complete Flake	Lithic	9	8.71		11/30/2017
648	2	390	-	-	-	E	III	N1004	E1018	6	98.8-98.7	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	12	38.48		11/30/2017
648	3	390	-	-	-	Е	III	N1004	E1018	6	98.8-98.7	50-60	-	Detritus	Debitage	Broken Flake	Lithic	37	15.85		11/30/2017
648	4	390	-	-	-	Е	III	N1004	E1018	6	98.8-98.7	50-60	-	Detritus	Debitage	Flaking Shatter	Lithic	1	1.75		11/30/2017
648	5	390	-	-	-	Е	Ш	N1004	E1018	6	98.8-98.7	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	26	23.06		11/30/2017
648	6	390	-	-	-	E	III	N1004	E1018	6	98.8-98.7	50-60	-	Faunal Remains	Shell	Mussel Shell	Shell	2	3.74		11/30/2017
649	1	402	-	-	-	Е	IV	N1004	E1018	7	98.7-98.6	60-70	-	Detritus	Debitage	Complete Flake	Lithic	7	5.64		12/1/2017
649	2	402	-	-	-	Е	IV	N1004	E1018	7	98.7-98.6	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	14	8.29		12/1/2017
649	3	402	-	-	-	Е	IV	N1004	E1018	7	98.7-98.6	60-70	-	Detritus	Debitage	Broken Flake	Lithic	19	8.31		12/1/2017
649	4	402	-	-	-	E	IV	N1004	E1018	7	98.7-98.6	60-70	-	Detritus	Debitage	Flaking Shatter	Lithic	1	1.16		12/1/2017
649	5	402	-	-	-	Е	IV	N1004	E1018	7	98.7-98.6	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	20	29.03		12/1/2017
649	6	402	-	-	-	E	IV	N1004	E1018	7	98.7-98.6	60-70	-	Faunal Remains	Shell	Mussel Shell	Shell	2	2.45		12/1/2017
650	1	486	-	-	-	E	IV	N1004	E1018	8	98.6-98.5	70-80	-	Detritus	Debitage	Complete Flake	Lithic	9	44.31		12/12/2017
650	2	486	-	-	-	E	IV	N1004	E1018	8	98.6-98.5	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	11	4.81		12/12/2017
650	3	486	-	-	-	E	IV	N1004	E1018	8	98.6-98.5	70-80	-	Detritus	Debitage	Broken Flake	Lithic	21	6.28		12/12/2017
650	4	486	-	-	-	E	IV	N1004	E1018	8	98.6-98.5	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	13	28.38		12/12/2017
650	5	486	-	-	-	E	IV	N1004	E1018	8	98.6-98.5	70-80	-	Detritus	Core	Unifacial	Coarse Grain Chert	1	124.26	Fragment	12/12/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
651	1	486	-	-	-	E	IV	N1004	E1018	8	98.6-98.5	70-80	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	0.6		12/12/2017
651	2	486	-	-	-	Е	IV	N1004	E1018	8	98.6-98.5	70-80	-	Faunal Remains	Shell	Mussel Shell	Shell	8	16.82		12/12/2017
652	1	493	-	-	-	Е	V	N1004	E1018	9	98.5-98.4	80-90	-	Detritus	Debitage	Complete Flake	Lithic	6	28.47		12/12/2017
652	2	493	-	-	-	Е	V	N1004	E1018	9	98.5-98.4	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	8	8.68		12/12/2017
652	3	493	-	-	-	E	V	N1004	E1018	9	98.5-98.4	80-90	-	Detritus	Debitage	Broken Flake	Lithic	13	8.4		12/12/2017
652	4	493	-	-	-	E	V	N1004	E1018	9	98.5-98.4	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	4	4.15		12/12/2017
652	5	493	-	-	-	E	V	N1004	E1018	9	98.5-98.4	80-90	-	Faunal Remains	Shell	Mussel Shell	Shell	1	0.7		12/12/2017
653	1	504	-	-	-	E	V/VI	N1004	E1018	10	98.4-98.3	90-100	-	Detritus	Debitage	Complete Flake	Lithic	4	10.73		12/13/2017
653	2	504	-	-	-	Е	V/VI	N1004	E1018	10	98.4-98.3	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	7	19.1		12/13/2017
653	3	504	-	-	-	E	V/VI	N1004	E1018	10	98.4-98.3	90-100	-	Detritus	Debitage	Broken Flake	Lithic	15	13.29		12/13/2017
653	4	504	-	-	-	Е	V/VI	N1004	E1018	10	98.4-98.3	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	5	1.55		12/13/2017
654	1	622	-	-	-	Е	VI	N1004	E1018	11	98.3-98.2	100-110	-	Detritus	Debitage	Proximal Flake	Lithic	2	2.92		12/20/2017
654	2	622	-	-	-	E	VI	N1004	E1018	11	98.3-98.2	100-110	-	Detritus	Debitage	Broken Flake	Lithic	3	1.27		12/20/2017
654	3	622	-	-	-	Е	VI	N1004	E1018	11	98.3-98.2	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	1	3.21		12/20/2017
655	1	625	-	-	-	Е	VI	N1004	E1018	12	98.2-98.1	110-120	-	Detritus	Debitage	Proximal Flake	Lithic	2	4.62		12/20/2017
655	2	625	-	-	-	Е	VI	N1004	E1018	12	98.2-98.1	110-120	-	Detritus	Debitage	Broken Flake	Lithic	1	0.19		12/20/2017
655	3	625	-	-	-	Е	VI	N1004	E1018	12	98.2-98.1	110-120	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.2		12/20/2017
655	4	625	-	-	-	Е	VI	N1004	E1018	12	98.2-98.1	110-120	-	Faunal Remains	Shell	Mussel Shell	Shell	1	4.95		12/20/2017
656	1	630	-	-	-	Е	VI	N1004	E1018	13	98.1-98.0	120-130	-	Detritus	Debitage	Complete Flake	Lithic	2	6.1		12/20/2017
657	1	418	-	-	-	Е	II/III	N1004	E1019	3	99.1-99.0	20-30	-	Detritus	Debitage	Thermal Shatter	Lithic	1	1.04		12/4/2017
658	1	432	-	-	-	Е	III	N1004	E1019	4	99.0-98.9	30-40	-	Detritus	Debitage	Broken Flake	Lithic	2	0.83		12/5/2017
659	1	446	-	-	-	Е	III	N1004	E1019	5	98.9-98.8	40-50	-	Detritus	Debitage	Complete Flake	Lithic	8	13.64		12/5/2017
659	2	446	ı	1	-	E	III	N1004	E1019	5	98.9-98.8	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	4	2.23		12/5/2017
659	3	446	ı	1	-	E	III	N1004	E1019	5	98.9-98.8	40-50	-	Detritus	Debitage	Broken Flake	Lithic	8	5.22		12/5/2017
659	4	446	ı	1	-	E	III	N1004	E1019	5	98.9-98.8	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	7	2.67		12/5/2017
660	1	459	ı	ı	-	E	III	N1004	E1019	6	98.8-98.7	50-60	-	Detritus	Debitage	Complete Flake	Lithic	7	73.09		12/8/2017
660	2	459	ı	1	-	E	III	N1004	E1019	6	98.8-98.7	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	12	15.17		12/8/2017
660	3	459	-	-	-	E	III	N1004	E1019	6	98.8-98.7	50-60	-	Detritus	Debitage	Broken Flake	Lithic	14	3.2		12/8/2017
660	4	459	-	-	-	E	III	N1004	E1019	6	98.8-98.7	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	17	24.71		12/8/2017
660	5	459	-	-	-	Е	III	N1004	E1019	6	98.8-98.7	50-60	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	6.24		12/8/2017
660	6	459	-	-	-	E	III	N1004	E1019	6	98.8-98.7	50-60	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	29.09		12/8/2017
660	7	459	-	-	-	E	III	N1004	E1019	6	98.8-98.7	50-60	-	Detritus	Core	Multidirectional	Fine Grain Chert	1	55.09		12/8/2017
660	8	459	-	-	-	Е	Ш	N1004	E1019	6	98.8-98.7	50-60	-	Faunal Remains	Shell	Mussel Shell	Shell	1	13.11		12/8/2017
661	1	469	-	-	-	Е	IV	N1004	E1019	7	98.7-98.6	60-70	-	Detritus	Debitage	Complete Flake	Lithic	14	9.84		12/11/2017
661	2	469	-	-	-	Е	IV	N1004	E1019	7	98.7-98.6	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	21	10.79		12/11/2017
661	3	469	-	-	-	Е	IV	N1004	E1019	7	98.7-98.6	60-70	-	Detritus	Debitage	Broken Flake	Lithic	20	7.41		12/11/2017
661	4	469	-	1	-	Е	IV	N1004	E1019	7	98.7-98.6	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	19	8.31		12/11/2017
661	5	469	-	ı	-	E	IV	N1004	E1019	7	98.7-98.6	60-70	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	1.41		12/11/2017
661	6	469	-	ı	-	E	IV	N1004	E1019	7	98.7-98.6	60-70	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	1.2		12/11/2017
661	7	469	-	-	-	Е	IV	N1004	E1019	7	98.7-98.6	60-70	-	Formal Tool	Biface	Complete	Fine Grain Chert	1	8.76		12/11/2017
661	8	469	ı	1	-	Е	IV	N1004	E1019	7	98.7-98.6	60-70	-	Faunal Remains	Shell	Mussel Shell	Shell	4	7.91		12/11/2017
662	1	533	-	-	-	Е	IV	N1004	E1019	8	98.6-98.5	70-80	-	Faunal Remains	Bone	Mammal	Bone	1	1.21		12/14/2017
662	2	533	-	-	-	Е	IV	N1004	E1019	8	98.6-98.5	70-80	-	Detritus	Debitage	Complete Flake	Lithic	4	18.47		12/14/2017
662	3	533	-	-	-	Е	IV	N1004	E1019	8	98.6-98.5	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	10	7.36		12/14/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
662	4	533	-	-	-	E	IV	N1004	E1019	8	98.6-98.5	70-80	-	Detritus	Debitage	Broken Flake	Lithic	16	27.88		12/14/2017
662	5	533	-	-	-	Е	IV	N1004	E1019	8	98.6-98.5	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	5	4.64		12/14/2017
662	6	533	-	-	-	Е	IV	N1004	E1019	8	98.6-98.5	70-80	-	Faunal Remains	Shell	Mussel Shell	Shell	13	22.45		12/14/2017
663	1	535	-	-	-	Е	V	N1004	E1019	9	98.5-98.4	80-90	-	Detritus	Debitage	Complete Flake	Lithic	12	91.91		12/14/2017
663	2	535	-	-	-	Е	٧	N1004	E1019	9	98.5-98.4	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	6	3.54		12/14/2017
663	3	535	-	-	-	E	٧	N1004	E1019	9	98.5-98.4	80-90	-	Detritus	Debitage	Broken Flake	Lithic	14	5.44		12/14/2017
663	4	535	-	-	-	E	٧	N1004	E1019	9	98.5-98.4	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	11	7.26		12/14/2017
663	5	535	-	-	-	Е	V	N1004	E1019	9	98.5-98.4	80-90	-	Faunal Remains	Shell	Mussel Shell	Shell	12	33.97		12/14/2017
663	6	535	-	-	-	Е	٧	N1004	E1019	9	98.5-98.4	80-90	-	Faunal Remains	Shell	Untyped Shell	Shell	2	33.46		12/14/2017
664	1	569	-	-	-	Е	٧	N1004	E1019	9	98.44	86	N1004.50 E1019.49	Detritus	Core	Multidirectional	Coarse Grain Chert	1	109.69		12/14/2017
665	1	568	-	-	-	Е	V/VI	N1004	E1019	10	98.4-98.3	90-100	-	Detritus	Debitage	Complete Flake	Lithic	4	1.73		12/14/2017
665	2	568	-	-	-	Е	V/VI	N1004	E1019	10	98.4-98.3	90-100	-	Detritus	Debitage	Proximal Flake	Lithic	14	8.98		12/14/2017
665	3	568	-	-	-	Е	V/VI	N1004	E1019	10	98.4-98.3	90-100	-	Detritus	Debitage	Broken Flake	Lithic	24	9.82		12/14/2017
665	4	568	-	-	-	Е	V/VI	N1004	E1019	10	98.4-98.3	90-100	-	Detritus	Debitage	Thermal Shatter	Lithic	10	3.81		12/14/2017
665	5	568	-	-	-	Е	V/VI	N1004	E1019	10	98.4-98.3	90-100	-	Informal Tool	Modified Flake	Utilized Flake	Fine Grain Chert	1	121.86		12/14/2017
665	6	568	-	-	-	E	V/VI	N1004	E1019	10	98.4-98.3	90-100	-	Detritus	Core	Multidirectional	Fine Grain Chert	1	71.55		12/14/2017
665	7	568	-	-	-	Е	V/VI	N1004	E1019	10	98.4-98.3	90-100	-	Detritus	Core	Multidirectional	Coarse Grain Chert	1	38.13	Exhausted Core	12/14/2017
665	8	568	-	1	1	Е	V/VI	N1004	E1019	10	98.4-98.3	90-100	-	Faunal Remains	Shell	Mussel Shell	Shell	3	7.19		12/14/2017
666	1	584	-	-	-	E	VI	N1004	E1019	11	98.3-98.2	100-110	-	Detritus	Debitage	Complete Flake	Lithic	5	16.06		12/18/2017
666	2	584	-	-	-	Е	VI	N1004	E1019	11	98.3-98.2	100-110	-	Detritus	Debitage	Proximal Flake	Lithic	4	4.08		12/18/2017
666	3	584	-	-	-	Е	VI	N1004	E1019	11	98.3-98.2	100-110	-	Detritus	Debitage	Broken Flake	Lithic	8	6.69		12/18/2017
666	4	584	-	-	-	E	VI	N1004	E1019	11	98.3-98.2	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	2	10.14		12/18/2017
666	5	584	-	-	-	Е	VI	N1004	E1019	11	98.3-98.2	100-110	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	2.32		12/18/2017
666	6	584	-	-	-	E	VI	N1004	E1019	11	98.3-98.2	100-110	-	Informal Tool	Modified Flake	Edge-modified	Coarse Grain Chert	1	43.85		12/18/2017
666	7	584	-	-	-	E	VI	N1004	E1019	11	98.3-98.2	100-110	-	Faunal Remains	Shell	Mussel Shell	Shell	2	5.58		12/18/2017
667	1	594	-	-	-	Е	VI	N1004	E1019	11	98.2	110	N1004.02 E1019.24	Detritus	Core	Bifacial	Fine Grain Chert	1	312.57		12/18/2017
668	1	588	-	-	-	Е	VI	N1004	E1019	12	98.2-98.1	110-120	-	Faunal Remains	Bone	Mammal	Bone	1	3.93		12/18/2017
668	2	588	-	-	-	Е	VI	N1004	E1019	12	98.2-98.1	110-120	-	Detritus	Debitage	Complete Flake	Lithic	2	9.64		12/18/2017
668	3	588	-	-	-	Е	VI	N1004	E1019	12	98.2-98.1	110-120	-	Detritus	Debitage	Proximal Flake	Lithic	2	16.2		12/18/2017
668	4	588	-	-	-	E	VI	N1004	E1019	12	98.2-98.1	110-120	-	Detritus	Debitage	Thermal Shatter	Lithic	2	0.86		12/18/2017
668	5	588	-	-	-	E	VI	N1004	E1019	12	98.2-98.1	110-120	-	Faunal Remains	Shell	Mussel Shell	Shell	1	7.68		12/18/2017
668	6	588	31	-	-	E	VI	N1004	E1019	12	98.2-98.1	110-120	-	Formal Tool	Arrow Point	Edwards Point	Fine Grain Chert	1	1.82		12/18/2017
669	1	605	-	-	-	E	VI	N1004	E1019	13	98.1-98.0	120-130	-	Detritus	Debitage	Complete Flake	Lithic	3	19.6		12/20/2017
669	2	605	-	-	-	E	VI	N1004	E1019	13	98.1-98.0	120-130	-	Detritus	Debitage	Proximal Flake	Lithic	1	1.02		12/20/2017
669	3	605	-	-	-	E	VI	N1004	E1019	13	98.1-98.0	120-130	-	Detritus	Debitage	Broken Flake	Lithic	5	1.38		12/20/2017
669	4	605	-	-	-	Е	VI	N1004	E1019	13	98.1-98.0	120-130	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.11		12/20/2017
670	1	609	-	-	-	Е	VI	N1004	E1019	14	98.0-97.9	130-140	-	Detritus	Debitage	Complete Flake	Lithic	3	24.43		12/20/2017
671	1	615	-	-	-	Е	VI	N1004	E1019	15	97.9-97.8	140-150	- N1003.75-	Detritus	Debitage	Proximal Flake	Lithic	1	8.97		12/20/2017
672	1	499	-	FTR2	F-2/ F-3	E	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	1004.06 E1018.76- 1019.28 N1003.75-	Macrobotanical Remains	Other Plant Parts	Vetch (Vicia ludoviciana)		2	0.01	*sent for radiocarbon dating	12/12/2017
672	2	499	-	FTR2	F-2/ F-3	E	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	1004.06 E1018.76- 1019.28 N1003.75-	Macrobotanical Remains	Charcoal	Elm (<i>Ulmus</i> spp.)		1	0.01		12/12/2017
672	3	499	-	FTR2	F-2/ F-3	E	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	1004.06 E1018.76- 1019.28	Macrobotanical Remains	Charcoal	Mesquite (Prosopis glandulosa)		3	0.02		12/12/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
672	4	499	-	FTR2	F-2/ F-3	E	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Macrobotanical Remains	Charcoal	Sugarberry (Celtis sp.)		6	0.01		12/12/2017
672	5	499	-	FTR2	F-2/ F-3	E	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Macrobotanical Remains	Charcoal	Hardwood, indeterminable		3	0.01		12/12/2017
672	6	499	-	FTR2	F-2/ F-3	Е	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Macrobotanical Remains	Charcoal	Acacia/Mesquite (Vachellia/Pros opis sp.)		1	0.01		12/12/2017
672	7	499	-	FTR2	F-2/ F-3	E	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Macrobotanical Remains	Charcoal	Hickory/Pecan (Carya sp.)		1	0.01		12/12/2017
672	8	499	1	FTR2	F-2/ F-3	ш	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Macrobotanical Remains	Charcoal	Grape (Vitis spp.)		1	0.01		12/12/2017
672	9	499	1	FTR2	F-2/ F-3	ш	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Macrobotanical Remains	Contamination >2mm				10.97		12/12/2017
672	10	499	ı	FTR2	F-2/ F-3	Е	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Macrobotanical Remains	Examined Residue <2mm				2.01		12/12/2017
672	11	499	-	FTR2	F-2/ F-3	E	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Macrobotanical Remains	residual from heavy fraction				56		12/12/2017
672	12	499	-	FTR2	F-2/ F-3	Е	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Macrobotanical Remains	Charcoal	not ID'd		8	0.5		12/12/2017
672	13	499	ı	FTR2	F-2/ F-3	Е	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Other Lithic	Thermally Altered Stone	FCR		28	8		12/12/2017
672	14	499	1	FTR2	F-2/ F-3	Е	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Faunal Remains	s Shell	Mussel Shell		2	9.5		12/12/2017
672	15	499	-	FTR2	F-2/ F-3	Е	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Other Lithic	Misc. Stone/ Mineral	Manuport		1	18.5		12/12/2017
672	16	499	1	FTR2	F-2/ F-3	ш	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Faunal Remains	s Bone			1	1	From flotation heavy fraction, not analyzed	12/12/2017
672	17	499	-	FTR2	F-2/ F-3	Е	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Detritus	Debitage	Proximal Flake		4	0.67		12/12/2017
672	18	499	-	FTR2	F-2/ F-3	Е	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Detritus	Debitage	Broken Flake		3	0.29		12/12/2017
672	19	499	-	FTR2	F-2/ F-3	Е	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Detritus	Debitage	Flaking Shatter		19	0.21		12/12/2017
672	20	499	-	FTR2	F-2/ F-3	E	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Detritus	Debitage	Thermal Shatter		8	0.56		12/12/2017
672	n/a	499	-	FTR2	F-2/ F-3	E	III/IV	N1003-1004	E1018-1019	6-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Archaeological Sample	Soil	Feature Matrix		5.5L	5100	Matrix samples floated together; all floated	12/12/2017
673	1	344	-	-	-	F	I	N1009	E1011	2	99.2-99.1	10-20	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.39		11/29/2017
673	2	344	-	-	-	F	I	N1009	E1011	2	99.2-99.1	10-20	-	Detritus	Debitage	Broken Flake	Lithic	1	0.19		11/29/2017
673	3	344	-	-	-	F	1	N1009	E1011	2	99.2-99.1	10-20	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.83		11/29/2017
673	4	344	-	-	-	F	1	N1009	E1011	2	99.2-99.1	10-20	-	Informal Tool	Modified Flake	Utilized Flake	Fine Grain Chert	1	22.47		11/29/2017
673 674	1	344	-	-	-	F	1	N1009	E1011	3	99.2-99.1	10-20 20-30	-	Historic Artifact Detritus	Glass	Colorless Glass	Glass	2	0.79		11/29/2017
674	2	348	_	_	_	F	"	N1009 N1009	E1011	3	99.1-99.0	20-30	-	Detritus	Debitage Debitage	Broken Flake Thermal Shatter	Lithic	4	2.02 3.73		11/29/2017
675	1	364	_	_	_	F	"	N1009	E1011	4	99.0-98.9	30-40	_	Detritus	Debitage	Proximal Flake	Lithic	1	0.99		11/29/2017
				L	l		1	l	•		- · · · · · ·	l	1	1		L				1	

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
675	2	364	-	-	-	F	п	N1009	E1011	4	99.0-98.9	30-40	-	Detritus	Debitage	Broken Flake	Lithic	2	0.63		11/29/2017
676	1	366	-	-	-	F	III	N1009	E1011	5	98.9-98.8	40-50	-	Faunal Remains	Bone	Indeterminate	Bone	1	1.09		11/29/2017
676	2	366	-	-	-	F	Ш	N1009	E1011	5	98.9-98.8	40-50	-	Detritus	Debitage	Complete Flake	Lithic	3	1.03		11/29/2017
676	3	366	-	-	-	F	III	N1009	E1011	5	98.9-98.8	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	2	0.82		11/29/2017
676	4	366	-	-	-	F	III	N1009	E1011	5	98.9-98.8	40-50	-	Detritus	Debitage	Broken Flake	Lithic	5	4.69		11/29/2017
676	5	366	-	-	-	F	III	N1009	E1011	5	98.9-98.8	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	6	8.14		11/29/2017
677	1	383	-	-	-	F	III	N1009	E1011	6	98.8-98.7	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	4	6.93		11/30/2017
677	2	383	-	-	-	F	III	N1009	E1011	6	98.8-98.7	50-60	-	Detritus	Debitage	Broken Flake	Lithic	1	0.42		11/30/2017
678	1	387	-	-	-	F	Ш	N1009	E1011	7	98.7-98.6	60-70	-	Detritus	Debitage	Broken Flake	Lithic	1	0.58		11/30/2017
678	2	387	-	-	-	F	Ш	N1009	E1011	7	98.7-98.6	60-70	-	Detritus	Debitage	Flaking Shatter	Lithic	1	10.25		11/30/2017
678	3	387	-	-	-	F	Ш	N1009	E1011	7	98.7-98.6	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	3	2.41		11/30/2017
679	1	391	-	-	-	F	IV	N1009	E1011	8	98.6-98.5	70-80	-	Detritus	Debitage	Complete Flake	Lithic	1	5.3		11/30/2017
679	2	391	-	-	-	F	IV	N1009	E1011	8	98.6-98.5	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	1	26.6		11/30/2017
679	3	391	-	-	-	F	IV	N1009	E1011	8	98.6-98.5	70-80	-	Detritus	Debitage	Broken Flake	Lithic	2	1.63		11/30/2017
679	4	391	-	1	-	F	IV	N1009	E1011	8	98.6-98.5	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	5	6.05		11/30/2017
680	1	401	-	1	-	F	IV	N1009	E1011	9	98.5-98.4	80-90	-	Detritus	Debitage	Complete Flake	Lithic	1	0.98		12/1/2017
680	2	401	-	-	-	F	IV	N1009	E1011	9	98.5-98.4	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	4	4.29		12/1/2017
681	1	556	-	-	-	F	V	N1009	E1011	11	98.3-98.2	100-110	-	Detritus	Debitage	Broken Flake	Lithic	1	0.4		12/15/2017
681	2	556	-	-	-	F	٧	N1009	E1011	11	98.3-98.2	100-110	-	Detritus	Debitage	Thermal Shatter	Lithic	3	2.88		12/15/2017
682	1	559	-	-	-	F	VI	N1009	E1011	12	98.2-98.1	110-120	-	Detritus	Debitage	Thermal Shatter	Lithic	4	2.68		12/15/2017
683	1	571	-	-	-	F	VI	N1009	E1011	13	98.1-98.0	120-130	-	Detritus	Debitage	Complete Flake	Lithic	1	8.54		12/18/2017
683	2	571	-	-	-	F	VI	N1009	E1011	13	98.1-98.0	120-130	-	Detritus	Debitage	Broken Flake	Lithic	1	0.88		12/18/2017
683	3	571	-	-	-	F	VI	N1009	E1011	13	98.1-98.0	120-130	-	Detritus	Debitage	Flaking Shatter	Lithic	1	1.01		12/18/2017
683	4	571	-	-	-	F	VI	N1009	E1011	13	98.1-98.0	120-130	-	Detritus	Debitage	Thermal Shatter	Lithic	2	15.93		12/18/2017
683	5	571	-	-	-	F	VI	N1009	E1011	13	98.1-98.0	120-130	-	Faunal Remains	Shell	Mussel Shell	Shell	4	4.82	No umbos but burned	12/18/2017
684	1	577	-	-	-	F	VI	N1009	E1011	14	98.0-97.9	130-140	-	Detritus	Debitage	Broken Flake	Lithic	2	0.42		12/18/2017
684	2	577	-	-	-	F	VI	N1009	E1011	14	98.0-97.9	130-140	-	Detritus	Debitage	Thermal Shatter	Lithic	1	0.22		12/18/2017
685	1	582	-	-	-	F	VI	N1009	E1011	15	97.9-97.8	140-150	-	Detritus	Core	Multidirectional	Coarse Grain Chert	1	18.02	Exhausted Core	12/18/2017
686	1	585	-	-	-	F	VI	N1009	E1011	16	97.8-97.7	150-160	-	Detritus	Debitage	Thermal Shatter	Lithic	1	11.86		12/18/2017
687	1	343	-	-	-	F	I	N1009	E1012	1	99.21-99.1	9-20	-	Detritus	Debitage	Broken Flake	Lithic	1	0.32		11/29/2017
687	2	343	-	-	-	F	- 1	N1009	E1012	1	99.21-99.1	9-20	-	Historic Artifact	Metal	Bullet Casing	Metal	1	0.64		11/29/2017
688	1	352	-	-	-	F	II	N1009	E1012	2	99.1-99.0	20-30	-	Faunal Remains	Bone	Avian	Bone	1	1.09		11/29/2017
688	2	352	-	-	-	F	II	N1009	E1012	2	99.1-99.0	20-30	-	Faunal Remains	Bone	Avian	Bone	1	0.12		11/29/2017
688	3	352	-	-	-	F	II	N1009	E1012	2	99.1-99.0	20-30	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.13		11/29/2017
688	4	352	-	-	-	F	II	N1009	E1012	2	99.1-99.0	20-30	-	Faunal Remains	Bone	Avian	Bone	1	0.43		11/29/2017
688	5	352	-	-	-	F	II	N1009	E1012	2	99.1-99.0	20-30	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.17		11/29/2017
688	6	352	-	-	-	F	II	N1009	E1012	2	99.1-99.0	20-30	-	Detritus	Debitage	Proximal Flake	Lithic	1	1.5		11/29/2017
688	7	352	-	-	-	F	II	N1009	E1012	2	99.1-99.0	20-30	-	Detritus	Debitage	Broken Flake	Lithic	1	0.35		11/29/2017
689	1	357	-	-	-	F	II	N1009	E1012	3	99.0-98.9	30-40	-	Faunal Remains	Bone	Indeterminate	Bone	1	0.48		11/29/2017
689	2	357	-	-	-	F	II	N1009	E1012	3	99.0-98.9	30-40	-	Detritus	Debitage	Broken Flake	Lithic	3	7.8		11/29/2017
689	3	357	-	-	-	F	II	N1009	E1012	3	99.0-98.9	30-40	-	Detritus	Debitage	Thermal Shatter	Lithic	2	1.53		11/29/2017
690	1	375	-	-	-	F	III	N1009	E1012	4	98.9-98.8	40-50	-	Detritus	Debitage	Complete Flake	Lithic	2	30.46		11/30/2017
690	2	375	-	-	-	F	III	N1009	E1012	4	98.9-98.8	40-50	-	Detritus	Debitage	Proximal Flake	Lithic	3	3.11		11/30/2017
690	3	375	-	-	-	F	III	N1009	E1012	4	98.9-98.8	40-50	-	Detritus	Debitage	Broken Flake	Lithic	6	9.53		11/30/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
690	4	375	-	-	-	F	III	N1009	E1012	4	98.9-98.8	40-50	-	Detritus	Debitage	Thermal Shatter	Lithic	3	1.57		11/30/2017
691	1	377	-	-	-	F	III	N1009	E1012	5	98.8-98.7	50-60	-	Detritus	Debitage	Proximal Flake	Lithic	1	0.91		11/30/2017
691	2	377	-	-	-	F	III	N1009	E1012	5	98.8-98.7	50-60	-	Detritus	Debitage	Broken Flake	Lithic	4	13.16		11/30/2017
691	3	377	-	-	-	F	III	N1009	E1012	5	98.8-98.7	50-60	-	Detritus	Debitage	Thermal Shatter	Lithic	3	3.55		11/30/2017
692	1	380	-	-	-	F	III	N1009	E1012	6	98.7-98.6	60-70	-	Detritus	Debitage	Proximal Flake	Lithic	2	48.61		11/30/2017
692	2	380	-	-	-	F	III	N1009	E1012	6	98.7-98.6	60-70	-	Detritus	Debitage	Broken Flake	Lithic	3	0.63		11/30/2017
692	3	380	-	-	-	F	III	N1009	E1012	6	98.7-98.6	60-70	-	Detritus	Debitage	Thermal Shatter	Lithic	5	28.86		11/30/2017
693	1	393	-	-	-	F	IV	N1009	E1012	7	98.6-98.5	70-80	-	Detritus	Debitage	Proximal Flake	Lithic	2	2.83		12/1/2017
693	2	393	-	-	-	F	IV	N1009	E1012	7	98.6-98.5	70-80	-	Detritus	Debitage	Broken Flake	Lithic	1	2.84		12/1/2017
693	3	393	-	-	-	F	IV	N1009	E1012	7	98.6-98.5	70-80	-	Detritus	Debitage	Flaking Shatter	Lithic	1	5.45		12/1/2017
693	4	393	-	-	-	F	IV	N1009	E1012	7	98.6-98.5	70-80	-	Detritus	Debitage	Thermal Shatter	Lithic	7	5.18		12/1/2017
694	1	398	-	-	-	F	IV	N1009	E1012	8	98.5-98.4	80-90	-	Detritus	Debitage	Complete Flake	Lithic	1	0.84		12/1/2017
694	2	398	-	-	-	F	IV	N1009	E1012	8	98.5-98.4	80-90	-	Detritus	Debitage	Proximal Flake	Lithic	1	14.17		12/1/2017
694	3	398	-	-	-	F	IV	N1009	E1012	8	98.5-98.4	80-90	-	Detritus	Debitage	Thermal Shatter	Lithic	3	5.96		12/1/2017
694	4	398	-	-	-	F	IV	N1009	E1012	8	98.5-98.4	80-90	-	Informal Tool	Modified Flake	Edge-modified	Fine Grain Chert	1	18.24		12/1/2017
695	1	403	-	-	-	F	V	N1009	E1012	9	98.4-98.3	90-100	-	Detritus	Debitage	Complete Flake	Lithic	1	1.3		12/1/2017
695	2	403	-	-	-	F	V	N1009	E1012	9	98.4-98.3	90-100	-	Detritus	Debitage	Broken Flake	Lithic	1	0.8		12/1/2017
696	1	548	-	-	-	F	VI	N1009	E1012	11	98.2-98.1	110-120	-	Detritus	Debitage	Complete Flake	Lithic	2	10.3		12/15/2017
696	2	548	-	-	-	F	VI	N1009	E1012	11	98.2-98.1	110-120	-	Detritus	Debitage	Broken Flake	Lithic	1	1.01		12/15/2017
696	3	548	-	-	-	F	VI	N1009	E1012	11	98.2-98.1	110-120	-	Detritus	Debitage	Thermal Shatter	Lithic	3	5.21		12/15/2017
696	4	548	-	-	-	F	VI	N1009	E1012	11	98.2-98.1	110-120	- N1009.16	Faunal Remains	Shell	Mussel Shell	Shell	1	3.35		12/15/2017
697	1	551	28	-	-	F	VI	N1009	E1012	11	98.19	111	E1012.67	Faunal Remains	Bone	Odocoileus sp.	Bone	1	17.57	*portion sent for radiocarbon dating	12/15/2017
698	1	562	-	-	-	F	VI	N1009	E1012	12	98.1-98.0	120-130	-	Detritus	Debitage	Complete Flake	Lithic	1	0.94		12/15/2017
698	2	562	-	-	-	F	VI	N1009	E1012	12	98.1-98.0	120-130	-	Detritus	Debitage	Broken Flake	Lithic	1	0.66		12/15/2017
698	3	562	-	-	-	F	VI	N1009	E1012	12	98.1-98.0	120-130	- N1003.75-	Detritus	Debitage	Thermal Shatter	Lithic	4	5.85		12/15/2017
not for curation	not for curation	680	-	FTR2	MS-01	E		N1003-1004	E1018-1019	5-8	98.77-98.5	53-80	1004.06 E1018.76- 1019.28	Geoarch Sample	Matrix	Magnetic Susceptibility					12/12/2017
not for curation	not for curation	680	-	FTR2	MS-02	E		N1003-1004	E1018-1019	5-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Geoarch Sample	Matrix	Magnetic Susceptibility					12/12/2017
not for curation	not for curation	680	1	FTR2	MS-03	E		N1003-1004	E1018-1019	5-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Geoarch Sample	Matrix	Magnetic Susceptibility					12/12/2017
not for curation	not for curation	680	-	FTR2	MS-04	E		N1003-1004	E1018-1019	5-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Geoarch Sample	Matrix	Magnetic Susceptibility					12/12/2017
not for curation	not for curation	680	-	FTR2	MS-05	E		N1003-1004	E1018-1019	5-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Geoarch Sample	Matrix	Magnetic Susceptibility					12/12/2017
not for curation	not for curation	680	-	FTR2	MS-06	E		N1003-1004	E1018-1019	5-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Geoarch Sample	Matrix	Magnetic Susceptibility					12/12/2017
not for curation	not for curation	680	-	FTR2	MS-07	E		N1003-1004	E1018-1019	5-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Geoarch Sample	Matrix	Magnetic Susceptibility					12/12/2017
not for curation	not for curation	680	-	FTR2	MS-08	E		N1003-1004	E1018-1019	5-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Geoarch Sample	Matrix	Magnetic Susceptibility					12/12/2017
not for curation	not for curation	680	-	FTR2	MS-09	E		N1003-1004	E1018-1019	5-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Geoarch Sample	Matrix	Magnetic Susceptibility					12/12/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
not for curation	not for curation	680	1	FTR2	MS-10	Е		N1003-1004	E1018-1019	5-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Geoarch Sample	Matrix	Magnetic Susceptibility					12/12/2017
not for curation	not for curation	680	-	FTR2	MS-11	E		N1003-1004	E1018-1019	5-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Geoarch Sample	Matrix	Magnetic Susceptibility					12/12/2017
not for curation	not for curation	680	1	FTR2	MS-12	E		N1003-1004	E1018-1019	5-8	98.77-98.5	53-80	N1003.75- 1004.06 E1018.76- 1019.28	Geoarch Sample	Matrix	Magnetic Susceptibility					12/12/2017
not for curation	not for curation	681	-	-	MS-01	D	I/II	N1000	E1010	East wall profile	99.53	16	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-02	D	I/II	N1000	E1010	East wall profile	99.48	21	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-03	D	I/II	N1000	E1010	East wall profile	99.43	26	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-04	D	I/II	N1000	E1010	East wall profile	99.38	31	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-05	D	I/II	N1000	E1010	East wall profile	99.33	36	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-06	D	I/II	N1000	E1010	East wall profile	99.28	41	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-07	D	I/II	N1000	E1010	East wall profile	99.23	46	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-08	D	I/II	N1000	E1010	East wall profile	99.18	51	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-09	D	I/II	N1000	E1010	East wall profile	99.13	56	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-10	D	I/II	N1000	E1010	East wall profile	99.08	61	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-11	D	I/II	N1000	E1010	East wall profile	99.03	66	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-12	D	I/II	N1000	E1010	East wall profile	98.98	71	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-13	D	I/II	N1000	E1010	East wall profile	98.93	76	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-14	D	I/II	N1000	E1010	East wall profile	98.88	81	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-15	D	III	N1000	E1010	East wall profile	98.83	86	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-16	D	III	N1000	E1010	East wall profile	98.78	91	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-17	D	III	N1000	E1010	East wall profile	98.73	96	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-18	D	III	N1000	E1010	East wall profile	98.68	101	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-19	D	III	N1000	E1010	East wall profile	98.63	106	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-20	D	III	N1000	E1010	East wall profile	98.56	113	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-21	D	IV	N1000	E1010	East wall profile	98.48	121	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-22	D	IV	N1000	E1010	East wall profile	98.43	126	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-23	D	IV	N1000	E1010	East wall profile	98.38	131	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-24	D	IV	N1000	E1010	East wall profile	98.33	136	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-25	D	IV	N1000	E1010	East wall profile	98.28	141	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-26	D	IV	N1000	E1010	East wall profile	98.23	146	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-27	D	IV	N1000	E1010	East wall profile	98.18	151	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-28	D	V/VI	N1000	E1010	East wall profile	98.13	156	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-29	D	V/VI	N1000	E1010	East wall profile	98.08	161	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-30	D	V/VI	N1000	E1010	East wall profile	98.03	166	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	1	-	MS-31	D	V/VI	N1000	E1010	East wall profile	97.98	171	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-32	D	V/VI	N1000	E1010	East wall profile	97.93	176	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-33	D	V/VI	N1000	E1010	East wall profile	97.83	186	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	MS-34	D	V/VI	N1000	E1010	East wall profile	97.79	190	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/18/2017
not for curation	not for curation	681	-	-	BM-01	D	V/VI	N1000	E1010	East wall profile	97.89-97.79	180-190	-	Geoarch Sample	Soil	Bulk Matrix					12/18/2017
not for curation	not for curation	681	-	-	BM-02	D	IV	N1000	E1010	East wall profile	98.22-98.12	147-157	-	Geoarch Sample	Soil	Bulk Matrix					12/18/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
not for curation	not for curation	681	-	-	BM-03	D	IV	N1000	E1010	East wall profile	98.38-98.28	131-141	-	Geoarch Sample	Soil	Bulk Matrix		urmuoto			12/18/2017
not for	not for curation	681	-	-	BM-04	D	III/IV	N1000	E1010	East wall	98.53-98.43	116-126	_	Geoarch Sample	Soil	Bulk Matrix					12/18/2017
not for curation	not for curation	681	-	-	BM-05	D	III	N1000	E1010	East wall profile	98.73-98.63	96-106	-	Geoarch Sample	Soil	Bulk Matrix					12/18/2017
not for curation	not for curation	681	_	_	BM-06	D	III	N1000	E1010	East wall profile	98.93-98.83	76-86	_	Geoarch Sample	Soil	Bulk Matrix					12/18/2017
not for curation	not for curation	681	-	_	BM-07	D	1/11	N1000	E1010	East wall profile	99.18-99.08	51-61	-	Geoarch Sample	Soil	Bulk Matrix					12/18/2017
not for	not for	681	-	-	BM-08	D	1/11	N1000	E1010	East wall	99.38-99.28	31-41	-	Geoarch	Soil	Bulk Matrix					12/18/2017
not for curation	not for curation	681	-	_	BM-09	D	1/11	N1000	E1010	profile East wall profile	99.58-99.48	11-21	-	Sample Geoarch Sample	Soil	Bulk Matrix					12/18/2017
not for	not for	681	-	-	BM-10	D	V/VI	N1000	E1010	East wall profile	98.08-97.98	161-171	_	Geoarch Sample	Soil	Bulk Matrix					12/18/2017
not for	not for	682	_	_	MS-01	F	ı	N1009	E1012	East wall	99.15	15	_	Geoarch	Soil	Magnetic					12/21/2017
not for	not for	682	_	_	MS-02	F	1	N1009	E1012	profile East wall	99.12	18	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
not for	not for	682	_	_	MS-03	F	П	N1009	E1012	profile East wall	99.09	21	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
not for	not for	682	_	_	MS-04	F	п	N1009	E1012	profile East wall	99.06	24	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
not for	not for	682	_	_	MS-05	F	п	N1009	E1012	profile East wall	99.04	26	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
not for	not for	682	-	_	MS-06	F	п	N1009	E1012	profile East wall	99.01	29	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
not for	not for	682	_	_	MS-07	F	п	N1009	E1012	profile East wall	98.97	33	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
not for	not for	682	_	_	MS-08	F	п	N1009	E1012	profile East wall	98.93	37	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
not for	not for	682	_	_	MS-09	F		N1009	E1012	profile East wall	98.9	40	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
not for	not for	682	-	_	MS-10	F	III	N1009	E1012	profile East wall	98.87	43	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
not for	not for	682	-	_	MS-11	F	III	N1009	E1012	profile East wall	98.84	46	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
not for	not for	682	-	_	MS-12	F	III	N1009	E1012	profile East wall	98.81	49	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
not for	not for	682	-	_	MS-13	F	III	N1009	E1012	profile East wall	98.78	52	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
not for	not for	682	-	_	MS-14	F	III	N1009	E1012	profile East wall	98.76	54	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
not for	not for	682	_	_	MS-15	F	III	N1009	E1012	profile East wall	98.73	57	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
not for	not for	682	_	_	MS-16	F	III	N1009	E1012	profile East wall	98.69	61	_	Sample Geoarch Sample	Soil	Susceptibility Magnetic Susceptibility					12/21/2017
not for	not for	682	-	-	MS-17	F	III	N1009	E1012	profile East wall profile	98.67	63	_	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for	not for	682	-	-	MS-18	F	III	N1009	E1012	East wall profile	98.64	66	_	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	_	MS-19	F	III	N1009	E1012	East wall profile	98.61	69	-	Geoarch Sample	Soil	Magnetic					12/21/2017
not for curation	not for curation	682	-	_	MS-20	F	IV	N1009	E1012	East wall profile	98.58	72	-	Geoarch Sample	Soil	Susceptibility Magnetic					12/21/2017
not for	not for	682	-	_	MS-21	F	IV	N1009	E1012	East wall	98.55	75	-	Geoarch	Soil	Susceptibility Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	MS-22	F	IV	N1009	E1012	profile East wall profile	98.51	79	-	Sample Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	MS-23	F	IV	N1009	E1012	East wall profile	98.48	82	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	MS-24	F	IV	N1009	E1012	East wall profile	98.44	86	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	MS-25	F	IV	N1009	E1012	East wall profile	98.41	89	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	MS-26	F	V	N1009	E1012	East wall profile	98.38	92	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	MS-27	F	V	N1009	E1012	East wall	98.35	95	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	MS-28	F	V	N1009	E1012	East wall profile	98.32	98	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	MS-29	F	V	N1009	E1012	East wall profile	98.30	100	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	MS-30	F	V	N1009	E1012	East wall profile	98.27	103	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	MS-31	F	V	N1009	E1012	East wall profile	98.24	106	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for	not for curation	682	-	-	MS-32	F	V	N1009	E1012	East wall	98.21	109	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	MS-33	F	VI	N1009	E1012	East wall profile	98.18	112	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for	not for	682	-	-	MS-34	F	VI	N1009	E1012	East wall profile	98.15	115	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
curation	curation	<u> </u>		<u> </u>		<u> </u>	i			profile	<u> </u>	<u> </u>	<u> </u>	oampie	i	Susceptibility				<u> </u>	

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
not for curation	not for curation	682	-	-	MS-35	F	VI	N1009	E1012	East wall profile	98.12	118	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for	not for curation	682	-	_	MS-36	F	VI	N1009	E1012	East wall profile	98.09	121	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for	not for	682	_	_	MS-37	F	VI	N1009	E1012	East wall	98.06	124	-	Geoarch	Soil	Magnetic					12/21/2017
not for	not for	682	_	_	MS-38	F	VI	N1009	E1012	profile East wall	98.03	127	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
curation not for	curation not for	682	_	_	MS-39	F	VI	N1009	E1012	profile East wall	98.00	130	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
not for	curation not for	682	_	_	MS-40	F	VI	N1009	E1012	profile East wall	97.97	133	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
curation not for	curation not for		_	_		F				profile East wall			-	Sample Geoarch		Susceptibility Magnetic					
curation not for	curation not for	682	-	-	MS-41		VI	N1009	E1012	profile East wall	97.94	136	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
curation not for	curation not for	682	-	-	MS-42	F	VI	N1009	E1012	profile East wall	97.91	139	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/21/2017
curation not for	curation	682	-	-	MS-43	F	VI	N1009	E1012	profile	97.88	142	-	Sample	Soil	Susceptibility					12/21/2017
curation	curation	682	-	-	MS-44	F	VI	N1009	E1012	East wall profile	97.85	145	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	MS-45	F	VI	N1009	E1012	East wall profile	97.82	148	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	MS-46	F	VI	N1009	E1012	East wall profile	97.79	151	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	MS-47	F	VI	N1009	E1012	East wall profile	97.75	155	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	MS-48	F	VI	N1009	E1012	East wall profile	97.71	159	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/21/2017
not for curation	not for curation	682	-	-	BM-01	F	VI	N1009	E1012	East wall profile	97.80-97.70	150-160	-	Geoarch Sample	Soil	Bulk Matrix					12/21/2017
not for curation	not for curation	682	-	-	BM-02	F	VI	N1009	E1012	East wall profile	98.05-97.95	125-135	-	Geoarch Sample	Soil	Bulk Matrix					12/21/2017
not for	not for curation	682	-	-	BM-03	F	V/VI	N1009	E1012	East wall profile	98.22-98.12	108-118	-	Geoarch Sample	Soil	Bulk Matrix					12/21/2017
not for curation	not for curation	682	-	-	BM-04	F	V	N1009	E1012	East wall profile	98.38-98.28	92-102	-	Geoarch Sample	Soil	Bulk Matrix					12/21/2017
not for curation	not for curation	682	-	-	BM-05	F	IV	N1009	E1012	East wall profile	98.52-98.62	78-88	-	Geoarch Sample	Soil	Bulk Matrix					12/21/2017
not for curation	not for curation	682	_	_	BM-06	F	III/IV	N1009	E1012	East wall profile	98.64-98.54	66-76	-	Geoarch Sample	Soil	Bulk Matrix					12/21/2017
not for	not for curation	682	_	_	BM-07	F	III	N1009	E1012	East wall profile	98.80-98.70	50-60	_	Geoarch Sample	Soil	Bulk Matrix					12/21/2017
not for	not for	682	_	_	BM-08	F	11/111	N1009	E1012	East wall	98.92-98.82	38-48	_	Geoarch	Soil	Bulk Matrix					12/21/2017
not for	not for	682	_	_	BM-09	F	П	N1009	E1012	profile East wall	99.06-98.96	24-34	_	Sample Geoarch	Soil	Bulk Matrix					12/21/2017
not for	not for	682	_	_	BM-10	F	1	N1009	E1012	profile East wall	99.15-99.12	15-18	_	Sample Geoarch	Soil	Magnetic					12/21/2017
curation not for	curation not for	683	_	_	MS-01	E	1	N1004	E1017	profile West wall	99.22	8	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/26/2017
curation not for	curation not for	683	_	_	MS-02	Е	п	N1004	E1017	profile West wall	99.15	15	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/26/2017
not for	curation not for	683	_	_	MS-03	E	"	N1004	E1017	profile West wall	99.12	18	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/26/2017
curation not for	curation not for	683	_		MS-04	E	"	N1004	E1017	profile West wall	99.09	21	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/26/2017
not for	curation not for									profile West wall				Sample Geoarch		Susceptibility Magnetic					
curation not for	curation not for	683	-	-	MS-05	E		N1004	E1017	profile West wall	99.05	25	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/26/2017
curation not for	curation not for	683	-		MS-06	E	III 	N1004	E1017	profile West wall	99.01	29		Sample Geoarch	Soil	Susceptibility Magnetic					12/26/2017
curation not for	curation not for	683	-	-	MS-07	E _	III 	N1004	E1017	profile West wall	98.97	33	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/26/2017
curation not for	curation not for	683	-	-	MS-08	E	Ш	N1004	E1017	profile West wall	98.94	36	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/26/2017
curation	curation	683	-	-	MS-09	E	III	N1004	E1017	profile West wall	98.89	41	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/26/2017
curation not for	curation	683	-	-	MS-10	E	III	N1004	E1017	profile	98.88	42	-	Sample	Soil	Susceptibility					12/26/2017
curation	not for curation	683	-	-	MS-11	E	III	N1004	E1017	West wall profile	98.82	48	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	-	MS-12	E	III	N1004	E1017	West wall profile	98.77	53	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	-	MS-13	Е	Ш	N1004	E1017	West wall profile	98.75	55	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	ı	-	MS-14	E	III	N1004	E1017	West wall profile	98.73	57	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	-	MS-15	Е	IV	N1004	E1017	West wall profile	98.69	61	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	-	MS-16	Е	IV	N1004	E1017	West wall profile	98.63	67	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	-	MS-17	Е	IV	N1004	E1017	West wall profile	98.6	70	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	-	MS-18	E	IV	N1004	E1017	West wall profile	98.57	73	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
curation	curation	1		·		1			1	prome	1	L	L	Gampio	1	Susceptibility	1			1	

	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
not for curation	not for curation	683	-	-	MS-19	E	IV	N1004	E1017	West wall profile	98.54	76	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	_	MS-20	Е	V	N1004	E1017	West wall profile	98.49	81	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for	not for	683	_	_	MS-21	Е	V	N1004	E1017	West wall	98.48	82	_	Geoarch	Soil	Magnetic					12/26/2017
not for	not for	683	_	_	MS-22	E	V	N1004	E1017	profile West wall	98.43	87	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/26/2017
curation not for	curation not for	683	_	_	MS-23	E	V	N1004	E1017	profile West wall	98.38	92	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/26/2017
not for	curation not for	683	_		MS-24	E	VI	N1004	E1017	profile West wall	98.33	97	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/26/2017
curation not for	curation not for		-	-						profile West wall			-	Sample Geoarch		Susceptibility Magnetic					
curation not for	curation not for	683	-	-	MS-25	E	VI	N1004	E1017	profile West wall	98.31	99	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/26/2017
curation not for	curation not for	683	-	-	MS-26	E	VI	N1004	E1017	profile West wall	98.29	101	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/26/2017
curation not for	curation not for	683	-	-	MS-27	E	VI	N1004	E1017	profile	98.27	103	-	Sample	Soil	Susceptibility					12/26/2017
curation	curation	683	-	-	MS-28	Е	VI	N1004	E1017	West wall profile	98.25	105	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	-	MS-29	E	VI	N1004	E1017	West wall profile	98.21	109	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	-	MS-30	E	VI	N1004	E1017	West wall profile	98.19	111	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	-	MS-31	E	VI	N1004	E1017	West wall profile	98.14	116	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	-	MS-32	E	VI	N1004	E1017	West wall profile	98.09	121	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	1	-	MS-33	Е	VI	N1004	E1017	West wall profile	98.06	124	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	-	MS-34	E	VI	N1004	E1017	West wall profile	98.02	128	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	-	MS-35	Е	VI	N1004	E1017	West wall profile	97.99	131	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	-	MS-36	Е	VI	N1004	E1017	West wall profile	97.95	135	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	-	MS-37	E	VI	N1004	E1017	West wall profile	97.9	140	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	_	-	MS-38	E	VI	N1004	E1017	West wall profile	97.86	144	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	-	_	MS-39	Е	VI	N1004	E1017	West wall	97.81	149	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for curation	not for curation	683	_	_	MS-40	E	VI	N1004	E1017	West wall profile	97.77	153	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/26/2017
not for	not for	683	-	-	BM-01	Е	VI	N1004	E1017	West wall	97.87-97.77	143-153	-	Geoarch	Soil	Bulk Matrix					12/26/2017
not for	not for	683	_	_	BM-02	Е	VI	N1004	E1017	profile West wall	98.05-98.00	125-130	_	Sample Geoarch	Soil	Bulk Matrix					12/26/2017
not for	not for	683	_	_	BM-03	E	VI	N1004	E1017	profile West wall	98.24-98.17	106-113	_	Sample Geoarch	Soil	Bulk Matrix					12/26/2017
curation not for	curation not for	683	_	_	BM-04	E	V/VI	N1004	E1017	profile West wall	98.37-98.30	93-100	_	Sample Geoarch	Soil	Bulk Matrix					12/26/2017
not for	curation not for	683	_	_	BM-05	F	IV/V	N1004	E1017	profile West wall	98.52-98.44	78-86	_	Sample Geoarch	Soil	Bulk Matrix					12/26/2017
curation not for	curation not for	683	_	_	BM-06	E	IV	N1004	E1017	profile West wall	98.63-98.53	67-77	_	Sample Geoarch	Soil	Bulk Matrix					12/26/2017
curation not for	curation not for	683	_	_	BM-07	E	III	N1004	E1017	profile West wall	98.81-98.73	49-57	_	Sample Geoarch	Soil	Bulk Matrix					12/26/2017
not for	curation not for	683	_	_	BM-08	E	III	N1004	E1017	profile West wall	98.93-98.87	37-43	_	Sample Geoarch	Soil	Bulk Matrix					12/26/2017
curation not for	curation not for	683	_	_	BM-09	E	"	N1004 N1004	E1017	profile West wall	99.14-99.07	16-23	_	Sample Geoarch	Soil	Bulk Matrix					12/26/2017
curation not for	curation not for	683	_	-	BM-10	F	"	N1004	F1017	profile West wall	99.14-99.07	0-10	_	Sample Geoarch	Soil	Bulk Matrix					12/26/2017
curation not for	curation not for	683		_	BM-10	E	IV/V	N1004 N1004	E1017	profile West wall	98.53-98.42	0-10 87-98		Sample Geoarch	Soil	Bulk Matrix					12/26/2017
curation not for	curation not for		-	_						profile West wall	ļ		-	Sample Geoarch							4
curation not for	curation not for	683	-	-	BM-12	E	III/IV	N1004	E1017	profile West wall	98.77-98.68	63-72	-	Sample Geoarch	Soil	Bulk Matrix					12/26/2017
curation not for	curation not for	683	-	-	BM-13	E	III	N1004	E1017	profile North wall	98.88-98.80	42-50	-	Sample Geoarch	Soil	Bulk Matrix Magnetic					12/26/2017
curation not for	curation not for	684	-	-	MS-01	Α	I	N0996	E1014	profile	99.52	18	-	Sample Geoarch	Soil	Susceptibility					12/27/2017
curation	curation	684	-	-	MS-02	Α	Ш	N0996	E1014	North wall profile	99.49	21.5	-	Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-03	Α	11	N0996	E1014	North wall profile	99.46	24	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-04	Α	II	N0996	E1014	North wall profile	99.44	26	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-05	Α	Ш	N0996	E1014	North wall profile	99.43	27.5	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-06	Α	Ш	N0996	E1014	North wall profile	99.39	31	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-07	Α	II	N0996	E1014	North wall profile	99.36	34	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
not for curation	not for curation	684	-	-	MS-08	A	П	N0996	E1014	North wall profile	99.35	35	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for	not for curation	684	-	_	MS-09	Α	Ш	N0996	E1014	North wall profile	99.3	40	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for	not for	684	_	_	MS-10	A	п	N0996	E1014	North wall	99.29	41.5	-	Geoarch	Soil	Magnetic					12/27/2017
not for	not for	684	_	_	MS-11	A	п	N0996	F1014	profile North wall	99.25	45.5	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
curation not for	curation not for	684	_	_	MS-12	A		N0996	E1014	profile North wall	99.23	47.5	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
curation not for	curation not for	684		_	MS-12	A	"	N0996	E1014	profile North wall	99.18	52	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
curation not for	curation not for		-	-						profile North wall			-	Sample Geoarch		Susceptibility Magnetic					+
curation not for	curation not for	684	-	-	MS-14	Α	III	N0996	E1014	profile North wall	99.15	55.5	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
curation not for	curation not for	684	-	-	MS-15	Α	III	N0996	E1014	profile North wall	99.13	57	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
curation not for	curation not for	684	-	-	MS-16	Α	III	N0996	E1014	profile	99.08	62.5	-	Sample	Soil	Susceptibility					12/27/2017
curation	curation	684	-	-	MS-17	Α	III	N0996	E1014	North wall profile	99.06	64	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-18	Α	III	N0996	E1014	North wall profile	99.01	69	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-19	Α	III	N0996	E1014	North wall profile	99	70	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	1	-	MS-20	Α	III	N0996	E1014	North wall profile	98.96	74	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-21	Α	III	N0996	E1014	North wall profile	98.93	77	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-22	Α	III	N0996	E1014	North wall profile	98.9	80	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-23	Α	IV	N0996	E1014	North wall profile	98.87	83	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for	not for curation	684	-	_	MS-24	А	IV	N0996	E1014	North wall profile	98.84	86	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for	not for	684	_	_	MS-25	A	IV	N0996	E1014	North wall	98.81	89	_	Geoarch	Soil	Magnetic					12/27/2017
not for	not for	684	_	_	MS-26	A	IV	N0996	E1014	profile North wall	98.79	91.5	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
curation not for	curation not for	684	_	_	MS-27	A	IV	N0996	E1014	profile North wall	98.75	95	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
curation not for	curation not for	684	_	_	MS-28	A	IV	N0996	E1014	profile North wall	98.73	97		Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
curation not for	curation not for	684		_		-				profile North wall			_	Sample Geoarch		Susceptibility Magnetic					+
curation not for	curation not for		-		MS-29	A	IV	N0996	E1014	profile North wall	98.69	101	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
curation not for	curation not for	684	-	-	MS-30	Α	IV	N0996	E1014	profile North wall	98.67	103	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
curation not for	curation not for	684	-	-	MS-31	Α	IV	N0996	E1014	profile North wall	98.63	107	-	Sample	Soil	Susceptibility Magnetic					12/27/2017
curation	curation	684	-	-	MS-32	Α	IV	N0996	E1014	profile	98.6	110	-	Sample	Soil	Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-33	Α	IV	N0996	E1014	North wall profile	98.54	116	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-34	Α	IV	N0996	E1014	North wall profile	98.53	117.5	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-35	Α	IV	N0996	E1014	North wall profile	98.5	120.5	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	1	-	MS-36	Α	IV/V	N0996	E1014	North wall profile	98.46	124	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	1	-	MS-37	А	IV/V	N0996	E1014	North wall profile	98.43	127	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-38	Α	IV/V	N0996	E1014	North wall profile	98.4	130	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-39	А	V	N0996	E1014	North wall profile	98.38	132.5	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-40	А	V	N0996	E1014	North wall profile	98.35	135	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for	not for	684	-	-	MS-41	A	VI	N0996	E1014	North wall profile	98.31	139.5	_	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for	not for	684	_	_	MS-42	A	VI	N0996	E1014	North wall	98.28	142	_	Geoarch	Soil	Magnetic					12/27/2017
not for	not for	684	_	_	MS-43	A	VI	N0996	F1014	profile North wall	98.25	145	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
curation not for	curation not for	684	_	_	MS-44	A	VI	N0996	F1014	profile North wall	98.21	149	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
curation not for	curation not for									profile North wall				Sample Geoarch		Susceptibility Magnetic					
curation not for	curation not for	684	-	-	MS-45	A	VI	N0996	E1014	profile North wall	98.21	149	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
curation not for	curation not for	684	-	-	MS-46	A	VI	N0996	E1014	profile North wall	98.17	153.5	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
curation not for	curation not for	684	-	-	MS-47	Α	VI	N0996	E1014	profile North wall	98.14	156	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
curation	curation	684	-	-	MS-48	Α	VI	N0996	E1014	profile	98.1	160	-	Sample	Soil	Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-49	Α	VI	N0996	E1014	North wall profile	98.07	163	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
not for curation	not for curation	684	-	-	MS-50	A	VI	N0996	E1014	North wall profile	98.03	167	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for	not for curation	684	-	_	MS-51	Α	VI	N0996	E1014	North wall profile	98	170	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for	not for	684	_	_	MS-52	A	VI	N0996	E1014	North wall	97.95	175	-	Geoarch	Soil	Magnetic					12/27/2017
not for	not for	684	_	_	MS-53	A	VI	N0996	E1014	profile North wall	97.94	176	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
not for	not for	684	_	_	MS-54	A	VI	N0996	E1014	profile North wall	97.9	180	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
not for	not for	684	-	-	MS-55	A	VI	N0996	E1014	profile North wall	97.9	180	_	Sample Geoarch Sample	Soil	Susceptibility Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-56	А	VI	N0996	E1014	profile North wall profile	97.86	184	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-57	А	VI	N0996	E1014	North wall profile	97.84	186	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-58	Α	VI	N0996	E1014	North wall profile	97.81	189	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for	not for	684	-	-	MS-59	А	VI	N0996	E1014	North wall profile	97.78	192	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for curation	not for curation	684	-	-	MS-60	А	VI	N0996	E1014	North wall profile	97.75	195	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/27/2017
not for	not for	684	_	_	MS-61	Α	VI	N0996	E1014	North wall	97.72	198	-	Geoarch	Soil	Magnetic					12/27/2017
not for	not for	684	-	_	MS-62	A	VI	N0996	E1014	Profile North wall	97.69	201	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
not for	not for	684	-	_	MS-63	A	VI	N0996	E1014	profile North wall	97.65	205	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
not for	not for	684	-	-	MS-64	A	VI	N0996	E1014	profile North wall	97.62	208	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/27/2017
not for	not for	684	-	-	BM-01	A	VI	N0996	E1014	profile North wall	98.07-97.98	163-172	-	Sample Geoarch Sample	Soil	Susceptibility Bulk Matrix					12/27/2017
not for	not for	684	_	_	BM-02	A	VI	N0996	E1014	profile North wall profile	98.08-97.96	162-174	_	Geoarch Sample	Soil	Bulk Matrix					12/27/2017
not for	not for	684	-	-	BM-03	A	V/VI	N0996	E1014	North wall	98.36-98.28	134-142	_	Geoarch	Soil	Bulk Matrix					12/27/2017
not for	not for	684	-	-	BM-04	A	IV/V	N0996	E1014	profile North wall	98.48-98.39	122-131	_	Sample Geoarch	Soil	Bulk Matrix					12/27/2017
not for curation	not for curation	684	-	_	BM-05	A	IV	N0996	E1014	profile North wall profile	98.71-98.61	99-109	-	Sample Geoarch Sample	Soil	Bulk Matrix					12/27/2017
not for	not for curation	684	-	_	BM-06	A	IV	N0996	E1014	North wall	98.68-98.58	102-112	-	Geoarch Sample	Soil	Bulk Matrix					12/27/2017
not for curation	not for curation	684	_	_	BM-07	Α	III	N0996	E1014	North wall profile	99.07-99.0	63-70	-	Geoarch Sample	Soil	Bulk Matrix					12/27/2017
not for curation	not for curation	684	-	-	BM-08	Α	III	N0996	E1014	North wall profile	99.01-98.925	69-77.5	-	Geoarch Sample	Soil	Bulk Matrix					12/27/2017
not for curation	not for curation	684	-	-	BM-09	Α	П	N0996	E1014	North wall profile	99.415-99.31	28.5-39	-	Geoarch Sample	Soil	Bulk Matrix					12/27/2017
not for curation	not for curation	684	-	-	BM-10	Α	П	N0996	E1014	North wall profile	99.335-99.26	36.5-44	-	Geoarch Sample	Soil	Bulk Matrix					12/27/2017
not for curation	not for curation	684	-	-	BM-11	Α	1	N0996	E1014	North wall profile	99.55-99.52	15-18	-	Geoarch Sample	Soil	Bulk Matrix					12/27/2017
not for curation	not for curation	684	-	-	BM-12	А	VI	N0996	E1014	North wall profile	97.72-97.62	198-208	-	Geoarch Sample	Soil	Bulk Matrix					12/27/2017
not for curation	not for curation	685	-	-	MS-01	С	1	N1000	E1004	South wall profile	99.74	16	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-02	С	1	N1000	E1004	South wall profile	99.72	18	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for	not for curation	685	-	-	MS-03	С	П	N1000	E1004	South wall	99.69	21	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-04	С	П	N1000	E1004	South wall profile	99.63	27	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-05	С	II	N1000	E1004	South wall profile	99.6	30	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-06	С	II	N1000	E1004	South wall profile	99.53	37	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-07	С	II	N1000	E1004	South wall profile	99.48	42	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-08	С	III	N1000	E1004	South wall profile	99.43	47	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-09	С	III	N1000	E1004	South wall profile	99.37	53	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-10	С	III	N1000	E1004	South wall profile	99.32	58	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-11	С	III	N1000	E1004	South wall profile	99.3	60	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-12	С	III	N1000	E1004	South wall profile	99.26	64	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-13	С	III	N1000	E1004	South wall profile	99.23	67	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-14	С	III	N1000	E1004	South wall profile	99.18	72	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-15	С	III	N1000	E1004	South wall profile	99.13	77	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
curation	curation	1		L	L	1	1			profile	1	l	1	Sample	l	Susceptibility	1	1	l	l	

Lot No.	Specimen No.	FS No.	UI No.	FTR No.	Sample No.	Excavation Block	Stratum (AU)	Northing	Easting	Level	Elevation (m)	Depth (cmbd)	Point Prov.	Artifact Class	Artifact Type	Artifact Description	Material	Number of artifacts	Weight (g)	Comments	Date
not for curation	not for curation	685	-	-	MS-16	С	III	N1000	E1004	South wall profile	99.07	83	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-17	С	IV	N1000	E1004	South wall profile	99.01	89	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for	not for	685	-	_	MS-18	С	IV	N1000	E1004	South wall	98.94	96	_	Geoarch	Soil	Magnetic					12/29/2017
not for	not for	685	_	_	MS-19	С	IV	N1000	E1004	profile South wall	98.91	99	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/29/2017
not for	curation not for	685			MS-20	С	V	N1000	E1004	profile South wall	98.83	107		Sample Geoarch	Soil	Susceptibility Magnetic					12/29/2017
curation not for	curation not for		_	_	MS-21					profile South wall			_	Sample Geoarch		Susceptibility Magnetic					-
curation not for	curation not for	685	-	-		С	VI	N1000	E1004	profile South wall	98.78	112	-	Sample Geoarch	Soil	Susceptibility Magnetic					12/29/2017
curation	curation	685	-	-	MS-22	С	VI	N1000	E1004	profile	98.71	119	-	Sample	Soil	Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-23	С	VI	N1000	E1004	South wall profile	98.66	124	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-24	С	VI	N1000	E1004	South wall profile	98.6	130	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-25	С	VI	N1000	E1004	South wall profile	98.55	135	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-26	С	VI	N1000	E1004	South wall profile	98.49	141	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for curation	not for curation	685	-	-	MS-27	С	VI	N1000	E1004	South wall profile	98.45	145	-	Geoarch Sample	Soil	Magnetic Susceptibility					12/29/2017
not for	not for	685	-	_	MS-28	С	VI	N1000	E1004	South wall	98.42	148	_	Geoarch	Soil	Magnetic					12/29/2017
not for	curation not for	685	_	_	MS-29	С	VI	N1000	E1004	profile South wall	98.36	154	_	Sample Geoarch	Soil	Susceptibility Magnetic					12/29/2017
not for	curation not for	685	_	_	BM-01	С	VI	N1000	E1004	profile South wall	98.45-98.37	145-153	_	Sample Geoarch	Soil	Susceptibility Bulk Matrix					12/29/2017
not for	curation not for			_	BM-02		VI	N1000	E1004	profile South wall		118-127	_	Sample Geoarch	Soil	Bulk Matrix					
curation not for	curation not for	685	-			С				profile South wall	98.72-98.63			Sample Geoarch							12/29/2017
curation not for	curation not for	685	-	-	BM-03	С	IV	N1000	E1004	profile South wall	98.97-98.89	93-101	-	Sample Geoarch	Soil	Bulk Matrix					12/29/2017
curation	curation	685	-	-	BM-04	С	III	N1000	E1004	profile	99.15-99.04	75-86	-	Sample	Soil	Bulk Matrix					12/29/2017
not for curation	not for curation	685	-	-	BM-05	С	III	N1000	E1004	South wall profile	99.37-99.26	53-64	-	Geoarch Sample	Soil	Bulk Matrix					12/29/2017
not for curation	not for curation	685	-	-	BM-06	С	II	N1000	E1004	South wall profile	99.61-99.54	29-36	-	Geoarch Sample	Soil	Bulk Matrix					12/29/2017
not for curation	not for curation	685	-	-	BM-07	С	1	N1000	E1004	South wall profile	99.78-99.73	12-17	-	Geoarch Sample	Soil	Bulk Matrix					12/29/2017
not for	not for	686		FTR4 Layer	MS-1	С	III	N1000.96	E1004.94	Layer 1 and	99.22	68	N1000.96	Geoarch	Soil	Magnetic				Cross-section 1	12/18/2017
curation	curation			1 and 2						2			E1004.94	Sample		Susceptibility					
not for curation	not for curation	686		FTR4 Layer 1 and 2	MS-2	С	III	N1000.50- 1001.50	E1004.94	Layer 1 and 2	99.245	65.5	N1000.96 E1004.94	Geoarch Sample	Soil	Magnetic Susceptibility				Cross-section 1	12/18/2017
not for	not for	686		FTR4 Layer	MS-3	С	III	N1000.50-	E1004.94	Layer 1 and	99.267	63.3	N1000.96	Geoarch	Soil	Magnetic				Cross-section 1	12/18/2017
curation	curation			1 and 2			***	1001.50	21001.01	2	00.201	00.0	E1004.94	Sample	0011	Susceptibility				0.000 000001	12/10/2011
not for curation	not for curation	686		FTR4 Layer 1 and 2	MS-4	С	III	N1000.50- 1001.50	E1004.94	Layer 1 and 2	99.29	61	N1000.96 E1004.94	Geoarch Sample	Soil	Magnetic Susceptibility				Cross-section 1	12/18/2017
not for	not for			FTR4 Layer	140.5	С		N1000.50-	F4004.04	Layer 1 and	00.045	50.5	N1000.96	Geoarch	0.1	Magnetic				0	40/40/0047
curation	curation	686		1 and 2	MS-5	C	III	1001.50	E1004.94	² 2	99.315	58.5	E1004.94	Sample	Soil	Susceptibility				Cross-section 1	12/18/2017
not for curation	not for curation	687		FTR4 Layer 2	MS-1A	С	III	N1000.80- 1001.57	E1004.70	Layer 2	99.2	70	N1001.21 E1004.70	Geoarch Sample	Soil	Magnetic Susceptibility				Cross-section 2	12/18/2017
not for curation	not for curation	687		FTR4 Layer 2	MS-2A	С	III	N1000.80- 1001.57	E1004.70	Layer 2	99.23	67	N1001.21 E1004.70	Geoarch Sample	Soil	Magnetic Susceptibility				Cross-section 2	12/18/2017
not for curation	not for curation	687		FTR4 Layer 2	MS-3A	С	III	N1000.80- 1001.57	E1004.70	Layer 2	99.26	64	N1001.21 E1004.70	Geoarch Sample	Soil	Magnetic Susceptibility			_	Cross-section 2	12/18/2017
not for curation	not for curation	687		FTR4 Layer	MS-4A	С	III	N1000.80- 1001.57	E1004.70	Layer 2	99.29	61	N1001.21 E1004.70	Geoarch Sample	Soil	Magnetic Susceptibility				Cross-section 2	12/18/2017
curation	curation		1		l	l		1001.57		<u> </u>			≥1004.70	Sample	i	Susceptibility					

	Pro	venience	1					Burned	Rock Data)			Т	otals
Excavation				Flav. (m)	0.5.04	0-5 Wt	5-10 Ct	5-10 Wt		10–15 Wt	15+ Ct	15+ Wt		Total Wt
Block	Northing	Easting	Level	Elev. (m)	0-5 Ct	(kg)	5-10 Ct	(kg)	10-15 Ct	(kg)	15+ Ct	(kg)	Total Ct	(kg)
Α	Ftr 3	Ftr 3		99.90-98.90	2	0.2	21	2.4	2	0.5			25	3.1
Α	995	1012	1	99.70-99.60	1	0.10	1	0.10					2	0.20
A	995	1012	3	99.50-99.40	0.4	0.00	1	0.20					1	0.20
Α	995	1012	4	99.40-99.30		0.20	7	0.40					38	0.60
A A	995 995	1012 1012	5 6	99.30-99.20 99.20-99.10	16 16	0.10	5 7	0.40					21 23	0.50 0.70
A	995	1012	7	99.10-99.00	24	0.10	4	0.00	1	0.20			29	0.70
A	995	1012	8	99.00-98.90	25	0.10	15	1.30		0.20			40	1.40
A	995	1012	9	98.90-98.80	25	0.10	5	1.70					30	1.80
Α	995	1012	10	98.80-98.70	50	0.10	1	0.20					51	0.30
Α	995	1012	11	98.70-98.60	11	0.10	4	0.30					15	0.40
Α	995	1012	12	98.60-98.50	10	0.10	1	0.10					11	0.20
Α	995	1012	13	98.50-98.40	9	0.10							9	0.10
A	995	1012	14	98.40-98.30	5	0.10	1	0.10					6	0.20
A	995	1012	15	98.30-98.20	11	0.10	_	0.40					11	0.10
A	995	1013	2	99.60-99.50	0	0.40	3	0.40					3	0.40
Α Λ	995 995	1013 1013	3 4	99.50-99.40	3 14	0.10							3 14	0.10 0.20
A A	995	1013	5	99.40-99.30 99.30-99.20	9	0.20	4	0.20					13	0.20
A	995	1013	6	99.20-99.10	11	0.10	3	0.40					14	0.50
A	995	1013	7	99.10-99.00	27	0.30	2	0.30					29	0.60
A	995	1013	8	99.00-98.90	12	0.10	7	0.60					19	0.70
A	995	1013	9	98.90-98.80	3	0.10							3	0.10
Α	995	1013	10	98.80-98.70	7	0.10							7	0.10
Α	995	1013	11	98.70-98.60	2	0.10							2	0.10
Α	995	1013	12	98.60-98.50	5	0.10	2	0.10					7	0.20
Α	995	1013	13	98.50-98.40	3	0.10	1	0.10					4	0.20
Α	995	1013	14	98.40-98.30	3	0.10							3	0.10
A	995	1013	15	98.30-98.20	7	0.10		0.00					7	0.10
A	995 995	1014	2	99.59-99.50	1	0.10	3	0.20					4	0.30
A A	995	1014 1014	4	99.50-99.40 99.30-99.20	1 18	0.10	1 6	0.20					2 24	0.30 0.70
A	995	1014	5	99.20-99.10	23	0.30	10	0.40					33	0.70
A	995	1014	6	99.10-99.00	22	0.20	3	0.30					25	0.50
A	995	1014	7	99.00-98.90	30	0.20	10	1.30					40	1.50
Α	995	1014	8	98.90-98.80	5	0.05	5	0.60					10	0.65
Α	995	1014	9	98.80-98.70	8	0.05	1	0.05					9	0.10
Α	995	1014	10	98.70-98.60	13	0.05							13	0.05
Α	995	1014	11	98.60-98.50	7	0.10	2	0.10					9	0.20
Α	995	1014	12	98.50-98.40	2	0.10							2	0.10
A	995	1014	13	98.40-98.30	2	0.10		2.42		2.22			2	0.10
A	996	1012	2	99.60-99.50	2	0.10	1	0.10	1	0.30			4	0.50
A A	996 996	1012 1012	3 4	99.50-99.40 99.40-99.30	5 10	0.10	2	0.10					5 12	0.10 0.20
A	996	1012	5	99.30-99.20	15	0.10	2	0.10					17	0.20
A	996	1012	6	99.20-99.10		0.10	7	0.90					8	1.00
A	996	1012	7	99.10-99.00		0.40	11	0.90					54	1.30
A	996	1012	8	99.00-98.90		0.30	4	0.20					133	0.50
Α	996	1012	9	98.90-98.80		1.10	27	3.30					127	4.40
А	996	1012	10	98.80-98.70		0.50	9	0.40					109	0.90
Α	996	1012	11	98.70-98.60		0.10							16	0.10
Α	996	1012	12	98.60-98.50		0.10							22	0.10
A	996	1012	13	98.50-98.40	5	0.10							5	0.10
A	996	1012	15	98.30-98.20		0.10	4	0.40					3	0.10
A A	996 996	1012 1012	3 4	99.40-99.30 99.30-99.20		0.10	1	0.10					18 7	0.20 0.20
A	996	1012	5	99.30-99.20		0.20	1	0.20					23	0.20
A	996	1012	6	99.10-99.00		0.20	5	0.20					22	1.00
A	996	1012	7	99.00-98.90	77	0.20	J	3.00					77	0.20
A	996	1012	8	98.90-98.80		0.10	1	0.10					20	0.20
Α	996	1012	9	98.80-98.70		0.10	2	0.20					3	0.30
Α	996	1012	10	98.70-98.60	6	0.10							6	0.10
Α	996	1012	11	98.60-98.50		0.10	1	0.10					7	0.20
Α	996	1012	12	98.50-98.40		0.10							3	0.10
Α	996	1012	14	98.30-98.20		0.10							2	0.10
A	996	1013	3	99.40-99.30		0.10	1	0.10					18	0.20
Α	996	1013	4	99.30-99.20		0.20		0.00					7	0.20
A	996 996	1013 1013	5 6	99.20-99.10 99.10-99.00		0.20	5	0.20					23 22	0.40 1.00
A A	996	1013	7	99.10-99.00	77	0.20	5	0.00					77	0.20
A	996	1013	8	98.90-98.80	19	0.20	1	0.10					20	0.20
	330	1013	U	JU.JU-J0.0U	13	0.10		0.10					20	U.ZU

	Pro	venience	,					Rurned	Rock Data				т	otals
Excavation						0-5 Wt		5–10 Wt		10–15 Wt		15+ Wt		Total Wt
Block	Northing	Easting	Level	Elev. (m)	0-5 Ct	(kg)	5-10 Ct	(kg)	10-15 Ct	(kg)	15+ Ct	(kg)	Total Ct	(kg)
A	996	1013	9	98.80-98.70	1	0.10	2	0.20		(9)		(1.9)	3	0.30
A	996	1013	10	98.70-98.60	6	0.10							6	0.10
Α	996	1013	11	98.60-98.50	6	0.10	1	0.10					7	0.20
Α	996	1013	12	98.50-98.40	3	0.10							3	0.10
Α	996	1013	14	98.30-98.20	2	0.10							2	0.10
A	996	1014	2	99.50-99.40	1	0.50							1	0.50
A A	996 996	1014 1014	3 4	99.40-99.30 99.30-99.20	7 14	0.10 1.00							7 14	0.10 1.00
A	996	1014	5	99.30-99.20	10	0.10							10	0.10
A	996	1014	6	99.10-99.00	35	0.10	4	3.50					39	3.60
A	996	1014	7	99.00-98.90	18	0.10	5	3.20					23	3.30
Α	996	1014	8	98.90-98.80	44	0.05	4	0.25					48	0.30
Α	996	1014	9	98.80-98.70	39	0.10							39	0.10
Α	996	1014	10	98.70-98.60	30	0.05	5	0.30					35	0.35
A	996	1014	11	98.60-98.50	33	0.10	6	1.00					39	1.10
A	996	1014	12	98.50-98.40	16	0.05							16	0.05
A	996 996	1014 1014	13 14	98.40-98.30 98.30-98.20	11	0.10							11 5	0.10 0.05
A A	996	1014	15	98.20-98.10	5 2	0.05							2	0.05
A	996	1014	16	98.10-98.00	3	0.10							3	0.00
A	996	1014	17	98.00-97.90	2	0.05							2	0.05
В	999	1013	2	99.50-99.40	1	0.10							1	0.10
В	999	1013	5	99.20-99.10	1	0.20							1	0.20
В	999	1013	6	99.10-99.00	4	0.20	1	0.60					5	0.80
В	999	1013	7	99.00-98.90	8	0.60	1	0.50					9	1.10
В	999	1013	8	98.90-98.80	7	0.60	6	0.50					13	1.10
В	999	1013	9	98.80-98.70	2	0.70							2	0.70
В	999	1013	11	98.60-98.50	8	0.10							8	0.10
В	999	1013	12	98.50-98.40	2	0.10							2	0.10
<u>В</u> В	999 999	1014 1014	<u>2</u> 5	99.50-99.40 99.20-99.10	4	0.10							4	0.10 0.60
В	999	1014	6	99.20-99.10	3	0.60							3	0.60
В	999	1014	7	99.00-98.90	3	0.60							3	0.60
В	999	1014	8	98.90-98.80	9	1.30							9	1.30
В	999	1014	9	98.80-98.70	13	0.80							13	0.80
В	999	1014	11	98.60-98.50	2	0.01							2	0.01
В	999	1014	12	98.50-98.40	4	0.10							4	0.10
С	Ftr 4	Ftr 4		99.42-99.20	75	0.80	78	12.60	26	14.20	12.00	15.50	191	43.10
С	1000	1003	1	99.83-99.70	2	0.10	1	0.20					3	0.30
С	1000	1003	2	99.70-99.60	4	0.10							4	0.10
С	1000	1003	3	99.60-99.50	11	0.05	1	0.05					12	0.10
C	1000 1000	1003 1003	4 5	99.50-99.40 99.40-99.30	13 4	0.10	<u>3</u>	0.30					16 5	0.40 0.20
C	1000	1003	6	99.40-99.30	12	0.10	3	0.10					15	0.20
C	1000	1003	7	99.20-99.10		0.30	1	0.30					34	0.60
C	1000	1003	8	99.10-99.00	16	0.10		0.00					16	0.10
С	1000	1003	9	99.00-98.90	22	0.20								0.20
С	1000	1004				0.20							22	0.20
С		1004	1	99.77-99.70	1	0.10							22 1	0.10
	1000	1004	2	99.70-99.60	1	0.10 0.10							1	0.10 0.10
С	1000	1004 1004	3	99.70-99.60 99.60-99.50	1 1 7	0.10 0.10 0.10							1 1 7	0.10 0.10 0.10
С	1000 1000	1004 1004 1004	2 3 4	99.70-99.60 99.60-99.50 99.50-99.40	1 1 7 7	0.10 0.10 0.10 0.10	4	0.50					1 1 7 11	0.10 0.10 0.10 0.60
C C	1000 1000 1000	1004 1004 1004 1004	2 3 4 5	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30	1 1 7 7 8	0.10 0.10 0.10 0.10 0.10	4 2	0.50 0.20					1 1 7 11 10	0.10 0.10 0.10 0.60 0.30
C C C	1000 1000 1000 1000	1004 1004 1004 1004 1004	2 3 4 5 6	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.30-99.20	1 1 7 7 8 27	0.10 0.10 0.10 0.10 0.10 0.10							1 7 11 10 27	0.10 0.10 0.10 0.60 0.30 0.10
0000	1000 1000 1000 1000 1000	1004 1004 1004 1004 1004 1004	2 3 4 5 6 7	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.30-99.20 99.20-99.10	1 7 7 8 27 7	0.10 0.10 0.10 0.10 0.10 0.10 0.20	2	0.20					1 7 11 10 27 7	0.10 0.10 0.10 0.60 0.30 0.10 0.20
0000	1000 1000 1000 1000 1000 1000	1004 1004 1004 1004 1004 1004 1004	2 3 4 5 6 7 8	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.30-99.20 99.20-99.10 99.10-99.00	1 7 7 8 27 7 14	0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.10	2	0.20					1 7 11 10 27 7 16	0.10 0.10 0.10 0.60 0.30 0.10 0.20 0.20
C C C C	1000 1000 1000 1000 1000 1000 1000	1004 1004 1004 1004 1004 1004 1004 1004	2 3 4 5 6 7 8 9	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.30-99.20 99.20-99.10 99.10-99.00 99.00-98.90	1 7 7 8 27 7 14 23	0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.10 0.10	2	0.20 0.10 0.10					1 7 11 10 27 7 16 24	0.10 0.10 0.10 0.60 0.30 0.10 0.20 0.20 0.20
0000	1000 1000 1000 1000 1000 1000	1004 1004 1004 1004 1004 1004 1004	2 3 4 5 6 7 8	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.30-99.20 99.20-99.10 99.10-99.00	1 7 7 8 27 7 14	0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.10	2 2 1	0.20					1 7 11 10 27 7 16	0.10 0.10 0.10 0.60 0.30 0.10 0.20 0.20
000000	1000 1000 1000 1000 1000 1000 1000 100	1004 1004 1004 1004 1004 1004 1004 1004	2 3 4 5 6 7 8 9	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.20-99.10 99.10-99.00 99.00-98.90 98.80-98.80 98.70-98.60	1 1 7 7 8 27 7 14 23 20	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.10 0.10	2 2 1	0.20 0.10 0.10					1 7 11 10 27 7 16 24 21	0.10 0.10 0.10 0.60 0.30 0.10 0.20 0.20 0.20 0.20
000000000000000000000000000000000000000	1000 1000 1000 1000 1000 1000 1000 100	1004 1004 1004 1004 1004 1004 1004 1004	2 3 4 5 6 7 8 9 10 11 12 13	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.30-99.20 99.10-99.00 99.00-98.90 98.90-98.80 98.80-98.60 98.60-98.50	1 1 7 7 8 27 7 14 23 20 14 7	0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.10	2 2 1	0.20 0.10 0.10					1 1 7 11 10 27 7 16 24 21 14 7	0.10 0.10 0.10 0.60 0.30 0.10 0.20 0.20 0.20 0.10 0.10 0.10
000000000000000000000000000000000000000	1000 1000 1000 1000 1000 1000 1000 100	1004 1004 1004 1004 1004 1004 1004 1004	2 3 4 5 6 7 8 9 10 11 12 13 14	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.20-99.10 99.10-99.00 99.00-98.90 98.90-98.70 98.70-98.60 98.60-98.50 98.50-98.40	1 1 7 7 8 27 7 14 23 20 14 7	0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.10	2 2 1	0.20 0.10 0.10					1 1 7 11 10 27 7 16 24 21 14 7	0.10 0.10 0.10 0.60 0.30 0.10 0.20 0.20 0.20 0.20 0.10 0.10 0.10
000000000000000000000000000000000000000	1000 1000 1000 1000 1000 1000 1000 100	1004 1004 1004 1004 1004 1004 1004 1004	2 3 4 5 6 7 8 9 10 11 12 13 14 15	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.20-99.10 99.10-99.00 99.00-98.90 98.80-98.70 98.70-98.60 98.60-98.50 98.50-98.40 98.40-98.30	1 1 7 7 8 27 7 14 23 20 14 7 7 5	0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	2 2 1	0.20 0.10 0.10					1 1 7 11 10 27 7 16 24 21 14 7 7	0.10 0.10 0.10 0.60 0.30 0.10 0.20 0.20 0.20 0.10 0.10 0.10 0.10
000000000000000000000000000000000000000	1000 1000 1000 1000 1000 1000 1000 100	1004 1004 1004 1004 1004 1004 1004 1004	2 3 4 5 6 7 8 9 10 11 12 13 14 15 1	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.30-99.20 99.20-99.10 99.10-99.00 98.90-98.80 98.80-98.70 98.70-98.60 98.60-98.50 98.50-98.40 98.40-98.30 99.60-99.50	1 1 7 7 8 27 7 14 23 20 14 7 7 5 9	0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	2 1 1 1	0.20 0.10 0.10 0.10					1 1 7 11 10 27 7 16 24 21 14 7 7 7 5 9	0.10 0.10 0.10 0.10 0.60 0.30 0.10 0.20 0.20 0.20 0.10 0.10 0.10 0.1
000000000000000000000000000000000000000	1000 1000 1000 1000 1000 1000 1000 100	1004 1004 1004 1004 1004 1004 1004 1004	2 3 4 5 6 7 8 9 10 11 12 13 14 15 1	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.20-99.10 99.10-99.00 99.00-98.90 98.80-98.70 98.70-98.60 98.60-98.50 98.40-98.30 99.60-99.50 99.50-99.40	1 1 7 7 8 27 7 14 23 20 14 7 7 5 9	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.10	2 1 1 1	0.20 0.10 0.10 0.10 0.20					1 1 7 11 10 27 7 16 24 21 14 7 7 5 9	0.10 0.10 0.10 0.60 0.30 0.20 0.20 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.10
000000000000000000000000000000000000000	1000 1000 1000 1000 1000 1000 1000 100	1004 1004 1004 1004 1004 1004 1004 1004	2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.20-99.10 99.10-99.00 98.90-98.80 98.80-98.70 98.70-98.60 98.60-98.50 98.40-98.30 99.60-99.50 99.50-99.40 99.40-99.30	1 1 7 7 8 27 7 14 23 20 14 7 7 5 9 3 1	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.10	2 1 1 1	0.20 0.10 0.10 0.10					1 1 7 11 10 27 7 16 24 21 14 7 7 5 9 3 15	0.10 0.10 0.10 0.10 0.60 0.30 0.10 0.20 0.20 0.20 0.10 0.10 0.10 0.1
	1000 1000 1000 1000 1000 1000 1000 100	1004 1004 1004 1004 1004 1004 1004 1004	2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.20-99.10 99.10-99.00 99.00-98.90 98.80-98.80 98.60-98.50 98.50-98.40 98.40-98.30 99.60-99.50 99.50-99.40 99.60-99.50	1 1 7 7 8 27 7 14 23 20 14 7 7 5 9 3 1 1 33	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.10	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.20 0.10 0.10 0.10 0.20 0.30					1 1 7 11 10 27 7 16 24 21 14 7 7 5 9 3 15 36 10	0.10 0.10 0.10 0.10 0.60 0.30 0.10 0.20 0.20 0.20 0.10 0.10 0.10 0.1
	1000 1000 1000 1000 1000 1000 1000 100	1004 1004 1004 1004 1004 1004 1004 1004	2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 1 2 3	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.20-99.10 99.10-99.00 99.00-98.90 98.80-98.70 98.70-98.60 98.60-98.50 98.60-99.50 99.50-99.40 99.40-99.30 99.60-99.50 99.50-99.40	1 1 7 7 8 27 7 14 23 20 14 7 7 5 9 3 1 33 10 25	0.10 0.10	2 1 1 1 14 3	0.20 0.10 0.10 0.10 0.20 0.30					1 1 7 11 10 27 7 16 24 21 14 7 7 5 9 3 15 36 10 29	0.10 0.10 0.10 0.10 0.60 0.30 0.10 0.20 0.20 0.20 0.10 0.10 0.10 0.1
	1000 1000 1000 1000 1000 1000 1000 100	1004 1004 1004 1004 1004 1004 1004 1004	2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 1	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.20-99.10 99.10-99.00 99.00-98.90 98.80-98.80 98.80-98.70 98.60-98.50 98.60-99.50 99.50-99.40 99.40-99.30 99.50-99.40 99.40-99.30	1 1 7 7 8 27 7 14 23 20 14 7 7 5 9 3 1 1 33 10 25 14	0.10 0.10	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.20 0.10 0.10 0.10 0.20 0.30					1 1 7 11 10 27 7 16 24 21 14 7 7 5 9 3 15 36 10 29 15	0.10 0.10 0.10 0.10 0.10 0.60 0.30 0.10 0.20 0.20 0.20 0.10 0.10 0.10 0.1
	1000 1000 1000 1000 1000 1000 1000 100	1004 1004 1004 1004 1004 1004 1004 1004	2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 1 2 3	99.70-99.60 99.60-99.50 99.50-99.40 99.40-99.30 99.20-99.10 99.10-99.00 99.00-98.90 98.80-98.70 98.70-98.60 98.60-98.50 98.60-99.50 99.50-99.40 99.40-99.30 99.60-99.50 99.50-99.40	1 1 7 7 8 27 7 14 23 20 14 7 7 5 9 3 1 1 33 10 25	0.10 0.10	2 1 1 1 14 3	0.20 0.10 0.10 0.10 0.20 0.30					1 1 7 11 10 27 7 16 24 21 14 7 7 5 9 3 15 36 10 29	0.10 0.10 0.10 0.10 0.60 0.30 0.10 0.20 0.20 0.20 0.10 0.10 0.10 0.1

	Pro	venience	ı					Burned	Rock Data	1			т	otals
Excavation	Northing	Easting		Elev. (m)	0-5 Ct	0-5 Wt	5-10 Ct	5–10 Wt	10–15 Ct	10–15 Wt	15+ Ct	15+ Wt	Total Ct	Total Wt
Block	Ū	·		, ,		(kg)	0 10 00	(kg)	10 10 00	(kg)	10. 01	(kg)		(kg)
C	1001 1001	1004.5 1004.5	<u>4</u> 5	99.50-99.40 99.40-99.30	16 13	0.10							16 13	0.10 0.10
C	1001.5	1004.0	2	99.60-99.50	4	0.10							4	0.10
С	1001.5	1004	3	99.50-99.40	21	0.10	2	0.10					23	0.20
С	1001.5	1004	4	99.40-99.30	5	0.20	18	0.10					23	0.30
C	1001.5	1005	2	99.50-99.40	10	0.10	2	0.20					12	0.30
D	1001.5 1000	1005 1009	3	99.40-99.30 99.49-99.39	19 1	0.10	1	0.10					20 1	0.20 0.10
D	1000	1009	7	99.09-98.99	14	0.02							14	0.02
D	1000	1009	8	98.99-98.89	4	0.01							4	0.01
D	1000	1009	9	98.89-98.79	18	0.03							18	0.03
D D	1000 1000	1009 1009	10	98.79-98.69	3 13	0.30	2	0.20					5 15	0.50
D	1000	1009	11 2	98.69-98.59 99.59-99.49	13	0.10		0.20					15	0.30 0.10
D	1000	1010	4	99.39-99.29	1	0.10							1	0.10
D	1000	1010	5	99.29-99.19	1	0.10							1	0.10
D	1000	1010	6	99.19-99.09	3	0.10							3	0.10
D	1000	1010	7	99.09-98.99	1	0.10	1	0.10					2	0.20
D D	1000 1000	1010 1010	8	98.99-98.89 98.89-98.79	11 8	0.10	3	0.60					11 11	0.10 1.00
D	1000	1010	10	98.79-98.69	9	0.10		0.00					9	0.10
D	1000	1010	11	98.69-98.59	14	0.20	3	0.40					17	0.60
D	1000	1010	12	98.59-98.49	23	0.20	4	0.20					27	0.40
D D	1000	1010	13	98.49-98.39	8 17	0.10	1 4	0.10					9	0.20
D D	1000 1000	1010 1010	14 15	98.39-98.29 98.29-98.19	17 5	0.10	4	0.50					21 5	0.60 0.10
D	1000	1010	16	98.19-98.09	14	0.10							14	0.10
D	1000	1010	17	98.09-97.99	4	0.10							4	0.10
D	1000	1010	18	97.99-97.89	1	0.10	1	0.20					2	0.30
D	1000	1010	21	97.69-97.59	2	0.10	1	0.40					2	0.10
D D	1001 1001	1009 1009	1 4	99.60-99.49 99.29-99.19	3 12	0.10 1.00	1	0.10 0.75					4 13	0.20 1.75
D	1001	1009	5	99.19-99.09	3	1.00	'	0.73					3	1.00
D	1001	1009	6	99.09-98.99	11	0.20							11	0.20
D	1001	1009	7	98.99-98.89	12	1.00	2	1.30					14	2.30
D	1001	1009	8	98.89-98.79	4	0.10	2	0.20					6	0.30
D D	1001 1001	1009 1009	9 10	98.79-98.69 98.69-98.59	11 9	0.10	3	0.10					14 9	0.20 0.20
D	1001	1009	10	99.59-99.49	1	0.10							1	0.20
D	1001	1009	3	99.39-99.29	1	0.10							1	0.10
D	1001	1009	4	99.29-99.19	5	0.50	1	0.50					6	1.00
D	1001	1009	5	99.19-99.09	2	0.10		0.00					2	0.10
D D	1001 1001	1009 1009	6 7	99.09-98.99 98.99-98.89	5 6	0.10 1.00	9	0.30 1.80	1	0.20			8 16	0.40 3.00
D	1001	1009	8	98.89-98.79		0.10	9	1.00	'	0.20			2	0.10
D	1001	1009	9	98.79-98.69	5	0.10							5	0.10
D	1001	1009	10	98.69-98.59	2	0.10							2	0.10
D	1001	1009	12	98.49-98.39		0.20							3	0.20
D D	1001 1001	1009 1009	13 14	98.39-98.29 98.29-98.19	7	0.10							7	0.10 0.10
D	1001	1009	15	98.19-98.09		0.10							2	0.10
D	1001	1009	18	97.89-97.79		0.10							2	0.10
D	1001	1009	19	97.79-97.69	1	0.10							1	0.10
D	1001	1009	20	97.69-97.59	4	0.10							4	0.10
D D	1001 1001	1009 1009	3	99.59-99.49 99.39-99.29	1	0.10							1	0.10 0.10
D	1001	1009	4	99.39-99.29		0.10	1	0.50					6	1.00
D	1001	1009	5	99.19-99.09		0.10							2	0.10
D	1001	1009	6	99.09-98.99	5	0.10	3	0.30					8	0.40
D	1001	1009	7	98.99-98.89	6	1.00	9	1.80	1	0.20			16	3.00
D	1001	1009	8	98.89-98.79		0.10							2	0.10
D D	1001 1001	1009 1009	9 10	98.79-98.69 98.69-98.59	5 2	0.10							5 2	0.10 0.10
D	1001	1009	12	98.49-98.39		0.10							3	0.10
D	1001	1009	13	98.39-98.29	7	0.10							7	0.10
D	1001	1010	14	98.29-98.19		0.10							4	0.10
D D	1001	1010	15	98.19-98.09	2	0.10							2	0.10
D D	1001 1001	1010 1010	18 19	97.89-97.79 97.79-97.69	1	0.10							2 1	0.10 0.10
D	1001	1010	20	97.69-97.59	4	0.10							4	0.10
				98.77-98.50		0.20	7	1.00	1	1.80			11	3.00

	Pro	venience)					Burned	Rock Data	1			Т	otals
Excavation Block	Northing	Easting		Elev. (m)	0-5 Ct	0-5 Wt (kg)	5-10 Ct	5–10 Wt (kg)	10-15 Ct	10–15 Wt (kg)	15+ Ct	15+ Wt (kg)	Total Ct	Total Wt (kg)
E	1003	1017	2	99.20-99.10	3	0.10		(kg)		(kg)		(kg)	3	0.10
E	1003	1017	4	99.00-98.90	7	0.10							7	0.10
E	1003	1017	5	98.90-98.80	10	0.10							10	0.10
Е	1003	1017	6	98.89-98.70	12	0.10	2	0.10					14	0.20
E	1003	1017	7	98.70-98.60			6	0.60	15	0.10			21	0.70
E	1003	1017	8	98.60-98.50	11	0.10	4	0.20					15	0.30
Е	1003	1017	9	98.50-98.40	4	0.10	5	0.20					9	0.30
E	1003	1017	10	98.40-98.30	2	0.10							2	0.10
E	1003	1017	11	98.30-98.20	1	0.10	2	0.20					3	0.30
<u>E</u> E	1003 1003	1017 1017	13 14	98.10-98.00 98.00-97.90	3	0.10							3	0.10 0.10
E	1003	1017	15	97.90-97.80	3	0.10							3	0.10
E	1003	1017	3	99.10-99.00	2	0.10							2	0.10
E	1003	1018	4	99.00-98.90	3	0.10							3	0.10
Е	1003	1018	5	98.90-98.80	1	0.10	3	0.10					4	0.20
Е	1003	1018	6	98.80-98.70	7	0.10	1	0.10					8	0.20
E	1003	1018	7	98.70-98.60	10	0.10	6	0.40					16	0.50
E	1003	1018	8	98.60-98.50	22	0.01	3	0.02					25	0.03
E	1003	1018	9	98.50-98.40	17	0.10	3	0.20	1	0.40			21	0.70
E	1003	1018	10	98.40-98.30	11	0.10	4	0.30					15	0.40
<u>E</u> E	1003 1003	1018 1018	11 12	98.30-98.20 98.10-98.00	3	0.10	1	0.10					2	0.20 0.10
E	1003	1018	14	98.10-98.00	4	0.10							4	0.10
E	1003	1018	15	97.90-97.80	6	0.10							6	0.10
E	1003	1019	2	99.20-99.10	2	0.10							2	0.10
E	1003	1019	4	99.00-98.90	5	0.10							5	0.10
E	1003	1019	5	98.90-98.80	10	0.10	4	0.10					14	0.20
Е	1003	1019	6	98.80-98.70	14	0.10	5	0.40					19	0.50
E	1003	1019	7	98.70-98.60	24	0.20	9	0.70					33	0.90
E	1003	1019	8	98.60-98.50	16	0.20	4	0.20					20	0.40
E	1003	1019	9	98.50-98.40	10	0.10	3	0.10					13	0.20
E	1003	1019	10	98.40-98.30	11	0.10	4	0.40					15	0.50
<u>E</u>	1003 1003	1019 1019	11 12	98.30-98.20 98.20-98.10	10	0.10	7	1.00					17 2	1.10 0.10
E	1003	1019	13	98.10-98.00	5	0.10							5	0.10
E	1003	1019	15	97.90-97.80	1	0.10							1	0.10
E	1004	1017	2	99.20-99.10	3	0.10							3	0.10
Е	1004	1017	4	99.00-98.90	5	1.00							5	1.00
E	1004	1017	5	98.90-98.80	6	0.50	1	0.50					7	1.00
E	1004	1017	6	98.80-98.70	8	0.10	2	0.20					10	0.30
E	1004	1017	7	98.70-98.60	4	0.10	8	1.20					12	1.30
E	1004	1017	8	98.60-98.50	14	1.00	_						14	1.00
Ш	1004	1017	9	98.50-98.40	8	0.50	3	1.00					11	1.50
E	1004	1017	10	98.40-98.30	3	0.50	4	0.40					3	0.50
E	1004 1004	1017 1018	11 4	98.30-98.20 99.00-98.90		1.00	1	0.10					1	0.10 1.00
E E	1004	1018	5	98.90-98.80		0.10							2	0.10
E	1004	1018	6	98.80-98.70		0.10	4	0.30					11	0.40
E	1004	1018	7	98.70-98.60		0.10	7	1.20					11	1.30
E	1004	1018	8	98.60-98.50		0.20	1	0.10					12	0.30
E	1004	1018	9	98.50-98.40		0.05	1	0.05					8	0.10
E	1004	1018	10	98.40-98.30		0.10							6	0.10
E	1004	1018	11	98.30-98.20		0.10		6.1-					2	0.10
E	1004	1018	12	98.20-98.10		0.10	1	0.10					4	0.20
E E	1004 1004	1019 1019	5 6	98.90-98.80 98.80-98.70		0.10							7	0.10 0.10
E	1004	1019	7	98.70-98.60		0.70	5	0.20					32	0.10
E	1004	1019	8	98.60-98.50		0.10	2	0.20					7	0.30
E	1004	1019	9	98.50-98.40		0.10	4	0.30					15	0.40
E	1004	1019	10	98.40-98.30		0.10	1	0.10					14	0.20
Е	1004	1019	11	98.30-98.20		0.10							6	0.10
E	1004	1019	12	98.20-98.10		0.10							7	0.10
E	1004	1019	13	98.10-98.00		0.10							2	0.10
E	1004	1019	14	98.00-97.90		0.20							12	0.20
E	1004	1019	15	97.90-97.80		0.10							1	0.10
F	1009	1011	5	98.90-98.80		0.3	4	0.0					3	0.3
F F	1009 1009	1011 1011	6 7	98.80-98.70 98.70-98.60		0.7	2	0.6					6 17	1.3 1.1
F	1009	1011	8	98.60-98.50		0.7	1	0.4					4	1.1
F	1009	1011	9	98.50-98.40		0.2	-	0.7					5	0.2
F I					1	0.2							1	0.2

	Pro	venience						Burned	Rock Data)			Т	otals
Excavation Block	Northing	Easting	Level	Elev. (m)	0–5 Ct	0–5 Wt (kg)	5-10 Ct	5–10 Wt (kg)	10-15 Ct	10-15 Wt (kg)	15+ Ct	15+ Wt (kg)	Total Ct	Total Wt (kg)
F	1009	1011	11	98.30-98.20	5	0.1							5	0.1
F	1009	1011	12	98.20-98.10	6	0.1							6	0.1
F	1009	1011	13	98.10-98.00	8	0.1	2	0.2					10	0.3
F	1009	1011	14	98.00-97.90	1	0.10							1	0.1
F	1009	1012	1	99.21-99.10	3	0.10							3	0.1
F	1009	1012	3	99.00-98.90	2	0.10							2	0.1
F	1009	1012	4	98.90-98.80	1	0.10							1	0.1
F	1009	1012	5	98.80-98.70	3	0.7							3	0.7
F	1009	1012	6	98.70-98.60	3	0.10							3	0.1
F	1009	1012	7	98.60-98.50	10	0.4							10	0.4
F	1009	1012	8	98.50-98.40	3	0.2							3	0.2
F	1009	1012	9	98.40-98.30	2	0.10							2	0.1
F	1009	1012	10	98.30-98.20	1	0.3		·				·	1	0.3
F	1009	1012	11	98.20-98.10	6	0.2							6	0.2
F	1009	1012	12	98.10-98.00	5	0.1		·				·	5	0.1
				Totals	3034	55.83	582	72.97	49	17.9	12	15.5	3677	162.2

APPENDIX C

Artifact Analysis Tables

Lot No.	Spec.	Bag No.	UI No.	Category	Subcategory	Condition	Raw Material	Munsell	Color	Patination	Heat Evidence	Breakage	Beveling	Reworking	Shoulders	Basal Margin	Blade Observations	Stem Observations	Notching	General Flaking Patterns
				Projectile Point	Indet	Blade	Fine Grain Chert	10YR5/2	Grayish Brown	None	None	Use Wear	None	None	Left: Long and Right: Short	Indet	Straight	Indet	Indet	Ventral: Oblique Subparallel and Dorsal: Collateral
550	69	338	19	Weight (g)	Maximum Length	Maximum Stem Length	Maximum Blade Width	Medial Blade Width	Medial Blade Thickness	Neck Width	Stem Base Width	Medial Stem Thickness	Basal Concavity Width	Base Depth	Left Notch Depth	Right Notch Depth	Left Notch Width	Right Notch Width		Comments
				1.1	Indet	Indet	15	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet		pproximately top 1/3) and stem ; Notch appears to be side
Lot	Spec.	Bag	UI								Heat						Blade	Stem		
No.	No.	No.	No.	٠,	Subcategory	Condition	Raw Material Fine Grain	Munsell	Color	Patination	Evidence	Breakage	Beveling	Reworking	Shoulders	Basal Margin	Observations		Notching	General Flaking Patterns
				Projectile Point	Edwards	Stem	Chert	10YR3/1	Very Dark Gray	None	None	Use Wear	Indet	None	Indet	Deep Concave	Indet	Expanding	Side	Random
552	8	347	20	Weight (g)	Maximum Length	Maximum Stem Length	Maximum Blade Width	Medial Blade Width	Medial Blade Thickness	Neck Width	Stem Base Width	Medial Stem Thickness	Basal Concavity Width	Base Depth	Left Notch Depth	Right Notch Depth	Left Notch Width	Right Notch Width		Comments
				0.32	Indet	Indet	Indet	Indet	Indet	Indet	18.04	2.76	12.99	1.53	Indet	Indet	Indet	Indet	Finely flak	ed edges; Full length unknown
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Condition	Raw Material	Munsell	Color	Patination	Heat Evidence	Breakage	Beveling	Reworking	Shoulders	Basal Margin	Blade Observations	Stem	Notching	General Flaking Patterns
NO.	NO.	NO.	NO.	Projectile Point	Perdiz	Basal Fragment	Fine Grain Chert	10G5/1	Greenish Gray	None	None	Use Wear	None	One Shoulder	Left: Abrupt and Right: Long	Gentle Convex	Indet	Contracting	Side	Subparallel
				Weight (g)	Maximum Length	Maximum Stem Length	Maximum Blade Width	Medial Blade Width	Medial Blade Thickness	Neck Width	Stem Base Width	Medial Stem Thickness	Basal Concavity Width	Base Depth	Left Notch Depth	Right Notch Depth	Left Notch Width	Right Notch Width		Comments
559	7	360	21	0.58	Indet	9.95	14.44	Indet	Indet	5.24	2.98	2.62	0	0	2.64	3.84	11.86	11.74	barb is sign appear association from barb to	gment with partial blade; One ificantly shorter than the other - s to have been removed in n with transver flake extending o opposite lateral margin; Short rb has been retouched
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Condition	Raw Material	Munsell	Color	Patination	Heat Evidence	Breakage	Beveling	Reworking	Shoulders	Basal Margin	Blade Observations	Stem Observations	Notching	General Flaking Patterns
				Projectile Point	Perdiz	Complete	Fine Grain Chert	10YR5/3	Brown	None	None	Indet Break	None	None	Long	Gentle Convex	Straight	Contracting	Corner	Oblique Subparallel
579	10	643	32	Weight (g)	Maximum Length	Maximum Stem Length	Maximum Blade Width	Medial Blade Width	Medial Blade Thickness	Neck Width	Stem Base Width	Medial Stem Thickness	Basal Concavity Width	Base Depth	Left Notch Depth	Right Notch Depth	Left Notch Width	Right Notch Width		Comments
				1.43	31.3	7.02	20.62	15.46	2.53	8.23	4.15	2.28	0	0	2.65	5.03	9.49	10.01	Left should	er tip broken; Mineral impurities in stem (10YR8/2)
Lot No.	Spec. No.	Bag No.	UI No.	٠,	Subcategory			Munsell	Color	Patination	Heat Evidence	Breakage	Beveling	Reworking	Shoulders	Basal Margin	Blade Observations	Stem Observations	Notching	General Flaking Patterns
				Projectile Point	Fresno	Basal Fragment	Fine Grain Chert	10YR3/1	Very Dark Gray	None	None	Use Wear	None	None	Absent	Straight	Convex	Straight	Absent	Oblique Subparallel
607	6	472	NA	Weight (g)	Maximum Length	Maximum Stem Length	Maximum Blade Width	Medial Blade Width	Medial Blade Thickness	Neck Width	Stem Base Width	Medial Stem Thickness	Basal Concavity Width	Base Depth	Left Notch Depth	Right Notch Depth	Left Notch Width	Right Notch Width		Comments
								·	·	·										ment with partial blade; Missing

Appendix C1. Projectile Point Analysis

Lo No		Spec. No.	Bag No.	UI No.	Category	Subcategory	Condition	Raw Material	Munsell	Color	Patination	Heat Evidence	Breakage	Beveling	Reworking	Shoulders	Basal Margin	Blade Observations	Stem Observations	Notching	General Flaking Patterns
					Projectile Point	Zephyr	Complete	Fine Grain Chert	10YR5/3	Brown	None	None	None	None	One Lateral Edge	Short	Straight to Shallow Concave	Left: Convex and Right: Straight	Expanding	Corner	Random
62	1	7	539	27	Weight (g)	Maximum Length	Maximum Stem Length	Maximum Blade Width	Medial Blade Width	Medial Blade Thickness	Neck Width	Stem Base Width	Medial Stem Thickness	Basal Concavity Width	Base Depth	Left Notch Depth	Right Notch Depth	Left Notch Width	Right Notch Width		Comments
					3.86	37.71	10.1	19.69	14.14	4.6	14.27	20.25	5.21	4.89	0	3.3	3.1	11.08	10.5		with 10YR8/2; Basal margin stely straight with a very slight convex curve

Lot No.	Spec. No.		UI No.	Category	Subcategory	Condition	Raw Material	Munsell	Color	Patination	Heat Evidence	Breakage	Beveling	Reworking	Shoulders	Basal Margin	Blade Observations	Stem Observations	Notching	General Flaking Patterns
				Projectile Point	Edwards	Complete	Fine Grain Chert	10YR5/2	Grayish Brown	None	None	None	None	None	Short	Shallow Concave	Straight to Slightly Concave	Expanding	Corner	Random
668	6	588	31	Weight (g)	Maximum Length	Maximum Stem Length	Maximum Blade Width	Medial Blade Width	Medial Blade Thickness	Neck Width	Stem Base Width	Medial Stem Thickness	Basal Concavity Width	Base Depth	Left Notch Depth	Right Notch Depth	Left Notch Width	Right Notch Width		Comments

Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Notched Tool	Indet Fragment	Manufacture	Fine Grain Chert	10YR6/4	Light Yellowish Brown	0	Indet	Reddened	Yes	None	Indet	Indet
316	7	480	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
010	•	100	101	Biconvex Symmetrical	Random	None	Indet	4.72	Indet	Indet	Indet	Indet	Indet		ken and rewor R5/6 color (po along portion	ssibly heat t	,
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Indet Fragment	Manufacture	Fine Grain Chert	5YR5/3	Reddish Brown	0	Indet	Reddened and Potlids	No	None	Indet	Indet
327	g.	589	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
021	J	505	14/4	Biconvex Symmetrical	Random	None	Indet	7.39	Indet	Indet	Indet	Indet	Indet	coarse g	appears to be rain mineral in rgin; Shape is	clusion on le	eft lateral
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition Marginal	Breakage	Raw Material Fine Grain	Munsell	Color	Cortex %	Parent Form	Heat Evidence Reddened	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Fragment	Manufacture	Chert	10YR5/3	Brown	1-25	Indet	and Potlids	No	None	Indet	Indet
				Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
336	11	388	NA	Indet	Indet	None	Indet	6.31	Indet	Indet	Indet	Indet	Indet	5YR5/6 co	otlid damage fro bloration; Left ery small (2mr right latera	lateral marg m) portion of	in is finely
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Distal-Medial Fragment	Manufacture	Fine Grain Chert	10YR5/2	Grayish Brown	0	Indet	Reddened and Gloss	Yes	None	Indet	Indet
339	4	410	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
	4	410	IVA	Jilape	rattern		Juage		-¢nga1		1111CKITC33	Aligie	WILLINGX				or 5) biface

Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Complete	None	Fine Grain Chert	10YR7/2	Light Gray	1-25	Indet	None	No	None	Ovate	Gentle Convex
341	1	421	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
				Biconvex Symmetrical	Random	None	Stage 1	157.9	99.83	51.56	32.73	60	1.58	Platform le	with cortex a oss, step and s thin mineral	hinge fractui	res noted;
Lot No.	Spec.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Complete	None	Fine Grain Chert	10YR6/1	Gray	26-50	Indet	Reddened	Yes	None	Ovate	Gentle Convex
356	1	414	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
000				Biconvex Symmetrical	Random	None	Stage 1	108.64	78.11	47.73	32.12	70	1.79	around cor	nottled with 10 tex; Large blar s thinning; Pla	nk with corte	x with only
Lot No.	Spec.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Complete	None	Fine Grain Chert	10YR4/1	Dark Gray	1-25	Indet	Reddened	Yes	None	Ovate	Gentle Convex
360	1	428	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
				Crescent	Random	None	Stage 2	181.21	94.69	63.08	29.98	70	2.1		nineral inclusi YR7/1); Corte	U	,
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Indet Fragment	Manufacture	Fine Grain Chert	10YR3/1	Very Dark Grav	26-50	Indet	None	No	Light	Indet	Indet
				Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
378	5	586	NA	Crescent to Biconvex Symmetrical	Random	None	Indet	14.5	Indet	Indet	Indet	Indet	Indet	Possibly a based o	nately 50% of a cortical flake n available fra ikes and soft p	; Estimated gment; Evid	a stage 3 ence of

Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Distal-Medial Fragment	Manufacture	Fine Grain Chert	2.5YR6/2	Pale Red	1-25	Indet	Reddened	Yes	None	Indet	Indet
				Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
387	1	452	NA	Biconvex Symmetrical	Random	None	Indet	37.78	Indet	Indet	Indet	Indet	Indet	treatment Estimated a	banded with 2 Cortex at pro stage 2 base step and hingo mare	oximal end ne d on availabl e fractures a	ear break; le fragment;
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Complete	None	Fine Grain Chert	10YR6/2	Light Brownish Grav	0	Indet	None	No	None	Pointed Ovate	Gentle Convex
				Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm		
403	9	495	23	Biconvex Symmetrical	Random	None	Stage 5	53.3	109.29	51.19	9.13	40	5.61	finely work	ned late stage ed left lateral a one face with from attempte	and basal ma multiple step	argin; Thick
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Complete	None	Fine Grain Chert	10YR4/6	Dark Yellowish Brown	1-25	Indet	Reddened and Gloss	Yes	None	Lanceolate	Shallow Concave
				Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
404	1	494	24	Biconvex Symmetrical	Random	None	Stage 3	12.5	53.48	28.72	8.43	35	3.41	basal margi	ately 1% corte n; Prominent I tment; Platfori marg	uster or glos m loss on rig	s likely from
Lot No.	Spec.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Distal-Medial Fragment	Manufacture	Fine Grain Chert	10YR5/1	Gray	76-100	Cortical Flake	None	No	None	Indet	Indet
406	11	E02	NIA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
406	11	503	NA	Biconvex Symmetrical	Indet	Right Lateral	Stage 5	0.81	Indet	Indet	Indet	Indet	Indet	estin	estic projectile nate percentaç Predominately	ge of comple	etion;

Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Indet Fragment	Manufacture	Fine Grain Chert	10YR5/1	Gray	1-25	Indet	None	No	None	Indet	Indet
	_			Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
417	5	561	NA	Crescent	Collateral	None	Indet	6.44	Indet	Indet	Indet	Indet	Indet	fragment th complete; \	nclusions (<1) at appears to 'ery small am ragment is ve	be approximount of corte	nately 50% ex on distal
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Indet Fragment	Manufacture	Fine Grain Chert	10YR5/4	Yellowish Brown	0-25	Indet	Reddened	Yes	None	Indet	Indet
				Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
444	4	482	NA	Biconvex Symmetrical	Random	None	Indet	15.46	Indet	Indet	Indet	Indet	Indet	heat treatm	ominately dan ent; partial bi tion - appears distal p	face with bre to be the m	eak ácross
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Medial Fragment	Use	Fine Grain Chert	N3/	Very Dark Gray	0	Indet	None	No	None	Indet	Indet
462	21	526	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
.02		020		Indet	Oblique Subparallel	None	Indet	0.16	Indet	Indet	Indet	Indet	Indet	point; One	lial fragment; shoulder may cern from ava	y be intact, b	ut cannot
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Indet Fragment	Manufacture	Fine Grain Chert	10YR6/2	Light Grayish Brown	0	Indet	None	No	None	Indet	Indet
475	8	534	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
3	-			Indet	Indet	None	Indet	0.86	Indet	Indet	Indet	Indet	Indet		gment that ap		

Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Distal-Medial Fragment	Manufacture	Fine Grain Chert	10YR5/2	Grayish Brown	0	Indet	None	No	None	Indet	Indet
486	2	315	18	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
				Biconvex Symmetrical	Collateral	None	Indet	6	Indet	Indet	Indet	Indet	Indet	througho	I tip broken; L it both faces f ete but appea	ocused on d	istal end;
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Marginal-Distal Fragment	Manufacture	Fine Grain Chert	10YR5/3 to 10YR5/4	Brown to Yellowish Brown	0	Indet	None	No	None	Indet	Indet
512	6	447	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
				Indet	Indet	None	Indet	0.86	Indet	Indet	Indet	Indet	Indet		agment with pured with fine of lateral	flaking alon	
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Basal Fragment		Fine Grain Chert	10YR5/1	Gray	0	Indet	None	No	None	Indet	Indet
				Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
533	8	641	NA	Indet	Indet	Indet	Indet	1.51	Indet	Indet	Indet	Indet	Indet	corner/sh	ragment that a oulder; Fine (p al with long pa on one	oossibly soft aralleling thir	pressure)
Lot	Spec.	Bag	UI	Category	Subcategory	Specimen	Breakage	Raw	Munsell	Color	Cortex %	Parent	Heat	Intentional Heat	Patination	Overall	Basal
No.	No.	No.	No.			Condition Medial-Basal		Material Fine Grain				Form	Evidence	Treatment		Shape	Shape Shallow
				Biface Cross-section	Gahagan Biface Flaking	Fragment	Use Reduction	Chert	10YR5/1 Max	Gray	0 Max	Indet Avg Edge	None Callahan's	No	None	Lanceolate	Concave
552	70	347	NA	Shape	Pattern	Beveling	Stage	Weight (g)	Length	Max Width	Thickness	Angle	w/t index		Comm		
332	70	0 4 7	INA	Biconvex Symmetrical	Oblique Subparallel	None	Indet	19	Indet	Indet	Indet	35	Indet	Slight cor edges; Left	stage or comp cave basal ma basal shoulde es of mineral i	argin, recurv er broken and	ed lateral I reworked

Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Distal-Medial Fragment	Manufacture	Fine Grain Chert	10YR4/2	Dark Grayish Brown	1-25	Indet	Slight Luster	Yes	None	Indet	Indet
560	1	363	22	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm		
				Biconvex Symmetrical	Random	None	Indet	10.38	Indet	Indet	Indet	25	Indet	appears to	one face (10\ be late stage ulder to middle	; Break runs	s from left
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material Fine Grain	Munsell	Color Dark Grayish	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Indet Fragment		Chert	10YR4/2	Brown	0	Indet	None	No	None	Indet	Indet
561	7	367	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
				Indet	Indet	None	Indet	0.64	Indet	Indet	Indet	Indet	Indet		agment that ap Step fracture o reduc	n one face p	
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Distal-Medial Fragment	Manufacture	Fine Grain Chert	10YR5/2	Grayish Brown	1-25	River Cobble	Reddened	Yes	None	Indet	Indet
				Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
565	5	374	NA	Biconvex Symmetrical	Random	None	Indet	20.35	Indet	Indet	Indet	Indet	Indet	lateral mar focused o biface with	ppears to be t gins widening n medial portion n no indication neral inclusion	towards bre on of one fac of use or in	ak; Cortex ce; Edged tent; 20%
				T										Intentional			
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Distal-Medial Fragment	Indet	Fine Grain Chert	10YR5/1	Gray	0	Indet	None	No	None	Indet	Indet
				Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
569	5	389	NA	Biconvex Symmetrical	Subparallel to Oblique Subparallel	None	Stage 5	0.68	Indet	Indet	2.7	25	Indet	is 10YR7	stic projectile p 7/4 in color; Ba th possible no shoul	ısal margin i tch work beç	s slightly

Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Complete	None	Fine Grain Chert	10YR3/1 to 10YR2/1	Very Dark Gray to Black	0-25	Nodular Cobble	None	No	None	Amorphous	Indet
580	14	648	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comn	nents	
				Biconvex Symmetrical	Random	None	Stage 2	90.68	82.04	58.92	23.08	40	2.55	Early stage	with shape st hard pressu	tarted but not re reduction	clear; Only
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Complete	None	Fine Grain Chert	10YR6/3	Pale Brown	26-50	Indet	None	No	None	Teardrop	Gentle Convex
593	1	565	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comn	nents	
				Biconvex Symmetrical	Random	None	Stage 3	52.29	62.64	48.08	17.75	50	2.7	encompa	sses one fac	l end; Cortex on the cortex of the cortex (10YR6/4	lusions;
																•	•
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Complete	None	Fine Grain Chert	10YR4/4	Dark Yellowish Brown	1-25	Indet	None	No	None	Subtriangula r	Straight to Gentle Convex
594	1	566	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comn	nents	
				Indet	Random	None	Stage 3	36.81	53.56	46.01	15.21	55	3.02	on one face	; Edge worki	small patches ng begun on o of basal marg	one lateral
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Indet Fragment		Fine Grain Chert	10YR5/2	Grayish Brown	0	Indet	None	No	None	Indet	Indet
507	_	57 5	NIA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comn		
597	5	575	NA	Crescent	Random	None	Indet	31.38	Indet	Indet	Indet	Indet	Indet	blank stage discernable	e due to very e shape, but i	ith break; Esti sinuous edge it is relatively t ures throughou	s, and no hin; small

Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Distal-Medial Fragment	Manufacture	Coarse Grain Chert	10YR5/2	Grayish Brown	0	Indet	None	No	None	Indet	Indet
620	1	531	26	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	nents	
				Biconvex Symmetrical	Subparallel and Oblique Parallel	None	Stage 5	38.43	Indet	Indet	Indet	25	Indet	lateral ba	like large blacese to middle colusions throu	of right latera	l margin;
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Medial-Basal Fragment	Manufacture	Fine Grain Chert	10YR3/3	Dark Brown	0	Indet	Reddened	Yes	None	Lanceolate	Shallow Concave
623	9	581	30	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	nents	
020	Ü	001		Biconvex Symmetrical	Random	None	Stage 3	12.13	Indet	24.89	7.05	25	3.53	shaping but	orojectile poin still needs this slete with only	nning; Estima	ated at 80%
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Marginal Fragment	Indet	Fine Grain Chert	10YR3/3	Dark Brown	0	Indet	None	No	None	Indet	Indet
				Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	nents	
632	9	385	NA	Indet	Indet	None	Indet	0.43	Indet	Indet	Indet	Indet	Indet	has been rei or edge col soft pressur	narginal with omoved possiblapse; Very the reduction; Aprojectile poin	oly due to hea nin with fine fl Appears to be t; Indet fractu	at treatment aking from portion of
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Distal-Medial Fragment	Use	Fine Grain Chert	10YR4/1	Dark Gray	0	Indet	None	No	None	Indet	Indet
634	1	397	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm		
034		397	NA	Biconvex Symmetrical	Oblique Subparallel	None	Stage 5	12.14	Indet	Indet	Indet	Indet	Indet	throughou	stal tip broken it (5%); Estima and evidence	ated at stage	5 due to

reduction

Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Biface	Biface	Basal Fragment	Indet	Fine Grain Chert	10YR5/4	Yellowish Brown	26-50	Indet	None	No	None	Indet	Indet
646	5	369	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
646	5	369	NA		•	Beveling None		Weight (g)		Max Width					Commagment that applied to a rounder	pears to be	

L N		Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
					Biface	Biface	Distal Fragment	Use	Fine Grain Chert	10YR4/1	Dark Gray	26-50	Indet	None	No	None	Indet	Indet
64	17	6	381	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comm	ents	
					Biconvex Symmetrical	Subparallel	None	Stage 5	0.45	Indet	Indet	Indet	Indet	Indet		n of possible p agment; Corte		

Lot No.			Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
					Biface	Biface	Complete	None	Fine Grain Chert	10YR4/2	Dark Grayish Brown	0	Indet	None	No	None	Lanceolate	Irregular
661	7	7	469	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Comn		
		Crescent	Random	None	Stage 5	8.76	61.95	28.53	6.4	30	4.45	U	•	to right at a st ineral inclusi				

Appendix C3. Sraper Analysis

Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Spec Condition	Breakage	Raw material	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
			NA	Scraper	End and Side- scraper	Complete	None	Fine Grained Chert	5YR5/2 to 5YR4/3	0	Reddened	Yes	None	Unifacial-dorsal	Continuous	Distal and Left Lateral Margin
390	6	458		Weight (g)	Relative Length	Relative Width	Maximum Thickness	Perimeter Retouch Length	Height of Retouch	Reduction Index	Average Edge Angle	Platform width	Platform Thickness		Comi	nents
				20.12	56.94	31.74	9.16	90	5.36	0.59	55	14.63	6.7	Typical Toyah scraper worke evidence of post depositions margin near	al breakage on right lateral	

Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Proximal- Medial	Snap	Fine Grain Chert	10YR5/3 to 10YR5/4	Brown to Yellowish Brown	1-25	None	NA	None	Unifacial-dorsal	Focused	Right Lateral Margin
318	5	492	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				23.74	Indet	67.21	10.29	1.74	19	55	5.91	12.98	5.78		side struck fl	ide struck flake or ake; Left lateral m owards distal mar	nargin is conve	
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Cultural	Proximal Missing	Snap	Fine Grain Chert	10YR7/4 to 10YR7/6	Very Pale Brown and	0-25	Reddened	Yes	None	Unifacial-dorsal	Continuous	Left Lateral Margin
318	6	492	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				1.21	Indet	18.31	3.26	0.48	20.8	70	6.79	Indet	Indet	Incomplete fl		kimal end and plat oval on left lateral		Very fine flake
Lot No.	Spec.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Utilized Flake	Indet	Complete	None	Fine Grain Chert	10YR4/1	Dark Gray	26-50	None	NA	None	Unifacial-dorsal	Focused	Left Lateral Margin
320	1	501	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		Wargin
				43.57	64.5	42.48	16.49	1.55	29	55	10.64	12.82	7.85	Nodular p	arent rock; C	ortical flake with i inclusion	rregular grain a	and mineral
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Medial-Distal	Snap	Fine Grain Chert	10YR6/2	Light Brownish Gray	0	None	NA	None	Unifacial-dorsal	Indet	Left Lateral Margin
323	32	524	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				2.75	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet			and the worked e nargin with possib lateral margin		
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Medial-Distal	Snap	Fine Grain Chert	10YR7/1	Light Gray	51-75	None	NA	None	Unifacial-dorsal	Focused	Left Lateral Margin
323	30	524	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				5.38	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Platform remo		nap break through n dorsal side of bi		ter of tool; work

Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Medial-Distal	Snap	Coarse Grain Chert	10YR7/2	Light Gray	0	None	NA	None	Unifacial-dorsal	Focused	Right Lateral Margin
323	31	524	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		•
				5.38	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet		ved from edg	ndetermined amo e of break along i ave been intentio	ight lateral ma	
Lot No.	Spec. No.	Bag No.		Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Complete	None	Fine Grain Chert	10YR7/4 to 10YR7/6	Very Pale Brown to Yellow	0-25	None	NA	None	Bifacial	Focused	Left and Right Lateral Margin
336	10	388	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				2.07	28.95	19.66	5.02	1.27	29	55	3.95	6.89	4.03			ed locations of ret and and right later distal end		
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Complete	None	Fine Grain Chert	7.5YR4/2	Brown	0	Reddened	Yes	Yes	Unifacial-dorsal	Continuous	Left Lateral margin
337	6	399	NA .	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Length	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				33.73	54.88	37.13	18.92	2.46	45	70	7.69	22.63	11.38			Reddish Gray ban e; prominent patii		
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Cultural	Indet	Snap	Fine Grain Chert	10YR5/2	Gray to Grayish Brown	0	None	NA	None	Bifacial	Clustered	Left and Right Lateral Margins
337	7	399	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				2.01	Indet	22.28	2.33	1.02	66	45	2.29	Indet	Indet			both proximal an	U	

Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Utilized Flake	Indet	Complete	None	Chert	10YR5/2 to 10YR6/2	Grayish Brown to Light Grayish Brown	0-25	None	NA	None	Unifacial-dorsal	Focused	Proximal and Right Lateral Margin
337	8	399	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Length	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				60.49	72.9	39.74	25.63	2.05	30	80	12.5	5.78	3.97	Large chunky		eeply ground utiliz ouch flaking on ar		istinct evidence
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color		Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Cultural	Indet	Snap	Fine Grain Chert	10YR5/1 to 10YR5/2	Gray to Grayish Brown	0	None	NA	None	Bifacial	Indet	Indet
339	10	410	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				10.26	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet		,	retouched point (ake removal is evi	, , ,	0 / .
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Utilized Flake	Indet	Complete	None	Fine Grain Chert	10YR5/1 to 10YR6/1	Gray to Light Gray	0-25	None	NA	None	Unifacial-dorsal	Continuous	Left Lateral Margin and Distal Margin
342	5	422	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				86.18	61.63	53.97	20.39	0.64	86	80	31.86	50.75	14.14			left lateral margin flakes; Possibly n		
Lot No.	Spec.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color		Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Complete	Snap	Fine Grain Chert	10YR5/1 to 10YR5/2	Gray to Grayish Brown	0	None	NA	None	Unifacial-dorsal	Focused	Distal Margin
351	2	370	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Length	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				5.24	28.91	30.18	6.96	2.43	15	70	2.86	Indet	Indet			istal end; Undeter I and exhibits step		
Lot No.	Spec.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Complete	None	Fine Grain	10YR6/2	Light Brownish	0	None	NA	None	Unifacial-ventral	Focused	Distal Margin
354	7	326	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Chert Perimeter Retouch Length	Average Edge Angle	Gray Reduction Index	Platform width	Platform thickness			Comments		
				10.97	39.74	48.89	5.47	1.3	26	30	4.21	15.3	5.42	Inclusio	n of 10YR5/1	gray; Thin flake;	Retouch may l	oe natural
																	-	

Lot No.	Spec. No.	Bag No.	JI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Cultural	Complete	None	Fine Grain Chert	10YR7/1	Light Gray	1-25	None	NA	Yes	Unifacial-dorsal	Focused	Right Lateral Margin
369	7	487	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
	·			3.16	41.21	15.1	4.46	0.68	23	40	6.56	6.56	3.64	margin's lengt	th; Patina on Flake remov	nargin cortex to ju dorsal and ventra red from right later n may have been	l face; Gley 2 al margin nea	inclusions 2.5/1
Lot No.	Spec. No.	Bag No.	JI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Left Lateral Margin Missing	Bend	Fine Grain Chert	10YR5/1	Gray	51-75	None	NA	None	Unifacial-dorsal	Indet	Left Lateral Margin
371	1	497	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				59.86	72.84	Indet	19.28	3.22	44	60	5.98	24.08	7.4	crude flake	removal; Wor	ateral margin on d king ends on left ed with 2.5YR3/3 mineral inclusion	lateral margin (Dark Reddisl	at break near
Lot No.	Spec. No.	Bag No.	JI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Complete	None	Fine Grain Chert	10YR4/2 to 10YR5/2	Dark Grayish Brown to Grayish Brown	0-25	None	NA	Yes	Unifacial-dorsal	Continuous	Left and Right Lateral Margin and Distal Margin
380	5	627	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		Margin
				4.55	25.58	27.38	6.37	0.68	78	40	9.37	8.91	3.13	Thin flake with		patina on ventral s ges except for pla		etouch along all
Lot No.	Spec. No.	Bag No.	JI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Complete	None	Fine Grain Chert	5PB5/1	Bluish Gray	0	None	NA	None	Unifacial-dorsal	Focused	Distal Margin
386	7	445	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				33.3	45.55	41.8	17.64	3.66	40	65	4.82	15.29	6.98	Larger flak	es have beer	n taken from the c r-like" shape - reto	lorsal side alo	ng all edges

Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Distal-Medial	Snap	Fine Grain Chert	10YR6/1 and 10YR6/2	Gray to Light Brownish Gray	0-25	None	NA	None	Unifacial-dorsal	Indet	Right Lateral Margin
388	6	362	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Length	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				42.64	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	hammer pe	rcussion on le	dence of crushed eft lateral margin; and includes crus	Retouch porti	on of the right
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Complete	None	Fine Grain Chert	10YR5/3	Gray to Grayish Brown	0	None	NA	None	Bifacial	Focused	Left and Right Lateral Margin
389	7	451	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				1.54	33.96	17.69	3.04	1.58	39	55	0.52	3.86	1.4	Thin flake		eak on ventral fac ch; Both fine scal		d locations of
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	
				Modified Flake	Edge-modified	Indet	Complete	None	Fine Grain Chert	10YR3/1	Very Dark Gray	0	None	NA	None	Bifacial	Continuous	Left and Right Lateral Margins
401	6	488	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				4.7	27.7	20.96	8.67	2.6	75	70	0.30	Indet	Indet		reakage with	etouch predomina evidence of crus es around entire	hing along ed	
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	
				Modified Flake	Utilized Flake	Indet	Complete	None	Coarse Grain Chert	10YR5/1	Gray	1-25	None	NA	None	Unifacial-ventral	Continuous	Right Lateral Margin/Distal Margin
406	7	503	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Length	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
- 100	,	000		47.3	62.74	46.68	14.76	1.33	89	55	0.09	11.29	2.36	light flake completely	e removal on on ventral fa d on medial-p	inclusions (10YR dorsal face; Utiliz ce along right mar roximal area of rig f use-wear or actu	ation and use- gin and distal tht lateral mar	wear noted margin; Light gin but unable to

Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	e Edge-modified	Indet	Proximal- Medial	Bend	Fine Grain Chert	10YR7/3 to 10YR7/4	Very Pale Brown	0	Reddened	Yes	None	Unifacial-dorsal	Indet	Right Lateral Margin
406	8	503	NΑ	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
400	ŭ	000	10.1	4.4	Indet	24.42	5.33	Indet	Indet	Indet	Indet	Indet	Indet	portion; Pla	tform has be	ch on right lateral en removed from ink coloration alor face	the dorsal side	e resulting in
Lot No.	Spec.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	e Edge-modified	Indet	Missing Right Lateral Margin	Snap	Fine Grain Chert	10YR3/2	Very Dark Grayish Brown	0	None	NA	None	Unifacial-dorsal	Focused	Left Lateral Margin
406	9	503	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				9.55	33.12	Indet	Indet	1.04	7	60	Indet	Indet	Indet	missing due t	o large break	rown; Thick flake along right latera ar proximal end c	l margin; Sma	Il portion of fine
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	e Edge-modified	Indet	Proximal- Medial	Snap	Fine Grain Chert	10YR3/2	Very Dark Gravish Brown	26-50	None	NA	None	Unifacial-dorsal	Continuous	Left Lateral Margin
407	7	507	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		Wargin
				45.94	59.59	63.02	13.19	1.49	70	50	0.11	19.38	5.13	Large	flake with irre	egular flake remov	val and some (grinding
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	e Edge-modified	Indet	Right Lateral Margin Missing	Snap	Coarse Grain Chert	10YR6/1	Gray	51-75	None	NA	None	Unifacial-dorsal	Continuous	Proximal/Left Lateral Margin/Distal
429	1	597	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				180.45	92.2	54.96	29	1.85	155	15.66	0.06	Indet	Indet	large cortica	I flake with st	portion of right late leep flake remova ircumference; Spe throughout	I from left later	al margin and

Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Cultural	Indet	Bend	Fine Grain Chert	10YR4/4	Dark Yellowish Brown	0	None	NA	None	Indet	Focused	Indet
439	7	442	. NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				0.54	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	attributes to cointo a point; O	orient for analy one lateral edg	that is irregular in ysis; Flake is sma ge of the point has dified edge restric	all and appears s been modified	to have broken d; Second breal
Lot No.	Spec.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Complete	None	Fine Grain Chert	10YR6/2 to 10YR7/2	Light Brownish Gray to Light	26-50	None	NA	None	Unifacial-dorsal	Clustered	Right Lateral Margin
440	5	448	NA NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		.,
				76.99	75.05	71.85	17.63	1.85	35	55	0.10	21.2	9.09	Large flake	with irregular	flake removal nea margin	ar proximal end	of right lateral
	Spec.	Вар	1			Retouch	Specimen					Dorsal	Heat	Intentional	.		Retouch	Retouch
Lot No.	No.	No.		Category	Subcategory	Affiliation	Condition	вгеакаде	Raw material	Munsell	Color	Cortex %	Evidence	Heat Treatment	Patination	Retouch Detail	Distribution	Location
				Modified Flake	Utilized Flake	Indet	Complete	None	Fine Grain Chert	10YR5/2 to 10YR6/2	Grayish Brown to Light Grayish Brown	1-25	None	NA	None	Unifacial-ventral	I Continuous	Left and Right Lateral Margins
506	34	339	NA NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				42.88	57.79	57.13	14.02	0.99	111	55	0.07	21.56	6.08	-		al margins showir r patterns - does	-	-
														Intentional				
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Proximal Missing	Indet	Fine Grain Chert	10YR7/1 to10YR7/2	Light Gray	76-100	None	NA	None	Bifacial	Focused	Left Lateral Margin/Distal Margin
507	1	361	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				235.17	Indet	79.35	21.59	2.4	145	55	0.11	Indet	Indet	•	tral face; Plat	d predominately of form missing; Col (Dark Yellow): Ex	lor change arοι	

44.49

49.06

19.92

Indet

1.2

45

Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Complete	None	Fine Grain Chert	10YR5/1 to 10YR5/2	Gray to Grayish Brown	0-25	None	NA	None	Unifacial-dorsal	Focused	Right Lateral Margin
511	6	438	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		•
				13.23	61.49	34.31	6.73	0.96	23	45	0.14	7.38	2.84	Irregular fla	ke with two le	ocalized areas of f flaking	ine retouch; S	hallow scalar
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Utilized Flake	Indet	Right Lateral Margin Missing	Snap	Fine Grain Chert	10YR6/2	Light Brownish Gray	0-25	None	NA	None	Unifacial-dorsal	Focused	Proximal/Left Lateral Margin
518	7	640	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				44.44	58.53	44.12	16.25	3.02	50	35	0.19	32.41	11.63	with very sma	ıll possible re lateral marg	ll margin (near dis moval flakes from in; Prominent band and 10YR6/1 (Gra	middle of prod ding of 10YR7	ximal margin to
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Utilized Flake	Indet	Complete	None	Coarse Grain Chert	10YR6/2	Light Brownish Gray	1-25	Reddened	Yes	None	Unifacial-ventral	Focused	Left Lateral Margin
518	9	640	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				14.56	46.14	44.5	10.22	1.63	50	40	0.16	38	8.67	margin; Portio	n of modifica ge modified -	fication due to utili tion near distal en · unable to determ nclusions and redo	d has steeper ine; Flake is s	edge angle and
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Cultural	Right Lateral Margin Missing	Bend	Fine Grain Chert		Very Dark Gray	51-75	None	NA	None	Unifacial-ventral	Continuous	Left Lateral Margin
519	10	646	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		

55

0.06

19.33

6.35

Dorsal face is almost completely cortex; Few mineral inclusions

Lot No.	Spec. No.	Bag No. UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
			Modified Flake	Edge-modified	Cultural	Medial	Snap	Fine Grain Chert	10YR7/2	Light Gray	0	None	NA	None	Unifacial-dorsal	Indet	Indet
528	9	666 NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
			1.2	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	-	small tool fra	one lateral margii agment - cannot a of 10YR7/1 (Ligh	ssume proporti	

Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
		Modified Flake	Edge-modified	Cultural	Proximal- Medial	Snap	Fine Grain Chert	10YR5/4 to 10YR6/4	Yellowish Brown to Light	0	None	NA	None	Unifacial-dorsal	Indet	Right Lateral Margin		
539	18	592	. NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Length	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
	539 18 59			1.06	Indet	Indet	Indet	Indet	Indet	Indet	Indet	4.37	1.52			apping scalar flak medial portion of		

Lot I	No.	Spec. No.	Bag No. UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material		Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flak	e Edge-modified	Cultural	Indet	Snap and Bend	Fine Grain Chert	10YR7/1 to10YR7/2	Light Gray	0	None	NA	None	Unifacial	Indet	Indet
54	7	4	330 NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
	011			2.29	Indet	Indet	3.74	Indet	Indet	Indet	Indet	Indet	Indet			discernable platfo d edge is incompl		

Lot No.	Spec. No.	Bag No. UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
			Modified Flake	Utilized Flake	Indet	Complete	None	Fine Grain Chert	10YR6/2	Light Brownish Gray	76-100	None	NA	None	Unifacial-dorsal	Focused	Right Lateral Margin/Distal Margin
554	5	395 NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Length	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
			20.56	71.47	49.2	6.5	2.32	37	45	0.36	13.49	1.08		n to approxir	ex; Apparent use- mately 1/3 of right as multiple small s	lateral margin	

Lot No.	Spec. No.	Ba No	g UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
			1	Modified Flake	Edge-modified	Cultural	Complete	None	Fine Grain Chert	10YR4/2	Light Brownish Gray	1-25	None	NA	None	Unifacial-ventral	Continuous	Right Lateral Margin
563	1	37	2 NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				8.94	40.31	23.45	13.25	2.72	30	45	0.21	23.31	9.39	Cortex at prox		dorsal side; Seve d on left lateral m		es at proximal

Lot No.	Spec. No.	Bag No. UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
			Modified Flake	e Edge-modified	Indet	Proximal- Medial	Snap	Fine Grain Chert	10YR4/1	Dark Gray	0	None	NA	None	Unifacial-dorsal	Continuous	Left and Right Lateral Margins
587	1	527 NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Length	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
			7.8	Indet	Indet	Indet	Indet	Indet	Indet	Indet	7.98	2.13			rish brown; Breaks with very fine reto		

Lot No.	Spec. No.	Bag No. UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
			Modified Flake	Edge-modified	Indet	Complete	None	Fine Grain Chert	10YR7/1	Light Gray	1-25	None	NA	None	Unifacial-ventral	Focused	Left Lateral Margin
590	6	557 NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
			40.92	Indet	43.92	15.92	1.63	37	50	0.10	27.02	14.59		; Work focus	distal tip; Distal bed on left lateral rocontinue to the	nargin center a	

ı	ot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
					Modified Flake	Edge-modified	Cultural	Medial	Bend	Fine Grain Chert	10YR6/2	Light brownish Gray	0	None	NA	None	Indet	Indet	Indet
	590	7	557	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Length	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
					3.63	Indet	28.21	4.07	Indet	Indet	Indet	Indet	Indet	Indet		ing a sharp e	ne lateral margin dge - no use-wea en worked unifac	r evident; Paral	

Lot No.	Spec. No.	Bag No. UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	n Retouch Detail	Retouch Distribution	Retouch Location
			Modified Flake	Utilized Flake	Indet	Proximal- Medial	Snap	Coarse Grain Chert	10YR4/1 to 10YR5/1	Dark Gray to Gray	0	None	NA	Yes	Bifacial	Indet	Left and Right Lateral Margin
598	3	659 NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
			5.79	Indet	Indet	Indet	Indet	Indet	Indet	Indet	8.75	2.95	Very fine ret		g both lateral marg n caused by natur		o discern; May
	Spec.	Bag No.			Retouch	Specimen					Dorsal	Heat	Intentional			Retouch	Retouch
Lot No.	No.	No. UI No	Category	Subcategory	Affiliation	Condition	Breakage	Raw material	Munsell	Color		Evidence	Heat Treatment	Patination	n Retouch Detail	Distribution	Location
			Modified Flake	e Edge-modified	Indet	Left Lateral Margin Distal Tip Missing	Snap	Fine Grain Chert	10YR5/1 to 10YR5/2	Gray to Grayish Brown	0	None	NA	None	Unifacial-dorsal	Focused	Distal/Right Lateral Margin
608	3	510 NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
			6.13	68.45	24.18	2.51	1.3	32	30	0.52	Indet	Indet	inclusions; Sr	nall break ne atform has b	oag - thin blade flak ear proximal end or een removed (step ht use-wear etchin	n the left latera fracture) but	al margin and at the bulb is still
Lot No.	Spec. No.	Bag No. UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	n Retouch Detail	Retouch Distribution	Retouch Location
			Modified Flake	e Edge-modified	Indet	Left Lateral Margin Missing	Snap	Fine Grain Chert	10YR5/2	Gray to Grayish Brown	0	None	NA	None	Unifacial-dorsal	Clustered	Left Lateral Margin/Distal Margin
608	4	510 NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
			24.05	Indet	57.32	7.75	1.75; 0.65	64; 33	35; 70	0.23; 0.08	9	5		ns on distal	large flake; Platfor edge; Two areas o eparated for each	f retouch, mea	
Lot No.	Spec. No.	Bag No. UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	n Retouch Detail	Retouch Distribution	Retouch Location
			Modified Flake	e Edge-modified	Indet	Complete	None	Fine Grain Chert	10YR5/1 to 10YR5/2	Gray to Grayish Brown	26-50	None	NA	None	Unifacial-ventral	Focused	Left Lateral Margin
			Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
615	5	441 NA	25.02	60.48	32.53	13.69	3.66	11	60	0.27	Indet	Indet	was then reto throughout the lateral margin	ouched to cre e flake; Work i, but larger f	due to break along eate utilized flake); ked area is focused lake removal along have been prep fo	Large minera I near the dist g medial and p	I inclusions are al end of the left proximal area of

Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Medial	Snap	Fine Grain Chert	10YR7/2	Light Gray	0	Reddened	Yes	None	Unifacial-ventral	Indet	Right Lateral Margin
618	7	479	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				24.17	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	-		oximal and distal treatment eviden Brown)		
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Cultural	Indet	Snap	Fine Grain Chert	10YR4/1	Dark Gray	0	Reddened	Yes	None	Unifacial-ventral	Focused	Indet
618	8	479	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Length	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				3.06	Indet	21.32	3	2.22	13	60	0.74	Indet	Indet	of the modifi	ed edge due cused at one e	noved but appears to a slight bulb of end of flake (assu ots seen througho	percussion; M med proximal	odified edge is end); Very light
															•			
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Utilized Flake	Indet	Right Lateral Margin Missing	Snap	Fine Grain Chert	10YR6/2	Light Brownish Gray	0	None	NA	None	Unifacial-dorsal	Continuous	Left Lateral Margin/Distal Margin
619	6	530	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				7.7	57.42	36.08	4.28	None	65	20	Indet	6.5	1.61			lateral margin; us slight flake remo		
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Utilized Flake	Indet	Complete	None	Coarse Grain Chert	10YR6/2	Light Brownish Gray	26-50	None	NA	None	Bifacial	Continuous	Left Lateral Margin/ Right Lateral Margins
621	5	539	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				72.36	100.42	46.83	20.5	1.3	93/70	60/70	0.06	17.18	7.86	concave le	eft lateral mar	Light Gray) 35%; gin and convex (p n entire LLM and c	ointed) right la	teral margin;

10.54

56.38

26.03

11.48

0.89

Lot No.	Spec. No.	Bag No.	No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Utilized Flake	Indet	Complete	None	Fine Grain Chert	10YR7/2	Light Gray	0-25	None	NA	None	Unifacial-dorsal	Continuous	Right Lateral Margin
623	6	581 N	ΙA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				158.32	92.2	68.29	24.61	2.28	60	60	0.09	27.71	26.02	Various light o	, , ,	rownish gray band lake; Retouch may	o .	istal end; Large
Lot No.	Spec. No.	Bag No.	No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Medial	Snap	Coarse Grain Chert	10YR5/2	Gray to Grayish Brown	0	None	NA	None	Bifacial	Indet	Right and Left Lateral Margin
623	7	581 N	۱A	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				11.21	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet		roughout; Me	margin; Fine fracto edial portion of too I of proximal and o	with snap fra	
Lot No.	Spec. No.	Bag No.	No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Cultural	Proximal- Medial	Snap	Fine Grain Chert	10YR4/4	Dark Yellowish Brown	0	None	NA	None	Bifacial and Unifacial-dorsal	Continuous	Left Lateral Margin/Proxim al/Right Lateral Margin
629	4	355 N	۱A	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				1.8	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	margin is uni	facially worke	pproximately 50% ed while the proxir extend of working	nal and right la	ateral margin is
Lot No.	Spec. No.	Bag No. UI	No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Edge-modified	Indet	Complete	None	Fine Grain Chert	10YR3/1 to 10YR3/2	Very Dark Gray to Very Dark Grayish Brown	0-25	None	NA	None	Unifacial-ventral	Focused	Left Lateral Margin
632	7	385 N	ΙA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Length	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		

Angle

Indet

0.08

10.57

1

Irregular flake with one localized area of edge modification.

Length

12

Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	e Edge-modified	Cultural	Missing Left Lateral Margin	Snap	Fine Grain Chert	10YR5/1 to 10YR5/2	Gray to Grayish Brown	0	None	NA	None	Unifacial-ventral	Focused	Distal Margin
638	5	466	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Length	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				5	44.35	Indet	4.18	2.61	Indet	55	0.62	12.46	3.17			l focused on dista k along left latera		
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	e Edge-modified	Cultural	Right Lateral Margin Missing	Snap	Fine Grain Chert	10YR5/2	Grayish Brown	0-25	Potlids and Reddened	Yes	None	Unifacial-dorsal	Cluster	Left Lateral Margin/Distal Margin
646	6	369	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				7.28	44.03	25.53	7.15	2.22	40/12	65	0.31	6.68	3.73	along both lef	t lateral marg	ith fractures and p in and right distal urement are sepa	margin (shoul	der); Two areas
Lot No.	Spec.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	e Edge-modified	Cultural	Indet	Snap	Fine Grain Chert	10YR4/1	Dark Gray	0	None	NA	None	Bifacial	Indet	Indet
647	5	381	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				0.63	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet			th very fine scalar f single lateral ma margin remains	argin - unknow	
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	e Edge-modified	Indet	Complete	None	Fine Grain Chert	10YR5/2	Grayish Brown	0	None	NA	None	Unifacial-dorsal	Continuous	Left and Right Lateral Margins and Distal Margin
651	1	486	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				0.6	26.75	9.36	2.06	0.32	59	55	0.16	2.17	0.24	Very thin flake	with very fin	e retouch flaking steep and fine	on all edges; F	lake removal is

Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	e Edge-modified	Indet	Medial-Distal	Snap	Fine Grain Chert	10YR6/2	Light Brownish Gray	1-25	None	NA	None	Unifacial-ventral	Indet	Right Lateral Margin
660	5	459	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				6.24	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet	Indet		e unknown; F	reaks: medial and Retouching on righ ontinue through b	nt lateral margi	
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	e Edge-modified	Indet	Complete	None	Fine Grain Chert	10YR5/2	Grayish Brown	1-25	None	NA	Yes	Unifacial-dorsal	Clustered	Left Lateral Margin/Distal Margin
660	6	459	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				29.09	88.85	32.25	14.09	3.39; 4.24	30; 22	65; 50	0.24; 0.30	15.96	6.79	flake remova between co	l; Working is rtex and on a	ent under flaking p clustered at the d a spur extending fi easurement are so	istal end of left rom the right s	lateral margin houlder; Two
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch	Specimen	Breakage	Raw material	Munsell		Dorsal	Heat	Intentional				
				Category	ouboutegory	Affiliation	Condition	Dicanage	rtaw material	wunsen	Color	Cortex %	Evidence	Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
					e Edge-modified	Indet	Complete	None	Fine Grain Chert		Gray to Grayish Brown	Cortex %	Evidence Potlids		Patination None	Retouch Detail Unifacial-dorsal	Distribution	
661	5	469	NA						Fine Grain Chert Perimeter Retouch	10YR5/1 to 10YR5/2 Average Edge	Gray to Grayish			Treatment			Distribution	Location Left and Right Lateral
661	5	469	NA	Modified Flake	e Edge-modified	Indet	Complete	None Height of	Fine Grain Chert Perimeter	10YR5/1 to 10YR5/2 Average	Gray to Grayish Brown	0 Platform	Potlids Platform	No Thin flake with left and right areas of shatt	None removal on lateral marginer that appea	Unifacial-dorsal	Continuous fine flake rement work on lead on heat treatm	Location Left and Right Lateral Margins oval along both eft margin; Two ent (potlids) or
661	5	469	NA	Modified Flake	e Edge-modified Length	Indet Width	Complete	None Height of Retouch	Fine Grain Chert Perimeter Retouch Length	10YR5/1 to 10YR5/2 Average Edge Angle	Gray to Grayish Brown Reduction Index	0 Platform width	Potlids Platform thickness	No Thin flake with left and right areas of shatt dorsa	None removal on lateral marginer that appea	Comments dorsal face; Very n with most promit ar to be caused fro	Continuous fine flake rement work on lead on heat treatm	Location Left and Right Lateral Margins oval along both eft margin; Two ent (potlids) or
661 Lot No.	5 Spec. No.		NA UI No	Modified Flake	e Edge-modified Length	Indet Width	Complete	None Height of Retouch	Fine Grain Chert Perimeter Retouch Length	10YR5/1 to 10YR5/2 Average Edge Angle	Gray to Grayish Brown Reduction Index	0 Platform width 6.5	Potlids Platform thickness	Treatment No Thin flake with left and right areas of shatt dorsa Intentional Heat	None n removal on lateral marginer that appear I face; Inclus	Comments dorsal face; Very n with most promit ar to be caused fro	Continuous fine flake rement work on lead on heat treatm	Location Left and Right Lateral Margins oval along both eft margin; Two ent (potlids) or
	Spec.	Bag		Modified Flake Weight (g) 1.41 Category	e Edge-modified Length 24.88	Width 16.36 Retouch Affiliation	Complete Thickness 3.48 Specimen	None Height of Retouch	Fine Grain Chert Perimeter Retouch Length 37 Raw material Fine Grain Chert	10YR5/1 to 10YR5/2 Average Edge Angle 55 Munsell 7.5YR3/2	Gray to Grayish Brown Reduction Index	0 Platform width 6.5	Potlids Platform thickness 1.18	No Thin flake with left and right areas of shatt dorsa	None n removal on lateral marginer that appear I face; Inclus	Comments dorsal face; Very n with most prominar to be caused from the caused	Distribution Continuous fine flake rement work on keen the treatment gray mineral results for the continuous of the co	Location Left and Right Lateral Margins oval along both sft margin; Two ent (potlids) or il spots
	Spec.	Bag	UI No	Modified Flake Weight (g) 1.41 Category	Edge-modified Length 24.88 Subcategory	Width 16.36 Retouch Affiliation	Complete Thickness 3.48 Specimen Condition Proximal-	None Height of Retouch 1.14 Breakage	Fine Grain Chert Perimeter Retouch Length 37 Raw material Fine Grain	10YR5/1 to 10YR5/2 Average Edge Angle 55	Gray to Grayish Brown Reduction Index 0.33	Platform width 6.5 Dorsal Cortex %	Potlids Platform thickness 1.18 Heat Evidence	Treatment No Thin flake with left and right areas of shatt dorsa Intentional Heat Treatment NA	None n removal on lateral marginer that appear I face; Inclus Patination None	Comments dorsal face; Very n with most prominar to be caused froions of coarse gra Retouch Detail	Distribution Continuous fine flake rement work on keen the treatment gray mineral metal	Location Left and Right Lateral Margins oval along both eft margin; Two ent (potlids) or al spots Retouch Location Left Lateral Margin

Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	Utilized Flake	Indet	Complete	None	Fine Grain Chert	10YR2/1	Black	26-50	None	NA	None	Unifacial-ventral	Focused	Left Lateral Margin
665	5	568	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				121.86	80.35	69.83	17.85	0.6	73	55	0.03	38.09	12.9		on dorsal sid	5/1 and 10YR8/1 de; very light and edges on left late	irregular flake	,. 0
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	e Edge-modified	Indet	Indet	Snap	Fine Grain Chert	10YR5/1 to 10YR5/2	Gray to Grayish Brown	0	None	NA	None	Bifacial	Continuous	Indet
666	5	584	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
				2.32	Indet	Indet	5.8	Indet	Indet	Indet	Indet	Indet	Indet	bifacially wor	ked but work	no platform rema is predominately on both faces as	on one face; S	Step and hinge
Lot No.	Spec. No.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	e Edge-modified	Indet	Complete	None	Coarse Grain Chert	10YR7/2	Light Gray	1-25	None	NA	None	Bifacial	Continuous	Right Lateral Margin/Left Lateral Margin
666	6	584	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		Lateral Wardin
				43.85	72.07	39.97	14.49	0.42	110	50	0.03	22.99	12.3	Cortex at p	roximal and	distal end; Work v Mineral inclusior	,	n very edge;
Lot No.	Spec.	Bag No.	UI No	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat	Patination	Retouch Detail	Retouch Distribution	Retouch Location
				Modified Flake	e Utilized Flake	Indet	Proximal- Medial	Snap	Fine Grain Chert	10YR5/2 to 10YR6/2	Grayish Brown to Light Grayish Brown	0	Reddened	Treatment Yes	None	Bifacial	Continuous	Left and Right Lateral Margins
673	4	344	NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		MAIMIN
				22.47	Indet	Indet	13.87	1.09	Indet	Indet	Indet	16.52	7.05	Very light mo	dification alo	nitial removal on b ng both lateral ma ation is very light l and not initial mo	argins - left late and irregular a	eral ventral and

Lot No.	Spec. No.	Bag No.	Category	Subcategory	Retouch Affiliation	Specimen Condition	Breakage	Raw material	Munsell	Color	Dorsal Cortex %	Heat Evidence	Intentional Heat Treatment	Patination	Retouch Detail	Retouch Distribution	Retouch Location
			Modified Flake	Edge-modified	Cultural	Distal Tip Missing	Snap	Fine Grain Chert	10YR5/1 and 10YR8/3	Gray and Very Pale Brown	0	None	NA	None	Unifacial-ventra	Continuous	Right Lateral Margin
694	4	398 NA	Weight (g)	Length	Width	Thickness	Height of Retouch	Perimeter Retouch Lenath	Average Edge Angle	Reduction Index	Platform width	Platform thickness			Comments		
			18.24	Indet	43.13	9.57	1.62	Indet	55	0.17	Indet	Indet	10YR8/3 ap noted on all e lateral margins	pearing to be dges (left lat s on ventral a n right latera	d informal tool; Tw e related to previo eral margin, proxi and dorsal faces) I margin; Current e distal end preve	us cortex remo mal and distal - all notes focu worked edge is	val; use-wear ends, and right sed on modified s 57 cm, but a

Lot	Spec.	Bag	UI				Reduction				Use-Wear					Heat	Intentional
No.	No.	No.	No.	Category	Condition	Subcategory	Technique	Breakage	Exhausted	Use Wear	Туре	Raw material	Inclusions	Munsell	Color	Evidence	Heat Treatment
				Core	Core Fragment		Hard	Manufacturing	No	None	None	Fine Grain Chert	Irregular Grain and Minerals	10YR5/2	Grayish Brown	None	No
339	11	410	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars			Comments		
				None	26-50	Indet	57.01	Indet	Indet	Indet	Indet	Indet	Fragment of c	ore with sna	p break across app	arent medial	portior
Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentional Heat Treatment
				Core	Complete	Multidirectional	Soft	None	Yes	None	None	Fine Grain Chert	Irregular Grain and Minerals	10YR4/3	Brown	None	No
346	8	626	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars			Comments		
				None	0	Indet	29.85	50.66	41.3	19.12	38.11	25	Re	duced, very	small in size with n	o cortex	
Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentional Heat Treatment
				Core	Complete	Multidirectional	Hard	None	No	None	None	Fine Grain Chert	Fine Fractures	10YR8/2	Very Pale Brown	None	No
359	1	427	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars			Comments		
				None	26-50	Nodular	240.97	62	75.65	46.4	53.96	15	Round cobble of cher		actures throughout; actures across face		ntact; Step an
																	Intentional
Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Heat Treatment
				Core	Complete	Multidirectional	Hard	None	Yes	None	None	Fine Grain Chert	Fine Fractures	10YR5/1	Gray	None	No
373	20	517	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars			Comments		
				None	1-25	Indet	60.38	43.87	42.79	27.38	31.85	12			hinge fractures acr		ottled with
														,			
Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentional Heat Treatment
				Core	Complete	Multidirectional	Hard and Soft	None	Yes	None	None	Coarse Grain Chert	Irregular grain and Minerals	10YR3/1 to 10YR5/1	Very Dark Gray to Gray	None	No
385	1	444	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars			Comments		
				None	1-25	Nodular	103.99	54.87	40.43	34.79	38.42	22	Speckled with mir	neral inclusio	ns; multiple step ar	nd hinge frac	tures noted

None

0-25

Indet

116.04

Indet

61.09

Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentiona Heat Treatment
				Core	Complete	Multidirectional	Hard	None	Yes	None	None	Fine Grain Chert	Irregular Grain	10YR6/1	Gray	None	No
401	5	488	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars			Comments		
				None	1-25	Indet	46.94	46.78	33.55	31.78	36.34	14	Cortex nearly com alor		ed (1% remaining); ding (10YR6/2 and		nish red colo
Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentiona Heat Treatmen
				Core	Complete	Multidirectional	Hard	None	No	None	None	Fine Grain Chert	Irregular Grain	5YR4/1	Dark Gray	None	No
408	1	507	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars		-	Comments		
				Yes	1-25	Indet	96.23	58.03	47.71	37.26	45.05	12	Rock app	ears to be no	dular; Mottling 5YF	R3/1 near co	te)
Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intention Heat Treatme
				Core	Complete	Multidirectional	Hard	None	Yes	None	None	Fine Grain Chert	Irregular Grain and Fine Fractures	10YR5/1	Gray	None	No
433	1	603	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars			Comments		
				None	1-25	Indet	69.74	63.34	42.68	23.87	53.85	10	Approximately 20%	6 mineral incl	usions; Small step edges	and hinge fra	actures alon
Lot	Spec.	Bag	UI	Category	Condition	Subcategory	Reduction	Breakage	Exhausted	Heo Woor	Use-Wear	Raw material	Inclusions	Munsell	Color	Heat	Intentiona Heat
No.	No.	No.	No.	Category	Condition	Subcategory	Technique	Dieakaye	Exilausteu	USE Wear	Type	Raw Illaterial	iliciusions	wunsen	Color	Evidence	Treatmen
				Core	Complete	Multidirectional	Hard	None	Yes	None	None	Fine Grain Chert	Mineral	10YR5/1 to 10YR5/2	Gray to Grayish Brown	None	No
466	1	661	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars			Comments		
				None	26-50	Nodular	188.54	64.87	52.44	47.2	45.4	16	Speckled with miner	al inclusions;	Various step and he platforms	ninge fracture	es on all visi
Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentiona Heat Treatmer
				Core	Core Fragment		Hard	Manufacturing	j No	None	None	Fine Grain Chert	Irregular Grain	10YR7/2	Very Pale Brown	None	No
500	5	323	NA	Patination	Cortex %	Rock	Weight (g)	Max Length	May Width	Max	Max FScar	No FScars			Comments		
500						Description	rroight (g)	max Longth	Wax Width	Thickness	Length	No i ocais	O f				

29.07

Indet

Indet

Snap fracture at one end, very little (10%) cortex on one face

Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentional Heat Treatment
				Core	Complete	Bifacial	Hard	None	No	None	None	Fine Grain Chert	Irregular Grain and Fine Fractures	10YR4/1 to 10YR5/1	Dark Gray to Gray	/ None	No
562	1	371	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars			Comments		
				None	50	Nodular	285.11	78.01	77	35.76	55.69	10	One edg	e worked wi	ith flakes removed in	n one direction	on
Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentional Heat Treatment
				Core	Complete	Multidirectional	Hard	None	No	None	None	Coarse Grain Chert	Fine Fractures	10YR7/3 to 10YR7/2	Very Pale Brown to Light Gray	None	No
619	7	530	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars			Comments		
				None	1-25	Indet	100.19	62.25	58.36	25.62	41.39	15		Roc	k appears tabular		
Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentional Heat Treatment
				Core	Complete	Multidirectional	Hard	None	No	None	None	Fine Grain Chert	None	10YR7/2	Light Gray	None	No
632	8	385	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars			Comments		
				Yes	26-50	Nodular	301.02	76.51	67.91	43.17	42.06	15	Banding (10YR7/1);	Small patch	of patina; Dense st edge	ep fractures	along workin
Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentiona Heat Treatment
				Core	Complete	Multidirectional	Hard	None	No	None	None	Fine Grain Chert	Irregular Grain	10YR6/2	Light Brownish Gray	Reddened	Indet
636	1	456	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars			Comments		
				None	1-25	Indet	150.7	83.1	57.6	31.78	83.1	15	Appears	nodular; Bar	nding from heat trea	tment (5YR4	4/6)
Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentiona Heat Treatment
				Core	Core Fragment	Unifacial	Hard	Manufacturing	g No	None	None	Coarse Grain Chert	Irregular Grain	10YR6/2	Light Brownish Gray	None	No
650	5	486	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars			Comments		
				None	26-50	Nodular	124.26	Indet	Indet	Indet	Indet	Indet	Medial fragr	nent of core	with one bend and	one snap fra	acture

Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentional Heat Treatment
				Core	Complete	Multidirectional	Hard	None	No	None	None	Fine Grain Chert	Irregular Grain	10YR3/1	Very Dark Gray	None	No
660	7	459	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars		(Comments		
				Yes	26-50	Nodular	55.09	59.86	46.6	25.46	59.31	11		Band	ding of 10YR4/1		
Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentional Heat Treatment
				Core	Complete	Multidirectional	Hard	None	No	None	None	Coarse Grain Chert	Irregular Grain	10YR5/2 to 10YR5/3	Grayish Brown to Brown	None	No
664	1	569	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars			Comments		
				Yes	1-25	Indet	109.69	70.82	53.71	37.97	41.39	34	Banding of	of 10YR5/1 th	roughout and 10YF	R4/6 near co	rtex
Lot No.	Spec.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentional Heat Treatment
				Core	Complete	Multidirectional	Hard	None	No	None	None	Fine Grain Chert	Irregular Grain and Carbonaceous cavities	10YR5/1	Gray	None	No
665	6	568	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars	Savidos	(Comments		
				None	1-25	Indet	71.55	51.52	55.6	35.22	55.54	10	Со	lor around co	rtex is 10YR8/2 to	10YR7/3	
Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentional Heat Treatment
				Core	Complete	Multidirectional	Hard	None	Yes	None	None	Coarse Grain Chert	Irregular Grain and Fine Fractures	2.5YR2.5/1	Reddish Gray	Yes	Indet
665	7	568	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars	Timo Fractaros		Comments		
				None	1-25	Indet	38.13	43.1	29.82	27.99	40.27	5	Core is black in color		on and potlids evide coarse grain 2.5		
													== 77 0.		, 3.2 2.0		
Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentional Heat Treatment
				Core	Complete	Bifacial	Hard	None	No	None	None	Fine Grain Chert	Irregular Grain and Fine Fractures	10YR7/1 to 10YR7/2	Light Gray	None	No
667	1	594	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars	i iio i raotares		Comments		

Lo No		Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentional Heat Treatment
					Core	Complete	Multidirectional	Indet	None	Yes	None	None	Coarse Grain Chert	Irregular Grain	10YR7/3	Very Pale Brown	Reddened	Yes
68	5	1	582	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars			Comments		
					None	0	Indet	18.02	26.43	24.25	20.55	25.8	12	Exhausted core; Ve	,	weathered smooth eatment (5YR6/4)	; Slightly red	dened due to

Lot No.	Spec. No.	Bag No.	UI No.	Category	Condition	Subcategory	Reduction Technique	Breakage	Exhausted	Use Wear	Use-Wear Type	Raw material	Inclusions	Munsell	Color	Heat Evidence	Intentional Heat Treatment
				Core	Complete	Bifacial						Fine Grain Chert	Irregular Grain	10YR6/2 to 10YR6/3	Light Brown Gray to Pale Brown	None	No
546	1	327	NA	Patination	Cortex %	Rock Description	Weight (g)	Max Length	Max Width	Max Thickness	Max FScar Length	No FScars		C	Comments		_
				None	75-100	Tabular	100.34	61.61	58.8	21.05	28.4		Tabular rock with ro platform with flake	s removed fr	that has been bro om one corner of the ed - tested cobble		

Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Core tool	Chopper	Complete	None	Fine Grain Chert	10YR7/2	Light Gray	51-75	Nodular Cobble	None	No	None	Indet	Indet
427	1	602	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Commen	ts	
				Indet	Subparallel	None	Indet	355.4	84.44	86.1	46.11	65	Indet	Expedient too	; Banding ne	ar cortex (1	0YR4/1)
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Core tool	Chopper	Complete	None	Coarse Grain Chert	10YR7/2	Light Gray	51-75	Nodular Cobble	None	No	None	Indet	Indet
432	1	600	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Commen	ts	
				Indet	Random	None	Indet	493.32	107.85	91.28	49.5	50	Indet	Expedient too	; Banding ne	ar cortex (1	0YR5/1)
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Core tool	Chopper	Complete	None	Coarse Grain Chert	10YR7/1	Light Gray	51-75	Nodular Cobble	None	No	None	Indet	Indet
592	1	564	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Commen	ts	
				Indet	Random	None	Indet	401.29	100.53	97.14	42.65	80	Indet	Mottling 10YR6	32 throughout irregular ed		tool with
Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Specimen Condition	Breakage	Raw Material	Munsell	Color	Cortex %	Parent Form	Heat Evidence	Intentional Heat Treatment	Patination	Overall Shape	Basal Shape
				Core tool	Chopper	Complete	None	Coarse Grain Chert	10YR7/1	Light Gray	26-50	Nodular Cobble	None	No	None	Indet	Indet
624	1	593	NA	Cross-section Shape	Flaking Pattern	Beveling	Reduction Stage	Weight (g)	Max Length	Max Width	Max Thickness	Avg Edge Angle	Callahan's w/t index		Commen	ts	
				Indet	Oblique	None	Indet	235.17	104.74	71.32	49.99	75	Indet	Expedient too	. Danding no	or cortox (1	0VP3/1)

Lot#		Complete	Complete	Proximal	Proximal	Broken	Broken	Flaking	Flaking	Thermal	Thermal		Total	Total	Final
	Bag #	Flake	Flake	Flake	Flake	Flake	Flake	Shatter	Shatter	Shatter	Shatter	Comments	No.	No.	
1	_	Count	Weight (g)	Count	Weight (g)	Count	Weight (g)	Count	Weight (g)	Count	Weight (g)		Flakes	Shatter	Total
314	467	1	1.39		C (6)	3	6.99		C (C)	2	8.18		4	2	6
315	475									1	0.27		0	1	1
316	480	1	0.14	3	2.03	3	0.92			1	0.29		7	1	8
317	485	5	29.72	6	4.35	12	13.88			4	4.58		23	4	27
318	492	9	15.27	8	7.1	5	61.31			10	7.51		22	10	32
319	501	6	69.41	5	8.28	22	76.09			4	2.53		33	4	37
321	506	6	98.18	8	6	37	59.02			19	27.33		51	19	70
323	524	4	23.33	4	5.76	57	24.02	2	0.67	44	48.06		65	46	111
325	578	4	46.2	1	0.26	31	18.54			14	13.19		36	14	50
327	589	5	5.32	2	0.68	27	15.89			52	71.42		34	52	86
328	619	3	12.19	1	0.79	18	2.75			9	4.66		22	9	31
												*Complete flake is			
330	639	1	11.24	2	1.52	3	1.85					95% complete	6	0	6
331	642	1	1.41	1	46.49								2	0	2
332	653	1	7.58	4	9.64	5	1.22						10	0	10
333	350			1	0.45	2	3.87						3	0	3
334	358	2	0.35	2	1.47	5	5.01						9	0	9
335	378	2	14.26	2	2.99	2	1.5						6	0	6
336	388	5	2.02	9	3.99	17	12.99	1	1.6	9	6.66		31	10	41
337	399	17	14.74	17	74.62	41	40.17	4	3.95	21	20.23		75	25	100
338	405	14	39.25	13	10.05	32	12.96	2	1.71	15	12.62		59	17	76
339	410	19	37.67	17	9.68	41	15.89	4	1.65	29	20.37		77	33	110
342	422	2	39.52	4	34.46	5	5.22			6	3.41		11	6	17
343	607	4	2.48	1	8.74	13	22.8			7	4.87		18	7	25
344	610	5	26	1	0.32	8	2.62			7	12.11		14	7	21
345	614	1	0.59			4	5.34			2	1.11		5	2	7
346	626	2	24.97			1	0.87	1	0.15	8	34.88		3	8	11
347	636	1	4.17	1	0.16	2	0.36			2	4.2		4	2	6
348	644			1	12.38	1	2.3			4	0.44		2	0	2
349	670					1	2.28			1	0.41		1	1	2
350	354					3	1.91						3	0	3
351 352	370 382	0	4.70			3	0.75 2.31				2.22		3 7	0	3
	394	2 11	1.72 6.63	10	11.63	5		3	4.0	2			61	2	9
353 354	394	21	93.4	18 15		32 55	39.05 24.44	3	1.2	11 20	15.32 18.25		91	14 20	75 111
355	407	21	93.4 43.1	18	14.3 14.52	46	45.15			22	18.25		85	22	107
357	415	17	73.22	17	6.64	37	27.46			31	22.39		71	31	107
358	426	7	54.15	9	10.78	10	4.5			21	19.62		26	21	47
361	516	1	1.78	9	10.70	3	2.9			1	2.93		4	1	5
362	532	3	17.45			6	2.48			1	0.28		9	1	10
363	634	3	7.43			1	0.4			1	0.46		4	1	5
364	647	J	7.40	2	1.63	-	0.4			1	2.74		2	1	3
365	650	2	36.85	1	4.73	1	0.17			-	2.17		4	0	4
366	470	1	2.42		0	1	1.05			1	12.24		2	1	3
367	477	1	4.57	3	1.88	2	0.25			3	0.88		6	3	9
368	481	1	16.39	2	11.95	5	1.9			7	7.68		8	7	15
369	487	7	13.52	10	10.19	21	8.87	2	0.76	12	13.22		38	12	50
370	496	11	57.41	14	15.37	29	15.7	1	0.56	11	26.35		54	11	65
372	502	6	32.33	6	8.51	23	28.37	1	0.53	20	54.18		35	21	56

		Complete	Complete	Proximal	Proximal	Broken	Broken	Flaking	Flaking	Thermal	Thermal		Total	Total	
Lot#	Bag #	Flake	Flake	Flake	Flake	Flake	Flake	Shatter	Shatter	Shatter	Shatter	Comments	No.	No.	Final
LOI #	Day #											Comments	_	-	Total
070	- 17	Count	Weight (g)	Count	Weight (g)	Count	Weight (g)	Count	Weight (g)	Count	Weight (g)		Flakes	Shatter	110
373	517	12	36.48	21	32.82	59	38.36	2	2.9	52	51.75		92	54	146
375	549	7	65.15	5	7.52	23	17.78			48	21.64		35	48	83
377	573	4	6.51	5	12.43	34	10.31			83	51.17		43	83	126
378	586	7	31.79	5	5.19	9	11.83			5	1.19		21	5	26
379	621	1	2.06	2	3.21	4	8.63			5	7.54		7	5	12
380	627	2	7.05	1	0.72	4	7.21			5	16.55		7	5	12
381	635				2 - 1	1	6.22			4	12.85		1	4	5
382	652			2	3.51		0.00			2	0.35		2	2	4
383	433	4	0.07	1	0.17	4	3.23			1	0.19		5	1	6
384	439	1	3.07	_		3	0.74			1	0.77		4	1	5
386	445	7	40.35	7	2.76	8	3.81			10	18.95		22	10	32
388	362	10	25.34	8	13.89	33	31.74	2	0.7	17	17.91		51	17	68
389	451	7	65.01	9	33.63	28	25.75	1	0.49	9	6.03		44	10	54
390	458	5	15.32	14	5.55	23	15.02	2	16.53	30	23.48		42	32	74
391	465	8	4.49	11	7.75	23	15.71	1	1.24	21	19.96		42	22	64
392	608	4	55.68	3	5.22	5	8.69	2	13.99	4	1.77		12	6	18
394	612	2	23.71			2	12.27			4	6.56		4	4	8
395	617			2	0.42	2	2.12						4	0	4
396	624					1	0.22						1	0	1
397	632	1	0.16			2	0.88						3	0	3
398	645			1	0.12								1	0	1
399	667			1	0.62	1	2.45						2	0	2
400	483	1	0.67	1	0.75	2	1			1	0.6		4	1	5
401	488	1	9.02	3	2.45	10	6.65			3	0.61		14	3	17
402	490	4	25.19	8	4.09	23	38.05			7	3.01		35	7	42
403	495	16	106.41	26	88.75	62	47.28	4	11.87	24	50.33		104	24	128
405	500	6	10.71	18	10.17	49	49.58			21	9.39		73	21	94
406	503	7	8.87	13	12.27	49	38.21	3	2.53	42	48.23		69	45	114
407	507	11	24.16	7	5.78	19	9.25	2	9.72	12	29.31		37	14	51
409	514	6	56.27	6	17.44	12	14.51	2	1.48	27	70.74		24	29	53
410	528	2	11.76	14	43.22	23	22.02	1	7.53	30	37.36		39	30	69
411	537	5	14.17	6	7.54	4	6.44	1	0.33	24	27.53		15	24	39
412	567	1	68.47	2	3.76	3	0.75			8	2.28		6	8	14
413	540	2	11.29	2	0.42	2	2			6	2.42		6	6	12
414	543					2	0.66						2	0	2
415	547					1	0.06						1	0	1
417	561			2	0.29	2	2.31						4	0	4
418	673				00-1					1	1.44		0	1	1
424	595			1	32.73							Lithic #1	1	0	1
425	596	1	29.63									Lithic #2	1	0	1
426	601			1	20.74		00.10					Lithic #7	1	0	1
434	408			1	0.26	3	22.49						4	0	4
435	412	1	1.12			2	1.55						3	0	3
436	423	1	0.57	3	27.51	3	1.08			3	2.39		7	3	10
437	429	10	40.32	3	5.65	28	26.73			7	8.33		41	7	48
438	437	6	44.45	1	0.56	17	5.72			23	22.37		24	23	47
439	442	5	2	4	5.49	19	8.66	3	1.43	48	51.06		28	48	76
440	448	2	10.57	5	21.5	19	27.54			21	28.39		26	21	47
441	453					2	1.47			5	8.15		2	5	7

		Complete	Complete	Proximal	Proximal	Broken	Broken	Flaking	Flaking	Thermal	Thermal		Total	Total	
Lot#	Bag #	Flake	Flake	Flake	Flake	Flake	Flake	Shatter	Shatter	Shatter	Shatter	Comments	No.	No.	Final
	Dug "	Count	Weight (g)	Count	Weight (g)	Count	Weight (g)	Count	Weight (g)	Count	Weight (g)		Flakes	Shatter	Total
442	460	Jount	rreight (g)	2	4.03	2	2.42	1	1.94	Count	rreight (g)		4	1	5
443	476			3	13.71	6	5.62		1.04	3	5.96		9	3	12
444	482			1	0.65	1	0.57			2	3.79		2	2	4
445	489				0.00	1	1.63			2	1.13		1	2	3
446	498	1	0.2					1	0.14				1	1	2
447	406		¥			1	3.58						1	0	1
448	417									1	0.33		0	1	1
449	419			2	1.35								2	0	2
450	431	7	9.15	3	7.62	27	18.68	2	11.21	20	10.22		37	22	59
451	434	13	36.02	6	6.92	13	14.11	1	14.37	4	21.31		32	4	36
452	440	1	2.16	1	0.33	2	3.2						4	0	4
453	449	2	95.96	5	17.48	42	18.2	2	2.73	28	39.5		49	28	77
454	457	3	21.37			4	1.13	2	44.8	5	6.45		7	5	12
455	462			2	22.04	3	6.06	1	0.63	4	9.06		5	4	9
456	474	1	3.01	1	0.23	2	1.16	1	35.72	1	0.46		4	2	6
457	484					2	0.62			3	1.79		2	3	5
458	491									1	0.35		0	1	1
459	505					2	1.26						2	0	2
460	511					5	1.56			1	1.56		5	1	6
462	526			6	29.14	11	11.29			16	17.89		17	16	33
463	529	6	16.23			13	5.34			24	16.89		19	24	43
464	536	3	3.15	2	2.53	4	2.14			22	20.93		9	22	31
465	661	5	110.68	2	0.99	14	11.25			4	16.23		21	4	25
467	663	6	17.46	4	1.75	16	7.72			14	6.85		26	14	40
468	665 668	5 3	20.62	3	5.34	7 10	8.09			2	1.46		15	2	17 20
469 470	509	3	12.74	2	0.61	10	7.82 0.18			5	6.39		15 1	5 0	1
470	515			3	0.95	4	5.61			5	3.57		7	5	12
471	520	3	22.76	1	0.93	10	6.31			11	19.17		14	11	25
475	534	3	9.61	1	0.35	13	8.98			13	7.61		17	13	30
476	538	6	108.43	1	1.2	16	19.07			17	43.28		23	17	40
477	669	1	3.24	4	7	7	2.15			5	2.39		12	5	17
478	671	7	32.07	2	2.15	15	5.24			14	10.95		24	14	38
479	672	3	6.44	5	1.93	7	2.25			10	4.07		15	10	25
480	674	5	11.7	2	1.34	14	16.28			17	3.92		21	17	38
481	675	3	2.63	1	0.35	4	1.9			7	2.23		8	7	15
482	676	1	0.12			4	6.04			3	5.11		5	3	8
483	677					3	3.06						3	0	3
484	678					2	4.41						2	0	2
486	315					1	0.46						1	0	1
487	317	1	1.01										1	0	1
488	319	1	1.14			6	3.23			2	1.21		7	2	9
489	322	3	7.68	2	2.37	13	11.14			7	7.26		18	7	25
490	324	6	14.02	6	11.48	35	18.96			26	37.44		47	26	73
491	329	6	11.77	8	13.07	7	12.99			4	5.25		21	4	25
492	332	16	70.88	9	29.54	40	33.78			31	21.89		65	31	96
493	335	4	44.57	8	25.42	8	5.26			3	12.61		20	3	23
494	340	3	9.43	7	6.91	16	22.52			9	7.79		26	9	35
495	368	6	25.83	6	7	8	12.89			3	4.76		20	3	23

Lot # Bag # Flake Flak			Complete	Complete	Proximal	Proximal	Broken	Broken	Flaking	Flaking	Thermal	Thermal		Total	Total	
	l at #	Pag #	•						•	•			Commonte			Final
496 404 5	LOI #	Day #											Comments		_	Total
498 320	400	101							Count	weight (g)						
1498 320							19	18.57			4	2.04				
499 321 2 3.53 3 0.93 3 2.01 8 3.03 8 8 16	_		1	0.2				4.57							-	
Solit 328			0	2.52							0	2.02			-	-
501 328 11 37.91 7 15.26 24 10.4 1 23.26 22 60.81 42 21 63 502 331 12 99.38 12 21.58 18 88.32 1 7.12 20 32.18 42 21 63 504 336 16 81.69 18 15.41 35 17.7 24 14.31 55 24 79 506 339 16 81.69 18 15.41 35 17.2 25 15.28 669 25 94 506 339 25 33.98 33 38.38 44 31.26 4 15.25 12 20.73 102 21 12.23 10 12 12.24 18 18.24 11 18.3 55 19 74 18.6 14.2 22.0 18 33 38.38 48 41.2 22.0 15 11.1 14.4 41.2<							3								δ 22	
502 331 12 98.38 12 21.58 18 8.32 1 7.12 20 32.18 42 21 63	500						13		1	22.26	22				22	
503 334 15 3227 15 1216 25 19.77 24 14.31 55 24 79									1							
505 336 16					15				'	7.12						
Sof 342				_	18											
506 339 25 37.98 33 33.86 44 31.26 4 15.25 21 20.73 102 21 123 508 411 13 48.47 29 25.05 50 64.53 4 2.53 11 11.84 92 15 107 509 420 12 20.99 15 26.14 18 22.06 5 2.06 45 5 50 510 430 16 34.82 21 32.35 17 19.98 7 2.89 54 7 61 511 438 5 70.19 10 12.94 23 28.91 6 14.16 38 6 44 512 447 3 19.85 1 0.17 9 15.99 3 11.04 13 3 16 513 552 1 0.38 1 9.28 1 0.37 1 1.06 3 1 3 16 514 554 3 27.25 8 1 0.43 4 16.75 4 4 4 4 4 514 554 3 27.25 8 1 0.43 4 16.75 4 4 4 4 4 514 554 3 27.25 8 1 0.43 4 16.75 4 4 4 4 4 516 623 2 1.89 2 11.72 8 4 0 4 517 633 1 5.28 4 1.98 2 11.72 8 4 0 4 518 640 5 54.74 4 1.96 9 4.76 11 22.29 18 11 22 519 646 7 8.79 8 5.34 9 3.87 14 11.91 24 14 38 521 658 3 1.07 2 0.41 2 0.73 1 0.81 7 1 8 528 666 4 4.94 18 13.73 3 0.245 22 23 3.54 529 631 2 0.77 2 0.41 2 0.73 1 0.81 7 1 8 530 572 5 5 5 5 5 540 542 1 0.21 1 0.21 1 0.21 1 0.45 0 1 1 541 552 1 0.38 1 0.22 1 0.21 1 0.21 1 0.45 0 1 1 542 546 4 2.71 5 3.82 1 1.03 1 0.75 2 4.35 0 1 543 550 338 11 14.97 11 11.23 21 14.3 1 0.75 2 4.35 0 0 1 1 543 550 338 11 14.97 11 11.23 21 14.3 1 0.75 2 4.35 0 0 1 1 544 335 5 3 1 0.04 6 6.56 13 0.75 2 4.35 0 0 1 1 545 337 576 1 0.94 1 0.76 0 1 1 0.76 0 1 1 546 333 5 8.37 14 8.79 8 7.35 1 0.75 2 4.35 0 0 1 1 0.76 0 1 1 547 548 333 5 8.37 14 8.79 8 7.35 0 0.92		342			22		18									
508									4	15 25						
509 420 12 20.99 15 26.14 18 22.06 5 2.06 45 5 80 510 430 16 34.82 21 32.35 17 19.98 7 2.89 54 7 61 511 438 5 70.19 10 12.94 23 22.81 6 14.16 38 6 44 512 447 3 19.85 1 0.17 9 15.99 3 11.06 3 1 4 15.75 4 4 8 5 55.61 20.33 1 4 1.06 3 1 4 8 55.55 1 0.33 1 4 8 8 55.61 2.92 2 11.72 1 1.06 3 1 4 4 0 4 4 10 4 12.29 18 1 1 2.1 1.1 1.1 1.1 1					29		50									
510				-	15					2.00						
STI																
512											6					
514 554 3 27.25 1 0.43 4 16.75 4 4 8 515 558 1 2.92 2 13.54 3 0 3 0 3 0 3 0 3 0 3 0 3 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 10 4 0 4 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 2 0 2 0 2 1 0 0 1 1 0 0				19.85							3	11.04		13		
516 558 1 2.92 2 13.54 3 0 3 516 623 2 18.9 2 11.72 4 0 4 517 633 1 5.28 1 1.96 9 4.76 11 22.9 18 11 29 519 646 7 8.79 8 5.34 9 3.87 14 11.91 24 14 38 521 658 3 1.07 2 0.41 2 0.73 1 0.81 7 1 8 528 666 4 4.94 18 13.73 30 22.452 22 20 2 25 532 631 2 0.77	513	552	1	0.38	1	9.28	1	0.37			1	1.06		3	1	4
516 623 2 1 1.89 2 11.72 1 4 0 4 517 633 1 5.28 1 1 0 1 518 640 5 54.74 4 1.96 9 4.76 11 22.29 18 11 29 519 646 7 8.79 8 5.34 9 3.87 14 11.91 24 14 38 521 658 3 1.07 2 0.41 2 0.73 1 0.81 7 1 8 522 666 4 4.94 18 13.73 30 24.52 22 30 52 532 631 2 0.77 2 2 0.2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 1 1 2	514	554	3				1	0.43			4	16.75		4	4	8
517 633 1 5.28 1 0 1 518 640 5 54.74 4 1.96 9 4.76 11 22.29 18 11 29 519 646 7 8.79 8 5.34 9 3.87 14 11.91 24 14 38 521 658 3 1.07 2 0.41 2 0.73 1 0.81 7 1 8 528 666 4 4.94 1 18 13.73 30 24.52 22 30 52 532 631 2 0.77 2 2 0 2 2 0 2 533 641 3 3.86 5 3.41 7 2.05 1 1.36 4 5.04 13 5 18 537 576 1 1 2.23 1 1.048 1 1 <t< td=""><td>515</td><td>558</td><td>1</td><td>2.92</td><td>2</td><td>13.54</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td>0</td><td>3</td></t<>	515	558	1	2.92	2	13.54								3	0	3
518 640 5 54.74 4 1.96 9 4.76 11 22.29 18 11 29 519 646 7 8.79 8 5.34 9 3.87 14 11.91 24 14 38 521 658 3 1.07 2 0.41 2 0.73 1 0.81 7 1 8 528 666 4 4.94 18 13.73 30 24.52 22 30 52 532 631 2 0.77 2 2 0 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 1 1 0 2 1 1 1 1 1 1 1 1 1 1 <td< td=""><td>516</td><td>623</td><td>2</td><td>1.89</td><td>2</td><td>11.72</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td>0</td><td>4</td></td<>	516	623	2	1.89	2	11.72								4	0	4
519 646 7 8.79 8 5.34 9 3.87 14 11.91 24 14 38 521 658 3 1.07 2 0.41 2 0.73 1 0.81 7 7 1 8 528 666 4 4.94 18 13.73 30 24.52 22 30 52 532 631 2 0.77 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	517	633	1	5.28										1	0	1
521 658 3 1.07 2 0.41 2 0.73 1 0.81 7 1 8 528 666 4 4.94 18 13.73 30 24.52 22 30 52 532 631 2 0.77 2 2 0 2 1 1 2.23 33.15 13 23 36 53 1 0.48 1 1 2.23 1 1 0.48 1 1 1 2 3 6 3 1 1 1 </td <td>518</td> <td>640</td> <td>5</td> <td>54.74</td> <td>4</td> <td>1.96</td> <td>9</td> <td>4.76</td> <td></td> <td></td> <td>11</td> <td>22.29</td> <td></td> <td>18</td> <td>11</td> <td>29</td>	518	640	5	54.74	4	1.96	9	4.76			11	22.29		18	11	29
528 666 4 4.94 18 13.73 30 24.52 22 30 52 532 631 2 0.77 20 2 0 2 533 641 9 32.41 4 2.33 23 33.15 13 23 36 534 649 1 3.86 5 3.41 7 2.05 1 1.36 4 5.04 13 5 18 537 576 1 1 2.23 1 0.48 1 1 2 36 578 0 1 1 2.23 1 0.48 1 1 2 36 579 2 0.86 3 0.45 8 6.2 5 8 13 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>5.34</td> <td></td> <td></td> <td></td> <td></td> <td>14</td> <td></td> <td></td> <td>24</td> <td>14</td> <td>38</td>			-			5.34					14			24	14	38
532 631 2 0.77 9 32.41 4 2.33 33.15 13 23 36 534 649 1 3.86 5 3.41 7 2.05 1 1.36 4 5.04 13 5 18 537 576 2 8 1 1 2.23 1 0.48 1 1 2 536 572 1 0.48 1 1 2 2 536 572 0 1 1 0.48 1 1 2 2 536 572 0 1 1 0.25 0 1 1 1 2 2 536 537 1 0.45 8 6.2 5 8 13 3 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<			3	1.07	2	0.41					1					
533 641 9 32,41 4 2,33 1 23 33,15 13 23 36 534 649 1 3.86 5 3.41 7 2.05 1 1.36 4 5.04 13 5 18 537 576 1 2.23 1 1 0.48 1 1 2 536 572 1 0.45 8 6.2 5 8 13 539 592 2 0.86 3 0.45 8 6.2 5 8 13 540 542 1 0.21 1 0.46 12 16.39 2 12 14 540 542 1 0.21 1 4.48 2 0.61 2 3 5 541 544 1 1.59 5 2.98 1 0.75 2 4.35 6 3 9 543<							18	13.73			30	24.52				
534 649 1 3.86 5 3.41 7 2.05 1 1.36 4 5.04 13 5 18 537 576 2 1 2.23 1 0.48 1 1 2 536 572 1 1 0.45 0 1 1 538 579 2 0.86 3 0.45 8 6.2 5 8 13 539 592 1 2 0.46 12 16.39 2 12 14 540 542 5 1 0.21 1 0.21 1 4.48 2 0.61 2 3 5 541 544 1 1.59 5 2.98 1 0.75 2 4.35 6 3 9 542 546 4 2.71 5 3.82 11 10.15 23 27.54 20 23 43 </td <td></td> <td></td> <td>2</td> <td>0.77</td> <td></td>			2	0.77												
537 576 1 2.23 1 0.48 1 1 2 536 572 1 0.45 0 1 1 538 579 2 0.86 3 0.45 8 6.2 5 8 13 539 592 1 0.21 1 0.21 1 4.48 2 0.61 2 3 5 541 542 1 0.21 1 0.21 1 4.48 2 0.61 2 3 5 541 544 1 1.59 5 2.98 1 0.75 2 4.35 6 3 9 542 546 4 2.71 5 3.82 11 10.15 23 27.54 20 23 43 543 560 1 1 0.04 6 6.56 13 44.02 7 13 20 544 325																
536 572 1 0.45 0 1 1 538 579 2 0.86 3 0.45 8 6.2 5 8 13 539 592 1 0.21 1 0.21 1 4.48 2 0.61 2 1 1 540 542 1 1.59 5 2.98 1 0.75 2 4.35 6 3 9 541 544 1 1.59 5 2.98 1 0.75 2 4.35 6 3 9 542 546 4 2.71 5 3.82 11 10.15 23 27.54 20 23 43 543 560 1 0.04 6 6.56 13 4.02 7 13 20 544 325 1 1 0.94 6 6.56 13 4.198 7 7 14.98 <			1	3.86	5	3.41			1	1.36	4			13		
538 579 2 0.86 3 0.45 8 6.2 5 8 13 539 592 2 0.46 12 16.39 2 12 14 540 542 3 1 0.21 1 0.44 2 0.61 2 3 5 541 544 1 1.59 5 2.98 1 0.75 2 4.35 6 3 9 542 546 4 2.71 5 3.82 11 10.15 23 27.54 20 23 43 543 560 1 1 0.04 6 6.56 13 44.02 7 13 20 544 325 1 1 0.04 6 6.56 13 44.02 7 13 20 547 330 7 2 7.21 5 5.07 7 14.98 7 7	537						1	2.23			1			1		
539 592 1 0.21 2 0.46 12 16.39 2 12 14 540 542 1 0.21 1 0.21 1 4.48 2 0.61 2 3 5 541 544 1 1.59 5 2.98 1 0.75 2 4.35 6 3 9 542 546 4 2.71 5 3.82 11 10.15 23 27.54 20 23 43 543 560 1 0.04 6 6.56 13 44.02 7 13 20 544 325 1 0.99 1 0.16 1 0.76 0 1 1 547 330 7 1 1.99 2 0.92 1 0.16 1 4 4 2 7 14 4 4 2 7 7 14 9 3				2.22												
540 542 1 0.21 1 0.21 1 4.48 2 0.61 2 3 5 541 544 1 1.59 5 2.98 1 0.75 2 4.35 6 3 9 542 546 4 2.71 5 3.82 11 10.15 23 27.54 20 23 43 543 560 1 0.04 6 6.56 13 44.02 7 13 20 544 325 1 0.04 6 6.56 13 44.02 7 13 20 544 325 1 0.04 6 6.56 13 44.02 7 13 20 547 330 7 2 7.21 5 5.07 7 14.98 7 7 14 548 333 5 8.37 14 8.79 8 7.35 8			2	0.86							-	_				
541 544 1 1.59 5 2.98 1 0.75 2 4.35 6 3 9 542 546 4 2.71 5 3.82 11 10.15 23 27.54 20 23 43 543 560 1 0.04 6 6.56 13 44.02 7 13 20 544 325 1 0.04 6 6.56 13 44.02 7 13 20 545 327 1 1.99 2 0.92 1 0.16 3 1 4 547 330 7 2 7.21 5 5.07 7 14.98 7 7 14 548 333 5 8.37 14 8.79 8 7.35 8 8 8.61 27 8 35 550 338 11 14.97 11 11.23 21 14.3 <td>539</td> <td></td> <td></td> <td></td> <td></td> <td>0.04</td> <td></td> <td></td> <td>4</td> <td>4.40</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	539					0.04			4	4.40						
542 546 4 2.71 5 3.82 11 10.15 23 27.54 20 23 43 543 560 1 0.04 6 6.56 13 44.02 7 13 20 544 325 1 1.99 2 0.92 1 0.16 3 1 4 545 327 1 1.99 2 0.92 1 0.16 3 1 4 547 330 2 7.21 5 5.07 7 14.98 7 7 14 548 333 5 8.37 14 8.79 8 7.35 8 8.61 27 8 35 550 338 11 14.97 11 11.23 21 14.3 1 0.71 14 24.23 43 15 58 551 341 5 29.69 11 9.69 34			1	1.50	1	0.21	•		1							
543 560 1 0.04 6 6.56 13 44.02 7 13 20 544 325 1 1.99 2 0.92 1 0.16 3 1 4 545 327 1 1.99 2 0.92 1 0.16 3 1 4 547 330 2 7.21 5 5.07 7 14.98 7 7 14 548 333 5 8.37 14 8.79 8 7.35 8 8.61 27 8 35 550 338 11 14.97 11 11.23 21 14.3 1 0.71 14 24.23 43 15 58 551 341 5 29.69 11 9.69 34 16.7 2 0.72 17 16.93 50 19 69 552 347 10 51.98 26 <td< td=""><td></td><td></td><td></td><td></td><td>E</td><td>3 00</td><td></td><td></td><td>ı</td><td>0.75</td><td></td><td></td><td></td><td>-</td><td></td><td>42</td></td<>					E	3 00			ı	0.75				-		42
544 325 1 1.99 2 0.92 1 0.16 3 1 4 547 330 2 7.21 5 5.07 7 14.98 7 7 14 548 333 5 8.37 14 8.79 8 7.35 8 8.61 27 8 35 550 338 11 14.97 11 11.23 21 14.3 1 0.71 14 24.23 43 15 58 551 341 5 29.69 11 9.69 34 16.7 2 0.72 17 16.93 50 19 69 552 347 10 51.98 26 46.75 10 12.44 34 25.39 46 34 80 553 392 1 0.34 5 21.12 3 2.78 6 3 9 554 395 2			4	۷./۱												20
545 327 1 1.99 2 0.92 1 0.16 3 1 4 547 330 2 7.21 5 5.07 7 14.98 7 7 14 548 333 5 8.37 14 8.79 8 7.35 8 8.61 27 8 35 550 338 11 14.97 11 11.23 21 14.3 1 0.71 14 24.23 43 15 58 551 341 5 29.69 11 9.69 34 16.7 2 0.72 17 16.93 50 19 69 552 347 10 51.98 26 46.75 10 12.44 34 25.39 46 34 80 553 392 1 0.34 5 21.12 3 2.78 6 3 9 554 395 2					-	0.04	U	0.50			10					
547 330 2 7.21 5 5.07 7 14.98 7 7 14 548 333 5 8.37 14 8.79 8 7.35 8 8.61 27 8 35 550 338 11 14.97 11 11.23 21 14.3 1 0.71 14 24.23 43 15 58 551 341 5 29.69 11 9.69 34 16.7 2 0.72 17 16.93 50 19 69 552 347 10 51.98 26 46.75 10 12.44 34 25.39 46 34 80 553 392 1 0.34 5 21.12 3 2.78 6 3 9 554 395 2 2.63 3 14.69 4 3.15 5 3.16 9 5 14 555					1	1 99	2	0.92	1	0.16		0.70			-	
548 333 5 8.37 14 8.79 8 7.35 8 8.61 27 8 35 550 338 11 14.97 11 11.23 21 14.3 1 0.71 14 24.23 43 15 58 551 341 5 29.69 11 9.69 34 16.7 2 0.72 17 16.93 50 19 69 552 347 10 51.98 26 46.75 10 12.44 34 25.39 46 34 80 553 392 1 0.34 5 21.12 3 2.78 6 3 9 554 395 2 2.63 3 14.69 4 3.15 5 3.16 9 5 14 555 400 1 9.29 1 0.56 5 4.32 6 24.16 7 6 13									'	0.10	7	14 98			-	
550 338 11 14.97 11 11.23 21 14.3 1 0.71 14 24.23 43 15 58 551 341 5 29.69 11 9.69 34 16.7 2 0.72 17 16.93 50 19 69 552 347 10 51.98 26 46.75 10 12.44 34 25.39 46 34 80 553 392 1 0.34 5 21.12 3 2.78 6 3 9 554 395 2 2.63 3 14.69 4 3.15 5 3.16 9 5 14 555 400 1 9.29 1 0.56 5 4.32 6 24.16 7 6 13 556 349 1 10.43 1 0.12 7 6.13 2 0.81 9 2 11			5	8.37	14										-	
551 341 5 29.69 11 9.69 34 16.7 2 0.72 17 16.93 50 19 69 552 347 10 51.98 26 46.75 10 12.44 34 25.39 46 34 80 553 392 1 0.34 5 21.12 3 2.78 6 3 9 554 395 2 2.63 3 14.69 4 3.15 5 3.16 9 5 14 555 400 1 9.29 1 0.56 5 4.32 6 24.16 7 6 13 556 349 1 10.43 1 0.12 7 6.13 2 0.81 9 2 11 557 353 1 0.4 1 0.4 1 0 1 0 1	550								1	0.71						
552 347 10 51.98 26 46.75 10 12.44 34 25.39 46 34 80 553 392 1 0.34 5 21.12 3 2.78 6 3 9 554 395 2 2.63 3 14.69 4 3.15 5 3.16 9 5 14 555 400 1 9.29 1 0.56 5 4.32 6 24.16 7 6 13 556 349 1 10.43 1 0.12 7 6.13 2 0.81 9 2 11 557 353 1 0.4 1 0.4 1 0 1 0 1									2							
553 392 1 0.34 5 21.12 3 2.78 6 3 9 554 395 2 2.63 3 14.69 4 3.15 5 3.16 9 5 14 555 400 1 9.29 1 0.56 5 4.32 6 24.16 7 6 13 556 349 1 10.43 1 0.12 7 6.13 2 0.81 9 2 11 557 353 1 0.4 1 0.4 1 0 1									_							
554 395 2 2.63 3 14.69 4 3.15 5 3.16 9 5 14 555 400 1 9.29 1 0.56 5 4.32 6 24.16 7 6 13 556 349 1 10.43 1 0.12 7 6.13 2 0.81 9 2 11 557 353 1 0.4 1 0.4 1 0 1						1211.0										
555 400 1 9.29 1 0.56 5 4.32 6 24.16 7 6 13 556 349 1 10.43 1 0.12 7 6.13 2 0.81 9 2 11 557 353 1 0.4 1 0.4 1 0 1			2		3	14.69					_					
556 349 1 10.43 1 0.12 7 6.13 2 0.81 9 2 11 557 353 1 0.4 1 0 1 0 1											-			7	-	
557 353 1 0.4 1 0 1		349	1		1				2	0.81				9		
	557						1									
	558		1	0.08	2	0.9	7	9.79						10	0	10

				Duranianal	Di	Dustan	Dl.	Flatina	El-lain a	Th	T1		T-4-1	T-4-1	
l l	- "	Complete	Complete	Proximal	Proximal	Broken	Broken	Flaking	Flaking	Thermal		0	Total	Total	Final
Lot#	Bag #	Flake	Flake	Flake	Flake	Flake	Flake	Shatter	Shatter	Shatter	Shatter	Comments	No.	No.	Total
		Count	Weight (g)	Count	Weight (g)	Count	Weight (g)	Count	Weight (g)	Count	Weight (g)		Flakes	Shatter	
559	360	3	6.7	9	17.43	15	11.15			19	26.31		27	19	46
561	367	8	13.22	9	6.74	12	21.74			15	32.36		29	15	44
565	374	8	16.81	3	1.32	21	11.47			10	12.64		32	10	42
566	379	4	2.86	5	2.06	14	11.97	3	4.78	12	32.31		23	15	38
567	384	4	37.75	13	5.14	12	10.53			7	5.51		29	7	36
568	386			2	0.75	2	6.38			3	3.4		4	3	7
569	389	2	0.38	1	0.18	1	6.34			2	0.98		4	2	6
570	416			2	29.57	1	0.24			1	0.16		3	1	4
571	425									1	0.26		0	1	1
572	435	1	2.38										1	0	1
573	443	1	0.63	3	54.64	2	0.39				0.45		6	0	6
574	606	1	0.93	1	0.74	1	0.85			1	3.17		3	1	4
575	611		0.44			1	0.47				0.40		1	0	1
577	620	2	8.41		0.44	1	0.04			1	0.12		3	1	4
578	637		0.40	3	2.14	3	0.93			1	2.01		6	1	7
579 580	643 648	2	0.16	6	1.93	4 10	1.01			7 15	3.71		12 16	7 15	19 31
		2	1.62	4	20.21		5.32				15.47				
581	651	5	15.34	1	1.71	3	4.34			3	0.51		9	3	12
582	654	1	0.39			9	5.78			11	6.94		10 0	11 1	21
583	513						0.44			1	2.77		_		1
584	518	0	0.07	4	0.00	3	0.41				4.0		3	0	3
585	519	3	2.97	4	3.39	8 21	26.82	2	40.0	5	1.9		15	5	20
586 588	523 527	5 7	3.36 91.11	6 20	33.56 14.52	26	5.64 14.33	2	10.9	8 22	2.59 21.58		32 53	10 22	42 75
	557	11		22		19							53 52		
590 591	563	9	28.69 36.3	28	51.94 129.27	51	7.03 58.76			34 32	65.88 31.66		52 88	34 32	86 120
595	570	11	43.53	13	10.51	40	39.39			32 8	6.46		64	8	72
596	574	1	75.04	3	0.58	10	39.39			8	4.92		14	8	22
596	575	2	1.21	4	2.17	5	2.54			7	4.92		11	7	18
598	659		1.21	2	4.38	1	0.4			1	4.20		3	0	3
599	660				4.30	1	0.4						1	0	1
600	662			1	0.15	<u> </u>	0.00						1	0	1
601	664	1	13.86	2	6.3								3	0	3
614	413	1	13.00	3	1.21	2	0.45			2	0.76		5	2	7
615	441	3	0.4	6	2.28	11	7.77			10	6.42		20	10	30
616	454	5	6	19	11.2	17	12.06			15	33.83		41	15	56
617	464	2	0.87	14	12.4	14	16.83			23	21.35		30	23	53
618	479	14	96.06	20	16.66	37	29.37	4	11.69	12	7.04		71	16	87
619	530	7	27.92	18	17.9	29	29.58	3	5.01	6	4.89		54	9	63
621	539	4	97.4	10	15.59	30	10.55	J	3.01	33	76.07		44	33	77
622	541	9	34.79	16	11.66	35	37.16			11	9.61		60	11	71
623	581	5	12.49	2	3.41	10	14.14	1	58.17	7	8.78		17	8	25
625	587	4	10.96	4	19.74	6	4.75	-	50.17	2	7.01		14	2	16
626	591	3	28.66	-	15.74	4	3.82			2	1		7	2	9
627	613	1	9.74	1	22.52	7	0.02				<u>'</u>		2	0	2
628	346		5.74	3	1.24			1	0.35	1	1.39		3	2	5
629	355	1	3.2	5	3.4	3	1.12	1	0.33		1.38		9	0	9
630	365	4	3.08	11	24.91	10	8.77			7	5.36		25	7	32
631	376	2	2.3	14	6.37	16	11.36			10	2.67		32	10	42
001	570		۷.5	17	0.01	10	11.00			10	2.01		UZ	10	74

		Complete	Complete	Proximal	Proximal	Broken	Broken	Flaking	Flaking	Thermal	Thermal		Total	Total	5 1
Lot#	Bag #	Flake	Flake	Flake	Flake	Flake	Flake	Shatter	Shatter	Shatter	Shatter	Comments	No.	No.	Final
		Count	Weight (g)	Count	Weight (g)	Count	Weight (g)	Count	Weight (g)	Count	Weight (g)		Flakes	Shatter	Total
632	385	9	12.83	10	6.47	23	15.4	2	0.64	11	10.23		42	13	55
633	396	8	35.29	9	4.13	30	21.12			16	14.31		47	16	63
635	455	8	56.49	6	22.92	16	11.51			6	3.75		30	6	36
637	461	2	51.36	7	2.39	9	8.16			11	85.8		18	11	29
638	466	2	8.56	3	3.63	2	0.61			1	0.44		7	1	8
639	468	1	0.12	3	0.84					1	1.55		4	1	5
640	471			3	8.24	1	0.08			1	118.93		4	1	5
641	473			2	1.95	1	0.42			1	0.17		3	1	4
642	478					2	1.38						2	0	2
644	351					1	0.66						1	0	1
645	359			1	0.75	1	0.95						2	0	2
646	369	4	2.96	6	27.35	6	1.97			1	1.23		16	1	17
647	381	5	20.33	13	40.15	9	3.81			17	19.45		27	17	44
648	390	9	8.71	12	38.48	37	15.85	1	1.75	26	23.06		58	27	85
649	402	7	5.64	14	8.29	19	8.31	1	1.16	20	29.03		40	21	61
650	486	9	44.31	11	4.81	21	6.28			13	28.38		41	13	54
652	493	6	28.47	8	8.68	13	8.4			4	4.15		27	4	31
653	504	4	10.73	7	19.1	15	13.29			5	1.55		26	5	31
654	622			2	2.92	3	1.27			1	3.21		5	1	6
655	625			2	4.62	1	0.19			1	0.2		3	1	4
656	630	2	6.1										2	0	2
657	418									1	1.04		0	1	1
658	432					2	0.83						2	0	2
659	446	8	13.64	4	2.23	8	5.22			7	2.67		20	7	27
660	459	7	73.09	12	15.17	14	3.2			17	24.71		33	17	50
661	469	14	9.84	21	10.79	20	7.41			19	8.31		55	19	74
662	533	4	18.47	10	7.36	16	27.88			5	4.64		30	5	35
663	535	12	91.91	6	3.54	14	5.44			11	7.26		32	11	43
665	568	4	1.73	14	8.98	24	9.82			10	3.81		42	10	52
666	584	5	16.06	4	4.08	8	6.69			2	10.14		17	2	19
668	588	2	9.64	2	16.2					2	0.86		4	2	6
669	605	3	19.6	1	1.02	5	1.38			1	0.11		9	1	10
670	609	3	24.43										3	0	3
671	615			1	8.97								1	0	1
673	344					1	0.19			1	0.83		1	1	2
674	348					2	2.02			4	3.73		2	4	6
675	364			1	0.99	2	0.63						3	0	3
676	366	3	1.03	2	0.82	5	4.69			6	8.14		10	6	16
677	383			4	6.93	1	0.42						5	0	5
678	387					1	0.58	1	10.25	3	2.41		1	4	5
679	391	1	5.3	1	26.6	2	1.63			5	6.05		4	5	9
680	401	1	0.98							4	4.29		1	4	5
681	556					1	0.4			3	2.88		1	3	4
682	559									4	2.68	· · · · · · · · · · · · · · · · · · ·	0	4	4
683	571	1	8.54			1	0.88	1	1.01	2	15.93		2	3	5
684	577					2	0.42			1	0.22	· · · · · · · · · · · · · · · · · · ·	2	1	3
686	585									1	11.86	· · · · · · · · · · · · · · · · · · ·	0	1	1
687	343					1	0.32						1	0	1
688	352			1	1.5	1	0.35						2	0	2

Appendix C7. Debitage Sort Analysis

Lot#	Bag #	Complete Flake Count	Complete Flake Weight (g)	Proximal Flake Count	Proximal Flake Weight (g)	Broken Flake Count	Broken Flake Weight (g)	Flaking Shatter Count	Flaking Shatter Weight (g)	Thermal Shatter Count	Thermal Shatter Weight (g)	Comments	Total No. Flakes	Total No. Shatter	Final Total
689	357					3	7.8			2	1.53		3	2	5
690	375	2	30.46	3	3.11	6	9.53			3	1.57		11	3	14
691	377			1	0.91	4	13.16			3	3.55		5	3	8
692	380			2	48.61	3	0.63			5	28.86		5	5	10
693	393			2	2.83	1	2.84	1	5.45	7	5.18		3	8	11
694	398	1	0.84	1	14.17					3	5.96		2	3	5
695	403	1	1.3			1	0.8						2	0	2
696	548	2	10.3			1	1.01			3	5.21		3	3	6
698	562	1	0.94			1	0.66			4	5.85		2	4	6
643	345			1	0.58								1	0	1
329	628			1	0.11	8	22.95			9	11.23		9	9	18
602	409			1	2.48	2	0.25						3	0	3
603	424			5	7.09	8	4.69			2	0.51		13	2	15
604	436	15	24.49	9	9.21	20	8.16			15	21.37		44	15	59
605	450	10	20.52	10	8.61	23	11.32	3	4.07	8	12.56		43	11	54
606	463	15	104.1	19	19.37	48	33.69			19	32.8		82	19	101
607	472	13	36.58	12	5.74	35	22.14	2	12.68	18	24.22		60	20	80
608	510	13	16.02	23	25.61	41	48.34			18	14.63		77	18	95
609	545	9	162.77	21	27.7	32	21.25	6	55.85	16	28.51		62	22	84
610	550	4	5.96	5	3.64	10	15.39	2	5.24	4	9.58		19	6	25
611	618			4	0.51	2	2.43	1	17.99	1	1.98	•	6	2	8
612	629	1	5.41										1	0	1
613	638	3	34.39					2	12.97	1	0.31		3	3	6
	TOTAL	1166		1516		3347		89		2598			6029	2687	8716

Lot No.	Spec.	Bag No.	UI No.	Category	Subcategory	Condition	Raw material	Overall Form	Cross-Section	Surface	Modification	No. of Use	Location of	Intentional
LUI NU.	No.	Bay No.	OI NO.	Category	Subcategory	Condition	Naw Illaterial	Overall Form	Form	Modification	Detail	Surfaces	Modification	Modification
				Groundstone	Grooved	Marginal Edge	Limestone	Indet	Indet	Grooves	Deep Indention	1	Surface-one	Tool Shaping
					Stone								face	
416	1	553	NA	Heat Treatment	Weight (g)	Max Length	Max Width	Max Thickness			Comm	ents		
				None	185.48	Indet	Indet	Indet	Single narrow tro	ugh (33.99mm w	ide and 10.54mm t	hick); May have	extended past the	e break; Abrader

Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Condition	Raw material	Overall Form	Cross-Section Form	Surface Modification	Modification Detail	No. of Use Surfaces	Location of Modification	Intentional Modification
				Manuport	Indet	Complete	Limestone	Oval	Planoconvex	None	None	None	NA	NA
				114 T4 4	Mainlet (a)	Manual amountle	M 140-141-				0	4 -		
461	1	512	NA	Heat Treatment	Weight (g)	Max Length	wax width	Max Thickness			Comm	ients		

Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Condition	Raw material	Overall Form	Cross-Section Form	Surface Modification	Modification Detail	No. of Use Surfaces	Location of Modification	Intentional Modification
				Groundstone	Mano	Complete	Limestone	Oval	Biplano	Grinding and Residue	Smooth	1	Surface-one face	Processing
492	6	332	NA	Heat Treatment	Weight (g)	Max Length	Max Width	Max Thickness			Comm	nents		
				None	214.62	81.5	58.12	29.52	Very small med	ial fragment with	obvious reside ac irregular break		e; Possible heat tre	eatment due to

Lot No.	Spec. No.	Bag No.	UI No.	Category	Subcategory	Condition	Raw material	Overall Form	Cross-Section Form	Surface Modification	Modification Detail	No. of Use Surfaces	Location of Modification	Intentional Modification
				Manuport	Indet	Complete	Limestone	Oval	Planoconvex	None	None	None	NA	NA
518	10	640	NA	Heat Treatment	Weight (g)	Max Length	Max Width	Max Thickness			Comm	nents		
				None	58.39	62.18	32.04	20.84			Large rounded li	mestone gravel		

Lot No.	Spec.	Bag No.	UI No.	Category	Subcategory	Condition	Raw material	Overall Form	Cross-Section	Surface	Modification	No. of Use	Location of	Intentional
LOUNG.	No.	вау но.	OI NO.	Category	Subcategory	Condition	Naw Illateriai	Overall Form	Form	Modification	Detail	Surfaces	Modification	Modification
				Groundstone	Indet	Medial Fragment	Limestone	Indet	Indet	Residue	Smooth	Indet	Indet	Heat Treatment
555	5	400	NA	Heat Treatment	Weight (g)	Max Length	Max Width	Max Thickness			Comn	nents		
				Yes	7.15	Indet	Indet	Indet	Very small med	ial fragment with	obvious reside ac irregular break		e; Possible heat to	reatment due to

APPENDIX D

Faunal Analysis

Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Taxon	Common Name	Weight (g)	Body Size	Presence	Culturally Modified	Modification	Bone ID	Side	Growth plate fusion	Fragment Type	Margin angle	Comments
321	506	S001	995	1012	7	Mammal	Ŏ NA	0.55	NA	Frag	No	None	NA	NA	NA NA	Cortical	Right	Long bone
321	506	S002	995	1012	7	Indeterminate	NA	0.61	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
321	506	S003	995	1012	7	Mammal	NA	0.74	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
321	506	S004	995	1012	7	Indeterminate	NA	0.45	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
321	506	S005	995	1012	7	Indeterminate	NA	0.48	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
321	506	S006	995	1012	7	Indeterminate	NA	0.40	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
321	506	S007	995	1012	7	Indeterminate	NA	0.29	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
321	506	S008	995	1012	7	Indeterminate	NA	0.57	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
321	506	S009	995	1012	7	Indeterminate	NA	0.28	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
321	506	S010	995	1012	7	Indeterminate	NA	0.35	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
321	506	S011	995	1012	7	Indeterminate	NA 	0.23	NA	Frag	No	None	NA	NA 	NA	Cortical	NA O. II	
321	506	S012 S013	995	1012	7	Mammal	NA NA	0.56	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	Oblique	
321	506 506	S013	995 995	1012	7	Indeterminate	NA NA	0.46	NA NA	Frag	No No	None	NA NA	NA NA	NA NA	Trabecular	NA NA	
321	506	S015	995	1012	7	Indeterminate	NA NA	0.10	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	NA NA	
321	506	S016	995	1012	7	Indeterminate	NA NA	0.10	NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	Fresh	
321	506	S017	995	1012	7	Indeterminate	NA	0.17	NA	Frag	No	None	NA	NA	NA	Trabecular	NA	
321	506	S018	995	1012	7	Indeterminate	NA	0.12	NA	Frag	No	None	NA	NA	NA	Trabecular	NA	
321	506	S019	995	1012	7	Indeterminate	NA	0.05	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
321	506	S020	995	1012	7	Indeterminate	NA	0.18	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
321	506	S021	995	1012	7	Indeterminate	NA	0.11	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
321	506	S022	995	1012	7	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
321	506	S023	995	1012	7	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
323	524	S001	995	1012	8	Mammal	NA	0.55	2	Frag	Yes	Percussion Notch	NA	NA	NA	Cortical	Spiral	Probably deer
323	524	S002	995	1012	8	Indeterminate	NA	1.37	NA	Frag	No	None	NA	NA	NA	Trabecular	NA	
323	524	S003	995	1012	8	Indeterminate	NA	0.63	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
323	524	S004	995	1012	8	Indeterminate	NA	0.15	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
323	524	S005	995	1012	8	Mammal	NA	0.49	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
323	524	S006	995	1012	8	Mammal	NA NA	2.6	3-4	Frag	No	None	NA	NA	NA	Cortical	Oblique	
323	524 524	S007 S008	995 995	1012	8	Indeterminate Tortoise/Turtle	NA Tortoise/Turtle	0.88	NA 1	Frag	No No	None None	NA Carapace	NA NA	NA NA	Trabecular	NA NA	
323	524	S009	995	1012	8	Mammal	NA NA	0.33	NA.	Frag	No	None	NA	NA NA	NA NA	Cortical	Right	
323	524	S010	995	1012	8	Indeterminate	NA NA	0.25	NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	NA	
323	524	S011	995	1012	8	Indeterminate	NA	0.37	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
323	524	S012	995	1012	8	Indeterminate	NA	0.21	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
323	524	S013	995	1012	8	Indeterminate	NA	0.25	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
323	524	S014	995	1012	8	Indeterminate	NA	0.28	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
323	524	S015	995	1012	8	Indeterminate	NA	0.15	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
323	524	S016	995	1012	8	Indeterminate	NA	0.21	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
323	524	S017	995	1012	8	Indeterminate	NA	0.15	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
323	524	S018	995	1012	8	Indeterminate	NA	0.11	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
323	524	S019	995	1012	8	Indeterminate	NA	0.08	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
323	524	S020	995	1012	8	Indeterminate	NA	0.29	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
323	524	S021	995	1012	8	Indeterminate	NA NA	0.14	NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	NA NA	
323	524	S022	995	1012	8	Indeterminate	NA NA	0.18	NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	NA NA	
323	524 524	S023 S024	995 995	1012	8	Indeterminate	NA NA	0.06	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	NA NA	
323	578	S024 S001	995	1012	9	Indeterminate Tortoise/Turtle	NA Tortoise/Turtle	0.01	NA 1	Frag	No No	None	Plastron	NA NA	NA NA	Cortical	NA Right	Heavily weathered
325	589	S001	995	1012	10	Tortoise/Turtle	Tortoise/Turtle	0.41	1	Frag	No	None	carapace	NA NA	NA NA	NA	Ngill	Small carapace frag. Possibly burned.
327	589	S002	995	1012	10	Indeterminate	NA NA	0.52	NA	NA	No	None	NA	NA NA	NA NA	NA NA		Very weathered and distorted.
327	589	S003	995	1012	10	Indeterminate	NA NA	0.28	NA	NA	No	None	NA NA	NA NA	NA NA	Cortical		Heavily weathered
329	628	S001	995	1012	12	Mammal	NA	0.06	NA	Frag	No	None	tooth	NA	NA	Enamel		Small enamel fragment. Not enough to make a determination.
335	378	S001	995	1013	3	Indeterminate	NA	0.42	NA	Frag	No	None	NA	NA	NA	Cortical		Long bone fragment, very weathered.
336	388	S001	995	1013	4	Mammal	NA	6.94	NA	Frag	No	None	NA	NA	NA	Cortical		Large long bone frag. Surface has been obliterated due to weathering.
336	388	S002	995	1013	4	Indeterminate	NA	0.96	NA	Frag	No	None	NA	NA	NA	Cortical		Cortical frag. Surface has been obliterated due to weathering.
336	388	S003	995	1013	4	Indeterminate	NA	0.42	NA	Frag	No	None	NA	NA	NA	Cortical		Cortical frag. Surface has been obliterated due to weathering.

· o	ó	n No.	Вu	61	-		Name	(a)	Size	90	ally ed	ıtion	Q		plate n	Туре	angle	mts.
Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Taxon	Common Name	Weight (g)	Body S	Presence	Culturally Modified	Modification	Bone	Side	Growth plate fusion	Fragment Type	Margin a	Comments
336	388	S004	995	1013	4	Indeterminate	NA	0.35	NA	Frag	No	None	NA	NA	NA	Cortical		Cortical frag. Surface has been obliterated due to weathering.
338	405	S001	995	1013	6	Indeterminate	NA	0.45	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	Long bone frag
338	405	S002	995	1013	6	Indeterminate	NA	0.38	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
338	405	S003	995	1013	6	Indeterminate	NA	0.17	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
338	405	S004	995	1013	6	Indeterminate	NA	0.34	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
338	405	S005	995	1013	6	Indeterminate	NA	0.17	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
339	410	S001	995	1013	7	Avian	NA	0.28	NA	Frag	No	None	NA	NA	NA	Cortical		Long bone fragment. The size of the frag and gracile cortex would indicate a large bird.
339	410	S002	995	1013	7	Indeterminate	NA	0.29	NA	Frag	No	None	NA	NA	NA	Cortical		Too weathered to be identified.
339 344	410 610	S003 S001	995 995	1013 1013	7	Mammal Mammal	NA NA	0.6 2.36	NA NA	Frag Frag	No No	None None	NA Mandible	NA NA	NA NA	Cortical Cortical		Small cortical frag from a long bone. Nearly calcined. Small, mandibular fragment. Most of the element is
344	610	S002	995	1013	10	Indeterminate	NA NA	0.44	NA NA	Frag	No	None	NA	NA.	NA NA	Cortical		missing. Size class is either a 1-or a 2. Small, flat bone frag. Too small and weathered for
344	610	S003	995	1013	10	Indeterminate	NA NA	0.1	NA.	Frag	No	None	NA NA	NA.	NA NA	Cortical		landmarks. Small, cortical frag. Too small and weathered for
344	610	S004	995	1013	10	Indeterminate	NA	0.44	NA	Frag	No	None	Cranial element	NA	NA.	Cortical		landmarks. Small cranial element. Not enough to determine anything
344	610	S005	995	1013	10	Indeterminate	NA NA	0.13	NA	Frag	No	None	NA NA	NA.	NA.	Cortical		else. Small frag,
344	610	S006	995	1013	10	Indeterminate	NA NA	0.01	NA	Frag	No	None	NA NA	NA	NA.	Cortical		Very small frag, mostly trabecular.
346	626	S001	995	1013	12	Odocoileus sp	Deer	13.06	2	Whole	No	None	Astragalus	Right	NA NA	NA NA		Whole deer astragalus. No evidence of butchery. Some
346	626	S002	995	1013	12	Mammal	NA NA	2.79	2	Frag	No	None	NA	NA NA	NA NA	Cortical		damage, but appears to be modern. Very weathered large mammal long bone. Best guess would be a deer metanodial frag. but too weathered to be
																		would be a deer metapodial frag, but too weathered to be definite.
346	626	S003	995	1013	12	Mammal	NA	0.4	NA	Frag	No	None	NA	NA	NA	Cortical		Small long bone frag. Weathered surface.
347	636	S001	995	1013	13	Tortoise/Turtle	Tortoise/Turtle	3.12	1	Frag	No	None	Plastron	NA	NA	NA		Large piece of plastron Midshaft fragment of a metacarpal. Probably a deer.
348	644	S001	995	1013	14	Odocoileus sp	Deer	8.19	2	Frag	No	None	Metacarpal	NA	NA	Cortical		Rodent Gnaw marks, but weathering has obscured any other marks. Three possible cut marks, but impossible to tell with weathering and acid etching.
350	354	S001	995	1014	1	Mammal	NA	0.71	1	Whole	No	None	Astragalus	Right	NA	NA		Size class 1 astragalus. I'm not sure of the species. Checked several online. Possibly armadillo?
353	394	S001	995	1014	4	Mammal	NA	5.72	2	Frag	No	None	NA	NA	NA	Cortical		Long bone frag. Heavily weathered. Size class based on cortical thickness.
353	394	S002	995	1014	4	Mammal	NA	3.18	2	Frag	No	None	NA	NA	NA	Cortical		Long bone frag. Heavily weathered. Size class based on cortical thickness.
354	326	S001	995	1014	5	Indeterminate	NA	0.13	NA	Frag	No	None	NA	NA	NA	Cortical		Distorted by weathering.
354	326	S002	995	1014	5	Indeterminate	NA	0.57	NA	Frag	No	None	NA	NA	NA	Cortical		Distorted by weathering.
355	407	S001	995	1014	6	Mammal	NA	3.42	NA	Frag	No	None	NA	NA	NA	Cortical		Long bone fragment, very weathered.
355	407	S002	995	1014	6	Mammal	NA	1.27	NA	Frag	No	None	NA	NA	NA	Cortical		Long bone fragment, very weathered.
357	415	S001	995	1014	7	Indeterminate	NA	0.19	NA	Frag	No	None	NA	NA	NA	Cortical		Too weathered to be identified.
363	634	S001	995	1014	11	Mammal	NA	1.25	NA	Frag	No	None	NA	NA	NA	Cortical		Calcined long bone frag. Probably size class 2
366	470	S001	996	1012	1	Mammal	NA	0.07	NA	Frag	No	None	tooth	NA	NA	Enamel		Small enamel fragment. Probably cervid, but not enough to make a determination.
368	481	S001	996	1012	3	Indeterminate	NA	0.22	NA	Frag	No	None	NA	NA	NA	Cortical		Thick cortical frag.
372	502	S001	996	1012	6	Tortoise/Turtle	Tortoise/Turtle	0.24	1	Frag	No	None	Plastron	NA	NA	NA	NA	
373	517	S001	996	1012	7	Indeterminate	NA	0.26	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
373	517	S002	996	1012	7	Indeterminate	NA	3.48	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
373	517	S003	996	1012	7	Indeterminate	NA	1.39	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
373	517	S004	996	1012	7	Indeterminate	NA	0.19	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
373	517	S005	996	1012	7	Indeterminate	NA	0.23	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
373	517	S006	996	1012	7	Indeterminate	NA	0.58	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
373	517	S007	996	1012	7	Indeterminate	NA	0.27	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
373	517	S008	996	1012	7	Indeterminate	NA	0.34	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
373	517	S009	996	1012	7	Indeterminate	NA	0.36	NA	Frag	No	None	NA	NA	NA	NA	NA	Weathered to just a calcium mass
373	517	S010	996	1012	7	Indeterminate	NA	0.22	NA	Frag	No	None	NA	NA	NA	NA	NA	Weathered to just a calcium mass
373	517	S011	996	1012	7	Indeterminate	NA	0.96	NA	Frag	No	None	NA	NA	NA	Cortical	Right	long bone frag
373	517	S012	996	1012	7	Indeterminate	NA	0.73	NA	Frag	No	None	NA	NA	NA	Cortical	NA	Roasted
375	549	S001	996	1012	8	Indeterminate	NA	0.26	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
375	549	S002	996	1012	8	Indeterminate	NA	0.06	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
375	549	S003	996	1012	8	Indeterminate	NA	0.29	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
375	549	S004	996	1012	8	Indeterminate	NA	0.61	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
375	549	S005	996	1012	8	Indeterminate	NA	0.06	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
375	549	S006	996	1012	8	Indeterminate	NA	0.46	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
375	549	S007	996	1012	8	Indeterminate	NA	0.11	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
375	549	S008	996	1012	8	Indeterminate	NA	0.03	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
375	549	S009	996	1012	8	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
375	549	S010	996	1012	8	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
377	573	S001	996	1012	9	Indeterminate	NA	0.06	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
377	573	S002	996	1012	9	Indeterminate	NA	0.17	NA	Frag	No	None	NA	NA	NA	Cortical	Right	Calcined
											-							i i

		Ö	_				ame		9		>-	5			ate	ype	ale	93
Lot No.	Bag No.	Specimen No	Northing	Easting	Level	Taxon	Common Name	Weight (g	Body Size	Presence	Culturally Modified	Modification	Bone ID	apis	Growth plate fusion	Fragment Type	Margin angle	Comments
381	635	S001	996	1012	13	Indeterminate	NA	0.03	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	Burned cortical-calcined
381	635	S002	996	1012	13	Indeterminate	NA	0.13	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	Burned cortical-calcined
382	652	S001	996	1012	15	Mammal	NA	0.65	2	Frag	No	None	NA	NA	NA	Cortical		Unknown long bone mid-shaft frag. Size two, but smaller than a deer.
382	652	S002	996	1012	15	Mammal	NA	0.09	2	Frag	No	None	Rib	NA	NA	Cortical		Small frag, surface obliterated, probable rib frag
386	445	S001	996	1013	3	Indeterminate	NA	1.35	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
386	445	S002	996	1013	3	Indeterminate	NA	0.52	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
388	362	S001	996	1013	4	Mammal	NA	2.38	NA	Frag	No	None	Mandible	NA	NA	Cortical		Burned (calcined) Mandible frag. Hardly anything here, except for some tooth root pits.
389	451	S001	996	1013	5	Odocoileus sp	Deer	2.3	2	Frag	No	None	tooth (M1 or M2)	Left	NA	NA		Cervid, M1 or M2; left; upper; buchal fragment. Very little wear (especially for an M1 or M2. Probably a juvenile.
391	465	S001	996	1013	7	Tortoise/Turtle	Tortoise/Turtle	0.46	1	Frag	No	None	Plastron (possible rib)	NA	NA	NA		Turtle/Tortoise Shell. Appears to be plastron with possibly a bit of rib. Possibly heated
395	617	S001	996	1013	10	Indeterminate	NA	1.14	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	Long bone frag.
395	617	S002	996	1013	10	Indeterminate	NA	0.17	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
395	617	S003	996	1013	10	Indeterminate	NA	0.46	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
395	617	S004	996	1013	10	Indeterminate	NA	0.14	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
395	617	S005	996	1013	10	Indeterminate	NA	0.19	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
398	645	S001	996	1013	13	Indeterminate	NA	0.25	NA	Frag	No	None	NA	NA	NA	Cortical		Too weathered to be identified. (Refits with S002).
398	645	S001	996	1013	13	Indeterminate	NA NA	0.23	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical		Too weathered to be identified. (Refits with S001).
																		Heavily weathered surface. Probably part of a vertebral
399	667	S001	996	1013	14	Indeterminate	NA NA	0.81	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	Di · · ·	body, but not enough to be sure.
400	483	S001	996	1014	2	Indeterminate	NA	0.67	NA	Frag	No	None	NA	NA	NA	Cortical	Right	Appears to have been a round, articular surface.
402	490	S001	996	1014	4	Indeterminate	NA	1.92	NA	Frag	No	None	NA	NA	NA	Trabecular		However, weathering has destroyed nearly all of the cortical surface.
402	490	S002	996	1014	4	Indeterminate	NA	0.38	NA	Frag	No	None	NA	NA	NA	Cortical		Not enough present to make a determination
402	490	S003	996	1014	4	Indeterminate	NA	0.26	NA	Frag	No	None	NA	NA	NA	Cortical		Might be part of a tortoise shell, but there is not enough here to make that determination.
402	490	S004	996	1014	4	Indeterminate	NA	0.74	NA	Frag	No	None	NA	NA	NA	Cortical		Appears to be an epiphysis, but is distorted by weathering.
403	495	S001	996	1014	5	Indeterminate	NA	0.34	NA	Frag	No	None	NA	NA	NA	Cortical		Too small to make a determination.
403	495	S002	996	1014	5	Indeterminate	NA	0.13	NA	Frag	No	None	NA	NA	NA	Cortical		Too small to make a determination.
405	500	S001	996	1014	6	Indeterminate	NA	0.31	NA	Frag	No	None	NA	NA	NA	Cortical		Too small to make a determination.
405	500	S002	996	1014	6	Indeterminate	NA	0.04	NA	Frag	No	None	NA	NA	NA	Cortical		Too small to make a determination.
405	500	S003	996	1014	6	Indeterminate	NA	0.13	NA	Frag	No	None	NA	NA	NA	Cortical		Too small to make a determination.
406	503	S003	996	1014	7	Odocoileus sp	Deer	1.79	2	whole	No	None	Tooth (M1)	Upper left	NA NA	NA		The majority of a cervid M1. Very lightly worn, does not
407	507	S001	996	1014	8	Mammal	NA NA	1.33	1	Frag	No	None	Femur	Left	NA NA	Cortical		appear to be fully developed Juvenile. Incomplete proximal femoral epiphysis. Very heavily
411	537	S001	996	1014	11	Indeterminate	NA	0.18	NA	Frag	No	None	NA	NA	NA	Cortical		weathered. Too small and weathered to make a determination.
411	537	S002	996	1014	11	Indeterminate	NA NA	0.24	NA	Frag	No	None	NA NA	NA NA	NA NA	Trabecular		No cortical surface.
411	567	S002	996	1014			NA NA	0.24	NA NA				NA NA	NA NA	NA NA	Cortical	Fresh	IVO CONICAI SUNACE.
					12	Indeterminate				Frag	No	None						
413	540	S001	996	1014	13	Indeterminate	NA NA	1.38	NA	Frag	No	None	NA	NA	NA	NA	Oblique	Calcined
414	543	S001	996	1014	14	Indeterminate	NA	1.09	NA	Frag	No	None	NA	NA	NA	Cortical		Completely calcined.
414	543	S002	996	1014	14	Indeterminate	NA	0.26	NA	Frag	No	None	NA	NA	NA	Cortical		Completely calcined.
414	543	S003	996	1014	14	Indeterminate	NA	0.41	NA	Frag	No	None	NA	NA	NA	Cortical		Completely calcined.
414	543	S004	996	1014	14	Indeterminate	NA	0.7	NA	Frag	No	None	NA	NA	NA	Cortical		Completely calcined.
414	543	S005	996	1014	14	Indeterminate	NA	0.18	NA	Frag	No	None	NA	NA	NA	Cortical		Completely calcined. Calcined and distorted distal humerus frag. The epiphysial
417	561	S001	996	1014	17	Mammal	NA	4.43	1	Frag	No	None	Humerus	Right	No	Epiphysis		growth plate is missing, but could be due to the extreme heat distortion.
417	561	S002	996	1014	17	Indeterminate	NA	1.47	NA	Frag	No	None	NA	NA	NA	Cortical		Appears to be an epiphysis, but is heavily distorted by heat. Completely calcined.
439	442	S001	999	1013	7	Mammal	NA	1.9	2	Frag	No	None	Vertebra	NA	No	Cortical		Most of a vertebral body. Growth plate is not present. Probably juvenile deer. Burned, not completely calcined.
443	476	S001	999	1013	12	Mammal	NA	0.51	2	Frag	No	None	Rib	NA	NA	Cortical		Small frag.
446	498	S001	999	1013	15	Indeterminate	NA	0.11	NA	Frag	No	None	NA	NA	NA	Cortical		Very small , burned (calcined) frag.
462	526	S001	1000	1003	3	Mammal	NA	3.87	3-4	Whole	No	None	Sesamoid	NA	NA	Whole		
462	526	S002	1000	1003	3	Mammal	NA	4.19	3-4	Whole	No	None	Sesamoid	NA	NA	Whole		
462	526	S003	1000	1003	3	Mammal	NA	3.12	3-4	Frag	No	None	Sesamoid	NA	NA	Cortical		About 50% remaining
462	526	S004	1000	1003	3	Indeterminate	NA	0.29	NA	Frag	No	None	NA	NA	NA	Cortical		
462	526	S005	1000	1003	3	Indeterminate	NA	0.68	NA	Frag	No	None	NA	NA	NA	Cortical		
462	526	S006	1000	1003	3	Indeterminate	NA	0.34	NA	Frag	No	None	NA	NA	NA	Cortical		
462	526	S007	1000	1003	3	Indeterminate	NA NA	0.14	NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical		
		S007 S008																
462	526		1000	1003	3	Indeterminate	NA NA	0.34	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical		
462	526	S009	1000	1003	3	Indeterminate	NA	0.27	NA	Frag	No	None	NA	NA	NA	Cortical		
462	526	S010	1000	1003	3	Indeterminate	NA	1.4	NA	Frag	No	None	NA	NA	NA	Cortical		
462	526	S011	1000	1003	3	Indeterminate	NA	0.27	NA	Frag	No	None	NA	NA	NA	Cortical		
462	526	S012	1000	1003	3	Indeterminate	NA	0.28	NA	Frag	No	None	NA	NA	NA	Cortical		
462	526	S013	1000	1003	3	Indeterminate	NA	1.64	NA	Frag	No	None	NA	NA	NA	Cortical		Long bone

		o Z					ame ame	_				Б.			te	ype	eg.	sy.
Lot No.	Bag No.	Specimen No.	Northing	Easting	level	Taxon	Соттоп Nате	Weight (g)	Body Size	Presence	Culturally Modified	Modification	Bone ID	əpis	Growth plate fusion	Fragment Type	Margin angle	Comments
462	526	S014	1000	1003	3	Mammal	NA	12.44	NA	Frag	No	None	NA	NA	NA	Cortical		Large mammal- not sure what size class
462	526	S015	1000	1003	3	Mammal	NA	8.48	NA	Frag	No	None	NA	NA	NA	Cortical		Large mammal- not sure what size class
462	526	S016	1000	1003	3	Indeterminate	NA	1.9	NA	Frag	No	None	NA	NA	NA	Cortical		
462	526	S017	1000	1003	3	Indeterminate	NA	12.2	NA	Frag	No	None	NA	NA	NA	NA		Burned clay and bone mixed
467	663	S001	1000	1003	7	Indeterminate	NA	0.43	NA	Frag	No	None	NA	NA	NA	Cortical	NA	Burned
467	663	S002	1000	1003	7	Indeterminate	NA	0.09	NA	Frag	No	None	NA	NA	NA	Cortical	NA	Burned
467	663	S003	1000	1003	7	Indeterminate	NA	0.27	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
469	668	S001	1000	1003	9	Indeterminate	NA	0.19	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
471	515	S001	1000	1004	2	Mammal	NA	4.16	NA	Frag	No	None	NA	NA	NA	Cortical		Robust cortical, long bone frag. Distorted by weathering
471	515	S002	1000	1004	2	Mammal	NA	4.39	NA	Frag	No	None	NA	NA	NA	Cortical		Robust cortical, long bone frag. Distorted by weathering
471	515	S003	1000	1004	2	Indeterminate	NA	2.07	NA	Frag	No	None	NA	NA	NA	Cortical		Long bone frag.
471	515	S004	1000	1004	2	Indeterminate	NA	1.29	NA	Frag	No	None	NA	NA	NA	Cortical		small, but robust cortical frag. Heavily weathered.
471	515	S005	1000	1004	2	Indeterminate	NA	0.32	NA	Frag	No	None	NA	NA	NA	Cortical		small cortical frag. Heavily weathered.
471	515	S006	1000	1004	2	Indeterminate	NA	0.62	NA	Frag	No	None	NA	NA	NA	Cortical		small cortical frag. Heavily weathered.
471	515	S007	1000	1004	2	Indeterminate	NA	0.68	NA	Frag	No	None	NA	NA	NA	Cortical		small cortical frag. Heavily weathered.
471	515	S008	1000	1004	2	Indeterminate	NA	0.22	NA	Frag	No	None	NA	NA	NA.	Cortical		small cortical frag.
471	515	S009	1000	1004	2	Mammal	NA	0.95	2	Frag	No	None	Vertebra	NA	NA.	Cortical		Articular surface of the transverse process only.
472	520	S001	1000	1004	3	Mammal	NA NA	21.43	4	Whole	No	None	1st Phalanx	NA.	NA NA	Whole	-	Probably a Bison phalanx. Surface is heavily weathered
472	520	S002	1000	1004	3	Mammal	NA NA	19.95	4	Frag	No	None	NA	NA.	NA NA	Cortical	-	and has some recent damage. Large, flat cortical frag. Could be a scapula or a inominate
472	520	S003	1000	1004	3	Mammal	NA	0.75	NA	Frag	No	None	NA	NA	NA	Cortical		frag, not enough to make a determination. Small, but thick cortical frag. Evidence of roasting.
472	520	S004	1000	1004	3	Mammal	NA	2.11	NA	Frag	No	None	NA	NA	NA	Cortical		Small, but thick cortical frag. Evidence of roasting.
472	520	S005	1000	1004	3	Mammal	NA	8.58	NA	Frag	No	None	NA	NA	NA.	Cortical		Long bone frag. Very heavily weathered.
472	520	S006	1000	1004	3	Mammal	NA NA	13.23	NA	Frag	No	None	NA NA	NA.	NA NA	Cortical		Long bone frag. Very heavily weathered.
472	520	S007	1000	1004	3	Mammal	NA NA	5.7	NA.	Frag	No	None	NA NA	NA.	NA NA	Cortical		
472	520	S008	1000	1004	3	Mammal	NA NA	1.92	NA NA	Frag	No		NA NA	NA NA	NA NA	Cortical		Long bone frag. Very heavily weathered and splintered.
472		S009										None						Long bone frag. Very heavily weathered
	520		1000	1004	3	Mammal	NA NA	4.18	NA	Whole	No	None	Sesamoid	NA NA	NA NA	Whole	Ohlimo	Large sesamoid. Heavily weathered.
472	520	S010	1000	1004	3	Mammal	NA	0.71	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	Long bone frag
472	520	S011	1000	1004	3	Mammal	NA	0.66	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	Long bone frag
472	520	S012	1000	1004	3	Mammal	NA	3.77	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	Long bone frag
472	520	S013	1000	1004	3	Mammal	NA	3.77	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	Long bone frag
472	520	S014	1000	1004	3	Mammal	NA	3.90	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	Long bone frag
472	520	S015	1000	1004	3	Mammal	NA	1.13	NA	Frag	No	None	NA	NA	NA	Cortical	Right	Large mammal long bone frag size 2-4 (not enough to
472	520	S016	1000	1004	3	Mammal	NA	5.52	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	determine element.
472	520	S017	1000	1004	3	Mammal	NA	1.19	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
472	520	S018	1000	1004	3	Indeterminate	NA	0.99	NA	Frag	No	None	NA	NA	NA	Cortical	NA	Mostly trabecular
472	520	S019	1000	1004	3	Indeterminate	NA	0.43	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S020	1000	1004	3	Indeterminate	NA	0.71	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
472	520	S021	1000	1004	3	Indeterminate	NA	0.25	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S022	1000	1004	3	Indeterminate	NA	0.31	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S023	1000	1004	3	Indeterminate	NA	0.72	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
472	520	S024	1000	1004	3	Mammal	NA	2.53	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	Long bone frag
472	520	S025	1000	1004	3	Mammal	NA	2.13	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	Long bone frag
472	520	S026	1000	1004	3	Indeterminate	NA	0.75	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
472	520	S027	1000	1004	3	Indeterminate	NA	1.28	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S028	1000	1004	3	Indeterminate	NA	0.72	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	Long bone frag
472	520	S029	1000	1004	3	Indeterminate	NA	0.36	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
472	520	S030	1000	1004	3	Mammal	NA	1.21	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S031	1000	1004	3	Mammal	NA	0.42	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S032	1000	1004	3	Indeterminate	NA	0.40	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S033	1000	1004	3	Mammal	NA	0.68	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	Long bone frag
472	520	S034	1000	1004	3	Indeterminate	NA	0.92	NA	Frag	No	None	NA	NA	NA	Cortical	NA	Mostly trabecular
472	520	S035	1000	1004	3	Indeterminate	NA	0.70	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S036	1000	1004	3	Mammal	NA	6.84	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	Metaphysis, not enough to identify element.
472	520	S037	1000	1004	3	Mammal	NA	2.78	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	Metaphysis, not enough to identify element.
472	520	S038	1000	1004	3	Indeterminate	NA	0.58	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S039	1000	1004	3	Indeterminate	NA	0.21	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
										-				l	l	l		l .

Lot No.	No.	len No.	Northing	Easting	Level	Taxon	Common Name	ht (g)	Size	ence	Culturally Modified	cation	Bone ID	Side	Growth plate fusion	nt Type	angle	Comments
Lot	Bag No.	Specimen No.	Nort	Easi	Le	Тах	Сотто	Weight (g)	Body	Presence	Cultu	Modification	Bon	S	Growth	Fragment Type	Margin angle	Сопп
472	520	S040	1000	1004	3	Indeterminate	NA	0.44	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
472	520	S041	1000	1004	3	Indeterminate	NA	0.39	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S042	1000	1004	3	Mammal	NA	1.48	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	Long bone frag
472	520	S043	1000	1004	3	Indeterminate	NA	0.61	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
472	520	S044	1000	1004	3	Mammal	NA	1.15	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	Long bone frag
472	520	S045	1000	1004	3	Mammal	NA	0.43	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
472	520	S046	1000	1004	3	Mammal	NA	0.98	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
472	520	S047	1000	1004	3	Mammal	NA	1.07	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
472	520	S048	1000	1004	3	Mammal	NA	0.97	NA	Frag	No	None	NA	NA	NA	Cortical	NA	Mostly trabecular
472	520	S049	1000	1004	3	Indeterminate	NA	0.19	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
472	520	S050	1000	1004	3	Indeterminate	NA	0.81	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	Long bone frag
472	520	S051	1000	1004	3	Indeterminate	NA	0.60	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S053	1000	1004	3	Indeterminate	NA	0.61	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S054	1000	1004	3	Indeterminate	NA	0.23	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S055	1000	1004	3	Indeterminate	NA	0.47	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
472	520	S056	1000	1004	3	Indeterminate	NA	0.56	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
472	520	S057	1000	1004	3	Indeterminate	NA	0.31	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
472	520	S058	1000	1004	3	Indeterminate	NA	0.35	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S059	1000	1004	3	Indeterminate	NA	0.77	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	Long bone
472	520	S060	1000	1004	3	Indeterminate	NA	0.12	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S061	1000	1004	3	Indeterminate	NA	0.32	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
472	520	S062	1000	1004	3	Indeterminate	NA	0.87	NA	Frag	No	None	NA	NA	NA.	Cortical	NA	
472	520	S063	1000	1004	3	Indeterminate	NA NA	0.60	NA	Frag	No	None	NA NA	NA.	NA NA	Cortical	Oblique	
472	520	S064	1000	1004	3	Indeterminate	NA NA	0.12	NA.	Frag	No	None	NA NA	NA NA	NA NA	Cortical	Spiral	
472	520	S065	1000	1004	3	Indeterminate	NA	0.16	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S066	1000	1004	3	Indeterminate	NA	0.15	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
472	520	S067	1000	1004	3	Indeterminate	NA	0.29	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S068	1000	1004	3	Mammal	NA	0.61	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S069	1000	1004	3	Indeterminate	NA	0.18	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
472	520	S070	1000	1004	3	Indeterminate	NA	0.18	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S071	1000	1004	3	Indeterminate	NA	0.16	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S072	1000	1004	3	Indeterminate	NA	0.23	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
472	520	S073	1000	1004	3	Indeterminate	NA	0.29	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S074	1000	1004	3	Indeterminate	NA	0.25	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S075	1000	1004	3	Indeterminate	NA	0.16	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	
472	520	S076	1000	1004	3	Indeterminate	NA	0.24	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S077	1000	1004	3	Mammal	NA	0.44	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
472	520	S078	1000	1004	3	Mammal	NA	0.53	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S079	1000	1004	3	Indeterminate	NA	0.36	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
472	520	S080	1000	1004	3	Indeterminate	NA	0.11	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S081	1000	1004	3	Indeterminate	NA	0.23	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
472	520	S082	1000	1004	3	Indeterminate	NA	0.27	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
472	520	S083	1000	1004	3	Mammal	NA	0.24	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S084	1000	1004	3	Mammal	NA	0.73	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S085	1000	1004	3	Mammal	NA	0.46	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S086	1000	1004	3	Indeterminate	NA	0.55	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S087	1000	1004	3	Indeterminate	NA	0.12	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S088	1000	1004	3	Mammal	NA	0.20	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S089	1000	1004	3	Indeterminate	NA	0.12	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S090	1000	1004	3	Indeterminate	NA	0.17	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
472	520	S091	1000	1004	3	Indeterminate	NA	0.12	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S092	1000	1004	3	Indeterminate	NA	0.57	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
472	520	S093	1000	1004	3	Indeterminate	NA	0.14	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S094	1000	1004	3	Indeterminate	NA	0.51	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S095	1000	1004	3	Mammal	NA	0.78	NA	Frag	No	None	NA	NA	NA	Cortical	NA	small, but robust cortical frag.
472	520	S096	1000	1004	3	Indeterminate	NA NA	0.09	NA	Frag	No	None	NA NA	NA NA	NA.	Cortical	Spiral	<u> </u>
2	,_,	2000								9				I			F	

Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Taxon	Common Name	Weight (g)	Body Size	Presence	Culturally Modified	Modification	Bone ID	Side	Growth plate fusion	Fragment Type	Margin angle	Comments
			4000	4004	_			0.54		-								-
472	520	S097	1000	1004	3	Indeterminate	NA NA	0.51	NA NA	Frag	No No	None	NA NA	NA NA	NA NA	Cortical	NA NA	
472	520 520	S098 S099	1000	1004	3	Indeterminate	NA NA	0.10	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	NA NA	
472	520	S100	1000	1004	3	Indeterminate	NA NA	0.07	NA.	Frag	No	None	NA NA	NA NA	NA NA	Cortical	NA NA	
472	520	S101	1000	1004	3	Indeterminate	NA NA	0.23	NA	Frag	No	None	NA NA	NA NA	NA.	Cortical	NA NA	
472	520	S102	1000	1004	3	Indeterminate	NA	0.18	NA	Frag	No	None	NA	NA	NA.	Cortical	Spiral	
472	520	S103	1000	1004	3	Indeterminate	NA	0.23	NA	Frag	No	None	NA	NA	NA.	Cortical	NA	
472	520	S104	1000	1004	3	Indeterminate	NA	0.34	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S105	1000	1004	3	Indeterminate	NA	0.51	NA	Frag	No	None	NA	NA	NA.	Cortical	Spiral	
472	520	S106	1000	1004	3	Indeterminate	NA	0.11	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
472	520	S107	1000	1004	3	Indeterminate	NA	0.06	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	
472	520	S108	1000	1004	3	Indeterminate	NA	0.11	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	
472	520	S109	1000	1004	3	Indeterminate	NA	0.07	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
472	520	S110	1000	1004	3	Indeterminate	NA	0.17	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S111	1000	1004	3	Indeterminate	NA	0.07	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
472	520	S112	1000	1004	3	Indeterminate	NA	0.12	NA	Frag	No	None	NA	NA	NA	Trabecular	NA	
472	520	S113	1000	1004	3	Indeterminate	NA	0.16	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
472	520	S114	1000	1004	3	Indeterminate	NA	0.09	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
472	520	S115	1000	1004	3	Indeterminate	NA	0.03	NA	Frag	No	None	NA	NA	NA	Trabecular	NA	
472	520	S116	1000	1004	3	Indeterminate	NA	0.10	NA	Frag	No	None	NA	NA	NA	Cortical	Spiral	
472	520	S117	1000	1004	3	Indeterminate	NA	0.06	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
472	520	S118	1000	1004	3	Indeterminate	NA	0.07	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
473	521	S001	1000	1004	3	Mammal	NA	12.47	4	Frag	No	None	Metapodial	NA	NA	Epiphysis		Large, distal metapodial epiphysis frag. Cow size.
474	522	S001	1000	1004	3	Mammal	NA	36.4	4	Frag	No	None	Carpal/Tarsal?	NA	NA	Cortical		Very large carpal or tarsal bone.
474	522	S002	1000	1004	3	Mammal	NA	10.39	4	Frag	No	None	NA	NA	NA	Cortical		Articular surface, not enough present to determine what element.
474	522	S003	1000	1004	3	Mammal	NA	5.55	NA	Frag	No	None	NA	NA	NA	Cortical		Not enough present to determine what element.
474	522	S004	1000	1004	3	Indeterminate	NA	0.13	NA	Frag	No	None	NA	NA	NA	Trabecular		Trabecular bone frag, unable to identify.
474	522	S005	1000	1004	3	Indeterminate	NA	0.35	NA	Frag	No	None	NA	NA	NA	Trabecular		Trabecular bone frag, unable to identify.
474	522	S006	1000	1004	3	Indeterminate	NA	0.18	NA	Frag	No	None	NA	NA	NA	Trabecular		Trabecular bone frag, unable to identify.
474	522	S007	1000	1004	3	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Trabecular		Trabecular bone frag, unable to identify.
474	522	S008	1000	1004	3	Indeterminate	NA	0.13	NA	Frag	No	None	NA	NA	NA	Trabecular		Trabecular bone frag, unable to identify.
474	522	S009	1000	1004	3	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Trabecular		Trabecular bone frag, unable to identify.
474	522	S010	1000	1004	3	Indeterminate	NA	1.82	NA	Frag	No	None	NA	NA	NA	Cortical		Distorted by weathering.
474	522	S011	1000	1004	3	Indeterminate	NA	1.23	NA	Frag	No	None	NA	NA	NA	Cortical		Distorted by weathering.
474	522	S012	1000	1004	3	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Trabecular		Trabecular bone frag, unable to identify.
474	522	S013	1000	1004	3	Indeterminate	NA	1.6	NA	Frag	No	None	NA	NA	NA	Trabecular		Trabecular bone frag, unable to identify.
474	522	S014	1000	1004	3	Indeterminate	NA	0.25	NA	Frag	No	None	NA	NA	NA	Trabecular		Trabecular bone frag, unable to identify.
474	522	S015	1000	1004	3	Indeterminate	NA	0.42	NA	Frag	No	None	NA	NA	NA	Cortical		Not enough to make a determination
474	522	S016	1000	1004	3	Indeterminate	NA	1.04	NA	Frag	No	None	NA	NA	NA	Cortical		Possible vert frag, Not enough to make a determination
474	522	S017	1000	1004	3	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Trabecular		Trabecular bone frag, unable to identify.
475	534	S001	1000	1004	4	Indeterminate	NA	0.56	NA	Frag	No	None	NA	NA	NA	Cortical	Right	Evidence of roasting
475	534	S002	1000	1004	4	Indeterminate	NA	0.2	NA	Frag	No	None	NA	NA	NA	Cortical	Right	Evidence of roasting
475	534	S003	1000	1004	4	Indeterminate	NA	0.3	NA	Frag	No	None	NA	NA	NA	Cortical	Right	Evidence of roasting
476	538	S001	1000	1004	5	Indeterminate	NA	0.51	NA	Frag	No	None	NA	NA	NA	Cortical		Weathered piece of cortical bone.
478	671	S001	1000	1004	7	Tortoise/Turtle	Tortoise/Turtle	0.32	1	Frag	No	None	Plastron	NA	NA	NA		Small plastron fragment.
480	674	S001	1000	1004	9	Indeterminate	NA	0.12	NA	Frag	No	None	NA	NA	NA	Cortical		Small, burned cortical frag.
480	674	S002	1000	1004	9	Indeterminate	NA	0.35	NA	Frag	No	None	NA	NA	NA	Cortical		Distorted by weathering. Refits with S003
480	674	S003	1000	1004	9	Indeterminate	NA	0.16	NA	Frag	No	None	NA	NA	NA	Cortical		Distorted by weathering. Refits with S002
480	674	S004	1000	1004	9	Indeterminate	NA	0.39	NA	Frag	No	None	NA	NA	NA	Cortical		Distorted by weathering.
480	674	S005	1000	1004	9	Indeterminate	NA	0.76	NA	Frag	No	None	NA	NA	NA	Cortical		Too small to make a determination. Burned
480	674	S006	1000	1004	9	Indeterminate	NA	0.15	NA	Frag	No	None	NA	NA	NA	Cortical		Too small to make a determination. Burned
480	674	S007	1000	1004	9	Indeterminate	NA	0.4	NA	Frag	No	None	NA	NA	NA	Cortical		Too small to make a determination. Burned
480	674	S008	1000	1004	9	Indeterminate	NA	1.09	NA	Frag	No	None	NA	NA	NA	Cortical		Distorted by weathering. Refits with S009
480	674	S009	1000	1004	9	Indeterminate	NA	0.56	NA	Frag	No	None	NA	NA	NA	Cortical		Distorted by weathering. Refits with S008
480	674	S010	1000	1004	9	Indeterminate	NA	0.6	NA	Frag	No	None	NA	NA	NA	Cortical		Distorted by weathering.
481	675	S001	1000	1004	10	Indeterminate	NA	3.61	NA	Frag	No	None	Humerus	Left	NA	Cortical		Incomplete proximal humerus epiphysis. Weathering has obliterated the surface, and distorted the shape. Cortical
401	019	5001	1000	1004	10	muotemmate	INM	J.U I	INA	таў	INO	NOUG	numerus	Leit	INA	Outical		bone is very gracile, may represent a large bird.

		<u>0</u>					e a					Ę			2	ed.		
Lot No.	Bag No.	Specimen No.	Northing	Easting	[BAB]	Taxon	Common Name	Weight (g)	eziS Kpog	Presence	Culturally Modified	Modification	Bone ID	Side	Growth plate fusion	Fragment Type	Margin angle	Comments
481	675	S002	1000	1004	10	Indeterminate	NA	0.66	NA	Frag	No	None	NA	NA	NA	Cortical		Distorted by weathering.
481	675	S003	1000	1004	10	Indeterminate	NA	0.33	NA	Frag	No	None	NA	NA	NA	Cortical		Distorted by weathering. Possible epiphyseal growth plate.
481	675	S004	1000	1004	10	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical		Too small to make a determination.
484	678	S001	1000	1004	13	Mammal	NA	1.17	NA	Frag	No	None	NA	NA	NA	Cortical		Long bone frag. Heavily weathered.
485	679	S001	1000	1004	14	Mammal	NA	1.94	NA	Frag	No	None	NA	NA	NA	Cortical		Long bone frag with fluvial wear. Refits with S002
485	679	S002	1000	1004	14	Mammal	NA	1.41	NA	Frag	No	None	NA	NA	NA	Cortical		Long bone frag with fluvial wear. Refits with S001
485	679	S003	1000	1004	14	Indeterminate	NA	0.05	NA	Frag	No	None	NA	NA	NA	Cortical		A laminar piece of cortical bone.
490	324	S001	1000	1009	5	Indeterminate	NA	0.14	NA	Frag	No	None	NA	NA	NA	Cortical		Heavily weathered, small frag.
490	324	S002	1000	1009	5	Indeterminate	NA	0.17	NA	Frag	No	None	NA	NA	NA	Cortical		Heavily weathered, small frag.
492	332	S001	1000	1009	7	Mammal	NA	1.22	NA	Frag	No	None	NA	NA	NA	Cortical		No landmarks. One tooth pit.
495	368	S001	1000	1009	10	Indeterminate	NA	0.16	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	Probably turtle shell, but not definitive.
501	328	S001	1000	1010	6	Mammal	NA	15.84	3 or 4	Frag	No	None	NA	NA	NA	Cortical		Large cortical frag. Surface has been obliterated due to weathering. The thickness of the cortex suggests a large mammal size 3 to 4 (probably 4).
501	328	S002	1000	1010	6	Mammal	NA	6.08	NA	Frag	No	None	NA	NA	NA	Cortical		Large cortical frag. Surface has been obliterated due to weathering.
501	328	S003	1000	1010	6	Mammal	NA	3.06	NA	Frag	No	None	NA	NA	NA	Cortical		Large cortical frag. Surface has been obliterated due to weathering.
501	328	S004	1000	1010	6	Mammal	NA	1.32	NA	Frag	No	None	NA	NA	NA	Cortical		Large cortical frag. Surface has been obliterated due to weathering.
501	328	S005	1000	1010	6	Mammal	NA	0.73	NA	Frag	No	None	NA	NA	NA	Cortical		Cortical frag. Surface has been obliterated due to weathering.
502	331	S001	1000	1010	7	Indeterminate	NA	0.31	NA	Frag	No	None	NA	NA	NA	Cortical		Heavily burned, not completely calcined. But, distorted by heat and weathering.
502	331	S002	1000	1010	7	Indeterminate	NA	0.21	NA	Frag	No	None	NA	NA	NA	Cortical		Hardly any surface on this frag.
503	334	S001	1000	1010	8	Mammal	NA	0.38	1	Frag	No	None	Femur	Left	NA	Cortical		Incomplete proximal femoral epiphysis.
504	336	S001	1000	1010	9	Tortoise/Turtle	Tortoise/Turtle	0.15	1	Frag	No	None	Carapace	NA	NA	NA	NA	
504	336	S002	1000	1010	9	Indeterminate	NA	0.25	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	
504	336	S003	1000	1010	9	Indeterminate	NA	0.46	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
504	336	S004	1000	1010	9	Indeterminate	NA	0.32	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
504	336	S005	1000	1010	9	Indeterminate	NA	0.10	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	
504	336	S006	1000	1010	9	Indeterminate	NA	0.16	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
504	336	S007	1000	1010	9	Indeterminate	NA	0.13	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	
504	336	S008	1000	1010	9	Indeterminate	NA	0.31	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
504	336	S009	1000	1010	9	Indeterminate	NA	0.04	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	
504	336	S010	1000	1010	9	Indeterminate	NA	0.61	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	
505	342	S001	1000	1010	10	Indeterminate	NA	0.23	NA	Frag	No	None	NA	NA	NA	Cortical		Cortical frag. Surface has been obliterated due to weathering.
505	342	S002	1000	1010	10	Indeterminate	NA	0.16	NA	Frag	No	None	NA	NA	NA	Cortical		Cortical frag. Surface has been obliterated due to weathering. Cortical frag. Too small to make a determination. Appears
505	342	S003	1000	1010	10	Indeterminate	NA	0.08	NA	Frag	No	None	NA	NA	NA	Cortical		to be slightly burned (roasted).
506	339	S001	1000	1010	11	Tortoise/Turtle	Tortoise/Turtle	0.67	1	Frag	No	None	carapace	NA	NA	Cortical	NA	
506	339	S002	1000	1010	11	Tortoise/Turtle	Tortoise/Turtle	0.62	1	Frag	No	None	carapace	NA	NA	Cortical	NA	
506	339	S003	1000	1010	11	Tortoise/Turtle	Tortoise/Turtle	0.29	1	Frag	No	None	carapace	NA	NA	Cortical	NA	
506	339	S004	1000	1010	11	Tortoise/Turtle	Tortoise/Turtle	0.27	1	Frag	No	None	carapace	NA	NA	Cortical	NA	
506	339	S005	1000	1010	11	Tortoise/Turtle	Tortoise/Turtle	0.24	1	Frag	No	None	carapace	NA	NA	Cortical	NA	
506	339	S006	1000	1010	11	Tortoise/Turtle	Tortoise/Turtle	0.16	1	Frag	No	None	carapace	NA NA	NA NA	Cortical	NA NA	
506	339	S007	1000	1010	11	Tortoise/Turtle	Tortoise/Turtle	0.29	1	Frag	No	None	Plastron	NA 	NA	Cortical	NA 	
506	339	S008	1000	1010	11	Tortoise/Turtle	Tortoise/Turtle	0.33	1	Frag	No	None	Plastron	NA NA	NA NA	Cortical	NA NA	
506	339	S009	1000	1010	11	Tortoise/Turtle	Tortoise/Turtle	0.13	1	Frag	No	None	Plastron	NA NA	NA NA	Cortical	NA NA	
506	339	S010 S011	1000	1010	11	Tortoise/Turtle	Tortoise/Turtle	0.23	1	Frag	No No	None	Plastron	NA NA	NA NA	Cortical	NA NA	
506	339	S011 S012	1000	1010	11	Tortoise/Turtle	Tortoise/Turtle	0.24	1	Frag	No No	None	Plastron	NA NA	NA NA	Cortical	NA NA	
506	339	S012	1000	1010	11	Indeterminate	NA	0.17	NA.						NA NA	Cortical		
506	339	S013	1000	1010	11	Tortoise/Turtle	Tortoise/Turtle	0.17	NA 1	Frag	No No	None	NA Plastron	NA NA	NA NA	Cortical	Spiral NA	
506	339	S014 S015	1000	1010	11	Indeterminate	NA	0.09	NA.	Frag	No	None	NA	NA NA	NA NA	Cortical		Refits with S016
506	339	S016	1000	1010	11	Indeterminate	NA NA	0.34	NA NA		No		NA NA	NA NA	NA NA	Cortical		
506	339	S016 S017	1000	1010	11	Indeterminate	NA NA	0.34	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	Oblique	Refits with S015
506	339	S017 S018	1000	1010	11	Indeterminate	NA NA	0.18	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	Oblique	
506	339	S018	1000	1010	11	Indeterminate	NA NA	0.10	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	NA	Possibly a skull frag.
506	339	S020	1000	1010	11	Indeterminate	NA NA	0.10	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	Fresh	r country a anuli liag.
506	339	S020 S021	1000	1010	11	Tortoise/Turtle	NA Tortoise/Turtle	0.01	NA 1	Frag	No No	None	Plastron	NA NA	NA NA	Cortical	Presn NA	
506	339	S021	1000	1010	11	Indeterminate	NA	0.03	NA.	Frag	No	None	NA	NA NA	NA NA	Cortical	NA NA	
506	339	S022	1000	1010	11	Indeterminate	NA NA	0.16	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	Fresh	
			1000	1010	11	Indeterminate	NA NA	0.07	NA NA			None	NA NA	NA NA	NA NA	Cortical	Fresh	
506	339	S024	1000	1010	-11	mueterminate	NA	U.U1	INA	Frag	No	None	NA.	NA	NA	Cortical	rresh	

		ó					ê					-			0	ê.	•	_
Lot No.	Bag No.	Specimen No.	Northing	Easting	Гече	Taxon	Common Name	Weight (g)	eziS Kpog	Presence	Culturally Modified	Modification	Bone ID	əpis	Growth plate fusion	Fragment Type	Margin angle	Comments
506	339	S025	1000	1010	11	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	
506	339	S026	1000	1010	11	Indeterminate	NA	0.03	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
506	339	S027	1000	1010	11	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
506	339	S028	1000	1010	11	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
508	411	S001	1000	1010	12	Indeterminate	NA	0.23	Na	Frag	No	None	NA	NA	NA	Cortical		Possibly a spinal articular facet.
508	411	S002	1000	1010	12	Indeterminate	NA NA	0.17	Na	Frag	No	None	NA NA	NA NA	NA NA	Cortical	Dieba	Possibly a spinal articular facet.
510	420	S001 S001	1000	1010	13	Indeterminate	NA NA	0.24	NA NA	Frag	No No	None	NA NA	NA NA	NA NA	Cortical Cortical	Right	Cmall long hone from
511	438	S001	1000	1010	15	Tortoise/Turtle	Tortoise/Turtle	0.24	1	Frag	No	None	carapace	NA NA	NA NA	NA		Small long bone frag.
512	447	S001	1000	1010	16	Indeterminate	NA	1.03	NA	Frag	No	None	NA NA	NA	NA.	Cortical	NA	Long bone frag
513	552	S001	1000	1010	17	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	Burned
513	552	S002	1000	1010	17	Indeterminate	NA	0.15	NA	Frag	No	None	NA	NA	NA	Cortical		Burned
513	552	S003	1000	1010	17	Indeterminate	NA	0.1	NA	Frag	No	None	NA	NA	NA	Cortical	Right	Burned
518	640	S001	1000.5	1005.5	3	Indeterminate	NA	0.13	NA	Frag	No	None	NA	NA	NA	Cortical		Small and weathered. Trabecula remnant on one side.
518	640	S002	1000.5	1005.5	3	Indeterminate	NA	0.19	NA	Frag	No	None	NA	NA	NA	Cortical		Small frag, unidentifiable
519	646	S001	1000.5	1005.5	4	Tortoise/Turtle	Tortoise/Turtle	0.18	1	Frag	No	None	Plastron	NA	NA	NA		Appears to be a plastron fragment.
519	646	S002	1000.5	1005.5	4	Mammal	NA	2.02	2	Frag	No	None	NA	NA	NA	Cortical		Mid-shaft long bone frag. No landmarks visible. One fracture margin is a fresh break, the other is acute and
519	646	S003	1000.5	1005.5	4	Mammal	NA	0.29	NA	Frag	No	None	NA	NA	NA	Cortical		spiral. Heavily weathered bone fragment. Fresh break margin,
																		other margin has been obliterated. Heavily weathered bone fragment. Fresh break margin,
519	646	S004	1000.5	1005.5	4	Mammal Indeterminate	NA NA	0.33	NA NA	Frag	No No	None	NA NA	NA NA	NA NA	Cortical		nearly all margins are fresh breaks. One small margin is right angle. Weathering has obliterated the surface and margins.
519 520	646	S005 S001	101.57	1004.72	4-5	Mammal	NA NA	1.53	4	Frag	No	None	Femur	Left	Fused	Epiphysis		Heavily weathered and fragmented distal femur. Probably bison. Some frags came off during cleaning. Pulled for
528	666	S001	FTR 4	FTR4	Lyr 2	Indeterminate	NA	0.45	NA	Frag	No	None	NA	NA	NA	Cortical	NA	dating but no viable collagen, per Beta.
528	666	S002	FTR 4	FTR4	Lyr 2	Indeterminate	NA	0.33	NA	Frag	No	None	NA	NA	NA.	Cortical	NA	
528	666	S003	FTR 4	FTR4	Lyr 2	Indeterminate	NA	0.25	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
528	666	S004	FTR 4	FTR4	Lyr 2	Indeterminate	NA	0.06	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
528	666	S005	FTR 4	FTR4	Lyr 2	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	
532	631	S001	1001	1003	2	Mammal	NA	1.74	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	Large mammal frage- size 2-4
532	631	S002	1001	1003	2	Mammal	NA	1.67	3-4	Frag	No	None	NA	NA	NA	Cortical	Multiple	
532	631	S003	1001	1003	2	Mammal	NA	1.93	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	Large mammal frage- size 2-4
532	631	S004	1001	1003	2	Mammal	NA	3.20	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	Large mammal frage- size 2-4
532	631	S005	1001	1003	2	Indeterminate	NA	0.44	NA	Frag	No	None	NA	NA	NA	Cortical	Multiple	
533	641	S001	1001	1003	3	Mammal	NA	6.98	3 to 4	Frag	No	None	NA	NA	NA	Cortical		Very thick long bone frag. Heavily weathered. Not enough to make a species estimate, but cortical thickness suggests size 3-4.
533	641	S002	1001	1003	3	Indeterminate	NA	0.53	NA	Frag	No	None	NA	NA	NA	Cortical		cortical frag.
535	657	S001	1001	1003	4	Indeterminate	NA	0.13	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S002	1001	1003	4	Indeterminate	NA	0.12	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S003	1001	1003	4	Indeterminate	NA	0.09	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S004	1001	1003	4	Indeterminate	NA	0.11	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S005	1001	1003	4	Indeterminate	NA	0.05	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S006	1001	1003	4	Indeterminate	NA NA	0.04	NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	NA NA	
535	657	S007	1001	1003	4	Indeterminate	NA NA	0.03	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	NA NA	
535	657	S008 S009	1001	1003	4	Indeterminate	NA NA	0.05	NA NA	Frag	No No	None	NA NA	NA NA	NA NA	Cortical	NA NA	
535	657	S009 S010	1001	1003	4	Indeterminate	NA NA	0.03	NA NA	Frag	No No	None	NA NA	NA NA	NA NA	Cortical Cortical	NA NA	
535	657	S011	1001	1003	4	Indeterminate	NA	0.10	NA	Frag	No	None	NA	NA	NA.	Cortical	NA	
535	657	S012	1001	1003	4	Indeterminate	NA	0.12	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S013	1001	1003	4	Indeterminate	NA	0.07	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S014	1001	1003	4	Indeterminate	NA	0.06	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S015	1001	1003	4	Indeterminate	NA	0.04	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S016	1001	1003	4	Indeterminate	NA	0.05	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S017	1001	1003	4	Indeterminate	NA	0.03	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S018	1001	1003	4	Indeterminate	NA	0.03	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S019	1001	1003	4	Indeterminate	NA	0.03	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S020	1001	1003	4	Indeterminate	NA	0.03	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S021	1001	1003	4	Indeterminate	NA	0.03	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S022	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	

		Ö	_				ame	•		•		е.			te	уре	e e	s)
Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Taxon	Common Name	Weight (g)	Body Size	Presence	Culturally Modified	Modification	Bone ID	Side	Growth plate fusion	Fragment Type	Margin angle	Comments
535	657	S023	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S024	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S025	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S026	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S027	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S028	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S029	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S030	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S031	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S032	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S033	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S034	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S035	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S036	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S037	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S038	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S039	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S040	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
535	657	S041	1001	1003	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
537	576	S001	1001	1004	3	Indeterminate	NA	2.12	NA .	Frag	No	None	NA	NA	NA	Cortical		Too distorted by weathering to identify.
538	579	S001	1001	1004	4	Tortoise/Turtle	Tortoise/Turtle	0.13	1	Frag	No	None	Plastron/carapace	NA	NA	Cortical	Right	Burned, can't determine which side of the shell.
538	579	S002	1001	1004	4	Indeterminate	NA	0.59	NA	Frag	No	None	NA	NA	NA	Cortical	Right	slightly burned
539	592	S001	1001	1004	5	Indeterminate	NA	0.77	NA	Frag	Yes	Cut marks	NA	NA	NA	Cortical	Right	
539	592	S002	1001	1004	5	Indeterminate	NA	0.79	NA	Frag	No	None	NA	NA	NA	Trabecular		Burned (possibly roasted)
539	592	S003	1001	1004	5	Indeterminate	NA NA	0.05	NA	Frag	No	None	NA	NA	NA	Trabecular	NA	
539	592	S004	1001	1004	5	Indeterminate	NA	0.08	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
539	592	S005	1001	1004	5	Indeterminate	NA	0.16	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
539	592	S006	1001	1004	5	Indeterminate	NA	0.06	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
539	592	S007	1001	1004	5	Indeterminate	NA	0.03	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
539	592 592	S008 S009	1001	1004	5	Indeterminate	NA NA	0.09	NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	NA NA	
539	592	S010	1001	1004	5	Indeterminate	NA NA	0.03	NA NA	Frag	No No	None	NA NA	NA NA	NA NA	Cortical	NA NA	
539	592	S011	1001	1004	5	Indeterminate	NA NA	0.01	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	NA NA	
539	592	S012	1001	1004	5	Indeterminate	NA NA	0.01	NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	NA	
539	592	S012	1001	1004	5	Indeterminate	NA NA	0.01	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	NA NA	
539	592	S014	1001	1004	5	Indeterminate	NA	0.06	NA	Frag	No	None	NA NA	NA	NA	Cortical	Oblique	
539	592	S015	1001	1004	5	Indeterminate	NA	0.07	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
540	542	S001	1001	1004.5	2	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	
542	546	S001	1001	1004.5	4	Mammal	NA NA	0.46	NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	Spiral	Probably size 2
542	546	S002	1001	1004.5	4	Mammal	NA	0.82	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	•
542	546	S003	1001	1004.5	4	Mammal	NA	2.26	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	Probably size 2
542	546	S004	1001	1004.5	4	Mammal	NA	1.20	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably size 2
542	546	S005	1001	1004.5	4	Indeterminate	NA	0.32	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
542	546	S006	1001	1004.5	4	Mammal	NA	0.48	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
542	546	S007	1001	1004.5	4	Indeterminate	NA	0.29	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
542	546	S008	1001	1004.5	4	Indeterminate	NA	0.16	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	
542	546	S009	1001	1004.5	4	Indeterminate	NA	0.66	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
542	546	S010	1001	1004.5	4	Odocoileus sp	Deer	0.54	2	Frag	No	None	Tooth	NA	NA	NA	NA	Not enough to make a determination
543	560	S001	1001	1004.5	5	Indeterminate	NA	1.75	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	
543	560	S002	1001	1004.5	5	Indeterminate	NA	0.33	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
543	560	S003	1001	1004.5	5	Indeterminate	NA	0.21	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
548	333	S001	1001	1009	4	Tortoise/Turtle	Tortoise/Turtle	6.86	1	Frag	No	None	Plastron	NA	NA	NA		Large plastron frag. Refits with S002
548	333	S002	1001	1009	4	Tortoise/Turtle	Tortoise/Turtle	0.97	1	Frag	No	None	Plastron	NA	NA	NA		Plastron frag. Refits with S001
548	333	S003	1001	1009	4	Tortoise/Turtle	Tortoise/Turtle	0.47	1	Frag	No	None	Plastron	NA	NA	NA		Plastron frag.
548	333	S004	1001	1009	4	Tortoise/Turtle	Tortoise/Turtle	0.36	1	Frag	No	None	carapace	NA	NA	NA		Carapace frag.
548	333	S005	1001	1009	4	Tortoise/Turtle	Tortoise/Turtle	0.46	1	Frag	No	None	Plastron	NA	NA	NA		Plastron frag.
						<u> </u>				-								

Ġ	ó	No.	B.	0		_	Name	(a)	Size	8	All be	tion	Ω		plate	Туре	ngle	2F
Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Taxon	Common Name	Weight (g)	Body Si	Presence	Culturally Modified	Modification	Bone	Side	Growth pla fusion	Fragment Type	Margin angle	Comments
548	333	S006	1001	1009	4	Tortoise/Turtle	Tortoise/Turtle	0.22	1	Frag	No	None	Plastron	NA	NA	NA		Plastron frag.
548	333	S007	1001	1009	4	Indeterminate	NA	0.46	NA	Frag	No	None	NA	NA	NA	Trabecular		Trabecular bone frag, unable to identify.
548	333	S008	1001	1009	4	Tortoise/Turtle	Tortoise/Turtle	0.15	1	Frag	No	None	Plastron	NA	NA	NA		Very small plastron frag (possibly carapace).
548	333	S009	1001	1009	4	Indeterminate	NA	0.12	NA	Frag	No	None	NA	NA	NA	Cortical		Cortical bone frag. Too small to identify.
548	333	S010	1001	1009	4	Indeterminate	NA	0.21	NA	Frag	No	None	NA	NA	NA	Cortical		Cortical bone frag. Too weathered to identify.
548	333	S011	1001	1009	4	Indeterminate	NA	0.2	NA	Frag	No	None	NA	NA	NA	Cortical		Cortical bone frag. Too weathered to identify.
549	337	S001	1001	1009	5	Mammal	NA	108.9	3 to 4	Frag	No	None	Humerus	Right	Yes	Epiphysis		Distal humeral epiphysis. Large, size 3-4 mammal. Growth plate is completely fused. Too small to be cow or
550	338	S001	1001	1009	5	Indeterminate	NA	0.17	NA	Frag	No	None	NA	NA	NA	Cortical	NA	bison. Possibly horse. Pulled for radiocarbon dating. Possibly tortoise
550	338	S002	1001	1009	5	Mammal	NA	0.92	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S003	1001	1009	5	Mammal	NA	0.63	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S004	1001	1009	5	Mammal	NA	0.64	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S005	1001	1009	5	Mammal	NA	1.67	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S006	1001	1009	5	Mammal	NA	0.89	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S007	1001	1009	5	Mammal	NA	1.61	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S008	1001	1009	5	Mammal	NA	0.81	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S009	1001	1009	5	Mammal	NA	0.49	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S010	1001	1009	5	Mammal	NA	0.52	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S011	1001	1009	5	Mammal	NA	0.81	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S012	1001	1009	5	Mammal	NA	0.39	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S013	1001	1009	5	Mammal	NA	0.26	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S014	1001	1009	5	Mammal	NA	0.19	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S015	1001	1009	5	Mammal	NA	0.14	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S016	1001	1009	5	Mammal	NA	0.35	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S017	1001	1009	5	Mammal	NA	0.31	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S018	1001	1009	5	Mammal	NA	0.15	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S019	1001	1009	5	Mammal	NA	0.12	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S020	1001	1009	5	Mammal	NA	0.21	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S021	1001	1009	5	Mammal	NA	0.26	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S022	1001	1009	5	Mammal	NA	0.42	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S023	1001	1009	5	Mammal	NA	0.11	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S024	1001	1009	5	Mammal	NA	0.23	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S025	1001	1009	5	Mammal	NA	0.25	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S026	1001	1009	5	Mammal	NA	0.16	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S027	1001	1009	5	Mammal	NA	0.11	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S028	1001	1009	5	Mammal	NA	0.13	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S029	1001	1009	5	Mammal	NA	0.31	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S030	1001	1009	5	Mammal	NA	0.15	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S031	1001	1009	5	Mammal	NA	0.11	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S032	1001	1009	5	Mammal	NA	0.25	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S033	1001	1009	5	Mammal	NA	0.13	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S034	1001	1009	5	Mammal	NA NA	0.14	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S035	1001	1009	5	Mammal	NA NA	0.11	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S036	1001	1009	5	Mammal	NA NA	0.13	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S037	1001	1009	5	Mammal	NA	0.16	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S038	1001	1009	5	Mammal	NA NA	0.19	2	Frag	No	None	NA	NA	NA	Cortical	Fresh	Probably deer
550	338	S039	1001	1009	5	Indeterminate	NA NA	0.32	NA	Frag	No	None	NA	NA	NA	Trabecular	NA	
550	338	S040	1001	1009	5	Indeterminate	NA NA	0.04	NA	Frag	No	None	NA	NA	NA	Trabecular	NA	
550	338	S041	1001	1009	5	Indeterminate	NA NA	0.12	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Trabecular	NA NA	
550	338	S042	1001	1009	5	Indeterminate	NA NA	0.11	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Trabecular	NA NA	
550	338	S043	1001	1009	5	Indeterminate	NA NA	0.07	NA	Frag	No	None	NA NA	NA NA	NA NA	Trabecular	NA NA	
550	338	S044	1001	1009	5	Indeterminate	NA NA	0.06	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Trabecular	NA NA	
550 550	338	S045 S046	1001	1009	5	Indeterminate	NA NA	0.04	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Trabecular Trabecular	NA NA	
						Indeterminate				Frag	No	None						
550	338	S047	1001	1009	5	Indeterminate	NA NA	0.09	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Trabecular	NA NA	
550	338	S048	1001	1009	5	Indeterminate	NA NA	0.06	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Trabecular	NA NA	
550	338	S049	1001	1009	5	Indeterminate	NA	0.03	NA	Frag	No	None	NA	NA	NA	Trabecular	NA	

Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Taxon	Common Name	Weight (g)	Body Size	Presence	Culturally Modified	Modification	Bone ID	Side	Growth plate fusion	ragment Type	Margin angle	Comments
550	338	S050	1001	1009	5	Indeterminate	NA NA	0.01	NA	Frag	No	None	NA	NA	NA	Trabecular	NA	
550	338	S051	1001	1009	5	Indeterminate	NA	0.09	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
550	338	S052	1001	1009	5	Indeterminate	NA	0.07	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
550	338	S053	1001	1009	5	Indeterminate	NA	0.12	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
550	338	S054	1001	1009	5	Indeterminate	NA	0.09	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
550	338	S055	1001	1009	5	Indeterminate	NA	0.05	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
550	338	S056	1001	1009	5	Indeterminate	NA	0.07	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
550	338	S057	1001	1009	5	Indeterminate	NA	0.08	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
550	338	S058	1001	1009	5	Indeterminate	NA	0.06	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
550	338	S059	1001	1009	5	Indeterminate	NA	0.06	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
550	338	S060	1001	1009	5	Indeterminate	NA	0.08	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
550	338	S061	1001	1009	5	Indeterminate	NA	0.04	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
550	338	S062	1001	1009	5	Indeterminate	NA	0.03	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
550	338	S063	1001	1009	5	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
551	341	S001	1001	1009	6	Mammal	NA	3.36	2	Frag	No	None	NA	NA	NA	Cortical		Near epiphysis, long bone frag. Heavily weathered.
551	341	S002	1001	1009	6	Indeterminate	NA	0.26	NA	Frag	No	None	NA	NA	NA	Cortical		Small cortical frag
552	347	S001	1001	1009	7	Tortoise/Turtle	Tortoise/Turtle	0.13	1	Frag	No	None	carapace	NA	NA	NA		
552	347	S002	1001	1009	7	Indeterminate	NA	0.3	NA	Frag	No	None	NA	NA	NA	Cortical	Right	Burned-nearly calcined
552	347	S003	1001	1009	7	Indeterminate	NA	0.71	NA	Frag	No	None	NA	NA	NA	Cortical	Right	Long bone- Possibly bird, not sure
559	360	S001	1001	1010	4	Indeterminate	NA	1.2	NA	Frag	No	None	NA	NA	NA	Cortical		Large cortical frag, severely weathered.
559	360	S002	1001	1010	4	Indeterminate	NA	1.21	NA	Frag	No	None	NA	NA	NA	Cortical		Large cortical frag, severely weathered.
561	367	S001	1001	1010	5	Indeterminate	NA	0.22	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
561	367	S002	1001	1010	5	Indeterminate	NA	0.21	NA	Frag	No	None	NA	NA	NA	Cortical	Right	Possibly turtle/tortoise
564	373	S001	1001	1010	6	Indeterminate	NA	1.14	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	
564	373	S002	1001	1010	6	Indeterminate	NA	1.38	NA	Frag	No	None	NA	NA	NA	Cortical Obli		
564	373	S003	1001	1010	6	Indeterminate	NA	0.26	NA	Frag	No	None	NA	NA	NA	NA Cortical		
564	373	S004	1001	1010	6	Indeterminate	NA	0.3	NA	Frag	No	None	NA	NA	NA	NA Cortical		
564	373	S005	1001	1010	6	Indeterminate	NA	0.33	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
564	373	S006	1001	1010	6	Indeterminate	NA	0.22	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
564	373	S007	1001	1010	6	Indeterminate	NA	0.19	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
564	373	S008	1001	1010	6	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	NA Cortical		
564	373	S009	1001	1010	6	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
564	373	S010	1001	1010	6	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
567	384	S001	1001	1010	8	Indeterminate	NA	0.08	NA	Frag	No	None	NA	NA	NA	Cortical		Small, heavily weathered frag. well preserved (unlike S001), but too small to make a
567	384	S002	1001	1010	8	Indeterminate	NA	0.16	NA	Frag	No	None	NA	NA	NA	Cortical		determination.
570	416	S001	1001	1010	12	Indeterminate	NA	0.73	NA	Frag	No	None	NA	NA	NA	Trabecular		Trabecular bone frag, unable to identify. Heavily weathered. Weathering has destroyed any
570	416	S002	1001	1010	12	Indeterminate	NA	0.74	NA	Frag	No	None	NA	NA	NA	Cortical		landmarks.
571	425	S001	1001	1010	13	Indeterminate	NA NA	1.25	NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	Right	Possible chop marks
571	425 425	S002 S003	1001	1010	13	Indeterminate	NA NA	1.13	NA NA	Frag	No No	None	NA NA	NA NA	NA NA	Cortical Cortical	Fresh	
			- ' '			Indeterminate		1.13		Frag		None						
571	425	S004	1001	1010	13	Indeterminate	NA NA	0.09	NA NA	Frag	No	None	NA NA	NA NA	NA NA	Cortical	Fresh	
571	425 606	S005 S001	1001	1010	13	Indeterminate	NA NA	0.09	NA NA	Frag	No No	None	NA NA	NA NA	NA NA	Cortical	Fresh	
574	606	S001 S002	1001	1010	16	Indeterminate	NA NA	0.12	NA NA	Frag	No No	None	NA NA	NA NA	NA NA	Cortical	Fresh	
576	616	S001	1001	1010		Odocoileus sp	Deer	4.65	2	Frag	Yes	Percussion Notch	Metapodial	NA NA	NA NA	Cortical	riesii	Mid-shaft metaposial frag with percussion notch and hertzian cone in margin. Spiral fracture. Marrow processed. Edges of the margin are polished (possibly pot polishing).
578	637	S001	1001.5	1004	2	Indeterminate	NA	1.17	NA	Frag	No	None	NA	NA	NA	Cortical		Distorted by weathering
578	637	S002	1001.5	1004	2	Indeterminate	NA	0.61	NA	Frag	No	None	NA	NA	NA	Cortical		Distorted by weathering
579	643	S001	1001.5	1004	3	Odocoileus sp	Deer	3.63	2	whole	No	None	Tooth (M1)	Right	NA	NA		Possibly an M2. Only slightly worn, and appears under- developed. Juvenile
579	643	S002	1001.5	1004	3	Indeterminate	NA	0.41	NA	Frag	No	None	NA	NA	NA	Trabecular		Trabecular bone frag, unable to identify.
579	643	S003	1001.5	1004	3	Indeterminate	NA	0.1	NA	Frag	No	None	NA	NA	NA	Cortical		Too small to identify.
579	643	S004	1001.5	1004	3	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical		Too small to identify.
579	643	S005	1001.5	1004	3	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical		Too small to identify.
580	648	S001	1001.5	1004	4	Mammal	NA	7.62	NA	Frag	No	None	NA	NA	NA	Cortical		Very large cortical frag. Heavily weathered surface.
580	648	S002	1001.5	1004	4	Mammal	NA	4.23	NA	Frag	No	None	NA	NA	NA	Cortical		Very large cortical frag. Heavily weathered surface.
580	648	S003	1001.5	1004	4	Indeterminate	NA	0.24	NA	Frag	No	None	NA	NA	NA	Trabecular		Trabecular bone frag, unable to identify.

Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Taxon	Common Name	Weight (g)	Body Size	Presence	Culturally Modified	Modification	Bone ID	Side	Growth plate fusion	Fragment Type	Margin angle	Comments
580	648	S004	1001.5	1004	4	Tortoise/Turtle	Tortoise/Turtle	0.09	1	Frag	No	None	Plastron	NA	NA	NA		Very small plastron frag.
580	648	S005	1001.5	1004	4	Indeterminate	NA	0.14	NA	Frag	No	None	NA	NA	NA	Cortical		Very small cortical frag.
580	648	S006	1001.5	1004	4	Indeterminate	NA	0.04	NA	Frag	No	None	NA	NA	NA	Cortical		Very small cortical frag.
580	648	S007	1001.5	1004	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical		Very small cortical frag.
580	648	S008	1001.5	1004	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical		Very small cortical frag.
580	648	S009	1001.5	1004	4	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical		Very small cortical frag.
581	651	S001	1001.5	1005	2	Indeterminate	NA	0.08	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
581	651	S002	1001.5	1005	2	Indeterminate	NA	0.26	NA	Frag	No	None	NA	NA	NA	Cortical	Right	
582	654	S001	1001.5	1005	3	Indeterminate	NA	0.18	NA	Frag	No	None	NA	NA	NA	Cortical		Small cortical frag. No landmarks. One fracture margin is right, the other is acute.
588	527	S001	1003	1017	5	Indeterminate	NA	0.22	NA	Frag	No	None	NA	NA	NA	Cortical	NA	Burned-calcined
590	557	S001	1003	1017	6	Indeterminate	NA	0.28	NA	Frag	No	None	NA	NA	NA	Cortical	Right	Burned
596	574	S001	1003	1017	9	Indeterminate	NA	0.73	NA	Frag	No	None	NA	NA	NA	Cortical	NA	Possibly turtle/tortoise
596	574	S002	1003	1017	9	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
596	574	S003	1003	1017	9	Indeterminate	NA	0.01	NA	Frag	No	None	NA	NA	NA	Cortical	NA	
608	510	S001	1003	1018	8	Indeterminate	NA	0.23	NA	Frag	No	None	NA	NA	NA	Cortical	Fresh	
612	629	S001	1003	1018	13	Indeterminate	NA	1.21	NA	Frag	No	None	NA	NA	NA	Cortical		Looks like an auditory meatus
618	479	S001	1003	1019	7	Indeterminate	NA	0.07	NA	Frag	No	None	NA	NA	NA	Cortical	Oblique	
626	591	S001	1003	1019	13	Odocoileus sp	Deer	2.48	2	Frag	No	None	Tooth (molar)	NA	NA	NA		Not enough remains to determine which molar. Refits with S002
626	591	S002	1003	1019	13	Odocoileus sp	Deer	0.59	2	Frag	No	None	Tooth (molar)	NA	NA	NA		Not enough remains to determine which molar. Refits with S001
626	591	S003	1003	1019	13	Indeterminate	NA	0.81	NA	NA	No	None	NA	NA	NA	NA		Enamel frag with some dentin. Not enough to determine size or shape. Probably associate with other teeth in the level.
626	591	S004	1003	1019	13	Indeterminate	NA	0.28	NA	NA	No	None	NA	NA	NA	NA		Enamel frag with some dentin. Not enough to determine size or shape. Probably associate with other teeth in the level.
626	591	S005	1003	1019	13	Indeterminate	NA	0.42	NA	NA	No	None	NA	NA	NA	NA		Enamel frag with some dentin. Not enough to determine size or shape. Probably associate with other teeth in the level.
631	376	S001	1004	1017	5	Indeterminate	NA	1.26	NA	NA	No	None	NA	NA	NA	Cortical		Just an articular surface, not enough to determine from what element. Possibly a growth plate from an epiphysis.
632 645	385 359	S001 S001	1004	1017 1018	6	Odocoileus sp	Deer NA	1.18 0.21	2 NA	whole	No No	None None	Tooth (M1) NA	NA NA	NA NA	NA Cortical		The majority of a cervid M1. Very heavily weathered, nut does not appear to be worn. Juvenile. Distorted by weathering
662	533	S001	1004	1019	8	Mammal	NA NA	1.21	1	Frag	No	None	Femur	Left	NA NA	Cortical		Near proximal epiphysis, long bone frag. Distorted by weathering.
668	588	S001	1004	1019	12	Mammal	NA	3.93	NA	Frag	No	None	NA	NA	NA	Cortical		Long bone frag, not enough to determine element.
673	344	S001	1009	1011	2	Indeterminate	NA	0.39	NA	Frag	No	None	NA	NA	NA	Cortical	NA	Probably avian, but can't make determination.
676	366	S001	1009	1011	5	Indeterminate	NA	1.09	NA	Frag	No	None	NA	NA	NA	Cortical		Not enough present to distinguish. Distal and midshaft tibia. Refits with S002-the astragalus.
688	352	S001	1009	1012	2	Avian	NA	1.09	NA	Frag	No	None	Tibia	Right	No	Epiphysis		These aren't fused, so possibly a juvenile. Smaller than a domestic chicken, larger than a dove.
688	352	S002	1009	1012	2	Avian	NA	0.12	NA	Whole	No	None	Astragalus	Right	No	Whole		Refits with S001- These aren't fused, so possibly a juvenile.
688	352	S003	1009	1012	2	Indeterminate	NA	0.13	NA	whole	No	None	Carpal/Tarsal?	NA	NA	Whole		It looks to be part of the avian skeleton in this level, but I am unsure of what bone it is.
688	352	S004	1009	1012	2	Avian	NA	0.43	NA	Frag	No	None	NA	NA	NA	Cortical		Appears to be a corocoid frag. Not enough to be definitive.
688	352	S005	1009	1012	2	Indeterminate	NA	0.17	NA	Frag	No	None	NA	NA	NA	Cortical		It looks to be part of the avian skeleton in this level, but I am unsure of what bone it is.
689	357	S001	1009	1012	3	Indeterminate	NA	0.48	NA	Frag	No	None	NA	NA	NA	Cortical	Right	Distribution of the Bodies with
697	551	S001	1009	1012	10	Odocoileus sp	Deer	17.57	2	Frag	No	None	Humerus	Right	Fused	Epiphysis		Distal humerus, weathered surface. Portion pulled for dating. Broken into several pieces to obtain sample.
Lot No.	Bag No.	Specimer No.	Northing	Easting	Level				1,2, 3, or 4	Whole or Fragmente d	Yes or No				Fused, Unfused, not relevant	Epiphysis, Trabecular , Cortical, Whole		

Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Taxon	Common Name	Weight (g)	Body Size	Upper or Lower	In Socket or Isolated	Side	Tooth ID	Comments
329	628	S001	995	1012	12	NA	NA	0.06	NA	NA	NA	NA		Small enamel fragment. Not enough to make a determination.
366	470	S001	996	1012	1	NA	NA	0.07	NA	NA	NA	NA		Small enamel fragment. Probably cervid, but not enough to make a determination.
389	451	S001	996	1013	5	Odocoileus sp	Deer	2.3	2	Upper	Isolated	Left	M1 or M2	Bucchal frag
406	503	S001	996	1014	7	Odocoileus sp	Deer	1.79	2	Upper	Isolated	Left	M1	The majority of a cervid M1. Very lightly worn, does not appear to be fully developed Juvenile.
542	546	S010	1001	1004.5	4	Odocoileus sp	Deer	0.54	2	NA	Isolated	NA		Not enough remains to determine which tooth.
579	643	S001	1001.5	1004	3	Odocoileus sp	Deer	3.63	2	NA	Isolated	Right	M1	Possibly an M2. Only slightly worn, and appears under-developed. Juvenile
626	591	S001	1003	1019	13	Odocoileus sp	Deer	2.48	2	NA	Isolated	NA		Not enough remains to determine which molar. Refits with S002
626	591	S002	1003	1019	13	Odocoileus sp	Deer	0.59	2	NA	Isolated	NA	NA	Not enough remains to determine which molar. Refits with S001
626	591	S003	1003	1019	13	NA	NA	0.81	NA	NA	Isolated	NA		Not enough remains to determine size and shape. Probably associated with other tooth frags in level.
626	591	S004	1003	1019	13	NA	NA	0.28	NA	NA	Isolated	NA	NA	Not enough remains to determine size and shape. Probably associated with other tooth frags in level.
626	591	S005	1003	1019	13	NA	NA	0.42	NA	NA	Isolated	NA		Not enough remains to determine size and shape. Probably associated with other tooth frags in level.
632	385	S001	1004	1017	6	Odocoileus sp	Deer	1.18	2	NA	Isolated	NA	M1	Very heavily weathered, but not worn. Juvenile

Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Surface Visibility	Surface present	Percussion Mark	Percussion Notch	Tooth Mark	Tooth Notch	NonID Mark	Rodent Gnaw Mark	Cut on bone	Cutmark Prox End	Cutmark Prox Shaft	Cutmark Middle Shaft	Cutmark Dist Shaft	Cutmark Dist End	Sutmark Loc NonID	Gastric Etching	Geogenic Acid Modification	Burned?	Comments
321	506	S001	995	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Not completely calcined
321	506	S002	995	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
321	506	S003	995	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Not completely calcined
321 321	506 506	S004 S005	995 995	1012 1012	7	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No Yes	Calcined
321	506	S006	995	1012	7	100%	0%	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Burned, not calcined. Possibly roasted.
321	506	S007	995	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Burned, not calcined.
321	506	S008	995	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Near calcined
321	506	S009	995	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Burned, not calcined.
321	506	S010	995	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Burned, not calcined.
321 321	506 506	S011 S012	995 995	1012 1012	7	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	Yes Yes	Burned, not calcined. Burned, not calcined.
321	506	S012	995	1012	7	100%	0%	NA NA	NA	NA NA	NA.	NA	NA.	NA	NA	NA	NA	NA	NA.	NA.	No	Yes	Yes	Burned, not calcined.
321	506	S014	995	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Burned, not calcined. All trabecular
321	506	S015	995	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Burned, not calcined.
321	506	S016	995	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
321 321	506 506	S017 S018	995 995	1012 1012	7	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	Yes Yes	Burned, not calcined. All trabecular Burned, not calcined. All trabecular
321	506	S019	995	1012	7	100%	0%	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Burned, not calcined. All trabecular Burned, not calcined.
321	506	S020	995	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Burned, not calcined.
321	506	S021	995	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Calcined
321	506	S022	995	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
321	506	S023	995	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
323 323	524 524	S001 S002	995 995	1012 1012	8	100% NA	50% NA	0 NA	NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	NA	0 NA	0 NA	0 NA	0 NA	No NA	Yes NA	No No	One percussion notch on a deer size long bone frag.
323	524	S002	995	1012	8	100%	0%	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	No	Yes	No	
323	524	S004	995	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
323	524	S005	995	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Nearly calcined. Surface shows clear acid etching.
323	524	S006	995	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
323	524	S007	995 995	1012	8	NA 100%	NA OW	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA Na	NA	Yes	
323 323	524 524	S008 S009	995	1012 1012	8	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No Yes	
323	524	S010	995	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	
323	524	S011	995	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	
323	524	S012	995	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	
323	524	S013	995	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	
323	524 524	S014 S015	995 995	1012 1012	8	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	Yes Yes	
323 323	524	S015	995	1012	8	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Yes	Yes	
323	524	S017	995	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	
323	524	S018	995	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	
323	524	S019	995	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	
323 323	524 524	S020 S021	995 995	1012 1012	8	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	Yes No	
323	524	S021 S022	995	1012	8	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Yes	Yes	
323	524	S023	995	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	
323	524	S024	995	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	
325	578	S001	995	1012	9	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	
327 327	589 589	S001 S002	995 995	1012 1012	10 10	100%	100% 0%	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 No	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	No No	Yes Yes	Yes No	Appears to have been roasted. Weathered and distorted.
327	589	S002 S003	995	1012	10	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	Weathered and distorted. Weathered and distorted.
335	378	S001	995	1013	3	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	NA	Yes	No	Long bone fragment, very weathered.
336	388	S001	995	1013	4	80%	20%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Very heavily weathered. Hardly any surface remaining.
336	388	S002	995	1013	4	80%	10%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Very heavily weathered. Hardly any surface remaining.
336 336	388	S003 S004	995 995	1013	4	60%	0% 30%	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	No 0	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	No	Yes	No	Very heavily weathered. Surface is pearly obliterated.
338	388 405	S004 S001	995	1013 1013	6	80% 100%	90%	0	NA	0 NA	NA	0 NA	NA	No	0 NA	NA	0 NA	0 NA	NA	NA	No No	Yes Yes	No No	Very heavily weathered. Surface is nearly obliterated.
338	405	S002	995	1013	6	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	
338	405	S003	995	1013	6	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	
338	405	S004	995	1013	6	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	
338	405	S005	995	1013	6	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Laws hind laws have Anneaus to be home of both and
339	410	S001	995	1013	7	60%	40%	0	0	0	0	0	0	No	0	0	0	0	0	0	0	Yes	Yes	Large bird long bone. Appears to be burned, but not calcined.
339	410	S002	995	1013	7	100%	10%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	NA	Yes	No	Extensive acid etching and weathering have obliterated the surface, and obscured the frage shape.
339	410	S003	995	1013	7	90%	30%	0	0	0	0	0	0	No	0	0	0	0	0	0	0	Yes	Yes	Small cortical frag from a long bone. Nearly calcined.
344	610	S001	995	1013	10	95%	20%	0	0	0	U	0	0	No	0	0	0	U	0	0	0	Yes	No	Heavily weathered and acid etched surface.

		ó				lity	ant	Mark	otch		٠		Mark		End	Shaft	alle	Shaft	End	NonID	Бu	pi c		
O	o N	Specimen No	hing	ting	- -	Visibility	pres	on M	Percussion Notch	Mark	Tooth Notch	Mark	Gnaw I	Cut on bone	Prox	žo.	tmark Middle Shaft		Dist	Loc N	Gastric Etching	Geogenic Acid Modification	¿pəı	Comments
Ę	Вад	ecim	Northing	Easting	Level	ace	ace	Percussion	ussi	Tooth	oth	NonID	nt G	utor		ž.	mark	ark [nark		it Lic	ogen	Burned?	u wo.
		જુ				Surface	Surf	Perc	Perc	-	ř	Ž	Rodent	ō	Cutmark	Cutmark Prox	Cut	Cutmark Dist	Cutmark	Cutmark	Gas	Ğ		0
344	610	S002	995	1013	10	100%	50%	0	0	0	0	0	0	No	0	0	0	0	0	0	0	Yes	No	small, flat bone frag. Too small and weathered to determine anything.
344	610	S003	995	1013	10	90%	70%	0	0	0	0	0	0	No	0	0	0	0	0	0	0	Yes	No	small, cortical frag. Too small and weathered to determine anything.
344	610	S004	995	1013	10	100%	100%	0	0	0	0	0	0	No	0	0	0	0	0	0	0	Yes	No	Acid etching is minute.
344 344	610 610	S005 S006	995 995	1013	10 10	90%	70% 100%	0	0	0	0	0	0	No No	0	0	0	0	0	0	0	Yes Yes	No No	Small frag. Very small frag, mostly trabecular.
346	626	S001	995	1013	12	100%	90%	0	0	0	0	0	0	No	0	0	0	0	0	0	0	Yes	No	Lots of damage, but appears to be modern (probably a trowel or shovel).
346	626	S002	995	1013	12	90%	20%	0	0	0	0	0	0	No	0	0	0	0	0	0	0	Yes	No	Weathering and acid etching have obliterated the surface. Some modern damage on a margin.
346	626	S003	995	1013	12	100%	20%	0	0	0	0	0	0	No	0	0	0	0	0	0	0	Yes	No	Weathering and acid etching have obliterated the surface.
347	636	S001	995	1013	13	70%	70%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Weathered and acid etched.
348	644	S001	995	1013	14	100%	30%	0	0	0	0	0	2	0	0	0	0	0	0	0	No	Yes	No	Midshaft fragment of a metacarpal. Probably a deer. Rodent Gnaw marks, but weathering has obscured any other marks.
350	354	S001	995	1014	1	100%		0	0	0	0	0	0	No	0	0	0	0	0	0	No	Yes	No	Some acid etching.
353	394	S001	995	1014	4	90%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Weathering has obliterated the cortical surface.
353 354	394 326	S002 S001	995 995	1014 1014	4 5	90% 50%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	Weathering has obliterated the cortical surface. Very heavily weathered. No surface remaining.
354	326	S002	995	1014	5	50%	0%	NA	NA NA	NA	NA	NA	NA	No	NA NA	NA	NA NA	NA NA	NA	NA NA	No	Yes	No	Very heavily weathered. No surface remaining.
355	407	S001	995	1014	6	50%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	NA	Yes	No	Long bone fragment, very weathered.
355	407	S002	995	1014	6	60%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	NA	Yes	No	Long bone fragment, very weathered.
357 363	415 634	S001 S001	995 995	1014 1014	7 11	90%	0% 50%	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	No 0	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	NA No	Yes Yes	No Yes	Too weathered to be identified. Calcined
368	481	S001	996	1014	3	100%	100%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Thick cortical frag.
372	502	S001	996	1012	6	100%	30%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	
373	517	S001	996	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Weathering has obliterated the cortical surface.
373	517	S002	996	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Weathering has obliterated the cortical surface.
373 373	517 517	S003 S004	996 996	1012 1012	7	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	Weathering has obliterated the cortical surface. Weathering has obliterated the cortical surface.
373	517	S005	996	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	No	NA.	NA	NA	NA	NA	NA	No	Yes	No	Weathering has obliterated the cortical surface.
373	517	S006	996	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Weathering has obliterated the cortical surface.
373	517	S007	996	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Weathering has obliterated the cortical surface.
373 373	517 517	S008 S009	996 996	1012 1012	7	100% NA	0% NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No NA	Yes NA	No NA	Weathering has obliterated the cortical surface. Weathered to just a calcium mass
373	517	S010	996	1012	7	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	Weathered to just a calcium mass
373	517	S011	996	1012	7	100%	10%	0	0	0	0	0	1	0	0	0	0	0	0	0	No	Yes	No	Extensively rodent gnawed.
373	517	S012	996	1012	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Roasted
375	549	S001	996	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
375 375	549 549	S002 S003	996 996	1012 1012	8	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
375	549	S004	996	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
375	549	S005	996	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
375	549	S006	996	1012	8	100%	0%	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	No	Yes	No	
375 375	549 549	S007 S008	996 996	1012 1012	8	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
375	549	S009	996	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
375	549	S010	996	1012	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
377	573	S001	996	1012	9	100%	0%	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	No	Yes	Yes	Heavily burned
377 381	573 635	S002 S001	996 996	1012 1012	13	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes No	Yes Yes	Near calcined Calcined
381	635	S002	996	1012	13	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	No	Yes	Calcined
382	652	S001	996	1012	15	100%		0	0	0	0	0	0	No	0	0	0	0	0	0	0	Yes	No	Some root etching and weathering on the surface.
382	652	S002	996	1012	15	100%	001	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	NA	Yes	No	Surface has been obliterated.
386 386	445 445	S001 S002	996 996	1013 1013	3	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
388	362	S002	996	1013	4	100%	0%	NA	NA NA	NA	NA NA	NA	NA	No	NA NA	NA	NA NA	NA	NA	NA NA	NA	Yes	Yes	Calcined
389	451	S001	996	1013	5	100%		NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	NA	No	No	Tooth Frag
391	465	S001	996	1013	7	100%		0	0	0	0	0	0	No	0	0	0	0	0	0	0	No	No	Small frag with weathering. Possibly burned, but not calcined.
395	617	S001	996 996	1013 1013	10	100%	30%	0	0	0	0 NA	0	0	0	0	0 NA	0	0	0	0	No	Yes	No	
395 395	617 617	S002 S003	996	1013	10 10	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
395	617	S004	996	1013	10	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
395	617	S005	996	1013	10	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
398	645	S001	996	1013	13	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	NA	Yes	No	Too weathered to be identified. (Refits with S002).

472 520 S002 1000 1004 3 90% 30% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Surface Visibility	Surface present	Percussion Mark	Percussion Notch	Tooth Mark	Tooth Notch	NonID Mark	Rodent Gnaw Mark	Cut on bone	Cutmark Prox End	Cutmark Prox Shaft	Cutmark Middle Shaft	Cutmark Dist Shaft	Cutmark Dist End	Cutmark Loc NonID	Gastric Etching	Geogenic Acid Modification	Burned?	Comments
680 680	398	645	S002	996	1013	13	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	NA	Yes	No	Too weathered to be identified. (Refits with S001).
680 680																									Too weathered on the surface.
1852 1862																									
680 680 680 680 690 690 691 692 692 690 691 692																									
1850 1860																									
486 686 686 687 688 687																									,
## 48 \$600 \$																									
## 580 # 580	.00	.00		000		,	0070		·	ŭ	_			•		Ū		,	۰	Ū					
680 580 580 580 580 580 581 581											0		0			0		0			0				
897 8981 998 1014 3 8 679 076 176 176 176 176 176 176 176 176 176 1	405	500	S002	996	1014	6	70%	20%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	
## 197 \$891 \$966 \$016 \$11 \$075 \$1076 \$10	405	500	S003			6	70%	50%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Geogenic acid etching.
## 12 187 5892 1986 1914 11 17 17 17 17 17 17																									
## 12 16 17 17 17 17 17 17 17																									
## 44 54 580 390 390 1014 13 100% 0% N.																									INO COITICAI SUITACE.
### 452 8807 996 17914 14 1070 707 N. N. NA																									Calainad
### 453 \$892 996 1014 14 100% 0% NA NA NA NA NA NA NA N																									
### 445 S890 996 1014 14 1079% 0°S NA																									
### 453 S964 966 1014 14 100% 0% NA																									
### 453 \$906 \$916 \$1914 \$1 \$1000 \$75 \$NA NA N																									
## 1981 989 1913 17 100% 0% NA NA NA NA NA NA NA N	414	543	S005	996	1014	14	100%	0%	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA			Yes	
442 5001 509		561	S001	996	1014		100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	No	Yes	
443 4476 83901 999	417	561	S002	996	1014	17	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	No	Yes	
### 498 8991 999 913 15 100% 015 NA NA NA NA NA NA NA N	439	442	S001	999	1013	7	100%	80%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	Yes	Probably juvenile deer. Burned, not completely
### 42 \$26 \$8091 1000 1003 3 100% 0% NA NA NA NA NA NA NA N		476							NA		NA	NA		NA	No	NA	NA		NA	NA	NA	NA	Yes	No	Small frag.
462 586 Sequence 1000 1003 3 100% 0% NA																									
482 528 5903 1000 1003 3 100% 0% NA																									
482 528 \$004 1000 1093 3 100% 0% NA																									
462 528 8006 1000 1003 3 100% 0% NA					.000	,	10070																		Weathered and distorted.
462 528 5006 1000 1003 3 100% 0% NA																									
462 526 S007 1000 1003 3 100% 0% NA NO Yes No 482 528 8099 1000 1003 3 100% 0% NA NA <td></td> <td>†</td>																									†
482 526 8099 1000 1003 3 100% 0% NA						3																			
462 526 S010 1000 1003 3 100% 0% NA	462	526	S008	1000	1003	3	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	
482 258 S011 1000 1003 3 100% 0% NA																									
482 256 8012 1000 1003 3 100% 0% NA																									
462 258 8013 1000 1003 3 100% 0% NA																									4
462 526 5014 1000 1003 3 100% 0% NA																									Lang hang projetories a polich
462 526 526 5015 1000 1003 3 100% 0% NA NA NA NA NA NA NA N																									Long bone- mysterious polisir
462 526 5016 1000 1003 3 100% 0% NA NA NA NA NA NA NA N																									Mysterious polish
462 526 S017 1000 1003 3 100% 0% NA																									
469 668 S001 1000 1003 9 100% 30% 0 0 0 0 0 0 0 0 0	462	526	S017	1000	1003	3	100%		NA		NA	NA		NA		NA			NA	NA	NA			No	Burned clay and bone ball
471 515 5002 1000 1004 2 70% 0% NA NA NA NA NA NA NA N									-	_		_													
471 515 S003 1000 1004 2 90% 60% 0																									
471 515 S004 1000 1004 2 80% 0% NA						2																			
471 515 S005 1000 1004 2 80% 0% NA						2			-	_	_	_	_			_		_							
471 515 S006 1000 1004 2 80% 0% NA																									
471 515 S007 1000 1004 2 60% 0% NA																									
471 515 S008 1000 1004 2 90% 60% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																									
471 515 S009 1000 1004 2 90% 90% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																									
472 520 S001 1000 1004 3 90% 30% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									C	0	0	0		n	n		C		n	0	0				
472 520 S002 1000 1004 3 90% 30% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																									1st phalanx. Weathering, acid etching and recent
472 520 S003 1000 1004 3 100% 70% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														-					_		_				Weathering and acid etching have obscured the cortical surface. Some patches of a strange polish, possibly
Polish, possibly ground water, or or sub-fossilization. Polish, possibly ground water, or or sub-fossilization. Evidence of roasting. Heavy for sub-fossilization. Evidence of roasting. Evidence of roasting. Heavy for sub-fossilization. Evidence of roasting. Heavy for sub-fossilization. Evidence of roasting. Heavy for sub-fossilization. Evidence of roasting. Evidence of roasting. E	472	520	S003	1000	1004	3	100%	70%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	Yes	Evidence of roasting. Some patches of a strange
											0		0	0	0			0	0		0			Yes	Evidence of roasting. Heavy root etching. Some

Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Surface Visibility	Surface present	Percussion Mark	Percussion Notch	Tooth Mark	Tooth Notch	NonID Mark	Rodent Gnaw Mark	Cut on bone	Cutmark Prox End	Cutmark Prox Shaft	Cutmark Middle Shaft	Cutmark Dist Shaft	Cutmark Dist End	utmark Loc NonID	Gastric Etching	Geogenic Acid Modification	Burned?	Соттепт
472	520	S005	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA NA	No	NA NA	NA	NA	NA NA	NA	NA	No	Yes	No	Very heavily weathered, with no remaining cortical surface Some spots of the mysterious polishing.
472	520	S006	1000	1004	3	100%	20%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	Yes	Very heavily weathered. Several spots of the mysterious polishing.
472	520	S007	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Very heavily weathered, with no remaining cortical surface Some spots of the mysterious polishing.
472 472	520 520	S008 S009	1000 1000	1004 1004	3	100% 50%	0% 50%	NA 0	NA 0	NA	NA 0	NA 0	NA 0	No 0	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	No No	Yes	Yes	Very heavily weathered. Also, very heavily polished. Looks to have been roasted.
472	520	S010	1000	1004	3	100%	0%	NA.	NA	0 NA	NA	NA.	NA	NA.	NA	NA.	0 NA	NA	NA	NA.	No	Yes Yes	No No	Very heavily weathered. Mysterious polish
472	520	S011	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
472	520	S012	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
472	520	S013	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
472	520	S014	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
472	520	S015	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
472	520	S016	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish. Possible percussion notch, not enough surface to confirm.
472 472	520 520	S017 S018	1000 1000	1004 1004	3	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	Mysterious polish
472	520	S019	1000	1004	3	100%	0%	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	No	Yes	No	
472	520	S020	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S021	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S022	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S023	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S024	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472 472	520 520	S025	1000 1000	1004	3	100%	0% 0%	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	No No	Yes Yes	No No	Mysterious polish
472	520	S026 S027	1000	1004	3	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
472	520	S028	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S029	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S030	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S031	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S032	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
472 472	520 520	S033 S034	1000 1000	1004 1004	3	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	Mysterious polish Mysterious polish
472	520	S035	1000	1004	3	100%	0%	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	No	Yes	No	Mysterious polisii
472	520	S036	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
472	520	S037	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
472	520	S038	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S039	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472 472	520 520	S040 S041	1000 1000	1004 1004	3	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
472	520	S041	1000	1004	3	100%	0%	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	No	Yes	No	Mysterious polish
472	520	S043	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
472	520	S044	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S045	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S046	1000	1004	3	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
472 472	520 520	S047 S048	1000 1000	1004 1004	3	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
472	520	S049	1000	1004	3	100%	0%	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S050	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
472	520	S051	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
472	520	S052	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	M. A. Sirver and India
472 472	520 520	S053 S054	1000 1000	1004 1004	3	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	Mysterious polish
472	520	S055	1000	1004	3	100%	0%	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
472	520	S056	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S057	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S058	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S059	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
472	520	S060	1000	1004	3	100%	0%	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472 472	520 520	S061 S062	1000 1000	1004	3	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
472	520	S062 S063	1000	1004	3	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
472	520	S064	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S065	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S066	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S067	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	

Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Surface Visibility	Surface present	Percussion Mark	Percussion Notch	Tooth Mark	Tooth Notch	NonID Mark	Rodent Gnaw Mark	Cut on bone	Cutmark Prox End	Cutmark Prox Shaft	Cutmark Middle Shaft	Cutmark Dist Shaft	Cutmark Dist End	Cutmark Loc NonID	Gastric Etching	Geogenic Acid Modification	Burned?	Comments
472	520	S068	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
472	520	S069	1000	1004 1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	No	Yes	No	
472 472	520 520	S070 S071	1000 1000	1004	3	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
472	520	S072	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S073	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472 472	520 520	S074 S075	1000 1000	1004 1004	3	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
472	520	S076	1000	1004	3	100%	0%	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	No	Yes	No	
472	520	S077	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S078	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472 472	520 520	S079 S080	1000 1000	1004 1004	3	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
472	520	S081	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S082	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S083	1000	1004	3	100%	0%	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mustaviaus neliab
472 472	520 520	S084 S085	1000 1000	1004 1004	3	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	Mysterious polish
472	520	S086	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S087	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472 472	520 520	S088 S089	1000 1000	1004 1004	3	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
472	520	S090	1000	1004	3	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
472	520	S091	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S092	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472 472	520 520	S093 S094	1000 1000	1004 1004	3	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
472	520	S095	1000	1004	3	100%	0%	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	No	Yes	No	Mysterious polish
472	520	S096	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S097	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472 472	520 520	S098 S099	1000 1000	1004 1004	3	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
472	520	S100	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S101	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
472	520	S102	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472 472	520 520	S103 S104	1000 1000	1004 1004	3	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
472	520	S105	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S106	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472 472	520	S107	1000	1004 1004	3	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	No	Yes	No No	
472	520 520	S108 S109	1000 1000	1004	3	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No	
472	520	S110	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S111	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472 472	520 520	S112 S113	1000 1000	1004 1004	3	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	Trabecular
472	520	S114	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
472	520	S115	1000	1004	3	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Trabecular
472	520	S116	1000	1004	3	100%	0%	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	No	Yes	No	
472 472	520 520	S117 S118	1000 1000	1004 1004	3	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
473	521	S001	1000	1004	3	80%	20%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Heavily weathered and acid etched surface.
474	522	S001	1000	1004	3	80%	50%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Weathered and acid etched.
474 474	522 522	S002 S003	1000 1000	1004 1004	3	80% 80%	50% 50%	0	0	0	0	0	0	0	0	0	0	0	0	0	No No	Yes Yes	No No	Weathered and acid etched. Weathered and acid etched, Recent breaks.
474	522	S003	1000	1004	3	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	No	Trabecular bone frag.
474	522	S005	1000	1004	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Trabecular bone frag.
474	522	S006	1000	1004	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	No	Trabecular bone frag.
474 474	522 522	S007 S008	1000 1000	1004 1004	3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Trabecular bone frag. Trabecular bone frag.
474	522	S009	1000	1004	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Trabecular bone frag.
474	522	S010	1000	1004	3	80%	0%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Distorted by weathering.
474 474	522 522	S011 S012	1000 1000	1004 1004	3	80% NA	0% NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	No NA	Yes NA	No No	Distorted by weathering.
474	522	S012 S013	1000	1004	3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Trabecular bone frag. Trabecular bone frag.
474	522	S014	1000	1004	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Trabecular bone frag.
474	522	S015	1000	1004	3	80%	0%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Too small and weathered to make a determination.
474	522	S016	1000	1004	3	60%	20%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	weathering and acid etching.

Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Surface Visibility	Surface present	Percussion Mark	Percussion Notch	Tooth Mark	Tooth Notch	NonID Mark	Rodent Gnaw Mark	Cut on bone	Cutmark Prox End	Cutmark Prox Shaft	Cutmark Middle Shaft	Cutmark Dist Shaft	Cutmark Dist End	Cutmark Loc NonID	Gastric Etching	Geogenic Acid Modification	Burned?	Comments
474	522	S017	1000	1004	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Trabecular bone frag.
475	534	S001	1000	1004	4	80%	40%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	Yes	Evidence of roasting
475	534	S002	1000	1004	4	80%	40%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	Yes	Evidence of roasting
475	534	S003	1000	1004	4	80%	40%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	Yes	Evidence of roasting
476 478	538 671	S001 S001	1000	1004 1004	5 7	90%	70% 100%	0	0	0	0	0	0	0	0	0	0	0	0	0	No No	Yes No	No No	Weathered piece of cortical bone.
480	674	S001	1000	1004	9	100%	70%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	Yes	Small plastron fragment. Nearly calcined. Surface shows clear acid etching.
480	674	S001	1000	1004	9	90%	0%	NA.	NA.	NA.	NA.	NA NA	NA.	No	NA.	NA.	NA.	NA.	NA.	NA.	No	Yes	No	Very heavily weathered. Refits with S003
480	674	S003	1000	1004	9	90%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Very heavily weathered. Refits with S002
480	674	S004	1000	1004	9	50%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Very heavily weathered.
480	674	S005	1000	1004	9	100%	100%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	Yes	Not completely calcined, but close. Minute acid etching.
480	674	S006	1000	1004	9	100%	100%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	No	Yes	Not completely calcined, but close.
480	674	S007	1000	1004	9	100%	100%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	Yes	Burned, some root etching.
480	674	S008	1000	1004	9	90%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Very heavily weathered. No surface remaining. Refits with S009
480	674	S009	1000	1004	9	90%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Very heavily weathered. No surface remaining. Refits with S008
480	674	S010	1000	1004	9	90%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Very heavily weathered. No surface remaining.
481	675	S001	1000	1004	10	90%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Surface has been obliterated, and the shape has been distorted due to weathering. Severe acid etching.
481	675	S002	1000	1004	10	60%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Surface has been obliterated, and the shape has been distorted due to weathering.
481	675	S003	1000	1004	10	60%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Surface has been obliterated, and the shape has been distorted due to weathering.
481	675	S004	1000	1004	10	100%	NA	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Too small to make a determination.
484	678	S001	1000	1004	13	80%	50%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	weathering and acid etching.
485	679	S001	1000	1004	14	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Water wear has obliterated any surface mod which would have been there. Only light acid etching.
485	679	S002	1000	1004	14	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Water wear has obliterated any surface mod which would have been there. Only light acid etching.
485	679	S003	1000	1004	14	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	A laminar piece of cortical bone.
490 490	324 324	S001 S002	1000	1009 1009	5 5	90% 90%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	Too weathered on the surface. Too weathered on the surface.
492	332	S001	1000	1009	7	70%	30%	0	0	1	0	0	0	0	0	0	0	0	0	0	No	Yes	No	One tooth pit on the margin.
495	368	S001	1000	1009	10	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Probably turtle shell, not definitive.
501	328	S001	1000	1010	6	100%	10%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Very heavily weathered. No surface remaining.
501	328	S002	1000	1010	6	90%	10%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Very heavily weathered. No surface remaining.
501 501	328 328	S003 S004	1000 1000	1010 1010	6	90%	10% 10%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	Very heavily weathered. No surface remaining. Very heavily weathered. No surface remaining.
502	331	S001	1000	1010	7	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	NA	Yes	Yes	Heavily burned, not completely calcined. But, distorted
502	331	S002	1000	1010	7	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	NA	No	No	by heat and weathering. Cortical frag, but al most no surface.
503	334	S001	1000	1010	8	90%	40%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	weathering and acid etching.
504	336	S001	1000	1010	9	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
504 504	336 336	S002 S003	1000 1000	1010 1010	9	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
504	336	S003	1000	1010	9	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
504	336	S005	1000	1010	9	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
504	336	S006	1000	1010	9	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
504	336	S007	1000	1010	9	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
504 504	336 336	S008 S009	1000 1000	1010 1010	9	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
504	336	S010	1000	1010	9	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
505	342	S001	1000	1010	10	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Weathering has completely obliterated the surface.
505	342	S002	1000	1010	10	80%	10%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Weathering has nearly obliterated the surface.
505 506	342 339	S003 S001	1000	1010 1010	10 11	100%	90%	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	No No	Yes Yes	Yes No	Very small frag, appears to have been roasted.
506	339	S001 S002	1000	1010	11	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes	No	
506	339	S002	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
506	339	S004	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
506	339	S005	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
506 506	339 339	S006 S007	1000	1010 1010	11 11	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
506	339	S007 S008	1000	1010	11	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
506	339	S009	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
506	339	S010	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
506	339	S011	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	

Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Surface Visibility	Surface present	Percussion Mark	Percussion Notch	Tooth Mark	Tooth Notch	NonID Mark	Rodent Gnaw Mark	Cut on bone	Cutmark Prox End	Cutmark Prox Shaft	Cutmark Middle Shaft	Cutmark Dist Shaft	Cutmark Dist End	Sutmark Loc NonID	Gastric Etching	Geogenic Acid Modification	Burned?	Comments
506	339	S012	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
506	339	S013	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
506	339	S014	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
506	339	S015	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
506 506	339 339	S016 S017	1000	1010 1010	11	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
506	339	S017	1000	1010	11	100%	0%	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	No	Yes	No	+
506	339	S019	1000	1010	11	100%	0%	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	No	Yes	No	
506	339	S020	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
506	339	S021	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
506	339	S022	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
506 506	339	S023	1000	1010 1010	11	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
506	339 339	S024 S025	1000 1000	1010	11	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	+
506	339	S026	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
506	339	S027	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
506	339	S028	1000	1010	11	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
508	411	S001	1000	1010	12	90%	10%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Small, and not much surface remaining.
508	411	S002	1000	1010	12	90%	10% 0%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Small, and not much surface remaining.
509 510	420 430	S001 S001	1000 1000	1010 1010	13 14	100% 100%	100%	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	No No	Yes Yes	No No	Only slight acid etching.
511	438	S001	1000	1010	15	100%	0%	NA.	NA	NA	NA NA	NA.	NA.	No	NA	NA.	NA.	NA.	NA.	NA.	No	Yes	No	Siny Sight dold clothing.
512	447	S001	1000	1010	16	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	
513	552	S001	1000	1010	17	100%	40%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	Yes	Calcined
513	552	S002	1000	1010	17	100%	40%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	Yes	Calcined
513	552	S003	1000	1010	17	100%	40%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	Yes	Calcined
518 518	640 640	S001 S002	1000.5 1000.5	1005.5 1005.5	3	100% 100%	0% 50%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Yes No	No No	Very small frag.
519	646	S002	1000.5	1005.5	4	100%	3076	0	0	0	0	0	0	No	0	0	0	0	0	0	No	Yes	No	Some Geogenic Acid etching.
					4																			Surface Is nearly obliterated from weathering and acid
519	646	S002	1000.5	1005.5	4	70%		NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	NA	Yes	No	mod.
519	646	S003	1000.5	1005.5	4	70%		NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	NA	Yes	No	Surface Is nearly obliterated from weathering and acid mod. Surface Is nearly obliterated from weathering and acid
519	646	S004	1000.5	1005.5	4	70%		NA	NA 	NA	NA	NA	NA	No	NA	NA	NA 	NA	NA NA	NA	NA	Yes	No	mod. Surface and margins have been completely obliterated
519 520	646 656	S005 S001	1000.5	1005.5	4-5	60% 50%	20%	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	No 0	NA 0	NA 0	NA 0	NA 0	NA 0	NA 0	NA No	Yes Yes	No No	by weathering. Too weathered for surface mod. A single stain on one
528	666	S001	FTR 4	FTR4	Lyr 2	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	side, ~2cm in diameter, might indicate roasting.
528	666	S002	FTR 4	FTR4	Lyr 2	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	
528	666	S003	FTR 4	FTR4	Lyr 2	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	
528	666	S004	FTR 4	FTR4	Lyr 2	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	
528	666	S005	FTR 4	FTR4	Lyr 2	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	No	Yes	Yes	Miredoviarra maliah
532 532	631 631	S001 S002	1001 1001	1003	2	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	Mysterious polish Mysterious polish
532	631	S003	1001	1003	2	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
532	631	S004	1001	1003	2	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
532	631	S005	1001	1003	2	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
533 533	641 641	S001 S002	1001 1001	1003	3	80% 60%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	Weathering has obliterated the cortical surface.
535	657	S002 S001	1001	1003	4	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	Weathering has obliterated the cortical surface.
535	657	S001	1001	1003	4	100%	0%	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	No	Yes	No	
535	657	S003	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535	657	S004	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535	657	S005	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535	657	S006	1001	1003	4	100%	0%	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	No	Yes	No	
535 535	657 657	S007 S008	1001 1001	1003	4	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
535	657	S009	1001	1003	4	100%	0%	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
535	657	S010	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535	657	S011	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535	657	S012	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535	657	S013	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535 535	657 657	S014 S015	1001 1001	1003	4	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
535	657	S015 S016	1001	1003	4	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes	No No	+
535	657	S017	1001	1003	4	100%	0%	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
500		5517	.501	.500		.5070	U 70				/ \		, .									. 55	.,,	

Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	ce Visibility	ice present	Percussion Mark	Percussion Notch	Tooth Mark	Tooth Notch	NonID Mark	t Gnaw Mark	Cut on bone	rk Prox End	Cutmark Prox Shaft	Cutmark Middle Shaft	Cutmark Dist Shaft	ark Dist End	Sutmark Loc NonID	Gastric Etching	Geogenic Acid Modification	Burned?	Comments
						Surface	Surface						Rodent		Cutmark				Cutmark	•				8
535	657	S018	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535 535	657 657	S019 S020	1001 1001	1003 1003	4	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
535	657	S021	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535	657	S022	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535	657	S023	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535 535	657 657	S024 S025	1001 1001	1003 1003	4	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
535	657	S026	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535	657	S027	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535	657	S028	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535	657	S029	1001	1003 1003	4	100%	0%	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	No	Yes	No	
535 535	657 657	S030 S031	1001 1001	1003	4	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
535	657	S032	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535	657	S033	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535	657	S034	1001	1003	4	100%	0%	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	No	Yes	No	
535 535	657 657	S035 S036	1001 1001	1003	4	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
535	657	S037	1001	1003	4	100%	0%	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	No	Yes	No	
535	657	S038	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535	657	S039	1001	1003	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
535	657	S040	1001	1003	4	100%	0%	NA	NA NA	NA.	NA NA	NA NA	NA NA	NA.	NA	NA	NA NA	NA NA	NA NA	NA	No	Yes	No	
535 537	657 576	S041 S001	1001 1001	1003 1004	3	100% 100%	0% 10%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No NA	Yes Yes	No No	Too distorted by weathering to identify
538	579	S001	1001	1004	4	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Slightly burned
538	579	S002	1001	1004	4	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Slightly burned
539	592	S001	1001	1004	5	100%	100%	0	0	0	0	0	0	0	0	0	0	0	0	3	No	Yes	Yes	Slightly burned (possibly roasted), three cut marks.
539	592	S002	1001	1004	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Yes	Trabecular bone frag. Slightly burned (possibly roasted).
539 539	592 592	S003 S004	1001 1001	1004 1004	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
539	592	S004 S005	1001	1004	5	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
539	592	S006	1001	1004	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
539	592	S007	1001	1004	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
539	592	S008	1001	1004	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
539 539	592 592	S009 S010	1001 1001	1004 1004	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
539	592	S011	1001	1004	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
539	592	S012	1001	1004	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
539	592	S013	1001	1004	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
539	592	S014	1001	1004	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
539 540	592 542	S015 S001	1001 1001	1004 1004.5	5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
542	546	S001	1001	1004.5	4	100%	0%	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	No	Yes	No	Mysterious polish
542	546	S002	1001	1004.5	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
542	546	S003	1001	1004.5	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
542 542	546 546	S004 S005	1001 1001	1004.5 1004.5	4	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	Mysterious polish Mysterious polish
542	546	S005 S006	1001	1004.5	4	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	Mysterious polish
542	546	S007	1001	1004.5	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
542	546	S008	1001	1004.5	4	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	Mysterious polish
542	546	S009	1001	1004.5	4	100%	0%	NA	NA	NA.	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	No	Yes	No	Mysterious polish
543 543	560 560	S001 S002	1001 1001	1004.5	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
543	560	S002 S003	1001	1004.5	5	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	NA NA	NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
548	333	S001	1001	1009	4	100%	50%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Large plastron frag. Refits with S002
548	333	S002	1001	1009	4	100%	50%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Plastron frag. Refits with S001
548	333	S003	1001	1009	4	100%	70%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Plastron frag.
548 548	333 333	S004 S005	1001 1001	1009 1009	4	100% 100%	80% 50%	0	0	0	0	0	0	0	0	0	0	0	0	0	No No	Yes Yes	No	Carapace frag.
548	333	S005 S006	1001	1009	4	100%	70%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No No	Plastron frag.
548	333	S007	1001	1009	4	NA	NA	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	NA	NA	No	Trabecular bone frag.
548	333	S008	1001	1009	4	100%	40%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Very small plastron frag (possibly carapace).
548	333	S009	1001	1009	4	100%	20%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Very small cortical frag. Nearly obliterated cortex.
548 548	333	S010	1001	1009 1009	4	100%	0%	NA	NA	NA	NA NA	NA	NA	No	NA	NA	NA NA	NA	NA NA	NA	No	Yes	No	Very small cortical frag. Completely obliterated cortex.
548	333	S011	1001	1009	4	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Very small cortical frag. Completely obliterated cortex.

Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Surface Visibility	Surface present	Percussion Mark	Percussion Notch	Tooth Mark	Tooth Notch	NonID Mark	Rodent Gnaw Mark	Cut on bone	Cutmark Prox End	Cutmark Prox Shaft	Cutmark Middle Shaft	Cutmark Dist Shaft	Cutmark Dist End	Cutmark Loc NonID	Gastric Etching	Geogenic Acid Modification	Burned?	Comments
549	337	S001	1001	1009	5	90%	10%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Surface is too weathered and has too much recent damage to identify surface modifications.
550	338	S001	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	damage to identify surface modifications.
550 550	338 338	S002 S003	1001 1001	1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	NA Yes	No No	
550	338	S003	1001	1009	5	100%	0%	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	No	Yes	No	
550	338	S005	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
550 550	338 338	S006 S007	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
550	338	S008	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
550 550	338 338	S009 S010	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
550	338	S011	1001	1009	5	100%	0%	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	No	Yes	No	
550	338	S012	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
550 550	338 338	S013 S014	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
550 550	338	S015	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
550 550	338 338	S016 S017	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
550	338	S017 S018	1001	1009	5	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
550	338	S019	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
550 550	338 338	S020 S021	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
550	338	S022	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
550 550	338 338	S023 S024	1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
550	338	S024 S025	1001 1001	1009	5	100%	0%	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
550	338	S026	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
550 550	338 338	S027 S028	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
550	338	S029	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
550 550	338 338	S030 S031	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
550	338	S032	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
550	338	S033	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
550 550	338 338	S034 S035	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
550	338	S036	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
550 550	338 338	S037 S038	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
550	338	S039	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	
550	338	S040	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	
550 550	338 338	S041 S042	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	
550	338	S043	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	
550 550	338 338	S044 S045	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	
550	338	S046	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	
550 550	338	S047 S048	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	
550	338 338	S049	1001	1009	5	100%	0%	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	No	
550	338	S050	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	
550 550	338 338	S051 S052	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
550	338	S053	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
550 550	338 338	S054 S055	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
550	338	S056	1001	1009	5	100%	0%	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	No	Yes	No	
550	338	S057	1001	1009	5	100%	0%	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	No	Yes	No	
550 550	338 338	S058 S059	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
550	338	S060	1001	1009	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
550 550	338 338	S061 S062	1001 1001	1009 1009	5 5	100% 100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
550	338	S062 S063	1001	1009	5	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	
551	341	S001	1001	1009	6	9000%	10%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA 0	NA	NA 0	No	Yes	No	Too weathered on the surface.
551 552	341 347	S002 S001	1001 1001	1009 1009	6 7	90% 100%	40% 0%	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 No	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	No No	Yes Yes	No No	Very small frag

ó	No.	n No.	Бu	Đ.	-	Visibility	resent	n Mark	Notch	Mark	otch	Mark	aw Mark	ou poue	rox End	ox Shaft	Middle	st Shaft	Dist End	c NonID	ching	Acid ation	¿p	stre
Lot No.	Bag N	Specimen No	Northing	Easting	Level	ırface	urface pre	ırcussion	rcussion Notch	Tooth N	Tooth Notch	NonID N	Rodent Gnaw	Cutonb	tmark Pr	Cutmark Prox	Cutmark I Shaf	Cutmark Dist	Cutmark D	utmark Loc	Gastric Etching	Geogenic Aci Modification	Burned?	Comments
			4004	1000		ง	Ō	- P	Pe						ō					Ö			.,	
552 552	347 347	S002 S003	1001 1001	1009 1009	7	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	Yes No	Burned- nearly calcined.
559	360	S001	1001	1010	4	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Large cortical frag. Surface is completely obliterated by weathering.
559	360	S002	1001	1010	4	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Large cortical frag. Surface is completely obliterated by weathering.
561 561	367 367	S001 S001	1001 1001	1010 1010	5 5	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No Yes	Down and mark and single
564	367	S001 S001	1001	1010	6	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes	No.	Burned, not calcined
564	373	S002	1001	1010	6	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
564	373	S003	1001	1010	6	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
564	373	S004	1001	1010	6	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
564 564	373 373	S005 S006	1001 1001	1010 1010	6	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	
564	373	S007	1001	1010	6	100%	0%	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	No	Yes	No	
564	373	S008	1001	1010	6	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
564	373	S009	1001	1010	6	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
564	373	S010	1001	1010	6	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
567	384	S001	1001	1010	8	40%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Too small and weathered to make a determination.
567	384	S002	1001	1010	8	100%	100%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Very well preserved (unlike S001), very light acid etching.
570 570	416 416	S001 S002	1001 1001	1010	12 12	100%		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No Yes	No No	Trabecular bone frag. Weathering has completely obliterated the surface.
571	425	S002	1001	1010	13	90%	10%	0	0	0	0	0	2	0	0	0	0	0	0	0	No	Yes	No	Possible chop marks, but not certain
571	425	S002	1001	1010	13	90%	10%	0	0	0	0	0	2	0	0	0	0	0	0	0	No	Yes	No	r course ones mane, sar not contain
571	425	S003	1001	1010	13	90%	10%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	
571	425	S004	1001	1010	13	90%	10%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	
571 574	425 606	S005 S001	1001	1010 1010	13 16	90%	10% 0%	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	No No	Yes Yes	No No	
574	606	S001	1001	1010	16	100%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	No	Yes	No	+
576	616	S001	1001	1010		100%	0,0	0	1	0	0	0	1	No	0	0	0	0	0	0	No	Yes	No	Percussion notch with hertzian cone in the margin. One small rodent gnaw group near notch. Root etching present.(possibly pot polishing).
578	637	S001	1001.5	1004	2	90%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Too weathered on the surface.
578	637	S002	1001.5	1004	2	90%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Too weathered on the surface.
579	643	S002	1001.5	1004	3	NA	NA	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	NA	NA	No	Trabecular bone frag.
579 579	643 643	S003 S004	1001.5 1001.5	1004	3	50% 50%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Too small to identify. Too small to identify.
579	643	S004 S005	1001.5	1004	3	50%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	Too small to identify. Too small to identify.
580	648	S001	1001.5	1004	4	90%	10%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Heavily weathered and acid etched surface.
580	648	S002	1001.5	1004	4	60%	10%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Heavily weathered and acid etched surface.
580	648	S003	1001.5	1004	4	NA	NA	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	NA	NA	No	Trabecular bone frag.
580 580	648 648	S004 S005	1001.5 1001.5	1004	4	100%	70% 0%	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 No	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	No No	Yes Yes	No No	Very small plastron frag. Very small cortical frag. Too small and weathered to observe surface mod.
580	648	S006	1001.5	1004	4	60%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Very small cortical frag. Too small and weathered to
580	648	S007	1001.5	1004	4	60%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	observe surface mod. Very small cortical frag. Too small and weathered to
580	648	S008	1001.5	1004	4	60%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	observe surface mod. Very small cortical frag. Too small and weathered to observe surface mod.
580	648	S009	1001.5	1004	4	60%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Very small cortical frag. Too small and weathered to observe surface mod.
581	651	S001	1001.5	1005	2	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
581	651	S002	1001.5	1005	2	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
582	654	S001	1001.5	1005	3	95%	5%	0	0	0	0	0	0	No	0	0	0	0	0	0	No	YES	No	Surface Is nearly obliterated from weathering and acid mod.
588	527	S001	1003	1017	5	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Calcined
590	557	S001	1003	1017	6	100%	0%	NA	NA	NA	NA NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	Yes	Calcined
596 596	574 574	S001 S002	1003 1003	1017 1017	9	100%	0% 0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes Yes	No No	+
596	574	S002	1003	1017	9	100%	0%	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	No	Yes	No	
608	510	S001	1003	1018	8	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
612	629	S001	1003	1018	13	90%	10%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Most of the surface is missing.
618	479	S001	1003	1019	7	100%	0%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	No	Yes	No	
631 645	376 359	S001 S001	1004 1004	1017 1018	5	90%	20%	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	0 No	0 NA	0 NA	0 NA	0 NA	0 NA	0 NA	No No	Yes Yes	No No	Heavily weathered surface. Too weathered on the surface.
662	533	S001 S001	1004	1018	8	90%	0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	No No	Yes	No	Too weathered on the surface. Too weathered on the surface.
302	550	0001		.515		0070	U //U			, ,		, .	/ \		, , ,	, ,	,.	, .			,0	. 55	.10	

Lot No.	Bag No.	Specimen No.	Northing	Easting	Level	Surface Visibility	Surface present	Percussion Mark	Percussion Notch	Tooth Mark	Tooth Notch	NonID Mark	Rodent Gnaw Mark	Cut on bone	Cutmark Prox End	Cutmark Prox Shaft	Cutmark Middle Shaft	Cutmark Dist Shaft	Cutmark Dist End	Cutmark Loc NonID	Gastric Etching	Geogenic Acid Modification	Burned?	Comments
668	588	S001	1004	1019	12	100%	20%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Nearly obliterated cortical surface from weathering.
676	366	S001	1009	1011	5	60%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	Too weathered on the surface.
688	352	S001	1009	1012	2	80%	70%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Some acid etching.
688	352	S002	1009	1012	2	100%	100%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Well preserved, no surface mod.
688	352	S003	1009	1012	2	100%	100%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Well preserved, no surface mod.
688	352	S004	1009	1012	2	90%	80%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	No anthropogenic surface mod
688	352	S005	1009	1012	2	90%	80%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	No anthropogenic surface mod
689	357	S001	1009	1012	3	100%	0%	NA	NA	NA	NA	NA	NA	No	NA	NA	NA	NA	NA	NA	No	Yes	No	
697	551	S001	1009	1012	10	100%	20%	0	0	0	0	0	0	0	0	0	0	0	0	0	No	Yes	No	Surface is weathered and heavily acid etched.

APPENDIX E

Radiocarbon Assays

Beta Analytic Inc

4985 SW 74 Court Miami, Florida 33155 Tel: 305-667-5167 Fax: 305-663-0964 beta@radiocarbon.com

Mr. Ronald Hatfield Mr. Christopher Patrick

Deputy Directors

Mr. Darden Hood

President

ISO/IEC 17025:2005 Accredited Test Results: Testing results recognized by all Signatories to the ILAC Mutual Recognition Arrangement

May 01, 2018

Mr. Brandon S. Young Blanton & Associates 4407 Monterey Oaks Blvd. Building 1, Suite 110 Austin, TX 78749 USA

RE: Radiocarbon Dating Results

Dear Mr. Young,

Enclosed are the radiocarbon dating results for five samples recently sent to us. As usual, the method of analysis is listed on the report with the results and calibration data is provided where applicable. The Conventional Radiocarbon Ages have all been corrected for total fractionation effects and where applicable, calibration was performed using 2013 calibration databases (cited on the graph pages).

The web directory containing the table of results and PDF download also contains pictures, a cvs spreadsheet download option and a quality assurance report containing expected vs. measured values for 3-5 working standards analyzed simultaneously with your samples.

Reported results are accredited to ISO/IEC 17025:2005 Testing Accreditation PJLA #59423 standards and all chemistry was performed here in our laboratory and counted in our own accelerators here. Since Beta is not a teaching laboratory, only graduates trained to strict protocols of the ISO/IEC 17025:2005 Testing Accreditation PJLA #59423 program participated in the analyses.

As always Conventional Radiocarbon Ages and sigmas are rounded to the nearest 10 years per the conventions of the 1977 International Radiocarbon Conference. When counting statistics produce sigmas lower than +/- 30 years, a conservative +/- 30 BP is cited for the result. The reported d13C values were measured separately in an IRMS (isotope ratio mass spectrometer). They are NOT the AMS d13C which would include fractionation effects from natural, chemistry and AMS induced sources.

When interpreting the results, please consider any communications you may have had with us regarding the samples.

Thank you for prepaying the analyses. As always, if you have any questions or would like to discuss the results, don't hesitate to contact us.

Sincerely,

Jardew Hood

Mr. Darden HoodPresident

Mr. Ronald Hatfield Mr. Christopher Patrick Deputy Directors

ISO/IEC 2005:17025-Accredited Testing Laboratory

REPORT OF RADIOCARBON DATING ANALYSES

Brandon S. Young Report Date: May 01, 2018

Blanton & Associates Material Received: April 20, 2018

Conventional Radiocarbon Age (BP) or Percent Modern Carbon (pMC) & Stable Isotopes

Laboratory Number Sample Code Number

Calendar Calibrated Results: 95.4 % Probability High Probability Density Range Method (HPD)

Beta - 492582 41GU177_FS499 670 +/- 30 BP IRMS δ13C: -22.3 o/oo

(53.1%) 1274 - 1320 cal AD (676 - 630 cal BP) (42.3%) 1350 - 1391 cal AD (600 - 559 cal BP)

Submitter Material: Seeds

Pretreatment: (charred material) acid/alkali/acid

Analyzed Material: Charred material

Analysis Service: AMS-Standard delivery Percent Modern Carbon: 92.00 +/- 0.34 pMC

Fraction Modern Carbon: 0.9200 +/- 0.0034

D14C: -80.02 +/- 3.44 o/oo

Δ14C: -87.56 +/- 3.44 o/oo(1950:2,018.00)

Measured Radiocarbon Age: (without d13C correction): 630 +/- 30 BP

Calibration: BetaCal3.21: HPD method: INTCAL13

Mr. Darden HoodPresident

Mr. Ronald Hatfield Mr. Christopher Patrick Deputy Directors

ISO/IEC 2005:17025-Accredited Testing Laboratory

REPORT OF RADIOCARBON DATING ANALYSES

Brandon S. Young Report Date: May 01, 2018

Blanton & Associates Material Received: April 20, 2018

Conventional Radiocarbon Age (BP) or Percent Modern Carbon (pMC) & Stable Isotopes

Laboratory Number Sample Code Number

Calendar Calibrated Results: 95.4 % Probability High Probability Density Range Method (HPD)

Beta - 492583 41GU177_FS666 970 +/- 30 BP IRMS δ13C: -25.5 ο/οο

(95.4%) 1016 - 1154 cal AD (934 - 796 cal BP)

Submitter Material: Plant

Pretreatment: (charred material) acid/alkali/acid

Analysis Service: AMS-Standard deliv

Analysis Service: AMS-Standard delivery Percent Modern Carbon: 88.63 +/- 0.33 pMC Fraction Modern Carbon: 0.8863 +/- 0.0033

D14C: -113.75 +/- 3.31 o/oo

Δ14C: -121.01 +/- 3.31 o/oo(1950:2,018.00)

Measured Radiocarbon Age: (without d13C correction): 980 +/- 30 BP

Calibration: BetaCal3.21: HPD method: INTCAL13

Mr. Darden HoodPresident

Mr. Ronald Hatfield Mr. Christopher Patrick Deputy Directors

ISO/IEC 2005:17025-Accredited Testing Laboratory

REPORT OF RADIOCARBON DATING ANALYSES

Brandon S. Young Report Date: May 01, 2018

Blanton & Associates Material Received: April 20, 2018

Conventional Radiocarbon Age (BP) or Percent Modern Carbon (pMC) & Stable Isotopes

Laboratory Number Sample Code Number

Calendar Calibrated Results: 95.4 % Probability High Probability Density Range Method (HPD)

Beta - 492584 41GU177_FS555 1170 +/- 30 BP IRMS δ13C: -25.2 ο/οο

(80.8%) 771 - 903 cal AD (1179 - 1047 cal BP) (14.6%) 918 - 965 cal AD (1032 - 985 cal BP)

Submitter Material: Charcoal

Pretreatment: (charred material) acid/alkali/acid

Analyzed Material: Charred material
Analysis Service: AMS-Standard delivery

Percent Modern Carbon: 86.45 +/- 0.32 pMC
Fraction Modern Carbon: 0.8645 +/- 0.0032

D14C: -135.54 +/- 3.23 o/oo

Δ14C: -142.62 +/- 3.23 o/oo(1950:2,018.00)

Measured Radiocarbon Age: (without d13C correction): 1170 +/- 30 BP

Calibration: BetaCal3.21: HPD method: INTCAL13

Mr. Darden HoodPresident

Mr. Ronald Hatfield Mr. Christopher Patrick Deputy Directors

ISO/IEC 2005:17025-Accredited Testing Laboratory

REPORT OF RADIOCARBON DATING ANALYSES

Brandon S. Young Report Date: May 01, 2018

Blanton & Associates Material Received: April 20, 2018

Conventional Radiocarbon Age (BP) or

Percent Modern Carbon (pMC) & Stable Isotopes
Laboratory Number Sample Code Number

Calendar Calibrated Results: 95.4 % Probability High Probability Density Range Method (HPD)

Beta - 492587 41GU177_FS337_S001 530 +/- 30 BP IRMS δ13C: -11.1 o/oo

IRMS δ15N: +5.8 o/oo

(75.9%) 1390 - 1440 cal AD (560 - 510 cal BP) (19.5%) 1320 - 1350 cal AD (630 - 600 cal BP)

Submitter Material: Bone (Non-heated)

Pretreatment: (bone collagen) collagen extraction; with alkali

Analyzed Material: Bone collagen

Analysis Service: AMS-Standard delivery Percent Modern Carbon: 93.62 +/- 0.35 pMC Fraction Modern Carbon: 0.9362 +/- 0.0035

D14C: -63.85 +/- 3.50 o/oo

Δ14C: -71.52 +/- 3.50 o/oo(1950:2,018.00)

Measured Radiocarbon Age: (without d13C correction): 300 +/- 30 BP

Calibration: BetaCal3.21: HPD method: INTCAL13

Carbon/Nitrogen: CN: 3.3 %C: 42.25 %N: 15.04

Mr. Darden HoodPresident

Mr. Ronald Hatfield Mr. Christopher Patrick Deputy Directors

ISO/IEC 2005:17025-Accredited Testing Laboratory

REPORT OF RADIOCARBON DATING ANALYSES

Brandon S. Young Report Date: May 01, 2018

Blanton & Associates Material Received: April 20, 2018

Conventional Radiocarbon Age (BP) or Percent Modern Carbon (pMC) & Stable Isotopes

Laboratory Number Sample Code Number

Calendar Calibrated Results: 95.4 % Probability High Probability Density Range Method (HPD)

Beta - 492588 41GU177_FS551_S001 170 +/- 30 BP IRMS δ13C: -19.9 o/oo

IRMS δ15N: +7.1 o/oo

(51.6%) 1721 - 1818 cal AD (229 - 132 cal BP) (17.9%) 1916 - Post AD 1950 (34 - Post BP 0) (17.7%) 1659 - 1699 cal AD (291 - 251 cal BP) (8.2%) 1832 - 1880 cal AD (118 - 70 cal BP)

Submitter Material: Bone (Non-heated)

Pretreatment: (bone collagen) collagen extraction; with alkali

Analyzed Material: Bone collagen

Analysis Service: AMS-Standard delivery Percent Modern Carbon: 97.91 +/- 0.37 pMC Fraction Modern Carbon: 0.9791 +/- 0.0037

D14C: -20.94 +/- 3.66 o/oo

Δ14C: -28.96 +/- 3.66 o/oo(1950:2,018.00)

Measured Radiocarbon Age: (without d13C correction): 90 +/- 30 BP

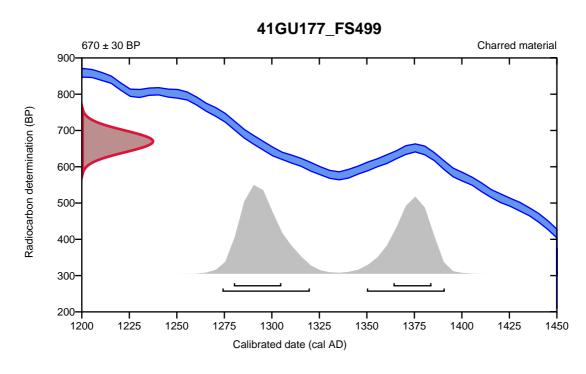
Calibration: BetaCal3.21: HPD method: INTCAL13

Carbon/Nitrogen: CN: 3.2 %C: 42.50 %N: 15.35

(High Probability Density Range Method (HPD): INTCAL13)

(Variables: d13C = -22.3 o/oo)

Laboratory number Beta-492582


Conventional radiocarbon age 670 ± 30 BP

95.4% probability

(53.1%)	1274 - 1320 cal AD	(676 - 630 cal BP)
(42.3%)	1350 - 1391 cal AD	(600 - 559 cal BP)

68.2% probability

(38.6%)	1280 - 1305 cal AD	(670 - 645 cal	BP)
(29.6%)	1364 - 1384 cal AD	(586 - 566 cal	BP)

Database used INTCAL13

References

References to Probability Method

Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360.

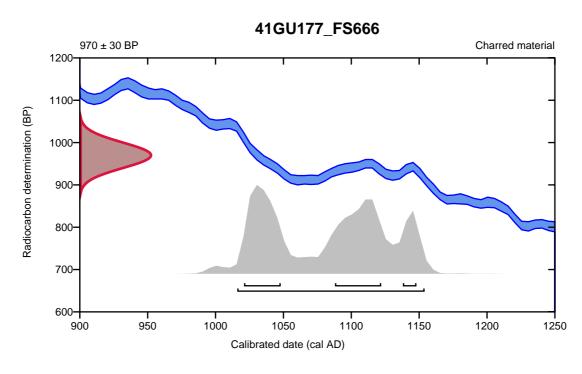
References to Database INTCAL13

Reimer, et.al., 2013, Radiocarbon55(4).

(High Probability Density Range Method (HPD): INTCAL13)

(Variables: d13C = -25.5 o/oo)

Laboratory number Beta-492583


Conventional radiocarbon age 970 ± 30 BP

95.4% probability

(95.4%) 1016 - 1154 cal AD (934 - 796 cal BP)

68.2% probability

(31.4%)	1088 - 1122 cal AD	(862 - 828 cal BP)
(28.3%)	1021 - 1048 cal AD	(929 - 902 cal BP)
(8.4%)	1138 - 1148 cal AD	(812 - 802 cal BP)

Database used INTCAL13

References

References to Probability Method

Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360.

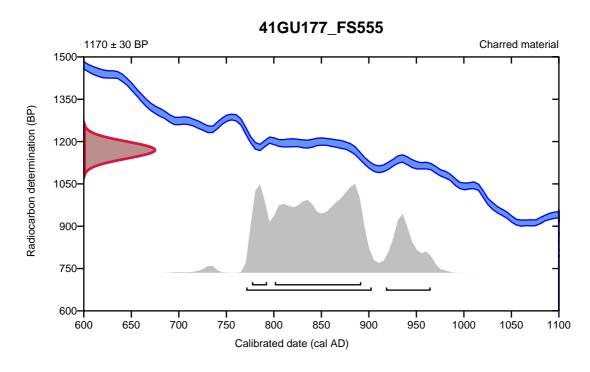
References to Database INTCAL13

Reimer, et.al., 2013, Radiocarbon55(4).

(High Probability Density Range Method (HPD): INTCAL13)

(Variables: d13C = -25.2 o/oo)

Laboratory number Beta-492584


Conventional radiocarbon age 1170 ± 30 BP

95.4% probability

(80.8%)	771 - 903 cal AD	(1179 - 1047 cal BP)
(14.6%)	918 - 965 cal AD	(1032 - 985 cal BP)

68.2% probability

(57.1%)	801 - 892 cal AD	(1149 - 1058 cal BP)
(11.1%)	777 - 793 cal AD	(1173 - 1157 cal BP)

Database used INTCAL13

References

References to Probability Method

Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360.

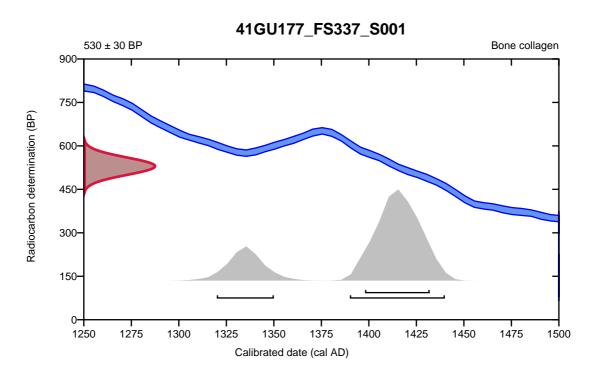
References to Database INTCAL13

Reimer, et.al., 2013, Radiocarbon55(4).

(High Probability Density Range Method (HPD): INTCAL13)

(Variables: d13C = -11.1 o/oo)

Laboratory number Beta-492587


Conventional radiocarbon age 530 ± 30 BP

95.4% probability

(75.9%) 1390 - 1440 cal AD (560 - 510 cal BP) (19.5%) 1320 - 1350 cal AD (630 - 600 cal BP)

68.2% probability

(68.2%) 1398 - 1432 cal AD (552 - 518 cal BP)

Database used INTCAL13

References

References to Probability Method

Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360.

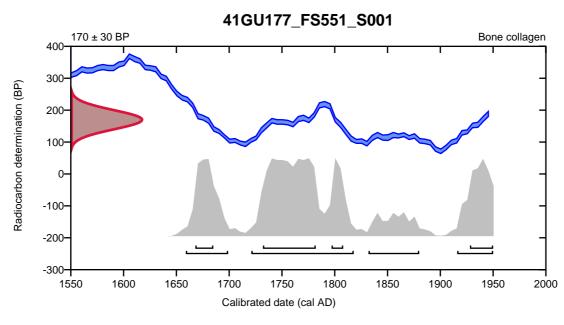
References to Database INTCAL13

Reimer, et.al., 2013, Radiocarbon55(4).

(High Probability Density Range Method (HPD): INTCAL13)

(Variables: d13C = -19.9 o/oo)

Laboratory number Beta-492588


Conventional radiocarbon age 170 ± 30 BP

95.4% probability

(51.6%)	1721 - 1818 cal AD	(229 - 132 cal BP)
(17.9%)	1916 - Post cal AD 1950	(34 - Post cal BP 0)
(17.7%)	1659 - 1699 cal AD	(291 - 251 cal BP)
(8.2%)	1832 - 1880 cal AD	(118 - 70 cal BP)

68.2% probability

(35.4%)	1732 - 1782 cal AD	(218 - 168 cal BP)
(14.2%)	1928 - Post cal AD 1950	(22 - Post cal BP 0)
(11.7%)	1668 - 1685 cal AD	(282 - 265 cal BP)
(7%)	1797 - 1808 cal AD	(153 - 142 cal BP)

Database used INTCAL13

References

References to Probability Method

Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360.

References to Database INTCAL13

Reimer, et.al., 2013, Radiocarbon55(4).

APPENDIX F

Macrobotanical Analysis

FLOTATION SAMPLES AND RADIOCARBON MATERIAL FROM SITE 41GU177, GUADALUPE COUNTY, TEXAS

March 27, 2018

Prepared for:
Brandon Young, Archaeologist
SWCA Environmental Consultants
4407 Monterey Oaks Blvd.
Austin, TX 78749

Prepared by: Leslie L. Bush, Ph.D., R.P.A. Macrobotanical Analysis 12308 Twin Creeks Rd., B-104 Manchaca, Texas 78652

Ten carbon samples and five flotation samples from Site 41GU177 were submitted for sorting, identification, and analysis. The site is situated on a bluff above the Guadalupe River outside modern New Braunfels, near the northwestern border of Guadalupe County. The location is just below the confluence of an unnamed, intermittent tributary or canyon. Ecologically, the area is the southwesternmost extension of the Blackland Prairie vegetation region. Although little of the original prairie ecosystems remain today, vegetation in presettlement times would have been trallgrass prairie with the most common little bluestem (Schizachyrium scoparium), (Sorghastrum nutans), and big bluestem (Andropogon gerardii). Community types vary in localized areas primarily due to differences in soil (Diggs et al. 1999:40). Wooded areas are present in the prairies in scattered upland areas and near larger rivers and streams such as the Guadalupe River. Wildfires tended to make smaller tributaries treeless in pre-settlement times. Because of its proximity to other major vegetation regions, the Blackland Prairie belt in Guadalupe County shares plant species with the South Texas Plains, Post Oak Savannah, and the Edwards Plateau.

METHODS

Radiocarbon samples were placed in a No. 10 mesh to separate larger fragments from soil and wood charcoal flecks. Materials were examined under a Leica S9i stereoscopic microscope at 6-55 X magnification. Wood charcoal fragments were snapped to reveal a clean transverse section. When necessary, tangential or radial sections were examined for ray seriation, presence of spiral thickenings, types and sizes of intervessel pitting, and other minute characteristics. After identification, specimens of each taxon were counted, labeled, recorded, and weighed on an Ohaus Scout II 200 x 0.01 g electronic balance. To retain suitability for radiometric dating, carbon samples were placed on freshly washed glassware when not in specimen containers, and they were handled only with vinyl gloves and metal forceps. Contact with paper and other plant products was avoided. Material that fell through the No. 10 mesh was examined under the microscope for plant parts other than wood, especially annual plant parts such as seeds. None were found.

Flotation samples were sorted according to standard procedures (Pearsall 2015). Each flotation light fraction was weighed on an Ohaus Scout II 200 x 0.01 g electronic balance before being size-sorted through a stack of graduated geologic mesh. All carbonized botanical materials that did not pass through the No. 10 mesh (2 mm square openings) were sorted under a Leica S9i stereozoom microscope at 6-55 X, then counted, weighed, recorded, and labeled. At Site

41GU177, these larger remains consisted almost exclusively of wood charcoal. Gastropods, small rocks, and uncarbonized botanical material larger than 2 mm (usually rootlets) were weighed, recorded, and labeled as "contamination". Materials that fell through the 2 mm mesh ("residue") were examined under a stereoscopic microscope at 6-55 X magnification for carbonized botanical remains that had not been previously identified in the 2 mm size fraction. Identifiable botanical materials were removed from residue, counted, weighed, recorded, and labeled. Uncarbonized macrobotanical remains other than rootlets (at this site, seeds, leaves, and fruits) were recorded on a presence/absence basis on laboratory forms.

Wood charcoal identification was attempted for up to twenty specimens from each flotation sample. When fewer than twenty wood charcoal fragments were present in the 2 mm size fraction, as was the case for all flotation samples at Site 41GU177, all such fragments were identified, and identification was attempted for progressively smaller fragments until either twenty fragments were identified or identification became impractical. Wood charcoal fragments were snapped to reveal a transverse section and examined under a stereoscopic microscope at 6-55 X magnification. When necessary, tangential or radial sections were examined for ray seriation, presence of spiral thickenings, types and sizes of intervessel pitting, and other characteristics.

Botanical materials were identified to the lowest possible taxonomic level by comparison to materials in the Macrobotanical Analysis comparative collection and through the use of standard reference works (e.g., Core et al. 1979; Davis 1993; Hoadley 1990; InsideWood 2004; Martin and Barkley 1961; Musil 1963; Panshin and de Zeeuw 1980; Wheeler 2011). Plant nomenclature follows that of the PLANTS Database (USDA, NCRS 2018).

RESULTS

Radiocarbon material

Identifications of material for possible radiocarbon dating are given in Table B.1. Four of these radiocarbon samples were removed from flotation samples prior to processing. They are included in the flotation tables as well as the radiocarbon table so that the flotation tables reflect the actual density of charcoal per volume.

Plant material for radiocarbon dating consisted of wood charcoal. Four taxa were identified: red mulberry (*Morus rubra*), juniper (*Juniperus* sp.), mesquite (*Prosopis* sp.), and elm (*Ulmus* sp.). From the location near the southwestern edge of the Blackland Prairie, the juniper species is likely *Juniperus virginiana*, sometimes called redcedar, and the mesquite is probably *Prosopis glandulosa*, called honey

mesquite. Some elm specimens in C-20 and C-21 show a period of approximately four years of inhibited growth (Figure 1).

Flotation samples

Archaeological plant materials recovered are given in Tables B.2 and B.3 by count and weight respectively. As noted above, the tables include charcoal designated for possible radiocarbon dating that is also reported in Table B.1. Uncarbonized plant materials other than rootlets are shown on a presence/absence basis in Table B.4.

Uncarbonized (modern) plant remains. Most uncarbonized plant parts in the samples appear in the form of rootlets that are clearly related to the modern vegetation at the site. Uncarbonized seeds are a common occurrence on most archaeological sites, and they usually represent seeds of modern plants that have made their way into the soil either through their own dispersal mechanisms or by faunalturbation, floralturbation, or argilliturbation (Bryant 1985:51-52; Keepax 1977; Miksicek 1987:231-232). In all except the driest areas of North America, uncarbonized plant material on open-air sites can be assumed to be of modern origin unless compelling evidence suggests otherwise (Lopinot and Brussell 1982; Miksicek 1987:231). The seeds, leaves, and fruits at 41GU177 consist of a weedy annual (sandmat [Chamaesyce spp.]), and parts of woody plants (sugarberry [Celtis laevigata], mesquite [Prosopis glandulosa], Texas persimmon [Diospyros texana], and sumac [Rhus spp.]) that relate to the current vegetation. All uncarbonized plant parts are interpreted here as modern, and further discussion concerns ancient (carbonized) plant parts only.

Carbonized (ancient) plant remains. Camas bulb (*Camassia* spp.). One camas bulb fragment was recovered from Feature 4, Layer 2. This may represent the Atlantic camas (*Camassia scilloides*) or the prairie camas (*C. angusta*). Bulbs of the two species are similar, with the plants distinguished largely by the smaller scape height, fewer floral bracts, and earlier bloom period in Atlantic camas and persistent flower stalks in prairie camas (G. Yatskievych 1999:503-504; K. Yatskievych 2000:297-298). Archaeologists have documented a long history of bulb exploitation in Texas, with camas bulbs at the Wilson-Leonard Site currently the oldest known, dating to approximately 8,000 years before present (Acuña 2006:57; Mehalchick et al. 2004:Table 8.18). The use of earth oven facilities to transform otherwise inedible geophytes into nutritionally optimal starches and sugars seems to be part of a continent-wide trend that began in the early Holocene (Thoms 2008; Wandschnider 1997). West of the Pecos River, geophytes cooked in earth ovens include bulbs such as wild onion and, more commonly, the larger basal rosettes of desert plants such as lechuguilla and sotol (Dering 1999).

Seeds. A fragment of a sugarberry seed (*Celtis laevigata*) was recovered from Feature 4, Layer 1. Uncarbonized sugarberry seeds were recovered in all three features. Because of their high mineral content, uncarbonized sugarberry seeds survive well in the soil and frequently appear in geological deposits in North America (Wang et al. 1997). The Feature 4 specimen is the only carbonized sugarberry seed fragment present, however. Because it has been exposed to fire and is in feature context, it is interpreted as ancient. The thin, sweet pulp of sugarberry fruits covers a relatively large seed with high calcium content. The fruits and seeds are edible raw or cooked. Historically, they were often pounded, shaped into cakes or balls with other ingredients such as fat, and dried or baked for future use (Moerman 1998:147).

Two deer pea vetch seeds (*Vicia ludoviciana*), one whole, one fragmentary, were recovered from Feature 2. Deer pea vetch is a small weedy legume that produces small pods about an inch long. Although no ethnographic records are available for this particular species, seeds of the closely related American vetch (*Vicia americana*) were used by Native people of western North America for food (Moerman 1998:595-596). The immature pod could also have been used in cooking, analogous to how snow pea pods are used today. Although it is possible that the vetch seeds at Site 41GU177 because carbonized when the crop of a gamebird was discarded in the fire, no other seeds favored by gamebirds such as croton, broomweed, or acorns were recovered (Leif and Smith 1993; Riley et al. 1993). Vetch has been recovered from at least four other archaeological sites in Central Texas, where it is also interpreted as a human food plant (Table B.5).

Table B.5: Sites with deer pea vetch (Vicia Iudoviciana) in Texas

Site	# vetch seeds	Affiliation	Soil volume (liters)	Reference
Barnhill #3 (41CV1646)	80	Austin & Toyah (with corn)	99	Bush 2017a
41FK148	24	Late Caddo	228	Bush 2013
41RT113	2	Late Prehistoric (Perdiz)	106	Bush 2017b
Baker (41SS192)	427	Toyah (with corn and Caddo ceramics)	66	report in progress

41GU177	2	Toyah	18.5	this
				report

Wood charcoal. Of the 117 wood charcoal fragments that could be identified to genus or species, mulberry (n=38) and elm (n=32) were the most numerous. Mulberry was more common in Feature 3 and elm in Feature 4. Mesquite (n=17) was found in Features 2 and 4, and juniper (n=10) in Features 3 and 4. Woods that were present in smaller numbers and only a single context were bluewood (*Condalia hookeri*, n=6, Feature 3), ash (*Fraxinus* sp.; n=2, Feature 4), silktassel (*Garrya ovata*, n=1, Feature 3), and pecan/hickory (*Carya* sp.) and grape (*Vitis* sp.) (1 each, Feature 2).

Although they would all have occurred in the site area, none of the woods recovered at Site 41GU177 are considered outstanding fuelwoods, with the possible exception of mesquite. The absence of oaks (Quercus spp.), a staple of earth oven cooking, is particularly is puzzling. The two common oaks of the area, live oak (Quercus fusiformis) and post oak (Q. stellata), have excellent coaling qualities and specific gravities of 0.88 and 0.67 respectively (Alden 1995:101). In general, the heat value of a wood is directly related to its specific gravity (Marcouiller and Anderson n.d.). Coaling properties, which are especially important in earth oven cooking, relate to the third stage of the burning process. After evaporation of within-cell moisture (first stage), wood is converted to charcoal (second stage, signified by flames). In the third stage, the glowing coals burn slowly, without flame, and can be left for hours without attention (Collier and Turner 1981, Marcouiller and Anderson n.d.). Elm and mulberry, the two most common woods in the 41GU177 samples, are moderately good fuel woods with specific gravities of 0.64 and 0.66, respectively (Alden 1995:120). Mulberry is said to throw sparks but produce excellent coals, while elm has a reputation for smoke (Marcoullier and Anderson n.d.). Mesquite (specific gravity 0.82) is possibly the best fuelwood represented, assuming its distinctive odor is considered desirable (Alden 1995:94). Other woods recovered in the samples would also have been useful in fires. For example, softwoods such as juniper tend to ignite more easily than hardwoods (Collier and Turner 1981).

SUMMARY

Archaeological plant remains at Site 41GU177 consisted mostly of wood charcoal. The wood charcoal is interpreted as fuel wood, possibly associated with earth

oven cooking of geophytes and other plant material. A camas bulb fragment was recovered from Feature 4. Other ancient plant parts recovered were a sugarberry seed fragment (Feature 4) and two vetch seeds (Feature 2). These are also interpreted as food items.

REFERENCES CITED

Acuña, Laura I.

2006 *The Economic Contribution of Root and Other Geophytes in Prehistoric Texas.* M.A. thesis, Department of Anthropology, Texas State University, San Marcos, Texas.

Alden, Harry A.

1995 *Hardwoods of North America.* General Technical Report FPL-GTR-83. United States Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, Wisconsin.

Bryant, John A.

1985 *Seed Physiology.* The Institute of Biology's Studies in Biology No. 165. Edward Arnold, Ltd., London.

Bush, Leslie L.

2013 Plant Remains from Eight Features at Site 41FK148, Franklin County, Texas. Manuscript submitted to Steve Carpenter, Principal Investigator, SWCA Environmental Consultants, Austin, Texas. November 12, 2013.

Bush, Leslie L.

2017a Four Additional Flotation Samples from Feature 25, an Earth Oven at Barnhill Rockshelter #3 (41CV1646), Coryell County, Texas. Manuscript submitted to Carol Macauley-Jameson, Department of Anthropology, Baylor University, Waco, Texas. October 12, 2017.

Bush, Leslie L.

2017b Plant Remains from Three Sites in Robertson County, Texas. Manuscript submitted to Meg Cruse, Cultural Resources Manager, Blanton & Associates, Inc., Austin, Texas. July 10, 2017.

Collier, Kathy, and Larry Turner

1981 Obtaining, Seasoning and Burning Wood. AEES-18. University of Kentucky College of Agriculture, Cooperative Extension Service, Lexington, Kentucky. https://www.bae.uky.edu/publications/AEES/AEES-18.pdf. Accessed March 27, 2015.

Core, H. A., W. A. Cote and A. C. Day

1979 *Wood Structure and Identification*. 2nd ed. Syracuse University Press, Syracuse, New York.

Davis, Linda W.

1993 *Weed Seeds of the Great Plains: A Handbook for Identification.*University Press of Kansas, Lawrence.

Dering, Phil

1999 Earth-Oven Plant Processing in Archaic Period Economies: An Example from a Semi-Arid Savannah in South-Central North America. *American Antiquity* 64(4): 659–674.

Diggs Jr., George M., Barney L. Lipscomb and Robert J. O'Kennon
1999 Shinners and Mahler's Illustrated Flora of North Central Texas.
Second Printing, 2000, with minor corrections. Illustrated Texas
Floras Project. Botanical Research Institute of Texas, Fort Worth.

Hoadley, R. Bruce

1990 *Identifying Wood: Accurate Results with Simple Tools*. The Taunton Press, Newtown, Connecticut.

InsideWood

2004-onwards Published on the Internet. http://insidewood.lib.ncsu.edu/search. Accessed February 27, 2018.

Keepax, Carole

1977 Contamination of archaeological deposits by seeds of modern origin with particular reference to the use of flotation machines. *Journal of Archaeological Science* 4:221-229.

Leif, Anthony P., and Smith, Loren M.

1993 Winter Diet Quality, Gut Morphology and Condition of Northern Bobwhite and Scaled Quail in West Texas. *Journal of Field Ornithology* 64(4): 527–538.

Lopinot, Neal H. and David Eric Brussell

1982 Assessing Uncarbonized Seeds from Open-air Sites in Mesic Environments: An Example from Southern Illinois. *Journal of Archaeological Science* 9:95-108.

Marcouiller, Dave, and Steven Anderson

n.d. *Firewood: How to Obtain, Measure, Season, and Burn.* NREM-9440. Oklahoma Cooperative Extension Service, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, Oklahoma. http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-2507/NREM-9440web.pdf. Accessed March 27, 2015.

Martin, Alexander C. and William D. Barkley

1961 Seed Identification Manual. University of California Press, Berkeley.

Mehalchick, Gemma, Douglas Boyd, Karl W. Kibler, and Christopher W. Ringstaff 2004 Shifting Sands and Geophytes: Geoarcheological Investigations at Paluxy Sites on Fort Hood, Texas. United States Army Fort Hood Archeological Resource Management Series No. 48. Prewitt and Associates, Inc., Austin, Texas.

Miksicek, Charles H.

1987 Formation Processes of the Archaeobotanical Record. In *Advances in Archaeological Method and Theory, Vol. 10*, edited by Michael B. Schiffer, pp. 211-247. Academic Press, Inc.

Moerman, Daniel E.

1998 *Native American Ethnobotany.* Timber Press, Portland, Oregon.

Musil, Albina F.

1963 *Identification of Crop and Weed Seeds* Agriculture Handbook No. 219. U.S. Department of Agriculture, Washington, D.C.

Panshin, A. J. and Carol de Zeeuw

1980 Textbook of Wood Technology: Structure, Identification, Properties, and Uses of the Commercial Woods of the United States and Canada. Fourth ed. McGraw-Hill Book Company, New York.

Pearsall, Deborah M.

2015 *Paleoethnobotany: A Handbook of Procedures.* 3rd ed. Left Coast Press, Walnut Creek, California.

Riley, Terry Z., Davis, Charles A., and Smith, Randall A.

1993 Autumn and Winter Foods of the Lesser Prairie-Chicken (*Tympanuchus Pallidicinctus*) (Galliformes:Tetraonidae). *Great Basin Naturalist* 53(2): 186–189.

Thoms, Alston V.

2008 Ancient Savannah Roots of the Carbohydrate Revolution in South-Central North America. *Plains Anthropologist* 53: 121–136.

USDA, NRCS (United States Department of Agriculture, Natural Resources Conservation Service)

2018 The PLANTS Database. http://plants.usda.gov. National Plant Data Center, Greensboro, North Carolina. Accessed March 16, 2018.

Wandsnider, LuAnn

1997 The Roasted and the Boiled: Food Composition and Heat Treatment with Special Emphasis on Pit-Hearth Cooking. *Journal of Anthropological Archaeology* 16: 1–48.

Wang, Yang, A. Hope Jahren, and Ronald Amundson

1997 Potential for 14C Dating of Biogenic Carbonate in Hackberry (Celtis) Endocarps. *Quaternary Research* 47: 337–343.

Wheeler, Elizabeth A.

2011 InsideWood - A Web Resource for Hardwood Anatomy. *IAWA Journal* 32(2): 199–211.

Yatskievych, George

1999 *Steyermark's Flora of Missouri, Volume 1.* The Missouri Department of Conservation and The Missouri Botanical Garden Press, Jefferson City and St. Louis, Missouri.

Yatskievych, Kay

2000 *Field Guide to Indiana Wildflowers*. Indiana University Press, Bloomington and Indianapolis.

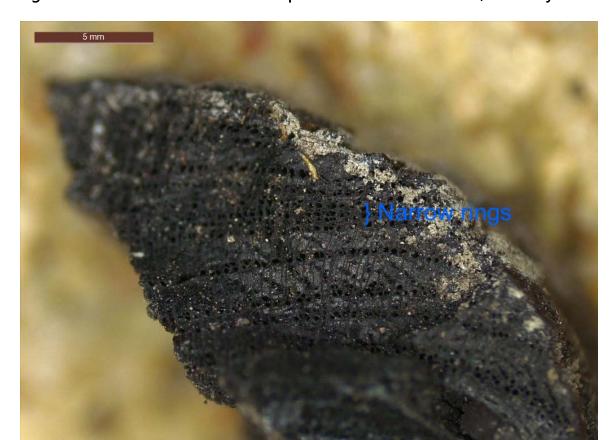


Figure 1: Transverse section of *Ulmus* sp. wood charcoal from C-21, FTR 4 Layer 2.

Table B.1: Samples for Radiocarbon Dating, Site 41GU177

FS#	Sample #	FTR	Level/Layer	Depth (cmbd)	Material Type (MNR=Minimum Number of Rings)	Botanical name	Common name	Number of Individual Specimens	Weight (g)
555	C-11	3	Level 7	75	Bone			1	0.16
555	C-12	3	Level 7	79	Wood charcoal, MNR=8	Morus rubra	Red mulberry	15	1.44
					Examined residue < 2 mm				0.12
608	C-14	3	Level 8	84	Wood charcoal, MNR=5	Morus rubra	Red mulberry	13	0.21
					Examined residue < 2 mm				0.03
658	C-15	4	Layer 1	57	Wood charcoal, MNR=2	Juniperus sp.	Juniper	5	0.17
658	C-16	4	Layer 1	60	Wood charcoal, MNR=6	Prosopis sp.	Mesquite	4	0.31
					Examined residue < 2 mm				0.14
658	C-17	4	Layer 1	57	Wood charcoal, MNR=6	Ulmus sp.	Elm	14	0.35
					Examined residue < 2 mm				0.23
658	C-18	4	Layer 1	62	Wood charcoal, MNR=6	Prosopis sp.	Mesquite	8	0.21
					Examined residue < 2 mm				0.22
658	C-19	4	Layer 1	60	Wood charcoal, MNR=7	Ulmus sp.	Elm	5	2.26
					Examined residue < 2 mm				1.67
666	C-20	4	Level 5-6	64	Wood charcoal, MNR=7	Ulmus sp.	Elm	6	0.25
666	C-21	4	Level 5-6	63	Wood charcoal, MNR=18	Ulmus sp.	Elm	4	0.24

Table B.2: Carbonized (ancient) Plant Remains from Site 41GU177

Number of Individual Specimens

FS# Lot# Feature Portion Level	608 393 3	499 672 2 6-8	555.1 420 3 Cluster 1 7-8	555.2 421 3 Cluster 2 7-8	658 522 4 Layer 1 4-5	666 529 4 Layer 2 5-6	Site Total
Depth (cmbd)	84	53-80	73-80	70-76	45-60	60-69	
Flotation volume (cu. dm.)	N/A (carbon sample only)	5.5	4	3.5	3	2.5	18.5
Wood charcoal							
Red mulberry (Morus rubra)	13		16		4	5	38
Elm (Ulmus spp.)		1			20	11	32
Mesquite (Prosopis glandulosa)		3			13	1	17
Juniper (Juniperus spp.)			2		6	2	10
Sugarberry (Celtis sp.)		6		2			8
Hardwood, indeterminable		3	1			3	7
Bluewood condalia (Condalia hookeri)				6			6
Ash (Fraxinus sp.)					2		2
Acacia/Mesquite (Vachellia/Prosopis sp.)	1					1
Hickory/Pecan (Carya sp.)		1					1
Silktassel (Garrya ovata)				1			1
Grape (Vitis spp.)		1					1
Other plant parts							
Camas bulb scale (Camassia sp.)						1	1
Sugarberry seed (Celtis laevigata)					1		1
Vetch seed (Vicia Iudoviciana)		2					2
Indeterminable					1		1

Table B.3: Carbonized (ancient) Plant Remains from Site 41GU177

			ams

FS#	465	499	555.1	555.2	658	666	Site
Lot#	393	672	420	421	522	529	Total
Feature	3	2	3	3	4	4	
Portion	_		Cluster 1	Cluster 2	Layer 1	Layer 2	
Level	8	6-8	7-8	7-8	4-5	5-6	
Depth (cmbd)	84	53-80	73-80	70-76	45-60	60-69	
	N/A (carbon						
Flotation volume (cu. dm.)	sample only)	5.5	4	3.5	3	2.5	18.5
Wood charcoal							
Red mulberry (Morus rubra)	0.21		1.45		0.01	0.02	1.69
Elm (Ulmus spp.)		0.01			2.62	0.5	3.13
Mesquite (Prosopis glandulosa)		0.02			0.53	0.01	0.56
Juniper (Juniperus spp.)			0.01		0.18	0.01	0.2
Sugarberry (Celtis sp.)		0.01		0.01			0.02
Hardwood, indeterminable		0.01	0.01			0.01	0.03
Bluewood condalia (Condalia hookeri)				0.04			0.04
Ash (Fraxinus sp.)					0.01		0.01
Acacia/Mesquite (Vachellia/Prosopis sp	.)	0.01					0.01
Hickory/Pecan (Carya sp.)		0.01					0.01
Silktassel (Garrya ovata)				0.01			0.01
Grape (Vitis spp.)		0.01					0.01
Other plant parts							
Camas bulb scale (Camassia sp.)						0.01	0.01
Sugarberry seed (Celtis laevigata)					0.01		0.01
Vetch (Vicia ludoviciana)		0.01					0.01
Indeterminable					0.01		0.01
Contamination > 2 mm		10.97	5.2	31.72	30.52	15.33	93.74
Examined residue < 2 mm	0.03	2.01	2.14	5.81	7.52	3.35	20.86

Table B.4: Uncarbonized (modern) Plant Parts from Site 41GU177
X=present

FS#	465	499	555.1	555.2	658	666	Total
Lot#	393	672	420	421	522	529	Occurrences
Feature	3	2	3	3	4	4	
Portion			Cluster 1	Cluster 2	Layer 1	Layer 2	
Level	8	6-8	7-8	7-8	4-5	5-6	
Depth (cmbd)	84	53-80	73-80	70-76	45-60	60-69	
	sample						
Flotation volume (cu. dm.)	only)	5.5	4	3.5	3	2.5	18.5
Sugarberry seed (Celtis laevigata)		Х	X	Х	Х	Х	5
Sugarberry leaf (Celtis laevigata)				Х	Х	Х	3
Sandmat seed (Chamaesyce spp.)					Х	Х	2
Mesquite endocarp (Prosopis glandulosa)			Х				1
Texas persimmon fruit, immature (Diospyros texana)					Х		1
Acorn, immature (Quercus spp.)						Х	1
Sumac leaflet (Rhus cf. lanceolata)		Х					1
Total taxa	0	2	2	2	4	4	14

APPENDIX G

Geoarchaeological Analysis Raw Data

Appendix G1. Particle Size Analysis

Unit	Sample Matrix #	14 VC Sand	18 VC-C Sand	VC Sand	35 C Sand	C Sand	60 M Sand	Med Sand	120 F Sand	Fine Sand	230 VF Sand	VF Sand	<230 Silt-Clay	Silt-Clay	Total
N996 E1014	3	0	0	0	19.142	19.142	53.554	53.554	73.858	73.858	30.073	30.073	19.858	19.858	196.485
N996 E1014	4	0	15.52	15.52	37.157	37.157	62.504	62.504	80.000	80.000	33.073	33.073	26.415	26.415	254.669
N996 E1014	5	0	21.698	21.698	57.59	57.59	67.285	67.285	79.628	79.628	38.843	38.843	31.308	31.308	296.352
N996 E1014	7	0	19.447	19.447	33.358	33.358	27.521	27.521	23.821	23.821	12.137	12.137	13.428	13.428	129.712
N996 E1014	9	9.196	28.927	38.123	47.339	47.339	33.099	33.099	30.524	30.524	18.237	18.237	20.311	20.311	187.633
N996 E1014	11	12.728	21.072	33.8	38.719	38.719	42.325	42.325	47.489	47.489	25.058	25.058	31.339	31.339	218.73
N996 E1014	12	12.712	8.429	21.141	32.183	32.183	51.479	51.479	54.432	54.432	18.286	18.286	12.589	12.589	190.11
N1004 E1017	1	0	4.251	4.251	30.749	30.749	52.614	52.614	59.772	59.772	21.563	21.563	12.164	12.164	181.113
N1004 E1017	4	0	14.275	14.275	44.557	44.557	42.991	42.991	45.883	45.883	21.271	21.271	17.699	17.699	186.676
N1004 E1017	5	0	26.183	26.183	51.019	51.019	38.686	38.686	37.517	37.517	19.784	19.784	22.042	22.042	195.231
N1004 E1017	8	0	29.76	29.76	47.235	47.235	26.216	26.216	20.514	20.514	11.699	11.699	16.571	16.571	151.995
N1004 E1017	9	0	34.829	34.829	48.151	48.151	33.106	33.106	30.835	30.835	17.046	17.046	18.978	18.978	182.945
N1004 E1017	10	0	19.654	19.654	33.256	33.256	21.286	21.286	22.741	22.741	14.64	14.64	15.506	15.506	127.083

Unit-Column	Sample	Elevation (m)	LF1	LF2	HF1	HF2	Sample + Cube Mass (g)	LF avg.	Hf avg.	cube wt	sample Wt	mass (kg)	Xhf 2	XIf	Xfd
N996/E1014	MS01	99.52	18.7000008	18.7000008	16.8999996	17	15.346	18.7000008	16.9499998	5.82	9.526	0.009526	17.8 1	9.6 9	9.4
N996/E1014	MS02	99.49	21	21.1000004	19.3999996	19.5	14.982	21.0500002	19.4499998	5.82	9.162	0.009162	21.2 2		
N996/E1014	MS03	99.46	21.2000008	21.1000004	19.8999996	20	14.862	21.1500006	19.9499998	5.82	9.042	0.009042	22.1 2		
N996/E1014	MS04	99.44	22.7999992	22.8999996	21.3999996	21.7000008	15.349	22.8499994	21.5500002	5.82	9.529	0.009529	22.6 2	4.0 5	5.7
N996/E1014	MS05	99.43	22.3999996	22.5	19.8999996	20	15.378	22.4499998	19.9499998	5.82	9.558	0.009558	20.9 2	3.5 1	11.1
N996/E1014	MS06	99.39	24	24	22.1000004	22.2000008	15.533	24	22.1500006	5.82	9.713	0.009713	22.8 2		
N996/E1014	MS07	99.36	25	25	23.2999992	23.2999992	15.273	25	23.2999992	5.82	9.453	0.009453	24.6 2		
N996/E1014	MS08	99.35	24.7999992	24.7999992	23.1000004	23.1000004	15.053	24.7999992	23.1000004	5.82	9.233	0.009233	25.0 2		
N996/E1014	MS09	99.3	25.7000008	25.7000008	23.8999996	23.8999996	15.379	25.7000008	23.8999996	5.82	9.559	0.009559		6.9 7	
N996/E1014	MS10	99.29	24.7000008 26.3999996	24.7000008	23	23.5	14.863	24.7000008	23	5.82	9.043	0.009043	25.4 2		
N996/E1014 N996/E1014	MS11 MS12	99.25 99.23	27.6000004	26.3999996 27.6000004	23.6000004	24.8999996	15.09 15.253	26.3999996 27.6000004	23.5500002 24.8499994	5.82	9.27 9.433	0.00927	25.4 2		
N996/E1014	MS13	99.23	27.5	27.5000004	24.7999999	24.79999992	15.169	27.5000004	24.8499994	5.82	9.433	0.009433	26.6 2		
N996/E1014	MS14	99.15	27.7000008	27.6000004	25.2000008	25.2000008	14.938	27.6500006	25.2000008	5.82	9.118	0.009118	27.6 3		
N996/E1014	MS15	99.13	29.8999996	29.8999996	27.1000004	27.2000008	16.032	29.8999996	27.1500006	5.82	10.212	0.010212	26.6 2		
N996/E1014	MS16	99.08	26.6000004	26.6000004	23.7999992	23.8999996	15.288	26.6000004	23.8499994	5.82	9.468	0.009468	25.2 2		
N996/E1014	MS17	99.06	26.7999992	26.7999992	24.1000004	24.2000008	15.13	26.7999992	24.1500006	5.82	9.31	0.00931	25.9 2		
N996/E1014	MS18	99.01	25	24.8999996	22.6000004	22.5	15.589	24.9499998	22.5500002	5.82	9.769	0.009769	23.1 2		
N996/E1014	MS19	99	24.7999992	24.7999992	22.3999996	22.5	15.545	24.7999992	22.4499998	5.82	9.725	0.009725	23.1 2	5.5 9	9.5
N996/E1014	MS20	98.96	23.6000004	23.7000008	21.6000004	21.6000004	15.194	23.6500006	21.6000004	5.82	9.374	0.009374	23.0 2	5.2 8	3.7
N996/E1014	MS21	98.93	22.7999992	22.7999992	20.7000008	20.7000008	15.416	22.7999992	20.7000008	5.82	9.596	0.009596	21.6 2	3.8 9	9.2
N996/E1014	MS22	98.9	22.5	22.5	20.3999996	20.5	15.073	22.5	20.4499998	5.82	9.253	0.009253	22.1 2	4.3 9	∂.1
N996/E1014	MS23	98.87	22.7999992	22.7999992	20.7999992	20.7999992	15.519	22.7999992	20.7999992	5.82	9.699	0.009699	21.4 2	3.5 8	3.8
N996/E1014	MS24	98.84	22.8999996	22.8999996	20.8999996	20.8999996	15.68	22.8999996	20.8999996	5.82	9.86	0.00986	21.2 2		
N996/E1014	MS25	98.81	22	22	20.1000004	20.1000004	15.196	22	20.1000004	5.82	9.376	0.009376	21.4 2		
N996/E1014	MS26	98.79	23.6000004	23.6000004	21.2000008	21.2000008	15.974	23.6000004	21.2000008	5.82	10.154	0.010154	20.9 2		
N996/E1014	MS27	98.75	23.6000004	23.5	21.1000004	21.1000004	15.988	23.5500002	21.1000004	5.82	10.168	0.010168	20.8 2		
N996/E1014	MS28	98.73	21.7999992	21.7000008	19.6000004	19.6000004	15.534	21.75	19.6000004	5.82	9.714	0.009714	20.2 2		
N996/E1014	MS29	98.69	22.2999992	22.2000008	20.1000004	20.1000004	16.376	22.25	20.1000004	5.82	10.556	0.010556	19.0 2		9.7
N996/E1014	MS30	98.67	20.6000004	20.6000004	18.6000004	18.7000008	16.278	20.6000004	18.6500006	5.82	10.458	0.010458	17.8 1		
N996/E1014	MS31	98.63	19.3999996 18.7999992	19.3999996	17.5 17	17.5	16.331 16.148	19.3999996	17.5	5.82 5.82	10.511	0.010511	16.6 1		
N996/E1014	MS32	98.6		18.7999992 17.1000004		17.1000004	15.148	18.7999992	17.0500002 15.6500001	5.82	10.328	0.010328	16.5 1		
N996/E1014 N996/E1014	MS33 MS34	98.54 98.53	17.1000004 19.7999992	19.8999996	15.6000004 18.2999992	15.6999998 18.2000008	16.098	17.1000004 19.8499994	18.25	5.82	10.159 10.278	0.010159		6.8 9.3	
N996/E1014	MS35	98.5	16.2999992	16.3999996	15	15	16.262	16.3499994	15	5.82	10.442	0.010278			8.3
N996/E1014	MS36	98.46	16.1000004	16.1000004	14.6000004	14.6000004	16.562	16.1000004	14.6000004	5.82	10.742	0.010442	13.6 1		
N996/E1014	MS37	98.43	16.2000008	16.1000004	14.6999998	14.6000004	16.193	16.1500006	14.6500001	5.82	10.742	0.010742		5.6 9	
N996/E1014	MS38	98.4	14.3999996	14.5	13.1000004	13.1000004	16.194	14.4499998	13.1000004	5.82	10.374	0.010374	12.6 1		
N996/E1014	MS39	98.38	12.8999996	12.8999996	11.8999996	11.8999996	16.064	12.8999996	11.8999996	5.82	10.244	0.010244	11.6 1		
N996/E1014	MS40	98.35	15	15	13.6999998	13.6999998	16.012	15	13.6999998	5.82	10.192	0.010192	13.4 1		
N996/E1014	MS41	98.31	13.1999998	13.1999998	12.1000004	12.1000004	16.34	13.1999998	12.1000004	5.82	10.52	0.01052	11.5 1		
N996/E1014	MS42	98.28	12.5	12.5	11.6000004	11.6000004	16.624	12.5	11.6000004	5.82	10.804	0.010804	10.7 1		
N996/E1014	MS43	98.25	12.8000002	12.8000002	12	12	16.02	12.8000002	12	5.82	10.2	0.0102	11.8 1	2.5 6	6.3
N996/E1014	MS44	98.21	11.8999996	12	11.3000002	11.3999996	16.406	11.9499998	11.3499999	5.82	10.586	0.010586	10.7 1	1.3 5	5.0
N996/E1014	MS45	98.21	12.1999998	12.1999998	11.6000004	11.6999998	16.145	12.1999998	11.6500001	5.82	10.325	0.010325	11.3 1	1.8 4	4.5
N996/E1014	MS46	98.17	11.1999998	11.3000002	10.1000004	10.1000004	15.977	11.25	10.1000004	5.82	10.157	0.010157		1.1 1	
N996/E1014	MS47	98.14	11.6999998	11.6999998	10.6999998	10.6000004	16.524	11.6999998	10.6500001	5.82	10.704	0.010704		0.9	
N996/E1014	MS48	98.1	10.8999996	10.8999996	9.89999962	10	16.627	10.8999996	9.94999981	5.82	10.807	0.010807		0.1 8	
N996/E1014	MS49	98.07	10.8999996	10.8999996	10	10.1000004	16.833	10.8999996	10.0500002	5.82	11.013	0.011013			7.8
N996/E1014	MS50	98.03	10.3000002	10.3999996	9.5	9.5	16.875	10.3499999	9.5	5.82	11.055	0.011055			8.2
N996/E1014	MS51	98	9.69999981	9.69999981	8.80000019	8.69999981	16.609	9.69999981	8.75	5.82	10.789	0.010789			9.8
N996/E1014 N996/E1014	MS52 MS53	97.95 97.94	9.5	9.5 8.89999962	8.69999981 8.10000038	8.69999981 8.10000038	16.312 16.333	9.5 8.94999981	8.69999981 8.10000038	5.82 5.82	10.492 10.513	0.010492			9.5
N996/E1014	MS54	97.94	9.5	9.60000038	8.80000019	8.80000019	16.895	9.55000019	8.80000019	5.82	11.075	0.010313			7.9
N996/E1014	MS55	97.9	10	10	9.30000019	9.30000019	17.247	10	9.30000019	5.82	11.427	0.011427			7.0
N996/E1014	MS56	97.86	9.10000038	9.10000038	8.30000019	8.30000019	17.201	9.10000038	8.30000019	5.82	11.381	0.011381			8.8
N996/E1014		97.84	9.5		8.80000019		16.735	9.55000019		5.82	10.915	0.010915			8.4
N996/E1014	MS58	97.81	8.60000038		8	8	16.872	8.6500001	8	5.82	11.052	0.011052			7.5
N996/E1014	MS59	97.78	9.5	9.5	8.80000019		16.511	9.5	8.80000019	5.82	10.691				7.4
N996/E1014	MS60	97.75	9.5	9.5	8.89999962	8.89999962	16.8	9.5	8.89999962	5.82	10.98	0.01098			6.3
N996/E1014	MS61	97.72	10.1000004	10.1000004	9.19999981	9.19999981	16.551	10.1000004		5.82	10.731	0.010731		.4 8	8.9
N996/E1014	MS62	97.69	12.8000002	12.8000002		11.6000004	17.849	12.8000002		5.82	12.029	0.012029	9.7 1	0.6 9	
N996/E1014	MS63	97.65	11.1000004	11.1000004	10.1999998	10.1000004	16.784	11.1000004	10.1500001	5.82	10.964	0.010964		0.1 8	
N996/E1014	MS64	97.62	13	13	12	12	17.14	13	12	5.82	11.32	0.01132	10.6 1		
								0	0	5.82	-5.82	-0.00582			
N1000/E1004					21.6000004		13.704		21.6500006	5.82	7.884	0.007884			
N1000/E1004		99.72		25.1000004		22.8999996	14.434	25.1000004		5.82	8.614	0.008614			
N1000/E1004				25.8999996		23.5	14.14	25.8999996		5.82	8.32	0.00832	28.2 3		
N1000/E1004		99.63	27			24.3999996	15.086	26.9499998		5.82	9.266	0.009266			
N1000/E1004 N1000/E1004				25.5 22.2000008		23.1000004	15.245	25.4499998		5.82	9.425	0.009425			
N1000/E1004 N1000/E1004		99.53 99.48		20.7000008	19.1000004	19.1000004	14.868 15.053	20.7000008	20.1000004	5.82	9.048 9.233	0.009048			
N1000/E1004		99.48		19.8999996	18.3999996	18.3999996			18.3999996	5.82	9.233	0.009233	20.7 2		
N1000/E1004 N1000/E1004				20.3999996	18.7000008	18.7000008	15.01		18.7000008	5.82		0.00919	19.5 2		
N1000/E1004		99.32	20.5	20.6000004	19	19.1000004	15.574	20.5500002	19.0500002	5.82	9.754	0.00938			
N1000/E1004		99.3	19.5	19.6000004	17.7999992	17.8999996	15.184	19.5500002		5.82	9.364	0.009754			
N1000/E1004		99.26		20.2999992	18.6000004	18.6000004	15.203	20.2999992		5.82	9.383	0.009383			
N1000/E1004		99.23		20.6000004	19	19.1000004	15.153	20.6000004	19.0500002	5.82	9.333	0.009333			
N1000/E1004		99.18	20.6000004	20.5	18.5	18.5	15.015	20.5500002	18.5	5.82	9.195	0.009333			
N1000/E1004		99.13	23.1000004	23.1000004	20.7000008	20.7000008	15.316	23.1000004	20.7000008	5.82	9.496	0.009496			
N1000/E1004		99.07	20.7999992	20.7999992	18.5	18.5	16.077	20.7999992	18.5	5.82	10.257	0.010257			
N1000/E1004	MS17	99.01	18.2999992	18.2999992	16.3999996	16.3999996	15.18	18.2999992	16.3999996	5.82	9.36	0.00936	17.5 1		
N1000/E1004		98.94	17.6000004	17.6000004	15.8999996	15.8999996	15.11	17.6000004	15.8999996	5.82	9.29	0.00929	17.1 1		
N1000/E1004		98.91		17.2999992	15.6000004	15.6000004	15.375	17.25	15.6000004	5.82	9.555	0.009555			
N1000/E1004		98.83	17.8999996	17.7999992	16	16.1000004		17.8499994	16.0500002	5.82	10.18	0.01018	15.8 1		
N1000/E1004		98.78	15.1999998	15.1999998	13.8000002	13.8999996	15.489	15.1999998	13.8499999	5.82	9.669	0.009669			
N1000/E1004		98.71	15.3000002	15.3000002	14.1000004	14.1000004	16.148	15.3000002	14.1000004	5.82	10.328	0.010328			
N1000/E1004	MS23	98.66	14.1999998	14.1000004	13.1999998	13.1999998	15.632	14.1500001	13.1999998	5.82	9.812	0.009812	13.5 1	4.4 (3.7

Unit-Column Sample		LF1	LF2	HF1	HF2	Sample + Cube	LF avg.	Hf avg.		sample Wt		Xhf	XIf	Xfd
N1000/E1004 MS24	98.6	13.3000002	13.1999998	12.5	12.5	Mass (g) 15.375	13.25	12.5	(g) 5.82	(g) 9.555	(kg) 0.009555	13.1 1	3.9	5.7
N1000/E1004 MS25	98.55	13.6999998	13.6000004	12.8000002	12.8000002	15.602	13.6500001	12.8000002	5.82	9.782	0.009333		4.0	
N1000/E1004 MS26	98.49	14	14	12.8000002	12.6999998	15.577	14	12.75	5.82	9.757	0.009757	13.1 1		
N1000/E1004 MS27	98.45	13.1999998	13.3000002	12.10000002	12.1999998	15.664	13.25	12.1500001	5.82	9.844	0.009844	12.3 1		
N1000/E1004 MS28	98.42	13.8999996	14	12.8999996	12.8000002	16.061	13.9499998	12.8499999	5.82	10.241	0.010241	12.5 1		
N1000/E1004 MS29	98.36	13.1999998	13.1999998	12.1000004	12.1000004	16.322	13.1999998	12.1000004	5.82	10.502	0.010502	11.5 1		
N1001/E1010 MS01	99.43	23.5	23.5	21.2999992	21.2999992	14.117	23.5	21.2999992	5.82	8.297	0.008297	25.7 2	28.3	9.4
N1001/E1010 MS02	99.38	24	24	21.7999992	21.7999992	14.344	24	21.7999992	5.82	8.524	0.008524	25.6 2		
N1001/E1010 MS03	99.33	23.7999992	23.7999992	21.6000004	21.6000004	14.176	23.7999992	21.6000004	5.82	8.356	0.008356	25.8 2		
N1001/E1010 MS04	99.28	26.2999992	26.3999996	23.8999996	23.8999996	15.049	26.3499994	23.8999996	5.82	9.229	0.009229	25.9 2		
N1001/E1010 MS05	99.23	25.3999996	25.3999996	23.1000004	23.2000008	14.745	25.3999996	23.1500006 23.1000004	5.82	8.925	0.008925	25.9 2		
N1001/E1010 MS06 N1001/E1010 MS07	99.18 99.13	25.7999992 24.1000004	25.7999992 24.1000004	23.1000004 21.7999992	23.1000004 21.7000008	14.905 14.692	25.7999992 24.1000004	21.75	5.82 5.82	9.085 8.872	0.009085	25.4 2		
N1001/E1010 MS08	99.13	22.5	22.3999996	20.2000008	20.2999992	15.045	22.4499998	20.25	5.82	9.225	0.008872	22.0 2		
N1001/E1010 MS09	99.03	21.7000008	21.7000008	19.6000004	19.7000008	15.053	21.7000008	19.6500006	5.82	9.233	0.009233	21.3 2		
N1001/E1010 MS10	98.98	21.1000004	21.1000004	19.2000008	19.2000008	15.037	21.1000004	19.2000008	5.82	9.217	0.009217	20.8 2		
N1001/E1010 MS11	98.93	20.7000008	20.7000008	19	18.8999996	15.307	20.7000008	18.9499998	5.82	9.487	0.009487	20.0 2		
N1001/E1010 MS12	98.85	21.2000008	21.2999992	19.2000008	19.2000008	15.449	21.25	19.2000008	5.82	9.629	0.009629	19.9 2		
N1001/E1010 MS13	98.83	20.3999996	20.3999996	18.3999996	18.3999996	15.87	20.3999996	18.3999996	5.82	10.05	0.01005	18.3 2	20.3	9.8
N1001/E1010 MS14	98.78	18.7999992	18.7999992	16.7999992	16.7999992	15.173	18.7999992	16.7999992	5.82	9.353	0.009353	18.0 2	20.1	10.6
N1001/E1010 MS15	98.73	21.2999992	21.2999992	19.2999992	19.2999992	16.156	21.2999992	19.2999992	5.82	10.336	0.010336	18.7 2		
N1001/E1010 MS16	98.68	21.7999992	21.7999992	19.7000008	19.7999992	15.72	21.7999992	19.75	5.82	9.9	0.0099	19.9 2		
N1001/E1010 MS17	98.63	22.6000004	22.5	20.2000008	20.2000008	15.646	22.5500002	20.2000008	5.82	9.826	0.009826	20.6 2		
N1001/E1010 MS18	98.58	23.7000008	23.7000008	21.5	21.6000004	15.912	23.7000008	21.5500002	5.82	10.092	0.010092	21.4 2		
N1001/E1010 MS19 N1001/E1010 MS20	98.53 98.46	19.7000008 16.1000004	19.7000008 16	17.8999996 14.5	17.8999996 14.5	15.326	19.7000008	17.8999996	5.82	9.506 10.047	0.009506	18.8 2		
N1001/E1010 MS20 N1001/E1010 MS21	98.46	15.1999998	15.1999998	13.6999998	13.8000002	15.867 16.256	16.0500002 15.1999998	14.5 13.75	5.82 5.82	10.436	0.010047	14.4 1		
N1001/E1010 MS21	98.33	14.3999996	14.3999996	13.0999998	13.8000002	15.944	14.3999996	13.75	5.82	10.436	0.010436	12.8 1		
N1001/E1010 MS23	98.28	13.8000002	13.6999998	12.5	12.6000004	16.629	13.75	12.5500002	5.82	10.124	0.010124	11.6 1		
N1001/E1010 MS24	98.23	11.6999998	11.6000004	10.6999998	10.6999998	16.235	11.6500001	10.6999998	5.82	10.415	0.010415	10.3 1		
N1001/E1010 MS25	98.18	10.6999998	10.6999998	9.69999981	9.69999981	15.439	10.6999998	9.69999981	5.82	9.619	0.009619			9.3
N1001/E1010 MS26	98.13	11.1999998	11.1000004	10.1000004	10.1000004	15.541	11.1500001	10.1000004	5.82	9.721	0.009721	10.4 1	1.5	9.4
N1001/E1010 MS27	98.08	11.8999996	12	10.6999998	10.6000004	15.726	11.9499998	10.6500001	5.82	9.906	0.009906	10.8 1	2.1	10.9
N1001/E1010 MS28	98.03	11.6000004	11.6000004	10.3999996	10.3999996	16.231	11.6000004	10.3999996	5.82	10.411	0.010411	10.0 1	1.1	10.3
N1001/E1010 MS29	97.98	10.8000002	10.8000002	9.80000019	9.80000019	15.647	10.8000002	9.80000019	5.82	9.827	0.009827		1.0	
N1001/E1010 MS30	97.93	12.1000004	12.1000004	10.8999996	10.8999996	17.909	12.1000004	10.8999996	5.82	12.089	0.012089		0.0	
N1001/E1010 MS31	97.88	10.3000002	10.3000002	9.60000038	9.60000038	16.025	10.3000002	9.60000038	5.82	10.205	0.010205		0.1	
N1001/E1010 MS32	97.83	10.3999996	10.3999996	9.69999981	9.69999981	15.885	10.3999996	9.69999981	5.82	10.065	0.010065		0.3	
N1001/E1010 MS33	97.73	8.69999981	8.69999981	8.19999981	8.10000038	16.973	8.69999981	8.1500001	5.82	11.153	0.011153			6.3
N1001/E1010 MS34	97.64	9.10000038	9.10000038	8.69999981	8.60000038	16.17	9.10000038	8.6500001	5.82	10.35	0.01035	8.4 8	3.8	4.9
N1004/E1017 MS01	99.22	20.8999996	20.7999992	21.5	21.7000008	13.806	20.8499994	21.6000004	5.82	7.986	0.007986	27.0 2	6 1	-3.6
N1004/E1017 MS02	99.15	26.7000008	26.7000008	27	27	16.392	26.7000008	27	5.82	10.572	0.010572	25.5 2		
N1004/E1017 MS03	99.12	26.2000008	26.2000008	26.7999992	26.8999996	16.514	26.2000008	26.8499994	5.82	10.694	0.010694	25.1 2		
N1004/E1017 MS04	99.09	21.5	21.3999996	23.2000008	23.2000008	14.813	21.4499998	23.2000008	5.82	8.993	0.008993	25.8 2	23.9	-8.2
N1004/E1017 MS05	99.05	22.1000004	22	23.8999996	23.8999996	15.327	22.0500002	23.8999996	5.82	9.507	0.009507	25.1 2	23.2	-8.4
N1004/E1017 MS06	99.01	21.6000004	21.6000004	19.2999992	19.3999996	15.555	21.6000004	19.3499994	5.82	9.735	0.009735	19.9 2		
N1004/E1017 MS07		24.5	24.5	22.1000004	22.2000008	14.581	24.5	22.1500006	5.82	8.761	0.008761	25.3 2		
N1004/E1017 MS08	98.94	25.7999992	25.8999996	23.3999996	23.5	14.872	25.8499994	23.4499998	5.82	9.052	0.009052	25.9 2		
N1004/E1017 MS09	98.89	24.5	24.3999996	22.3999996	22.3999996	14.267	24.4499998	22.3999996	5.82	8.447	0.008447	26.5 2		
N1004/E1017 MS10 N1004/E1017 MS11	98.88 98.82	24.7999992 24.8999996	24.7999992 24.8999996	22.7999992 22.2999992	22.7000008 22.3999996	14.435 14.648	24.7999992 24.8999996	22.75 22.3499994	5.82 5.82	8.615 8.828	0.008615	26.4 2		
N1004/E1017 MS12	98.77	23.8999996	23.7999992	21.5	21.6000004	14.499	23.8499994	21.5500002	5.82	8.679	0.008679	24.8 2		
N1004/E1017 MS13	98.75	23.2999992	23.2999992	21	21.10000004	14.479	23.2999992	21.0500002	5.82	8.659	0.008659	24.3 2		
N1004/E1017 MS14	98.73	23	23.1000004	21.1000004	21.1000004	14.76	23.0500002	21.1000004	5.82	8.94	0.00894	23.6 2		
N1004/E1017 MS15	98.69		23.3999996		21.2999992			21.2999992	5.82	9.192	0.009192			
N1004/E1017 MS16	98.63	22.5	22.6000004		20.2999992	14.839		20.2999992	5.82	9.019	0.009019			
N1004/E1017 MS17	98.6	21.6000004	21.6000004	19.5	19.3999996	15.344	21.6000004	19.4499998	5.82	9.524	0.009524	20.4 2	2.7	10.0
N1004/E1017 MS18	98.57		20.7000008	18.6000004	18.7000008		20.6500006	18.6500006	5.82	9.566	0.009566			
N1004/E1017 MS19	98.54	20.5	20.5	18.6000004	18.6000004		20.5	18.6000004	5.82	9.293	0.009293			
N1004/E1017 MS20	98.49	20	20	18.1000004	18.2000008		20	18.1500006	5.82	9.563	0.009563			
N1004/E1017 MS21	98.48	19.2999992	19.3999996	17.3999996	17.2999992	15.033	19.3499994	17.3499994	5.82	9.213	0.009213			
N1004/E1017 MS22	98.43	18.2000008	18.2000008	16.1000004	16.2000008		18.2000008	16.1500006	5.82	9.801	0.009801			
N1004/E1017 MS23	98.38	17.5	17.5	15.5	15.5	15.777	17.5	15.5	5.82	9.957				
N1004/E1017 MS24 N1004/E1017 MS25	98.33 98.31	15.5 15.3999996	15.5 15.3999996	13.8000002 13.8000002	13.6999998 13.8000002	15.422 14.987	15.5 15.3999996	13.75 13.8000002	5.82 5.82	9.602 9.167	0.009602			
N1004/E1017 MS25 N1004/E1017 MS26	98.31		14.6000004		12.8999996	15.299		12.8499999	5.82	9.167	0.009167			
N1004/E1017 MS27	98.27	16	16.1000004		14.1999998	16.045		14.1999998	5.82	10.225	0.009479			
N1004/E1017 MS28	98.25	14.6000004	14.6000004	12.8000002	12.8999996	15.647		12.8499999	5.82	9.827	0.010223			
N1004/E1017 MS29	98.21	14.1000004	14	12.5	12.5	15.68	14.0500000		5.82	9.86	0.00986	12.7 1		
N1004/E1017 MS30	98.19	12.5	12.6000004	11.5	11.5	15.071	12.5500002	11.5	5.82	9.251	0.009251			
N1004/E1017 MS31	98.14		13.3000002		11.8999996			11.8999996	5.82	10.149	0.010149			
N1004/E1017 MS32	98.09		12.6000004		11.3999996	15.741		11.3999996	5.82	9.921	0.009921			
N1004/E1017 MS33	98.06	13.5	13.5	12.3000002	12.3000002	16.719	13.5	12.3000002	5.82	10.899	0.010899			
N1004/E1017 MS34	98.02		12.6000004		11.6000004			11.6000004	5.82	10.548	0.010548			
N1004/E1017 MS35	97.99	12.5			11.3000002			11.3499999	5.82	10.207	0.010207			
N1004/E1017 MS36	97.95		11.6999998	10.6000004	10.5	15.747	11.6999998	10.5500002	5.82	9.927	0.009927			
N1004/E1017 MS37	97.9	12.6999998	12.6999998	11.1999998	11.3000002	15.99	12.6999998	11.25	5.82	10.17	0.01017	11.1 1		
N1004/E1017 MS38	97.86	12.6999998	12.6999998	11.3000002	11.3000002	16.196	12.6999998	11.3000002	5.82	10.376	0.010376			
N1004/E1017 MS39	97.81	13.3000002	13.3000002	11.8999996	11.8999996	17.046	13.3000002	11.8999996	5.82	11.226	0.011226			
N1004/E1017 MS40	97.77	12.1999998	12.3000002	10.8999996	10.8000002	16.021	12.25	10.8499999	5.82	10.201	0.010201	10.0	2.0	11.4
N1009/E1012 MS01	99.15	19.2999992	19.2999992	17.7000008	17.7000008	14.296	19.299999	17.7000008	5.82	8.476	0.008476	20.9.1	2 8	8.3
N1009/E1012 MS02		20.8999996		19.2999992	19.3999996	15.141		19.3499994	5.82	9.321	0.009321			
N1009/E1012 MS03	99.09	22.5	22.6000004	20.8999996	21	15.697	22.5500002	20.9499998	5.82	9.877	0.009877			
N1009/E1012 MS04	99.06		23.2000008	21.5	21.5	16.476	23.1500006		5.82	10.656	0.010656			
N1009/E1012 MS05	99.04	21.8999996			19.8999996	15.251		19.8000002		9.431	0.009431			

Unit-Column	Sample		LF1	LF2	HF1	HF2	Sample + Cube	LF avg.	Hf avg.		sample Wt	mass (kg)	Xhf 2	C If	Xfd
N1009/E1012 I	MCOC	(m) 99.01	20.6000004	20.6000004	18.7999992	18.7999992	Mass (g) 15.326	20.6000004	18.7999992	(g) 5.82	(g) 9.506	0.009506	10.0.0	17	0.7
N1009/E1012 I		98.97	20.2000004	20.2999992	18.5	18.5	15.739	20.25	18.5	5.82	9.919	0.009300			
N1009/E1012 I		98.93	21.3999996	21.3999996	19.5	19.5	15.086	21.3999996	19.5	5.82	9.266		21.0 2		
N1009/E1012 I		98.9	21.3999996	21.3999996	19.6000004	19.6000004	14.97	21.3999996	19.6000004	5.82	9.200	0.009266	21.4 2		
N1009/E1012 I		98.87	21.8999996	22	20	19.8999996	15.271	21.9499998	19.9499998	5.82	9.451		21.4 2		
N1009/E1012 I		98.84	21.5	21.5	19.3999996	19.5	14.797	21.5499990	19.4499998	5.82	8.977	0.009451			
N1009/E1012 I		98.81	21.7000008	21.7999992	19.7000008	19.7000008	14.784	21.75	19.7000008	5.82	8.964		22.0 2		
N1009/E1012 I		98.78	22.1000004	22.1000004	20	20.1000004	14.518	22.1000004	20.0500002	5.82	8.698		23.1 2	_	
N1009/E1012 I		98.76	23	22.8999996	21.1000004	21.1000004	15	22.9499998	21.1000004	5.82	9.18	0.000030	23.0 2		
N1009/E1012 I		98.73	24.1000004	24.1000004	21.7000004	21.7000004	15.492	24.1000004	21.7000004	5.82	9.672	0.00918			
N1009/E1012 I		98.69	21.2000008	21.2000008	19.2000008	19.2000008	14.538	21.2000008	19.2000008	5.82	8.718	0.009072		_	
N1009/E1012 I		98.67	22.2999992	22.3999996	20.2999992	20.2999992	15.143	22.3499994	20.2999992	5.82	9.323	0.009323			
N1009/E1012 I		98.64	23.2999992	23.2999992	21.1000004	21.2000008	14.798	23.2999992	21.1500006	5.82	8.978	0.009323		_	
N1009/E1012 I		98.61	23.2000008	23.2999992	21.2000004	21.2000008	14.982	23.25	21.2000008	5.82	9.162	0.0009162			
N1009/E1012 I		98.58	21.7000008	21.7000008	19.5	19.6000004	14.881	21.7000008	19.5500000	5.82	9.061		21.6 2		
N1009/E1012 I		98.55	21.8999996	22	19.8999996	20	15.274	21.9499998	19.9499998	5.82	9.454	0.009001			
N1009/E1012 I		98.51	21.1000004	21	19.1000004	19.1000004	15.064	21.0500002	19.1000004	5.82	9.244	0.009434			
N1009/E1012 I		98.48	19.7999992	19.8999996	18.2000008	18.2000008	15.281	19.8499994	18.2000008	5.82	9.461	0.009244	19.2 2	_	
N1009/E1012 I		98.44	19.7999992	19.09999990	17.3999996	17.3999996	15.582	19.0499994	17.3999996	5.82	9.762	0.009461	17.8 1		
N1009/E1012 I		98.41	17.6000004	17.7000008	16.2999992	16.2999992	15.566	17.6500006	16.2999992	5.82	9.746		16.7 1		
N1009/E1012 I		98.38	17.6000004	17.7000008	15.8999996	15.8999996	15.438	17.6500006	15.8999996	5.82	9.618	0.009740			
N1009/E1012 I		98.35	15.1000004	15	13.6000004	13.6999998	14.617	15.0500000	13.6500001	5.82	8.797	0.008797	15.5 1		
N1009/E1012 I		98.32	15.5	15.6000004	14.1999998	14.1999998	15.44	15.5500002	14.1999998	5.82	9.62	0.00962	14.8 1		
N1009/E1012 I		98.3	16.6000004	16.5	15.1000004	15.1000004	15.626	16.5500002	15.1000004	5.82	9.806	0.00902	15.4 1		
N1009/E1012 I		98.27	14.8999996	14.8000002	13.5	13.6000004	15.119	14.8499999	13.5500002	5.82	9.299	0.009299	14.6 1		
N1009/E1012 I		98.24	15.1000004	15.1000004	13.6000004	13.6000004	15.305	15.1000004	13.6000004	5.82	9.485	0.009485	14.3 1		
N1009/E1012 I		98.21	14.5	14.3999996	13.6999998	13.80000002	15.238	14.4499998	13.75	5.82	9.418	0.009418			
N1009/E1012 I		98.18	14.6999998	14.8000002	14.1000004	14.1000004	16.326	14.75	14.1000004	5.82	10.506		13.4 1		
N1009/E1012 I		98.15	14.1000004	14.1000004	13.6999998	13.6000004	15.26	14.1000004	13.6500001	5.82	9.44	0.00944	14.5 1		
N1009/E1012 I		98.12	14.1000004	14.1000004	13	12.8999996	15.255	14.1000004	12.9499998	5.82	9.435	0.009435	13.7 1	_	
N1009/E1012 I		98.09	14.8000002	14.8000002	13.1999998	13.1999998	15.8	14.8000002	13.1999998	5.82	9.98	0.00998	13.2 1		
N1009/E1012 I		98.06	14.1999998	14.1999998	12.6000004	12.6000004	15.706	14.1999998	12.6000004	5.82	9.886		12.7 1		
N1009/E1012 I		98.03	13.8999996	13.8999996	12.1999998	12.1999998	15.283	13.8999996	12.1999998	5.82	9.463	0.009463	12.9 1		
N1009/E1012 I		98	13.1999998	13.1999998	12	12.1000004	15.357	13.1999998	12.0500002	5.82	9.537	0.009537	12.6 1		
N1009/E1012 I		97.97	13.6000004	13.6000004	12.1000004	12.1000004	16.405	13.6000004	12.1000004	5.82	10.585	0.010585	11.4 1		
N1009/E1012 I		97.94	12.5	12.3999996	11.1999998	11.1999998	15.926	12.4499998	11.1999998	5.82	10.106		11.1 1	_	
N1009/E1012 I		97.91	12.5	12.5	11.3999996	11.5	16.041	12.5	11.4499998	5.82	10.221	0.010221	11.2 1		
N1009/E1012 I		97.88	12.3000002	12.3000002	11.1999998	11.1999998	15.747	12.3000002	11.1999998	5.82	9.927	0.009927	11.3 1		
N1009/E1012 I		97.85	12.3000002	12.3999996	11.3000002	11.3000002	15.48	12.3499999	11.3000002	5.82	9.66	0.00966	11.7 1		
N1009/E1012 I		97.82	12.1999998	12.1000004	10.8000002	10.8000002	15.847	12.1500001	10.8000002	5.82	10.027	0.010027	10.8 1		
N1009/E1012 I		97.79	12.6000004	12.6999998	11.1000004	11.1000004	16.181	12.6500001	11.1000004	5.82	10.361	0.010361	10.7 1		
N1009/E1012 I		97.75	11.8000002	11.8999996	10.5	10.5	15.563	11.8499999	10.5	5.82	9.743		10.8 1		
N1009/E1012 I		97.71	11.8000002	11.8000002	10.6000004	10.6000004	15.995	11.8000002	10.6000004	5.82	10.175	0.010175			
		U I			. 5.0000000	. 5.0000000	. 5.550		. 5.0000000	U.UL		0.010170			

North	East	Sample	Elevation	LF1	LF2	HF1	HF2	Mass of Sample	LF avg.	Hf avg.	cube wt	sample	mass	Xhf	XIf	Xfd
								+ Cube	g.	9.		Wt				
N1001.10	E1004.70	0,-1 A	99.34	21.7999992	21.7999992	19.7999992	19.8999996	grams 15.5	21.7999992	19.8499994	(g) 5.82	9.68	(kg) 0.0	20.5	22.5	8.9
N1001.10	E1004.70	0,-1 A	99.34	21.7000008	21.7999992	19.8999996	19.8999996	15.668	21.75	19.8999996	5.82	9.848	0.0	20.2	22.1	8.5
N1001.10	E1004.30	0,-2 A	99.34	21.8999996	21.8999996	20.2999992	20.3999996	15.876	21.8999996	20.3499994	5.82	10.056	0.0	20.2	21.8	7.1
N1001.10	E1004.30	0,-3 A	99.34	19.8999996	19.8999996	19	19	15.700	19.8999996	19	5.82	9.88	0.0	19.2	20.1	4.5
N1001.10	E1003.90	0,- 4 A	99.34	18.6000004	18.7000008	17.7999992	17.8999996	15.624	18.6500006	17.8499994	5.82	9.804	0.0	18.2	19.0	4.3
N1001.10	E1003.70	06 A	99.34	19	19	17.3999996	17.5	15.863	19	17.4499998	5.82	10.043	0.0	17.4	18.9	8.2
N1001.10	E1003.70	0,-0 A	99.34	18.1000004	18.1000004	16.7000008	16.7999992	15.725	18.1000004	16.75	5.82	9.905	0.0	16.9	18.3	7.5
N1001.10	E1003.30	0,-8 A	99.34	21.3999996	21.3999996	19.6000004	19.6000004	16.150	21.3999996	19.6000004	5.82	10.33	0.0	19.0	20.7	8.4
N1001.10	E1003.10	09 A	99.34	21.1000004	21.1000004	19.6000004	19.6000004	15.41	21.1000004	19.6000004	5.82	9.59	0.0	20.4	22.0	7.1
N1000.50	E1004.90	-3,0 A	99.34	23.3999996	23.2999992	21.7999992	21.7999992	16.258	23.3499994	21.7999992	5.82	10.438	0.0	20.9	22.4	6.6
N1001.10	E1004.90	0,0 A	99.34	21.2999992	21.2000008	19.8999996	19.8999996	15.694	21.25	19.8999996	5.82	9.874	0.0	20.2	21.5	6.4
N1001.10	E1005.10	0,1 A	99.34	21.8999996	21.8999996	19.3999996	19.3999996	15.739	21.8999996	19.3999996	5.82	9.919	0.0	19.6	22.1	11.4
N1001.10	E1005.30	0,2 A	99.34	20.6000004	20.7000008	18.2999992	18.2999992	15.252	20.6500006	18.2999992	5.82	9.432	0.0	19.4	21.9	11.4
N1001.10	E1005.50	0,3 A	99.34	22.1000004	22.1000004	19.3999996	19.3999996	15.567	22.1000004	19.3999996	5.82	9.747	0.0	19.9	22.7	12.2
N1001.10	E1005.70	0.4 A	99.34	22.3999996	22.3999996	19.7999992	19.7999992	15.909	22.3999996	19.7999992	5.82	10.089	0.0	19.6	22.2	11.6
N1001.10	E1005.90	0,5 A	99.34	23.2000008	23.2000008	20.7000008	20.7000008	15.938	23.2000008	20.7000008	5.82	10.118	0.0	20.5	22.9	10.8
N1001.10	E1006.10	0,6 A	99.34	21.7000008	21.7999992	19.3999996	19.5	15.188	21.75	19.4499998	5.82	9.368	0.0	20.8	23.2	10.6
N1001.10	E1006.30	0.7 A	99.34	22.1000004	22.2000008	19.8999996	19.8999996	15.441	22.1500006	19.8999996	5.82	9.621	0.0	20.7	23.0	10.2
N1001.10	E1006.50	0,8 A	99.34	23	22.8999996	20.7000008	20.7000008	15.579	22.9499998	20.7000008	5.82	9.759	0.0	21.2	23.5	9.8
N1001.30	E1004.90	1,0 A	99.34	21.3999996	21.3999996	18.7000008	18.7000008	15.949	21.3999996	18.7000008	5.82	10.129	0.0	18.5	21.1	12.6
N1001.50	E1004.90	2.0 A	99.34	22	22	18.7999992	18.7000008	15.769	22	18.75	5.82	9.949	0.0	18.8	22.1	14.8
N1001.70	E1004.90	3,0 A	99.34	20.6000004	20.6000004	17.5	17.3999996	15.186	20.6000004	17.4499998	5.82	9.366	0.0	18.6	22.0	15.3
N1001.90	E1004.90	4,0 A	99.34	21.1000004	21	18.5	18.5	15.374	21.0500002	18.5	5.82	9.554	0.0	19.4	22.0	12.1
N1002.10	E1004.90	5.0 A	99.34	21.7999992	21.7999992	19.2999992	19.2999992	15.174	21.7999992	19.2999992	5.82	9.354	0.0	20.6	23.3	11.5
N1002.30	E1004.90	6,0 A	99.34	22.7999992	22.7999992	20	19.8999996	15.867	22.7999992	19.9499998	5.82	10.047	0.0	19.9	22.7	12.5
N1002.50	E1004.90	7,0 A	99.34	22.7000008	22.7000008	19.5	19.5	15.618	22.7000008	19.5	5.82	9.798	0.0	19.9	23.2	14.1
N1002.70	E1004.90	8.0 A	99.34	23.1000004	23.2000008	19.7999992	19.7999992	15.814	23.1500006	19.7999992	5.82	9.994	0.0	19.8	23.2	14.5
N1000.50	E1004.90	-3,0 B	99.30	22.8999996	22.8999996	21.5	21.5	16.242	22.8999996	21.5	5.82	10.422	0.0	20.6	22.0	6.1
N1000.30	E1004.90	-4,0 B	99.30	20.7000008	20.6000004	19.7000008	19.7000008	15.443	20.6500006	19.7000008	5.82	9.623	0.0	20.5	21.5	4.6
N1001.10	E1004.50	0,-2 B	99.30	21.3999996	21.5	19.7999992	19.8999996	16.207	21.4499998	19.8499994	5.82	10.387	0.0	19.1	20.7	7.5
N1001.10	E1004.30	0,-3 B	99.30	18.6000004	18.6000004	17.3999996	17.5	15.292	18.6000004	17.4499998	5.82	9.472	0.0	18.4	19.6	6.2
N1001.10	E1004.10	0,-4 B	99.30	17.7999992	17.7999992	17	17	15.293	17.7999992	17	5.82	9.473	0.0	17.9	18.8	4.5
N1001.10	E1003.90	0,-5 B	99.30	19.3999996	19.3999996	17.6000004	17.6000004	16.106	19.3999996	17.6000004	5.82	10.286	0.0	17.1	18.9	9.3
N1001.10	E1003.70	0,-6 B	99.30	17.3999996	17.3999996	16	15.8999996	15.816	17.3999996	15.9499998	5.82	9.996	0.0	16.0	17.4	8.3
N1001.10	E1003.50	0,-7 B	99.30	21.8999996	21.7999992	20	20	16.166	21.8499994	20	5.82	10.346	0.0	19.3	21.1	8.5
N1001.10	E1003.30	0,-8 B	99.30	20.3999996	20.3999996	18.8999996	18.8999996	15.237	20.3999996	18.8999996	5.82	9.417	0.0	20.1	21.7	7.4
N1001.70	E1004.90	3,0 B	99.30	20.2999992	20.2999992	18.7000008	18.7000008	15.339	20.2999992	18.7000008	5.82	9.519	0.0	19.6	21.3	7.9
N1001.90	E1004.90	4,0 B	99.30	19.7000008	19.7000008	18.2999992	18.2999992	15.465	19.7000008	18.2999992	5.82	9.645	0.0	19.0	20.4	7.1
N1002.10	E1004.90	5,0 B	99.30	20.2999992	20.2999992	18.7999992	18.8999996	15.443	20.2999992	18.8499994	5.82	9.623	0.0	19.6	21.1	7.1
N1002.30	E1004.90	6,0 B	99.30	20.7000008	20.7000008	19.2000008	19.2000008	15.441	20.7000008	19.2000008	5.82	9.621	0.0	20.0	21.5	7.2
N1002.50	E1004.90	7,0 B	99.30	21.5	21.3999996	20.1000004	20.1000004	15.832	21.4499998	20.1000004	5.82	10.012	0.0	20.1	21.4	6.3
N1002.70	E1004.90	8,0 B	99.30	21.2999992	21.2999992	20	20	15.466	21.2999992	20	5.82	9.646	0.0	20.7	22.1	6.1
N1001.10	E1005.30	0,2 B	99.30	22.1000004	22.1000004	20.1000004	20.1000004	15.976	22.1000004	20.1000004	5.82	10.156	0.0	19.8	21.8	9.0
N1001.10	E1005.50	0,3 B	99.30	21.7999992	21.8999996	19.8999996	19.8999996	15.702	21.8499994	19.8999996	5.82	9.882	0.0	20.1	22.1	8.9
N1001.10	E1005.70	0,4 B	99.30	21.2999992	21.2000008	19.5	19.5	15.54	21.25	19.5	5.82	9.72	0.0	20.1	21.9	8.2
N1001.10	E1005.90	0,5 B	99.30	22.2999992	22.2999992	20.8999996	20.8999996	16.076	22.2999992	20.8999996	5.82	10.256	0.0	20.4	21.7	6.3
N1001.10	E1006.10	0,6 B	99.30	20.6000004	20.7000008	19.3999996	19.3999996	15.394	20.6500006	19.3999996	5.82	9.574	0.0	20.3	21.6	6.1
N1001.10	E1006.30	0,7 B	99.30	19.2000008	19.1000004	18	18	14.838	19.1500006	18	5.82	9.018	0.0	20.0	21.2	6.0
N1001.10	E1006.50	0,8 B	99.30	19.2999992	19.2999992	18.3999996	18.5	14.976	19.2999992	18.4499998	5.82	9.156	0.0	20.2	21.1	4.4

APPENDIX H

Construction Monitoring Memo

4407 Monterey Oaks Boulevard Building 1, Suite 110 Austin, Texas 78749 Tel 512.476.0891 Fax 512.476.0893

TECHNICAL MEMORANDUM

To: Carissa Shelley

VRRSP Consultants, LLC,.

c/o Pape-Dawson Engineers, Inc

2000 NW Loop 410

San Antonio, Texas 78213

From: Christina Nielsen, Project Manager

Date: November 8, 2019

Re: Monitoring of Construction Activities on Site 41GU177 on Parcel 50360 (Mullins),

Guadalupe County, Texas / SWCA Project No. 31410

On behalf of the Central Texas Regional Water Supply Corporation (CTRWSC) and VRRSP Consultants, LLC, SWCA Environmental Consultants (SWCA) completed construction monitoring at prehistoric site 41GU177 (Snakeskin Bluff site) in Guadalupe County, Texas. The site was initially recorded by SWCA during Phase I survey investigations that occurred between August 2015 and March 2018 for the proposed Vista Ridge Regional Water Supply (Vista Ridge) Project (Figure 1).

Investigations were conducted in compliance with Section 106 of the National Historic Preservation Act (54 United States Code 306108) and its implementing regulations (36 Code of Federal Regulations 800), in anticipation of a Nationwide Permit 12 from the U.S. Army Corps of Engineers in accordance with Section 404 of the Clean Water Act. In addition, the work is subject to compliance with the Antiquities Code of Texas (ACT), as the Vista Ridge Project ultimately will be owned by CTRWSC, a political subdivision of the State of Texas. Testing and data recovery investigations at the site were conducted between October 2016 and December 2017, and included intensive shovel testing, geomorphological study with mechanical excavations, and subsequent hand excavations. The survey and testing investigations were conducted under ACT Permit No. 7295, and the subsequent data recovery was conducted under Permit No. 8231.

Site 41GU177 is a stratified prehistoric site on the western high bank of the Guadalupe River southeast of New Braunfels, Texas, near the community of McQueeney. The site contains components deposited intermittently from approximately the Late Archaic to Transitional Archaic periods through Late Prehistoric times. The primary components investigated in the excavations span the final Late Archaic period and into the Austin phase of the Late Prehistoric, a timeframe from approximately 2,600 to 900 years ago.

Given the sensitive nature of the cultural deposits at 41GU177, the main concern following the completion of data recovery excavations was the prevention of significant surface and subsurface impacts to the site during vegetation clearing and pipeline construction. Potential impacts included rutting by wheeled equipment and dragging large objects, such as tree trunks, through the sensitive site area. As such, SWCA developed a site monitoring protocol.

2/26

Monitoring of Construction Activities on Site 41GU177 on Parcel 50360 (Mullins), Guadalupe County, Texas

CONSTRUCTION MONITORING METHODS

The cultural resources monitor was required to be on-site during all construction activities associated with vegetation removal and the subsequent placement of a protective cap of fill over the sensitive areas of the site. For vegetation clearing, the monitor ensured that:

- 1. All trees and brush were cut off at the ground surface to avoid pulling roots out of the ground and disturbing the buried cultural deposits.
- 2. A wheeled feller-buncher was used for tree and brush removal, provided the ground was not wet and could support the weight of the feller-buncher to avoid rutting.
- 3. Trees and other vegetation were not dragged across the sensitive site areas, to avoid potential subsurface disturbances to the cultural deposits.

For placement, use, and removal of the protective fill cap, the monitor:

- 1. Was on site for the placement of geofabric over the ground surface in the sensitive site areas prior to the placement of fill; the geofabric served as a boundary between the original ground surface and the cap of protective fill.
- 2. Ensured that during the placement of the fill, all material was placed by working it from the southwest side of the protective area and advancing towards the river side. The fill would be placed and pushed out so that heavy equipment was always supported by the protective fill and did not run directly over any geofabric.
- 3. Ensured that all construction activities related to the sensitive site areas stay in the prescribed work areas that were covered by geofabric and fill placement.
- **4.** Ensured that the fill cap and geofabric were carefully removed to avoid gouging of the ground surface and impacts to buried cultural materials following completion of all construction activities at the site.

CONSTRUCTION MONITORING RESULTS

Construction monitoring of site 41GU177 occurred September 3–4, 2019. The monitoring was performed to ensure no cultural resources associated with site 41GU177 were disturbed during pipeline construction activities. During excavation of the pipeline trench, SWCA monitored the profile and back dirt for the presence of any cultural resources. Soils observed during the trench excavation consisted of a brown (10YR 5/4) to light yellowish brown (10YR 6/4) silt loam with subangular limestone pebble and snail shell inclusions (5%–10%). The construction crew continued excavating the trench while also setting up metal boxes to provide shoring for the trench walls, and eventually laying the pipe down after enough soil was excavated (Figure 2). Some welding was conducted after the pipe was properly positioned. SWCA monitored the trenching activity until the identified point past the deeper soils and site area was reached. No cultural resources were observed during the monitoring.

Figure 2. Overview of construction monitoring at site 41GU177 showing shoring placed in trench prior to installation of pipe, facing northeast. Backdirt pile to north was inspected for cultural resources.

An SWCA archaeologist returned to site 41GU177 on November 5, 2019 to monitor the removal of the protective fill and geofabric. The monitoring was performed to ensure no cultural resources associated with site 41GU177 were disturbed during the fill removal. The construction crew used an excavator with a flat bar welded across the bucket teeth to slowly remove the protective fill and to pull back the geofabric separating the fill from the original ground surface (Figure 3). SWCA closely monitored the process to ensure the excavator was not digging below the original ground surface and to ensure no new artifacts or features were uncovered. No cultural material was observed during the monitoring (Figure 4).

Figure 3. Overview of construction monitoring at site 41GU177 showing the removal of the protective fill layer and geofabric, facing northeast.

Figure 4. Overview of site 41GU177 after the protective fill and geofabric had been removed, facing northeast.

RECOMMENDATIONS

The Snakeskin Bluff site is considered eligible for designation as a State Antiquities Landmark and for the National Register of Historic Places. Although data recovery investigations at the site revealed that some cultural components of the site exhibited signs of disturbance, the Late Prehistoric Austin Phase component revealed intact, well-preserved archaeological deposits that significantly contributed to our understanding of Late Prehistoric patterns. Contributing components beyond the impact area will not be affected and will be preserved by avoidance; however, it is important to note that these investigations mitigated the project-specific effects, not the entire site. Any future project that could impact the site's deeper deposits, or those beyond the current right-of-way, warrant further consideration to assess the possibilities for additional contributing components. With these considerations, no further work is recommended.