Cultural Resources Survey and Evaluation of Archeological Sites 41WS105, 41WS159, 41WS160, and 41WS161 for the Proposed Fence Line Project in Grasslands Units 48, 62 and 63, Lyndon B. Johnson National Grassland, Wise County, Texas

Steve Sarich
Josh Haefner

Follow this and additional works at: https://scholarworks.sfasu.edu/ita

Part of the American Material Culture Commons, Archaeological Anthropology Commons, Environmental Studies Commons, Other American Studies Commons, Other Arts and Humanities Commons, Other History of Art, Architecture, and Archaeology Commons, and the United States History Commons

Tell us how this article helped you.

Cite this Record
ISSN: 2475-9333
Available at: https://scholarworks.sfasu.edu/ita/vol2020/iss1/42

This Article is brought to you for free and open access by the Center for Regional Heritage Research at SFA ScholarWorks. It has been accepted for inclusion in Index of Texas Archaeology: Open Access Gray Literature from the Lone Star State by an authorized editor of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.
Cultural Resources Survey and Evaluation of Archeological Sites 41WS105, 41WS159, 41WS160, and 41WS161 for the Proposed Fence Line Project in Grasslands Units 48, 62 and 63, Lyndon B. Johnson National Grassland, Wise County, Texas

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.
Cultural Resources Survey and Evaluation of Archeological Sites 41WS105, 41WS159, 41WS160, and 41WS161 for the Proposed Fence Line Project in Grasslands Units 48, 62 and 63, Lyndon B. Johnson National Grassland, Wise County, Texas

By:

Steve Sarich and Josh Haefner

Prepared for:

United States Forest Service
National Forests & Grasslands in Texas
Lufkin, Texas
Forest Service Event ID:
R2020081308003

Prepared by:

TRC Environmental Corporation
Austin, Texas

Josh Haefner, Principal Investigator
TRC Technical Report No. 355649

February 2020
ABSTRACT

The United States Forest Service (USFS) is proposing to reconstruct perimeter fencing surrounding three Grasslands units located within the Lyndon B. Johnson National Grassland (LBJ National Grassland) in Wise County, Texas. As part of the proposed perimeter fence reconstruction within the three proposed Grasslands units, the USFS is seeking a general inventory of cultural resources which includes background and historic research, archeological field survey, site delineation, a determination of the condition of recorded cultural resources, and recommendation of eligibility for listing on the National Register of Historic Places (NRHP) of any sites encountered.

The overall project tracts are subject to federal jurisdiction and falls under the regulations of Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended (U.S. Code 16, §470, et seq.). To ensure compliance with Section 106 of the NHPA, the USFS contracted with TRC Environmental Corporation (TRC) to conduct any necessary field investigations required as determined during the coordination process.

The Area of Potential Effects (APE) consists of three Grasslands units where proposed perimeter fence reconstruction will occur. The three Grasslands units include Unit 48, Unit 62, and Unit 63. Together, the three Grasslands units measure 399 acres. A cultural resources survey of these three Grasslands units was performed under Section 106 of the NHPA. For these investigations, Josh Haefner served as the Principal Investigator and Steve Sarich was the Project Archeologist. Field work was conducted by Josh Haefner, Steve Sarich, Benjamin Johnson, Gregg Cestaro, and Haley Wilkerson, the latter two individuals employed by Hicks & Company, the small-business subconsultant for this project.

Results of the background review, completed prior to the field investigation determined that one previously recorded site, 41WS105, is located within the APE; no cemeteries or historic structures were noted within the APE; while one previous cultural resources survey has been performed within or within the vicinity of the APE. This previous survey was a limited seismic survey of Unit 48 and resulted in the discovery of 41WS105.

Prior to survey, TRC coordinated with the USFS on the proposed survey methodology and research design. TRC archeologists performed survey supplemented with shovel testing at the three Grasslands units on October 31 – November 08 and December 04 – 06, 2019. During the investigations, a total of 412 shovel tests were excavated. Of these tests, 405 were negative for cultural materials. In addition to these tests 65 points were recorded as “No Dig” locations due to ground disturbance, slope, or other impediment. Seven shovel tests were positive for cultural materials. Three new sites were recorded within the APE and an extension to previously recorded 41WS105 (forest service number: 08130800055) was delineated as a result of the survey. As shovel testing at two of the new sites, 41WS160 (08130800526) and 41WS161 (08130800527), noted no buried cultural deposits and historic cultural materials were observable on the ground surface, these boundaries were established by the mapping of the horizontal distribution of artifacts along the ground surface. Boundaries for the 41WS105 and 41WS159 (08130800525) were based on both the distribution of positive shovel tests and the presence of cultural materials on the ground surface. Based on the results of the cultural resources survey, TRC recommends that no further investigations are necessary and the project may proceed as planned with no historic properties affected.
TABLE OF CONTENTS

1.0 Introduction .. 1
2.0 Physiographic and Environmental Context ... 5
3.0 Culture History .. 12
4.0 Previous Investigations ... 16
5.0 Field Methods .. 17
6.0 Results .. 19
7.0 Project Summary and Recommendations ... 46
 7.1. Project Recommendations .. 46
References .. 48

LIST OF FIGURES

Figure 1-1 Topographic map of APE. ... 2
Figure 1-2 Aerial map of APE .. 3
Figure 2-1 Project Location within the Oak Woods & Prairies Physiographic Region of Texas 6
Figure 2-2 Underlying geology within and adjacent to the LBJ Grasslands APE 8
Figure 2-3 Soils within LBJ Grasslands Unit 48 APE .. 9
Figure 6-1 Overview of vegetation at Unit 48, facing north. .. 20
Figure 6-2 Overview of vegetation at Unit 62, facing south. ... 20
Figure 6-3 Overview of vegetation at Unit 63, facing southeast. ... 21
Figure 6-4 Site 41WS105 overviews facing north, east, southwest, and west (left to right) 23
Figure 6-5 White chert debitage recorded on the surface of 41WS105 Extension 24
Figure 6-6 Debitage recorded in shovel test 177 SS at 20-30 cmbs. ... 24
Figure 6-7 Two items of lithic debitage recorded in shovel test 177-SS at 30-40 cmbs. 25
Figure 6-8 Two items of debitage recorded in shovel test 177-SS at 60-70 cmbs. 25
Figure 6-9 Debitage recorded in shovel test 52-JH at 20-30 cmbs. ... 26
Figure 6-10 Debitage recorded in shovel test 63-BJ at 60-70 cmbs. ... 26
Figure 6-11 Overviews of 41WS159, facing north, east, south, and west (left to right) 28
Figure 6-12 Ironstone, milk glass, and molded glass recorded in 72-SS at 0-10 cmbs. 29
Figure 6-13 Green glass recorded in 72-SS at 10-20 cmbs. .. 29
Figure 6-14 Transfer print sherd and plain whiteware sherd recorded in 72-SS at 20-30 cmbs. 30
Figure 6-15 Undecorated stoneware sherd and milk glass recorded in 99-SS at 0-10 cmbs. 30
Figure 6-16 Container glass recorded in 101-SS at 0-10 cmbs. ... 31
Figure 6-17 Possible cut stone feature near road, facing northwest. ... 31
Figure 6-18 Push pile in sparse wooded area, facing southeast ... 32
Figure 6-19 Overview of site 41WS160, facing north, east, south, and west (left to right). 33
Figure 6-20 Yukon Club Root Beer can ... 34
Figure 6-21 Pull top opening common to the sanitary cans found at 41WS160. 34
Figure 6-22 Heavily rusted sanitary can with evidence of bullet holes .. 35
Figure 6-23 Rusted metal container found at 41WS160 ... 35
Figure 6-24 Side view of rusted container showing evidence of bullet holes. 36
Figure 6-25 Overview of 41WS161, facing north, east, south, and west (left to right) 38
Figure 6-26 Fragment of blue banded stoneware crock at 41WS161 .. 39
Figure 6-27 Overview of fragmented crock, facing southeast ... 39
Figure 6-28 Brick with letters "DEN...FIRE...B" likely produced by Denton Pressed Brick Company. ... 40
Figure 6-29 Unknown metal container, facing southeast ... 40
Figure 6-30 Evidence of modern materials deposited and intermixed with historic materials 41
Figure 6-31 Overview of windmill and modern galvanized stock tank, facing northwest 42
Figure 6-32 Close up of windmill head and blades, facing northwest ... 43
Figure 6-33 Metal piping without output to the stock tank, facing northwest 43
Figure 6-34 Galvanized steel stock tank, facing southwest .. 44
Figure 6-35 Farmaster label on stock tank, facing southeast ... 44

LIST OF APPENDICES

Appendix A: Design Plans and APE
Appendix B: Shovel Test Results
Appendix C: Historical and Archival Research
Appendix D: Survey Results and Site Maps
1.0 INTRODUCTION

The United States Forest Service (USFS) is proposing to reconstruct perimeter fencing surrounding three Grasslands units located within the Lyndon B. Johnson National Grassland (LBJ National Grassland) in Wise County, Texas as implementation of the LBJ Prairie Savanna Restoration Project. This project is necessary to create a 40-foot fireline around LBJ National Grasslands units as these units are overgrown with dense vegetation and have limited to no mobility through them, posing a wildfire hazard. Impacts entail bulldozing to clear these perimeters of all trees and other woody vegetation, both above and below ground and new fence construction including utilization of metal t-posts and the use of an auger to drill into the ground to set metal corner posts and concrete bracing. As part of the proposed perimeter fence reconstruction, the USFS has contracted with TRC Environmental Consultants (TRC) to perform an inventory of cultural resources within three proposed Grasslands units (Units 48, 62, and 63) which includes background and historic research, archeological field survey, site delineation, a determination of the condition of recorded cultural resources, and recommendation of eligibility for listing on the National Register of Historic Places (NRHP), as amended (U.S. Code 16, §470, et seq.).

The Area of Potential Effects (APE) consists of the entirety of three Grasslands unit locations where proposed perimeter fence reconstruction will occur. The three Grasslands units include Unit 48, Unit 62, and Unit 63. Grasslands Unit 48 has an approximate perimeter measurement of 5,272 meters (m) [17,297 feet (ft)] and spans approximately 190 acres (ac). Unit 62 has an approximate perimeter measurement of 1,811 m [5,942 ft] and spans approximately 49 ac. Unit 63 has an approximate perimeter measurement of 4,035 m [13,238 ft] and spans approximately 160 ac. The total APE for the three Grasslands units is 399 ac (Figure 1-1 and Figure 1-2). Though impacts from fencing and fireline constructing will likely be limited to a 40-foot corridor around each unit; archeological survey covered the entirety of each Grasslands unit to evaluate and record any cultural resources located within the three boundaries.

Fieldwork was conducted from October 31–November 08 and December 04 – 06, 2019. The field effort consisted of pedestrian survey supplemented with shovel testing of the APE. Minimally, TRC excavated shovel tests within each of the Grasslands units at 30 m transect spacing with shovel test intervals no greater than 150 m. In certain instances, this number was increased during site recording to gather additional data on deposition. Hence, a total of 412 shovel tests were excavated during the archeological survey. Of these tests, 405 were negative for cultural materials. In addition to these tests 65 points were recorded as “No Dig” locations due to ground disturbance, slope or other impediment. Seven shovel tests were positive for cultural materials. A total of three new archeological sites were recorded during the current investigations and the site boundaries to previously recorded site 41WS105 (forest service number: 08130800055) was extended approximately 124 m to the northwest. As shovel testing at two of the new sites, 41WS160 (08130800526) and 41WS161 (08130800527), noted no buried cultural deposits and historic cultural materials were observable on the ground surface, these boundaries were established by the mapping of the horizontal distribution of artifacts along the ground surface. Extended boundary to 41WS105 and delineation of 41WS159 (08130800525) were based on both the distribution of positive shovel tests and the horizontal distribution of artifacts on the ground surface. This report presents the findings of the cultural resource investigations.
Figure 1-1 Topographic map of APE.
Figure 1-2 Aerial map of APE.
2.0 PHYSIOGRAPHIC AND ENVIRONMENTAL CONTEXT

Physiography

The project area lies within the Oak woods and Prairies physiographic region of Texas, near its interface with the Blackland Prairies to the east (Figure 2-1). To the west, the Cross Timbers and Prairies are bordered by the Rolling Plains. The Oak woods and Prairies region can be further subdivided into four ecological or vegetative sub-regions: the West Cross Timbers, Fort Worth Prairie, Lampasas Cut Plain, and the East Cross Timbers. Dominant geologic units of the Cross Timbers and Prairies were formed during the Paleozoic (approximately 30 percent) and Mesozoic eras (70 percent) and the resulting topography is characterized by gently rolling uplands dissected by ephemeral and deeply cut streams.

Flora and Fauna

The proposed project lies within the Cross Timbers and Prairies Ecological Area of Texas (Gould 1960) and in the Texan Biotic Province (Blair 1950). The Cross Timbers and Prairies Ecological Area is a transitional area between the Great Plains of the central United States and the forested low mountains and hills of eastern Oklahoma and Texas. The region is a mosaic of forest, woodland, savanna, and prairie. The physiognomy of the Cross Timbers is oak woodland and tallgrass prairie. Dominant woody species include post oak (Quercus stellata), blackjack oak (Quercus marilandica), eastern red cedar (Juniperus virginiana), bumble (Bumelia lanuginosa), and greenbrier (Smilax bona-nox). Forbs of the region include bluebonnets (Lupinus texensis), Engelmann daisy (Engelmannia pinnatifida), and Maximilian sunflower (Helianthus maximilliani). Tall and midgrasses are dominant and include such species as big bluestem (Andropogon gerardii), little bluestem (Schizachyrium scoparium), indiangrass (Sorghastrum nutans), and sideoats grama (Bouteloua curtipendula). This region is not well suited for cropland and is mostly used for rangeland and pastureland. Oil production is also a major activity in this region (Gould et al. 1960).

Mammal species typical of the Texan Biotic Province include Virginia Opossum (Didelphis virginiana), Eastern Mole (Scalopus aquaticus), Fox Squirrel (Sciuerus niger), Fulvous Harvest Mouse (Reithrodontomys fulvescens), Hispid Cotton Rat (Sigmodon hispidus), Deer Mouse (Peromyscus maniculatus), Eastern Cottontail (Sylvilagus floridanus), Swamp Rabbit (Sylvilagus aquaticus), and Black-tailed Jackrabbit (Lepus californicus). Reptiles of the province include Ornate Box Turtle (Terrapene ornata), Eastern Box Turtle (Terrapene carolina), Green Anole (Anolis carolinensis), Fence Lizard (Sceloporus undulatus), Eastern Racer (Coluber constrictor), Coachwhip (Masticophus flagellum), Eastern Rat Snake (Elaphe obsoleta), Common Kingsnake (Lampropeltis getula), Cottonmouth (Agkistrodon piscivorus), and Western Diamondback Rattlesnake (Crotalus atrox). Typical anuran species include Hurter’s Spadefoot Toad (Scaphiopus hurterii), Gulf Coast Toad (Bufo valliceps), Woodhouse’s Toad (Bufo woodhousii), Northern Cricket Frog (Acris crepitans), Strecker’s Chorus Frog (Pseudacris streckeri), Gray Treefrog (Hyla versicolor), Green Treefrog (Hyla cinerea), Bullfrog (Rana catesbiana), and Rio Grande Leopard Frog (Rana berlandieri) (Blair 1950).
Figure 2-1 Project Location within the Oak Woods & Prairies Physiographic Region of Texas.
The underlying geology of Units 62, 63, and the majority of Unit 48 consists of Early Cretaceous Antlers Sand (Ka). The 1991 Geologic Atlas of Texas, Sherman Sheet notes that Antlers Sand is commonly found in the eastern part of the Trans-Pecos and High Plains and consists of sand, clay, and conglomerate. Lower and upper parts are mostly sand, the middle part chiefly clay, and grades northward to interbedded sand and clay. Sand is typically fine to coarse grained, conglomeratic in the lower parts, clayey in the upper parts. Conglomerate is mixed with chert, quartz, and quartzite as pebbles and granules. The thickness of Antlers Sand ranges between 500—650 ft. Sandstone, claystone, and conglomerate ranges in thickness as much as 200 ft, but is variable because of the irregular surface on which it was deposited. The underlying geology of the southern portion of Unit 48 also consists of Early Cretaceous Goodland Limestone and Walnut Clay, undivided (Kgw). According to the Geologic Atlas the formation is predominantly fine-grained Goodland Limestone which becomes more nodular toward the base. The formation grades downward to Walnut Clay, interbedded coquinite, and dark-gray, marly shale. The thickness of Goodland Limestone and Walnut Clay, undivided in Texas ranges from 13—20 ft. (Figure 2-2).

According to the U.S. Department of Agriculture (USDA) Web Soil Survey (2015), the soils present within Unit 48 consist of Brackett-Aledo complex with 5 to 10 percent slopes (ByE), Duffau loamy fine sand with 1 to 5 percent slopes (DfC), Frio silty clay loam, occasionally flooded (Fr), Keeter very fine sandy loam with 1 to 6 percent slopes (KtC), Keeter very fine sandy loam with 2 to 6 percent slopes, severely eroded (KtC3), Patilo-Heaton fine sands with 3 to 12 percent slopes (PhC), Pulexas soils, frequently flooded (Pu), Somervell-Aledo complex with 1 to 8 percent slopes (SoC), Venus loam with 3 to 8 percent slopes (VeC), Weatherford (W), Duffau-Windthorst complex with 1 to 5 percent slopes, moderately eroded (WeC), Weatherford-Duffau complex with 2 to 8 percent slopes, severely eroded (WeC3), and Duffau-Weatherford complex with 3 to 8 percent slopes (WeD) (Figure 2-3).

The soils present within Unit 62 consist of Bastsil fine sandy loam with 0 to 3 percent slopes (BfB), Duffau loamy fine sand with 1 to 5 percent slopes (DfC), Keeter very fine sandy loam with 1 to 6 percent slopes (KtC), Somervell-Aledo complex with 1 to 8 percent slopes (SoC), Speck clay loam with 0 to 2 percent slopes (SpB), Venus loam with 3 to 8 percent slopes (VeC), and Weatherford-Duffau complex with 2 to 8 percent slopes, severely eroded (WeC3).

The soils present within Unit 63 consist of Bastsil loamy fine sand with 0 to 3 percent slopes (BdB), Bastsil fine sandy loam with 0 to 3 percent slopes (BfB), Duffau loamy fine sand with 1 to 5 percent slopes (DfC), Hassee fine sandy loam with 0 to 2 percent slopes (HaB), Keeter very fine sandy loam with 1 to 6 percent slopes (KtC), and Weatherford-Duffau complex with 2 to 8 percent slopes, severely eroded (WeC3) (Figure 2-4).
Figure 2-2 Underlying geology within and adjacent to the LBJ Grasslands APE.
Figure 2-3 Soils within LBJ Grasslands Unit 48 APE.
2.0: Physiographic and Environmental Context

Figure 2-4 Soils within LBJ Grasslands Unit 62 and Unit 63 APE.
3.0 CULTURE HISTORY

Cultural Background

The project area lies within the northeastern reach of the North-Central Texas culture area as defined by Suhm et al. (1962). Other scholars who have contributed to this region’s chronological framework include Krieger (1946); Prewitt (1981); Prikryl 1990; and Vehik (1994). Generally, the cultural chronology of the area follows that proposed by Prikryl (1990): Paleoindian (pre 8500 before present), Early Archaic (8500–6000 B.P.), Middle Archaic (6000–3500 B.P.), Late Archaic (3500–1250 B.P.), Late Prehistoric I (1250–750 B.P.), and Late Prehistoric II (750–250 B.P.).

Paleoindian (ca. 11000–8500 BP)

While there is considerable evidence for a Paleoindian presence in the North-Central Texas area, most of this evidence comes in the form of mixed artifact assemblages and finds in surface contexts, limiting the information that can be extracted for this time period (Meltzer 1987). Early Paleoindian Clovis and Plainview points are reported with good frequency from Eastern Cross Timbers region northwest of Dallas, patterning in proximity to Denton and Clear creeks (Peter and Harrison 2011:21).

The oldest dated site within the North-Central Texas region, with a highly suspect age of 37 B.P., is the Lewisville Site. While claims that the site’s many hearth features were excavated in situ may be accurate, critiques cite lack of diagnostic artifacts (n=1) and erroneous radiocarbon dating due to lignite contamination as valid reasons to question claims to the site’s antiquity (Stanford 1981). Investigations at the Aubrey Clovis Site (Ferring 1989a, 1989b, 1990, 1995), located north of Lake Lewisville west of Elm Fork, has contributed a significant amount to what is known of regional Clovis occupations. The site is approximately seven to eight meters below the top of the Elm Fork floodplain. While the Lewisville Site assemblage consisted of more than a handful of artifacts, recovered tool and debitage samples at Aubrey number over 10,000 (Ferring 1989a). All of the lithic materials at the Aubrey Site are non-local and indicative of long-distance trade and analysis of this assemblage indicates that a curated technological organization coupled with intensive tool utilization was practiced (Ferring 1989a, 1989b). Faunal analysis suggests that there was variable exploitation of small, medium and large game including bison, deer, rabbit, squirrel, fish and turtle. Additionally, mammoth remains have been unearthed at Aubrey, although it is not clear if these animals are associated with subsistence practices. With deposits approaching eight meters below ground surface, this site is an indicator of the elusiveness of intact sites dating to this period.

Projectile points of Plainview and Dalton varieties occur with the most frequency (Prikryl 1990), and their association suggests that the area was a borderland where Plainview occupations from the Rolling and High Plains interfaced with the Dalton culture from areas located to the east (Johnson 1987). Due to mixed contexts, site dating has been done by cross referencing projectile points with same types from other, more controlled, sites. Cross dating of the Plainview and Dalton varieties date Paleoindian occupations to ca. 9.5–10 B.P. (Ferring and Yates 1997:5). Peter and Harrison (2011:21) note that these dates may correlate with the advent of early Holocene alluviation within the Trinity River Valley area.
Early Archaic (ca. 8500–6000 B.P.)

The vast majority of Early Archaic sites in the region are surface sites recorded in the Trinity River Basin and are recognized by the presence of Angostura, Early Split Stemmed, and Kirk projectile points, as well as, Clear Fork gouges (Byers 2007; Story 1990). In situ sites currently on record are limited to Lake Lewisville, which has an Early Archaic component as well as Paleoindian and Middle Archaic components (Ferring and Yates 1997). Early Archaic components have been recovered during excavations at the Aubrey Clovis Site; Ferring (1989a), however, has questioned their context.

With little in the way of isolatable sites in the region, Early Archaic lifeways are hard to define for North-Central Texas. Generally, it is hypothesized that diffused hunting and gathering subsistence economies were practiced (Prikryl 1990; Ferring and Yates 1997). Small-sized and widely distributed sites indicate high mobility.

Middle Archaic (6,000–3,500 B.P.)

In comparison with the Early Archaic, there are far less recorded Middle Archaic components for the North-Central Texas region. The Calvert Site (41DN102) at Lake Ray Roberts is the only known buried in situ site that has a definitive association with the Middle Archaic period (Byers 2007). Associated with this site were a rock-filled hearth, a flexed burial of an adult male and an unmixed assemblage of fauna and artifacts. Projectile points associated regionally with the Middle Archaic are Bulverde, Frio, Trinity, Carrolton, Wells and the basal-notched Bell and Calf Creek types. These points are often used to date surface sites (Prikryl 1990; Story 1990). Prikryl (1990:71-74) notes that within the middle Elm Fork Trinity Valley there is a noticeable paucity in Middle Archaic sites when compared to other time periods. Prikryl (1990) attributes this to the altithermal, while Ferring and Yates (1997) note that in addition to dry climate and associated reduced occupation potential, existing sites may be deeply buried.

Late Archaic (3500–1250 B.P.)

In stark contrast to the Middle Archaic, sites dating to the Late Archaic are ―by far the most common in the archaeological record‖ for North-Central Texas (Ferring and Yates 1997: 6). Prikryl (1990) notes that regional surface collections contain between two to three times the amount of Late Archaic point types than points from other archeological periods. When compared to the Middle Archaic, the ratio increases to just over 60:1 (Prikryl 1990: 52-53).

While Ferring and Yates (1997) note that regional buried Late Archaic sites are generally shallow and easily detected, they offer that this alone cannot account for their numbers in the archeological record and posit an increase in population density. Story (1981) offers that this population increase is the result of a shift in exploitation strategies, reduced mobility and a climate shift back to more mesic conditions.

Late Prehistoric I (1250–750 B.P.)

During the Late Prehistoric I period, new technologies included the bow and the arrow and ceramics. The intermittent introduction of these technologies suggests a gradual, non-abrupt transition from the Archaic to the Late Prehistoric. Prikryl (1990) notes that characteristic projectile points such as Scallorn, Steiner, and Catahoula varieties were more commonly fashioned from quartzite during the early stages of the Late
3.0: Culture History

Prehistoric I. During the latter half of the Late Prehistoric I, there is an increase in the use of chert as a raw material for these point types. A brief xeric episode is posited for approximately 1000 B.P., and differing sources for these projectile points may be tied to adaptive strategies as climate stress either tethered groups to certain resource locales and/or necessitated broader ranging residential movement. Dating to the end of the Late Prehistoric I (1050 B.P.–750 B.P.), numerous graves were unearthed in Young County at the Harrell Site in periods of Plains Villager occupation at the site, about A.D. 1200–1500. From the arrangements of the individual interments and the discovery of arrow points among the bones, these mass graves have been interpreted as the result of violent events—perhaps raids from enemies competing for increasingly scarce resources such as fertile, well-watered farmland. Coupled with similar evidence of violence from sites across the Southern Plains, the Late Archaic in North-Central Texas appears to be a turbulent time. Typically, sites dating to the Late Prehistoric I period are located within floodplains and adjacent terraces.

Late Prehistoric II (750–250 B.P.)

The xeric conditions proposed for the Late Prehistoric I may have continued into the Late Prehistoric II period, which catalyzed a shift to a short grass prairie environment (Prikryl 1990). These grasslands may have brought back bison to the region in greater numbers. While other areas of Texas seemed to practice a mobile lifestyle possibly centered on the exploitation of the bison, North-Central Texas was also influenced by more settled cultures to the north and east. Diagnostic projectile points for this time period include Fresno, Perdiz, Maud, Washita, and Harrell. Other artifacts commonly found in assemblages dating to this period are Nocona Plain ceramics and horticultural tools fashioned from bison scapulas. Prikryl (1990) notes that chert continues to be the favored source material for lithic tools. Sites from terrace locales continue to dominate the archeological record, with the bulk of them occurring near or within the Oak woods and Prairies/Blackland Prairie ecotone.

Historic Period

According to Conner (1959) the area of modern-day Wise County was originally included in the Peters Colony Grant given to a Louisville, Kentucky Company by the Republic of Texas between 1841 and 1843 with immigration to the area hailing from the upper south and the north (Meining 1969). With the area of Wise County occupying the “frontier” and still heavily trafficked by tribes, permanent Anglo settlement did not begin until 1853 with Sam Woody's homesteading approximately three miles north of the present location of the town of Aurora. In 1856, Wise County proper was organized from the larger boundary of Cooke County with the county seat county seat named Taylorsville in honor of General Zachary Taylor. The town was laid out by Absalom Bishop, an early settler in the region. Bishop, a member of the Texas Legislature, did not approve of Taylor's affiliation with the Whig Party, changed the name of the town to Decatur for Commodore Stephen Decatur. Over the next half-decade, the population continued to grow, burgeoned by the Butterfield Stage route which originally passed through Alvord, located within the LBJ National Grassland, before it was relocated through Decatur.

The late 1860s saw the establishment of four stores and a hotel in Decatur, which served as a supplier and market for local ranchers (Barton 2020). The eastern fork of the Chisholm Trail passed near Decatur in this period and is commemorated today by the town's annual event, the Chisholm Trail Barbeque. In 1882 the Fort Worth and Denver Railway reached Decatur, and the gambler's catch phrase "eigher from Decatur" was coined, according to local tradition, by a railway construction worker wanting to roll eights during a
game of craps. During the 1880s and 1890s, Decatur prospered as a shipping point and market for local farmers. This prosperity was reflected in the establishment of Decatur Baptist College in 1892, the building of a new courthouse in 1896, and a population that grew from only 579 in 1880 to as much as 1,746 by 1890. The town of Decatur continued to grow in the early 20th century, from a population of 1,562 in 1904 to a peak of 3,200 in 1928.

Within the area that is now the LBJ National Grasslands, early settlements included Audubon and Flatrock with stock grazing along the prairies being the primary occupation early on. Following the establishment of the railroad through the region, cash crop farming also became a productive industry (Jurney et al. 1989). The Grasslands were originally managed by the Rural Resettlement Administration and, later, by the United States Soil Conservation Service with the goal of returning eroded land to its natural state, until the early 1950s when ownership and management of its resources were transferred to the USFS.
4.0 PREVIOUS INVESTIGATIONS

According to the Texas Historical Commission (THC) Historic and Archeological Sites Atlas (Sites Atlas), one previously recorded site and one previous survey are within the boundary of Unit 48. Site 41WS105/08130800055 is a prehistoric site of unknown temporal affiliation recorded in 2010 by Dixie Environmental Services Co., LP for a 3-D Seismic Survey. The site is defined as a light density prehistoric scatter without enough information to determine eligibility of the site (THC 2019).

Only one previous archeological project has been conducted within the boundary of Unit 48 that was completed in 2010 by Brazos Valley Research Associates (THC 2019). This project is listed as a 3-D seismic survey on behalf of Devon Energy Corporation. According to the Sites Atlas, it is noted as a partial survey and covers the entire extent of Unit 48.

No previously-recorded sites or previous archeological projects are recorded within or adjacent to Units 62 and 63. Additionally, no cemeteries, properties currently listed or eligible for listing in the National Register of Historic Places (NRHP), State Antiquities Landmarks (SALs), or historical markers are within or adjacent to the any of the Grasslands units (THC 2019) (Appendix D).
5.0 FIELD METHODS

The goals of the cultural resources survey were as follows:

- Determine if cultural materials are present within the APE through pedestrian survey and shovel testing of the APE;
- If archeological deposits are present within the APE, determine their spatial extent;
- If archeological deposits are present within the APE, attempt to determine the general cultural affiliation/age of these deposits;
- Document any historic standing structures within the APE.

Fieldwork was conducted by TRC archeologists Josh Haefner, Steven Sarich, Benjamin Johnson and Hicks & Company archeologists Gregg Cestaro and Haley Wilkerson from October 31 – November 8 and December 4 – 6, 2019 and followed the guidelines and survey standards set forth by the USFS, Council of Texas Archeologists (CTA), and the THC as coordinated with the USFS through a proposed archeological survey methodology and research design. The Area of Potential Effects (APE) consists of the entirety of three Grasslands unit locations where proposed perimeter fence reconstruction will occur. The three Grasslands units include Unit 48, Unit 62, and Unit 63. Grasslands Unit 48 has an approximate perimeter measurement of 5,272 meters (17,297 ft) and spans approximately 190 ac. Unit 62 has an approximate perimeter measurement of 1,811 m (5,942 ft) and spans approximately 49 ac. Unit 63 has an approximate perimeter measurement of 4,035 m (13,238 ft) and spans approximately 160 ac. The total APE for the three Grasslands units is 399 ac. Though impacts from fencing and fireline constructing will likely be limited to a 40-foot corridor around each unit, shovel testing and pedestrian survey covered the entirety of each Grasslands unit to evaluate and record any cultural resources located within their boundaries.

The field effort consisted of pedestrian survey supplemented with shovel testing of the APE. Minimally, TRC excavated shovel tests within each of the Grasslands units at 30 m transect spacing with shovel test intervals no greater than 150 m. In certain instances, this number was increased during site recording to gather additional data on deposition. Shovel tests were approximately 30-to 40-centimeter (cm) (11.8-inch) in diameter, and excavated to at least 80 centimeters in depth, the base of Holocene deposits, or impenetrable bedrock whichever was encountered first. Vertical control was maintained for each shovel test in arbitrary 10 cm levels. Excavated soils were screened through ¼-inch (6.25- millimeter [mm]) hardware mesh to ensure consistent artifact recovery. Standardized field notes were maintained for each shovel test describing location, soil depth, color, texture, stratigraphy, as well as the types of artifacts recovered. The location and results of all shovel tests were recorded on electronic forms created by TRC with Fulcrum, a mobile form builder and data collection program.

A total of 412 shovel tests were excavated during the archeological survey. Of these tests, 404 were negative for cultural materials. In addition to these tests, 65 points were recorded as “No Dig” locations due to ground disturbance, slope, or other impediment. Six shovel tests were positive for cultural materials. A total of three new archeological sites were recorded during the current investigations and the site boundary to previously recorded site 41WS105 was extended approximately 124 m northwest. As shovel testing at two of the new sites, 41WS160 and 41WS161, noted no buried cultural deposits and historic cultural materials were observable solely on the ground surface, these site boundaries were established by the mapping of the
horizontal distribution of artifacts along the ground surface. However, the extended boundary to site 41WS105 and delineation of site 41WS159 were based on both the distribution of positive shovel tests and the horizontal distribution of artifacts on the ground surface.

Representative project overview photographs, site photographs, and in situ artifact and feature photographs were taken throughout the project. An artifact collection policy, as coordinated with the USFS, was followed for cultural materials identified during the survey. No standing structures over 45 years of age were observed within the APE. The final report, field notes, photographs, shapefiles, and associated paper and electronic records will be housed at the TRC office in Austin, Texas. Collected artifacts and the associated report and materials will be curated at the Center for Archaeological Studies in San Marcos, Texas.
6.0 RESULTS

As noted above, the APE was determined in coordination with the USFS consisted of three Grasslands units within the LBJ National Grassland, totaling 399 ac in size. TRC archeologists performed a pedestrian survey and shovel testing within each Grasslands unit from October 31 – November 8 and December 4 – 6, 2019. Observed disturbances within the three Grasslands units was minimal, with some noted areas of erosion and clear-cut corridors particularly around the Grasslands unit boundaries along the existing fence lines. With the exception of a small number of underground pipeline corridors, the sporadic use and maintenance of two-track roads, and fencing, and the use of the land for federal public hunting, the three Grasslands units are largely devoid of landform modification. Vegetation of the APE was typical of Wise County and Cross Timbers ecology, as well as a substantial amount of secondary growth including green briar. The northern portion of Unit 48 consists of floodplain hardwood forest and post oak woodland giving way to hardwood motte and woodland and dominated by savanna grassland to the south. Vegetation of Unit 62 consists primarily of savanna grassland with hardwood motte and woodland with scattered areas of erosion, and large area of post oak woodland to the southwest. Unit 63 consists of post oak woodland centered to the northeast surrounded by savanna grassland. Some riparian herbaceous vegetation and riparian hardwood forest is present in linear bands to the southwest. (Figures 6-1 – 6-3).

Ground surface visibility was poor, less than five percent in most places apart from sporadic areas of heavy erosion, and occasionally rising between approximately 10 to 30 percent in areas of savanna grassland. Soils within Unit 48 generally consisted of sandy loam (10YR 3/2) or sandy clay loam soils (7.5YR 5/2) from 0 to 30 centimeters below ground surface (cmbs) followed by clay B-horizon soils (5YR 6/4), and sandy clay soil (5YR 4.3) from 0 to 20 cmbs over a shallow bedrock layer in the southwest portion of the Grasslands unit. Deep sand (7.5YR 6/4) was noted in and around 41WS105 and typically went from 80 to 100 cmbs. Soils within Unit 62 generally consisted of silty clay loam (7.5YR 3/3) or clay loam (10YR 5/4) from 0 to 20 cmbs followed by shallow, reddish brown clay B-horizon soils (2.5YR 2.5/4). Shovel test depth was limited on several occasions due to heavily compacted soils. Soils within the savanna grassland portions of Unit 63 generally consisted of clay loam (10YR 3/6) from 0 to 30 cmbs with underlying red clay B-horizon soils (2.5YR 4/6). Soils within the wooded section of Unit 63 generally consisted of sandy loam (10YR 4/4) from 0 to 30 cmbs with underlying reddish-brown sandy clay (5YR 4/4) or red clay (2.5YR 4/8) B-horizon soils. Complete shovel test data is included as Appendix B.

Seven shovel tests were positive for cultural materials. A total of three new archeological sites were recorded during the current investigations and the site boundary to previously recorded site 41WS105 was extended approximately 124 m northwest. As shovel testing at two of the new sites, 41WS160 and 41WS161, noted no buried cultural deposits and historic cultural materials were observable on the ground surface, these boundaries were established by the mapping of the horizontal distribution of artifacts along the ground surface. Extended boundary to 41WS105 and delineation of 41WS159 were based on both the distribution of positive shovel tests and the horizontal distribution of artifacts on the ground surface. One isolated historic feature/structure, a galvanized steel windmill, was identified within Unit 63 along the southwest boundary near County Road (CR) 2648 (Appendix D).
6.0: Results

Figure 6-1 Overview of vegetation at Unit 48, facing north.

Figure 6-2 Overview of vegetation at Unit 62, facing south.
Figure 6-3 Overview of vegetation at Unit 63, facing southeast.
Site 41WS105/08130800055 Extension

During the survey of Unit 48, previously recorded site 41WS105 was revisited to determine if additional cultural materials were present within or adjacent to the current site boundaries. The original site boundary is located on a slight ridge overlooking an unnamed tributary of Black Creek and measures approximately 6,420 square meters. 41WS105 was originally recorded during a seismic survey in 2010 on behalf of the Forest Service. The site was originally described as a light density prehistoric scatter on a slight finger ridge running roughly north-south and parallel to a tributary of Black Creek (Shaddox and Hall 2010). It is situated on the western edge of the ridge top and continues down the western slope towards the drainage. At that time, the only artifacts found at this site are described by the analyst as debitage, and very little could be said with no temporally or functionally diagnostic artifacts recorded and an absence of observed features. During the current survey, the site was revisited, and additional materials were found northwest and adjacent to the previously recorded site (Appendix D). The extension is located northwest of the previously recorded boundary with additional materials found in a clear-cut corridor with mixed hardwood forest on either side (Figure 6-4). Heavy slopes are present along the western boundary. The geology consists of Early Cretaceous Antlers Sand. The 1967 Geologic Atlas of Texas, Sherman Sheet notes that Antlers Sand is commonly found in Eastern part of Trans-Pecos and High Plains and consists of sand, clay, and conglomerate. The lower and upper parts are mostly sand, the middle part chiefly clay, and grades northward to interbedded sand and clay. Sand is fine to coarse grained, conglomeratic in lower part, clayey in upper part, and brownish-yellow. Conglomerate, chert, quartz, and quartzite are found as pebbles and granules. Thickness can be as much as 200 ft but is variable because of the irregular surface on which it was deposited. Soils in the area were found to be consistent with the USDA Web Soil Survey (2015) which classifies the soils as Patilo-Heaton fine sands with 3 to 12 percent slopes. These soils are characteristically very deep and located on gently sloping to strongly sloping uplands (USDA 1989). The typical soil profile documented during shovel testing consisted of dark brown sandy loam (10YR 4/2) from 0 to 20 cmbs overlaying brown sand or sandy loam (10YR 5/3) from 20 to 100 cmbs, though occasionally terminating in reddish brown sand (5YR 4/4) between 60 to 80 cmbs. The site extension was delineated using 10 m and 20 m radial shovel tests in cardinal directions until two consecutive negative shovel tests were recorded. A total of 19 shovel tests were excavated and only three were positive for cultural materials (177-SS, 52-JH, and 63-BJ) while 16 were negative (178-SS, 176-SS, 69-BJ, 183-SS, 68-BJ, 67-BJ, 60-BJ, 61-BJ, 180-SS, 179-SS, 181-SS, 182-SS, 66-BJ, 65-BJ, 64-BJ, and 62-BJ). Subsequent to shovel testing, an approximate 10 m boundary was established based on the distribution of positive shovel tests, and a small number of surface artifacts extended the previously recorded site boundary an additional 124 m to the northwest along the clear-cut corridor. The extension measures 2,406 square-meters yielding a total revised site size of approximately 8,826 square meters. The site extension consists of nine pieces (n=9) of lithic debitage found subsurface with one large piece (n=1) of white chert debitage observed on the surface (Figures 6-5 to 6-10). Subsurface lithic debitage was predominantly found between 20 to 40 cmbs, though two pieces were found between 60 to 70 cmbs. The small amount of material and the lack of diagnostic artifacts seems to support the previous description of the site as a limited activity area. Because the site extension is located in a modified clear-cut corridor and no diagnostic artifacts were discovered during the survey, site 41DM273 has very limited research value and does not currently meet any of the criteria necessary for consideration as eligible for listing on the NRHP.
Figure 6-4 Site 41WS105 overviews facing north, east, southwest, and west (left to right).
6.0: Results

Figure 6-5 White chert debitage recorded on the surface of 41WS105 Extension.

Figure 6-6 Debitage recorded in shovel test 177 SS at 20-30 cmbs.
Figure 6-7 Two items of lithic debitage recorded in shovel test 177-SS at 30-40 cmbs.

Figure 6-8 Two items of debitage recorded in shovel test 177-SS at 60-70 cmbs.
Figure 6-9 Debitage recorded in shovel test 52-JH at 20-30 cmbs.

Figure 6-10 Debitage recorded in shovel test 63-BJ at 60-70 cmbs.
Site 41WS159 is an assemblage of historic cultural materials partially located within a mixed grass prairie setting with the eastern boundary of the site overlapping a small stand of mixed hardwood trees (Appendix D). The northeast boundary overlaps a channelized drainage that parallels the gravel road that leads to a pump station. A gate and dirt path parallels the drainage running, northwest to southeast (Figure 6-11). A transmission line corridor runs northeast to southwest and parallels CR 2648. The geology consists of Early Cretaceous Antlers Sand. The 1967 Geologic Atlas of Texas, Sherman Sheet notes that Antlers Sand is commonly found in Eastern part of Trans-Pecos and High Plains and consists of sand, clay, and conglomerate. The lower and upper parts are mostly sand, the middle part chiefly clay, and grades northward to interbedded sand and clay. Sand is fine to coarse grained, conglomeratic in lower part, clayey in upper part, and brownish-yellow. Conglomerate, chert, quartz, and quartzite are found as pebbles and granules. Thickness can be as much as 200 ft but is variable because of the irregular surface on which it was deposited. Topographically the area is uniformly flat. There was some evidence of push piles located in the wooded area perhaps related to the dirt road or channelized drainage. Subsoil consists of shallow, red clay typically found no deeper than 30 to 40 centimeters below surface. Measuring approximately 1,103 square meters in size, site 41WS159 is a small assemblage of historic artifacts found at surface and subsurface. The site was delineated using 10 m and 20 m cardinal radial shovel tests until two consecutive negative shovel tests could be established. Of the 20 recorded shovel tests only four were positive for historic cultural materials (101-SS, 99-SS, 72-SS, and 80-JH) while 12 were negative (181-JH, 56-JH, 191-SS, 70-BJ, 69-BJ, 75-BJ, 76-BJ, 72-BJ, 71-BJ, 73-BJ, 185-SS, 184-SS, and 100-SS), and three were recorded as ‘No dig’ tests due to their location in a drainage or in proximity to the transmission line pole (188-SS, 187-SS, 186-SS). The historic assemblage consists of one floral pattern, flow blue whiteware sherd (n=1), one undecorated whiteware sherd (n=1), one undecorated ironstone sherd (n=1), one stoneware sherd (n=1), one green glass shard (n=1), two milk glass shards (n=2), one colorless, molded glass shard (n=1), and sixteen colorless container glass shards likely from the same vessel (n=16). A total of 24 artifacts were found (Figures 6-12 – 6-16). Some cut stone was found near the eastern boundary of the site toward the road and along the fence line (Figure 6-17). Two cut stone pieces appear to be in sequence and measures approximately 20 inches [50.8 centimeters] in length. The stones are approximately 4 inches wide [10.2 centimeters]. Additional cut stones were nearby but scattered. According to the THC's Key to Historic Ceramics (2006) the floral pattern, flow blue sherd dates between 1835 and 1900. Additionally, ironstone sherd ranges from the 1840s to the 1930s. According to the SHA Bottle Guide (2018), the milk glass shards likely date between 1870 and 1950. The colored glass sherd appears to be citron green which dates to the last quarter of the 19th century. The colorless glass likely does not date prior to 1870, but is likely more recent than that (Toulouse 1969). Some modern trash left by hunters was found within the stand of trees. Push piles were also found within the stand of trees to the east, possibly associated with the channelized drainage or dirt roadway to the northeast. Archival research was conducted at the Wise County Clerk’s office and the Wise County Heritage Museum to determine former occupation and to obtain any family history information regarding past property owners. According to an 1895 historic plat of Wise County, the land on which Unit 62 and 63 are located was part of the J.W. Crunk survey (Pressler 1895). A portion of this land was owned by J.G. Graves and conveyed to J. Fortenberry in 1886 (Wise County Clerk 1886). According to the Fortenberry family archives, the family moved to Texas from Arkansas in 1858 and, over time, built several homes around Greenwood and Slidell (Wise County Heritage Museum n.d.). After careful review of the Fortenberry family archives at the Wise County Heritage Museum, no definitive
account of a farmstead at the location of the artifact assemblage was found. However, according to additional deed research, J. Fortenberry conveyed the land to J.B. Howard on February 4, 1903 (Wise County Clerk 1903). According to family history records, John Barnett Howard and Lillie Caroline Chance moved to Texas at the turn of the century and purchased a farm two miles west of Greenwood (WCHSC 1982). This is the only written record of a farmstead located within the general vicinity of the artifact assemblage. The plot of land that J.B. Howard purchased was subsequently conveyed to J.T. Washburn in 1910 (Wise County Clerk 1910). James Thomas Washburn was born in 1868 and moved to Wise County around 1906 where he “farmed in the Greenwood community until Mrs. Washburn’s death in 1931” (Wise County Messenger 1954). While this is a vague account, there is a good possibility that this is the same farm formerly owned by J.B. Howard. Noted impacts include natural erosion, as well as artificial impacts from the channelized drainage, dirt road, the installation of transmission line poles, and push piles located in the wooded area (Figure 6-18). There is also anecdotal evidence from hunters in the area that a hunting interest group occasionally does trash clean up within the Grasslands units and may constitute an unintentional, artificial impact. Because of the small number of commonly found historic materials and several natural and artificial disturbances, site 41WS159 has very limited research value and does not meet any of the criteria necessary for consideration as eligible for listing on the NRHP.
Ironstone, milk glass, and molded glass recorded in 72-SS at 0-10 cmbs.

Green glass recorded in 72-SS at 10-20 cmbs.
Figure 6-14 Transfer print sherd and plain whiteware sherd recorded in 72-SS at 20-30 cmbs.

Figure 6-15 Undecorated stoneware sherd and milk glass recorded in 99-SS at 0-10 cmbs.
Figure 6-16 Container glass recorded in 101-SS at 0-10 cmbs.

Figure 6-17 Possible cut stone feature near road, facing northwest.
Figure 6-18 Push pile in sparse wooded area, facing southeast.

41WS160/08130800526

Site 41WS160 is a small assemblage of historic cans and unknown metal artifacts. The site is located at the base of a western facing, eroded, gravel slope within the tree line to the west of a two-track road in the northern half of Unit 48 (Appendix D). It is situated in a relatively flat area in the mixed hardwood tree line. The geology consists of Early Cretaceous Antlers Sand. The 1967 Geologic Atlas of Texas, Sherman Sheet notes that Antlers Sand is commonly found in Eastern part of Trans-Pecos and High Plains and consists of sand, clay, and conglomerate. The lower and upper parts are mostly sand, middle part chiefly clay, and grades northward to interbedded sand and clay. Sand is fine to coarse grained, conglomeratic in lower part, clayey in upper part, and brownish-yellow. Conglomerate, chert, quartz, and quartzite are found as pebbles and granules. Thickness can be as much as 200 ft but is variable because of the irregular surface on which it was deposited. The site was discovered during systematic shovel testing of LBJ National Grasslands Unit 48. It consists of a concentration of sanitary cans, oil cans and unknown metal fragments. A possible hearth/campfire is located within the area, but heavy leaf litter limited ground surface visibility (Figure 6-19). As shovel testing at the site 41WS160 noted no buried cultural deposits and historic cultural materials were observable on the ground surface, these boundaries were established by the mapping of the horizontal distribution of artifacts along the ground surface. No artifacts were collected, and any diagnostic artifacts were documented and photographed in situ (Figures 6-20 – 6-24). There is some modern sheet metal in association with the can assemblage. According to Horn (2005) the round oil cans were introduced in 1933. However, soft drinks were first canned in 1953. The 12 oz. cans featured a pull
tab style opening first invented in 1962 and lasted until the late 1970s (Can Museum 2011). One can was labeled as Yukon Club Root Beer featuring a pull tab style top/opening. Yukon Club Root Beer cans are described as 355mL (12 fl. oz.) steel bodied, pull top cans made in the United States. This particular can style was first issued in 1967. Noted impacts include natural erosion of the sloped area immediately east of the site as well as bullet holes in the cans indicating impacts from hunters. The cans and metal artifacts are heavily rusted, and oxidation will likely continue. There is also anecdotal evidence from hunters in the area that a hunting interest group occasionally does trash clean up within the Grasslands units and may constitute an unintentional, artificial impact. Because of the small number of commonly found historic materials and several natural and artificial disturbances, site 41WS160 has very limited research value and does not meet any of the criteria necessary for consideration as eligible for listing on the NRHP.
6.0: Results

Figure 6-20 Yukon Club Root Beer can.

Figure 6-21 Pull top opening common to the sanitary cans found at 41WS160.
Figure 6-22 Heavily rusted sanitary can with evidence of bullet holes.

Figure 6-23 Rusted metal container found at 41WS160.
Figure 6-24 Side view of rusted container showing evidence of bullet holes.
41WS161/08130800527

Site 41WS161 is an assemblage of late 19th or early 20th century historic artifacts mixed with modern materials (Appendix D). Located northwest of and immediately adjacent to CR 2645, the site is in a sparse stand of mixed hardwood, young growth trees (Figure 6-25). There was some evidence of tree cutting and removal. Topographically, the area is uniformly flat. Open pasture is directly to the northwest of the sparse woodland. The geology consists of Early Cretaceous Antlers Sand. The 1967 Geologic Atlas of Texas, Sherman Sheet notes that Antlers Sand is commonly found in eastern part of Trans-Pecos and High Plains and consists of sand, clay, and conglomerate. The lower and upper parts are mostly sand, the middle part chiefly clay, and grades northward to interbedded sand and clay. Sand is fine to coarse grained, conglomeratic in lower part, clayey in upper part, and brownish-yellow. Conglomerate, chert, quartz, and quartzite are found as pebbles and granules. Thickness can be as much as 200 ft, but is variable because of the irregular surface on which it was deposited. The site was discovered during systematic shovel testing of LBJ National Grasslands Unit 62. The site appears to be a trash dump consisting of a concentration of recent historic and modern materials. The artifact assemblage includes bricks and cut stone, metal fragments, a fragmented stoneware crock, a plastic bottle, a plastic bag, and modern sheet metal (Figures 6-26 – 6-30). An active residence is located southwest of the site along CR 2645, and a storage shed is southeast of the site on the opposite side of County Road 2645. Shovel tests adjacent to the site were negative and indicated shallow, red, sandy clay loam/sandy clay subsoil at 40 cmbs or less. The site was delineated based on the surface assemblage. Three fragments of a blue and gray stoneware utilitarian vessel, likely a crock, were found amongst the assemblage. One of the sherds is decorated with two parallel, cobalt blue bands that run the circumference of the crock. The lack of additional diagnostic characteristics makes precise dating difficult. It is likely a 19th to early 20th century utilitarian vessel. Additionally, a brick fragment is stamped with "DENT…FIRE B…" The brick fragment may be associated with the Denton Pressed Brick Company established in 1901 and later acquired by the Acme Brick Company in 1912 (Beck 2016). Noted impacts include natural erosion in a small number of areas and roadway construction towards the southeast where the site coincides with CR 2645. There is also anecdotal evidence from hunters in the area that a hunting interest group occasionally does trash clean up within the Grasslands units and may constitute an unintentional, artificial impact and loss of site resolution. Because of the small number of commonly found historic materials, the presence of modern materials, and several natural and artificial disturbances, site 41WS161 has very limited research value and does not meet any of the criteria necessary for consideration as eligible for listing on the NRHP.
Figure 6-25 Overview of 41WS161, facing north, east, south, and west (left to right).
Figure 6-26 Fragment of blue banded stoneware crock at 41WS161.

Figure 6-27 Overview of fragmented crock, facing southeast.
Figure 6-28 Brick with letters "DEN...FIRE...B" likely produced by Denton Pressed Brick Company.

Figure 6-29 Unknown metal container, facing southeast.
Evidence of modern materials deposited and intermixed with historic materials.

Isolated Feature - Windmill

An isolated feature, a galvanized steel framed windmill, was found along the northeast side of the northwest-southeast running CR 2648 within the boundaries of Unit 63 (Appendix D). Directly adjacent to the windmill was a galvanized steel modern stock tank (Figures 6-31 –6-35). The windmill is located within a sparse stand of mixed hardwood, young growth trees. The area immediately surrounding the windmill and stock tank had been cleared of trees and the windmill built on a slightly raised, graded surface approximately 7 m in diameter. Shovel testing adjacent to the isolated feature were negative for cultural features. The galvanized stock tank is labeled Farmaster and was a modern manufacturer of a various farm equipment headquartered in Columbus, NE. The company merged with Behlen Manufacturing Company in 1983 according to the company’s history (Behlen Manufacturing 2019). Metal frame windmills span a broad range of time being first developed in 1876, increasing in popularity by the 1890s and declining in use over the course of the 1930s, 40s, and 50s as alternate technology was developed (National Park Service 2019). However, windmills for pumping water are still being used by small farms across the Great Plains. Given the presence of the Farmaster stock tank, it is likely that the windmill was constructed between the mid to late 20th century. The galvanized steel windmill is a common design throughout the rural United States and has very limited research value and does not meet any of the criteria necessary for consideration as eligible for listing on the NRHP.
6.0: Results

Figure 6-31 Overview of windmill and modern galvanized stock tank, facing northwest.
Figure 6-32 Close up of windmill head and blades, facing northwest.

Figure 6-33 Metal piping without output to the stock tank, facing northwest.
6.0: Results

Figure 6-34 Galvanized steel stock tank, facing southwest.

Figure 6-35 Farmaster label on stock tank, facing southeast.
This page intentionally left blank.
7.0 PROJECT SUMMARY AND RECOMMENDATIONS

The USFS is proposing to reconstruct perimeter fencing surrounding three Grasslands units located within the LBJ National Grassland in Wise County, Texas as implementation of the LBJ Prairie Savanna Restoration Project. This project is necessary to create a 40-foot fireline around LBJ National Grasslands units as these units are overgrown with dense vegetation and have limited to no mobility through them, posing a wildfire hazard. Impacts entail bulldozing to clear these perimeters of all trees and other woody vegetation, both above and below ground and new fence construction including utilization of metal t-posts and the use of an auger to drill into the ground to set metal corner posts and concrete bracing. As part of the proposed perimeter fence reconstruction, the USFS has contracted with TRC to perform an inventory of cultural resources within three proposed Grasslands units (Units 48, 62, and 63) which includes background and historic research, archeological field survey, site delineation, a determination of the condition of recorded cultural resources, and recommendation of eligibility for listing on the NRHP).

7.1. Project Recommendations

A background review prior to fieldwork depicted no recorded SALs, NRHP-eligible or listed properties, or cemeteries located within or adjacent to the APE. TRC archeologists performed systematic shovel testing, pedestrian survey, and visual inspection at three Grasslands units (Units 48, 62, and 63) on October 31–November 8 and December 4 – 6, 2019. During the investigations, a total of 477 shovel tests were recorded across the APE including No Dig shovel tests. Six shovel tests were positive for cultural materials. Three new sites were recorded within the APE and an extension to previously recorded site 41WS105 was delineated as a result of the survey. While the revisit of 41WS105 resulted in a small number of additional lithic artifacts, it did not yield any diagnostic artifacts that would indicate a specific temporal or cultural affiliation. The three new sites, 41WS159, 41WS160, and 41WS161, consist of historic cultural materials ranging between the late 19th to the middle part of the 20th century. In the case of 41WS161, there were a number of modern materials intermixed with the historic assemblage. In each case, there was evidence of a combination of natural and artificial impacts affecting the integrity of the assemblages. Boundaries for the 41WS105 extension and 41WS159 were based on both the distribution of positive shovel tests and the presence of cultural materials on the ground surface. As shovel testing at two of the new sites, 41WS160 and 41WS161, noted no buried cultural deposits and historic cultural materials were observable on the ground surface, these boundaries were established by the mapping of the horizontal distribution of artifacts along the ground surface. During the investigations an isolated historic windmill with an adjacent modern galvanized steel stock tank was encountered within Unit 63. The galvanized steel windmill is a common design throughout the rural United States and has very limited research value and does not meet any of the criteria necessary for consideration as eligible for listing on the NRHP. Based on the results of the survey, TRC recommends that no further investigations are necessary, and the project may proceed as planned.

In the event that any human or potential human remains are encountered during construction activities, all work should cease immediately in that specific area and the contractor shall notify local law enforcement, who in turn shall notify the local medical examiner’s office. If these remains are not considered recent by the medical officer (i.e., most likely prehistoric in age), then TRC archeologists should be notified and THC contacted.
Cultural Resources Survey and Evaluation of Archeological Sites 41WS105, 41WS159, 41WS160, and 41WS161 for the Proposed Fence Line Project in Grasslands Units 48, 62, and 63, LBJ National Grassland, Wise County, Texas
REFERENCES

Beck, B.

Behlen Manufacturing

Blair, W. F.

Byers, Johnny A.

Can Museum

Conner, Seymour V.

Ferring, C.R.

1995 Subsistence and Mobility Patterns at the Aubrey Clovis Site, Texas. Abstracts of the 60th Annual Meeting of the Society for American Archaeology, pp. 74-75. Minneapolis, Minn.

Ferring, C.R. and B.C.Yates

Gould, F.W., G.O. Hoffman, and C.A. Rechenthin
1960 Vegetational Areas of Texas. Leaflet 492. Texas Agricultural Experiment Station, College Station, Texas.
Horn, J.

Jurney, David H., Frank Winchell, and Randall W. Moir

Johnson, Eileen

Kreiger, A.D.
1946 Culture Complex and Chronologies in Northern Texas. University of Texas Publication No. 4640, Austin.

Meining, D.W.
1969 Imperial Texas: An Interpretive Essay in Cultural Geography. The University of Texas Press.

Meltzer, D.J.

National Park Service

Peter, Duane and James Harrison
2011 Archaeological Data Recovery (41TR198) and Survey within the Riverside Oxbow Project, Tarrant County, Texas. Geomarine, Incorporated. Plano, Texas.

Pressler, H. & Texas.

Prewitt, Elton R.

Prikryl, D.J. 1

Soil Survey Staff
References

Shaddox, L. and J. Hall

Stanford, Dennis J.

Story, Dee Ann

Suhm, Dee Ann, Alex D. Krieger, and Edward B. Jelks

Society for Historical Archaeology

Texas Historical Commission

Texas Historical Commission

Texas Water Development Board
Toulouse, J.H.

Wise County Clerk

1903 General Warranty Deed. Vol 70, pg. 201. Wise County Deed Records, Wise County, City of Decatur

Wise County Heritage Museum

Wise County Historical Survey Committee

1982 Wise County History: A Link with the Past, Vol. 2. Eakin Publications, Austin.

Wise County Messenger

1954“Services Held For James Washburn.” Obituaries, pg. 4. Wise County, City of Decatur.
APPENDIX A: DESIGN PLANS AND APE
Figure 1: Vicinity Map

Land Ownership Within USFS Boundary
- USDA Forest Service Land
- Non-Forest Service Land

Map by jdgarcia
July 15, 2014
NAD 1983 Texas Statewide Mapping System
LBJ Fenceline Project
Unit 48
Lyndon B. Johnson National Grasslands
National Forests & Grasslands in Texas
Pecan Creek 7.5' Quadrangle
Wise County, Texas
Figure 2: Project Location Map
LBJ Fenceline Project
Unit 62 and 63
Lyndon B. Johnson National Grasslands
National Forests & Grasslands in Texas
New Harp and Greenwood 7.5' Quadrangle
Wise County, Texas
Figure 3: Project Location Map
APPENDIX B: SHOVEL TEST RESULTS
<table>
<thead>
<tr>
<th>Date</th>
<th>ST_ID</th>
<th>Gisding</th>
<th>Plotting</th>
<th>Land Use</th>
<th>Vegetation</th>
<th>N Size</th>
<th>Disturbance Type</th>
<th>Degree Disturbance</th>
<th>Dig/Dig</th>
<th>Reason For Termination</th>
<th>Soil Texture</th>
<th>Site Investigation</th>
<th>ST Comments</th>
<th>Depth</th>
<th>Soil Color</th>
<th>Soil Texture</th>
<th>Status</th>
<th>Plant Type</th>
<th>Artifact Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/31/19</td>
<td>ST-191031-001-GC</td>
<td>630309</td>
<td>3465008</td>
<td>Two-Track Road</td>
<td>Mixed Grasses</td>
<td>0-10%</td>
<td>None</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>Clay</td>
<td>Strong brown</td>
<td>Negative</td>
<td>0.10-0.50</td>
<td>Brown</td>
<td>Strong brown</td>
<td>Sandy</td>
<td>Clay</td>
<td>neg</td>
</tr>
<tr>
<td>10/31/19</td>
<td>ST-191031-001-HW</td>
<td>631132</td>
<td>3465010</td>
<td>Forest</td>
<td>Woodland</td>
<td>0-10%</td>
<td>None</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>Clay</td>
<td>Strong brown</td>
<td>Negative</td>
<td>0.10-0.50</td>
<td>Brown</td>
<td>Strong brown</td>
<td>Sandy</td>
<td>Clay</td>
<td>neg</td>
</tr>
<tr>
<td>10/31/19</td>
<td>ST-181201-007-SS</td>
<td>631036</td>
<td>3465004</td>
<td>Forest</td>
<td>Woodland</td>
<td>20-30%</td>
<td>Erosion</td>
<td>None</td>
<td>Dig</td>
<td>Max ST Depth</td>
<td>Negative</td>
<td>Sandy Clay</td>
<td>neg</td>
<td>0.36-30</td>
<td>Strong brown</td>
<td>Black</td>
<td>Sandy</td>
<td>Clay</td>
<td>neg</td>
</tr>
<tr>
<td>10/31/19</td>
<td>ST-181201-001-SS</td>
<td>631233</td>
<td>3465019</td>
<td>Forest</td>
<td>Woodland</td>
<td>0-10%</td>
<td>None</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>Clay</td>
<td>Strong brown</td>
<td>Negative</td>
<td>0.15-30</td>
<td>Brown</td>
<td>Strong brown</td>
<td>Sandy</td>
<td>Clay</td>
<td>neg</td>
</tr>
<tr>
<td>10/31/19</td>
<td>ST-181201-002-SS</td>
<td>631249</td>
<td>3465012</td>
<td>Forest</td>
<td>Woodland</td>
<td>0-10%</td>
<td>None</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>Clay</td>
<td>Strong brown</td>
<td>Negative</td>
<td>0.15-30</td>
<td>Brown</td>
<td>Strong brown</td>
<td>Sandy</td>
<td>Clay</td>
<td>neg</td>
</tr>
<tr>
<td>10/31/19</td>
<td>ST-181201-003-SS</td>
<td>631206</td>
<td>3465025</td>
<td>Forest</td>
<td>Woodland</td>
<td>0-10%</td>
<td>None</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>Clay</td>
<td>Strong brown</td>
<td>Negative</td>
<td>0.15-30</td>
<td>Brown</td>
<td>Strong brown</td>
<td>Sandy</td>
<td>Clay</td>
<td>neg</td>
</tr>
<tr>
<td>10/31/19</td>
<td>ST-181201-005-SS</td>
<td>631083</td>
<td>3465037</td>
<td>Forest</td>
<td>Woodland</td>
<td>20-30%</td>
<td>Erosion</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>Clay</td>
<td>Strong brown</td>
<td>Negative</td>
<td>0.15-30</td>
<td>Brown</td>
<td>Strong brown</td>
<td>Sandy</td>
<td>Clay</td>
<td>neg</td>
</tr>
<tr>
<td>10/31/19</td>
<td>ST-181201-006-SS</td>
<td>631099</td>
<td>3465030</td>
<td>Forest</td>
<td>Woodland</td>
<td>0-10%</td>
<td>None</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>Clay</td>
<td>Strong brown</td>
<td>Negative</td>
<td>0.15-30</td>
<td>Brown</td>
<td>Strong brown</td>
<td>Sandy</td>
<td>Clay</td>
<td>neg</td>
</tr>
<tr>
<td>10/31/19</td>
<td>ST-181201-007-SS</td>
<td>631096</td>
<td>3465026</td>
<td>Forest</td>
<td>Woodland</td>
<td>0-10%</td>
<td>None</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>Clay</td>
<td>Strong brown</td>
<td>Negative</td>
<td>0.15-30</td>
<td>Brown</td>
<td>Strong brown</td>
<td>Sandy</td>
<td>Clay</td>
<td>neg</td>
</tr>
<tr>
<td>10/31/19</td>
<td>ST-181201-008-SS</td>
<td>631062</td>
<td>3465023</td>
<td>Forest</td>
<td>Woodland</td>
<td>0-10%</td>
<td>None</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>Clay</td>
<td>Strong brown</td>
<td>Negative</td>
<td>0.15-30</td>
<td>Brown</td>
<td>Strong brown</td>
<td>Sandy</td>
<td>Clay</td>
<td>neg</td>
</tr>
<tr>
<td>10/31/19</td>
<td>ST-181201-009-SS</td>
<td>631092</td>
<td>3465011</td>
<td>Forest</td>
<td>Woodland</td>
<td>0-10%</td>
<td>None</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>Clay</td>
<td>Strong brown</td>
<td>Negative</td>
<td>0.15-30</td>
<td>Brown</td>
<td>Strong brown</td>
<td>Sandy</td>
<td>Clay</td>
<td>neg</td>
</tr>
<tr>
<td>10/31/19</td>
<td>ST-181201-010-SS</td>
<td>631259</td>
<td>3465014</td>
<td>Forest</td>
<td>Woodland</td>
<td>0-10%</td>
<td>None</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>Clay</td>
<td>Strong brown</td>
<td>Negative</td>
<td>0.15-30</td>
<td>Brown</td>
<td>Strong brown</td>
<td>Sandy</td>
<td>Clay</td>
<td>neg</td>
</tr>
</tbody>
</table>

Legend:
- **Dig:** Digging was required.
- **No Dig:** No digging was required.
- **Dig Sterile Subsoil:** Sterile subsoil was disturbed.
- **No dig:** No digging was required.
- **Max ST Depth:** Maximum subsoil depth.
- **Clay:** Clay soil was encountered.
- **Sandy:** Sandy soil was encountered.
- **Sandy Clay:** Sandy clay soil was encountered.
- **Clay Loam:** Clay loam soil was encountered.
- **Silt Loam:** Silt loam soil was encountered.
- **Sandy Loam:** Sandy loam soil was encountered.
- **Silt:** Silt soil was encountered.
- **Soil Texture:** Clay, Sandy, Sandy Clay, Sandy Loam, Clay Loam, Silt, Silt Loam, Sandy Loam, or Sandy Clay Loam.
- **Soil Color:** Yellowish brown, Brownish yellow, Brown, Dark brown, Very pale brown, Light brown, Reddish brown, Reddish yellow, Light brownish gray, Light yellowish brown, Red, Light brown, Dark grayish brown, Strong brown, Very pale yellow, Strong brown.
10/31/19 ST-191031-013-SS 631230 3689352 Forest Woodland 0-10% None None Dig Heavy Roots Negative Heavily wooded. Roots at base and throughout. 2m east of

10/31/19 ST-191031-014-SS 631198 3689273 Forest Woodland 0-10% None None Dig Compact Soils Negative Heavily wooded. Roots at base and throughout. 5m west of

10/31/19 ST-191031-015-SS 631053 3689277 Forest Woodland 0-10% None None Dig Heavy Roots Negative Heavily wooded. Roots at base and throughout.

10/31/19 ST-191031-021-SS 631093 3689115 Forest Woodland 0-10% Slope 0-25% Dig Sterile Subsoil Negative Heavily wooded. Large root limited shovel test depth.

10/31/19 ST-191031-014-JH 631092 3689128 Forest Woodland 0-10% None None Dig Compact Soils Negative 0 to 40 dark grayish brown Clay Loam neg

10/31/19 ST-191031-014-HW 631101 3689179 Forest Woodland 0-10% None None Dig Sterile Subsoil Negative Root intrusion 0 to 10

10/31/19 ST-191031-018-SS 631168 3689169 Forest Woodland 0-10% None None Dig Heavy Roots Negative Heavily wooded. 60-70% gravel

10/31/19 ST-191031-019-SS 631037 3689173 Forest Woodland 0-10% None None Dig Heavy Roots Negative Heavily wooded. Large root limited shovel test depth.

10/31/19 ST-191031-046-JH 630985 3688959 Creek,Drainage,Floodplain,Forest Forest,Woodland 10-20% Inundated 0-25% Dig Max ST Depth Negative Nice woodland but rooty

10/31/19 ST-191031-017-SS 631116 3689203 Forest Woodland 0-10% None None Dig Sterile Subsoil Negative Heavily wooded. Roots at base and throughout. On slight

10/31/19 ST-191031-016-HW 631004 3689091 Forest Woodland 0-10% None None Dig Sterile Subsoil Negative Terminated at roots 0 to 10

10/31/19 ST-191031-015-GC 631007 3689121 Creek,Drainage,Floodplain,Forest Forest,Woodland 10-20% Inundated 0-25% Dig Sterile Subsoil Negative

10/31/19 ST-191031-013-HW 631169 3689199 Forest Woodland 0-10% None None Dig Sterile Subsoil Negative Terminated at 10cm due to modern gravels 0 to 10 yellowish brown Sandy Loam neg

11/1/19 ST-191031-015-JH 630944 3689182 Forest Woodland 0-10% None None Dig roots Negative Roots 0 to 25 very dark brown Clay Loam neg

10/31/19 ST-191031-015-SS 631054 3689280 Forest Woodland 0-10% None None Dig Heavy Roots Negative Roots

11/1/19 ST-191031-014-SS 631010 3689207 Forest Woodland 0-10% None None Dig Compact Soils Negative Heavily wooded. Roots at base and throughout. For most of two track on rise. 60-70% white gravel at base

10/31/19 ST-191031-014-JH 630940 3689139 Forest Woodland 0-10% None None Dig roots Negative Roots 0 to 25 very dark brown Clay Loam neg

10/31/19 ST-191031-013-SS 631022 3688959 Creek,Drainage,Floodplain,Forest Forest,Woodland 10-20% Inundated 0-25% Dig Max ST Depth Negative Nice woodland but rooty...stopped 45cmbs

10/31/19 ST-191031-042-JH 630985 3689059 Creek,Drainage,Floodplain,Forest Forest,Woodland 10-20% Inundated 0-25% Dig Sterile Subsoil Negative

10/31/19 ST-191031-013-SS 631029 3689052 Forest Woodland 0-10% None None Dig Heavy Roots Negative Heavily wooded. Roots at base and throughout. 3m east of

10/31/19 ST-191031-016-SS 631154 3689077 Creek,Drainage,Floodplain,Forest Forest,Woodland 10-20% Inundated 0-25% Dig Sterile Subsoil Negative

10/31/19 ST-191031-015-SS 631063 3689027 Forest Woodland 0-10% None None Dry Heavy Roots Negative Heavily wooded. Roots at base and throughout. 0 to 10

10/31/19 ST-191031-015-GC 639909 3695782 Oil Field,Pasture Scrub,Short Grasses 0-10% Industrial 26-50% Dig Compact Soils Negative Fence corner of oil pad

10/31/19 ST-191031-015-JH 630944 3689182 Forest Woodland 0-10% None None Dig Sterile Subsoil Negative Terminated at roots 0 to 10

10/31/19 ST-191031-015-HW 631004 3689091 Forest Woodland 0-10% None None Dig Sterile Subsoil Negative Terminated at roots 0 to 10

10/31/19 ST-191031-015-SS 631053 3689277 Forest Woodland 0-10% None None Dry Heavy Roots Negative Heavily wooded. Roots at base and throughout.

10/31/19 ST-191031-021-SS 631093 3689115 Forest Woodland 0-10% Slope 0-25% Dig Sterile Subsoil Negative Heavily wooded. Large root limited shovel test depth.

10/31/19 ST-191031-015-JH 630944 3689182 Forest Woodland 0-10% None None Dig Sterile Subsoil Negative Terminated at roots 0 to 10

10/31/19 ST-191031-015-SS 631053 3689277 Forest Woodland 0-10% None None Dry Heavy Roots Negative Heavily wooded. Roots at base and throughout. 0 to 10

10/31/19 ST-191031-014-JH 630940 3689139 Forest Woodland 10-20% None None Dig Sterile Subsoil Negative Terminated at roots 0 to 10

10/31/19 ST-191031-014-HW 631101 3689179 Forest Woodland 0-10% None None Dig Sterile Subsoil Negative Heavily wooded. Roots at base and throughout. 2m east of

10/31/19 ST-191031-018-SS 631168 3689169 Forest Woodland 0-10% None None Dry Heavy Roots Negative Heavily wooded. 60-70% gravel

10/31/19 ST-191031-015-JH 630944 3689182 Forest Woodland 0-10% None None Dig Sterile Subsoil Negative Heavily wooded. Roots at base and throughout. 0 to 20

10/31/19 ST-191031-013-JH 631036 3689172 Forest Woodland 0-10% None None Dig Sterile Subsoil Negative Heavily wooded. Large root limited shovel test depth.
11/2/19 ST-191101-016-SS 639623 3695780 Pasture Mixed Grasses 0-10% Cultivated 0-25% Dig Sterile Subsoil Negative 0 to 10% Erosion
 5 to 30
 0 to 10
 0 to 10
11/19 ST-18131-027-55 619791 3695768 Passport Mixed Grasses 0-10% Slope 0-20% Dig Shingle Subsoil Negative Slight northwest facing slope down from broom. Lighter brown clay soils. 01-10 30 Slight brown Clay Loam neg 01-10 Clay Loam neg

11/19 ST-18131-020-55 619624 3695669 Pond Forest Transitions/ Grasses 10-20% Commercial 75-99% Neg Dig Heavy Disturbance Neg Dig Heavy muds for pond germs and all 01-10 10-20 Strong brown Clay Loam neg 01-10 Clay Loam neg

11/19 ST-18131-021-59 619585 3695651 Passport Pasture 0-10% None None Dig Compact Soils Negative 01-10 30 Andy yellowish brown Clay Loam neg 01-10 strong brown Clay Loam neg

11/19 ST-18131-028-55 619643 3695632 Passport Mixed Grasses 0-10% None None Dig Shingle Subsoil Negative Silt or fine sand soils. 10m southwest of grass covered drainage. 01-10 10-20 Yellowish brown Sand neg 01-10 10-20 yellowish brown Sand neg

11/19 ST-18131-029-02 619564 3695740 Creek/Drainage/Pond Riparian Woodland/Local 0-10% Undisturbed None Neg Large root Negative Heavy dissected woodland adjacent to pond 01-10 10-20 Yellowish brown Sand neg 01-10 Yellowish brown Sand neg

11/2/19 ST-18131-029-59 619751 3695641 Passport Pasture 10-40% Erosion None Neg Dig Loose Negative 01-10 0-10 Strong brown Clay Loam neg 01-10 strong brown Clay Loam neg

11/2/19 ST-18131-030-55 619685 3695680 Creek/Pasture Mixed Grasses 0-10% Erosion None Dig Loamy Stone Negative Area of erosion. Drainage down from southwest facing slope. Areas of 50-60% GSV. Small coarse gravels widen, slab at surface. 01-10 0-10 Yellowish brown Clay Loam neg 01-10 strong brown Clay Loam neg

11/2/19 ST-18131-031-59 619544 3695628 Passport Mixed Grasses 0-10% Commercial 26-50% Dig Heavy Disturbance Negative Heavy dissected woodland adjacent to pond 01-10 10-20 Reddish brown sandy clay neg 01-10 reddish brown sandy clay neg

11/2/19 ST-18131-032-01 619596 3695543 Passport Pasture 0-10% Commercial 0-25% Dig Heavy Disturbance Negative 01-10 0-10 Strong brown Clay Loam neg 01-10 strong brown Clay Loam neg

11/2/19 ST-18131-033-53 6195703 Passage Mixed Grasses 0-10% Slope 0-25% Dig Loamy Stone Negative Area of erosion. Drainage down from southwest facing slope. Areas of 60-70% GSV. Small coarse gravels widen, slab at surface. 01-10 0-10 Strong brown Clay Loam neg 01-10 strong brown Clay Loam neg
<table>
<thead>
<tr>
<th>Date</th>
<th>Code</th>
<th>Subcode</th>
<th>Terrain Type</th>
<th>Slope %</th>
<th>Erosion %</th>
<th>Land Use</th>
<th>Disturbance</th>
<th>Erosion Type</th>
<th>Color Depth</th>
<th>Soil Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/4/19</td>
<td>ST-191104-024-HW</td>
<td>631094</td>
<td>Forest</td>
<td>20-30%</td>
<td>0-10%</td>
<td>Mixed</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>sandy topsoil with deep rich heavy clay subsoil. District from typical.</td>
<td>very dark brown Sandy loam neg</td>
<td></td>
</tr>
<tr>
<td>11/1/19</td>
<td>ST-191101-037-JH</td>
<td>639735</td>
<td>Pasture</td>
<td>0-10%</td>
<td>0-10%</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>next to erosional drainage</td>
<td>yellowish brown Clay loam neg</td>
<td></td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-019-HW</td>
<td>630947</td>
<td>Forest</td>
<td>0-10%</td>
<td>0-10%</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>roots throughout</td>
<td>yellowish brown Clay loam neg</td>
<td></td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-022-HW</td>
<td>630944</td>
<td>Two-Track Road</td>
<td>10-20%</td>
<td>0-10%</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>0 to 10</td>
<td>yellowish brown Clay loam neg</td>
<td></td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-021-HW</td>
<td>631094</td>
<td>Two-Track Road</td>
<td>10-20%</td>
<td>0-10%</td>
<td>None</td>
<td>No dig</td>
<td>Heavy Disturbance</td>
<td>0 to 10</td>
<td>very dark brown Sandy loam neg</td>
<td></td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-026-HW</td>
<td>631339</td>
<td>Forest</td>
<td>Forest,Mixed</td>
<td>0-10%</td>
<td>0-10%</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>Sandy topsoil with deep rich heavy clay subsoil. District from typical.</td>
<td>very dark brown Sandy loam neg</td>
</tr>
<tr>
<td>11/1/19</td>
<td>ST-191101-038-SS</td>
<td>639617</td>
<td>Pasture</td>
<td>0-10%</td>
<td>0-10%</td>
<td>Mixed Grasses</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>sandy topsoil with deep rich heavy clay subsoil. Distinct from typical.</td>
<td>brown sandy clay Sandy loam neg</td>
<td></td>
</tr>
<tr>
<td>11/1/19</td>
<td>ST-191101-038-JH</td>
<td>639639</td>
<td>Pasture</td>
<td>0-10%</td>
<td>0-10%</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>next to erosional drainage</td>
<td>yellowish brown Clay loam neg</td>
<td></td>
</tr>
<tr>
<td>11/1/19</td>
<td>ST-191101-041-SS</td>
<td>639820</td>
<td>Pasture</td>
<td>Mixed Grasses</td>
<td>0-10%</td>
<td>0-10%</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>compacted coarse gravels at base of ST.</td>
<td>dark brown Sandy loam neg</td>
</tr>
<tr>
<td>11/1/19</td>
<td>ST-191101-039-SS</td>
<td>639711</td>
<td>Pasture</td>
<td>Mixed Grasses</td>
<td>0-10%</td>
<td>0-10%</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>compacted coarse gravels at base of ST.</td>
<td>dark brown Sandy loam neg</td>
</tr>
<tr>
<td>11/1/19</td>
<td>ST-191101-040-SS</td>
<td>639808</td>
<td>Pasture</td>
<td>Mixed Grasses</td>
<td>0-10%</td>
<td>0-10%</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>compacted coarse gravels at base of ST.</td>
<td>dark brown Sandy loam neg</td>
</tr>
<tr>
<td>11/1/19</td>
<td>ST-191101-043-SS</td>
<td>639759</td>
<td>Pasture</td>
<td>Mixed Grasses</td>
<td>0-10%</td>
<td>0-10%</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>compacted coarse gravels at base of ST.</td>
<td>very dark brown Sandy loam neg</td>
</tr>
<tr>
<td>11/1/19</td>
<td>ST-191101-044-SS</td>
<td>639833</td>
<td>Pasture</td>
<td>Mixed Grasses</td>
<td>0-10%</td>
<td>0-10%</td>
<td>None</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td>compacted coarse gravels at base of ST.</td>
<td>very dark brown Sandy loam neg</td>
</tr>
<tr>
<td>11/1/19</td>
<td>ST-191101-037-GC</td>
<td>639511</td>
<td>Creek,Floodplain,Forest</td>
<td>20-30%</td>
<td>20-50%</td>
<td>Forest,Woodland</td>
<td>Dig</td>
<td>Sterile Subsoil</td>
<td></td>
<td></td>
<td>Forest,Woodland</td>
</tr>
</tbody>
</table>
11/4/19 ST 191104-041-HW 639013 3694624 Forest Forest,Mixed
11/4/19 ST 191104-042-HW 638946 3694684 Forest Forest,Mixed
11/4/19 ST 191104-043-HW 639161 3694733 Forest Forest,Mixed
11/4/19 ST 191104-044-HW 631127 3689007 Forest Forest
11/4/19 ST 191104-045-HW 639680 3695216 Forest Forest,Mixed
11/4/19 ST 191104-046-HW 630987 3689071 Forest Woodland
11/4/19 ST 191104-047-HW 631085 3689040 Forest,Two-Track Road Clear Cut,Woodland 0-10% Grading 20 to 30% Gravel
11/4/19 ST 191104-047-HW 630950 3689034 Forest Woodland 0-10% None None Dig Bedrock Negative
11/4/19 ST 191104-048-HW 631085 3689040 Forest,Two-Track Road Clear Cut,Woodland 0-10% Grading 20 to 30% Gravel
11/4/19 ST 191104-048-HW 630960 3689000 Forest Forest 10-20% None None Dig Sterile Subsoil Negative last stat has mottkes of 5yr 5/8
11/4/19 ST 191104-048-SS 631142 3689086 Forest,Road Clear Cut,Woodland 20-30% Roadway Construction 76-99% No dig Heavy Disturbance No dig On gravel two track with slope to west.
11/4/19 ST 191104-048-HW 630979 3689473 Forest Forest,Mixed
11/4/19 ST 191104-049-HW 638845 3694773 Forest Forest,Mixed
11/4/19 ST 191104-050-HW 639436 3694937 Forest Forest,Mixed
11/4/19 ST 191104-051-HW 630953 3689424 Forest Forest,Mixed
11/4/19 ST 191104-052-HW 630966 3689684 Forest Forest,Mixed
11/4/19 ST 191104-053-HW 631311 3688714 Forest Forest,Mixed
11/4/19 ST 191104-054-HW 630978 3689552 Forest Forest,Mixed
11/4/19 ST 191104-055-HW 630916 3689458 Forest Forest,Mixed
11/4/19 ST 191104-056-HW 630905 3689773 Forest Forest,Mixed
11/4/19 ST 191104-057-HW 631217 3689097 Forest Forest 0-10% Grading 0-40% Dig gravel Negative Root intrusion throughout STP
11/4/19 ST 191104-058-HW 633080 3695216 Forest Forest 0-10% None None Dig Sterile Subsoil Negative last stat has mottkes of 5yr 5/8
11/4/19 ST 191104-059-HW 631137 3689510 Forest Forest 0-10% None None Dig Sterile Subsoil Negative last stat has mottkes of 5yr 5/8
11/4/19 ST 191104-060-HW 631142 3689596 Forest,Road Clear Cut,Woodland 20-30% Roadway Construction 76-99% No dig Heavy Disturbance No dig On gravel two truck with slope to west.
11/4/19 ST 191104-061-HW 630949 3695122 Forest Forest,Mixed
11/4/19 ST 191104-062-HW 630918 3695032 Forest Forest,Mixed
11/4/19 ST 191104-063-HW 630978 3695071 Forest Woodland 0-10% Bedrock 76-99% Gravel
11/4/19 ST 191104-064-HW 630929 3695217 Forest Forest,Mixed
11/4/19 ST 191104-065-HW 631140 3689879 Forest Forest 10-20% None None Dig Sterile Subsoil Negative
11/4/19 ST 191104-066-HW 630938 3695048 Forest Forest,Mixed
11/4/19 ST 191104-067-HW 631108 3689791 Forest Forest 10-20% None None Dig Sterile Subsoil Negative
11/4/19 ST 191104-068-HW 630996 3694917 Forest Forest,Mixed
11/4/19 ST 191104-069-HW 630918 3689806 Forest Forest 10-20% None None Dig Sterile Subsoil Negative
11/4/19 ST 191104-070-HW 631283 3689308 Forest,Road Clear Cut,Woodland 0-10% Grading 20 to 30% Gravel
<table>
<thead>
<tr>
<th>Date</th>
<th>Field Abbreviation</th>
<th>Sample Code</th>
<th>Lat/Long</th>
<th>Land Use</th>
<th>Forest Type</th>
<th>Slope %</th>
<th>Soils Type</th>
<th>Surface Features</th>
<th>Classifications</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/4/19</td>
<td>ST-191104-041-HW</td>
<td>639758</td>
<td>3694759</td>
<td>Forest</td>
<td>Mixed</td>
<td>No dig</td>
<td>Heavy Disturbance</td>
<td>Neg.</td>
<td>Neg.</td>
<td>0-15'</td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-050-SS</td>
<td>631323</td>
<td>3688852</td>
<td>Forest</td>
<td>Woodland</td>
<td>0-10%</td>
<td>None</td>
<td>None</td>
<td>Neg.</td>
<td>0-10%</td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-060-SS</td>
<td>631345</td>
<td>3688916</td>
<td>Energy Corridor, Forest Clear Cut, Woodland</td>
<td>0-10%</td>
<td>Slope</td>
<td>76-99%</td>
<td>No dig</td>
<td>Slope</td>
<td>0-15'</td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-061-JH</td>
<td>631331</td>
<td>3688819</td>
<td>Forest</td>
<td>None</td>
<td>10-20%</td>
<td>None</td>
<td>None</td>
<td>Neg.</td>
<td>0-20%</td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-070-SS</td>
<td>631397</td>
<td>3688786</td>
<td>Forest</td>
<td>Woodland</td>
<td>0-10%</td>
<td>Erosion</td>
<td>None</td>
<td>No dig</td>
<td>Sentiment.</td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-080-HW</td>
<td>639681</td>
<td>3695154</td>
<td>Forest</td>
<td>Mixed</td>
<td>No dig</td>
<td>Sterile Subsoil</td>
<td>Positive</td>
<td>0 to 15'</td>
<td>0 to 30'</td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-081-JH</td>
<td>631278</td>
<td>3688740</td>
<td>Forest</td>
<td>None</td>
<td>0-10%</td>
<td>Erosion</td>
<td>None</td>
<td>No dig</td>
<td>Slope to drainage</td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-082-SS</td>
<td>631222</td>
<td>3688927</td>
<td>Forest</td>
<td>Woodland</td>
<td>0-10%</td>
<td>None</td>
<td>None</td>
<td>Neg.</td>
<td>0 to 100'</td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-083-JH</td>
<td>631130</td>
<td>3688738</td>
<td>Forest</td>
<td>None</td>
<td>10-20%</td>
<td>None</td>
<td>None</td>
<td>Neg.</td>
<td>0 to 20'</td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-084-SS</td>
<td>631041</td>
<td>3688983</td>
<td>Forest</td>
<td>Woodland</td>
<td>0-10%</td>
<td>None</td>
<td>None</td>
<td>Neg.</td>
<td>0 to 100'</td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-085-JH</td>
<td>631254</td>
<td>3688880</td>
<td>Forest</td>
<td>None</td>
<td>0-10%</td>
<td>Erosion</td>
<td>None</td>
<td>No dig</td>
<td>Finger ridge to prom drainage</td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-086-SS</td>
<td>631278</td>
<td>3688836</td>
<td>Forest</td>
<td>Woodland</td>
<td>0-10%</td>
<td>None</td>
<td>None</td>
<td>Neg.</td>
<td>Deep sand 0 to 100'</td>
</tr>
<tr>
<td>11/4/19</td>
<td>ST-191104-087-JH</td>
<td>631222</td>
<td>3688981</td>
<td>Forest</td>
<td>Woodland</td>
<td>0-10%</td>
<td>None</td>
<td>None</td>
<td>Neg.</td>
<td>Reddish sand</td>
</tr>
</tbody>
</table>
11/4/19 ST-191104-060-SS 631089 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-059-SS 631088 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-058-SS 631087 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-057-SS 631086 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-056-SS 631085 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-055-SS 631084 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-054-SS 631083 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-053-SS 631082 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-052-SS 631081 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-051-SS 631080 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-050-SS 631079 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-049-SS 631078 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-048-SS 631077 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-047-SS 631076 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-046-SS 631075 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-045-SS 631074 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-044-SS 631073 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-043-SS 631072 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-042-SS 631071 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-041-SS 631070 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-040-SS 631069 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/4/19 ST-191104-039-SS 631068 3688780 Forest Woodland 0-10% None None Dig Max ST Depth Negativ... 0 to 80 dark brown Sandy Clay
11/5/19 ST-191105-075-JH 639390 3694483 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative Shallow strong red subsoil

11/5/19 ST-191105-076-JH 639288 3694574 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative

11/5/19 ST-191105-072-JH 639444 3694551 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative

11/5/19 ST-191105-072-SS 639067 3695042 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Positive near confluence of two small drainages

11/5/19 ST-191105-070-JH 639196 3694777 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative near confluence of two small drainages

11/5/19 ST-191105-068-JH 638980 3694945 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative near confluence of two small drainages

11/5/19 ST-191105-067-JH 639067 3694940 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative near confluence of two small drainages

11/5/19 ST-191105-066-JH 639066 3694940 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative near confluence of two small drainages

11/5/19 ST-191105-064-JH 639313 3694712 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative near confluence of two small drainages

11/5/19 ST-191105-062-JH 639391 3694657 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative near confluence of two small drainages

11/5/19 ST-191105-061-JH 639580 3694457 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative near confluence of two small drainages

11/5/19 ST-191105-059-JH 639331 3694766 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative near confluence of two small drainages

11/5/19 ST-191105-058-JH 639326 3694766 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative near confluence of two small drainages

11/5/19 ST-191105-057-JH 639211 3694893 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative near confluence of two small drainages

11/5/19 ST-191105-056-JH 639054 3695039 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative near confluence of two small drainages

11/4/19 ST-191104-098-SS 638925 3694919 Pasture Pasture, Woodland 0-10% Roadway Construction Completely Destroyed No dig Heavy Disturbance No dig Road berm.

11/4/19 ST-191104-095-SS 639208 3694680 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative Shallow strong red subsoil 0 to 10

transmission line corridor

11/4/19 ST-191104-094-SS 639310 3694591 Pasture Mixed Grasses 0-10% None None Dig Sterile Subsoil Negative Shallow strong red subsoil 0 to 10

Ceramic and glass in top 10 centimeters. Small number of Pottery sherds in red-brown clay. No artifacts past 30 cm. 40 m
Date	ST-191106-017-BJ	639552	3694962	Forest	Forest	0-10% Erosion	0-25% Erosion	Dig Sterile Subsoil Negative	0 to 25 cm	reddish brown	Sandy Clay Loam	neg	Container Glass	
11/6/19	ST-191106-021-BJ	639784	3694998	Forest	Forest	0-10% Erosion	None	Dig Sterile Subsoil Negative	0 to 30 cm	strong brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-020-BJ	639888	3695086	Pasture, Short Grasses	Pasture, Short Grasses	0-10% Erosion	26-50% Erosion	Dig Sterile Subsoil Negative	0 to 30 cm	strong brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-011-BJ	639598	3695178	Forest	Young Forest	10-20% Erosion	0-25% Erosion	Dig Sterile Subsoil Negative	0 to 30 cm	yellowish red	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-007-BJ	638961	3694560	Forest	Young Forest	0-10% Erosion	None	Dig Sterile Subsoil Negative	0 to 25 cm	brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-006-BJ	639035	3694506	Pasture	Mixed Grasses	0-10% Erosion	None	Dig hit ground hive Negative	Ground hive at 30 cmbs, ended excavation	0 to 30 cm	strong brown	Sandy Clay	neg	Container Glass
11/6/19	ST-191106-005-BJ	639241	3694544	Pasture	Mixed Grasses	10-20% Erosion	0-25% Erosion	Dig Sterile Subsoil Negative	0 to 30 cm	strong brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-004-BJ	639153	3694620	Pasture	Mixed Grasses	10-20% Erosion	0-25% Erosion	Dig Sterile Subsoil Negative	0 to 30 cm	strong brown	Sandy Clay	neg	Container Glass	
11/5/19	ST-191106-002-BJ	638989	3694809	Forest	Young Forest	0-10% Erosion	0-25% Erosion	Dig Sterile Subsoil Negative	0 to 20 cm	brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-014-BJ	639336	3694914	Forest	Trail, Young Forest	0-10% Erosion	None	Dig Sterile Subsoil Negative	0 to 25 cm	reddish brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-013-BJ	639417	3694995	Forest	Woodland	0-10% Erosion	0-25% Erosion	Dig Sterile Subsoil Negative	0 to 30 cm	strong brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-024-BJ	639612	3694780	Pasture	Pasture	20-30% Erosion	None	Dig Sterile Subsoil Negative	0 to 30 cm	strong brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-023-BJ	639669	3694831	Forest	Forest	0-10% Erosion	None	Dig Sterile Subsoil Negative	0 to 30 cm	strong brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-018-BJ	639614	3695053	Forest	Forest	0-10% Erosion	None	Dig Sterile Subsoil Negative	0 to 20 cm	strong brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-017-BJ	639580	3694758	Pasture	Pasture	30-40% Erosion	None	Dig Sterile Subsoil Negative	0 to 20 cm	yellowish red	Sandy Clay	neg	Container Glass	
										dark brown	Sandy Clay Loam	neg	Container Glass	
11/5/19	ST-191106-026-BJ	639567	3696688	Pasture	Mixed Grasses	0-10% Erosion	None	Dig Sterile Subsoil Negative	0 to 5 cm	strong brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-026-BJ	639566	3696702	Pasture	Mixed Grasses	0-10% Erosion	None	Dig Sterile Subsoil Negative	0 to 10 cm	yellowish red	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-025-BJ	639662	3696866	Pasture	Mixed Grasses	0-10% Erosion	None	Dig Sterile Subsoil Negative	0 to 10 cm	reddish brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-024-BJ	639617	3696956	Pasture	Woodland	0-10% Erosion	None	Dig Sterile Subsoil Negative	0 to 10 cm	strong brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-023-BJ	639651	3697090	Pasture	Woodland	0-10% Erosion	None	Dig Sterile Subsoil Negative	0 to 10 cm	strong brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-022-BJ	639710	3697409	Forest	Forest	10-20% Erosion	None	Dig Sterile Subsoil Negative	0 to 10 cm	red	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-021-BJ	639720	3697513	Pasture	Short Grasses	20-30% Erosion	None	Dig Sterile Subsoil Negative	0 to 10 cm	yellowish red	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-019-BJ	639729	3697506	Pasture	Short Grasses	20-30% Erosion	None	Dig Sterile Subsoil Negative	0 to 10 cm	yellowish red	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-018-BJ	639738	3697514	Pasture	Pasture	20-30% Erosion	None	Dig Sterile Subsoil Negative	0 to 10 cm	strong brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-017-BJ	639717	3697478	Forest	Forest	0-10% Erosion	None	Dig Sterile Subsoil Negative	0 to 10 cm	strong brown	Sandy Clay	neg	Container Glass	
11/6/19	ST-191106-016-BJ	639734	3697405	Forest	Forest	0-10% Erosion	None	Dig Sterile Subsoil Negative	0 to 10 cm	strong brown	Sandy Clay	neg	Container Glass	

Legend:
- **Container Glass**: Identifies the presence of glass artifacts at specific depths.
- **Milk Glass**: Indicates the presence of milk glass artifacts.
- **Ceramic-Whiteware**: Describes ceramic artifacts categorized as Euro-American.
12/5/19 ST-191205-177-SS Energy Corridor, Forest Clear Cut, Woodland 20-30% Utility 26-50% Dig Max ST Depth Positive Sand and gravelly brown to brown. Sandy loam to max ST depth. Adjacent to forest line of clear cut corridor. At corridor edge. Small number (5 total) of chert flakes. No cultural materials beyond 70 cmbs.

12/5/19 ST-191205-178-SS 631446 3688879 Forest Woodland 0-10% Bioturbation 26-50% Dig Max ST Depth Negative Sandy loam to max ST depth. Heavy roots throughout. No evidence of cultural material. Adjacent to tree line SW of clear cut corridor. At corridor edge. Small number (5 total) of chert flakes. No cultural materials beyond 70 cmbs.

12/5/19 ST-191205-179-SS 631475 3688771 Forest Woodland 0-10% Bioturbation 26-50% Dig Max ST Depth Negative Sandy loam to max ST depth. Heavy roots throughout. No evidence of cultural material. In woodland SW of clear cut corridor.

12/5/19 ST-191205-180-SS 631475 3688783 Forest Woodland 0-10% Bioturbation 26-50% Dig Max ST Depth Negative Sandy loam to max ST depth. Heavy roots throughout. No evidence of cultural material. In woodland SW of clear cut corridor. Large root limited ST depth to 80 cmbs.

12/5/19 ST-191205-181-SS 631486 3688772 Forest Woodland 0-10% Bioturbation 0-25% Dig Max ST Depth Negative Sand and gravelly brown to brown. Sandy loam to max ST depth. Along animal trail. No evidence of cultural material. Adjacent to woodland SW of clear cut corridor. At clear cut boundary.

12/5/19 ST-191205-182-SS 639095 3695026 Forest Woodland 0-10% Bioturbation 0-25% Dig Sterile Subsoil Negative Light yellowish brown to brown. Sandy loam to max ST depth. Along animal trail. No evidence of cultural material. Adjacent to woodland SW of clear cut corridor. At clear cut boundary.

12/5/19 ST-191205-183-SS 639094 3695038 Forest Woodland 0-10% Bioturbation 0-25% Dig Sterile Subsoil Negative Sandy loam to max ST depth. Along animal trail. No evidence of cultural material. Adjacent to woodland SW of clear cut corridor. At clear cut boundary.

12/5/19 ST-191205-184-SS 639112 3695043 Drainage, Forest Inundated, Woodland 0-10% Grading 76-99% No dig Heavy Disturbance No dig Sandy loam to max ST depth. Along animal trail. No evidence of cultural material. Adjacent to woodland SW of clear cut corridor. At clear cut boundary.

12/5/19 ST-191205-185-SS 639095 3695060 Drainage, Forest Inundated, Woodland 0-10% Grading 76-99% No dig Heavy Disturbance No dig Sandy loam to max ST depth. Along animal trail. No evidence of cultural material. Adjacent to woodland SW of clear cut corridor. At clear cut boundary.

12/5/19 ST-191205-186-SS 639068 3695052 Energy Corridor, Pasture Mixed Grasses 0-10% Utility Completely Destroyed No dig Sandy loam to max ST depth. Along animal trail. No evidence of cultural material. Adjacent to woodland SW of clear cut corridor. At clear cut boundary.
APPENDIX C: HISTORICAL AND ARCHIVAL RESEARCH
THE STATE OF TEXAS

Know all Men by these Presents:

COUNTY OF

[Handwritten text]

for and in consideration of the sum

have Granted, Sold and Conveyed, and by these presents do Grant, Sell and Convey unto the said,

[Handwritten text]

all that certain tract or parcel of land lying and situated in the County of

[Handwritten text]

beginning at the NE corner of tract of land sold

[Handwritten text]

beginning containing 8 acres

[Handwritten text]

To Have and to Have the above described premises, together with all and singular the rights and appurtenances thereto, in anywise belonging

[Handwritten text]

Title, executors and administrators to WARRANT and

[Handwritten text]

Witneses at request of Grantor:

[Handwritten text]

THE STATE OF TEXAS

COUNTY OF

[Handwritten text]

THE STATE OF TEXAS

COUNTY OF

[Handwritten text]

Filed for record the 12th day of February, 1903, M. N. and recorded the 6th day of February, 1903.
The State of Texas. In the name of the present County of Pierce, I, J. G. Graves, and W. D. Graves, wife of J. G. Graves, of the County of Pierce in the State of Texas, for and in consideration of the sum of Five hundred Dollars to me in hand paid by J. D. Fortenbury, have granted, sold, and conveyed and by these presents do grant, sell and convey unto the said J. D. Fortenbury, of the County of Pierce in the State of Texas, all that certain tract or parcel of land, lying and situated in Pierce County, Texas, being a part of the SW third, and described as follows: To wit, beginning at the East corner of a one hundred acre tract, sold to W. P. Foster by J. L. St. Clair, from which a PC bush line S 50° W 12′ 10″ Thence S 95° E 10′ 50″ to J. J. Lewis, thence E line from which a north bush line N 5° E 10′ 50″ to a dolour line S 95° W 15′ 0″ Thence S 85° W 14′ 10″ Thence S 10° E 9′ 10″ Thence S 8° W 16′ 10″ Thence S 95° W 11′ 0″ Thence S 85° W 12′ 10″ Thence S 10° W 10′ 50″ Thence A 95° W 16′ 10″ Thence A PC bush line N 10° E 9′ 10″ Thence S 95° E 9′ 10″ Thence S 85° E 1′ 10″ to place of beginning. To have and hold the above described premises together with all and singular the rights and appurtenances thereto in any wise belonging unto the said J. D. Fortenbury and his heirs and assigns forever. We do hereby bind ourselves, heirs, executors and administrators to warrant and forever defend all and singular the said premises unto the said J. D. Fortenbury and his heirs and assigns against every person whosoever lawfully claiming or pretending to claim the same or any part thereof.

Witnes our hands, this 25th day of September, 1886.

J. G. Graves,
W. D. Graves.

The State of Texas. Before me, R. E. Bailey, Notary Public in and for Pierce County, Texas, on this day personally appeared J. G. Graves as known to me to be the person whose name is subscribed to the foregoing instrument and acknowledged to me that he executed the same for the purposes and consideration therein expressed.

Given under my hand and seal of Office this 25th day of September, 1886.

R. E. Bailey, Notary Public.
Pierce Co., Texas.
THE STATE OF TEXAS
Know all Men by these Presents:

COUNTY OF WIND

That

I, J. H. Howard, and Wife, S. H. Howard,

for and in consideration of the sum of

Dollars,

have granted, sold and conveyed, and by these presents do grant, sell and convey unto the said

John W. Howard, heirs, executors and administrators, heirs, executors and administrators to whomsoever lawfully claiming or who shall have any part thereof.

And also do hereby grant, sell and convey unto the said

John W. Howard, and to heirs, executors and administrators and assigns, against every person whomsoever lawfully claiming to have any part thereof.

But it is expressly and stipulated that the Vendor's Lien is reserved against the above described premises, together with all and singular the appurtenances thereto in anywise belonging unto the said

J. H. Howard, and assigns forever.

And the said

John W. Howard, and to heirs, executors and administrators and assigns, against every person whomsoever lawfully claiming to have any part thereof.

Witneses at request of Grantor:

J. H. Howard

The STATE OF TEXAS

COUNTY OF WIND

Farm No.

In and for

County, Texas, on this day personally

appeared

J. H. Howard, known to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that he executed the same for the purpose and consideration therein expressed.

Given under my hand and seal of office, this

day of

A. D. 1900.

THE STATE OF TEXAS

COUNTY OF WIND

Farm No.

In and for

County, Texas, on this day personally

appeared

J. H. Howard, known to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that they executed the same for the purpose and consideration therein expressed.

And the said

J. H. Howard, acknowledged the said instrument to be his act and deed, and declared that he had willingly signed the same for the purpose and consideration therein expressed, and that she did not wish to retract it.

Given under my hand and seal of office, this

day of

A. D. 1900.

Placed for record the

day of

A. D. 1900.

By

W. H. Howard

Clerk County Court, Wind

County, Texas.
William Fortenberry brought his family to Tex., from Sharp Co., Ark., in 1858. In this group there were other members of the family, cousins McC., etc., main idea in moving to Tex. was to enter in the cow business. T., cist first stop in Tex. was at the Pijot Point area. This stop was made because other members in the family had come before and settled here. They remained in the Pijot Point area for one vinger and then came west to the E. corner of Wise Co. and just west of the Denton Co. This area is in the corner of Wise, Cooke and Denton counties.

A nice home was built on the high hill in NE. Wise Co. The present owner of this property is James Fortenberry. They dug a cellar and dug a well. They remained in the old cellar and well are visible today. O. the high hill was the logical place to build.

At this time the red man was the main concern. The site made a good observation point. There is a rose bush in the front yard that was planted before the Civil War and blooms each spring. This rare attraction really brings in the tourists each year.

In Oct. 1858 a member of the family was killed by the I.E., about a mile south of the home place. The state erected a marker a few years ago in honor of this brave citizen about 3/4 mile south east of where the loss of life occurred. This cousin was Severe Fortenberry, and the remains are in the Gregory or Pollard Cemetery about 2 miles from the marker on H.R. way SI.

In early 1871 the state closed in on the Fortenberry family and told them that they had to move west. There was not ever any homesteading in this area. They were told that they would have to go west of Jackson'sboro. The answer was a very emphatic no. It turned out that they had to buy the property direct from the state at the rate of $3.50 per acre.

At this time the Chisholm trail was in full operation. Stopping at the old cabin. The oldest boy was eight years old when they came from Ark. He made a real hand on the trail and went up eight times.

In 1877 Cleon was married to Kate Moore. He could see his way because he had a cattle business in full operation. The young couple met at a house warming. The dance was most gay and some unknown outlet of community young men were apparent. The best dancer in the group turned out to be Sam Bass. Some of my mother's most fond memories was hearing grammy tell about dancing with Sam. He lost his life by gunfire a sort time later at Round Rock, Tex.

A short time before the party the Fortenberry family had erected a log cabin about two miles east of the first home site. The I.E.s had been driven into the I.E. Territory. They moved to the creek due to an abundance of wood and water. There was more game and that was a factor in more being on the table.

The log cabin was a fine and well furnished. An item that was in the house was an expensive Seth Thomas clock. This clock is in the Henry and Catherine W. McC. and I can hear it ticking as I write this information. My father was born in the cabin along with three brothers. Ed. ett was the second son being born in 1882. He followed the path of his father and was in the cow business at an early age.

In 1900 the family had grown and prospered and they began plans for a very modern home, a two story victorian. The present home was completed in 1901 five miles north of Slidell on the north bank of Whites Creek. There was no public road to the structure at the time but automobiles came a road was run by the house.

The contractor was Mrs. Tom Walden and was the best available at the time. It has five rooms down stairs a three bed rooms above and one is a double. The materials in the house are all cypress and has beaded walls and ceilings. The lumber cost 3 cents per foot and the entire cost $3500.00. Have heard the family say the head carpenter made $1.50 a day.

Kate Fortenberry lived in this house until 1943. After the death of grand Pa. she operated the ranch. She and grand Pa. laid the foundation for the largest Pure Breed short horn cattle herd in the state of Texas. The business has been carried on by the sons and grandchilden to the present. In the past years a pure bred Hereford inx line has been added.

In the fall of 2939 John C. White Commissioner of Agriculture, Tex. presented us with a plaque that honored the present owners Mr. Mrs. Henry Fortenberry for having been on a farm and operating it for a 100 years in the same family. I see a very few such home stands in the state.

We have kept the home in repair and live there much of the time and have a nice herd of cattle there, and on other property.

More information on this subject is available in the Denton Co. History.

Henry H. Fortenberry

F.S. More comments about house, Parlor has double base boards, carved window sashings. Ceiling design of cypress wood and original flooring. Living room has big fireplace place with carved mantel. Original hardware on all doors and windows add charm to the house. The front door is high lighted with stained glass and the front screen porch surounds much of the lower floor. 100\% of house was built, is shown at the top of the chimney and lightning rods reach for the sky. This house sits behind a white picket fence.
Robert and Oma Howard, Eva Marie, and John Fulton in the front yard of the old Howard homeplace on farm near Greenwood.

Laura married John Moore; Lum married Nellie Fullingham; Nellie June married Walter Derryberry. Mary Jane’s parents, Hulin Fulton and Margaret Hill, were born in Ireland.

Joseph C. Chance died on February 27, 1909. Mary Jane died August 28, 1913. Both are buried in Henrietta, Texas.

John and Lillie Howard are buried at Greenwood. Lillie lived to be ninety years of age. She passed away November 28, 1948.

The following is an excerpt from a poem written by Ernest after his father died.

"His life to us was a noble lesson taught,
May it reflect for more than aught.
For the life he lived 'twas his desire,
Would help his loved to look up higher —
The noble spirit he possessed,
Went hand in hand with him to rest.
Remember then children and bear in mind.
A mother's love only will excel father's—you'll find."

Compiled by Eva Marie (Howard) Atkins

JOE BARNETT HOWARD

Joe Barnett Howard was born March 26, 1890. His parents were John Barnett Howard and Lillie Caroline Chance. They came to Texas from Monett, Missouri. After their marriage they lived in the Brumlow community.

Their home was at the foot of "Tater Hill," some miles north of Decatur and west of the town of Greenwood. Joe was the fourth child of ten children born to John and Lillie, most of them being born in Brumlow.

John Barnett and Lillie bought a farm two miles west of Greenwood. This farm was later owned by Joe and Chloe Howard.

Joe attended the Greenwood Male and Female College. He later taught school in Seminole County, Okla-

homa. He later returned to Greenwood, Texas and married Chloe Edith Koiner of Krum, Texas, in Denton County on October 26, 1917.

The town of Greenwood was a thriving place. It had several grocery stores, a barbershop, two drug stores, and a cotton gin.

Joe worked hard to build up the land, by rotating crops and growing peas and fertilizing with barnyard manure. He had a big fruit orchard and vegetable garden.

The first child born to Joe and Chloe Howard was Wilma. She was born September 11, 1918. She married Joe England on December 24, 1941. They had two children.

Their next child, Charles Warren was born November 8, 1920. He married Emily Jones of Fernandina Beach, Florida. They had two children and their names are Charles Jr. and David.

Joe and Chloe Howard's third child, Lillie Mae, was born January 24, 1924. She married J. E. Haynes. Their
Services Held For James Washburn

James "Daddy" Washburn, "Daddy Washburn" as he was affectionately known to his family, was born on November 3, 1911, and passed away on September 1, 1994, at the age of 83. He was born in Texas County, Missouri.

His life was marked by a deep love for his family and his community. He was known for his generosity and his willingness to help those in need. James was a member of the Texas County Baptist Church since childhood and was an active member until the end of his life.

A funeral service was held at the Texas County Baptist Church on September 3, 1994, with pastor C. C. Bell and A. A. Washburn as the officiating ministers.

The services were attended by a large number of friends and family, including his children, grandchildren, and great-grandchildren.

He was predeceased by his wife, Mary Washburn, and his brother, Charles Washburn.

May his memory be a blessing to those who loved him.
APPENDIX D: SURVEY RESULTS AND SITE MAPS
Figure Redacted Due to Site Sensitive Data
Figure Redacted Due to Site Sensitive Data