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ABSTRACT

This study explores innovative approaches to constructing confidence intervals for

the population standard deviation, σ, in non-normal data scenarios. While the sample

standard deviation, s, is widely used, its reliability is compromised when dealing with

skewed or heavy-tailed distributions and exhibits sensitivity to outliers. Our research

addresses these limitations by investigating alternative estimation methods that offer

greater robustness and accuracy.

iii



ACKNOWLEDGEMENTS

I am profoundly grateful to my advisor, Dr. Robert Henderson, whose exceptional

guidance, unwavering support, and patient clarification of complex concepts were

instrumental in bringing this research to fruition. His mentorship has been the cor-

nerstone of this work. Equally important, I appreciate Dr. Kent Riggs, whose initial

guidance laid the foundation for this study. My sincere appreciation extends to my

committee members, Dr. Jane Long, Dr. Jacob Turner, and Dr. Jeremy Becnel, whose

insights and support have been invaluable throughout this academic journey. I am

indebted to Dr. Lesa Beverly and the entire Department of Mathematics and Statis-

tics for providing a nurturing environment and essential resources that facilitated

this research. The collaborative spirit of my colleagues and their thought-provoking

discussions have significantly enriched this study. The constructive feedback from

the departmental faculty has been crucial in refining my work. Lastly, I am deeply

thankful for the steadfast encouragement of my family and friends, whose support has

been a constant source of motivation. This collective support has been the bedrock

of my research endeavor.

iv



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction 1

2 Methods 5

2.1 Introduction to Confidence Interval . . . . . . . . . . . . . . . . . . . 5

2.2 Introduction to the Exact Confidence Interval (CI) for σ2 . . . . . . . 6

2.2.1 Derivation of the Exact Confidence Interval for σ2 . . . . . . . 7

2.3 Bonett’s Approximate Confidence Interval For Standard Deviation of

Nonnormal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 A Simulation Study on Some Confidence Intervals for Population Stan-

dard Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Definition of MAD, Sn, and Qn . . . . . . . . . . . . . . . . . 12

2.4.2 Proposed Confidence Interval . . . . . . . . . . . . . . . . . . 14

3 Simulation Studies 16

3.1 Simulation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Robust Alternative Approaches . . . . . . . . . . . . . . . . . 20

3.2.2 Some Bootstrap Approaches . . . . . . . . . . . . . . . . . . . 20

3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

v



4 Simulation Results 31

4.1 Modification on Robust Method . . . . . . . . . . . . . . . . . . . . . 31

4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Conclusion Remark and Future Work 42

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



LIST OF FIGURES

3.1 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Chi-square Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Lognormal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Normal(3,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Chi-square with df = 1 (χ2
(1)) . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Lognormal(1,0.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Gamma Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Exponential Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Laplace Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 Simulation Results for N(3, 1) . . . . . . . . . . . . . . . . . . . . . 35

4.8 Simulation Results for χ2
(1) . . . . . . . . . . . . . . . . . . . . . . . . 35

4.9 Simulation Results for Lognormal (1, 0.8) . . . . . . . . . . . . . . . . 36

4.10 Simulation Results for Gamma (5, 0.5) . . . . . . . . . . . . . . . . . 36

4.11 Simulation Results for Exponential (1.5) . . . . . . . . . . . . . . . . 37

4.12 Simulation Results for Beta (0.5, 0.5) . . . . . . . . . . . . . . . . . . 37

4.13 Simulation Results for Laplace (0, 4) . . . . . . . . . . . . . . . . . . 38

4.14 Simulation Results for Beta (20, 1) . . . . . . . . . . . . . . . . . . . 38

4.15 Simulation Results for Beta (10, 4) . . . . . . . . . . . . . . . . . . . 39

4.16 Heatmap for n = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.17 Heatmap for n = 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.18 Heatmap for n = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



List of Tables

2.1 Unbiasing Factor (dn) Values . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Coverage Properties for N(3, 1) . . . . . . . . . . . . . . . . . . . . . 24

3.2 Coverage Properties for χ2
(1) . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Coverage Properties for Lognormal(1, 0.8) . . . . . . . . . . . . . . . 27

1 Coverage Properties for N(3, 1) . . . . . . . . . . . . . . . . . . . . . 46

2 Coverage Properties for χ2
(1) . . . . . . . . . . . . . . . . . . . . . . . 47

3 Coverage Properties for Lognormal(1, 0.8) . . . . . . . . . . . . . . . 48

4 Coverage Properties for Gamma (5, .5) . . . . . . . . . . . . . . . . . 49

5 Coverage Properties for Exponential (1.5) . . . . . . . . . . . . . . . 50

6 Coverage Properties for Beta (0.5, 0.5) . . . . . . . . . . . . . . . . . 51

7 Coverage Properties for Laplace (0, 4) . . . . . . . . . . . . . . . . . 52

8 Coverage Properties for Beta (20, 1) . . . . . . . . . . . . . . . . . . 53

9 Coverage Properties for Beta (10, 4) . . . . . . . . . . . . . . . . . . 54

viii



1 Introduction

Standard deviation is a measure of dispersion. In measuring the average deviation

of each data point from the sample mean, the sample standard deviation provides

valuable insights into the spread of a dataset, indicating how tightly or loosely the

data points cluster around the average value. The larger the standard deviation, the

more spread out the data points are from the mean, which is an indication that there

is greater variability and less consistency. However, a smaller standard deviation

suggests that the data points are more concentrated around the mean, which is an

indication that there is greater consistency and less variability. The sample standard

deviation is calculated as the square root of the sample variance. All data points

are used in the sample variance calculation. Many other measures of dispersion do

not use all the sample data. For example, the range only uses the maximum and

minimum data points.

Standard deviation plays a crucial role in statistical inference and data analysis

by providing a measure of the spread of data. In statistical inference, the standard

deviation is used when conducting a hypothesis test or building confidence intervals

as it provides a measure of uncertainty related to these inference methods. In an at-

tempt to estimate a population parameter, the standard deviation provides a means

to determine a margin of error for the estimate. Beyond statistical inference, stan-

dard deviation finds extensive application in data analysis and descriptive statistics.

Standard deviations are used to assess the normality of distribution, compare the

variability of different datasets, and detect outliers. Also, the standard deviation is

used to help calculate probabilities, assess risk, and make informed decisions.

Understanding standard deviation is necessary for many fields, including statis-
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tics, finance, and engineering. Its role in multiple fields makes it relevant for making

meaningful decisions and conclusions from data. For instance, in engineering the stan-

dard deviation is used to establish valid control limits for manufacturing processes. In

finance, standard deviation provides a measure of an investment risk. Understanding

standard deviation is crucial for anyone who works with data.

If a family of probability distributions is such that there is a parameter η (and

other parameters θ) for which the cumulative distribution function satisfies:

F (x; η,θ) = F (x/η; 1,θ), (1.1)

then η is called a scale parameter since its value determines the “scale” or statistical

dispersion of the probability distribution, and an estimator of a scale parameter is

often simply called an estimator of scale. Scale estimators are important in many

statistical applications and the most common scale estimator is the sample standard

deviation, s, which for a random sample x1, ..., xn is defined as s =
√∑n

i=1
(xi−x̄)2

(n−1)
,

where x̄ = 1
n

∑n
i=1 xi. The sample standard deviation provides a point estimate for the

population standard deviation, σ. The sample standard deviation, s, is not a resistant

estimator as it is very sensitive to the presence of outliers. Also, s is not necessarily

the most efficient estimator of scale in skewed and leptokurtic distributions, and,

notably, it is not robust to slight deviations from normality [12]. Although s is very

sensitive to outliers, it is considered an efficient estimator for estimating population

standard deviation for a normal distribution. In addition, s is often used to construct

a confidence interval for a population standard deviation, σ.

Point estimation is finding an approximate value for a population parameter. The

sample standard deviation, s, is an estimator for the population standard deviation.

The single approximation is unlikely to be exactly equal to the population standard

deviation, σ. Consequently, it is reasonable to build a range of possible values for

the parameter, σ, known as an interval estimate. This gives us a better chance of
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capturing the actual value of σ. The most common forms of interval estimation

are confidence intervals (a frequentist method) and credible intervals (a Bayesian

method). Credible intervals are analogous to confidence intervals, however, they

differ in philosophical basis.

A confidence interval (CI) is a range of values that has a positive probability of

including the unknown parameter. This means that if random samples of the same

sample size are taken repeatedly from the same distribution or population, and a

confidence interval for a given parameter is produced for each random sample, then

a certain proportion of these intervals are expected to contain unknown parameter.

An exact (100 - α)% confidence interval for σ is based on the assumption that the

underlying distribution of the sample observations is normal. Suppose Y1, Y2, ..., Yn

form a random sample from a normal distribution with mean, µ and variance, σ2,

that is, Yi ∼ N(µ, σ2) for all i, then
∑n

i=1
(Yi−Ȳ )2

σ2 ∼ χ2
n−1, where Ȳ =

∑n
i=1

Yi

n
, follows

a chi-square distribution with n − 1 degrees of freedom; then the exact (100-α)%

confidence interval for σ2 is given as

(n− 1)s2/U < σ2 < (n− 1)s2/L (1.2)

where s2 =
∑n

i=1
(Yi−Ȳ )2

(n−1)
, L = χ2

α/2,n−1 and U = χ2
1−α/2,n−1, and χ2

p,df is the pth per-

centile of a chi-square distribution with df degrees of freedom. To get the confidence

interval for σ, take the square root of the endpoints of (1.2).

The exact CI (1.2) is hypersensitive to minor violations of normality assumption

[2]. As stated earlier, the exact confidence interval is based on the assumption that

the underlying distribution is normal; however, we do not always get to see situations

where the data are normally distributed. So, the question becomes what can be done

when we have cases where the observed samples are not from a normal distribution?

When we have data from heavy tail distributions or skewed distributions, the exact

(100 - α)% confidence interval for σ2 does not perform well; hence, the need for

3



alternatives to build (100 - α)% confidence intervals for σ2 for such situations.

Robust methods are not overly sensitive to changes in distributions and are de-

signed to deal with problems associated with skewed distributions and outliers. Some

statistical literature shows that robust methods might give more meaningful measures

of scale and are indeed more resistant to departures from normality and the presence

of outliers than s. Such methods can provide alternatives to the exact (100 - α)%

confidence intervals for σ2 (1.2).

In this work, a simulation study evaluates several such alternative confidence

interval estimates of scale parameter σ. The simulations assess these estimators when

observations are obtained from a variety of heavy-tailed and skewed distributions, as

well as the normal distribution. In addition to attempting to verify results in previous

work, Bonett [2], and Ahmed Abu Shawiesh et al. [1]; some exploration of potential

modifications to existing approaches will also be considered.

4



2 Methods

2.1 Introduction to Confidence Interval

An interval estimate of a parameter, θ, is any pair of functions L(x1, x2, ..., xn)

and U(x1, x2, ..., xn) that satisfies L(x) < U(x) for all x = [x1, ..., xn]. A confidence

interval is an interval estimate of θ.

A confidence interval is a range of values with a positive probability (equal to a

specified confidence coefficient) of including the unknown parameter to be estimated.

The confidence coefficient is the overall capture rate if a specific confidence interval

method is used repeatedly, or the method’s success rate. Confidence intervals measure

the degree of uncertainty in estimating a parameter based on a sample. Although

the confidence interval provides an estimate of the parameter, the interval computed

might not necessarily include the true value of the parameter. This is why confidence

intervals are built with a confidence coefficient usually selected by the researcher.

For example, suppose a researcher chooses a confidence coefficient of 95%. In that

case, it does not mean that for a given realized interval there is a 95% probability that

the population parameter lies within the interval. It also does not mean that 95% of

the sample data lies within the confidence interval. However, it implies that if the

estimation process is repeated over and over with the same sample size from the same

population, then approximately 95% of the calculated intervals contain the true value

of the parameter. For a given confidence interval, the parameter it is attempting to

bound, or capture, is either in the interval or not.

A two-sided confidence interval has two bounds called the lower and the upper

bound, usually written as L(x), U(x). Confidence intervals can also be one-sided. A

one-sided interval only has an upper or lower bound. For instance if the lower bound,

5



L(x) = −∞, then we have the one-sided interval (−∞, U(x)). A two-sided confidence

interval provides a range of plausible values for the parameter.

When estimating a location parameter of a symmetric distribution, such as a

population mean, µ, using the best point estimate along with a suitable margin of

error provides a confidence interval based on a sample. The point estimate is the best

guess for the true parameter based on the sample, and the margin of error defines a

range around the point estimate within which the true parameter is expected to be

with a specified level of confidence, that is, the confidence coefficient. When such a

confidence interval is created, its width is twice the margin of error, a function of the

point estimate’s standard error. In confidence interval estimation, narrower widths

are preferred because there is less uncertainty with narrower intervals.

When estimating the confidence interval for a scale parameter such as variance

or standard deviation, a different approach is used. This is because the sampling

distribution of the point estimate used in deriving the confidence interval for σ2 or

σ generally is not symmetric or bell-shaped like the sampling distribution of a point

estimate used in deriving the confidence interval for a location parameter such as µ.

2.2 Introduction to the Exact Confidence Interval (CI) for σ2

Suppose we have Y1, Y2, ..., Yn random observations from a normal distribution

with mean, µ and variance, σ2, that is, Yi ∼ NID(µ, σ2) for all i, then, (n−1)s2

σ2 ∼

χ2
n−1, where, χ

2
n−1 is a chi-square distribution with n − 1 degrees of freedom. Since

the parameter of interest is σ2, the exact (100-α)% confidence interval for σ2 is given

as described in (1.2).
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2.2.1 Derivation of the Exact Confidence Interval for σ2

In conducting a statistical hypothesis test for σ2 when the samples are normally

distributed, the method used is called the chi-square test for variance, and the test

statistic of this method is

χ2 =
(n− 1)s2

σ2
. (2.1)

In building the confidence interval, it is necessary to find L(x) and U(x) such that

P [L(x) ≤ σ2 ≤ U(x)] = 1 − α, where 1 − α is the desired confidence coefficient, for

0 < α < 1. Using the test statistic (2.1) to build a 95% confidence interval for σ2, we

have under the assumption of normally distributed data with common mean, µ, and

common variance, σ:

P

(
χ2
.025,n−1 ≤

(n− 1)s2

σ2
≤ χ2

.975,n−1

)
= .95, (2.2)

where χ2
.025,n−1 and χ2

.975,n−1 are 0.025 and 0.975 quantiles from chi-squared distribu-

tion with n − 1 degrees of freedom. The parameter of interest is σ2. To be able to

isolate σ2 in the middle, inversion of the test statistic results in

P

(
1

χ2
.975,n−1

≤ σ2

(n− 1)s2
≤ 1

χ2
.025,n−1

)
= .95. (2.3)

Isolating σ2 to be in the middle of the inequality, we get

P

(
(n− 1)s2

χ2
.975,n−1

≤ σ2 ≤ (n− 1)s2

χ2
.025,n−1

)
= .95. (2.4)

Taking the square root of the endpoints of (2.4) gives a 100(1− α)% CI for σ.

The chi-square distribution with n degrees of freedom (df) can be described as

the sum of the squares of n independent standard normal random variables. It is a

right-skewed distribution, that is, it has a longer tail towards the right side and the

majority of the data points fall to the left side. Chi-square distributions are a family

7



of distributions indexed by their degrees of freedom, df . When the degrees of freedom

increase towards infinity, the chi-square distribution approaches a standard normal

distribution (bell curve). The probability density function for a random variable

X having a chi-squared distribution with k degrees of freedom can be expressed

mathematically as:

fX(x) =
1

2
k
2Γ(k

2
)
x

k
2
−1e−

x
2 , (2.5)

where x > 0, and Γ(t) =
∫∞
0

vt−1e−vdv. The key assumption that must be met before

this exact confidence interval (2.2) can be used is that the sample observations are

generated from a normal distribution.

Although the exact confidence interval for σ2 is easy to construct, there are lim-

itations. One of the limitations is that the method is sensitive to departure from

the normality assumption. This means that when the samples are not normally dis-

tributed, it can lead to inaccurate coverage probabilities (that is, the interval will not

perform as desired).

Example 2.1. You are a bakery owner and want to estimate the variation in the

weight of your loaves of bread. You randomly bake and weigh 14 loaves. The results

you obtained in pounds are 1,1.5,2,1,0.8,0.9,1,0.85,0.95,1,1.3,1.2,1.1,1.3. Assume that

the weights of the loaves are normally distributed. Construct a 95% confidence inter-

val for the population variance , σ2, of the weights of your loaves of bread.

From (2.4) we know that we need to know s2, U = χ2
1−α/2,n−1 and L = χ2

α/2,n−1.

s2 are computed from the sample. The values U and L are computed using computer

software, a calculator, or a chi-square table. So, s2 =
∑n

i=1
(Yi−Ȳ )2

(n−1)
= 1.297

13
≈ .0998.

Adopting a confidence level of 95%, an α = .05, computer software returns L =

χ2
.025,13 = 5.0088 and U = χ2

.975,13 = 24.7356. Therefore, the 95% confidence interval

is:

8



13(.0998)

24.7356
≤ σ2 ≤ 13(.0998)

5.0088
or 0.0524 ≤ σ2 ≤ 0.2590. (2.6)

Taking the square root of the endpoints of this interval above gives a confidence

interval for σ. √
13(.0998)

24.7356
≤ σ ≤

√
13(.0998)

5.0088
or 0.229 ≤ σ ≤ 0.509. (2.7)

The confidence interval for σ is often more helpful than that for σ2 because standard

deviation has the scale or units of the data while the variance is on a squared units

scale. The interpretation is that we are 95% confident the population standard de-

viation of the weights of loaves of bread lies between 0.229 and 0.509 pounds. If we

repeat this process many times and calculate the confidence interval on each sample,

we expect 95% of them to capture the true population standard deviation.

We can often get samples that are not normally distributed in the real world.

As stated earlier, the exact CI can suffer when the data departs from the normality

assumption, thus, in such cases, the interval produced with the exact CI can become

inaccurate. For this reason, researchers and statisticians have proposed other methods

that do not require the samples to be normally distributed. Some of these methods

are discussed below.

2.3 Bonett’s Approximate Confidence Interval For Standard Deviation

of Nonnormal Distributions

Douglas G. Bonett’s 2006 paper “Approximate Confidence Intervals for the Stan-

dard Deviation of Nonnormal Distributions” [2] proposes a method to estimate con-

fidence intervals for the standard deviation when data deviates from a normal distri-

bution. When applied to nonnormal data, the exact confidence interval of section 2.2

for standard deviation can be unreliable and inaccurate. Bonett’s method addresses

this issue by constructing an approximate confidence interval that is more robust to
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deviations from normality. The proposed interval is nearly exact under normality,

has a coverage probability close to 1 − α under moderate nonnormality, has a cov-

erage probability that approaches 1 − α as the sample size increases for nonnormal

distributions with finite fourth moments, and finally, is not computationally intensive.

Bonett proposed that instead of assuming that the samples are normally dis-

tributed, let Yi (i= 1,2,...,n) be continuous, independent, and identically distributed

random variables with 0 < var(Yi) = σ2, E(Yi) = µ and a finite fourth moment, γ4.

Given the desired properties of ln(σ̂2), such as improving the small-sample per-

formance of Shoemaker’s (2003) equal variance test, and Bartlett and Kendall (1946)

showing that the sampling distribution of ln(σ̂2) converges to normality much faster

than the sampling distribution of σ̂2 when Yi ∼ N(µ, σ2); Bonett proposed a large-

sample confidence interval for σ2 from a reverse-transformed confidence interval for

σ2. The following 100(1− α)% confidence interval was proposed

exp(ln (cσ̂2)± zα/2se) (2.8)

where zp is the pth percentile of the standard normal distribution, se = c[
γ̂4

∗−n−3
n

n−1
]1/2,

c = n
n−zα/2

is an empirically determined, small-sample adjustment that helps equalize

the tail probabilities, and γ̂4
∗ is a pooled estimate of γ4, which is defined as

γ̂4
∗ = (n0γ̃4 + nγ̄4)/(n0 + n). (2.9)

The value γ̃4 could be a prior point estimate of γ4 obtained from a previously obtained

sample of size n0, and γ̄4 is a proposed estimator of γ4, which is asymptotically

equivalent to Pearson’s estimator and is defined as

γ̄4 = n
∑

(Yi −m)4/(
∑

(Yi − µ̂)2)2, (2.10)

where µ̂ = 1
n

∑n
i=1 yi, m is a trimmed mean with trim-proportion equal to 1

2
√

(n−4)

10



so thatm converges to µ as n increases without bound, and in such case, this proposed

estimate becomes Pearson’s estimator γ̂4 = n
∑

(Yi − µ)4/(
∑

(Yi − µ̂)2)2.

Bonett explained that Pearson’s estimator, γ̂4, tends to have a large negative bias

in leptokurtic (heavy-tailed) distributions unless the sample size is very large. Taking

the square root of the endpoints of (2.8) gives a confidence interval for σ. Bonett also

stated that simulations suggest that when n0 > n, replacing (n − 3)/n with 1 and

replacing n−1 with n in se improves the small-sample performance of (2.8); however,

when no prior information is available n0 = 0.

Constructing the Confidence Interval in Bonett’s Method

Estimates of coverage probabilities and average interval widths of (1.2) and (2.8) were

obtained using 50,000 Monte Carlo random samples of a given sample size from various

distributions. Prior kurtosis information is not utilized in (2.8) for the simulation,

that is, n0 = 0.

The results suggest that (2.8) has a coverage probability close to 1− α when the

observations are from a normal distribution with n > 10. Bonett’s results suggest

that (2.8) is slightly conservative in platykurtic distributions and slightly liberal in

moderately leptokurtic distributions, and (2.8) improves as n increases. With highly

nonnormal distributions the coverage probability of (2.8) was considerably less than

1−α unless n is large. However, (1.2) is very conservative in platykurtic distributions,

very liberal in leptokurtic distributions, and its coverage probability does not converge

to 1− α as n increases.

Bonett explained that the performance of (2.8) depends on the degree of non-

normality of ln (σ̂2) and the bias of se. The bias of se can be reduced by prior

kurtosis information. Also, increasing the sample size tends to improve the normality

of ln (σ̂2). This highlights the importance of taking sufficiently large samples from a

highly nonnormal distribution.
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2.4 A Simulation Study on Some Confidence Intervals for Population

Standard Deviation

In their paper titled “A Simulation Study on Some Confidence Intervals for Pop-

ulation Standard Deviation”, Moustafa Omar Abu-Shawiesh et al., 2011 [1], used a

robust estimator against outliers and proposed a robust method for estimating the

population standard deviation specifically when the data are from skewed distribu-

tions and in the presence of outliers.

The sample standard deviation, s, is the most common scale estimator and pro-

vides a logical point estimate of the population standard deviation, σ. However, s

is sensitive to the presence of outliers in the data. Furthermore, s is not the most

efficient or meaningful estimator of scale in skewed and leptokurtic distributions, and

s is not robust to departures from the normality assumption. This motivated them

to look for a robust scale estimator, that has a closed form and is easy to compute as

an alternative to s.

Rousseeuw and Croux, 1993 [10], proposed two robust estimators for scale, the

Sn and Qn estimators that can be used as initial or ancillary scale estimators in

the same way as the median absolute deviation (MAD), but they are more efficient

and not slanted towards symmetric distributions. Moustafa Omar Abu-Shawiesh et

al., explained that the Rousseeuw-Croux estimator, Qn, might be a more meaningful

measure of variation and may be preferred to s because it has high efficiency (82%) at

normal distributions, shares desirable robustness properties with the mean absolute

deviation (MAD), and does not depend on symmetry.

2.4.1 Definition of MAD, Sn, and Qn

Suppose x1, x2, ..., xn are random samples. Let x̃ denote the sample median, which is

the middle-order statistic when we have odd sample sizes. When the sample size is

12



even, the median is the average of the two middle-order statistics.

Median Absolute Deviation (MAD) Estimator

The median absolute deviation about the median (MAD) is a robust measure of the

variability of a sample. It is the median of the absolute deviations from the data’s

median:

MAD = median{|xi − x̃|} (2.11)

Because MAD is a more robust estimator of scale than the sample variance or standard

deviation, MAD works better with skewed or heavy-tailed distributions. The formula

σ̂ = b ·MAD (2.12)

is used to make MAD a consistent estimator for the estimation of the standard devi-

ation σ. The constant scale correction factor, b, depends on the distribution. In the

case of Gaussian distributions, it has been shown that we need to set b = 1.4826.

Sn Estimator

The estimator Sn is defined as

Sn = c ·mediani{medianj|xi − xj|}, i ̸= j (2.13)

where c is again a correction factor for consistency. Rousseeuw and Croux [10] ex-

plained that c′s default value is 1.1926.

Qn Estimator

The estimator Qn is defined as
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Qn = d{|xi − xj|; i < j}(k) (2.14)

where d is again a correction factor for consistency and k =
(
h
2

)
≈ (n2)

4
, where h = [n

2
]+

1 is roughly half the number of observations. In the case of Gaussian distributions,

Rousseeuw and Croux [10] explained that d = 2.2219.

2.4.2 Proposed Confidence Interval

Moustafa Omar Abu-Shawiesh et al. [1], proposed a new robust confidence interval

for estimating the population standard deviation σ. Suppose x1, x2, ..., xn are ran-

dom observations from continuous, independent, and identically distributed random

variable. The random variable T is defined as

T =
dnQn

σ
(2.15)

where dnQn is an unbiased estimator for σ, so that E(T ) = 1 for normal distribution.

Based on the work by Rousseeuw and Croux in 1993 [10], for larger values of n, the

following asymptotic result can be used:

T =
dnQn

σ
∼ N

(
1,

1

1.65n

)
. (2.16)

The following approximation result can be obtained

σT = dnQn ∼ N

(
σ,

1

1.65n
σ2

)
. (2.17)

Therefore from (2.17), the authors obtained the following pivotal quantity:

dnQn − σ
1

1.28
√
n
σ

∼ N(0, 1). (2.18)

Now, using the above pivotal quantity, they derived a 100(1−α)% robust confidence

interval for σ as follows:
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P

(
zα

2
<

dnQn − σ
1

1.28
√
n
σ

< z1−α
2

)
= 1− α. (2.19)

where zα
2
and z1−α

2
are the (α

2
)th and (1 − α

2
)th percentiles of the standard normal

distribution.

Note that (2.19) is equivalent to

P

(
zα

2

1.28
√
n
+ 1 <

dnQn

σ
<

z1−α
2

1.28
√
n
+ 1

)
= 1− α.

Isolating σ gives

P

(
1.28

√
n · dnQn

z1−α
2
+ 1.28

√
n
< σ <

1.28
√
n · dnQn

zα
2
+ 1.28

√
n

)
= 1− α.

Therefore, their 100(1− α)% robust confidence interval for σ is as follows:

(
1.28

√
n · dnQn

z1−α
2
+ 1.28

√
n
,
1.28

√
n · dnQn

zα
2
+ 1.28

√
n

)
. (2.20)

Rousseeuw and Croux, 1993 [10], derived the unbiasing factor dn so that dnQn

becomes an unbiased estimator of σ for the case of normal distribution. Values of dn

for n < 10 are provided in Table 2.1.

n 2 3 4 5 6 7 8 9

dn 0.399 0.994 0.512 0.844 0.611 0.857 0.6969 0.872

Table 2.1: Unbiasing Factor (dn) Values

For n ≥ 10, dn can be defined as

dn =


n

n+3.8
, n even

n
n+1.4

, n odd
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3 Simulation Studies

3.1 Simulation Framework

A simulation study was conducted to evaluate and compare the performance of

various intervals due to the impracticality of theoretically comparing them. In such

studies, artificial datasets are generated based on specified probability distributions,

simulating real-world scenarios. These datasets mimic the characteristics and vari-

ability observed in actual data, allowing for a comprehensive evaluation of statistical

methods. The simulation follows a structured flowchart designed to evaluate interval

estimation methods systematically. Below is the flowchart of our simulation:

1. Choose distributions with features usually seen in real-world data.

2. Draw or simulate random samples from the selected distributions.

3. Construct a confidence interval with the simulated samples.

4. Evaluate the performance of the constructed interval per distribution by com-

puting the proportion of times the parameter is within the interval.

Various probability distributions are chosen to represent both symmetric and

skewed data scenarios. These distributions capture some of the real-world datasets’

different characteristics and complexities. The distributions considered by Abu-

Shawiesh et al. [1] are:

1. Normal distribution with mean 3 and standard deviation 1.
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Figure 3.1: Normal Distribution

2. Chi-square distribution with one degree of freedom (df = 1).

Figure 3.2: Chi-square Distribution

3. Lognormal distribution with mean 1 and standard deviation 0.80
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Figure 3.3: Lognormal Distribution

Random samples are generated from the selected distributions to simulate data

reflecting the underlying population. These samples are drawn with specific sample

sizes, enabling the emulation of diverse data collection scenarios and complexities.

Sample sizes ranging from 5 to 100 were employed by Abu-Shawiesh et al. [1], covering

a spectrum of data collection scales. This range encompasses smaller sample sizes

(e.g., 5 and 10) typical in certain fields or studies with resource constraints, as well

as larger sample sizes (e.g., 50, 70, and 100) often seen in well-funded research or

large-scale surveys.

Interval estimation methods were applied to each generated sample. The evalu-

ation of each method’s performance relied on predefined criteria, including coverage

probability, the average width of intervals, and the standard deviation width of in-

tervals.

• Coverage Probability: This metric assesses the proportion of intervals that

successfully contain the true parameter within their bounds. It is desirable for

the coverage probability to be at least as large as the targeted coverage rate.
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• Average Width of Intervals: The average width reflects the estimation pre-

cision achieved by the interval method. Smaller widths are more desirable.

• Median Width of Intervals: This measure provides insight into the cen-

tral tendency of interval widths, offering a robust precision assessment. Again,

smaller widths are preferred.

• Standard Deviation Width of Intervals: Capturing the variability in in-

terval widths across multiple estimates, the standard deviation width portrays

the spread of individual interval widths around the average width. This met-

ric elucidates the consistency and reliability of the estimation method under

consideration, and smaller values are desirable.

The median width of the intervals is an additional criterion not considered by Abu-

Shawiesh et al. [1].

Our simulation study obtained estimates of the above quantities, with coverage

probability as the most important of the metrics. These estimates were derived

from 1000 simulation replications for each sample size, and for intervals involving

bootstrap methods (Section 3.2.2), 1000 bootstrap samples for each sample were

considered. The commonly used 95% confidence interval (α = 0.05) was employed,

where the confidence coefficient reflects the level of confidence in the estimation and

is the targeted coverage rate.

It is widely acknowledged that in cases where data originate from a symmetric

distribution or the sample size is large, the coverage probability for most methods

closely approximates 1−α. Moreover, a shorter interval width is indicative of a more

precise confidence interval. When comparing methods with the same coverage prob-

ability, a smaller width suggests that the technique is better suited for the particular

sample under consideration. The simulation programs were written and executed in

R.
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3.2 Methods

Given the sensitivity of the exact confidence interval method (1.2) to departures

from normality, and the presence of outliers, this study evaluates some robust alter-

native approaches discussed in the literature for estimating confidence intervals for

a population standard deviation σ when dealing with non-normal data distributions,

including some bootstrap procedures.

3.2.1 Robust Alternative Approaches

Bonett’s [2] interval as given in (2.8) and the method proposed by Abu-Shawiesh et

al. [1] as given in (2.19) are considered robust alternatives to (1.2) for constructing

an approximate confidence interval for σ.

3.2.2 Some Bootstrap Approaches

In addition to the exact confidence interval and the robust methods proposed by

Bonett [2] and Abu-Shawiesh et al. [1], we also investigate some bootstrap-based

approaches for constructing confidence intervals for the population standard deviation

σ.

Let X∗
(i) = X∗

(1), X
∗
(2), ..., X

∗
(B), be the ith bootstrap sample, for i = 1, 2, 3, ..., B,

and B is the number of bootstrap samples. Abu-Shawiesh et al. [1], investigated the

following bootstrap confidence intervals for σ.

Nonparametric Bootstrap Confidence Interval

Calculate the sample standard deviation, S∗
(i), i = 1, 2, 3, ..., B, for each bootstrap

sample and then order the bootstrap standard deviations so that
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S∗
(1) ≤ S∗

(2) ≤ S∗
(3) ≤ ... ≤ S∗

(B)

The (1− α)100% non-parametric bootstrap (CI) for the population σ is given by

LCL = S∗
(α/2) and UCL = S∗

(1−α/2) (3.1)

where LCL and UCL are the lower and upper confidence bound respectively This

method constructs the CI by taking the empirical α/2 and 1 − α/2 quantiles of the

bootstrap standard deviations as the lower and upper limits, respectively. This is the

common percentile bootstrap interval for σ.

Parametric Bootstrap Confidence Interval

This approach assumes normality but uses the bootstrap to estimate the quantiles

of the chi-square distribution. The (1 − α)100% parametric bootstrap CI for the

population σ is given by

LCL = S
√

(n− 1)/χ∗2
1−α/2,(n−1) and UCL = S

√
(n− 1)/χ∗2

α/2,(n−1) (3.2)

where χ∗2
α/2,(n−1) and χ∗2

1−α/2,(n−1) are the (α
2
)th and (1 − α

2
)th sample quantiles of

χ∗2 = (n−1)s∗2

nσ̂2
B

, and σ̂B =
√

1
B−1

∑B
i=1(x̄i

∗ − ¯̄x)2, where x̄i
∗ is the ith bootstrap sample

mean, ¯̄x is the overall bootstrap mean, s∗2i is the ith bootstrap sample variance and

σ̂B is the overall bootstrap standard deviation of the bootstrap means.

Robust Bootstrap Confidence Interval

The (1−α)100% bootstrap CI for the population σ analogous to the robust estimator

in (2.19) is given by
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LCL =
1.28

√
n · dnQn

Z∗
α/2 + 1.28

√
n

and UCL =
1.28

√
n · dnQn

Z∗
1−α/2 + 1.28

√
n

(3.3)

where Z∗
α/2 and Z∗

1−α/2 are the (α
2
)th and (1− α

2
)th sample quantiles of the bootstrap

test statistics Z∗
i = x̄i

∗−¯̄x
σ̂B

, with x̄i
∗, ¯̄x, and σ̂B as defined above.

Cojbasic and Tomovic (CT) Confidence Interval

Another approach investigated was the nonparametric bootstrap confidence interval

proposed by Cojbasic and Tomovic [5]. This method is based on the t-statistic and

aims to construct a robust interval without making distributional assumptions about

the data. The CT confidence interval is defined as:

Iboot = s2 − t̂(α)
√

ˆvar(s2) (3.4)

where s2 = 1
n−1

∑
i(xi − x̄)2 is the sample variance, t̂(α) is the α percentile of T ∗

defined as T ∗ =
s2∗i −s2

ˆvar(s2∗)
, s2∗i is the ith bootstrap sample variance, i = 1, 2, 3, ..., B, and

ˆvar(s2∗) is a consistent estimator of the variance, defined as
2σ̂4

B

n−1
, σ̂B defined in (3.2).

3.3 Simulation Results

Estimates of the coverage probabilities, average widths, median widths, and stan-

dard deviation (SD) widths were obtained using 1000 simulation replications for a

given sample size from various distributions, and for methods involving bootstrap

methods, 1000 bootstrap samples for each sample size were considered. The coverage

probability is found by the sum of the total number of times the population stan-

dard deviation is found in the constructed intervals divided by the simulation size of

1000. The under and over coverage of a confidence interval is the fraction of 1000

samples that resulted in intervals that lie entirely below and entirely above the popu-

lation standard deviation. The simulation result or the performance of each method
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is tabulated in Tables (3.1), (3.2), and (3.3) for normal, chi-square, and log-normal

distributions respectively.

The results in Table (3.1) show that when sampling from a normal distribution,

the exact method performs better than the other methods as expected. Also, Bonett’s

method performed well compared to the different methods. It can be noticed that for

a small sample size, that is, n = 5, Bonett’s method was conservative, that is, had

higher coverage than the target. The average width of the exact method is shorter

than all the other methods, again, as expected. Bonett’s method is the only method

that could compete with the exact method when sampling from a normal distribution.

The results of this simulation support the findings and work presented by Cohen [4],

confirming that no other confidence interval based on s is shorter than the exact

interval (1.2). So, given that the samples or the data at our disposal are normally

distributed, (1.2) should be used instead of considering other techniques.
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Sample Sizes

Methods Measuring Criteria 5 10 20 30 50 70 100

Exact Coverage 0.964 0.965 0.954 0.949 0.937 0.949 0.946

Under Coverage 0.018 0.020 0.021 0.029 0.028 0.031 0.024

Over Coverage 0.018 0.015 0.025 0.022 0.035 0.020 0.030

Mean Width 2.1267 1.0987 0.6956 0.5427 0.4079 0.34033 0.2833

Median Width 2.0543 1.0835 0.6951 0.5453 0.4065 0.3406 0.2829

SD Width 0.7471 0.2559 0.1103 0.07195 0.04273 0.0288 0.0205

Bonett Coverage 0.993 0.968 0.948 0.949 0.933 0.943 0.946

Under Coverage 0.006 0.019 0.025 0.033 0.031 0.033 0.026

Over Coverage 0.001 0.013 0.027 0.018 0.036 0.024 0.028

Mean Width 4.4779 1.3143 0.7303 0.5566 0.4176 0.3436 0.2858

Median Width 3.8027 1.2317 0.7014 0.5392 0.4095 0.3376 0.2815

SD Width 2.6289 0.4994 0.1928 0.1306 0.0755 0.0540 0.0392

Robust Coverage 0.831 0.913 0.925 0.922 0.922 0.932 0.939

Under Coverage 0.071 0.035 0.028 0.042 0.038 0.038 0.035

Over Coverage 0.098 0.052 0.047 0.036 0.040 0.030 0.026

Mean Width 2.5933 1.2529 0.7854 0.6054 0.4518 0.3767 0.3139

Median Width 2.4201 1.2309 0.7832 0.6037 0.4487 0.3764 0.3136

SD Width 1.3374 0.3611 0.1547 0.0938 0.0547 0.0363 0.0251

Non-Parametric Bootstrap Coverage 0.642 0.779 0.843 0.907 0.904 0.916 0.938

Under Coverage 0.358 0.221 0.149 0.089 0.088 0.072 0.056

Over Coverage 0.000 0.000 0.008 0.004 0.008 0.012 0.006

Mean Width 0.9458 0.7439 0.5489 0.4671 0.3735 0.3166 0.2682

Median Width 0.9004 0.7174 0.5335 0.4540 0.3670 0.3125 0.2662

SD Width 0.3711 0.2348 0.1334 0.0984 0.0698 0.0473 0.0350

Parametric Bootstrap Coverage 0.885 0.899 0.915 0.945 0.928 0.942 0.931

Under Coverage 0.029 0.033 0.034 0.026 0.037 0.030 0.037

Over Coverage 0.086 0.068 0.051 0.029 0.035 0.028 0.032

Mean Width 5.1377 1.1600 0.6497 0.5183 0.3960 0.3297 0.2753

Median Width 2.4616 1.0274 0.6154 0.5006 0.3892 0.3245 0.2720

SD Width 34.4886 0.5795 0.1875 0.1216 0.0785 0.0514 0.0371

Robust Bootstrap Coverage 0.788 0.885 0.916 0.933 0.923 0.942 0.952

Under Coverage 0.090 0.045 0.041 0.030 0.036 0.027 0.024

Over Coverage 0.122 0.070 0.043 0.037 0.041 0.031 0.024

Mean Width 2.5363 1.2445 0.7656 0.5994 0.4509 0.3773 0.3123

Median Width 2.3288 1.2159 0.7616 0.5984 0.4511 0.3759 0.3122

SD Width 1.4980 0.3935 0.1563 0.0910 0.0557 0.0370 0.0254

CT Bootstrap Coverage 0.964 0.948 0.944 0.960 0.948 0.950 0.955

Under Coverage 0.036 0.052 0.056 0.040 0.052 0.050 0.045

Over Coverage 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean Width 59.4791 3.2817 1.9269 1.6657 1.4607 1.3652 1.2922

Median Width 8.9154 2.7655 1.8316 1.6066 1.4408 1.3530 1.2762

SD Width 541.8989 2.3585 0.6790 0.4412 0.3144 0.2365 0.1825

Table 3.1: Coverage Properties for N(3, 1)

The next simulation results in the performance of the methods on non-normal

distributions. Tables (3.2) and (3.3) show the performance of the methods for chi-

square and log-normal distributions respectively.
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Sample Sizes

Methods Measuring Criteria 5 10 20 30 50 70 100

Exact Coverage 0.708 0.651 0.587 0.560 0.548 0.558 0.565

Under Coverage 0.199 0.238 0.272 0.279 0.271 0.250 0.254

Over Coverage 0.093 0.111 0.141 0.161 0.181 0.192 0.181

Mean Width 2.6218 1.4370 0.9293 0.7442 0.5615 0.4789 0.3962

Median Width 2.1508 1.3040 0.8800 0.7157 0.5484 0.4663 0.3893

SD Width 1.8872 0.7443 0.3653 0.2404 0.1442 0.1082 0.0732

Bonett Coverage 0.922 0.851 0.826 0.851 0.872 0.889 0.914

Under Coverage 0.076 0.141 0.158 0.128 0.119 0.096 0.068

Over Coverage 0.002 0.008 0.016 0.021 0.009 0.015 0.018

Mean Width 8.9043 3.1929 1.9636 1.6118 1.2697 1.1303 0.9661

Median Width 5.5727 2.4327 1.6315 1.3813 1.1032 1.0103 0.8834

SD Width 8.9684 2.5638 1.3286 0.9577 0.6567 0.5520 0.4056

Robust Coverage 0.561 0.397 0.127 0.032 0.002 0.000 0.000

Under Coverage 0.410 0.594 0.873 0.968 0.998 1.000 1.000

Over Coverage 0.029 0.009 0.000 0.000 0.000 0.000 0.000

Mean Width 1.9007 0.8936 0.4849 0.3624 0.2622 0.2147 0.1721

Median Width 1.4196 0.7885 0.4601 0.3490 0.2554 0.2107 0.1707

SD Width 1.6677 0.5271 0.1998 0.1246 0.0716 0.0471 0.0314

Non-Parametric Bootstrap Coverage 0.387 0.539 0.655 0.707 0.782 0.817 0.850

Under Coverage 0.613 0.458 0.344 0.292 0.217 0.182 0.142

Over Coverage 0.000 0.003 0.001 0.001 0.001 0.001 0.008

Mean Width 1.2350 1.3242 1.2601 1.1368 0.9825 0.9248 0.8188

Median Width 0.9665 1.1106 1.0884 1.0209 0.9071 0.8495 0.7558

SD Width 0.9706 0.8581 0.7408 0.5940 0.4233 0.4025 0.3177

Parametric Bootstrap Coverage 0.738 0.738 0.765 0.802 0.859 0.861 0.874

Under Coverage 0.128 0.150 0.132 0.126 0.099 0.082 0.076

Over Coverage 0.134 0.112 0.103 0.072 0.042 0.057 0.050

Mean Width 19.8398 5.0251 2.4548 1.7726 1.2760 1.1277 0.9413

Median Width 4.1655 2.6204 1.7145 1.3889 1.1011 0.9660 0.8464

SD Width 59.9651 8.1556 2.4908 1.5849 0.7392 0.6313 0.4457

Robust Bootstrap Coverage 0.457 0.316 0.114 0.027 0.000 0.000 0.000

Under Coverage 0.511 0.672 0.886 0.973 1.000 1.000 1.000

Over Coverage 0.032 0.012 0.000 0.000 0.000 0.000 0.000

Mean Width 1.5342 0.7742 0.4488 0.3425 0.2459 0.2070 0.1708

Median Width 1.0535 0.6761 0.4141 0.3243 0.2427 0.2045 0.1677

SD Width 1.5596 0.5103 0.2010 0.1190 0.0658 0.0486 0.0330

CT Bootstrap Coverage 0.887 0.876 0.907 0.928 0.956 0.975 0.983

Under Coverage 0.113 0.124 0.093 0.072 0.044 0.025 0.017

Over Coverage 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean Width 3672.5178 57.2263 14.0052 7.9025 5.1196 4.7083 3.9389

Median Width 20.4974 8.4713 5.4765 4.6265 3.9086 3.6960 3.2994

SD Width 32280.7581 301.6586 33.5974 13.3493 5.0467 3.9748 2.4160

Table 3.2: Coverage Properties for χ2
(1)

The results tabulated in Tables (3.2) and (3.3) reveal that when sampling from

a non-normal distribution, the exact method performs poorly compared to the other

methods. Among all the two-sided confidence intervals, Bonett’s method had a better
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performance, and even with that, the coverage probabilities are consistently below the

target of 95%. The most interesting or shocking revelation from the results tabulated

in Tables (3.2) and (3.3) is that the robust method proposed by Abu-Shawiesh et

al. [1] has coverage probabilities dying off to 0 for both chi-square and log-normal

distributions.
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Sample Sizes

Methods Measuring Criteria 5 10 20 30 50 70 100

Exact Coverage 0.801 0.701 0.659 0.582 0.570 0.566 0.529

Under Coverage 0.128 0.197 0.215 0.266 0.269 0.272 0.265

Over Coverage 0.071 0.102 0.126 0.152 0.161 0.162 0.206

Mean Width 1.4756 0.8120 0.5274 0.4170 0.3203 0.2671 0.2255

Median Width 1.2145 0.6911 0.4890 0.3875 0.3070 0.2554 0.2188

SD Width 0.9379 0.4276 0.1987 0.1376 0.0815 0.0611 0.0456

Bonett Coverage 0.965 0.831 0.840 0.818 0.856 0.861 0.871

Under Coverage 0.035 0.158 0.147 0.176 0.128 0.130 0.119

Over Coverage 0.000 0.011 0.013 0.006 0.016 0.009 0.010

Mean Width 4.0860 1.5396 1.0019 0.8325 0.6926 0.5950 0.5360

Median Width 2.4769 1.0376 0.7725 0.6516 0.5699 0.4973 0.4564

SD Width 4.2641 1.4750 0.7801 0.6174 0.4206 0.3707 0.3182

Robust Coverage 0.778 0.707 0.442 0.240 0.060 0.011 0.000

Under Coverage 0.186 0.288 0.558 0.759 0.940 0.989 1.000

Over Coverage 0.036 0.005 0.000 0.001 0.000 0.000 0.000

Mean Width 1.4251 0.6758 0.4042 0.3073 0.2287 0.1893 0.1573

Median Width 1.2089 0.6479 0.3927 0.3037 0.2262 0.1877 0.1569

SD Width 0.9212 0.2478 0.1026 0.0610 0.0351 0.03512 0.0165

Non-Parametric Bootstrap Coverage 0.393 0.525 0.611 0.673 0.716 0.761 0.780

Under Coverage 0.606 0.475 0.389 0.326 0.282 0.236 0.219

Over Coverage 0.001 0.000 0.000 0.001 0.002 0.003 0.001

Mean Width 0.6913 0.6916 0.6184 0.5790 0.5315 0.4780 0.4288

Median Width 0.5507 0.5410 0.5106 0.5001 0.4535 0.4167 0.3746

SD Width 0.5036 0.5400 0.4029 0.3467 0.3311 0.2537 0.2113

Parametric Bootstrap Coverage 0.771 0.697 0.741 0.780 0.789 0.812 0.822

Under Coverage 0.118 0.201 0.185 0.164 0.166 0.142 0.129

Over Coverage 0.111 0.102 0.074 0.056 0.045 0.046 0.049

Mean Width 7.0879 1.8392 1.0348 0.8346 0.6936 0.5665 0.4843

Median Width 1.9187 0.9468 0.6959 0.6161 0.5319 0.4632 0.4045

SD Width 52.3355 3.6109 1.2346 0.8267 0.7371 0.4014 0.3007

Robust Bootstrap Coverage 0.686 0.599 0.355 0.207 0.053 0.005 0.0000

Under Coverage 0.284 0.397 0.645 0.793 0.947 0.995 1.000

Over Coverage 0.030 0.004 0.000 0.000 0.000 0.000 0.000

Mean Width 1.1319 0.5907 0.3689 0.2938 0.22039 0.1853 0.1538

Median Width 0.9440 0.5553 0.3619 0.2878 0.2179 0.1849 0.1537

SD Width 0.8628 0.2418 0.0981 0.0610 0.0355 0.0237 0.0166

CT Bootstrap Coverage 0.826 0.701 0.694 0.699 0.678 0.672 0.627

Under Coverage 0.174 0.299 0.306 0.301 0.322 0.328 0.373

Over Coverage 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean Width 203.7669 14.505 3.6398 2.3969 2.0420 1.4163 1.2153

Median Width 4.6323 1.6187 1.2597 1.1945 1.0897 0.9992 0.9581

SD Width 2396.5331 116.2155 17.4285 8.7680 6.6310 1.9521 1.2158

Table 3.3: Coverage Properties for Lognormal(1, 0.8)
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(a) Coverage Probability (b) Mean Width

(c) Standard Deviation Width

Figure 3.4: Normal(3,1)

Figures (3.4),(3.5), and (3.6) present a comparison between the results from the

literature by Abu-Shawiesh et al. [1] and our simulation outcomes. The dot-dash line

represents the target of 95%. Figure (3.4) specifically compares the coverage proba-

bility, the mean width, and the standard deviation width for N(3, 1). As depicted in

Figure 3.4a the coverage probability from the published literature and our simulation

results are consistent, accounting for simulation error. In Figures 3.4b and 3.4c, we

observe that the mean and standard deviation of the widths are very close to each

other, with one line effectively overlapping the other.

Figure (3.5) compares the coverage probability, the mean width, and the standard

deviation width for χ2
(1). In Figure 3.5a the coverage probability from the literature
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is conservative, that is the results exceed the target of 95%, as sample size increases,

whereas our simulation results diminish towards 0. Figures 3.5b and 3.5c show that

the mean width and standard deviation widths are closely aligned, with one line

overlapping the other.

(a) Coverage Probability (b) Mean Width

(c) Standard Deviation Width

Figure 3.5: Chi-square with df = 1 (χ2
(1))

Figure (3.6) compares the coverage probability, the mean width, and the stan-

dard deviation width for Lognormal(1,0.8). For the Lognormal (1, 0.8) distribution

the difference in the coverage behavior, Figure 3.6a, is similar to that observed for the

chi-square distribution with one degree of freedom. However, the mean and standard

deviation width, figures Figure 3.6b and Figure 3.6c, are not as closely aligned. This

suggests that perhaps the difference in coverage here may have narrower width inter-
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vals in our results. Yet, where the largest differences occur in the widths (at n = 5

and n = 10), our coverages are higher than Abu-Shawiesh et al. [1].

(a) Coverage Probability (b) Mean Width

(c) Standard Deviation Width

Figure 3.6: Lognormal(1,0.8)

These observations led us to explore possible ways to improve upon the perfor-

mance of Abu-Shawiesh et al.’s robust confidence interval for skewed distributions,

and still retain its performance for symmetric distributions.
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4 Simulation Results

4.1 Modification on Robust Method

This section considers a modification of Abu-Shawiesh et al.’s robust confidence

interval, 2011, to improve its performance. By customizing this approach, we aim to

enhance the method’s ability to provide more reasonable confidence estimates for the

population standard deviation for skewed distributions while retaining its acceptable

performance for symmetric distributions.

The 100(1− α)% for the modified robust confidence interval for σ is defined as

(
1.28

√
n(dnQn)(1 + [|γ̂3|])

z1− 9α
10

+ 1.28
√
n

< σ <
1.28

√
n(dnQn)(1 + [|γ̂3|])
z α

10
+ 1.28

√
n

)
(4.1)

where z α
10

and z1− 9α
10

are the ( α
10
)th and (1− 9α

10
)th percentiles of the standard normal

distribution. Also, γ̂3 is a sample skew defined as n
(n−1)(n−2)

∑n
i=1(

xi−x̄
s

)3 with s2 =

1
n−1

∑n
i=1(xi − x̄)2, x̄ = 1

n

∑n
i=1 xi. In addition, [x] is the greatest integer function,

and |x| is an absolute value.

The same adjustment was made for Abu-Shawiesh et al.’s robust bootstrap method,

in which our results indicated failure for the skewed distributions. Our objective was

to compare the performance of the modified robust method to Abu-Shawiesh et al.’s

robust confidence interval (2.19), while keeping track of how the modified robust

method performs compared to the other techniques we looked at in Section 3.2.

The simulation framework follows the same simulation framework from Section

3.1, however, more distributions were considered. The choice of distributions cap-

tures some of the real-world datasets’ different characteristics and complexities. The

distributions we looked at in addition to those considered in Section 3.1 are as follows:
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1. Gamma distribution with shape 5 and scale 0.5.

Figure 4.1: Gamma Distribution

2. Exponential distribution with a rate of 1.5.

Figure 4.2: Exponential Distribution

3. Beta distribution with both shapes 0.5.
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Figure 4.3: Beta Distribution

4. Laplace distribution with location 0 and scale 4.

Figure 4.4: Laplace Distribution

5. Beta distribution with shapes 20 and 1.
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Figure 4.5: Beta Distribution

6. Beta distribution with shapes 10 and 4.

Figure 4.6: Beta Distribution

4.2 Simulation Results

Figures (4.7) - (4.15) illustrate the relationship between coverage probability and

sample size with a simulation error of ±0.0316. The graphs on the left side display
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results from non-bootstrap techniques, while the graphs on the right side exclusively

show results from bootstrap techniques. This decision was made to ensure clarity and

focus on the more effective methods in our analysis.

(a) Coverage Probability (b) Coverage Probability

Figure 4.7: Simulation Results for N(3, 1)

(a) Coverage Probability (b) Coverage Probability

Figure 4.8: Simulation Results for χ2
(1)
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(a) Coverage Probability (b) Coverage Probability

Figure 4.9: Simulation Results for Lognormal (1, 0.8)

(a) Coverage Probability (b) Coverage Probability

Figure 4.10: Simulation Results for Gamma (5, 0.5)

36



(a) Coverage Probability (b) Coverage Probability

Figure 4.11: Simulation Results for Exponential (1.5)

(a) Coverage Probability (b) Coverage Probability

Figure 4.12: Simulation Results for Beta (0.5, 0.5)
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(a) Coverage Probability (b) Coverage Probability

Figure 4.13: Simulation Results for Laplace (0, 4)

(a) Coverage Probability (b) Coverage Probability

Figure 4.14: Simulation Results for Beta (20, 1)
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(a) Coverage Probability (b) Coverage Probability

Figure 4.15: Simulation Results for Beta (10, 4)

Our exploration revealed that the modifications we made significantly enhanced

the performance of Abu-Shawiesh et al.’s robust confidence interval method (2.19).

Comparative analysis shows that the modified robust method outperforms the original

robust confidence interval method across symmetric, skewed, and heavy-tailed distri-

butions. This improvement is evident even when considering bootstrap techniques.

Furthermore, we found that the modified robust method outperformed Bonett’s method

on skewed distributions. However, Bonett’s method showed superior performance

compared to the modified method on symmetric and heavy-tailed distributions.

Figures (4.16) - (4.18) offer a comparative analysis of various methods across dif-

ferent distributions while maintaining a constant sample size. This analysis serves as a

valuable tool for selecting the most appropriate interval method when the sample size

is known, however, the exact distribution of the data is not, though a general under-

standing of the distribution’s characteristics (symmetric, skewed, or heavy-tailed) is

available. For instance, consider a scenario with a sample size of 100 and a histogram

suggesting a skewed distribution. In this case, figure (4.18) becomes particularly in-

formative, revealing that employing the robust method may not be the optimal choice

for highly skewed distributions with this sample size. By examining these figures, re-
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searchers and analysts can make more informed decisions about which technique to

apply, based on their sample size and the observed characteristics of their data dis-

tribution, thereby enhancing the accuracy and reliability of their statistical analyses,

especially when dealing with varied and complex datasets.

(a) Coverage Probability

Figure 4.16: Heatmap for n = 5

(a) Coverage Probability

Figure 4.17: Heatmap for n = 30
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(a) Coverage Probability

Figure 4.18: Heatmap for n = 100
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5 Conclusion Remark and Future Work

In this study, we evaluated the performance of several confidence interval methods

for estimating population standard deviation, including proposed robust methods and

the exact confidence interval. We also introduced a modification to the robust method

(2.19) proposed by Abu-Shawiesh et al. [1]. Our findings revealed that:

1. The exact confidence interval (1.2) demonstrated superior coverage performance

and narrower width when applied to normally distributed data, as anticipated.

2. Bonett’s method (2.8) performed well with heavy-tailed distributions but showed

limitations when applied to highly skewed distributions.

3. The robust method (2.19) proposed by Abu-Shawiesh et al. exhibited good

coverage performance for symmetric distributions. However, despite its name

suggesting otherwise, it performed poorly with skewed and heavy-tailed distri-

butions.

4. Our modified robust method (3.4) showed improved performance for skewed

distributions but still exhibited limitations when applied to heavy-tailed distri-

butions.

These results highlight the varying effectiveness of different confidence interval

methods across different types of distributions, underscoring the importance of se-

lecting appropriate methods based on the characteristics of the data being analyzed.

Some bootstrap procedures were also examined. The robust (3.2), non-parametric

(2.20), and parametric (3.1) bootstrap procedures were not as promising compared

to our modified robust bootstrap and Cojbasic and Tomovic confidence interval (3.3).
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Our analysis revealed that the robust (3.2), non-parametric (2.20), and parametric

(3.1) bootstrap procedures did not perform as well as initially anticipated. In contrast,

our modified robust bootstrap method and the Cojbasic and Tomovic confidence

interval (3.3) demonstrated superior performance. Specifically, the robust (3.2), non-

parametric (2.20), and parametric (3.1) bootstrap procedures showed limitations in

their effectiveness across various distribution types. Our modified robust bootstrap

method exhibited notably better performance, providing more reliable confidence

intervals for the population standard deviation. The Cojbasic and Tomovic confidence

interval (3.3) demonstrated superior performance compared to the aforementioned

bootstrap procedures in most scenarios. It offered a robust alternative for estimating

the population standard deviation across various distribution types.

In future research, we aim to evaluate the performance of our proposed confi-

dence interval (3.4) and other proposed intervals across a diverse range of proba-

bility distributions. This includes examining distributions with varying shapes and

characteristics, such as multimodal distributions and those affected by contamina-

tion. Furthermore, we intend to explore modifications to our robust method (3.4)

to enhance its accuracy and get reasonable confidence estimates when estimating

population standard deviations for heavy-tailed distributions. These extensions will

broaden the applicability of our approach and provide more comprehensive guidance

for practitioners dealing with non-standard data scenarios.
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APPENDIX

Sample Sizes
Methods Measuring Criteria 5 10 20 30 50 70 100
Exact Coverage 0.964 0.965 0.954 0.949 0.937 0.949 0.946

Under Coverage 0.018 0.020 0.021 0.029 0.028 0.031 0.024
Over Coverage 0.018 0.015 0.025 0.022 0.035 0.020 0.030
Mean Width 2.1267 1.0987 0.6956 0.5427 0.4079 0.34033 0.2833
Median Width 2.0543 1.0835 0.6951 0.5453 0.4065 0.3406 0.2829
SD Width 0.7471 0.2559 0.1103 0.07195 0.04273 0.0288 0.0205

Bonett Coverage 0.993 0.968 0.948 0.949 0.933 0.943 0.946
Under Coverage 0.006 0.019 0.025 0.033 0.031 0.033 0.026
Over Coverage 0.001 0.013 0.027 0.018 0.036 0.024 0.028
Mean Width 4.4779 1.3143 0.7303 0.5566 0.4176 0.3436 0.2858
Median Width 3.8027 1.2317 0.7014 0.5392 0.4095 0.3376 0.2815
SD Width 2.6289 0.4994 0.1928 0.1306 0.0755 0.0540 0.0392

Robust Coverage 0.831 0.913 0.925 0.922 0.922 0.932 0.939
Under Coverage 0.071 0.035 0.028 0.042 0.038 0.038 0.035
Over Coverage 0.098 0.052 0.047 0.036 0.040 0.030 0.026
Mean Width 2.5933 1.2529 0.7854 0.6054 0.4518 0.3767 0.3139
Median Width 2.4201 1.2309 0.7832 0.6037 0.4487 0.3764 0.3136
SD Width 1.3374 0.3611 0.1547 0.0938 0.0547 0.0363 0.0251

Modified Robust Coverage 0.867 0.920 0.920 0.929 0.926 0.955 0.949
Under Coverage 0.005 0.003 0.003 0.008 0.009 0.006 0.004
Over Coverage 0.128 0.077 0.077 0.063 0.065 0.039 0.047
Mean Width 11.5261 2.3525 1.1373 0.8069 0.5577 0.4547 0.3703
Median Width 10.4731 2.1834 1.0846 0.7818 0.5489 0.4508 0.3690
SD Width 5.9412 0.9617 0.3615 0.2330 0.1051 0.0786 0.0400

Non-Parametric Bootstrap Coverage 0.642 0.779 0.843 0.907 0.904 0.916 0.938
Under Coverage 0.358 0.221 0.149 0.089 0.088 0.072 0.056
Over Coverage 0.000 0.000 0.008 0.004 0.008 0.012 0.006
Mean Width 0.9458 0.7439 0.5489 0.4671 0.3735 0.3166 0.2682
Median Width 0.9004 0.7174 0.5335 0.4540 0.3670 0.3125 0.2662
SD Width 0.3711 0.2348 0.1334 0.0984 0.0698 0.0473 0.0350

Parametric Bootstrap Coverage 0.885 0.899 0.915 0.945 0.928 0.942 0.931
Under Coverage 0.029 0.033 0.034 0.026 0.037 0.030 0.037
Over Coverage 0.086 0.068 0.051 0.029 0.035 0.028 0.032
Mean Width 5.1377 1.1600 0.6497 0.5183 0.3960 0.3297 0.2753
Median Width 2.4616 1.0274 0.6154 0.5006 0.3892 0.3245 0.2720
SD Width 34.4886 0.5795 0.1875 0.1216 0.0785 0.0514 0.0371

Robust Bootstrap Coverage 0.788 0.885 0.916 0.933 0.923 0.942 0.952
Under Coverage 0.090 0.045 0.041 0.030 0.036 0.027 0.024
Over Coverage 0.122 0.070 0.043 0.037 0.041 0.031 0.024
Mean Width 2.5363 1.2445 0.7656 0.5994 0.4509 0.3773 0.3123
Median Width 2.3288 1.2159 0.7616 0.5984 0.4511 0.3759 0.3122
SD Width 1.4980 0.3935 0.1563 0.0910 0.0557 0.0370 0.0254

Modified Robust Bootstrap Coverage 0.759 0.911 0.931 0.942 0.931 0.942 0.957
Under Coverage 0.101 0.004 0.009 0.006 0.006 0.004 0.003
Over Coverage 0.144 0.085 0.060 0.052 0.063 0.054 0.040
Mean Width 3.9052 2.2854 1.1071 0.7869 0.5581 0.4480 0.3659
Median Width 5.6022 2.0602 1.0362 0.7579 0.5451 0.4448 0.3632
SD Width 70.8065 1.0845 0.4018 0.2260 0.1339 0.0480 0.0463

CT Bootstrap Coverage 0.964 0.948 0.944 0.960 0.948 0.950 0.955
Under Coverage 0.036 0.052 0.056 0.040 0.052 0.050 0.045
Over Coverage 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mean Width 4.3076 1.7267 1.3673 1.2794 1.2016 1.1640 1.1339
Median Width 2.9858 1.6630 1.3533 1.2675 1.2003 1.1632 1.1296
SD Width 6.4003 0.5481 0.2393 0.1692 0.1294 0.1007 0.0802

Table 1: Coverage Properties for N(3, 1)

46



Sample Sizes
Methods Measuring Criteria 5 10 20 30 50 70 100
Exact Coverage 0.708 0.651 0.587 0.560 0.548 0.558 0.565

Under Coverage 0.199 0.238 0.272 0.279 0.271 0.250 0.254
Over Coverage 0.093 0.111 0.141 0.161 0.181 0.192 0.181
Mean Width 2.6218 1.4370 0.9293 0.7442 0.5615 0.4789 0.3962
Median Width 2.1508 1.3040 0.8800 0.7157 0.5484 0.4663 0.3893
SD Width 1.8872 0.7443 0.3653 0.2404 0.1442 0.1082 0.0732

Bonett Coverage 0.922 0.851 0.826 0.851 0.872 0.889 0.914
Under Coverage 0.076 0.141 0.158 0.128 0.119 0.096 0.068
Over Coverage 0.002 0.008 0.016 0.021 0.009 0.015 0.018
Mean Width 8.9043 3.1929 1.9636 1.6118 1.2697 1.1303 0.9661
Median Width 5.5727 2.4327 1.6315 1.3813 1.1032 1.0103 0.8834
SD Width 8.9684 2.5638 1.3286 0.9577 0.6567 0.5520 0.4056

Robust Coverage 0.561 0.397 0.127 0.032 0.002 0.000 0.000
Under Coverage 0.410 0.594 0.873 0.968 0.998 1.000 1.000
Over Coverage 0.029 0.009 0.000 0.000 0.000 0.000 0.000
Mean Width 1.9007 0.8936 0.4849 0.3624 0.2622 0.2147 0.1721
Median Width 1.4196 0.7885 0.4601 0.3490 0.2554 0.2107 0.1707
SD Width 1.6677 0.5271 0.1998 0.1246 0.0716 0.0471 0.0314

Modified Robust Coverage 0.916 0.871 0.830 0.856 0.852 0.875 0.851
Under Coverage 0.050 0.119 0.170 0.143 0.148 0.125 0.149
Over Coverage 0.034 0.010 0.000 0.001 0.000 0.000 0.000
Mean Width 11.2832 3.1997 2.1040 1.9027 1.6865 1.6259 1.5625
Median Width 8.2279 2.6437 1.9109 1.7416 1.5354 1.5150 1.5114
SD Width 10.1858 2.0980 1.1359 0.8909 0.7283 0.6430 0.5935

Non-Parametric Bootstrap Coverage 0.387 0.539 0.655 0.707 0.782 0.817 0.850
Under Coverage 0.613 0.458 0.344 0.292 0.217 0.182 0.142
Over Coverage 0.000 0.003 0.001 0.001 0.001 0.001 0.008
Mean Width 1.2350 1.3242 1.2601 1.1368 0.9825 0.9248 0.8188
Median Width 0.9665 1.1106 1.0884 1.0209 0.9071 0.8495 0.7558
SD Width 0.9706 0.8581 0.7408 0.5940 0.4233 0.4025 0.3177

Parametric Bootstrap Coverage 0.738 0.738 0.765 0.802 0.859 0.861 0.874
Under Coverage 0.128 0.150 0.132 0.126 0.099 0.082 0.076
Over Coverage 0.134 0.112 0.103 0.072 0.042 0.057 0.050
Mean Width 19.8398 5.0251 2.4548 1.7726 1.2760 1.1277 0.9413
Median Width 4.1655 2.6204 1.7145 1.3889 1.1011 0.9660 0.8464
SD Width 59.9651 8.1556 2.4908 1.5849 0.7392 0.6313 0.4457

Robust Bootstrap Coverage 0.457 0.316 0.114 0.027 0.000 0.000 0.000
Under Coverage 0.511 0.672 0.886 0.973 1.000 1.000 1.000
Over Coverage 0.032 0.012 0.000 0.000 0.000 0.000 0.000
Mean Width 1.5342 0.7742 0.4488 0.3425 0.2459 0.2070 0.1708
Median Width 1.0535 0.6761 0.4141 0.3243 0.2427 0.2045 0.1677
SD Width 1.5596 0.5103 0.2010 0.1190 0.0658 0.0486 0.0330

Modified Robust Bootstrap Coverage 0.704 0.764 0.800 0.798 0.820 0.845 0.864
Under Coverage 0.262 0.222 0.200 0.202 0.180 0.155 0.136
Over Coverage 0.034 0.014 0.000 0.000 0.000 0.000 0.000
Mean Width 4.3381 2.1944 1.8237 1.6898 1.5396 1.5540 1.5284
Median Width 2.6086 1.9048 1.6585 1.5916 1.4281 1.4590 1.48371
SD Width 8.6559 1.4005 0.9192 0.7568 0.6046 0.6091 0.5463

CT Bootstrap Coverage 0.849 0.817 0.823 0.839 0.872 0.876 0.900
Under Coverage 0.151 0.183 0.177 0.161 0.128 0.124 0.100
Over Coverage 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mean Width 19.2609 4.6469 2.9837 2.4675 2.1211 2.0565 1.9198
Median Width 4.5274 2.9105 2.3402 2.1509 1.9770 1.9225 1.8164
SD Width 57.4877 5.9722 2.2600 1.3473 0.7879 0.6924 0.5033

Table 2: Coverage Properties for χ2
(1)
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Sample Sizes
Methods Measuring Criteria 5 10 20 30 50 70 100
Exact Coverage 0.801 0.701 0.659 0.582 0.570 0.566 0.529

Under Coverage 0.128 0.197 0.215 0.266 0.269 0.272 0.265
Over Coverage 0.071 0.102 0.126 0.152 0.161 0.162 0.206
Mean Width 1.4756 0.8120 0.5274 0.4170 0.3203 0.2671 0.2255
Median Width 1.2145 0.6911 0.4890 0.3875 0.3070 0.2554 0.2188
SD Width 0.9379 0.4276 0.1987 0.1376 0.0815 0.0611 0.0456

Bonett Coverage 0.965 0.831 0.840 0.818 0.856 0.861 0.871
Under Coverage 0.035 0.158 0.147 0.176 0.128 0.130 0.119
Over Coverage 0.000 0.011 0.013 0.006 0.016 0.009 0.010
Mean Width 4.0860 1.5396 1.0019 0.8325 0.6926 0.5950 0.5360
Median Width 2.4769 1.0376 0.7725 0.6516 0.5699 0.4973 0.4564
SD Width 4.2641 1.4750 0.7801 0.6174 0.4206 0.3707 0.3182

Robust Coverage 0.778 0.707 0.442 0.240 0.060 0.011 0.000
Under Coverage 0.186 0.288 0.558 0.759 0.940 0.989 1.000
Over Coverage 0.036 0.005 0.000 0.001 0.000 0.000 0.000
Mean Width 1.4251 0.6758 0.4042 0.3073 0.2287 0.1893 0.1573
Median Width 1.2089 0.6479 0.3927 0.3037 0.2262 0.1877 0.1569
SD Width 0.9212 0.2478 0.1026 0.0610 0.0351 0.03512 0.0165

Modified Robust Coverage 0.946 0.962 0.937 0.908 0.940 0.951 0.986
Under Coverage 0.011 0.029 0.063 0.091 0.060 0.049 0.014
Over Coverage 0.043 0.009 0.000 0.001 0.000 0.000 0.000
Mean Width 7.6192 2.0728 1.5100 1.3606 1.3238 1.2543 1.2931
Median Width 6.2060 1.7027 1.4440 1.2641 1.1399 1.0270 1.2585
SD Width 5.6904 1.2770 0.8261 0.7668 0.6472 0.6240 0.6082

Non-Parametric Bootstrap Coverage 0.393 0.525 0.611 0.673 0.716 0.761 0.780
Under Coverage 0.606 0.475 0.389 0.326 0.282 0.236 0.219
Over Coverage 0.001 0.000 0.000 0.001 0.002 0.003 0.001
Mean Width 0.6913 0.6916 0.6184 0.5790 0.5315 0.4780 0.4288
Median Width 0.5507 0.5410 0.5106 0.5001 0.4535 0.4167 0.3746
SD Width 0.5036 0.5400 0.4029 0.3467 0.3311 0.2537 0.2113

Parametric Bootstrap Coverage 0.771 0.697 0.741 0.780 0.789 0.812 0.822
Under Coverage 0.118 0.201 0.185 0.164 0.166 0.142 0.129
Over Coverage 0.111 0.102 0.074 0.056 0.045 0.046 0.049
Mean Width 7.0879 1.8392 1.0348 0.8346 0.6936 0.5665 0.4843
Median Width 1.9187 0.9468 0.6959 0.6161 0.5319 0.4632 0.4045
SD Width 52.3355 3.6109 1.2346 0.8267 0.7371 0.4014 0.3007

Robust Bootstrap Coverage 0.686 0.599 0.355 0.207 0.053 0.005 0.0000
Under Coverage 0.284 0.397 0.645 0.793 0.947 0.995 1.000
Over Coverage 0.030 0.004 0.000 0.000 0.000 0.000 0.000
Mean Width 1.1319 0.5907 0.3689 0.2938 0.22039 0.1853 0.1538
Median Width 0.9440 0.5553 0.3619 0.2878 0.2179 0.1849 0.1537
SD Width 0.8628 0.2418 0.0981 0.0610 0.0355 0.0237 0.0166

Modified Robust Bootstrap Coverage 0.853 0.935 0.897 0.909 0.914 0.958 0.980
Under Coverage 0.109 0.059 0.103 0.091 0.086 0.042 0.020
Over Coverage 0.038 0.006 0.000 0.000 0.000 0.000 0.000
Mean Width 3.3997 1.4963 1.2116 1.1983 1.1948 1.1864 1.1655
Median Width 2.3643 1.2335 1.1876 1.1547 1.0731 0.9809 0.9231
SD Width 13.3384 0.8560 0.6610 0.5917 0.5895 0.5585 0.5261

CT Bootstrap Coverage 0.868 0.766 0.779 0.793 0.803 0.813 0.832
Under Coverage 0.132 0.234 0.221 0.207 0.197 0.187 0.168
Over Coverage 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mean Width 5.2802 2.0590 1.4387 1.2919 1.2028 1.1043 1.0499
Median Width 2.1522 1.2723 1.1223 1.0929 1.0439 0.9996 0.9788
SD Width 13.2688 3.2055 1.2535 0.8536 0.7718 0.4436 0.3363

Table 3: Coverage Properties for Lognormal(1, 0.8)
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Sample Sizes
Methods Measuring Criteria 5 10 20 30 50 70 100
Exact Coverage 0.920 0.896 0.899 0.890 0.882 0.888 0.880

Under Coverage 0.032 0.055 0.040 0.053 0.057 0.045 0.051
Over Coverage 0.048 0.049 0.061 0.057 0.061 0.067 0.069
Mean Width 2.3346 1.2060 0.7714 0.6059 0.4543 0.3827 0.3174
Median Width 2.1826 1.1781 0.7616 0.5975 0.4507 0.3804 0.3162
SD Width 0.9604 0.3447 0.1519 0.1001 0.0581 0.0410 0.0292

Bonett Coverage 0.987 0.956 0.933 0.922 0.928 0.940 0.941
Under Coverage 0.010 0.033 0.042 0.056 0.056 0.039 0.043
Over Coverage 0.003 0.011 0.025 0.022 0.016 0.021 0.016
Mean Width 5.2367 1.5874 0.9463 0.7369 0.5641 0.4718 0.3986
Median Width 4.2100 1.3541 0.8115 0.6572 0.5109 0.4395 0.3760
SD Width 3.5750 0.8478 0.4311 0.3010 0.2103 0.1482 0.1115

Robust Coverage 0.832 0.919 0.905 0.919 0.886 0.883 0.850
Under Coverage 0.086 0.051 0.076 0.070 0.110 0.109 0.150
Over Coverage 0.082 0.030 0.019 0.011 0.004 0.008 0.000
Mean Width 2.6861 1.3162 0.8089 0.6298 0.4673 0.3940 0.3264
Median Width 2.4385 1.2636 0.8064 0.6241 0.4681 0.3913 0.3257
SD Width 1.5199 0.4065 0.1692 0.0992 0.0562 0.0401 0.0273

Modified Robust Coverage 0.888 0.932 0.965 0.967 0.973 0.979 0.979
Under Coverage 0.002 0.007 0.003 0.011 0.016 0.011 0.022
Over Coverage 0.110 0.061 0.032 0.022 0.011 0.010 0.005
Mean Width 12.3828 2.7490 1.5685 1.2435 1.0052 0.8513 0.7507
Median Width 10.9895 2.3726 1.2031 0.8703 0.6151 0.5017 0.4040
SD Width 7.2870 1.40793 0.8776 0.7858 0.7106 0.6302 0.5874

Non-Parametric Bootstrap Coverage 0.605 0.685 0.818 0.839 0.858 0.897 0.911
Under Coverage 0.395 0.310 0.178 0.158 0.138 0.098 0.073
Over Coverage 0.000 0.005 0.004 0.003 0.004 0.005 0.016
Mean Width 1.0733 0.8332 0.6830 0.5938 0.4728 0.4172 0.3657
Median Width 0.9923 0.7588 0.6228 0.5463 0.4474 0.3948 0.3473
SD Width 0.5019 0.3485 0.2568 0.2128 0.1378 0.1166 0.0953

Parametric Bootstrap Coverage 0.849 0.854 0.872 0.873 0.895 0.910 0.916
Under Coverage 0.034 0.067 0.066 0.071 0.075 0.054 0.048
Over Coverage 0.117 0.079 0.062 0.056 0.030 0.036 0.036
Mean Width 5.3405 1.3616 0.8572 0.6865 0.5117 0.4402 0.3792
Median Width 2.8291 1.0915 0.7437 0.6110 0.4797 0.4100 0.3589
SD Width 17.5285 0.9215 0.4276 0.2960 0.1643 0.1299 0.1024

Robust Bootstrap Coverage 0.779 0.886 0.883 0.890 0.869 0.873 0.855
Under Coverage 0.120 0.067 0.095 0.098 0.124 0.126 0.142
Over Coverage 0.101 0.047 0.022 0.012 0.007 0.001 0.003
Mean Width 2.5048 1.2683 0.7800 0.6147 0.4598 0.3876 0.3219
Median Width 2.3415 1.2306 0.7801 0.6122 0.4602 0.3865 0.3208
SD Width 1.4578 0.4079 0.1669 0.1019 0.0583 0.0404 0.0275

Modified Robust Bootstrap Coverage 0.814 0.929 0.954 0.971 0.965 0.972 0.961
Under Coverage 0.074 0.005 0.010 0.009 0.024 0.021 0.032
Over Coverage 0.113 0.066 0.036 0.020 0.011 0.007 0.007
Mean Width 3.3639 2.3315 1.4499 1.1835 0.9125 0.7999 0.7540
Median Width 5.3021 2.0723 1.1426 0.8330 0.5878 0.4799 0.3939
SD Width 73.8640 1.0353 0.7618 0.7266 0.6129 0.5938 0.5916

CT Bootstrap Coverage 0.954 0.910 0.918 0.906 0.906 0.927 0.937
Under Coverage 0.046 0.090 0.082 0.094 0.094 0.073 0.063
Over Coverage 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mean Width 5.3934 1.9827 1.6259 1.5071 1.3774 1.3405 1.3090
Median Width 3.2311 1.7682 1.5425 1.4559 1.3529 1.3254 1.2939
SD Width 13.4404 0.9395 0.4694 0.3430 0.2147 0.1744 0.1392

Table 4: Coverage Properties for Gamma (5, .5)
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Sample Sizes
Methods Measuring Criteria 5 10 20 30 50 70 100
Exact Coverage 0.827 0.765 0.756 0.731 0.717 0.696 0.676

Under Coverage 0.100 0.158 0.139 0.156 0.159 0.186 0.184
Over Coverage 0.073 0.077 0.105 0.113 0.124 0.118 0.140
Mean Width 1.2992 0.6809 0.4460 0.3527 0.2699 0.2242 0.1874
Median Width 1.1462 0.6359 0.4327 0.3455 0.2654 0.2232 0.1860
SD Width 0.7423 0.2770 0.1281 0.0858 0.0510 0.0363 0.0267

Bonett Coverage 0.964 0.888 0.875 0.883 0.901 0.909 0.910
Under Coverage 0.034 0.105 0.115 0.109 0.082 0.082 0.076
Over Coverage 0.002 0.007 0.010 0.008 0.017 0.009 0.014
Mean Width 3.6834 1.1995 0.7654 0.6100 0.4849 0.4175 0.3564
Median Width 2.5198 0.9185 0.6548 0.5512 0.4402 0.3784 0.3307
SD Width 3.3881 0.8674 0.4637 0.3256 0.2204 0.1743 0.1317

Robust Coverage 0.756 0.701 0.494 0.309 0.131 0.037 0.010
Under Coverage 0.200 0.291 0.505 0.690 0.869 0.963 0.990
Over Coverage 0.044 0.008 0.001 0.001 0.000 0.000 0.000
Mean Width 1.2232 0.5873 0.3467 0.2649 0.1985 0.1638 0.1345
Median Width 1.0469 0.5590 0.3390 0.2623 0.1965 0.1633 0.1338
SD Width 0.8226 0.2358 0.0941 0.0585 0.0333 0.0234 0.0164

Modified Robust Coverage 0.938 0.965 0.942 0.946 0.949 0.960 0.976
Under Coverage 0.013 0.025 0.051 0.053 0.051 0.040 0.024
Over Coverage 0.049 0.010 0.007 0.001 0.000 0.000 0.000
Mean Width 6.4381 1.7275 1.1737 1.0421 0.9451 0.9088 0.8548
Median Width 5.3748 1.4288 1.1505 1.0251 0.8914 0.8194 0.7460
SD Width 4.5251 1.0126 0.6195 0.4835 0.3786 0.3483 0.3098

Non-Parametric Bootstrap Coverage 0.466 0.616 0.699 0.752 0.815 0.837 0.868
Under Coverage 0.534 0.383 0.296 0.245 0.180 0.156 0.125
Over Coverage 0.000 0.001 0.005 0.003 0.005 0.007 0.007
Mean Width 0.6132 0.5606 0.4918 0.4626 0.3933 0.3498 0.3111
Median Width 0.5219 0.4968 0.4372 0.4153 0.3602 0.3262 0.2925
SD Width 0.4054 0.3114 0.2534 0.2205 0.1638 0.1279 0.1058

Parametric Bootstrap Coverage 0.785 0.774 0.807 0.819 0.853 0.860 0.897
Under Coverage 0.080 0.134 0.126 0.119 0.106 0.094 0.072
Over Coverage 0.135 0.092 0.067 0.062 0.041 0.046 0.031
Mean Width 5.6355 1.2829 0.7553 0.6191 0.4665 0.3931 0.3374
Median Width 1.7538 0.8473 0.5893 0.5063 0.4093 0.3566 0.3128
SD Width 26.9955 1.3754 0.6210 0.4188 0.2390 0.1665 0.1276

Robust Bootstrap Coverage 0.685 0.660 0.422 0.266 0.103 0.048 0.008
Under Coverage 0.274 0.326 0.573 0.734 0.897 0.952 0.992
Over Coverage 0.041 0.014 0.005 0.000 0.000 0.000 0.000
Mean Width 1.0330 0.5389 0.3241 0.2525 0.1919 0.1607 0.1316
Median Width 0.8563 0.5039 0.5039 0.2481 0.1896 0.1586 0.1309
SD Width 0.7689 0.2311 0.0951 0.0587 0.0336 0.0236 0.0161

Modified Robust Bootstrap Coverage 0.833 0.931 0.921 0.923 0.936 0.965 0.981
Under Coverage 0.116 0.047 0.074 0.077 0.064 0.035 0.019
Over Coverage 0.051 0.022 0.005 0.000 0.000 0.000 0.000
Mean Width 2.9432 1.3130 0.9902 0.9712 0.8908 0.8703 0.8449
Median Width 2.0720 1.1499 0.9474 0.9626 0.8476 0.7926 0.7299
SD Width 9.1845 0.6685 0.4986 0.4399 0.3717 0.3245 0.3073

CT Bootstrap Coverage 0.912 0.836 0.845 0.862 0.875 0.887 0.907
Under Coverage 0.088 0.164 0.155 0.138 0.125 0.113 0.093
Over Coverage 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mean Width 5.6364 1.4989 1.1162 1.0328 0.9261 0.8766 0.8411
Median Width 1.9226 1.1587 0.9760 0.9453 0.8776 0.8460 0.8197
SD Width 27.0620 1.1974 0.5795 0.4393 0.2632 0.1949 0.1568

Table 5: Coverage Properties for Exponential (1.5)
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Sample Sizes
Methods Measuring Criteria 5 10 20 30 50 70 100
Exact Coverage 0.978 0.993 0.998 0.998 1.000 0.999 1.000

Under Coverage 0.022 0.007 0.002 0.002 0.000 0.001 0.000
Over Coverage 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mean Width 0.7698 0.3996 0.2472 0.1931 0.1447 0.1209 0.1003
Median Width 0.7984 0.4023 0.2485 0.1934 0.1446 0.1208 0.1005
SD Width 0.1980 0.0559 0.0218 0.0129 0.0077 0.0053 0.0035

Bonett Coverage 0.997 0.969 0.951 0.954 0.941 0.937 0.958
Under Coverage 0.003 0.006 0.001 0.002 0.005 0.009 0.008
Over Coverage 0.000 0.025 0.048 0.044 0.054 0.054 0.034
Mean Width 1.8220 0.3832 0.1722 0.1212 0.0835 0.0668 0.0539
Median Width 1.5370 0.3482 0.1655 0.1188 0.0826 0.0663 0.0535
SD Width 1.0248 0.1136 0.0297 0.0153 0.0077 0.0048 0.0032

Robust Coverage 0.807 0.917 0.936 0.929 0.909 0.862 0.812
Under Coverage 0.125 0.065 0.064 0.071 0.091 0.138 0.188
Over Coverage 0.068 0.018 0.000 0.000 0.000 0.000 0.000
Mean Width 0.8159 0.4235 0.2475 0.1933 0.1441 0.1194 0.0988
Median Width 0.7766 0.4322 0.2521 0.1970 0.1457 0.1204 0.0995
SD Width 0.4469 0.1165 0.0415 0.0249 0.0133 0.0084 0.0058

Modified Robust Coverage 0.892 0.961 0.983 0.977 0.969 0.971 0.949
Under Coverage 0.015 0.008 0.017 0.023 0.031 0.029 0.051
Over Coverage 0.093 0.031 0.000 0.000 0.000 0.000 0.000
Mean Width 3.6143 0.7401 0.3400 0.2486 0.1765 0.1429 0.1162
Median Width 3.4831 0.7295 0.3431 0.2520 0.1782 0.1441 0.1171
SD Width 1.9001 0.2113 0.0592 0.0340 0.0176 0.0101 0.0069

Non-Parametric Bootstrap Coverage 0.751 0.910 0.947 0.957 0.952 0.944 0.950
Under Coverage 0.249 0.089 0.048 0.036 0.037 0.040 0.028
Over Coverage 0.000 0.001 0.005 0.007 0.011 0.016 0.022
Mean Width 0.3374 0.2151 0.1317 0.1013 0.0745 0.0620 0.0508
Median Width 0.3461 0.2037 0.1285 0.1002 0.0742 0.0618 0.0506
SD Width 0.0942 0.0485 0.0192 0.0115 0.0062 0.0047 0.0032

Parametric Bootstrap Coverage 0.891 0.924 0.918 0.934 0.921 0.913 0.908
Under Coverage 0.020 0.013 0.007 0.008 0.009 0.016 0.028
Over Coverage 0.089 0.063 0.075 0.058 0.070 0.071 0.064
Mean Width 2.5883 0.3450 0.1492 0.1087 0.0773 0.0773 0.0516
Median Width 1.0444 0.2691 0.1434 0.1074 0.0769 0.0634 0.0512
SD Width 8.7341 0.2581 0.0296 0.0146 0.0073 0.0054 0.0036

Robust Bootstrap Coverage 0.810 0.907 0.933 0.944 0.900 0.876 0.838
Under Coverage 0.126 0.069 0.067 0.056 0.100 0.124 0.162
Over Coverage 0.064 0.024 0.000 0.000 0.000 0.000 0.000
Mean Width 0.7889 0.4140 0.2469 0.1929 0.1433 0.1189 0.0990
Median Width 0.7649 0.4203 0.2515 0.1951 0.1447 0.1197 0.0994
SD Width 0.4265 0.1191 0.0419 0.0236 0.0133 0.0093 0.0061

Modified Robust Bootstrap Coverage 0.806 0.961 0.976 0.979 0.970 0.959 0.954
Under Coverage 0.109 0.010 0.023 0.021 0.030 0.041 0.046
Over Coverage 0.085 0.029 0.001 0.000 0.000 0.000 0.000
Mean Width 2.9969 0.6931 0.3290 0.2427 0.1733 0.1408 0.1153
Median Width 1.8469 0.6675 0.3319 0.2448 0.1737 0.1413 0.1155
SD Width 38.9290 0.2633 0.0675 0.0338 0.0188 0.0124 0.0081

CT Bootstrap Coverage 0.978 0.980 0.989 0.988 0.988 0.977 0.979
Under Coverage 0.022 0.020 0.011 0.012 0.012 0.023 0.021
Over Coverage 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mean Width 2.5559 0.5512 0.4399 0.4130 0.3946 0.3855 0.3784
Median Width 1.1392 0.5396 0.4406 0.4132 0.3953 0.3856 0.3785
SD Width 7.6558 0.1281 0.0305 0.0225 0.0172 0.0147 0.0120

Table 6: Coverage Properties for Beta (0.5, 0.5)
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Sample Sizes
Methods Measuring Criteria 5 10 20 30 50 70 100
Exact Coverage 0.888 0.857 0.817 0.803 0.807 0.805 0.784

Under Coverage 0.057 0.085 0.105 0.097 0.104 0.103 0.118
Over Coverage 0.055 0.058 0.078 0.100 0.089 0.092 0.098
Mean Width 11.6299 5.9184 3.8433 3.0692 2.2963 1.9217 1.5861
Median Width 10.5004 5.7345 3.7939 3.0272 2.2714 1.9156 1.5722
SD Width 5.5585 1.9788 0.9300 0.6012 0.3677 0.2481 0.1814

Bonett Coverage 0.983 0.933 0.906 0.919 0.906 0.924 0.918
Under Coverage 0.013 0.013 0.069 0.062 0.066 0.056 0.061
Over Coverage 0.004 0.012 0.025 0.019 0.028 0.020 0.021
Mean Width 27.5871 8.7643 5.4126 4.3964 3.3564 2.8054 2.3737
Median Width 21.7357 7.5282 4.9363 3.9939 3.0835 2.6488 2.2424
SD Width 19.6564 4.7922 2.3289 1.7659 1.2173 0.8334 0.6867

Robust Coverage 0.789 0.826 0.774 0.731 0.614 0.495 0.338
Under Coverage 0.132 0.131 0.211 0.258 0.380 0.503 0.660
Over Coverage 0.079 0.043 0.015 0.011 0.006 0.002 0.002
Mean Width 12.7354 6.0434 3.6553 2.8810 2.1196 1.7584 1.4461
Median Width 11.2923 5.7700 3.5703 2.8483 2.1176 1.7471 1.4424
SD Width 8.0040 2.2284 0.9285 0.5867 0.3381 0.2368 0.1650

Modified Robust Coverage 0.895 0.934 0.934 0.921 0.841 0.756 0.602
Under Coverage 0.006 0.013 0.038 0.060 0.153 0.240 0.395
Over Coverage 0.099 0.053 0.028 0.019 0.006 0.004 0.003
Mean Width 63.9305 14.0281 7.2678 5.4795 3.9074 2.9832 2.2832
Median Width 54.4886 11.6357 5.5640 3.9666 2.7366 2.1791 1.7262
SD Width 41.5528 7.9647 4.3396 3.5780 2.9032 2.2536 1.9315

Non-Parametric Bootstrap Coverage 0.565 0.683 0.781 0.807 0.860 0.884 0.882
Under Coverage 0.435 0.314 0.215 0.190 0.131 0.113 0.109
Over Coverage 0.000 0.003 0.004 0.003 0.009 0.003 0.009
Mean Width 5.4679 4.7345 4.0405 3.5692 2.9075 2.5746 2.2313
Median Width 4.9299 4.3200 3.7340 3.3272 2.7551 2.4208 2.0976
SD Width 2.8450 2.2061 1.5848 1.3418 0.8700 0.7610 0.6009

Parametric Bootstrap Coverage 0.831 0.829 0.864 0.877 0.901 0.914 0.912
Under Coverage 0.046 0.084 0.074 0.083 0.068 0.058 0.060
Over Coverage 0.123 0.087 0.062 0.040 0.031 0.028 0.028
Mean Width 27.0648 8.7646 5.3882 4.3233 3.2327 2.7760 2.3457
Median Width 14.4710 6.8922 4.6815 3.8866 3.0270 2.5972 2.1848
SD Width 37.5785 6.8452 2.9141 2.0101 1.1002 0.9104 0.6669

Robust Bootstrap Coverage 0.760 0.829 0.775 0.688 0.614 0.472 0.370
Under Coverage 0.146 0.134 0.197 0.302 0.381 0.526 0.629
Over Coverage 0.094 0.037 0.028 0.010 0.005 0.002 0.001
Mean Width 12.6053 6.0217 3.6816 2.8072 2.1155 1.7393 1.4488
Median Width 10.8003 5.7114 3.5990 2.7446 2.1031 1.7231 1.4445
SD Width 8.4953 2.2843 0.9796 0.6031 0.3250 0.2331 0.1698

Modified Robust Bootstrap Coverage 0.756 0.934 0.923 0.897 0.839 0.750 0.621
Under Coverage 0.144 0.017 0.041 0.088 0.155 0.248 0.378
Over Coverage 0.112 0.049 0.036 0.015 0.006 0.002 0.001
Mean Width 84.0042 13.8991 7.2076 5.5766 3.7978 3.0516 2.3450
Median Width 24.9012 10.9809 5.5705 3.8993 2.6922 2.1469 1.7174
SD Width 1421.9406 9.5654 4.4767 3.9617 2.6821 2.4471 2.0382

CT Bootstrap Coverage 0.946 0.886 0.899 0.896 0.916 0.918 0.911
Under Coverage 0.054 0.114 0.101 0.104 0.084 0.082 0.089
Over Coverage 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mean Width 28.1224 11.3130 8.8942 8.1127 7.3617 7.0548 6.8343
Median Width 17.0455 9.6400 8.3663 7.8070 7.1914 6.9208 6.7683
SD Width 35.1651 6.5993 3.0708 2.2638 1.4107 1.1551 0.9356

Table 7: Coverage Properties for Laplace (0, 4)
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Sample Sizes
Methods Measuring Criteria 5 10 20 30 50 70 100
Exact Coverage 0.842 0.804 0.781 0.779 0.735 0.744 0.739

Under Coverage 0.104 0.120 0.126 0.128 0.127 0.148 0.133
Over Coverage 0.054 0.076 0.093 0.093 0.138 0.108 0.128
Mean Width 0.0904 0.0477 0.0306 0.0241 0.0185 0.0153 0.0127
Median Width 0.0815 0.0449 0.0296 0.0237 0.0181 0.0152 0.0126
SD Width 0.0494 0.0182 0.0082 0.0053 0.0032 0.0022 0.0016

Bonett Coverage 0.968 0.901 0.906 0.889 0.925 0.925 0.913
Under Coverage 0.030 0.088 0.085 0.096 0.055 0.077 0.063
Over Coverage 0.002 0.011 0.009 0.015 0.020 0.009 0.024
Mean Width 0.2474 0.0822 0.0495 0.0390 0.0312 0.0257 0.0218
Median Width 0.1753 0.0655 0.0424 0.0354 0.0284 0.0242 0.0207
SD Width 0.2263 0.0571 0.0276 0.0185 0.0129 0.0092 0.0068

Robust Coverage 0.764 0.744 0.567 0.430 0.213 0.100 0.021
Under Coverage 0.181 0.240 0.433 0.570 0.786 0.900 0.979
Over Coverage 0.055 0.016 0.000 0.000 0.001 0.000 0.000
Mean Width 0.0884 0.0419 0.0246 0.0192 0.0143 0.0118 0.0097
Median Width 0.0748 0.0396 0.0242 0.0189 0.0141 0.0117 0.0097
SD Width 0.0603 0.0170 0.0063 0.0039 0.0024 0.0016 0.0010

Modified Robust Coverage 0.929 0.961 0.963 0.951 0.954 0.950 0.958
Under Coverage 0.009 0.020 0.035 0.049 0.044 0.050 0.042
Over Coverage 0.062 0.019 0.002 0.000 0.002 0.000 0.000
Mean Width 0.4579 0.1189 0.0791 0.0697 0.0636 0.0576 0.0546
Median Width 0.3887 0.1003 0.0767 0.0714 0.0619 0.0555 0.0515
SD Width 0.3150 0.0659 0.0415 0.0326 0.0259 0.0216 0.0180

Non-Parametric Bootstrap Coverage 0.529 0.662 0.733 0.755 0.843 0.857 0.881
Under Coverage 0.471 0.336 0.265 0.237 0.149 0.139 0.110
Over Coverage 0.000 0.002 0.002 0.008 0.008 0.004 0.009
Mean Width 0.0434 0.0395 0.0339 0.0287 0.0251 0.0225 0.0195
Median Width 0.0386 0.0352 0.0298 0.0261 0.0233 0.0209 0.0185
SD Width 0.0250 0.0213 0.0166 0.0123 0.0093 0.0077 0.0057

Parametric Bootstrap Coverage 0.795 0.783 0.828 0.826 0.868 0.881 0.893
Under Coverage 0.059 0.104 0.090 0.106 0.069 0.078 0.066
Over Coverage 0.146 0.113 0.082 0.068 0.063 0.041 0.041
Mean Width 0.2997 0.0915 0.0505 0.0367 0.0291 0.0249 0.0209
Median Width 0.1277 0.0604 0.0391 0.0312 0.0261 0.0229 0.0197
SD Width 0.5467 0.0979 0.0364 0.0206 0.0130 0.0097 0.0067

Robust Bootstrap Coverage 0.784 0.793 0.641 0.440 0.228 0.094 0.028
Under Coverage 0.140 0.180 0.357 0.558 0.772 0.906 0.972
Over Coverage 0.076 0.027 0.002 0.002 0.000 0.000 0.000
Mean Width 0.1027 0.0462 0.0261 0.0197 0.0145 0.0119 0.0097
Median Width 0.0891 0.0435 0.0256 0.0193 0.0143 0.0118 0.0097
SD Width 0.0685 0.0181 0.0067 0.0043 0.0023 0.0015 0.0011

Modified Robust Bootstrap Coverage 0.665 0.949 0.955 0.953 0.945 0.951 0.978
Under Coverage 0.265 0.018 0.041 0.044 0.055 0.049 0.022
Over Coverage 0.082 0.033 0.004 0.003 0.000 0.000 0.000
Mean Width 0.1731 0.1589 0.0881 0.0726 0.0641 0.0606 0.0565
Median Width 0.2330 0.1326 0.0866 0.0719 0.0634 0.0570 0.0525
SD Width 6.3671 0.1069 0.0485 0.0358 0.0267 0.0235 0.0177

CT Bootstrap Coverage 0.929 0.872 0.889 0.875 0.898 0.903 0.910
Under Coverage 0.071 0.128 0.111 0.125 0.102 0.097 0.090
Over Coverage 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mean Width 0.3043 0.1072 0.0769 0.0660 0.0617 0.0586 0.0562
Median Width 0.1460 0.0835 0.0681 0.0614 0.0591 0.0571 0.0553
SD Width 0.5169 0.0853 0.0358 0.0221 0.0149 0.0115 0.0087

Table 8: Coverage Properties for Beta (20, 1)
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Sample Sizes
Methods Measuring Criteria 5 10 20 30 50 70 100
Exact Coverage 0.950 0.953 0.943 0.961 0.945 0.953 0.965

Under Coverage 0.028 0.026 0.029 0.021 0.029 0.024 0.018
Over Coverage 0.022 0.021 0.028 0.018 0.026 0.023 0.017
Mean Width 0.2467 0.1280 0.0808 0.0633 0.0476 0.0396 0.0331
Median Width 0.2428 0.1265 0.0803 0.0630 0.0475 0.0396 0.0331
SD Width 0.0880 0.0880 0.0132 0.0080 0.0048 0.0034 0.0022

Bonett Coverage 0.989 0.954 0.932 0.946 0.933 0.941 0.962
Under Coverage 0.009 0.025 0.031 0.027 0.034 0.031 0.023
Over Coverage 0.002 0.021 0.037 0.027 0.033 0.028 0.015
Mean Width 0.5225 0.1519 0.0840 0.0647 0.0481 0.0402 0.0332
Median Width 0.4330 0.1394 0.0793 0.0616 0.0466 0.0392 0.0325
SD Width 0.3205 0.0620 0.0245 0.0160 0.0102 0.0077 0.0053

Robust Coverage 0.820 0.916 0.928 0.946 0.946 0.939 0.958
Under Coverage 0.083 0.039 0.031 0.025 0.034 0.034 0.027
Over Coverage 0.097 0.045 0.041 0.029 0.020 0.027 0.015
Mean Width 0.2998 0.1469 0.0907 0.0704 0.0525 0.0437 0.0365
Median Width 0.2906 0.1460 0.0901 0.0699 0.0524 0.0436 0.0364
SD Width 0.1537 0.0419 0.0175 0.0104 0.0059 0.0041 0.0028

Modified Robust Coverage 0.875 0.923 0.925 0.948 0.949 0.951 0.966
Under Coverage 0.002 0.000 0.008 0.004 0.003 0.005 0.002
Over Coverage 0.123 0.077 0.067 0.048 0.048 0.044 0.032
Mean Width 1.3260 0.2768 0.1378 0.1003 0.0700 0.0556 0.0448
Median Width 1.2369 0.2531 0.1258 0.0915 0.0647 0.0526 0.0430
SD Width 0.6945 0.1128 0.0541 0.0403 0.0283 0.0212 0.0153

Non-Parametric Bootstrap Coverage 0.647 0.752 0.867 0.881 0.899 0.905 0.906
Under Coverage 0.353 0.246 0.129 0.114 0.092 0.084 0.079
Over Coverage 0.000 0.002 0.004 0.005 0.009 0.011 0.015
Mean Width 0.1108 0.0839 0.0655 0.0533 0.0424 0.0367 0.0308
Median Width 0.1068 0.0812 0.0621 0.0513 0.0412 0.0358 0.0301
SD Width 0.0424 0.0262 0.0186 0.0126 0.0085 0.0066 0.0046

Parametric Bootstrap Coverage 0.867 0.902 0.900 0.914 0.905 0.918 0.898
Under Coverage 0.898 0.039 0.033 0.036 0.052 0.044 0.054
Over Coverage 0.106 0.059 0.067 0.050 0.043 0.038 0.048
Mean Width 0.4739 0.1282 0.0786 0.0595 0.0449 0.0382 0.0317
Median Width 0.2929 0.1138 0.0724 0.0566 0.0434 0.0372 0.0309
SD Width 1.1959 0.0625 0.0280 0.0163 0.0097 0.0071 0.0049

Robust Bootstrap Coverage 0.799 0.920 0.925 0.942 0.948 0.949 0.946
Under Coverage 0.072 0.034 0.034 0.023 0.026 0.032 0.035
Over Coverage 0.129 0.046 0.041 0.035 0.026 0.019 0.019
Mean Width 0.3128 0.1482 0.0906 0.0704 0.0525 0.0438 0.0362
Median Width 0.2932 0.1476 0.0901 0.0707 0.0524 0.0437 0.0363
SD Width 0.1693 0.0431 0.0174 0.0106 0.0060 0.0041 0.0029

Modified Robust Bootstrap Coverage 0.718 0.925 0.927 0.939 0.959 0.962 0.961
Under Coverage 0.130 0.005 0.008 0.004 0.004 0.007 0.006
Over Coverage 0.158 0.070 0.065 0.057 0.037 0.031 0.033
Mean Width 1.2266 0.2937 0.1479 0.1021 0.0691 0.0552 0.0436
Median Width 0.6765 0.2504 0.1266 0.0920 0.0646 0.0526 0.0427
SD Width 14.8516 0.1635 0.0738 0.0450 0.0264 0.0194 0.0118

CT Bootstrap Coverage 0.972 0.941 0.949 0.948 0.941 0.939 0.935
Under Coverage 0.028 0.059 0.051 0.052 0.059 0.061 0.065
Over Coverage 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mean Width 0.4891 0.1960 0.1636 0.1486 0.1394 0.1354 0.1319
Median Width 0.3436 0.1885 0.1591 0.1468 0.1384 0.1355 0.1319
SD Width 1.0739 0.0604 0.0333 0.0217 0.0153 0.0121 0.0100

Table 9: Coverage Properties for Beta (10, 4)
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