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ABSTRACT

Survival analysis is a critical statistical method in healthcare to assess patient

treatment effects and disease progression. Another critical area of statistical method-

ology in health care is the practice of adaptive designs. Adaptive designs allow for

interim analyses to take place during a study and various decisions and actions can

take place more ethically. This is beneficial for studies that take multiple years to

complete and allows administrators and healthcare providers to make sound decisions

as early as possible. A challenging aspect of adaptive designs is that the number of

interim analyses is known in advance which is applicable in controlled experiments

such as randomized clinical trials.

Motivated and highlighted by our collaborations with Fresenius Medical Care,

many clinical studies are observational in nature and have no clear endpoint, making

it difficult to determine the number of interim analyses that will be conducted. This

research considers the application of survival analysis using adaptive designs within

observational studies. To do so, we developed a collection of statistical programs to

simulate these types of interim analyses while accounting for the additional complex-

ity that survival data exhibits. Simulations summaries were performed and we will

summarize some of the key results including investigations of statistical power, Type-I

error control, and parameter estimation performance. Additionally, this work aims

to assess the necessary conditions to achieve reasonable power at early looks and/or

establish general rules of thumb when designing the study.

iii



ACKNOWLEDGEMENTS

Je souhaite tout d’abord exprimer ma profonde gratitude envers le Dr. Jacob

Turner pour son soutien constant et ses conseils précieux tout au long de ce travail.
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1 INTRODUCTION

Survival analysis is a general statistical technique for time-to-event outcomes.

It is used in medical and healthcare research for numerous reasons, including the

assessment of treatment effects and disease progression. Survival analysis can be

applied to both observational and experimental study designs. In randomization

prospective clinical trials, adaptive designs allow for interim analysis to take place

during a study and various decisions and actions can take place more ethically. This

is beneficial for studies that take multiple years to complete and allows administrators

to make sound decisions as early as possible.

For this thesis, our interest is to effectively quantify the various statistical prop-

erties of providing an observational survival analysis in an adaptive design setting.

Simulations will be conducted to get a better understanding of the advantages and

potential shortfalls of conducting adaptive designs, as well as determining general

rules of thumb or recommendations for best statistical practices.

In the introductory chapter, we will delve into the realm of survival analysis, fol-

lowed by an exploration of epidemiology and adaptive designs. By doing so, we aim

to elucidate the profound implications that adaptive designs can have on observa-

tional time-to-event studies. In the second chapter, we will go over the methodology

employed to simulate survival data, ensuring it meets the Cox proportional hazard

assumptions. We will outline the simulation function generated for this purpose. Sub-

sequently, we will explore the function enabling ”multiple look” data analysis once

it’s simulated or collected. In the third chapter, we will summarize the results of

various simulations to observe if the input parameters influence the power of the test

conducted at preceding interim analyses. We will also have a look at the overall Type

1



I error rate. The fourth and final chapter will summarize our findings and discuss

potential directions for future research.

1.1 Introduction to Survival Analysis

To help introduce the key concepts and definitions of typical survival analysis, a

data set curated by the North Central Cancer Treatment Group is utilized [7]. In

this example, we are studying the time to death of patients with advanced-stage lung

cancer. We have slightly modified the publicly available data set to illustrate some

key logistical issues that arise in data processing. The table below provides the first

6 rows of the data set.

Figure 1.1: First 6 rows of the lung cancer dataset

The variable “time” (in days), serves as our response variable and represents the

survival time of the patients until either the event (death) happens or the data is

censored. The survival time of an individual is said to be censored when the end

point of interest has not been observed for that individual. This may be because of

complete follow-up meaning the patient is still alive at the end of the study or because

the patient has been lost to follow-up also called dropouts. In this example and the

following chapters, we will focus only on right censoring. This censoring occurs when

it is known that the event of interest occurred after a certain time t, that is to the
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right of the last known survival time. In the data set used in this example, the

categorical variable “status” takes the value 0 if the patient is censored or the value

1 if the patient is dead. The categorical variable “ph.ecog” represents the ECOG

performance score as rated by the physician. 0=asymptomatic, 1 = symptomatic

but completely ambulatory, 2 = in bed < 50% of the day, 3 = in bed > 50% of

the day but not bedbound and 4 = bedbound. The “ph.karno” variable represents

the Karnofsky performance score (bad=0-good=100) rated by the physician. The

“pat.karno” variable represents the Karnofsky performance score as rated by patients,

also from a scale of 0 to 100. The last two variables “meal.cal” (kcal) and “wt.loss”

(pound) represent respectively the calories consumed at meals and the weight loss in

the last six months. The survival time might also depend on these additional variables

so models that can incorporate multiple explanatory variables can be very helpful.

In a typical prospective study, most patients are recruited simultaneously but

accrue over months or even years. After recruitment, patients are followed until the

outcome event occurs or until the end of the study time of the trial. In most studies,

the recruitment period and follow-up period have the same length.

Figure 1.2: Example of patients within a study
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In the example above, the recruitment period and subsequent follow-up for each

participant extend over a year. Patients 3, 7, and 8 entered the study during the

third month, signifying that they would be monitored until month 15, covering one

year of follow-up. Patient 3 withdrew from the study in the ninth month, resulting

in censorship due to drop-out after six months of the study. Patient 7, having not

encountered the event by month 15, is censored due to the completion of the entire

follow-up period. Conversely, Patient 8 experienced the event in the ninth month,

indicating a time-to-event occurrence six months after enrollment in the study.

In analyzing survival data, three functions are of central interest: the survivor

function, the hazard function, and the cumulative hazard function. The survivor

function describes the probability of individuals surviving to or beyond a given time.

Let the actual survival time of an individual be t, and let T be the random variable

associated with the survival time. Suppose that this random variable has a probabil-

ity distribution with underlying probability density function f(t). The distribution

function of T is then given by

F (t) = P (T ≤ t) =

∫ t

0

f(u)du. (1.1)

The function F (t) represents the probability that the survival time is less than

some value t. This function is called the cumulative incidence function because it

summarizes the cumulative probability of an event occurring before time t. As pre-

viously defined, the survivor function S(t) is the probability of individuals surviving

to or beyond a given time t, so we have

S(t) = P (T > t) = 1− P (T ≤ t) = 1− F (t). (1.2)

The hazard function is used to express the risk or hazard, of an event occurring

for an individual at some time t. The function h(t) is obtained from the probability

4



that an individual dies at time t conditional on the individual surviving to that time,

h(t) = lim
δt→0

Pr(t ≤ T < t+ δt|T ≥ t)

δt
. (1.3)

Using the properties of conditional probabilities and the limit definition of a deriva-

tive, equation (1.3) can be expressed as

h(t) =
f(t)

S(t)
. (1.4)

The cumulative hazard function, H(t) is the cumulative risk of an event occurring

by the time t. The cumulative hazard function at time t can also be interpreted as

the expected number of events that occur in the interval from the time origin to t.

From the equation (1.4) it follows that

h(t) = − d

dt
logS(t). (1.5)

and so

S(t) = e−H(t). (1.6)

thus we have

H(t) = −log(S(t)). (1.7)

For a more detailed discussion, see [4].

Survival analysis aims to achieve two main objectives. The first one is to estimate

the probability of not experiencing an event of interest (”surviving”) over any given

time period. The second one is to compare the overall survival experience between

different groups of individuals or determine if the survivor function is associated with

covariates.

When comparing survival times between groups, an initial step is to present nu-

merical or graphical summaries of the survival times for individuals in a particular

5



group. Survival data are usually summarised through estimates of the survivor func-

tion and hazard function. The methods used are non-parametric since they do not

require specific assumptions about the distribution of the survival times.

Theoretically, the survivor function is a smooth curve, but for observed data, we

have a finite number of subjects, so the estimate of the survivor function is a step

function. The Kaplan-Meier estimate is the most commonly used method to estimate

and visualize the survivor function. After arranging the times to death in ascending

order, let time intervals tj, where each j indicates the ordered death time starting

from 1, and dj, the number of events that occurred in the interval tj, and nj, the

number of individuals known to have not had an event occur or are right-censored up

to time tj the Kaplan-Meier estimator is defined as

Ŝ(t) =
∏
i:ti≤t

ni − di
ni

. (1.8)

The Kaplan-Meier curve gives us an estimation of the probability that a subject

survives longer than time t.

The Kaplan-Meier curve for the lung data set is displayed in Figure 1.3.

6



Figure 1.3: Kaplan-Meier Curve

As shown above, The Kaplan-Meier curve provides us with an easy way of visualiz-

ing the expected survival duration for patients over time. Through this curve, we can

approximate the duration required for a specified percentage of patients to survive.

In the context of the lung data set, the visualization indicates that approximately 50

percent of patients have survived at least 312 days. Conversely, we can deduce the

percentage of patients who survived beyond a specific time frame. In the case of the

lung data set, the curve suggests that only 27 percent of patients survived for more

than 500 days.

A component of this thesis is to compare the overall survival between different

groups of individuals. For the lung data set, we will look into the difference in the

distribution of survival times between males (group 1) and females (group 2) using

the Kaplan-Meier estimates.
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Figure 1.4: Kaplan-Meier Curves by sex

In Figure 1.4, a visual distinction is apparent. Group 2 (female) exhibits a superior

survival probability over time in comparison to Group 1 (male). However, the Kaplan-

Meier estimates alone do not offer information on the statistical significance of this

difference or the magnitude of the disparity between the two groups.

The log-rank and Wilcoxon tests are commonly employed for comparing the sur-

vival functions of the two groups. The log-rank test is more powerful when the hazard

of death at any given time for an individual in one group is proportional to the haz-

ard at that time for a comparable individual in the other group. This assumption

of proportional hazards is pivotal in various methods for survival data analysis. In

instances where the assumption is not met, the Wilcoxon test is deemed more ap-

propriate. While these methods can identify differences between groups, they do not

provide an estimate of the size of the difference between them. [4]

The method that we will be focusing on to quantify the difference between groups

is the Cox Proportional Hazards model. To use this model, the survival data should

meet two assumptions. The first assumption is non-informative censoring also called

random censoring which occurs when the patients drop out of the study for reasons
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unrelated to the event being studied. The second assumption is proportional hazards.

Let h0(t) be the hazard function for the control group and let h(t) be the hazard

function for the treatment group. If the two hazards are proportional, then we can

say that

h(t) = ϕh0(t), (1.9)

where ϕ is a constant that does not depend on time. The proportional hazards

assumption can be checked using statistical tests and graphical diagnostics such as

Schoenfeld residuals. In general, the Schoenfeld residuals are independent of time. A

plot that shows a non-random pattern against time is evidence of a violation of the

non-proportional hazard assumption. In R, the function cox.zph() from the survival

package provides a convenient solution to test the proportional hazard assumption

for each variable in a Cox model. A non-significant relationship between residuals

and time supports that the proportional hazard assumption is met.

Under the proportional hazard model assumption hc(t) = ϕht(t), ϕ is known as

the hazard ratio. If ϕ > 1, then we could say that the chance of survival is greater

for the control group. If ϕ < 1, we would say the opposite.

If we have more predictor variables, then the model can be extended similarly to

that of multiple linear regression or logistic regression. The full Cox Proportional

Hazards model is expressed by including linear predictors through log(ϕ),

ln(ϕ) = β1x1 + β2x2 + ...+ βnxn. (1.10)

Substituting equation (1.10) into equation (1.9), the Cox proportional hazard

model is defined as

h(t) = (eβ1x1+β2x2+...+βnxn)h0(t). (1.11)

It should be noted that the previously defined hazard function for the control group,

h0(t), is also called the baseline hazard in the general sense. The predictor variables

could be either numeric or categorical. Unlike multiple linear regression, it should be

9



noted that the Cox Model does not have an intercept as any constant intercept term

added to the model becomes integrated into the baseline hazard.

Another advantage of the Cox model is its interpretation of the regression co-

efficients. The model provides hazard ratios for each covariate, which are easy to

interpret. A hazard ratio greater than 1 indicates an increased hazard (risk of event),

less than 1 indicates a decreased hazard, and equal to 1 indicates no effect. Upon

algebraic manipulation of equation (1.11), we have

ln
h(t)

h0(t)
= β1x1 + β2x2 + ...+ βnxn. (1.12)

The regression coefficients, β1, ..., βn, represent the expected change in the natural

log of the hazard ratio for a one unit change in the corresponding predictor holding

all other predictors constant. Using software, the hazard ratio across two groups can

easily be estimated after fitting the proportional hazards model, as well as a confi-

dence interval for this hazard ratio. Parameter estimation is conducted by maximum

likelihood (MLE) and hypothesis testing and confidence intervals are conducted using

the asymptotic properties of MLE’s [4].

A Cox proportional hazard model was fit for the lung data set with ”sex” as the

only covariate (male = group 2 and female = group 1). The Kaplan Meyer curves

along with assuming results of the fit are provided in Figure 1.5

The p-value of 0.001 suggests strong statistical significance of a difference between

males and females. Moreover, the 95 % confidence interval indicates that the hazard

rate for female patients is estimated to be between 42% and 82% of the hazard rate

for male patients, with an alpha of 0.05. This observation is depicted in Figure 1.5,

where the survival curve for females consistently surpasses that of males.

This analysis and discussion highlight that the Cox proportional hazard model

can be utilized for a simple two-group analysis. It is an important reminder that the

Cox model has the flexibility to include additional explanatory variables to allow for

estimates of the hazard ratio to be adjusted for other potential confounding variables

10



Figure 1.5: Kaplan-Meyer Curve by Sex with Cox Model estimates

in the model. For our purposes, we are mostly interested in the one predictor case, as

we will be using propensity score matching to control for confounding factors across

the two groups. This is standard practice for many researchers. For a more detailed

explanation of propensity score matching see [12].

1.2 Introduction to Epidemiological and Adaptive Study Designs

In evidence-based research, the researcher should select the study design with the

highest level of evidence possible as first described in a report by the Canadian Task

Force on the Periodic Health Examination in 1979 [9]. The Canadian Task Force

on the Periodic Health Examination was established in 1976 to determine how the

Periodic Health Examination might enhance or protect the health of the population.

The main goal was to recommend a plan for a lifetime program of periodic health

assessments for all persons living in Canada [8]. As shown in table 1.1, the authors

developed a rating system to determine the effectiveness of a particular intervention.

The level of evidence was taken into account when evaluating a recommendation. For

example, a Level 1 recommendation was given if there was good evidence to support

11



a recommendation.

Table 1.1: Adapted from Canadian Task Force on the Periodic Health Examination

Level Type of evidence

I At least 1 RCT with proper randomization

II.1 Well-designed cohort or case-control

II.2 Time series comparisons or dramatic results from uncontrolled studies

III Expert opinions

Currently, in medical research a more detailed pyramid model illustrates the qual-

ity of available evidence [1].

Figure 1.6: Levels of evidence pyramids

As shown in Figure 1.6 the higher the position on the pyramid the stronger the

evidence. Levels of evidence pyramids are mostly divided into three sections. The top

section groups the filtered evidence which contains synthesized information, such as

systematic reviews and meta-analyses. This means that clinical experts and subject

specialists have posed a question and then synthesized the available primary studies.
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The second and third sections group the unfiltered evidence such as randomized

control trials, observational studies, and, expert opinions.

When treating unfiltered information, well-conducted randomized controlled trials

have been recognized as the gold standard for assessing the efficacy of clinical inter-

ventions, valued for their statistical rigor and mechanisms to avoid bias [3]. Next

would be any evidence from cohort studies and case-control studies which are types

of observational studies.

Observational studies are research designs in which researchers assess the associ-

ation of some type of intervention, risk, or treatment without intervening or manip-

ulating variables or subjects. These studies differ from experimental studies such as

random control trials. When performing experimental studies researchers manipulate

who is exposed to the treatment or intervention by having a control and treatment

group [2]. A primary advantage to the observational study design is they can generally

be completed quickly and inexpensively. Random clinical trials are more complex and

involved, requiring many more logistics and details, whereas an observational study

can be more easily designed and completed. Observational study designs also allow

researchers to explore answers to questions where a randomized controlled trial would

be unethical. The main disadvantage of observational studies is that they are more

open to dispute than a randomized clinical trial. Observational studies are suscepti-

ble to confounding variables that can obscure true associations between variables and

there is also a risk of biases, such as selection bias, that may affect the accuracy of

the study’s findings [2].

In 1965, British epidemiologist Sir Austin Bradford Hill proposed a set of nine

principles, known as the Bradford Hill criteria, to evaluate the strength of evidence

for a causal relationship between a specific factor and outcome in observational stud-

ies. These criteria encompass strength, consistency, specificity, temporality, biological

gradient, plausibility, coherence, experiment, and analogy. These criteria may lend

13



support for causality, but failing to meet some criteria does not necessarily provide

evidence against causality either [5].

There are three types of observational studies based on sample/patient selection:

case-control studies, cohort studies, and, cross-sectional studies. The data provided

in our analysis comes from a cohort study, thus we will only describe that particular

type of observational study. This type of observational study is often used to help

understand cause and effect [2]. In a cohort study, a group of individuals with a

common characteristic or exposure is followed over time, and the researchers observe

and analyze the development of outcomes [6]. These studies involve comparing an

exposed group to an unexposed group to ascertain whether the outcome of interest is

associated to the exposure. Cohort studies are categorized into two types: prospective

and retrospective. Prospective studies involve tracking a cohort into the future to

observe health outcomes, whereas retrospective studies involve tracing patients back

in time to gather cohort/exposure information and the occurrence of the outcome.[6].

While many prospective cohort studies are relatively brief, particularly those fo-

cusing on patients in the advanced stages of diseases like cancer, there are instances

where such studies can extend over a longer duration. For instance, individuals with

end-stage renal disease typically have a life expectancy ranging from 5 to 10 years.

Consequently, studies within this domain often last over a considerable period. As

with clinical trials, there is a natural inclination to want to perform preliminary or

intermediate analyses, as well as a final analysis at the end point, and make decisions

based on those results. This approach would be analogous to adaptive designs in

clinical trials.

An adaptive design is defined as a design that allows modifications to a clinical

trial and/or statistical procedures of the trial after its initiation without undermining

its validity and integrity. The purpose is to make clinical trials more flexible, efficient,

and fast [10]. Adaptive designs have been developed as an alternative to traditional
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randomized controlled trial designs because traditional randomized controlled trials

can demand substantial time and resources. In adaptive designs, patient outcomes are

observed and analyzed at multiple predefined interim points called “looks” or “mul-

tiple looks”, and predetermined modifications to study design can be implemented

based on the observations made from these multiple looks [10]. The next chapter

will discuss the methodology used to simulate survival data and the implementation

approach for the ”multiple looks.”
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2 METHODOLOGY

In this chapter, we will delve into the methodology employed to simulate survival

data, ensuring it meets the Cox proportional hazard assumptions. We will outline

the simulation function generated for this purpose. Subsequently, we will explore the

function enabling ”multiple look” analysis of data once it’s simulated or collected.

2.1 Simulation Function

In this thesis, we will simulate survival data that adhere to the Cox Proportional

Hazards assumptions, without considering the need to address confounders through

methods like propensity score matching. The study design replicates the one out-

lined in the TCU publication, spanning a two-year duration with patient recruitment

occurring in the first year and patient follow-up lasting at least one year. Interim

analyses are conducted every three months, totaling seven interim analyses, with a

final analysis conducted at the study’s conclusion. Thus, our data will consist of a

time-to-event outcome and one binary covariate representing two treatment groups.

Let X be an indicator variable that takes the value zero if an individual is in the

control group and the value one if an individual is in the treatment group. Let h0(t)

be the hazard function for the control group and let h1(t) be the hazard function for

the treatment group. Assuming that the two hazards are proportional, as mentioned

in the equation (1.9) we can say that

h1(t) = ϕh0(t),
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If xi is the value of X for the ith individual in the study, i=1,2,...,n, the equation can

be written for this individual as

hi(t) = eβxih0(t),

This is the proportional hazards model for the comparison of two groups. Thus, to

simulate survival data following the Cox Proportional Hazards assumptions, we would

need to know the control group’s hazard function and the β coefficient. However, to

generate realistic survival data, one must consider not only the distribution of survival

times but also factors such as censoring and the duration of the study.

In general, to simulate data based on the outlined components, one would follow

this framework:

1. Choose a distribution function, denoted as S(t), to model survival times.

2. Adjust the parameters of the chosen distribution to achieve the desired level of

administrative censoring stemming from complete follow-up.

3. Appropriately select the β coefficient based on the hazard ratio specified.

4. Address any remaining censoring resulting from dropouts and right censoring.

Based on this framework, a simulation function has been developed to facilitate

the implementation of these steps. The simulation function has for input:

1. The hazard ratio (ϕ).

2. The maximum length of the study (T).

3. The proportion of patients censored due to complete follow-up (Ccf ).

4. The proportion of patients censored due to dropouts (Cd).

5. The number of control individuals.

6. The number of treatment individuals.

The output would be the survival data containing the categorical variable ”X”

that takes the value zero if an individual is in the control group and the value one if

an individual is in the treatment group. The variable ”time”, serves as our response
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variable and represents the survival time of the patients until either the event happens

or the data is censored. The categorical variable “status” takes the value 0 if the

patient is censored or 1 if the patient is dead. The selected distribution for the

simulation function is the Weibull distribution. The Weibull distribution is a two-

parameter distribution with shape parameter γ and scale parameter λ where x ∈

[0,∞), λ > 0 and γ > 0. For the following examples and results, we arbitrarily

set γ=1 to obtain a Weibull distribution with a shape similar to the survival data

analyzed by Fresenius Medical Care. The function was built respecting the following

steps. First, an unconditional time to event (everyone dies) is generated following a

Weibull distribution. Based on the latest time point during which observation may

fail, we want the survivor function S(t) to equal the proportion of survived patients,

as derived later in this thesis. In our simulation, the latest time point during which

observation may fail is the maximum time of the study called T. Let P (S) be the

proportion of survived patients so we want

S(T ) = P (S).

we know that S(t) = 1−F (t) from equation (1.2) where for the Weibull distribution,

F(t) = 1− e−(t/λ)γ , and so we have

S(t) = 1− (1− e−(t/λ)γ ) = e−(t/λ)γ .

we now have

S(T ) = e−(T/λ)γ = P (S).

γ(
−T

λ
) = log(P (S)).

thus we have

λ =
−Tγ

log(P (S))
.
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Now that we have the parameter λ required to generate the survival curve of the

control group, we will now derive the β coefficient to generate the survival curve of the

treatment group as a function of the hazard ratio ϕ. The hazard function is defined

as

h(t) =
f(t)

S(t)
.

For the Weibull distribution, the probability density function is

f(t) =
γ

λ

(
t

λ

)γ−1

e−(t/λ)γ

and as previously derived the survivor function is

S(t) = e−(t/λ)γ .

Thus, the hazard function for the Weibull distribution is as follows:

h(t) =
γ
λ

(
t
λ

)γ−1
e−(t/λ)γ

e−(t/λ)γ

h(t) =
γ

λ

(
t

λ

)γ−1

.

The hazard function for the control group (X=0) is:

h0(t) =
γ0
λ0

(
t

λ0

)γ0−1

.

The hazard function for the treatment group (X=1) is:

h1(t) =
γ1
λ1

(
t

λ1

)γ1−1

.

For the proportional hazard assumption to be met, we need the same shape of

Weibull distribution in the treatment and control groups (γ0 = γ1 = γ). From

equation (1.9) we have

19



h(t) = ϕh0(t),

thus we have the hazard ratio ϕ which is

ϕ =
h1(t)

h0(t)
,

ϕ =

γ
λ1

(
t
λ1

)γ−1

γ
λ0

(
t
λ0

)γ−1

ϕ =

(
1
λ1

)γ

(
1
λ0

)γ

ϕ =

(
λ0

λ1

)γ

As mentioned in Equation (1.11), λ0 and λ1 can be written as λ0 = eβ0 and

λ1 = eβ0+β1 . Thus now we have

ϕ =

(
eβ0

eβ0+β1

)γ

Solving for β1 yields

β1 =
−log(ϕ)

γ
.

Thus we have the required Beta coefficient to generate the treatment group survival

curve from the user-specified hazard ratio ϕ.

Once the treatment and control survival curves are generated, the observations

with a time greater or equal to the maximum time will become censored (due to

complete follow-up). Thus we have patients censored due to complete follow-up and

patients that died (all patients with t<T). Initially, our simulated sample consists of

both deceased and surviving patients (still alive) as depicted in Figure 2.1.
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Dead Survived

Sample simulated

Figure 2.1: Partition space of simulated data

However, an additional form of censoring that requires consideration is censoring

due to dropouts. These occurrences are assumed to be randomly distributed across

our simulated sample. Figure 2.3 visually represents our updated simulated sample.

Dead and did

not dropout
Complete follow-upDropouts

Sample simulated

Figure 2.2: Updated partition space of simulated data

Consequently, a portion of the censoring attributed to dropouts originates from

patients who survived, and the remaining patients who survived without dropping

out are censored due to complete follow-up.
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Dead and did

not dropout
Complete follow-upDropouts

Sample simulated

Figure 2.3: Updated partition space of simulated data

Let Ccf represent observations censored due to complete follow-up and let Cd

represent observations censored due to dropouts. The proportion of patients who

survived =P (S), as shown in the shaded area in Figure 2.3 can be represented as:

P (S) = P (Ccf ) + P (S ∩ Cd).

As S and Cd are independent within the framework of our code, we can state that

P (S) = P (Ccf ) + P (S) · P (Cd)

P (S)− P (S) · P (Cd) = P (Ccf )

P (S)(1− P (Cd)) = P (Ccf )

P (S) =
P (Ccf )

1− P (Cd)
.

Thus, the proportion of patients who survived is derived from the provided propor-

tions of those censored due to complete follow-up and dropouts. Letting CT denote
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the total number of censored observations. In practice, an observation is either cen-

sored due to complete follow-up or due to dropouts, which are mutually exclusive

events. Therefore, according to the probability addition rule, we have:

P (CT ) = P (Ccf ) + P (Cd).

Using the above derivations and simulation strategy, a function has been developed

to simulate survival data conforming to a Weibull distribution. This function allows

us to manipulate parameters such as the hazard ratio, overall censoring, maximum

study duration, and sample size. To ensure the coherence of our simulation function in

generating survival data that conforms to Cox assumptions, we will simulate a dataset

and juxtapose the theoretical curve with the Kaplan-Meier curve of the reference

group. Additionally, we will conduct the Schoenfeld Test to confirm adherence to

Cox proportional Hazards assumptions, estimate the Hazard ratio, and ascertain if

the true Hazard ratio falls within a 95% confidence interval of the estimation.

2.2 Validating Simulated Data

To validate our simulation function, we will generate two datasets, compare their

theoretical curves and Kaplan-Meir curves of the reference group, assess the Schoen-

feld Test to verify that the Cox proportional Hazards assumptions are met, and

evaluate their estimated and true hazard ratios. As previously mentioned we will set

γ=1 for the following examples.

The initial dataset we simulated comprises 5,000 treatment and 5,000 control

patients, with a maximum study duration of 365 days and a true hazard ratio of

0.75 and is depicted in Figure 2.4. The dashed blue line represents the theoretical

curve S(t) and the grey solid line depicts the Kaplan-Meier curve estimate of the

reference group. As we can see in Figure 2.4 the theoretical curve and the Kaplan-
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Meier curve closely resemble each other, suggesting that our data aligns with the

simulated expectations.

Figure 2.4: Theoretical and Kaplan Meier Survival Curves

With the simulated survival data closely resembling the expected theoretical curve,

our next step involves verifying whether the proportional hazards assumptions are

met. These assumptions can be assessed through statistical and graphical diagnos-

tics, primarily focusing on the scaled Schoenfeld residuals using the survival library’s

cox.zph() function from R Studio.

In Figure 2.5, the solid line is a smoothing spline fit to the plot, with the dashed

lines representing a ± 2σ band around the fit. The obtained p-value of 0.81 suggests

non-significance, indicating that we find the proportional hazards assumption to be

reasonable. Furthermore, upon visual inspection, the zero slope of the smoothing

spline fit and all the residuals being within 2σ further elevates our confidence in the

reasonableness of the proportional hazards assumption.

Having established that our simulated survival data adheres to the Cox propor-

tional hazards assumptions, our next step involves examining the estimated hazard

ratio. As depicted in Table 2.1, we observe that not only does the true hazard ratio
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Figure 2.5: Schoenfeld residuals

fall within the 95% confidence interval (CI) of the estimated hazard ratio, but that

the estimation and true value are identical.

Table 2.1: True and estimated Hazard ratio

True Hazard Ratio Estimated Hazard ratio Lower 95% CI Upper 95% CI

0.75 0.75 0.69 0.83

For the second dataset, we will generate a comparatively smaller sample containing

100 treatment and control patients, with a maximum study duration of 365 days and

a true hazard ratio of 0.5. As we can see in Figure 2.6 the theoretical curve and the

Kaplan-Meier curve closely resemble each other, suggesting that our data aligns with

the simulated expectations.
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Figure 2.6: Theoretical and Kaplan Meier Survival Curves

With the simulated survival data closely resembling the expected theoretical curve,

our next step involves verifying whether the proportional hazards assumptions are met

using the scaled Schoenfeld residuals. In Figure 2.7, the obtained p-value of 0.66 sug-

gests non-significance, indicating that we find the proportional hazards assumption to

be reasonable. Furthermore, upon visual inspection, the zero slope of the smoothing

spline fit and all the residuals being within 2σ further elevates our confidence in the

reasonableness of the proportional hazards assumption.

Having established that our simulated survival data adheres to the Cox propor-

tional hazards assumptions, our next step involves examining the estimated hazard

ratio. As shown in Table 2.2, we note that not only does the true hazard ratio lie

within the 95% confidence interval (CI) of the estimated hazard ratio, but also the

estimation closely aligns with the true value.
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Figure 2.7: Schoenfeld residuals

Table 2.2: True and Estimated Hazard Ratio

True Hazard Ratio Estimated Hazard Ratio Lower 95% CI Upper 95% CI

0.5 0.54 0.39 0.74

The analysis of these two datasets demonstrates the proficiency of the ”Simulation

function” in accurately simulating survival data, even when dealing with smaller

datasets.

2.3 Multiple-look function

Projects involving survival analysis of individuals with end-stage renal disease, as

discussed in Chapter 1, tend to be conducted over numerous years, and follow-ups

are conducted throughout the studies and not just at the final endpoint. Similar

to clinical trials, it is natural to want to perform preliminary analysis (looks) at an

earlier time point or at multiple time points.

Now that we are capable of simulating survival data following a Weibull distri-

27



bution meeting the Cox proportional hazards assumptions, our next goal involves

conducting multiple preliminary analyses on a simulated dataset. To facilitate this

process, we have developed a ”Multiple looks” function. This function requires the

entire dataset under study as input, along with the desired number of looks to be

performed. Upon execution, the function generates a summary table presenting the

results obtained at each preliminary analysis. To align with end-stage renal disease

studies, let the recruitment period be one year (365 days). Consequently, the range

of starting dates for the simulated studies will span one year and will follow a uni-

form distribution. Additionally, let the follow-up period also be one year. The next

step entails partitioning the input data into four equally spaced time intervals, each

encompassing the preceding datasets, as illustrated in Figure 2.8. Since our simula-

tion function generates the complete study dataset, for each preliminary analysis, it

is imperative to update not only the patients’ censoring status due to the differing

endpoint but also their vital status (alive or deceased) may change. Consequently,

we will examine the available data at intervals of six months, one year, one and a half

years, and two years (the entire study duration).

Figure 2.8: Multiple Looks visual

From each of the sub-datasets produced, the ”Multiple look” function generates

a result table. This table includes, for each look, the count of patients, the count of
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deceased patients, the true and estimated hazard ratios, a 95% confidence interval

for the estimated hazard ratio, and the associated p-value, as depicted in Figure 2.9.

Figure 2.9: Result table

With the capability to not only simulate survival data but also conduct analyses

at multiple interim points, a pertinent question emerges: what is the power of the test

conducted at each interim analysis, and do the input parameters exert any influence

on the power of the test conducted at preceding interim analyses? The next chapter

will address these questions through simulations of various scenarios.
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3 SIMULATION RESULTS

In this chapter, we will summarize the results of various simulations to examine

how input parameters influence the test’s power during preceding interim analyses.

Additionally, we will evaluate how these parameters affect the overall Type I error

rate.

The relevant questions are: 1) What is the power of the test conducted at each

interim analysis? 2) Do the input parameters exert any influence on the power of the

test conducted at preceding interim analyses? To answer these questions, a compre-

hensive report covering the analysis at multiple interim points was assembled from

1,000 simulations for every 140 combinations of all the values assigned to each pa-

rameter under consideration, as presented in Table 3.1.

3.1 Simulation Results for Power estimation

Table 3.1: Simulation Parameters

Parameter Values

Hazard Ratio 0.1, 0.25, 0.333, 0.5, 0.666, 0.75, 0.9

Number of Treatment and Control 100, 500, 1000, 5000

Overall Censoring Rate 0.1, 0.2, 0.5, 0.8, 0.9

Recruitment Period 1 year

Maximum Study Length 1 year

Number of Interim Analyses/Looks 8

The report includes a plot and a table summarizing the 1,000 simulations con-
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ducted for each studied combination. The plot displays boxplots of the hazard ratios

at each interim analysis across the thousand simulations. In the plot, the green dot-

ted line denotes the true hazard ratio, while the red dot signifies the mean of the

estimated hazard ratios. Additionally, the red whiskers represent a two-standard de-

viation interval. This plot provides an insight into the accuracy of our hazard ratio

estimates at each interim analysis. Figure 3.1 displays one of the plots generated in

the report. This plot was created for a simulation featuring a hazard ratio of 0.1,

with maximum study and recruitment durations set to 365 days, and involving 500

control and treatment patients with an overall censoring proportion of 0.1.

Figure 3.1: Report Boxplot Example

As shown in table 3.2, for each interim analysis (Look), the count of simulations

(Sim), the average count of control (ACO) and treatment patients (ATO), and the

average count of deceased control (ADC) and treatment patients (ADT). The final

four columns indicate the proportion of instances where the test for a difference be-
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Table 3.2: Report Table Example

Look Sim ACO ATO ADC ADT PSP PSN PNSP PNSN

1 1000 123 127 33.7 4.0 0 0.978 0 0.022

2 1000 256 243 109.9 15.9 0 1 0 0

3 1000 382 366 206.9 34.7 0 1 0 0

4 1000 500 500 315.4 60.2 0 1 0 0

5 1000 500 500 395.7 85.0 0 1 0 0

6 1000 500 500 431.8 102.0 0 1 0 0

7 1000 500 500 446.2 111.9 0 1 0 0

8 1000 500 500 449.2 115.2 0 1 0 0

tween the control and treatment groups was deemed significant or not. However, we

also aimed to indicate in table 3.2 whether the significance stemmed from the treat-

ment or control groups. Thus, if the estimated hazard ratio is smaller or equal to 1,

indicating that the treatment group outperforms the control group (with the treat-

ment as the reference group), we categorized that significance as negative significance

(PSN). Conversely, if the estimated hazard ratio is greater than 1, indicating that the

control group outperforms the treatment group (with the treatment as the reference

group), we categorized that significance as positive significance (PSP). Similarly, the

non-significance proportion was divided into PNSP and PNSN. Figure 3.1 illustrates

one of the tables outputted in the report. The presented table adheres to the same

simulation parameters as the preceding plot.

Power is the chance of rejecting H0 when H0 is truly false. Put simply, power is

the probability of rejecting when you are supposed to. However, within the context

of this problem, it’s established that all hazard ratios simulated will be less than

or equal to 1. Consequently, we introduce a modified concept termed ”probability

of being correct,” denoted power∗. This signifies the likelihood of rejecting the null
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hypothesis in the correct direction, which means not only rejecting the null but also

ensuring that the estimated hazard ratio is less than 1, note that power∗ is PSN.

Hence, we will exclude the probability of rejecting in the incorrect direction, which

entails disregarding instances where we reject the null hypothesis and the hazard ratio

is greater than 1. It is worth noting that this estimated probability is approximately

0 in all cases.

The report groups 140 plots and tables. The following node charts summarize the

information gained from the plots and tables. The metric that we chose to focus on

is the ”probability of being correct,” also called power∗. In the following node charts,

”HR” denotes the Hazard Ratio, ”N” signifies the count of treatment and control

patients, and ”C” indicates the overall censoring. The terminal nodes provide insights

into the point at which the increase in power∗ ceases to be significant. Specifically,

we define significance as any increase exceeding 5% from the initially identified look

to the final one.

Our analysis produced numerous results that are applicable across the majority of

parameter combinations observed in the report. Power∗ tends to rise alongside both

sample size and the look number. Conversely, power∗ declines with higher overall

censoring and as the Hazard Ratio approaches 1. After the fifth observation, which

marks the conclusion of patient enrollment in the study, there is typically a minimal

increase in power∗. Next, the node plots will provide us with additional case-specific

observations.
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HR < 0.5

N = 100

C ≤ 0.5

LK4 : 100%

C > 0.5

LK8: 92-42%

N = 500

C ≤ 0.5

LK3 : 100%

C > 0.5

LK4 : 100%

N = 1000

C = All

LK3 : 100%

N = 5000

C = All

LK2 : 100%

Figure 3.2: Summary for Hazard ratio < 0.5

When examining hazard ratios, a hazard ratio of 1 indicates no difference between

the two groups, while values closer to 0 or ∞ signify a greater difference. A hazard

ratio smaller than 1 indicates that the reference group has a higher survival rate

compared to the other group. Conversely, a hazard ratio greater than 1 implies that

the reference group has a lower survival rate compared to the other group.

Figure 3.2 presents a summary of findings concerning Hazard Ratios smaller than

0.5. It is apparent that in almost all instances where Hazard Ratios are below 0.5,

there is no discernible increase in power∗ beyond the fourth look, as it maxed out

at 100%. This indicates that early decisions with remarkably high power∗ can be

confidently made when the survival rate in the treatment group exceeds double that

of the control group.
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HR = 0.5

N = 100

C ≤ 0.2

LK4 : 100%

C > 0.2

LK8 : 24− 88%

N = 500

C ≤ 0.5

LK3 : 100%

C > 0.5

LK8 : 87− 99%

N = 1000

C = All

LK5 : 100%

N = 5000

C = All

LK3 : 100%

Figure 3.3: Summary for Hazard ratio = 0.5

Figure 3.3 provides a summary of findings regarding Hazard Ratios equal to 0.5.

For sample sizes exceeding 1,000 in both treatment and control groups, power∗ reaches

100% after the fifth look. When the sample size is 500 and censoring is below 0.5,

or when the sample size is 100 and overall censoring is below 0.2, power∗ reaches

100% after the fourth look. However, if the sample size is 500 with overall censoring

exceeding 0.5, or if the sample size is 100 with overall censoring above 0.2, power∗

increases steadily until the final look.
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HR = 0.66

N = 100

C = All

LK8 : 76− 11%

N = 500

C ≤ 0.5

LK5 : 100%

C > 0.5

LK8 : 77− 49%

N = 1000

C ≤ 0.5

LK4 : 100%

C > 0.5

LK5 : 96− 78%

N = 5000

C = All

LK5 : 100%

Figure 3.4: Summary for Hazard ratio = 0.66

Figure 3.4 summarizes the findings for Hazard Ratios equal to 0.66. When sample

sizes exceed 5,000 in both treatment and control groups, or when overall censoring is

below 0.5 for sample sizes of 500 and 1,000, power∗ reaches 100% after the fifth look.

In all other cases, power∗ increases steadily until the final look.

HR = 0.75

N = 100

C = All

LK8 : 8− 49%

N = 500

C ≤ 0.2

LK5 : 98%

C > 0.2

LK8 : 28− 88%

N = 1000

C ≤ 0.5

LK4 : 93− 100%

C > 0.5

LK8 : 50− 80%

N = 5000

C = All

LK7 : 100%

Figure 3.5: Summary for Hazard ratio = 0.75
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Figure 3.5 summarizes findings regarding Hazard Ratios equal to 0.75. Power∗

achieves 100% only when the sample size is 5,000. However, for sample sizes of 500

and 1,000, power∗ does not surpass 98% after the fifth observation when censoring is

below 0.2 and 0.5, respectively. In all other scenarios, power∗ steadily increases until

the final observation.

HR = 0.9

N = 100

C = All

LK8 : 3− 10%

N = 500

C = All

LK5 : 6− 30%

N = 1000

C = All

LK5 : 6− 10%

N = 5000

C ≤ 0.2

LK5 : 100%

C > 0.2

LK8 : 40− 96%

Figure 3.6: Summary for Hazard ratio = 0.9

Figure 3.6 summarizes findings regarding Hazard Ratios equal to 0.9. Power∗

reaches 100% only when the sample size is 5,000 and the censoring is below 0.2.

However, for sample sizes of 500 and 1,000, power∗ does not increase beyond the fifth

look.

From these node charts, the following summary emerges: as anticipated, power∗

increases with sample size, the number of observations, and the magnitude of the

hazard ratio (diverging further from 1). Expectedly, power∗ declines with increased

overall censoring. However, an unexpected finding is that after the fifth observation,

denoting the conclusion of patient enrollment in the study, there is typically only a

marginal increase in power∗. Looking forward, these node charts provide valuable
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guidance for future research, especially concerning including additional case-specific

observations if required.

3.2 Simulation results for Type I error rate estimation

Having explored and summarized the information from the comprehensive report

generated on the power at each interim analysis, we noticed the influence of the overall

censoring rate and sample size on the power thus a pertinent question arises: How

do these factors affect the Type I error at each interim analysis? The Type I error

rate (α) is defined as the probability of rejecting H0 when H0 is actually true. In our

simulation setting, H0 is considered true when simulating data with a true hazard

ratio of 1. Hence, in order to evaluate the Type I error rate at each interim analysis in

our simulation, we will evaluate the proportion of cases where the estimated hazard

ratio was found to be statistically distinct from 1. The Type I error rate results are

expected to align with the chosen significance level of 0.05 closely.

A comprehensive report covering the analysis at multiple interim points was as-

sembled from 1,000 simulations for each combination of all the values assigned to each

parameter under consideration, as presented in Table 3.3.

Table 3.3: Simulation Parameters

Parameter Values

Hazard Ratio 1

Number of Treatment and Control 100, 500, 1000, 5000

Overall Censoring Rate 0.1, 0.5, 0.9

Recruitment Period 1 year

Maximum Length of the Study 1 year

Number of Interim Analysis/look 8

38



The subsequent graphs depict the mean Type I error across our 1,000 simulations,

with simulation coverage and simulation error bar observed at each look. Let α̂

be the estimate of the Type I error rate. We define the simulation error bar as

α̂ ± 1.96
√

α̂(1−α̂)
n

. Each graph corresponds to a specific sample size and all three

censoring scenarios.

Figure 3.7: Type I error rate ± simulation error for HR=1 and sample size 100

In Figure 3.7, it is evident that with 100 control and 100 treatment patients, the

Type I error rate aligns with the anticipated significance level from the third look for

censoring rates of 0.1 and 0.5. However, for a censoring rate of 0.9, the Type I error

consistently falls well below the expected significance level. Some of the rates close

to 0 have a very tight interval due to the lack of number of rejections. It is known

that the simulation error formula used can be liberal when the coverage is close to 0.

Another simulation coverage based on Agresti-Coul or Bayesian formulas would be

interesting to investigate.
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Figure 3.8: Type I error rate ± simulation error for HR=1 and sample size 500

Figure 3.8, shows that with 500 control and 500 treatment patients, the Type

I error rate aligns with the anticipated significance level from the second look for

censoring rates of 0.1 and 0.5. However, for a censoring rate of 0.9, the Type I error

does not consistently meet the expected significance level until the sixth look.

Figure 3.9: Type I error rate ± simulation error for HR=1 and sample size 1,000

40



In Figure 3.9, it is evident that with 1,000 control and 500 treatment patients, the

Type I error rate aligns with the anticipated significance level from the first look for

censoring rates of 0.1 and 0.5. However, for a censoring rate of 0.9, the Type I error

consistently does not meet the expected significance level until the second look.

Figure 3.10: Type I error rate ± simulation error for HR=1 and sample size 5,000

Figure 3.10 shows that with 5,000 control and 5,000 treatment patients, the Type

I error rate aligns with the anticipated significance level from the first look for all

censoring rates from 0.1 to 0.9.

From the findings, it is evident that sample size plays a significant role in influenc-

ing the Type I error rate, with smaller sample sizes resulting in lower error rates than

specified. Conversely, larger sample sizes show minimal susceptibility to Type I errors

caused by censoring. For smaller sample sizes, it becomes imperative to account for

censoring levels to maintain the desired Type I error rate, especially during the early

interim analyses. Note that while we cannot directly control censoring, adjusting our

statistical methods to account for it can help address potential biases.

Having obtained the Type I error at each look, the next step is to determine
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the overall Type I error. This involves simulating data under a hazard ratio of 1,

representing the null hypothesis, and examining the proportion of simulations with

statistically significant outcomes for at least one look. This analysis offers a compre-

hensive understanding of the overall Type I error.

Generating data through simulation with a sample size of 5,000 patients for both

treatment and control groups, alongside an overall censoring rate of 0.1, and conduct-

ing the study over a recruitment period and maximum duration of 365 days, yields

an overall Type I error rate of 0.18. In conventional practice, multiple testing is typ-

ically conducted on independent samples. However, in this study, multiple tests are

performed on cumulative data. Each dataset contains similar information but may

vary in the number of patients and/or the duration of follow-up for some individu-

als. Consequently, due to the cumulative nature of the data, the anticipated overall

Type I error rate differs significantly from what would be expected with independent

samples.

Table 3.4: Report Parameters

Number of Repeated

Tests at 5% Level

Overall Type I Error for

Independent Samples

Overall Type I Error for

Accumulative Data

1 0.05 0.05

2 0.09 0.08

3 0.14 0.11

4 0.19 0.13

5 0.23 0.14

10 0.40 0.19

Table 3.4 presents the expected overall Type I error rates for both independent

samples and cumulative data at a 5% significance level. The overall type I error for

independent samples, α∗, was obtained by α∗ = 1− (1− α)k, where k is the number
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of independent samples. The overall Type I error for cumulative data was empirically

computed in the paper by Armitage et al. (1969) [11]. Notably, the value of 0.18

obtained from our simulations for 8 repeated tests falls between the expected values

of 0.14 and 0.19 for 5 and 10 repeated tests on accumulative data, respectively.
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4 FINAL REMARKS AND FUTURE WORK

In this thesis, we explored survival analysis, with a particular emphasis on in-

terim statistical analyses within observational studies. The outcome involved the

development of novel methodologies, including generating a simulation function and

statistical analysis tools. Through these endeavors, we aimed to understand funda-

mental questions regarding the power and Type I error rates for interim analyses

within observational studies.

The first major accomplishment was the creation of a function capable of simu-

lating survival data following a Weibull distribution, and meeting the assumptions of

the Cox proportional hazards model. The simulation function generated allows us to

manipulate parameters such as the hazard ratio, overall censoring, maximum study

duration, and sample size. This foundational tool laid the groundwork for subsequent

analyses and investigations.

Additionally, we devised a function to perform statistical analyses at multiple

interim points for any given dataset. This function requires the entire dataset under

study as input, along with the desired number of looks to be performed. The function

takes the input data and adjusts it to the data that would have been available at

the specified time points. Upon execution, the function generates a summary table

presenting the results obtained at each preliminary analysis. This tool enabled us to

conduct in-depth examinations of the power and Type I error rates at various stages

of observational studies, providing insights into the dynamics of these critical metrics.

One of the primary questions from our analysis was the determination of the power

of tests conducted at each interim analysis, and whether input parameters exerted

any influence on the power of preceding interim analyses. Through a meticulous
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assembly of data and rigorous simulations, we were able to quantify known trends

and relationships. Notably, we verified that power increases with sample size, the look

number, and the value of the hazard ratio (as far away as the hazard ratio gets from

1), while decreasing with increased overall censoring. However, we also encountered

an unexpected finding: after the conclusion of patient enrollment in the study, there

is typically only a marginal increase in power.

Moreover, our investigation into the influence of sample size and overall censoring

rate on the Type I error rate yielded insightful results. We found that smaller sample

sizes tend to lead to more conservative tests, necessitating adjustments to censoring

levels to maintain the desired Type I error rate. Note that while we cannot directly

control censoring, adjusting our statistical methods to account for it can help address

potential biases. Conversely, larger sample sizes exhibit minimal susceptibility to

Type I errors caused by censoring.

Furthermore, our exploration extended to determining the overall Type I error

by simulating data under a hazard ratio of 1. This analysis provided a comprehen-

sive understanding of the cumulative Type I error across multiple interim analyses,

thereby offering valuable insights into the overall integrity of the studies. The value

of 0.18 for the overall Type I error obtained from our simulations with 8 repeated

tests demonstrates that the multiple looks approach inflates the overall Type I error

rate. To control this inflation, we should employ appropriate statistical methods such

as adaptive designs. Looking forward, the next phase of this research should focus

on attempting to control the overall Type I error using adaptive designs while main-

taining the best statistical power. We aim to optimize the efficiency of observational

studies while preserving the statistical validity of interim analyses.

In summary, this thesis has contributed significant advancements to the field of

survival analysis. Through the creation of simulation functions, statistical analysis

tools, and comprehensive reports, we have provided researchers with valuable re-
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sources for designing and analyzing interim analyses within observational studies.

Moving forward, we remain committed to furthering our understanding and improv-

ing methodologies in this critical area of research.
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