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ABSTRACT

The beta distribution is used in numerous real-world applications, including areas

such as manufacturing (quality control) and analyzing patient outcomes in health

care. It also plays a key role in statistical theory, including multivariate analysis of

variance (MANOVA) and Bayesian statistics. It is a flexible distribution that can

account for many different characteristics of real data. To our surprise, there has

been very little work or discussion on performing statistical hypothesis testing for the

mean when it is reasonable to assume that the population is beta distributed. Many

analysts conduct traditional analyses using a t-test or nonparametric approach, try

transformations, or use standard maximum likelihood-based approaches. We showed

via simulations that these tools cannot appropriately control type-I error rates for

various situations.

Additionally, this research has set out to construct a uniformly most powerful

test using saddle point approximations. These approximations tend to have better

accuracy than traditional likelihood-based methods, even when sample sizes are quite

low. We provide the necessary methodology development to perform the test. Further

simulation studies on power of test are conducted to compare our new method to

traditional approaches and illustrate the superiority of our test in many situations.

We also provided recommendations on the best way to use this new approach.
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1 INTRODUCTION

The beta distribution is a continuous probability distribution defined on an open

interval (0, 1). It is a versatile distribution commonly used in Bayesian statistics to

model the uncertainty of random variables that represent proportions or probabilities.

The applications of the distribution are vast including its use as a prior distribution

in Bayesian statistics, Multivariate Analysis of Variance, Biostatistics, and quality

control [4, 3, 8]. For a large number of examples and applications see [7].

The probability density function (PDF) of the beta distribution is given by:

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, 0 < x < 1

where B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
is the beta function, a normalization factor to ensure

that the probability density function integrates to 1. Note that, Γ(t) is the gamma

function evaluated at t > 0. The beta distribution is particularly flexible at modeling

different curves within the interval, including symmetrical, left and right-skewed, U

and inverted U shapes, and straight lines.

For a random variable X that follows the beta distribution, the probability density

function (PDF) is

f(x|α, β) = Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1. (1.1)

The distribution has shape parameters α > 0 and β > 0. The mean of X is E(X) =

µ = α
α+β

, 0 < µ < 1. The variance of X is Var(X) = αβ
(α+β)2(α+β+1)

. Under different

values of the parameters α, β, the beta distribution exhibits different forms. Figure

1.1 displays the many shapes of beta distribution under different α and β which

highlight its flexibility.
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Figure 1.1: PDF for the Beta Distribution (α, β Parameterization)

The PDF can be strictly increasing (α > 1, β = 1), strictly decreasing (α = 1, β >

1), U-shaped (α < 1, β < 1), or unimodal (α > 1, β > 1). The case α = β yields a

PDF symmetric about 1
2
with mean 1

2
and variance 1

4(2α+1)
. The PDF becomes more

concentrated as α increases, but stays symmetric. If α = β = 1, the beta distribution

reduces to the uniform(0,1) distribution, showing that the uniform can be considered

to be a member of the beta family.

1.1 Mean and Precision Parameterization

Since the main focus of this research is to provide statistical inference for the mean

of the beta distribution, it is helpful to consider the “mean/precision“ parameteriza-

tion of the distribution. The mean is defined as µ = α
α+β

and the precision ϕ = α+β.

Therefore, α = µϕ and β = ϕ(1 − µ). As we re-parameterize for X ∼ B(µ, ϕ), the

2



probability density function is

f(x|µ, ϕ) = Γ(ϕ)

Γ(µϕ)Γ(ϕ(1− µ))
xµϕ−1(1− x)ϕ(1−µ)−1, 0 < x < 1 (1.2)

where E(X) = µ, 0 < µ < 1 and ϕ > 0 is the precision which is in control of the

variability of the distribution. However, the variance of X is Var(X) = µ(1−µ)
ϕ+1

. There

is an obvious relationship between the variance of X and the parameters µ and ϕ.

We can see that the variance becomes smaller as precision ϕ increases whiles µ is

held constant. As we vary among the new parameters µ and ϕ, the shape of the

beta distribution changes. To demonstrate this behaviour, Figure 1.2 provides the

theoretical PDFs for particular combinations of µ and ϕ.

Figure 1.2: PDF for the Beta Distribution (µ, ϕ Parameterization)

We can see from Fig 1.2 (purple line) that the PDF can become the standard

uniform continuous distribution (µ = 0.5, ϕ = 2). The PDF can become symmetric

3



(red curve) (µ = 0.5, ϕ = 20) or right skewed (µ = 0.25, ϕ = 5). We can verify from

Figure 1.2 (black and grey curves) that as we hold µ fixed, the variability/shape of

the distribution narrows as precision ϕ gets larger.

This thesis is focused on providing statistical inference for the mean of the beta

distribution by extending the original work in [2], which used a highly accurate sad-

dlepoint approximation for the uniformly most powerful (UMP) test for the mean

of the beta distribution µ assuming the precision ϕ is known. The outline of the

remainder of the thesis is as follows. Chapter 2 summarizes key statistical results

derived from exponential families of which the beta distribution belongs. Chapter 3

summarizes key chapters within [3] involving saddlepoint approximation theory and

additional definitions and notations. Chapter 4 summarizes the previous thesis work

in [2]. We then provide the main contributions for our work, which constructs a UMP

test for the mean of the beta distribution when the precision parameter is unknown.

Chapter 5 provides summaries of type I error and statistical power simulations inves-

tigating the performance of the approximation in comparison to standard likelihood

ratio test (LRT) and the t-test. Chapter 6 provides a general summary of the thesis

and discusses future avenues of research.
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2 STATISTICAL THEORY

2.1 Exponential Family and Canonical Parameters

A family of probability density or mass function(s) is called an exponential family

if it can be expressed as

f(x|θ) = h(x)e
∑k

j=1 wj(θ)tj(x)−c(θ) (2.1)

where h(x) ≥ 0, c(θ), wj(θ), and tj(x) are real-valued functions that depend on either

x or θ exclusively. In general, x is a random vector and θ is a k-dimensional vector

of parameters. When k = 1, we have a one parameter exponential family. It is often

notationally helpful to let ηj = wj(θ) and η = (η1, ..., ηk). This is commonly called

the natural or canonical parameterization of the distribution. Substituting η into

Equation (2.1) we have

f(x|η) = h(x)e
∑k

j=1 ηjtj(x)−A(η) (2.2)

where A(η) = c(w−1(η)) for θ = w−1(η). While not obvious in this report, canonical

parameterizations provide a notationally “clean“ process in which to provide saddle-

point approximations for various statistics and is utilized in this thesis [3]. We now

provide several distributional examples which are members of the exponential family.

Example 2.1. The PDF of the exponential distribution, given as

f(x|λ) = λe−λx, x > 0, λ > 0 (2.3)

is of exponential family form with h(x) = I{x>0} where IE is an indicator function

such that

IE =

1 if x ∈ E

0 if x /∈ E

5



such that E is the domain of the random variable X, t(x) = x, and c(λ) = − lnλ,

w(λ) = −λ. Therefore, f(x|λ) can be expressed as

f(x|λ) = I{x>0}e
w(λ)x−c(λ), x > 0 (2.4)

and is thus a member of the one parameter exponential family. Upon reparameteri-

zation, the canonical parameter is η = w(λ) = −λ, and A(η) = − ln(−η).

Example 2.2. The PDF of the beta distribution with parameters α, β is also of

exponential family form, given as

f(x|α, β) = h(x)eα lnx+β ln(1−x)−c(α,β), 0 < x < 1 (2.5)

where h(x) = 1
x(1−x) , 0 < x < 1, c(α, β) = − ln

(
Γ(α+β)
Γ(α)Γ(β)

)
, t1(x) = ln x, t2(x) = ln(1−

x), w1(α, β) = α, w2(α, β) = β. In this case, we can see that the beta distribution

is a two parameters exponential family. It should be noted that mean/precision

parameterization expressed in Equation (1.2) is not of canonical form.

2.2 Sufficient Statistics

In this section, we defined and briefly discuss the role of sufficient statistics within

exponential families, their joint distributions, and their role in estimation and infer-

ence. We acknowledge that for many of the results described in this section, various

regularity conditions must be met in order for the results to hold. When working

with exponential families, as is the case with the beta distribution, these regularity

conditions are met and thus are not a concern for this thesis. For an extensive review

on the necessary regularity conditions see [4].

Suppose X1, X2, ..., Xn are independent and identically distributed with probabil-

ity density f(x|θ) and represent a future random sample taken from a population. A

statistic T = t(x1, x2, ..., xn) is a function of observed values of the sample. Statistics

condense the original sample space down to typically a few values. This data reduc-

tion allows one to summarize the key “information” that the sample contains. The

6



principle idea of a sufficient statistic is that the data reduction made is computed in

such a way that no information about the parameter θ is lost. Formally, the statistic

T is a sufficient statistic if and only if the conditional distribution of X1, X2, ..., Xn

given T is free of the population’s parameter.

When working with exponential families under a canonical parameterization, the

sufficient statistics for each parameter are readily obtained by writing the joint dis-

tribution of the sample of observed values in exponential family form,

f(x1, x2, ..., xn|η) =
n∏
i=1

h(xi)e
∑k

j=1 ηj
∑n

i=1 tj(xi)−A(η). (2.6)

It is easily shown that the statistics Tj = Σn
i=1tj(xi) within Equation (2.6) are the

sufficient statistics for the respective ηj’s [4]. Additionally, the joint distribution of

the sufficient statistics can be expressed in a general form, but in many settings,

obtaining a closed form expression is difficult. However, the cumulant generating

function (CGF) for sufficient statistics is readily available and will be discussed next.

Suppose continuous random vector X = (X1, X2, ..., Xn) has joint density f with

domain D ⊂ Rn. The moment generating function (MGF) associated with the joint

density f is defined as

M(s) = E(e
∑n

i=1 siXi) =

∫
· · ·

∫
D

e
∑n

i=1 siXif(x1, . . . , xn) dx1 . . . dxn (2.7)

where the vector s = (s1, s2, ..., sn) is an element in Rn such that the integral con-

verges. Note that the convergence is always assured at the origin due to f being a

proper probability density. The CGF of f is defined as

K(s) = lnM(s) (2.8)

The CGF for sufficient statistics under canonical exponential families, denotedKT (s),

is discussed in [3]. It turns out, KT (s) can be expressed completely in terms of the

function A(η) obtained by examining Equation (2.6) and is

KT (s) = nA(η + s)− nA(η) (2.9)

7



The utility of this simple and compact result should not be taken lightly. Equation

(2.7) highlights the fact that the MGF is closely related to the Laplace transform of f .

In future chapters, we will utilize saddlepoint methods, which provide a mechanism to

approximate an inverse Laplace transform. In doing so, the distribution of sufficient

statistics can be approximated with relatively high accuracy using the CGF alone

which is readily available when working with exponential families.

2.3 Adjustments to Notation

To effectively disseminate key results throughout the remainder of this thesis, it

is helpful to make a few notation adjustments to remain consistent with [3]. While

the results provided are more generalizable to a broader class of distributions, moving

forward, we are strictly working with exponential families with either one or two pa-

rameters only. Second, the parameters within the exponential family are assumed to

be canonical and is denoted as ψ (first parameter) and χ (second parameter). Occa-

sionally, we make note when the results provided hold true even when the parameters

need not be canonical.

To illustrate these changes, consider the following example. For the two parameter

exponential family, the canonical parameter vector η = (η1, η2) is now denoted as η =

(ψ, χ). Using Equation (2.9), the joint CGF of the sufficient statistics, T = (T1, T2),

for canonical parameters η = (ψ, χ) is expressed as

KT (s1, s2) = nA(ψ + s1, χ+ s2)− nA(ψ, χ) (2.10)

2.4 UMP Tests for Exponential Families

A uniformly most powerful (UMP) test is a hypothesis test which controls the

type I error rate at a pre-specified level, α, and is the most powerful compared to

8



all tests that have type I error control at the same prescribed level. Based on the

definition of UMP, only one sided tests can be UMP. Additional restrictions on the

testing procedure must be placed for two sided tests and is not the focus of this

thesis. For canonical exponential families, a general theory and framework exists

to construct UMP tests. We briefly described the two most pertinent cases for this

thesis. The first situation is for exponential families with one canonical parameter.

The second situation considers two canonical parameter exponential families in which

the hypothesis of interest includes one of the parameters and the remaining parameter

is a nuisance parameter. Similar to dealing with an unknown population standard

deviation when conducting statistical inference for the mean of a Normal distribution.

The following results can be found in [3, 9]. For a one parameter exponential

family, the UMP test for ψ should be based on the sufficient statistic T . For the two

parameter case, the parameter of interest is still ψ but χ is an unknown nuisance

parameter. Let T1 and T2 be the sufficient statistics for ψ and χ respectively. A UMP

test involving ψ should be based on the conditional distribution T1|T2 [9].

2.5 Maximum Likelihood Estimators for Exponential Families

Sufficient statistics are directly linked to parameter estimation via maximum like-

lihood. For the one parameter case involving ψ, a sample of n identically distributed

and independent observations has joint PDF

f(x1, ..., xn|ψ) =
n∏
i=1

h(xi)e
{ψ

∑n
i=1 t(xi)−nA(ψ)}.

Upon observing the data, the joint distribution becomes only a function of the pa-

rameter ψ and is referred to as the likelihood function, L(ψ) and is typically provided

on the log scale,

l(ψ) = lnL(ψ) =
n∑
i=1

ln(h(xi)) + ψ
n∑
i=1

t(xi)− nA(ψ). (2.11)

9



Notationally, the log-likelihood is also expressed as l(ψ|x) where x = (x1, x2, ..., xn) to

emphasize the fact that it is a function of ψ conditional on the fact that the sample x

was observed. This notation is also used to define the random variable l(ψ|X) where

X represents the random variables associated with the unobserved sample. One could

also create random variables by first taking derivatives of l with respect to ψ and then

replacing x with X (ie. ∂
∂ψ
l(ψ|X)). These types of random variables play a key role

in multiple computations covered in the remaining sections of this chapter.

The maximum likelihood estimator (MLE) ψ̂ is the value that maximizes Equation

(2.11) obtained by solving the equation d
dψ
l(ψ) = 0 which is expressed as

nA′(ψ̂) =
n∑
i=1

t(xi). (2.12)

The resulting differential equation presented in Equation (2.12) highlights the fact

that the MLE ψ̂ must be a function of the sufficient statistic T =
∑n

i=1 t(xi).

For the two parameter case, η = (ψ, χ), using Equation (2.2), the log-likelihood is

l(ψ, χ) = lnL(ψ, χ) =
n∑
i=1

ln(h(xi)) + ψT1 + χT2 − nA(ψ, χ) (2.13)

where T1 =
∑n

i=1 t1(xi) and T2 =
∑n

i=1 t2(xi). Maximizing the log-likelihood resorts

to solving a system of two equations with two unknowns by differentiating with respect

to ψ and χ,

T1 − nAψ(ψ̂, χ̂) = 0 (2.14)

T2 − nAχ(ψ̂, χ̂) = 0 (2.15)

where Aψ(ψ, χ) =
∂

∂ψ
A(ψ, χ) and Aχ(ψ, χ) =

∂

∂χ
A(ψ, χ). The solution to this

system of equations corresponds to the MLEs ψ̂ and χ̂. It is important to note

that the solution to the linear systems depicted in both the one and two parameter

cases may yield closed-form solutions, while others must be solved numerically. This

depends on the functional form of both A(ψ) and A(ψ, χ) and therefore depends on
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the specific distribution that is a member of the exponential family such as Normal,

Gamma, Beta, etc.

2.6 Fisher’s Information

When constructing confidence intervals using maximum likelihood estimators,

Wald intervals can be constructed by using the asymptotic properties of MLEs and

require the computation of Fisher’s Information. While confidence intervals are not

the focus of this thesis, a definition of Fisher’s information is warranted for the de-

velopments in Chapter 3. The general definition for Fisher’s information for a one

parameter case, which does not require a canonical parameterization, is expressed as

j(ψ) = E

[(
∂

∂ψ
l(ψ)

)2
]
. (2.16)

Recall previously that the log-likelihood, l(ψ), is also expressed as l(ψ|x) and as

a random variable, l(ψ|X). The expectation defined within Fishers information is

with respect to the random variable ∂
∂ψ
l(ψ|X). If the likelihood satisfies additional

regularity conditions as stated in [4], Fisher’s information can be expressed in an

easier computational form as

j(ψ) = −E
(
∂2l(ψ)

∂ψ2

)
. (2.17)

For the two parameter case, Fisher’s information is a 2×2 matrix of partial derivatives

of the log-likelihood. We provide the definition using the two parameters ψ and χ,

but again they need not be canonical

j(ψ, χ) =

jψψ jψχ

jχψ jχχ

 =

−E
(
∂2l(ψ, χ)

∂ψ2

)
−E

(
∂2l(ψ, χ)

∂χ∂ψ

)
−E

(
∂2l(ψ, χ)

∂ψ∂χ

)
−E

(
∂2l(ψ, χ)

∂χ2

)
 (2.18)

When working with exponential families under canonical parameters, Fisher’s infor-

mation computations are drastically simplified. After differentiation of either Equa-

tion (2.11) or (2.13), the resulting expressions do not have the random variable X in
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it any longer. This fact completely removes the need for the expectation computa-

tion since the expected value of a constant is just the constant. To see this, consider

computing Fisher’s information for the one parameter case. Computing
∂2l(ψ)

∂ψ2
using

Equation (2.11) yields nA′′(ψ). By the definition of exponential families, A(ψ) is a

function of ψ alone and is thus a constant with respect to X. Similarly, the Fisher’s

information matrix for the two parameter case reduces to the matrix of partial deriva-

tives of nA(ψ, χ).

2.7 Likelihood Ratio Tests

Likelihood ratio tests (LRTs) provide a simple mechanism for constructing hypoth-

esis test while dealing with or without nuisance parameters. For the one parameter

case, suppose we wish to test H0 : ψ = ψ0 versus H1 : ψ ̸= ψ0. The LRT statistic is

defined as

λ(x) =
L(ψ0)

L(ψ̂)
(2.19)

where ψ̂ is the MLE for ψ. Assuming the null hypothesis is true, λ(x) should be

close to one as the estimate from the data ψ̂ should be close to ψ0. If the alternative

is true, λ(x) should be lower than one relative to the degree of the true alternative

value for ψ. This leads one to consider rejecting H0 by selecting a value c such that

P (λ(x) < c|H0) = α.

A similar approach is taken for the two parameter case. When testing H0 : ψ = ψ0

versus H1 : ψ ̸= ψ0, with nuisance parameter χ, the LRT statistics is defined as

λ(x) =
L(ψ0, χ̂ψ0)

L(ψ̂, χ̂)
(2.20)

where ψ̂, χ̂ are the “unrestricted” MLEs of ψ and χ as discussed previously. The

additional quantity, χ̂ψ0 , is the “restricted” MLE of χ while holding ψ fixed at ψ0 and

is obtained by solving Equation (2.15) where ψ0 is plugged in for ψ.
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The challenge with performing the LRT test typically comes from determining

the value of c to ensure the type-I error rate is correctly specified as α. This requires

us to know the distribution of λ(x) directly or transform the quantity to a known

distribution. Success in doing such a task largely depends on the distribution f

assumed that the data was sampled from. In practice and for the two cases considered

here, it is common to use an asymptotic result which states that the test statistic

−2 lnλ(x) follows a Chi-square distribution with 1 degree of freedom [4].
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3 SADDLEPOINT APPROXIMATIONS

3.1 Saddlepoint Approximation for Probability Density Function

The saddlepoint approximation method was initially proposed by [5]. It is a

formula that approximates a probability density or mass function when the moment

generating function (MGF) or cumulant generating function (CGF) of the random

variable is known [3]. It can be applied in both univariate and multivariate cases as

well as approximating conditional distributions. The approximation is popular due to

its general high accuracy. Traditional approximation approaches used in techniques

such as the LRT described in Chapter 2 rely on approximations of order O(n− 1
2 )

while saddlepoint approximations generally are order O(n−1) but can have up to

order O(n− 3
2 ) in some cases [3, 6].

The saddlepoint approximation can be used for both discrete and continuous cases.

Without loss of generality, suppose X is a continuous random variable with CGF,

KX(s), defined on s ∈ (a, b). The saddlepoint density approximation to the density

function of X, denoted f̂X(x), is given as

f̂X(x) =
1√

2πK ′′
X(ŝ)

eKX(ŝ)−ŝx. (3.1)

The symbol ŝ = ŝ(x) denotes the unique solution to the equation

K ′
X(ŝ) = x, ŝ ∈ (a, b) (3.2)

and it is an implicitly defined function of x. The previous equation is referred to

as the saddlepoint equation and ŝ the saddlepoint associated with the value x. The

symbol K ′′
X(ŝ) is the second derivative of the CGF evaluated at ŝ.

Since, f̂X is an approximation of the density function, the approximation does not

typically integrate to one. However one can“force a density” by integration and then
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scaling. Letting c =
∫∞
−∞ f̂X(x)dx, a normalized saddlepoint approximation is defined

as

f̄X(x) =
f̂X
c

(3.3)

and is a proper density function since
∫∞
−∞ f̄X(x)dx = 1. In practice, the process of

finding the normalizing constant c is typically accomplished using numerical integra-

tion of f̂X(x) over the support of X.

To illustrate the utility of the saddlepoint approximation, we considered two ex-

amples.

Example 3.1.1 Consider the normal distribution whose CGF is

KX(s) = µs+
σ2s2

2
. (3.4)

Taking the first two derivatives yields

K ′
X(s) = µ+ σ2s

K ′′
X(s) = σ2.

The solution to the saddlepoint equation, K ′
X(ŝ) = µ + σ2ŝ = x, can be solved

analytically and is

ŝ(x) = ŝ =
x− µ

σ2
(3.5)

Substituting KX(ŝ) and K
′′
X(ŝ) in Equation (3.1), the saddlepoint approximation for

the normal density is expressed as

f̂X(x) =
1√
2πσ2

eµ+σ
2ŝ2−(x−µ

σ2 )x

and reduces to

f̂X(x) =
1√
2πσ2

e−
1
2
(x−µ

σ
)2 , x ∈ R (3.6)

In this particular case, the saddlepoint approximation is exact. This is not typically

the case as demonstrated with the next example.
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Example 3.1.2 The saddlepoint approximation could be used to estimate the

PDF of discrete random variables. To demonstrate this, consider the Poisson distri-

bution X ∼ Poisson(λ) whose CGF is

KX(s) = λ(es − 1). (3.7)

Its first and second derivatives are

K ′
X(s) = K ′′

X(s) = λes.

The saddlepoint equation, K ′
X(ŝ) = λeŝ = x, has the solution

ŝ(x) = ŝ = ln(
x

λ
). (3.8)

The saddlepoint approximation for the Poisson PDF is expressed as

f̂X(x) =
1√
2πx

e[x−λ−x ln
x
λ
]

when substituting KX(ŝ) and K
′′
X(ŝ) in Equation (3.1). The PDF approximation can

be simplified further to

f̂X(x) = λxe−λ
[

1

e−x(
√
2π)(xx+0.5)

]
.

Note that, e−x(
√
2π)(xx+0.5) is Sterling’s approximation for x! and thus the saddle-

point approximation is accurate up to the degree of accuracy of Sterling’s approxi-

mation.

3.1.1 Conditional Saddlepoint PDF

The saddlepoint approximation method can also be used to approximate the probabil-

ity density function of a conditional random variable. Suppose we have two continuous

random variables X, Y . The conditional PDF of Y |X is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
,
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where fX,Y (x, y) is the joint PDF and fX(x) is the marginal PDF. The main idea here

is to provide saddlepoint approximations for the joint distribution, f̂X,Y (x, y), and an

additional saddlepoint approximation for the marginal distribution, f̂X(x). After

obtaining the approximations, the saddlepoint density of the conditional random

variable Y |X is obtained by taking the ratio,

f̂Y |X(y|x) =
f̂X,Y (x, y)

f̂X(x)
. (3.9)

.

The two approximations in Equation (3.9) can be accomplished if the joint CGF

KX,Y (s1, s2) is known. Details of the derivation can be found in [3]. We briefly sum-

marized the results here. Using KX,Y (s1, s2) directly, the saddlepoint approximation

of the joint PDF is

f̂X,Y (x, y) = (2π)−1|K ′′
X,Y (ŝ1, ŝ2)|−1/2e{KX,Y (ŝ1,ŝ2)−ŝ1x−ŝ2y}. (3.10)

Here the 2-dimensional saddlepoint (ŝ1, ŝ2) solves the set of two equations from the

CGF KX,Y (s1, s2) obtained from Equation (2.10)

nAs1(ψ + ŝ1, χ+ ŝ2) = X (3.11)

nAs2(ψ + ŝ1, χ+ ŝ2) = Y (3.12)

and the second derivative of the CGF yields

K ′′
X,Y (s1, s2) =

nAs1s1(ψ + s1, χ+ s2) nAs2s1(ψ + s1, χ+ s2)

nAs1s2(ψ + s1, χ+ s2) nAs2s2(ψ + s1, χ+ s2)

 (3.13)

Note that |∗| is the absolute value of the determinant if * is a matrix. However, if *

is just a scalar, then |∗| is the magnitude of the value * or simply the absolute value

of *. The marginal CGF for X is obtained from the joint CGF, KX(s0) = KX,Y (s1 =

s0, s2 = 0) and the saddlepoint approximation provided in Equation (3.1) applies and

can be expressed as

f̂X(x) = (2π)−1/2|K ′′
X(ŝ0, 0)|−1/2e{KX(ŝ0,0)−ŝ0x} (3.14)
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where ŝ0 is the saddlepoint that solves the single equation from KX(s0, 0)

nAs0(ψ + ŝ0) = X

and K ′′
X(ŝ0, 0) = nAs0s0(ψ + s0) is the second derivative with respect to s0 of the

marginal CGF. Finally, the conditional saddlepoint PDF is obtained by the ratio of

the joint and marginal approximations,
f̂X,Y (x,y)

f̂X(x)
. Upon algebraic manipulations, we

have

f̂Y |X(y|x) = (2π)−0.5

{ |K ′′
X,Y (ŝ1, ŝ2)|

|K ′′
X(ŝ0, 0)|

}−0.5

e[{KX,Y (ŝ1,ŝ2)−ŝ1x−ŝ2y}−{KX(ŝ0,0)−ŝ0x}].

(3.15)

3.1.2 Maximum Likelihood Estimators and Saddlepoint Ap-

proximations

When working with exponential families, there is an interesting relationship between

MLEs and saddlepoint approximations which enables the saddlepoint density ap-

proximations in the previous sections to be expressed completely in terms of MLEs,

Fisher’s Information, and Likelihood functions. A comprehensive discussion can be

found in [3]. For our purposes, we provided the details for the univariate case to gain

insight. We simply provide the key result for the conditional distribution case.

For the one parameter exponential family case, the CGF for the sufficient statistic

T is

KT (s) = nA(ψ + s)− nA(ψ). (3.16)

When using this form to compute a saddlepoint approximation for the PDF of T , fT ,

the saddlepoint equation is

K ′
T (ŝ) = nAs(ψ + ŝ) = T. (3.17)
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Therefore, by using Equation (3.1), the saddlepoint approximation can be rewritten

as

f̂T (t) =
1√

2πnAss(ψ + ŝ)
enA(ψ+ŝ)−nA(ψ)−ŝt. (3.18)

When discussing MLEs for the one parameter case, recall in Chapter 2 that maximiz-

ing the log-likelihood with respect to ψ yielded the differential equation presented in

Equation (2.12) and is presented below for the reader as:

nAψ(ψ̂) = T

where T =
∑n

i=1 t(xi). Upon comparison of the two differential equations in Equation

(2.12) and (3.17), it is clear that the MLE ψ̂ must be equal to ψ + ŝ. This implies

that, for a given sufficient statistic value T = t, the saddlepoint solution can be

expressed completely in terms of its corresponding MLE as ŝ = ψ̂ − ψ. Using this

expression, in addition to the likelihood form of Equation (2.11) and the fact that

j(ψ̂) = nAss(ψ + ŝ), Equation (3.18) can be rewritten as

f̂T (t|ψ) =
1√

2πj(ψ̂)

L(ψ)
L(ψ̂)

(3.19)

This particular form of the saddlepoint approximation of the PDF of T is solely a

function of t, through the MLE ψ̂ and only depends on the parameter ψ. This par-

ticular form is extremely helpful when implementing the saddlepoint approximation

in software such as R software, as packages to compute MLEs for a given sufficient

statistic are readily available.

When working with two parameter exponential families with canonical interest

parameter ψ and nuisance parameter χ, inference should be conducted on the suffi-

cient statistics for ψ, T1, given the sufficient statistic for χ, T2. Thus a saddlepoint

approximation for the density of T1|T2 is needed to compute p-values. Like the uni-

variate setting, the approximation can be completely written in terms of likelihood
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quantities as

f̂T1|T2(t1|t2;ψ) = (2π)−
1
2

{
|j(χ̂, ψ̂)|

|jχχ(χ̂ψ, ψ)|

}− 1
2 L(χ̂ψ, ψ)
L(χ̂, ψ̂)

. (3.20)

While not apparently obvious, the conditional approximation is a function of t1 for a

fixed value of t2 and ψ. The distribution doesn’t depend on χ at all, which is a result

from conditioning on the sufficient statistic T2.

3.2 Saddlepoint Approximation for Cumulative Density Functions

The cumulative density function (CDF) of T and T1|T2 can be approximated

using one of two approaches. The first is via numerical integration, and the second

is to use the approximation results from Luganni-Rice and Skovgaard [3]. These

approximations can be used to directly compute p-values in which the test statistic

involves sufficient statistics.

The saddlepoint approximation for the CDF of the sufficient statistic T in a one

parameter exponential family developed by Lugannani and Rice [3] can be expressed

as

F̂T (t) =

Φ(ŵ) +
⊗

(ŵ)( 1
ŵ
− 1

û
) if t ̸= K ′

T (0)

1
2
+

K′′′
T (0)

6
√
2πK′′

T (0)3/2
if t = K ′

T (0)

(3.21)

where

ŵ = sgn(ψ̂ − ψ)

√
−2 ln

L(ψ)
L(ψ̂)

(3.22)

and

û = (ψ̂ − ψ)

√
j(ψ̂) (3.23)

are functions of t. The symbols
⊗

and Φ represent the standard normal density and

CDF respectively and sgn(ψ̂ − ψ) captures the sign ± of ψ̂ − ψ. The bottom expres-

sion in (3.21) defines the approximation at the mean of T or when ŝ = ψ̂−ψ = 0. In

this case, ŵ = 0 = û, and the last factor in the top expression of (3.21) is undefined.
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Fortunately the discontinuity is removable. As t → K ′
T (0) in either direction, the

limiting value is 1
2
+

K′′′
T (0)

6
√
2πK′′

T (0)3/2
. See [3] for additional details on the derivations.

The CDF expression is continuous and, more generally, continuously differentiable

or smooth. Apart from the theoretical smoothness, any practical computation that

uses software is vulnerable to numerical instability when making the computation

of Equation (3.21) for t quite close to K ′
T (0). When making computations within a

neighborhood of K ′
T (0), F̂T (t) can be approximated with several interpolation meth-

ods [1].

The saddle point approximation of the CDF of the conditional distribution T1|T2
for the two parameter exponential family was developed by Skovgaard [3] and can be

expressed as

F̂T1|T2(t1|t2) = Φ(ŵ) +
⊗

(ŵ)(
1

ŵ
− 1

û
) (3.24)

where

ŵ = sgn(ψ̂ − ψ)

√
−2 ln

L(ψ, χ̂ψ)
L(ψ̂, χ̂)

(3.25)

and

û = (ψ̂ − ψ)

√
|j(ψ̂, χ̂)|

|jχχ(ψ, χ̂ψ)|
. (3.26)

The CDF is undefined when ψ̂ = ψ.
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4 APPROXIMATE UMP TEST USING SADDLEPOINT

APPROXIMATION

In this chapter, a summary of the results in [2] for conducting inference on the

mean of the beta distribution, µ, where the precision parameter ϕ is known is shown.

We then extended the testing procedure by developing an additional approach to

handle the situation when ϕ is unknown. Note that for this chapter, the interest

parameter ψ is now µ for a one parameter case.

4.1 Summary of Brakefield 2020: Inference on µ with ϕ Known

Bryn Brakefield’s thesis work [2] provides a detailed explanation of statistical in-

ference for the mean µ of the beta distribution while the precision parameter ϕ is

known using traditional likelihood-based methods and implementing a saddlepoint

approximation. Under this setting, it turns out the parameter µ is a canonical pa-

rameter and the one parameter methods covered in Chapter 3 can be applied. In this

section, a general summary of the saddlepoint derivations of [2] are provided along

with an illustrative example.

The hypothesis of interest is defined as

H0 : µ = c0, H1 : µ ̸= c0. (4.1)

One-sided tests of (4.1) were also considered. In the work by [2], there were com-

parison of the standard large sample likelihood-based tests, a standard t-test, and a

saddlepoint approximation for the UMP test for the one-sided alternative scenarios.

Through simulation work, she provided empirical evidence for various aspects of the

hypothesis tests and her corresponding confidence intervals for µ under a wide variety
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of values for c0 as well as small to moderate sample sizes. She offered some exam-

ples of direct applications of her methods to real-world problems, including a flow

cytometry (FCM) data set for testing and sample size determination.

The mean/precision parameterization of the beta density function in Equation

(1.2) while treating ϕ as a known quantity (constant), can be written in exponential

family form,

fX(x|µ) =
1

x(1− x)1−ϕ
eµϕ ln( x

1−x
)−A(µ), 0 < x < 1. (4.2)

where A(µ) = − ln
(

Γ(ϕ)
Γ(µϕ)Γ(ϕ(1−µ))

)
. The parameter µ can be considered a canonical

parameter with its corresponding sufficient statistic T = ϕ
∑n

i=1 ln(
xi

1−xi ).

Using Equation (2.9), the CGF of T is

KT (s) = nA(µ+ s)− nA(µ) = n ln

(
Γ(ϕµ+ ϕs)Γ(ϕ− ϕµ− ϕs)

Γ(µϕ)Γ(ϕ− ϕµ))

)
(4.3)

respectively.

The first two derivatives of KT (s) are

K ′
T (s) = nA′

s(µ+ s) = nϕ (Ψ(ϕ(µ+ s)−Ψ(ϕ(1− µ− s))) (4.4)

K ′′
T (s) = nA′′

s(µ+ s) = nϕ2 (Ψ′(ϕ(µ+ s)) + Ψ′(ϕ(1− µ− s))) . (4.5)

where Ψ and Ψ′ are the digamma and trigamma functions. They are the first and sec-

ond derivatives of ln(Γ(y)) respectively, where Γ(y) is the gamma function evaluated

at y > 0. for every positive integer of y. Note that the solution to the saddlepoint

equation K ′
T (ŝ) = t does not have a closed form and must be obtained numerically

using a root finder. The solution can also be found by computing the MLE through

nA′(µ̂) = t numerically and solving for the saddlepoint using ŝ = µ̂− µ as discussed

in Chapter 3. The PDF formula for the saddlepoint approximation for T , f̂T (t|µ),

can be obtained by substituting Equations (4.3) and (4.5) into (3.1).

To demonstrate the accuracy of the approximations, we simulated 10000 obser-

vations of T = ϕ
∑n

i=1 ln(
xi

1−xi ). Each of these observations were generated by taking
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simple random samples from a beta distribution, X1, X2, ..., Xn ∼ B(µ = 0.2, ϕ = 5),

considering sample sizes of n = 2 and n = 1000. Histograms are presented in Figure

4.1 to visualize the distributional shapes of T . Additionally, we overlayed the unnor-

malized and normalized saddlepoint probability density curves as well as a normal

approximation curve on the T distribution. The normal approximation is derived by

using the first two derivatives of the CGF of T , K ′
T (0) and K

′′
T (0), which correspond

to the mean and variance of T respectively.

Figure 4.1: Approximating Distribution of Sufficient Statistic T of µ

We can see from Figure 4.1 that, for smaller sample sizes such as n = 2, the

normal approximation PDF (black curve) fails to approximate the true distribution

of T , especially at the tails. However, the saddlepoint approximations (normalized

and unnormalized) do a better job capturing the key distributional characteristics

of T . As expected, for n = 1000, the distribution of T closely follows a Normal
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distribution due to the Central Limit Theorem (CLT). There is little to no difference

between the saddlepoint and normal approximation in this case.

Figure 4.1 highlights one of the real strengths of saddlepoint approximations when

it comes to dealing with smaller sample sizes. In practical settings where data collec-

tion is difficult, the concern for using results involving CLT is potential lack of type-I

error control. As figure 4.1 depicts, using a normal approximation to compute a tail

probability (p-value) when working with smaller sample sizes could lead one to draw

an incorrect conclusion at the specified α level.

To test for H0 : µ ≤ c0, H1 : µ > c0 for a given observed sample x1, x2, ..., xn,

the UMP size α test rejects H0 for T > t∗ (where t∗ is a critical value) such that

P (T > t∗|µ = c0) = α. Switching the inequalities yields the left-tailed version. P-

values are obtained for an observed data set by first computing the sufficient statistic

t = ϕ
∑n

i=1 log(
xi

1−xi ) and then computing P (T > t|µ = c0). This can be done by

using the Lugannani-Rice F̂T provided in Equation (3.21). Without loss of generality,

similar approach can be used for testing H1 : µ < c0.

4.2 Inference on µ with ϕ Unknown

We now focus our attention to testing for the mean µ of the beta distribution

with ϕ unknown. The hypothesis being tested is H0 : µ ≤ c0 vs H1 : µ > c0,

where 0 < c0 < 1 or its left tailed version. The ultimate goal here is to find canonical

parameters ψ and χ such that interest parameter ψ corresponds to µ and the nuisance

parameter χ corresponds to ϕ. Upon doing so, we can then determine the sufficient

statistics T1 and T2 and use the saddlepoint approximations presented in Chapter 3

to approximate the distribution of T1|T2 and use it to compute p-values.

Equation (4.6) provides the beta distribution with paremeters µ and ϕ in expo-
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nential family form

fX(x|µ, ϕ) =
1

x(1− x)
eµϕ ln( x

1−x
)+ϕ ln(1−x)+ln( Γ(ϕ)

Γ(µϕ)Γ(ϕ(1−µ))). (4.6)

We can see that µ and ϕ are not canonical parameters under this parameterization

of the distribution, but it is close. The first canonical parameter is µϕ which is

equal to α under the α,β parameterization. The second canonical parameter is ϕ

and corresponds to our nuisance parameter. If we were to blindly work under this

parameterization, the interest parameter is ψ = µϕ = α and the nuisance parameter

is χ = ϕ. The null hypothesis would be of the form H0 : α ≤ c0 or H0 : α ≥ c0 and

thus, not be a direct equivalent test for µ.

In the search of canonical parameters that directly corresponded to µ, consider

rewriting Equation (4.6), using canonical parameters α and ϕ

fX(x|α, ϕ) =
1

x(1− x)
eα ln( x

1−x
)+ϕ ln(1−x)+ln( Γ(ϕ)

Γ(α)Γ(ϕ−α)). (4.7)

Now consider adding the following “clever zero”, −c0ϕ ln( x
1−x) + c0ϕ ln(

x
1−x), into

the exponent of Equation (4.7). Here c0 is a real valued constant taken from the unit

interval (0, 1). Upon some algebraic rearranging, we can examine a new exponential

family form

fX(x|α, ϕ) =
[

1

x(1− x)

]
e[(α−c0ϕ) ln(

x
1−x

)+ϕ(c0 ln( x
1−x)+ln(1−x))]+ln[ Γ(ϕ)

Γ(α)Γ(ϕ−α) ]. (4.8)

In Equation (4.8), let ψ = α − c0ϕ and χ = ϕ denote the canonical parameters.

Fortunately in this case, testing the hypothesis H0 : ψ ≤ 0 vs H1 : ψ > 0 is equivalent

to testing the hypothesis H0 : µ ≤ c0 vs H1 : µ > c0. Now that we have an expo-

nential family with canonical parameters that directly correspond to our hypothesis

of interest, we can use the saddlepoint approximation results within Chapter 3 to

provide a formal statistical test.

The density function of the beta random variable, reparameterized in terms of

ψ = α− c0ϕ and χ = ϕ, is
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fX(x|ψ, χ) =
[

1

x(1− x)

]
eψt1(x)+χt2(x)−A(ψ,χ) (4.9)

where

t1(x) = ln

(
x

1− x

)
,

t2 = c0 ln

(
x

1− x

)
+ ln(1− x) = ln

(
xc0

[1− x]c0−1

)
,

and

A(ψ, χ) = − ln

(
Γ(χ)

Γ(ψ + c0χ)Γ(χ− c0χ− ψ)

)
.

For a given sample of data, the sufficient statistics for ψ and χ are

T1 =
n∑
i=1

ln

(
xi

1− xi

)
(4.10)

and

T2 =
n∑
i=1

ln

(
xc0i

[1− xi]c0−1

)
(4.11)

respectively.

According to [9] and summarized in Chapter 3, a UMP size α test should be

based on the probability distribution of the conditional random variable T1|T2. While

we do not know the conditional PDF of T1|T2 directly, saddlepoint approximations

are readily available due to the fact we know the joint cumulant generating function

of T1 and T2 which is obtained by using A(ψ, χ). Additionally, we summarized the

very useful connection between the CGF and saddlepoint equations with likelihood

quantities and MLEs. These results allow for one to streamline the approximation

process. We now derive the likelihood, Fisher’s information, and the system of equa-

tions to compute MLEs needed for the saddlepoint PDF and CDF formulas provided

in Equations (3.20) and (3.24).
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The likelihood function for a simple random sample of beta distributed random

variables under the (ψ, χ) canonical parameterization is

L(ψ, χ) =
[

Γ(χ)

Γ(ψ + coχ)Γ((1− co)χ− ψ)

]n [ n∏
i=1

(
1

xi(1− xi)

)]
e{ψT1+χT2}. (4.12)

Fisher’s information j(ψ, χ), obtained by computing the matrix of partial deriva-

tives of A(ψ, χ), is

j(ψ, χ) =

jψψ jψχ

jχψ jχχ

 =

nAψψ(ψ, χ) nAχψ(ψ, χ)

nAψχ(ψ, χ) nAχχ(ψ, χ)

 (4.13)

where

nAψψ(ψ, χ) = n [Ψ′′(ψ + coχ) + Ψ′′((1− co)χ− ψ)]

nAχψ(ψ, χ) = n [coΨ
′′(ψ + coχ)− (1− co)Ψ

′′((1− co)χ− ψ)]

nAψχ(ψ, χ) = n [coΨ
′′(ψ + coχ)− (1− co)Ψ

′′((1− co)χ− ψ)]

nAχχ(ψ, χ) = n [−Ψ′′(χ) + c2oΨ
′′(ψ + coχ) + (1− co)

2Ψ′′((1− co)χ− ψ)].

Note again that,

Ψ(y) = d
dy

ln Γ(y) is digamma,

Ψ′(y) = d2

dy2
ln Γ(y) is trigamma and

Ψ′′(y) = d3

dy3
ln Γ(y) is polygamma function of order 2.

Taking the log of Equation (4.12), the log-likelihood is

l(ψ, χ) = n ln

[
Γ(x)

Γ(ψ + coχ)Γ((1− co)χ− ψ)

]
+

[
n∑
i=1

ln

(
1

xi(1− xi)

)]
+ ψT1 + χT2

(4.14)

The derivatives of the log-likelihood with respect to ψ and χ respectively are

∂

∂ψ
l(ψ, χ) = n [Ψ′((1− co)χ− ψ)−Ψ′(ψ + coχ)] + T1 (4.15)

∂

∂χ
l(ψ, χ) = n [Ψ′(χ)− coΨ

′(ψ + coχ)− (1− co)Ψ
′((1− co)χ− ψ)] + T2. (4.16)
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The unrestricted MLEs of the canonical parameters, ψ̂ and χ̂ are obtained by setting

Equations (4.15) and (4.16) to 0, and solving them numerically (equations are not

of closed form). The restricted MLE χ̂ψ=0 is obtained by substituting the null hy-

pothesized value H0 : ψ = 0 for ψ in Equation (4.16), equating and then solving for

χ numerically. Both the unrestricted and restricted MLE solutions can be obtained

using the STATS4 package within R.

The previous derivations are plugged into Equation (3.20) to produce the saddle-

point conditional density of T1|T2,

f̂T1|T2(t1|t2;ψ = 0) = (2π)−
1
2

{
|j(ψ̂, χ̂)|

|jχχ(ψ, χ̂ψ=0)|

}− 1
2 L(ψ, χ̂ψ=0)

L(ψ̂, χ̂)
. (4.17)

The normalized saddlepoint PDF technique in Equation (3.3) was implemented

to ensure that the saddlepoint approximation of the conditional PDF integrated to

1. To accomplish the normalization of the PDF, we integrated the (4.17) on the

appropriate domain to obtain the normalization constant, which was then used for

the adjustment such that the normalized conditional PDF integrated to 1. This

is only critical for graphing the approximate conditional densities as we will use the

Skovgard approximation to the CDF when computing tail probabilities. An important

question to ask is “what is an appropriate domain?” for integration. We address this

very important question next.

4.2.1 The Support of T1|T2

Note that in both the one parameter and two parameter cases, the sufficient statistic

for the interest parameter is T = T1 =
∑n

i=1 ln(
xi

1−xi ) with the one parameter case

having constant ϕ as part of its sufficient statistic. While the support of T marginally

is (−∞,∞) for the one parameter case, this is not true for T1|T2. It is critical that we

have the correct support obtained to only evaluate the approximations via Equation
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(4.17) over that interval. For any other values, the conditional density should be 0.

If this in not carefully considered, numerical errors or NaN are produced.

To demonstrate the unique joint support of T1 and T2, we simulated 100,000 suffi-

cient statistics each obtained by sampling from a beta population with the parameters

(µ = 0.9, ϕ = 10) with a sample size of n = 10. We set c0 = 0.9 within the calcu-

lation of T2 such that ψ = 0 and thus represents a null distribution case. The joint

distribution of T1, T2 were plotted on the left side of Figure 4.2. We can clearly see

that the scatter plot between the sufficient statistics is not the whole of the R2 space

but rather a subset of it.

Figure 4.2: Support and Distribution of T1|T2

This shows that T1 and T2 are dependent variables. However, since the variable of

interest is T1|T2, we are not interested in the whole domain of T2 but just at a specific

value of T2. If we fix the value at T2 = −3.5 as depicted by the horizontal green line

in Figure 4.2, we can see that the plausible values that T1 can take is bounded above

and below as indicated by the red dots.

To get a sense of what the conditional distribution of T1|T2 = −3.5 looks like, we

subsetted out simulations to only include observed values of T1 with corresponding

T2 values that were relatively close to −3.5 within a small margin of 0.05 below and
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above T2 = −3.5. The T1 data points that were observed on the green line while

holding T2 = −3.5 fixed were of interest. A histogram of these values are shown on

the right side of Figure 4.2. Again we can see that values for T1 given T2 = −3.5 range

from about 14 to 33. The range will be much wider for example if we conditioned at

T2 = −4.25.

We can see from Figure 4.2 that the relationship between the sufficient statistics

have a clear support. Knowing the boundary of the support can be helpful because

the upper and lower limits of T1|T2 can be obtained. As shown below, the support

can be defined by the following inequality.

T2 ≤ g(T1), where g(x) = cox− n ln(e
x
n + 1) (4.18)

Figure 4.3 provides the previous support example, but with the support boundary

generated from Equation (4.18) (blue curve) included. We can see that no simulated

data falls outside of the support region. We verified this over numerous situations

and by increasing the number of simulations into the millions.
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Figure 4.3: Jensen’s Inequality Defining the Boundary of the Joint Distribution be-

tween the Sufficient statistics

As we condition on T2 = −3.5 in Figure 4.3, we can see that the boundary and the

horizontal line at T2 = −3.5 intersects at two points (red dots). These correspond to

the upper and lower bounds of the conditional distribution T1|T2 = −3.5. To obtain

these two values, it is easily shown that g′′(x) < 0 for all x and thus a value for

T1 that maximizes g can be obtained. We denoted this value as T ∗
1 . To determine

the two bounds we simply apply a root finder for the function h(x) = g(x)− (−3.5)

over the two disjoint domains of h, (−∞, T ∗
1 ) and (T ∗

1 ,∞). For the specific example

depicted in Figure 4.3, the lower and upper limits for the support given T2 = −3.5
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are T1 = 15.17 and T1 = 30.27 respectively. In general, the root finder is applied to

the function h(x) = g(x)− t2 where t2 is the observed conditional value.

To illustrate the boundary further, Figure 4.4 shows different scenarios of Beta

distributions, with varying sample sizes, of which the joint distribution of T1 and

T2 were simulated. As illustrated in the figure, the joint distributions and thus the

conditional distributions can be quite different depending on the values of µ, ϕ, and

n.

Figure 4.4: Demonstration of Jensen’s Inequality in Different Scenarios

4.2.1.1 Support of T1|T2 Proof

The proof of the support depicted in Equation (4.18) is a simple exercise using Jensen’s

Inequality. We want to show that for a given concave function g, the statement
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g(T1) ≥ T2 is true.

The finite form of Jensen’s inequality states that for a given concave function φ,

with values x1, x2, ...xn in its domain, we have the following inequality

φ

(∑n
i=1 xi
n

)
≥

∑n
i=1 φ(xi)

n
. (4.19)

Since g in (4.18) is concave, applying Jensen’s inequality and by Equation (4.10) we

have

g

(
T1
n

)
≥

∑n
i=1 g(ln(

xi
1−xi ))

n

nc0
T1
n

− n ln(e
T1
n + 1) ≥

∑n
i=1 n[c0 ln(

xi
1−xi )− ln(e

ln(
xi

1−xi
)
+ 1)]

n

c0T1 − n ln(e
T1
n + 1) ≥

n∑
i=1

ln

(
xc0i

(1− xi)c0−1

)
.

Therefore, by Equation (4.11)

T2 ≤ c0T1 − n ln(e
T1
n + 1).

4.2.2 Examining the Saddlepoint Approximations of T1|T2

The purpose of this section is to visually demonstrate the performance of the approx-

imation and the utility of the boundary function. We considered the beta population

B(µ = 0.1, ϕ = 10) and respective sample of size 10 first. The left graphic within

Figure 4.5 shows the histogram of the actual population (simulation size was 1 mil-

lion). The right graphic within Figure 4.5 shows the joint distribution of T1 and T2

along with their support boundary. We also consider conditioning on two scenarios:

T2 = −3.7 (green line) and T2 = −4.5 (yellow line).
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Figure 4.5: A Beta Population and Joint Distribution of T1|T2 B(µ = 0.1, ϕ = 10), n =

10

Figure 4.6 provides subsets of the data depicted in Figure 4.5 (right sided plot)

just looking at values of T1 when T2 is close to −3.7 (green line) and −4.5 (yellow

line). These graphs represent simulation of the conditionals and the saddlepoint ap-

proximations are overlayed on top. Upon examination, we can see that there is a

great agreement between the simulated conditional data and the saddlepoint approx-

imation. A key advantage of the saddlepoint approximations is their accuracy in the

tails of the distributions where reliable p-value computations are needed most.
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Figure 4.6: The Distribution of T1|T2 based on the Beta Population B(µ = 0.1, ϕ =

10), n = 10 for Statistical Inference of µ

Also, we considered situations where µ = 0.1 with varied values of ϕ and considered

ϕ = 5, 10, and 20. Figure 4.7, from left to right, provides the beta population, joint

distribution of T1 & T2 and boundary plot, and a conditional density approximation

for T2 = −5 while setting ϕ = 5 and keeping the sample size at 10.
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Figure 4.7: Beta Population Histogram, Support of T1, T2 and Distribution of UMP

Test under the Condition B(µ = 0.1, ϕ = 5), n = 10

Similarly, Figure 4.8, repeats the process of the previous graphic, while setting

ϕ = 20 and conditioning at T2 = −3.6. Note that the sample size is still fixed at

10 and the mean parameter is fixed at µ = 0.1. We can see from both Figures 4.7

and 4.8 that the saddlepoint conditional PDF (red curve) trends accurately on the

simulated distributions of T1|T2 under different scenarios.
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Figure 4.8: Beta Population Histogram, Support of T1, T2 and Distribution of UMP

Test under the Condition B(µ = 0.1, ϕ = 20), n = 10

Of the scenarios considered so far, we have only considered µ = 0.1 which produces

right skewed populations. Now, we consider the case of the beta distribution with

parameters µ = 0.5, ϕ = 10, and n = 10. Under this scenario the beta density is a

symmetric distribution. Upon examining Figure 4.9, we see that the joint distribution

of T1 and T2 has some symmetry to the distribution about T1 = 0. This makes sense

given the formulation of T1. With values equally likely to occur on either side of

µ = 0.5, Σn
i=1 ln(

xi
1−xi ) is centered at 0. As in the previous cases, the saddlepoint

method performs well under this scenario.
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Figure 4.9: Beta Population Histogram, Support of T1, T2 and Distribution of UMP

Test under the Condition B(µ = 0.5, ϕ = 10), n = 10

4.2.3 Decision Rule of the UMP Size α Test

With confidence that the conditional saddlepoint approximations are working as in-

tended, we now describe its application for our inferencing problem. To test for H0 :

ψ ≤ 0 vs H1 : ψ > 0 which is equivalent to testing H0 : µ ≤ c0 vs H1 : µ > c0,

let t1 and t2 be the observed sufficient statistics obtained from the sample. The cor-

responding p-value, utilizing the conditional saddlepoint CDF of T1|T2 provided in

Equation (3.24), is computed by evaluating 1− F̂T1|T2(t1|t2, ψ = 0). This corresponds

to the right tail probability assessing how likely it is to observe values of T1|T2 = t2

that are as extreme or more extreme as the observed statistic t1|t2 under H0 : µ ≤ c0.

When rejecting H0 for p-values less than a specified significance level α, the test is a

highly accurate approximation to the UMP size α test for the right tailed test con-

sidered. Without loss of generality, similar computations are made for the left tailed

test.
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5 SIMULATION STUDIES

In this chapter, we will explore three different approaches to performing a hy-

pothesis test for the mean of the beta distribution. The three tests include the classic

Student’s t-test (t-test), the Likelihood Ratio Test (LRT) described in Section 2.7

and our approach via the saddlepoint approximation method (Beta test). A compar-

ison of each tests performance is conducted both in terms of type I error rates and

statistical power.

The t-test and LRT were considered because they are standard methods that

are commonly used in practice and can be easily applied to the beta distribution

problem considered here. Additionally, it is well understood that the t-test, while

technically assumes normally distributed data, is quite robust to this assumption but

t-test may likely not be robust when the beta population is J-shaped or L-shaped

(i.e. asymptotically goes to infinity on either endpoint). Assessing its robustness

in the specific case of the beta distribution is an interesting study on its own. The

null distribution of the LRT is often difficult to determine and the common approach

is to consider a large sample approximation. We expect this test to work just fine

for large sample sizes, but for smaller sample sizes, we expect the accuracy of the

approximation to diminish. When assuming the precision parameter is known in

advance, [2] showed via simulations that the saddlepoint approximation performed

better than these standard tests. We hope that the story does not change in this case

upon relaxing this assumption.
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5.1 Type I Error Rate Simulations

One of the most important components of a statistical test is its ability to control

type I error rates. The type I error rate is the probability of rejecting the null

hypothesis given that the null hypothesis is true. A common approach to assess a

test’s type I error control is to utilize a simulation study. For our simulation study

we compared the type I error control of our proposed method, the LRT, and t-test.

For a user specified set of parameters µ0, ϕ, and n, the simulation algorithm can be

summarized as follows:

For each of 10,000 iterations:

1. Simulate x1, x2, ..., xn under the B(µ0, ϕ) model.

2. Perform the three testing procedures, setting c0 = µ0 for a certain α.

3. Keep a running count of the number of rejected tests for each procedure.

The estimated type I error rate for each procedure is the proportion of rejected

tests out of the 10,000 simulations. This estimate should be relatively close to .05 if the

testing procedure is controlling the error rate as specified. Since the type I error rate

result from the simulation is just an estimate, it is helpful to account for simulation

error. Since the estimated rate is just a sample proportion, if the procedure is truly

controlled at α, the estimates should fall within the limits α±2
√

α(1−α)
10000

roughly 95%

of the time. For any type I error rate estimate outside of these limits, we consider

the procedure for that given scenario to not have control of the type I error rate. For

our simulations, we set the significance level to α = 0.05.

For the simulation procedure described above, we considered the null cases, (µ0 =

0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5). We do not consider values above 0.5

due to the symmetry of the beta distribution. If type I error is controlled at µ0 = 0.25,

then it is controlled at µ0 = 0.75. Also, we consider two different values for the
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precision parameter (ϕ = 5, 10) and three different sample sizes (n = 5, 10, 25). For

all of the scenarios listed, we considered both left and right-tailed versions of the

testing procedures.

5.1.1 Right Tailed Tests

In this section, we compare the type I error rate estimations of all three test procedures

under a right-tailed test : H0 : µ ≤ µ0 vs H1 : µ > µ0, in order to identify which

test(s) control type I error rate better. Figure 5.1 contains three plots where each plot

represents one of the three tests (from left to right: beta test, LRT and t-test). Each

tests ability to control type I error rates across different sample sizes for ϕ = 5 are

shown. Each graph plots the estimated type I error rate against the values of µ and is

color coded and labeled by sample size. Sample sizes of 5 are coded with triangles and

in red, 10 with squares in blue, and 25 with circles in green. The specified significance

level, is denoted as a horizontal black line at 0.05 and accompanied by its upper and

lower simulation limits in black dashed lines.

Figure 5.1: Estimated Type I Error Rates for Right-Tailed Tests (ϕ = 5)
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We can see from the right tailed beta test of Figure 5.1 that, type I error rate is

controlled for all the sample sizes and null hypothesized values µ0 under consideration.

However, the LRT of Figure 5.1 is inflating type I error rate as the null hypothesized

value µ0 is getting closer to 0.5 for all sample sizes considered except for large sample

(n = 25, green line) where type I error rate is been fairly controlled.

The student’s t-test of Figure 5.1 only controls type I error rates when the null

population is symmetric. Other than that, the test cannot control type I error rate.

Actually, we can observe that the type I error rate is deflated as µ0 gets closer to 0.

This is due to the fact that, the t-test is not robust for extremely skewed situations

and when µ0 gets closer to 0, the density is more and more right skewed.

Also, we considered the same simulation setting as depicted in Figure 5.1 but

increased the precision parameter to ϕ = 10 so that the null beta population has less

variation and in some cases much less skewed. Figure 5.2 provides the type I error

rate summaries for this case.

Figure 5.2: Estimated Type I Error Rates for Right-Tailed Tests (ϕ = 10)
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The results did not change for any of the tests under the parameter settings

considered. The trend of behaviour for all the three tests appear to be the same.

However, the t-test had an improved type I error rates although the type I error rates

are still not controlled (i.e. for each sample the type I error increase by 50% from the

rates on Figure 5.1).

Upon examination of both Figures 5.1 and 5.2, for a right-tailed test, the beta test

under small samples for all null hypothesized values µ0 considered, the type I error

rate is well controlled regardless of the magnitude of the variability of the population.

With respect to the LRT for large sample cases and skewed populations, type I

error rate is controlled regardless of the size of the population variance. Also, the type

I error rate of LRT tends to inflate as the null population distribution approaches a

symmetric shape (i.e. µ approaches 0.5). We can see from Figure 5.2 that for small

samples (n = 5, 10), the LRT inflated type I error rates as high as 8.5% compared to

the other sample sizes.
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Figure 5.3: Sampling Distribution of -2log-LRT-Statistic B(µ = 0.5, ϕ = 10) n = 5

Figure 5.3 shows that the inflated type I error rate is due to the fact that there

is an overflow of -2log-LRT-Statistics at the right tail of the sampling distribution,

therefore, there is more than 5% of the test statistic at the rejection region of the

theoretical curve, χ2
1 (red curve).

Lastly, for t-test, type I error rate is controlled for symmetric populations regard-

less of sample sizes, however, the type I error rates deflate as µ0 approaches 0 with

some estimates reaching below 0.01.
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Figure 5.4: Sampling Distribution of T-Statistic B(µ = 0.1, ϕ = 10) n = 10

This is due to the fact that the beta population becomes more heavily right-skewed

as µ approaches 0. Figure 5.4 shows that the population’s skewness in turn makes

the sampling distribution of t-statistics left skewed and no longer symmetric, leaving

very few t-statistics in the right tail. With this, the area in the right tail of the

theoretical t-distribution with df = n−1 (red curve) is no longer accurate for p-value

calculations.

5.1.2 Left Tailed Tests

In the previous section, we studied the variation in type I error rate control for the

three tests under the right-tailed test. In this section, we considered the left-tailed

test: H0 : µ ≥ µ0 vs H1 : µ < µ0, to assess the type I error rate control for the

same testing procedures. Again, we have three plots presented in Figure 5.5 as it was

in the right-tailed versions. The left plot is the beta test, the middle plot is the LRT,
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and the right plot is the t-test. In this case, the precision parameter considered was

ϕ = 5.

Figure 5.5: Estimated Type I Error Rates for Left-Tailed Tests (ϕ = 5)

We can see from Figure 5.5 that for a left-tailed test, the beta test (left plot) once

again controls type I error rates across all values of µ0 and different sample sizes. With

regards to the LRT, none of the tests controlled the type I error rate. In particular,

the LRT applied to small samples (n = 5, red line) are particularly problematic where

the type I error rates are above 8% but peaks at 20% as µ0 approaches 0. In general,

we can see that inflation of type I error rate for the LRT tends to increase as µ0

approaches 0 (skewed distribution). This is very interesting because, for the right-

tailed test, the LRT controls type I error rates relatively well for n = 25; however,

the left-tailed LRT test has type I error inflation for the same sample size scenario.

The student’s t-test fails to control the type I error rate for essentially all cases

except for when µ0 is close to 0.5. This has been consistent with both left and right-

tailed tests. However, the t-test inflates the type I error rates as the population

distribution changes from symmetric to skewed (as µ0 approaches 0). For small
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samples, the inflation of the t-test in terms of type I error rates can be extremely

high in some cases. For example, when µ0 = 0.05 and 0.1, we can see from Figure 5.5

that the t-test have type I error rates that are at least 10% but at most 28%.

Also, we considered the same left-tailed simulation setting as the previous above

but increased the precision parameter to ϕ = 10 so that the null beta population has

less variation.

Figure 5.6: Estimated Type I Error Rates for Left-Tailed Tests (ϕ = 10)

We can see from Figure 5.6 that, while the trend is relatively consistent as before

when ϕ = 5, there are some characteristics worth discussing. In general, the type

I error rate estimates of the LRT and t-test on Figure 5.6 is low compared to the

estimates when ϕ = 5 in Figure 5.5. This suggests that when the beta distribution

has a larger ϕ value, the LRT and t-test procedures can be trusted more. A deeper

simulation study to determine appropriate sample sizes for ϕ and n for the LRT and

t-test is warranted but we leave this for future work.
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5.1.3 Type I Error Simulation Summary

In general, the t-test performed badly with regards to type I error rate control. This

is due to the fact that the beta distribution does not exhibit symmetry for values of µ0

close to 0. Therefore, the coupling of asymmetric and high variance beta distributions

result in severe departures from normality and as the t-test is not robust to these types

of departures, the estimated type I error rate is indeed not controlled.

The LRT uses the asymptotic properties of the MLE for ψ, χ. The apparent

inflation in the estimated type I error rate for values of µ0 relatively close to 0 is

attributed to the fact that the asymptotic properties of the MLEs of ψ, χ are not

necessarily maintained under skewed population and small sample conditions due to

the asymmetry of the sampling distribution of the MLEs. However, the type I error

rate does become slightly better controlled for relatively large sample sizes, as large

sample theory would suggest.

The beta test (saddlepoint approximation method) performs best in all cases of

µ, ϕ, n we considered. This provides empirical evidence substantiating the theory pro-

vided by [9, 3] regarding the use of saddlepoint approximations to perform approxi-

mate UMP tests based on the conditional random variable of the sufficient statistics

T1|T2.

5.2 Power Simulations

In addition to type I error control, the statistical power of a test is also of interest

to researchers. Statistical power is the probability of a test to detect a false null

hypothesis. For testing procedures that all control type I error rates effectively, the

test that has the higher power is preferred. Power estimate via simulation is obtained

similarly to type I error rate estimates. However, in this setting, the proportion of

rejections are counted while simulating under an alternative hypothesis parameter,
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µ1, rather than the null hypothesized value µ0. For a right tailed test, µ0 < µ1 < 0.5

but for left tailed test 0 < µ1 < µ0. For a user-specified set of parameters µ0, µ1, ϕ,

and n, the simulation algorithm for estimating power can be summarized as follows.

For each of 10,000 iterations:

1. Simulate x1, x2, ..., xn under the B(µ1, ϕ) alternative model.

2. Perform the three testing procedures, setting c0 = µ0 for a significance level, α.

3. Keep a running count of the number of rejected tests for each procedure.

For discussion and summary of results, we denoted the power of a test as β(µ1)

to denote that we are considering the power of a test as a function of the alternative

mean parameter alone and thus treating the sample size and precision parameter as

fixed quantities. Since there is no known theoretical power value to compare against,

we provide simulation error limits for a simulated power estimate using the formula,

β̂(µ1) ± 2

√
β̂(µ1)(1−β̂(µ1))

10000
, where β̂(µ1) is the simulated estimate of power at µ1 for a

given simulation scenario involving µ0, ϕ, and n.

We assessed the power of the three testing procedures considering both left and

right-tailed tests when setting the null value µ0 = 0.1 and for varying ranges of ϕ, n,

and alternative µ1. We considered the specific null value µ0 = 0.1 to assess the power

of the tests on a skewed distribution under the null hypothesis and this is one of the

cases where the procedures performed significantly different in terms of controlling

type I error rates. Although we do not show them in this thesis, all three tests’ power

estimates are very similar when µ0 is 0.5.

The farther away the selected null value µ0 = 0.1 is from the alternative value,

µ1, the higher the power estimate should be observed in the simulation since there is

a clear distinction between the test statistics observed versus what is expected under

H0. In these cases, the test statistics observed is rare to appear when compared to the
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null distribution of the test statistic being used. Therefore, higher statistical power

means that there is a higher chance that the test detects real difference when it exists.

5.2.1 Power of Right Tailed Tests

In this section, we compare the power estimate of all three tests under the right-tailed

setting. In this case, the precision parameter was ϕ = 5 and 10, and in each of the

three plots, a different sample size was considered as well.

For a fixed value of ϕ, we present the simulated power curves for each of the three

tests in a three-panel graph, where each panel considers a different sample size that

spans across n = 5, 10, 25. The horizontal axis is the parameter space of µ ∈ (0, 0.5),

but we limited the space from 0 to the point where the power is 1. For a one-tailed

test power curve, once the power is 1, it stays at 1 till the end, which is not interesting.

So, the range of µ on the horizontal axis for each plot varies.

For a right tailed test, the power of a test is only obtained across the alternative

parameter space which is µ0 < µ1 < 0.5. We considered 26 random values without

replacement for µ1. The vertical axis is the power estimates β(µ), which can range

from 0 to 1. There are three power curves on each plot. The red power curve is the

beta test (saddlepoint approximation method), the blue power curve is the LRT, and

the green power curve is the student’s t-test. Under each condition of the assessment,

there are two sets of panel plots based on a ϕ size.

The first-panel plot, Figure 5.7, views the power curve of the three tests in totality

for ϕ = 5 and µ0 = 0.1. We can see from Figure 5.7 that, for a sample size of n = 5,

the LRT and beta tests are seen as powerful, but LRT has better power than the

other two procedures. While the LRT and beta tests power estimates are relatively

close, the t-test lags behind by a substantial amount. With regards to the other two

plots where sample sizes are 10 and 25, we can see that LRT and beta tests become

more consistent and the t-test still suffers in comparison.

51



Figure 5.7: Simulated Power Curves for Right-Tailed Tests (µ0 = 0.1, ϕ = 5, n =

5, 10, 25)

Figure 5.8 provides a zoomed-in plot of Figure 5.7 to again emphasize that the

power of the test alone should not be the sole comparison. For these plots, simulation

error limits were calculated at the power estimates of each test. While the LRT

slightly edges out the beta test in terms of power as observed previously, for values of

µ that are less than or equal to 0.1, the power estimates are technically type I error

estimates and should be less than or equal to the 0.05 to qualify as a UMP α = 0.05

test. For the LRT test, when n = 5, type I error is not controlled at µ = 0.1. So,

while the test has higher power, it is not a valid UMP test for the case. While the

beta and t-test both maintain type I error rate estimates below 0.05, the beta testing

procedures is vastly more powerful as depicted in Figure 5.8. For n = 10 and n = 25,

all three tests keep type I error rates below 0.05, but in these cases, there is essentially

no difference in power estimates between the LRT and beta testing procedures.
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Figure 5.8: Size α Tests for Right-Tailed Tests (µ0 = 0.1, ϕ = 5, n = 5, 10, 25)

We can see from Figure 5.9 that the power curves under beta populations with

high precision ϕ = 10 have a similar trend in terms of power estimates as when ϕ = 5.

For the smaller samples (left plot) we can see that LRT test has slightly higher power

than the beta followed by the much less powerful t-test. For sample sizes 10 and

25 the beta test and LRT power curves look visually indistinguishable while the t-

test continues to improve and obtain power much closer to the beta and LRT tests

compared to when ϕ = 5.
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Figure 5.9: Simulated Power Curves for Right-Tailed Tests (µ0 = 0.1, ϕ = 10, n =

5, 10, 25)

Figure 5.10 provides a closer look at the type I error estimates for ϕ = 10. Similarly

to the first case when ϕ = 5, type I error is not controlled for the LRT when n = 5

and n = 10. Thus when choosing between the beta and t-test, which do control the

error rate, the beta test is clearly more powerful across all scenarios.
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Figure 5.10: Size α Tests for Right-Tailed Tests (µ0 = 0.1, ϕ = 10, n = 5, 10, 25)

In summary, the beta test is able to control type I error rate and is most powerful

in all cases we considered for a right tailed test. However, for larger samples we can

see that the LRT and beta tests are both reasonable approaches to consider.

5.2.2 Power of Left-Tailed Tests

In this section we compare the power estimates of all three tests under the left-tailed

setting again examining values of ϕ = 5, 10 and n = 5, 10, 25. For a left tailed test,

the power of a test is only obtained across the alternative parameter space which is

0 < µ1 < µ0. We considered 35 random values without replacement for µ1.

Figure 5.11 provides power estimates for ϕ = 5 for all 3 tests and sample sizes.

As expected, we can see that as sample size increases the power estimates of the tests

increase.
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Figure 5.11: Simulated Power Curves for Right-Tailed Tests (µ0 = 0.1, ϕ = 5, n =

5, 10, 25)

When examining the power estimates (when µ < 0.1)), the t-test has substantially

higher power, followed by the LRT, and then the beta test across all settings. Unlike

the right-tailed setting, it is much easier to observe the lack of type I error control for

both the t-test and LRT settings and is consistent with our previous, more exhaustive

type I error simulation study. While the t-test could be used as a more sensitive testing

procedure, high type I error rates must be an important consideration before using

it.

Figure 5.12 provides power estimates for ϕ = 10. In terms of power, we can see

that the beta test has the lowest power estimates followed by the LRT and t-test

across all sample size situations. Again, we see the lack of type I error control for the

LRT and t-test across all sample sizes.
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Figure 5.12: Simulated Power Curves for Right-Tailed Tests (µo = 0.1, ϕ = 10, n =

5, 10, 25)

As we increased precision to ϕ = 10, we can see from Figure 5.13 that there was

no significant change of the tests controlling type I error rate when compared to the

left-tailed test with less precision (ϕ = 5) results. The beta test is the only procedure

that consistently controls the type I error rate.
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Figure 5.13: Size α Tests for Right-Tailed Tests (µo = 0.1, ϕ = 10, n = 5, 10, 25)

5.3 Summary

It has been interesting to explore the dynamics governing the type I error rate

and power estimation of the three tests based on a skewed null beta population

distribution. We found that the beta test (saddlepoint approximation method) based

on the conditional distribution T1|T2 controls the type I error rate in all cases of µ,

ϕ, and n. For a left-tailed test, the type I error rate of the LRT and t-test is inflated

as µ0 approaches 0. For the right-tailed test, the type I error rate is inflated for LRT,

whereas it is deflated for the t-test. We also found that for right-tailed tests, the LRT

controls type I error rate for large samples but struggles to do so for the left-tailed

setting.

In terms of power, while some tests do have better power than the saddlepoint

method, they do not control the type I error rate well in all cases. The saddlepoint

method is such an accurate approximation to the theoretical UMP test, we recom-

mend its use in a general setting. As expected, when n increases, the power of all the
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tests increases. This is also true for increasing values of ϕ, which makes sense given

that tighter variance yields less skewed beta distributions to sample from, which helps

the approximation of the CLT and the robustness of the t-test can be utilized.
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6 CONCLUSION AND FUTURE RESEARCH

The purpose of this research was to develop and study a statistical testing proce-

dure for the mean of a beta random variable while treating the precision parameter as

unknown. Our approach was to apply a saddlepoint approximation for the UMP test

while also considering classic likelihood-based methods and the T-test. We limited

the statistical procedure to just a one tailed test (left and right tailed test).

Through simulation work, we assessed the performance of the saddlepoint approx-

imation method, LRT and T-test. Upon our investigations, we recommend that the

saddlepoint approximation method be used. While the LRT can be recommended for

large samples, its ability to control type I error rates varies across sample size scenar-

ios. The saddelpoint procedure does not have this issue. We do not recommend the

use of the T-test due to its inability to control type I error rates in almost all cases we

considered with the exception of symmetric beta cases. Also, we recommend that, in

cases where the sample size is large under a right-tailed test, the LRT method could

be implemented and may be preferred if there are issues with any of the calculations

involved in the saddlepoint approximation method.

In terms of future research, a natural extension would be to derive saddlepoint

approximations in the two-tailed testing scenario. While a UMP two-sided test does

not exist, it is possible to construct a uniformly most powerful unbiased (UMPU)

test [9, 3] for our problem. Additionally, the development of a confidence interval

routine by inverting our tests would be helpful for direct interpretation and insight

to what plausible values the mean can take. Also, we look forward to developing a

more general two-sample comparison test in ANOVA-type settings.
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