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ABSTRACT 

Security system design flaws create greater risks and repercussions as the systems being 

secured further integrate into our daily life. One such application example is incorporating 

the powerful potential of the concept of the Internet of Things (IoT) into software services 

engineered for improving the practices of monitoring and prescribing effective healthcare 

to patients. A study was performed in this application area in order to specify a security 

system design for a Health Prescription Assistant (HPA) that operated with medical IoT 

(mIoT) devices in a healthcare environment [1]. Although the efficiency of this system was 

measured, little was presented to provide verification of the given framework details to 

ensure the absence of design flaws that might cause security errors within the final 

implementation. Formal software modeling has long been utilized as a tool to combat 

ambiguity, incompleteness, and inconsistencies in a given system design, but these 

modeling methods lack frequent research application to modern technological concepts for 

the purpose of preventing security vulnerabilities. This study translates components of an 

existing security framework proposal for an IoT HPA system through the lens of three 

different formal design methods: Z-notation, TLA+, and Petri Nets. Each formal model is 

then expanded on in order to demonstrate the beginning iterative steps of how each 

specification method can be applied to help improve the completeness, correctness, and 

accuracy of any given design for a high-level security system. 
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1 INTRODUCTION 

The potential for using technology to help automate the physical world has increased 

over recent years as extensive and practical solutions continue to be researched and 

implemented in various real-world contexts. An example of this includes the use of 

widespread smart devices, sensors, and actuators on the edge of a network to track and 

manipulate the environment around us based on the real-time data processing from that 

network, commonly referred to as an Internet of Things (IoT). While the numerosity of 

these devices can produce powerful data and control of an environment, this solution 

context also encourages the majority of edge devices in an IoT network to be low-powered 

and resource-constrained in order to meet the practicality standards of implementing these 

physical network points in abundance. These intentional resource limits make cumbersome 

encryption algorithms and advanced authorization logic difficult to implement for the edge 

of the network and therefore give way to key security concerns over a broad attack surface 

[2]. Encouraged by this, various research has been done to try and address the heightened 

security risks that come with implementing an IoT system into real-world applications. 

One piece of this research set out to propose a detailed IoT framework for the security 

systems surrounding a health prescription assistant (HPA) that would theoretically provide 

many conveniences to the normal healthcare process through the use of medical smart 

device IoT (mIoT) technology [1]. 
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Formal software design methods have long been utilized as solutions to help provide a 

provably secure and/or complete design of any especially critical software system. There 

has been a multitude of design methods used to improve upon various steps in the design 

process and/or to demonstrate subtle use cases and their possible execution flaws within 

applications of a system. The goal that they all have in common is that each method seeks 

to provide a measurably complete or measurably correct overview of any component of a 

software system using ideas derived from the same rules and reasoning used in discrete 

mathematics. Because these methods frequently require the system design and all additions 

to be completely logically sound, they provide more reasoning power with less ambiguity 

than traditional informal software design practices. 

The usefulness of an IoT environment with its high automation potential is mirrored by 

its heightened risk of an increased area of exposure of smart devices that are susceptible to 

cyber-attacks. Thus, as the number of systems that utilize an IoT environment increase 

exponentially [2], so does the need for creating well-designed security systems and services 

that oversee monitoring, authorizing, and authenticating the various devices and 

interactions throughout the IoT system. Furthermore, an especially sensitive application 

context, such as an IoT system managing healthcare services between staff and patient 

users, places an even greater emphasis on the importance of having reliable and complete 

security so that IoT system errors do not put the lives or health of the patients enrolled in 

the system through any undue risk. 
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This specific context is where formal software design can be an extremely applicable 

tool to use to meet the highly intensive need for these security software systems to be 

complete, correct, and fundamentally safe. However, among current research, there is a 

lacking application of these methods to an increasingly implemented and vulnerable system 

concept such as IoT. This is possibly due to the low popularity of its use in the software 

industry due to the perceived low return-on-effort provided by the formalization process, 

and the relatively high mathematical/reasoning skills typically required to create the formal 

designs [3]. This assumed low-payoff perception could be consequently causing critical 

system flaws to be left undiscovered until implementation has already begun or during the 

live use of the application, where repercussions would be more costly and unsafe, rather 

than discovered in the preliminary design phase of a system. Therefore, the demonstrations, 

verifications, and analyses of the formal methodologies applied in this paper are an attempt 

to provide a fresh angle of research application to a concept area that invites the need for 

precise and secure system modeling. 

Several established formal methods have been chosen to be used in this study to give an 

existing proposed mIoT security framework the opportunity to be translated through the 

detailed design lens that is formal specification. The translations apply these methods to an 

HPA security system in an IoT environment while concurrently evaluating the correctness 

and completeness of the given research’s original designs as each model is presented. The 

three formal modeling methods that are utilized within this study include Z-notation, 

TLA+, and Petri Nets. Each of the three models presented are then analyzed on what the 
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design provided, how it improved and secured the HPA system, and further steps that can 

be taken with each method to continue increasing the benefits or applicability onto a real-

world complete HPA mIoT system. Conclusions are then drawn on the usability of the 

example formal methods and what unique benefits they can provide for ensuring the 

software design process effectively meets a set of given security requirements. 
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2 LITERATURE REVIEW 

The research sources available on the Internet of Things along with its emphasized 

security requirements are abundant due to its relatively recent uptrend in industry interest. 

In comparison to this, the research available for formal software design is more 

chronologically spaced out, explanatory in nature, and rarely applied to the same IoT 

security system topics. This review introduces the sources referenced in this paper that 

were used to help create and verify the three formal methods presented as the experiment. 

Then a more detailed summary is given for the Health Prescription Assistant (HPA) IoT 

system proposed in the research that was chosen to formally model from the paper “An 

Internet of Things-Based Health Prescription Assistant and Its Security System Design”, 

as it relates to the HPA security components that are subsequently translated into each of 

the three formal models [1]. 

2.1 Formal Software Design Background and Use 

The formal specification and verification of software is a process that has been 

developed and used on computer systems for over fifty years [4]. It is a process that relies 

on heavily precise notation and logically sound object/behavior specification of either what 

a system is and/or what the system is required to accomplish. If a formal model is held up 

to these standards, then the model (and therefore system) is given the potential to be 

reasoned about on the same logically accurate level of mathematical reasoning. This 

reasoning potential can provide several unique benefits to the design of a system including 
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the precise understanding of the model and its properties, preemptive logical error detection 

in the design before code implementation begins, the potential for automated testing or 

edge case checking, and provably correct deductions about the properties of a system [5]. 

The preceding benefits are what is hoped to be gained from modeling the example IoT 

HPA security system in the three chosen formal methods demonstrated in this paper. 

Although most formal languages usually offer the potential to derive all of the previously 

listed benefits within its own methodology, each formal method presented in this paper 

shows a clear specialization in the type of improvements the method can add to the design 

compared to the other methods shown. 

Another common benefit that is unique to formal modeling as opposed to traditional 

software modeling methods is universal standardization of all designs made with the same 

formal method. Frequently, informal software system designs can be inconsistent between 

different applications, heterogeneous technology stacks, or even between separate 

components within the same application. Formal models abstract away all of the hardware 

specifics and library dependencies to where the shared design of the system is purely 

conceptual while remaining complete and logically valid [6]. This allows for additional 

components to the system to be checked under the same standard as all additions before it. 

In a real-world case, this standardization has also helped to allow better mental 

synchronization for engineers on the details of a how a system works for complex products 

being made at Amazon Web Services [3]. 
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However, although the benefits of formal modeling can be uniquely powerful, these 

processes are largely under-utilized in the current state of the software development 

industry [3]. This can be due to a widely shared belief that formal modeling requires too 

much skill, takes too many hours to create, and does not have a cost-effective return on 

effort compared to traditional informal design methods [3]. In the appropriate problem 

contexts, this high-entry fee of formalization can be outweighed by the various strengths 

gained from a standardized specification, but the return on investment would most likely 

be correlated to the complexity of the system being designed and the criticality that all 

requirements are effectively met. A recent source reporting on the industry use of formal 

verification commented on this by saying, “With the ever-increasing complexity of 

software and the layers of abstraction, we have reached a time when writing secure, 

efficient and resilient code requires some level of formal verification to be done, if not for 

the whole software at least for the important sub-systems involved” [7]. 

A final assertion on the worth of balancing the benefits and costs of formal modeling is 

beyond the scope of this study. Although these factors are considered and analyzed based 

on the results of this experiment that provides three formal method demonstrations, the 

primary goal of this study is to explore the potential of making security systems more 

secure through formal modeling beyond what is already presented in currently accepted 

standards of informal system design. This is the main motivation behind choosing three 

different formal methods that should each emphasize a different area of improvement to 

the software design process. Each presented design should then translate to concrete 
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security improvements in the final implementation of the example healthcare IoT security 

system.  

To better understand each formal design presented in this paper, basic formal design 

structure and use are summarized in the following sections as it relates to each of the three 

chosen methods: Z-notation, TLA+, and Petri Nets. 

2.1.1 Z-notation: Object and Behavior Specification 

Z notation is a formal specification language that specializes in precisely modeling 

object properties, behaviors, and interactions using similar notation and logic used under 

set theory in mathematics [8]. It was first developed in the 1970s and has been used for 

several reputable industry design specifications since then [9]. It is not a specification 

language that is directly executable, but it rather focuses on giving an unambiguous 

representation of the abstract objects of a system by defining their properties, interactions 

with other pre-defined objects, and expected input and output [9]. 

Specifications under this method can accomplish this by creating schemas. Schemas are 

named after the object or behavior that it is trying to define, and they show definitions in 

two separate sections: declarations and predicates [8]. The declaration or top section gives 

the variables along with their variable types that are needed to outline the properties of the 

system object. The predicate or bottom section specifies any restraints on the declared 

variables that must hold true at all times for each defined property of the system [8]. To 

illustrate a basic example, schema examples for a birthday book are given in Figure 2.1 

[10]. 
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Figure 2.1 - Birthday Book Z Schema Example 

In this schema example provided from reference [10], we have an initial object declared 

in BirthdayBook. It represents an object that would hold the names and dates of birthdays 

in a record book. Variable birthday would be a partial mapping function of names to dates 

and variable known would be a set of these names. The reason this relation requires partial 

definition is because it is possible in this book to map the same name to different dates in 

order to represent the birth dates of two different people with the same name. Since the 

predicate specifies that the known set equals the domain of the function birthday, then we 

know that this variable would represent the entire list of known birthday names. The second 

schema shows the details for changing an object in this system by adding a birthday. It 

details input variables for name and date and describes how the name must be new, as it is 

not an element of the known set, and how these inputs are added to the existing list of 

birthdays through a set union of the new mapping. 
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Further iterations on schemas like this are how one could use Z and mathematical sets 

of unique values to define an entire system design. This is the basis of how this paper 

defines the security authorization components of the HPA system in Z notation. Full 

mathematical notation can be found in the Z notation references used for the creating of 

the designs in this paper [8-9]. These schemas were created using downloaded zed style 

options in LaTeX and references to commands and explanations were gathered from these 

zed sources [11-12]. Use of Z in research examples of different software systems were also 

used as reference for presentation and organizations of designs in this thesis [13-14]. 

2.1.2 TLA+: Automated Instance Checking 

Temporal Logic of Actions (or TLA+) is a formal modeling language that is used to 

provide a translated write-up of an algorithm presented in the example framework using 

downloaded tools and resources provided on the TLA+ website [15]. It was invented by 

Leslie Lamport in the late 1980s as a way to describe systems through the definition of 

connecting mathematical formulas [16]. Recently, it has found industry use at Amazon due 

to its ability for its specifications to be executed in verifiable ways to find subtle edge cases 

and/or provide automated testability in the design of highly complex systems independent 

of the actual code implementation [3]. 

Testability of a design under TLA+ is first achieved by creating a specification file in 

the TLA+ language. The language is based off of specifying set behaviors using 

propositional and predicate logic [16]. This is similar mathematical reasoning described 

and used for Z notation. Documentation for the syntax of this language can be referenced 
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in the language textbook [16] or within the website reference that contains many beginning 

TLA+ concepts [17]. As an alternative, specifications made within the TLA+ Toolbox can 

also run from algorithms created in PlusCal. PlusCal is another algorithm language that 

automatically translates to TLA+ code using options provided in the TLA+ Toolbox [18]. 

Many users of this formal method prefer the use of PlusCal over raw TLA+ code [17], and 

that is also how the specification presented in this paper is generated. 

Once an algorithm is specified in this language, the user needs to identify system 

invariants in order to be able to verify the correctness of the design in question. System 

invariants are logical formulaic definitions of what must be true for all related properties 

in the invariant throughout all steps of execution of the algorithm [17]. A typical simple 

and initial invariant of a system would be a type invariant.  This would make sure that all 

given properties in the initial state of the system would match the data types defined in this 

invariant, and if it fails, then that would signify that the input model is incorrect, or the 

properties of the algorithm start in an incorrect state [17]. However more frequently, 

invariants are defined to be used to check throughout the execution of an algorithm over 

several different input cases in order to find an enumerated path that breaks the invariant 

and thereby show a flaw in the system design [16]. 

Execution models of TLA+ specifications can be created with the included software 

within the TLA+ Toolbox with the TLC Model Checker. Models allow for specifying 

ranges of instance checking to do automated testing with the connected algorithm [17]. 

Within the model you can also choose only a subset of all defined invariants to check 
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against so that design tests can target specific areas of logic within the system. These 

models serve as the input cases for the HPA users and mIoT devices within the system 

formalization presented in this paper, and they are verified within the translated 

authorization algorithm given in the original HPA research.  

2.1.3 Petri Nets: Solving for Concurrency 

Beyond system specification in its initial static state, there are potential issues about a 

system’s dynamic flow of execution that can cause erroneous behavior even if the final 

implementation matched original informal specifications. Petri Nets are another formal 

modeling method that require designs to accurately represent the state flow properties of 

software execution. Still modeled under mathematical structures and reasoning behind the 

design, Petri Nets also can primarily serve as a clear visualization of how input and output 

can show certain behavior throughout execution of a system [19]. 

A Petri Net design structure requires several elements in every net. A place (or circle) 

that represents a possible state of the system. A transition (or a bar or box) that represents 

a state change between places. Tokens (dots within the circle) are the input to a Petri Net 

and are required for a transition to fire, and they are always contained within a place. There 

must then be an arc (arrow) that is directed towards the transition that requires a token from 

the connected place. Arcs can also require a certain amount of tokens in order to fire the 

connected transition [19]. All of these structure rules represent abstract moments in time 

for what state a system can be in. These Petri Net graphs can also be translated into a 

corresponding matrix to represent all values of the system in a specific state. A basic 
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example of the execution of a small Petri Net can be found in an existing research article 

that gave an overview of the functionalities of these nets. This example is shown in Figure 

2.2 [20]. 

 

Figure 2.2 – H20 Petri Net Example 

From this example [20], the place values in the graph represent the atoms and a 

subsequent molecule of water. The arcs connecting H2 and O2 to transition t then show what 

is required for that state to change or for the transition to fire. The dots represent the 

beginning token values for each place that the system has, and the second diagram shows 

what tokens were passed to the transitioned state and what tokens were left in their initial 

place after the transition t fired. Since the O2 arc only required one token, there is one token 

left in that place after the transition [20]. 

Any standard Petri Net can be translated to a matrix representation of all current values 

of each place and transition to represent the whole current state of the system. Further 
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explanation for the setup of this matrix can be found in the associated research [20]. What 

is especially powerful about this matrix representation is that other states of the graph can 

be calculated as reachable or unreachable based on the solution to a matrix equation called 

the incidence matrix. This incidence matrix is what is used in the designs of this paper to 

demonstrate a proof of state reachability by the device request structure of the Petri Nets 

modeled after the HPA system. 

2.2 Securing IoT Systems 

The Internet of Things is a software system concept that was originally offered decades 

ago but has been gaining traction recently due to its increased implementation viability 

through using modern technologies. Various recent studies have been performed around 

the concepts of IoT systems as they relate to the many security risks that naturally come 

with their implementation. An encompassing survey paper done in 2019 covered the 

prominent vulnerabilities present in each architectural layer of an IoT system [2]. Of the 

IoT layers covered: sensing, network, middleware, gateway, and application layer, each 

had a major security threat that was either directly or indirectly caused by a failure in 

authentication or authorization protocols between some area of communication done 

within the IoT system [2]. Besides access and access control attacks specifically listed in 

the survey, other attacks mentioned such as node capturing, cloud malware injection, and 

secure on-boarding are made initially possible through a failure in request authorization or 

user authentication since each attack starts with restricted access to a different area of the 
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IoT system [2]. The survey goes on to list scenarios in IoT application that require 

significant improvement before they can be safely implemented and available for 

widespread use, and one of these suggestions is as follows: “Whenever a device wants to 

interact with another device, an authentication process should be implemented. Digital 

certificates can be a promising solution to provide seamless authentication with bound 

identities that are tied to cryptographic protocols” [2]. This aforementioned gap in available 

authentication research for the security of IoT systems is part of the basis of the research 

that is utilized in this thesis as the experimental use-case of a given IoT security framework 

to formally design. 

2.2.1 Use Case: mIoT HPA Framework 

The primary research source for this thesis is an experiment done to try and improve the 

security standards surrounding an IoT-implemented health prescription assistant (HPA) by 

proposing a detailed security system [1]. This theoretical system is presented with models 

of components, component relationships, and services within the HPA and the specific 

authentication and authorization processes that would be used to ensure correct access 

within all communication done within the system. The authorization service detailed in the 

paper is in charge of issuing a digital token, which they frequently refer to as a security 

access token (SAT). After a user has been authorized, this SAT is primarily used to verify 

all access rights in subsequent communication the user (or client) has with the system and 

its devices [1]. This proposed implementation of utilizing an SAT is similar to the idea of 

a “digital certificate” suggested as a solution from the survey paper [2].  
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The provided use case also presents a unique handle on access control compared to its 

presented research counterparts within its related works section by proposing a delegated 

context-aware capability-based access control (DCCapBAC) model to handle user and 

request authorization [1]. This type of access control firstly emphasizes that all device 

permissions are assigned to the roles and not the users of the system. The research asserts 

that this style of access control offers flexibility and scalability required of an IoT 

environment [1]. In addition to this, the research explains that the context awareness of the 

access control allows for further control and security of the mIoT devices because access 

can be variable to the current values of the requested devices outlined by their associated 

context constraints [1]. These constraints can be loaded during SAT generation and will be 

sent along with the authorized request within the condition script (CS), and this script is 

simple stack execution that is verified within the ACLogic engine embedded in a smart 

gateway device close to the edge of the network. This context awareness also allows 

relative ease when updating IoT edge access policy because only the logic with the cloud 

authorization service would have to be updated to load the new CS, and the devices and 

gateways at the edge of the network can handle evaluating the new policy without re-

implementation of these lower-powered systems which is frequently a costly and time-

consuming process [1]. The access control model associated with supporting these 

capabilities is the primary focus of the Z schemas and TLA+ specification presented in this 

thesis.  
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The research goes on to emphasize its use of delegating constraint verification logic to 

smart gateway devices close to the edge of the network. This differs from common 

implementations of verification flow by not having it verified at the edge of the network 

within the mIoT device and by not having the authorization service perform it on the cloud, 

as both of these methods can cause inefficiencies in a quickly scalable environment such 

as IoT [1]. This delegated approach offers a good balance of resource and device 

management with smaller request delivery delays [1]. This approach is emphasized in the 

presentation of the Petri Net execution design in this paper. 

The provided design details within the authorization service that define component sets, 

algorithms for SAT generation, and the process to verify these SATs outline the start-to-

finish example framework that is translated into formal software designs as the primary 

experiment in this thesis [1]. These details include set representations, flow diagrams, and 

high-level algorithms throughout the paper to illustrate its contents. Although the presented 

details of the system seemed encompassing, its completeness for given sets of HPA use 

cases or its correctness for expected input/output with the given algorithm wasn’t validated 

within the original paper. This validation and other aspects of design clarity are the 

foundation of what the created formal designs in this thesis are attempting to address.  
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3 DEFINING SECURITY COMPONENTS (Z-NOTATION) 

The first aspects of the HPA security system that are formally modeled are the security 

components defined within its Authorization Authority service. This service is in charge 

of storing all access policies defined in the system, and it accomplishes this through 

context-aware capability-based access control (CCapBAC) logic so that every user’s 

access is defined on their assigned role capabilities instead of uniquely defining access for 

each user. The service enforces this access control logic by generating a security access 

token (SAT) that is attached to every request within the system for a medical IoT (mIoT) 

device with the intent to send a lightweight and efficient validation script, or the condition 

script (CS), that will be verified later within the local network of the device. The SAT 

issued by the authorization service contains a list of authorized actions based on the mIoT 

device(s) they are requesting, and generates this list based on pre-defined access 

permission. These permissions account for users, roles, device operations, and context 

values (context-aware) to be later evaluated with a ‘permit’ or ‘deny’ access value by the 

ACLogic engine within the device network’s smart gateway.  

3.1 Defining Security Object Sets 

We will define the necessary sets, objects, and functions in various schemas to outline 

the full authorization model that will each apply standard Z-notation formatting. These 

schema definitions will be needed in the authorization service to accomplish complete and 

accurate SAT generation and to uphold all access rights in any theoretical implementation 
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of this framework by making sure object definitions are complete and unambiguous 

translations of the original HPA security components. Figure 3.1 depicts each of these 

components and the conceptual flow of how they map to each other through assignment 

relations along with each of the attribute constraints that can limit these assignments [1]. 

 

Figure 3.1: HPA Authorization Components 

With these components shown from the example system, we can see a few core objects 

that will be integral to design the beginning details of our full Z-specification. First to 

define data types relevant to determining access control, we introduce four unique types of 

stored data: Subject, Role, Operation, and Resource. These separate data concepts establish 

the four basic type Z-definitions available in our authorization schemas: 

[SUBJECT, ROLE, OPERATION, RESOURCE] 
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All initial object definitions consist of defining sets based around these data types. Since 

the value types are unique from each other, direct comparison and equality between 

different basic types is not logically sound across predicates and variables in all presented 

schemas. Therefore, we require four separate initial schemas to establish the definitions of 

the core objects in our authorization system which can be seen in Figure 3.2. 

 

Figure 3.2 - Authorization Core Object Z Schemas 
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The Users schema has two sets defined of type SUBJECT. A subject represents any 

entity that could be using the HPA system, as it won’t always be physical users because it 

could also be automatic services or other mIoT devices that send a request for each other 

[1]. The first set in the first schema represents the list of all_users that are currently defined 

in the system with the amount being represented by num_users. The black_list represents 

the list of all defined users that have been added to the revocation list needed later in SAT 

generation [1]. The total users contained in the blacklist must be less than or equal to the 

amount of all defined users, and this is specificied in the predicate through the subset 

constraint on the black_list variable. 

The next schema presented for Roles creates a similarly defined set using the set of 

all_roles. It is worth mentioning here that the original set given in the use case [1] intended 

each element of role to actually be a group of users, so this would remove the need for our 

schema to define it under its own ROLE unique data type. However for simplicity and 

clarity of the system, the set of roles are a separately defined set of values, as that would 

better represent the HPA needing specific role definitions in order to create access 

permissions. 

The Operations schema is defined similarly and represents the possible network actions 

available to request for each mIoT device. This concept representation is also why the 

elements with in the all_actions set is represented by the ACT variable, as this is the JSON 

object tag name of the required set of actions referenced later during SAT generation. 
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The Services schema details the set of all_resources (or mIoT devices) in the HPA 

system as well as the set of all_services where each element contains a subset of all 

resources that exist within the system. The rest of the presented Z designs only refers to 

the all_resources set when deciding permission assignment, as the acutal executing 

resource for the mIoT device request is all that is contained within the final SAT since that 

is what is defined later in the use-case [1]. The defintion of all_services only accomplishes 

further representation of original design by adding a property that represents the original 

set definitions of services provided in the use-case [1]. 

Another detail of note in all four beginning schemas is that the variable for defining the 

size of each core component set of the HPA authorization service is defined under the 

natural number set and not the integer or whole number set. This is because the natural 

number set starts at 1, and there must be at least one of each security component defined 

in the HPA system at all times. 

3.2 Handling Assignment and Attributes 

We now need to handle specifications for mapping the core components to each other 

in a way that defines all authorized access within the system. With many common access 

control implementations [1], we would have enough unique basic data defined with the 

four core schemas already given, but since access control with the use-case is context-

aware and capability based, we need to define two new basic types: 

[ATTRIBUTE, CONTEXT] 
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The attribute basic type represents a background tuple of {name, value} that can be 

added as any string values in the actual implementation of the system, since the use-case 

specifies attributes to be custom-defined by the security system admin. However, this tuple 

is not needed in the rest of the Z designs presented for assignment because we only need 

to know if the corresponding data type is mapped to the attribute or not. We won’t need to 

check or compare the actual values of attributes given to successfully define access. 

The context data type acts similarly to the user and role types defined before, but it is 

only relevant after assignment and SAT generation have been completed. 

With all necessary data types now defined, we need to define assignment between users 

and roles in the HPA system. The schema for this is shown in Figure 3.3. 

 

Figure 3.3 - User Assignment Schema 
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This assignment schema inherited the properties of the Users and Roles schemas and 

added four new variables. The first two are used for enforcing attribute assignment and 

constraints on the set of user assignments. Attributes are not required to be assigned to all 

users, but the attribute constraint set will always be a subset of the set of users with defined 

attributes, as this set represents all users left over after the admin-defined constraints have 

been applied and filtered on the list of all attributed users. Therefore, the full 

user_assignment mapping domain consists of all users assigned to roles from this 

constrained set and all users assigned to roles that did not exist in the original attribute set. 

A side-effect of this design intention is that all users that have no attributes assigned will 

automatically keep any assigned roles and are never filtered out until their attributes are 

assigned. This design caveat is in keeping with the original use-case requirements as 

attributes are only mentioned to have the purpose to add flexibility and customization to 

HPA access control and not to be the primary tool for limiting user access to devices [1]. 

The HPA use-case also defines that all users must be assigned a role, so the set union of 

our constrained user set, and all unattributed users should equal the domain of all_users. 

This is specified in the predicate of the Z schema.  The role_groups variable is a property 

to address the previously mentioned requirement of the original design that each role 

element will contain a list of assigned subjects. While we didn’t match this definition 

previously for the Roles schema, the role_groups set should effectively accomplish the 

same representation by populating through the Z-notation inverse set of user_assignments. 
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This schema will not require mention or predicates for the black_list set of users, since 

blacklisted users can still be assigned roles. 

The next assignments to be made will be from available network actions onto the mIoT 

devices defined within our HPA system. This assignment can be specified in the following 

OperationAssignments schema in Figure 3.4. 

 

Figure 3.4 - Operation Assignment Schema 

This schema accomplishes operation assignment with very similar logic described in the 

previous UserAssignments schema. Attributes are defined and attached to devices in the 

range of the mapping of op_assignments rather than the domain, since device attributes are 

much more useful and relevant to managing the HPA system than any network operation 

attributes, and this is how it is also described in the original use-case system. This causes 

the constraint set and predicate on assignment mapping to restrict the mapped-to variable, 

y, instead of the mapped-from variable, x. The schema also contains a set to reference all 
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resource_comands because this was an additional requirement in the use-case for the Si set, 

or an element in the set of services SS [1].  

This schema is also the first case in the presented Z designs that causes a 

clarity/correction from the original specifications given in the use-case. Throughout several 

points in the paper, it references operation assignment to be from service (resource) to 

operation, and then later it defines the mapping as operation to resource. Therefore, this 

schema clarifies the conflicting details by defining it as operation mapped to resource. This 

is important for further specification as the sets RES × OP and OP × RES are not equal. 

The research also defined the set of possible operations assigned to a given service to 

be the proper subset of the set of operations, or: 

 

This would mean that a given service would never be allowed to be assigned all 

operations available in the HPA system, since the proper subset would have to be unequal 

to the set of all operations OP due to the definition of proper subset. If the z schema 

supported this detail in the specification, it would need to a predicate statement to not allow 

all elements of all_actions to be mapped to the same element within all_resources. 

However, this seems like an unnecessary limiting factor to the design of the system that 

would prevent a resource such as a heartrate monitor from getting permissible access to all 

operations for the roles of a senior physician or security admin for example. Therefore, the 

presented Z schema does not include this predicate, and it counts this as a correction to the 

original given design’s requirement of the proper subset relationship. 
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The final assignment schema that needs specification is the PermissionAssignments 

schema. This schema will inherit the previous two assignment schemas and make one final 

mapping definition necessary to define full authorization from system user to actions on an 

mIoT device. This schema is given in Figure 3.5. 

 

 

Figure 3.5 - Permission Assignment Schema 

Since permission requirements given in the HPA research specify that it consists of role 

mapped to the relation of operation to resource, the permission_assignments set in this 

schema must restrict its possible range values to those existing elements of 

op_assignments, or the total set of possible network actions on each mIoT device. The 

domain type for this set is set to all_roles instead of the possibly more intuitive set of 

range(user_assignments). This is because role permissions in this system will be able to 

be defined without requiring users to be first assigned to each role. Furthermore, the 

domain of this set does not need to be explicitly set equal to the set of all_roles to account 
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for the existence of roles with no permissions assigned to that role, as it would likely be 

the case for a Guest role of the system for example. 

For the rest of the variables, the schema accomplishes attribute constraints similar to its 

inherited schemas, but this time it will be based on pre-defined attributes on each role in 

the system. The role_attributes set will represent the custom attributes tied to each role 

representing the same set as PAA that is presented in the use-case. The original RAA set in 

the use case is better defined by the user_attributes set previously outlined in this design.  

The HPA example also illustrates definitions and the use of the policy set and how each 

role can be assigned a set of these policies. In the paper, it defines a policy to contain a 

subset of the permission assignments and the operation assignments [1]. The Z designs in 

this thesis will not specify actions based on policy, as this would be redundant definition 

of the same types already presented in the preceding schemas with no added payoff of 

clarification or functionality, since all access defined from policy can still be accomplished 

using the permission assignments already stated in the system. 

The final component needed to fully implement our CCapBAC model will be the details 

behind supporting context. As mentioned earlier, context is an admin-defined set of values 

that can be of any type, and they are mapped off of the available resources in the HPA 

system. These contexts will also have their own attributes that will act as the values to 

check for when implementing context constraints. The ContextAware schema illustrates 

these definitions in Figure 3.6. 
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Figure 3.6 - Context Awareness Schema 

The total number of contexts here is designated with an integer value in order to 

represent that zero contexts is a valid state of the HPA system, if the system admin does 

not have a need to enforce context constraints on requests. Context values and constraints 

are also tied to the device or set of requested devices. This is implied in the original given 

research, but it isn’t clearly specified that contexts are dependent on which device is being 

requested. Since the final SAT JSON object only builds context from the requested 

resource, we specify these mapping details as shown in the previous schema [1]. 

3.3 SAT Generation Schema 

With our full design of authorization components and mappings defined in Z, we can 

now expand upon our Z-designed system by adding further details on what it means to 

check and generate access permissions for a potential user requesting to use the HPA 

service. The schema for this definition is shown in Figure 3.7 below. 
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Figure 3.7 - SAT Generation Schema 

Since authorization only validates and builds user permissions, the inherited schemas at 

the beginning of this design are marked to show no change in values of the system through 

execution of this function. The only input variable userID? is enough for our authorization 

system to find all appropriately assigned permissions to the user, provided that the 

requesting user ID exists in the system and is not blacklisted. 

Through set mappings and domain restrictions, an assigned user can transitively build 

its corresponding set of network actions on related mIoT devices into the output SAT! 

variable. User contexts can also be derived from this list of requested devices, and these 
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contexts only need to be included in the final SAT output, since the context variables are 

evaluated later in the system at the smart gateway of the local network of the requested 

devices. If there needed to be schema design details on how the context constraints would 

actually get evaluated before fully permitting the mIoT request, then it would likely need 

to be detailed in a separate SATValidation schema, as it is out of the scope of this specific 

function in our HPA system. 

These schemas and set formulas provide our complete definition of the components and 

component relationships contained within the authorization service in our HPA system, 

and they go further to provide the visual specification for how authorization components 

would be utilized in building access definitions for the generated SAT that is evaluated in 

the next formal design of this HPA system. 
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4 VERIFYING AUTHORIZATION (TLA+) 

The next part of the example HPA system to formally specify will be done using the 

TLA+ specification language to model its presented algorithm that generates security 

access tokens (SATs) within the HPA authorization service. This TLA+ spec (named 

HPA.tla in Appendix) allows for automated instance checking on an input set of user access 

policies needed to execute the algorithm’s logic for generating SAT permissions. Any 

unintended execution in the specification represents an error in the given HPA 

authorization service algorithm in enforcing correct access rights for authenticated users. 

In a real-world context, unintended failures in the execution of authorization would cause 

devices to be incorrectly accessible or inaccessible thus preventing the appropriate 

healthcare to be prescribed to the effected patient. 

Once the TLA+ specification is complete, the TLC Model Checker is able to find any 

instances in a given input range that do not satisfy all invariants declared in the system 

throughout execution. Since a full run of the algorithm being modeled represents a 

successfully created SAT for the various input UserID values, an incomplete or TLC error 

run of this algorithm represents the event that a UserID has been denied access to the HPA 

system because they failed an access-invariant. Therefore, the necessary system invariants 

defined for the TLA+ specification represent all enforced conditions that must be true in 

order for a user to be authorized. Thus, the TLA+ specification combined with the TLC 

model allow for iterative testing of the accuracy of the presented algorithm by 
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automatically finding execution traces with unexpected outputs for accepted and denied 

authorizations. 

For SAT generation, the Authorization Authority is tasked with taking an authenticated 

user ID and outputting an encrypted SAT that carries all information regarding permissions 

and context-aware access rights [1]. Figure 4.1 shows the SAT generation algorithm 

presented in the example HPA system [1]:  

 

Figure 4.1 - Generate SAT Algorithm 
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The above algorithm shows the source of what is translated into a TLA+ specification 

that is then able to undergo automated instance checking with the TLC Model Checker 

once an input model set is defined within the checker. There are parts of this algorithm that 

remain constant for every request and/or do not relate to the user access definitions outlined 

in the formalizations contained in this thesis. Therefore, variables relating to public/private 

key signing, SAT instance, or OB values are not included in the TLA+ translation for the 

evaluation of this algorithm. 

4.1 Blacklist TLC Model Example 

The logic in Figure 4.1 starts by checking if the authenticated user has been previously 

blacklisted by checking for the existence of the userID in the revocationList property, and 

if the user is found here, then the SAT returns with a null response ensuring that the mIoT 

request is not served. If the user is not blacklisted, then the algorithm falls into its usual 

process for loading all relevant information needed for permitted access in the proposed 

CCapAC design. This blacklisted check is the source of the first system invariant in the 

created specification code. 

Invariants are defined states or properties of a system that are not allowed to change or 

be compromised throughout all possible executions of the system or else the system fails. 

We can use invariant definitions to check if access control is held up correctly by defining 

all invariant rules needed to allow a User ID access to a generated SAT. Therefore, if any 
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of these invariants fail, then access is forbidden and the subject requesting the service will 

be met with a denial response. 

To introduce the most basic verification of correct algorithm logic in the TLA+ 

specification model with the TLC Model Checker, we will create an input set of users that 

will have at least one user blacklisted, and based on the specification code, the TLC model 

will output a representative access denied response to that user. Full TLA+ specification 

code, HPA.tla, is provided for reference in the Appendix.  

The model checker requires an input of sets and their values to use in algorithm 

execution in order build all execution paths and find which path where any one of the 

system invariants fail. This first model example starts with a basic set of three users that 

are used iteratively as the different input UserID variables within the algorithm, with a 

single user defined with the RevocationList property shown in Figure 4.2. 

 

Figure 4.2 - Blacklist Input Model 

Running the HPA_Checker model then gives an error trace of the system showing that 

there exists a user that is denied authorization because their user ID has been blacklisted. 

The output from this model run is shown in Figure 4.3. 
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Figure 4.3 – NotRevoked Invariant Example 

The system invariant NotRevoked represents a Boolean in the TLA+ specification that 

must remain TRUE at all times, or the opposite of the Blacklisted Boolean, or else mIoT 

device access is denied in order to represent that all users must not be revoked to be able 

to use the HPA system. Since “Alice” was a user that is defined in the RevocationList and 

is also a user in the HPA system, the model checker found a state of the system where 

Blacklisted was set to TRUE, which caused the NotRevoked invariant to be set to FALSE. 

This ultimately and correctly indicated an execution path where an unauthorized user 

existed from the given input and would have been denied an SAT in the real system. 
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4.2 Verifying All Access Invariants 

In order to translate the full algorithm into a TLA+ specification, we need to define all 

system invariants, similar to the previous one defined in Figure 4.3. All system invariants 

that follow the original framework access design and also align with logic in the given 

algorithm are listed below alongside their invariant name in Module HPA (Appendix): 

• NotRevoked – User ID must not be blacklisted. 

• RoleAssigned – User ID must be assigned to at least one Role. 

• PermissionAssigned – Role(s) must be assigned at least one permission. 

• ContextAware – If context constraints exist for a resource in the SAT, then the 

SAT must include the same context values (CT) in order to pass context 

validation during SAT Verification. 

These invariants outline all requirements for a valid SAT object to be generated and 

forwarded back to the user. Written in PlusCal and then translated into raw TLA+ code, 

the module specification has algorithm logic mirrored to load necessary access values into 

the SAT from user to role to permission (which is the set of operations mapped to devices). 

Every next successful load of a new value to the SAT triggers a new TLA+ label and the 

next invariant to be evaluated. The invariants are enforced by checking the cardinality of 

the sets stored within the SAT object. Since the last three of the four invariants all require 

a value to exist, these cardinality checks simply force the number elements loaded into 

each object within the SAT to be greater than zero. These invariants defined in PlusCal 
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syntax, along with useful functions for the algorithm logic, are pictured in Figure 4.4 

below. 

 

Figure 4.4 - SAT Generation Invariants 

Now that we have a full TLA+ specification with system invariants defined, we can run 

a set of instances through the TLC Model Checker to find cases where the system would 

fail these invariants based on the selected access inputs. For our first full HPA input test 

model, we define sets and assignments under similar structure as the Z schemas for the 

same objects formalized earlier in the paper. These input values are for: Users, Revocation 

List, Roles, Operations, Resources, User Assignments, Operation Assignments, and 

Permission Assignments. Definitions for context constraints and context values mapped 

from resources are covered in a later section of this chapter, so this input model only 

focuses on testing and verifying that access logic for the algorithm has expected output and 

satisfies all defined invariants. The full input model entered within the HPA_Checker file 

is shown in Figure 4.5. 
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Figure 4.5 - Sample HPA Input Model 

In this model we have three users and none of them are now blacklisted. Each user is 

assigned to a unique role with unique permissions for overlapping network actions that are 

available for a set of two mIoT devices. Based on this instance, our expected output from 

running the model would be that there should be no execution path possible that would 

invalidate any of the previously defined system invariants. All users should transitively 

build a set of permissions from their assigned roles and there are no context constraints 

currently defined on these devices in this instance, so context values are not needed in any 

iteration of an SAT. 

When running the model, TLA+ and TLC functionalities do not only specialize in 

efficiently enumerating all possible execution paths to find potential flaws. You can also 

output relevant object data throughout or at the end of execution to further check that the 

design is getting the output that you expect. In order to see if all SAT objects for each user 

are getting loaded accurately, we display the results of the algorithm in the model output 

as shown in Figure 4.6 below. 
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Figure 4.6 - Generated SAT Output 

Output for input model was possible due to no error traces being thrown which confirms 

that none of the system invariants were violated throughout algorithm execution 

representing a valid SAT being generated for all three users in this instance. The SAT 

object in this specification is stored as a function with the domain coming from a pre-

defined set of SAT keys. These keys represent equivalent JSON parameters given in the 

SAT example within the research [1]. Since the domain is a set of strings, they are 

unordered and not displayed conveniently. However, with this output, it is confirmed that 

each user got their correct set of unique permissions on either of the two mIoT devices 

defined in the HPA. This output would suggest that the original algorithm given in the 

research that is now translated to TLA+ has correct and sufficient logic for loading 
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necessary SAT values for a given user in order to enforce effective CCapBAC 

authorization. 

4.3 Correcting Authorization Algorithm 

This section demonstrates how further iterations of TLA+ specification can find flaws 

in algorithm designs based on either algorithm output or breaking defined invariants. You 

can then improve upon system invariants or the logic of the design and this would directly 

translate to added benefits to the originally modeled system. 

4.3.1 Multiple Role Assignment 

To further assess the accuracy of the SAT generation algorithm we can change the input 

model from the previous test to give more variation on the possible role and permission 

assignments it can create. One such possible variation of an HPA input assignment scheme 

can be done as shown in Figure 4.7. 

 

Figure 4.7 - HPA Multiple Roles 

In this new input model, we can see that a user is assigned to multiple roles, Ray is 

defined as a Doctor and an Admin. This is specified to be a valid assignment in the HPA 

system by the use-case and previously formalized Z schema requirements, and it could also 
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represent a very common use case in a real-world healthcare system. Therefore, it follows 

that Ray would be expected to be assigned all of the permissions of a doctor and all of the 

permissions of an admin.  

If we run the TLC Model Checker and check through manually coded output, we can 

see the final resulting SAT based off of the current algorithm logic that would have all of 

Ray’s assigned permissions. This output is pictured in Figure 4.8. 

 

Figure 4.8 - 1st Multi-Role Output 

The model was able to run without breaking any system invariants. However, if we 

check through the resulting values in each SAT key we see an incorrect output. Bob has all 

of the expected permissions of a nurse role, but Ray only has permissions for the pill_box 

resource when the input model suggests that he should also have GET access to the 

pacemaker since that is a permission assigned to the role of Admin. 

The algorithm presented in the research uses a getRole(userID) pseudocode call to load 

the user’s role and necessary policy and permissions for the user. The TLA+ spec code 

mirrored this functionality and chose a single role assigned for Ray when that input variable 
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got to that part of the execution. To fix this access right logic, we need to rework this 

assignment loading to gather all elements of UserAssignment such that the key is equal the 

given UserID. The way the syntax would look for this fix in PlusCal is shown in Figure 

4.9 below. 

 

Figure 4.9 - PlusCal Role Correction 

Now that the Role key in the SAT object is loaded with all mappings of UserAssignment 

instead of just one element, we can re-run the same TLC model and verify that the user 

Ray is getting all necessary permissions assigned to them. Re-run output is pictured below 

in Figure 4.10. 

 

Figure 4.10 - Corrected TLC Roles Output 
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The corrections made for this algorithm show how being forced to formally specify and 

run conceptual tests of a function can reveal gaps in the original pseudocode for many high-

level algorithm proposals. 

4.3.2 Supporting Context Awareness 

Now we need to make sure that the SAT generation algorithm can logically support full 

CCapBAC capabilities, so it needs to account for device context values and context 

constraints. We can rework the existing input model to include mappings for these 

attributes to be eventually loaded into the final SAT object. Mappings of resource to 

context attributes represent the similarly defined structures in the previous ContextAware 

Z schema. The new input model is shown in Figure 4.11. 

 

Figure 4.11 - Input Model w/ Context Constraints 

From this instance, we have a constraint on the medical pill box that limits its battery 

status to a certain value. In this case, the constraint would allow all battery statuses to be 

valid in the serving of a pill box request, but since the defined invariants on the system 

earlier required all constraints to have matching context values loaded, the SAT object will 
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still need to load the 80% battery that is the current charge left on the pill box. If we re-run 

the model checker with the new input range, then we should be expecting to see the “CC” 

and the “CT” SAT keys loaded with the constraint and value respectively stored in the 

authorization database. Figure 4.12 shows the model checker output when re-running the 

algorithm against this input set. 

 

Figure 4.12 - ContextAware Invariant Error Run 
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The TLC Error Trace displays that the tested instance violated the ContextAware 

invariant that was defined with our original SAT access system invariants. This invariant 

forces the cardinality of all defined context constraint sets to equal the cardinality of the 

set of context values loaded into the SAT object. The input model did define a matching 

context value to the loaded {BatteryStatus |-> “All”} constraint that we can see was 

successfully loaded into the SAT.CC object in Figure 4.12. This implies that there is a flaw 

in the SAT loading logic itself. 

Re-checking the original Algorithm 1 given in the use-case shows that the algorithm 

only loaded values for cc or context constraints and never specified logic to also load the 

associated context values mapped from the requested resource. Since the spec code 

mirrored this flaw, the SAT object in the model was also missing the required context 

values. Fixing this error in the logic is shown in Figure 4.13. 

 

Figure 4.13 - Context Value Load Fix 

With the added logic to load the matching context value to the context constraint for the 

requested resource, we expect that a re-run of this specification produces an SAT object 

with full CCapBAC relevant values defined. Figure 4.14 shows the output of the re-run of 

the TLC model with this fix. 
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Figure 4.14 - SAT Output w/ CC & CT 

Thus, with the logic fix in place, we have output of a fully verifiable SAT object with 

both input runs of the model that would represent the JSON object passed on to smart 

gateway verification with the ACLogic engine in a real-world implementation. 

This process of iterating over the security authorization algorithm and defining new 

ranges of instances to check can be repeated to further improve completeness of the 

authorization service design while focusing on prioritizing the most prevalent and/or 

highest repercussion use-cases that could cause the HPA system to not operate securely. 
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5 DESIGNING FOR CONCURRENCY (PETRI NETS) 

Although the proposed framework in the use-case has a very detailed plan for 

controlling access rights logic efficiently and how the flow of verification and 

communication work, it does not give design/execution details on addressing the issues of 

device concurrency. Race conditions that can happen when running medical devices 

concurrently could mean fatal results in the context of handling patient care with the HPA 

system. IoT systems especially must account for this since realizing the full potential of an 

IoT system encourages many devices to run in unison and with frequent network 

communication. This can make concurrency issues more likely to happen than in the usual 

technological context and therefore must be accounted for in this security system if it were 

ever to be fully implemented in a real-world environment.  

5.1 U2D Petri Net Designs 

Petri Nets offer a standardized specification method to visualize, demonstrate, and solve 

these concurrency issues. The research example presents a diagram to visualize the 

communication flow in the case of authorizing a user-to-device (U2D) request within their 

newly proposed delegated approach of authorization within the IoT system [1]: 
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Figure 5.1 - U2D Request & Response Process 

 

From this figure presented in the example research, it is clear that the SAT validation 

logic is accomplished at the smart gateway. This gateway is local to the network that the 

requested mIoT device is a part of. Focusing on verification, we can translate this request 

state flow into the first Petri Net design. 

The translation of this diagram into a Petri Net design can be as it is displayed in Figure 

5.2. 
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Figure 5.2: U2D Delegated Petri Net 

Standardization of this design with a Petri Net provides a clearer visual of the execution 

flow for the intended process of serving a user request in this system that delegates 

authorization logic to the smart gateway instead of having it run on the mIoT service 

device. The flow of user input to response output can be seen from each place in the net 

through each possible transition state. Each place represents a possible current state of the 

user’s request, including the case where the ACLogic engine denies authorization within 

the smart gateway of the local network before the request ever gets forwarded to the mIoT 

device. 
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However, this current design still does not solve any case of concurrency. One problem 

that commonly applies to simultaneously communicating devices in a network is when we 

would want to introduce mutual exclusion. For example, suppose the HPA system was 

implemented for a patient that needed two implanted mIoT devices to be available at all 

times so that each device could prescribe their related healthcare function, but we also 

wanted to always ensure that both of these medical devices did not act at the same time. 

This could be due to ensuring the effectiveness of each device performing their full 

function without the interference of the other device executing simultaneously on the same 

patient. The request process details given in the original research for the example HPA 

system, or the previously given U2D petri net design could not guarantee against that, as 

both devices would essentially have their own separate Petri Net to represent their 

execution. 

However, combining the Petri Net design in Figure 5.3 below to account for the 

simultaneous request for both devices, we can see a possible solution to the case of mutual 

exclusion. To simplify this second Petri Net design, places and transitions involved in 

deciding a permit or deny for a request within SAT validation have been removed from the 

flow of the net, as those states of the execution would not be involved in enforcing mutual 

exclusion. 
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Figure 5.3: Two Devices with Mutex 

In this new design, we see the representation of how a U2D request for two devices 

would be served at the same time, but with a newly added place: Mutex Lock. This new 

place acts as a foolproof guard against having the HPA system serve both requests to both 

devices at once, since the Mutex Lock place must be given a token from the firing of a 

response transition from either device A or B before it is able to provide a token for either 

Activate Device transitions to fire. 

5.2 Proving State Reachability with Incidence Matrix 

We can prove that the assertion that this added state always guarantees against 

simultaneous execution of these two devices. Petri Nets have a formal design feature of 
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being able to be translated to an incidence matrix. This matrix, IM, shown in Figure 5.4 

below, represents all state-to-transition relationships for all cases at any given moment in 

the system. We have the columns representing the transitions in the previous Petri Net, the 

rows representing each place, and the matrix values representing how each transition 

effects the corresponding place in the amount of net tokens. 

 

Figure 5.4 - Petri Net Incidence Matrix 

We also can represent the initial place values with vector, M0, to represent a state where 

both devices are requested with one token in each Req_A, Mutex, and Req_B, and a target 

state vector, M, to represent both devices being activated with 1 token in Dev_A and Dev_B. 

This target vector would represent a state that would fail our mutual exclusion requirement, 

so proving against a possible state, such as both mIoT devices being fired at once, would 

be equivalent proving that no solution exists for the corresponding matrix equation that 

include both of these vectors, the incidence matrix, and a solution vector. Therefore, the 

formula we are trying to verify there is no solution for can be represented in the following 

in Figure 5.5: 
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Figure 5.5 - Mutex Reachability Equation 

Solving for the reachability of the target state means finding the solution for the �⃗� 

transition vector that would give the amounts of each transition required to reach the target 

vector in terms of x, y, z, and w. No solution existing for this formula would mean that there 

are no values of this transition vector that could satisfy this equation and therefore no 

combination of transitions that would achieve the Petri Net to the M state, or the state where 

both Device A and Device B has been activated at once. Using matrix multiplication to 

write out these equations in a linear system of equations, the proof that no solution exists 

is equivalent to showing there is no solution to the following linear system: 
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Through basic algebra, we can see that the first equation is identical to the second 

equation, and the fourth equation is identical to the fifth equation, so this reduces the system 

to only three equations. In Figure 5.6, the proof below shows that there is no possible 

solution which satisfies all equations at once: 

 

 

Figure 5.6 - Proof for No System Solution 
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Since the system in Figure 5.6 can be algebraically simplified to a false statement, there 

is no solution for the system. Therefore, there are no values of the transition matrix that 

can turn the initial vector state into the target vector state. 

Now we know beyond any doubt that the Petri Net design successfully enforces mutual 

exclusion for these two mIoT devices because there is not a possible set of transitions that 

can take the net from two simultaneous requests to the simultaneous execution of each 

device. If the real-world implementation of this security system matched the process flow 

requirements presented of the mutual exclusion Petri Net in Figure 5.3, then we have 

guaranteed mutually exclusive activation of the two desired mIoT devices in the final 

implementation of the system by matching our formal model design. 
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6 FORMAL DESIGNS ANALYSIS 

In this paper we have demonstrated the beginning iterative steps of three different 

formal methods used to design specific concept areas of the HPA security system presented 

in the existing research. These formal designs provided corrections and further additions 

to the service logic that could be translated to fewer bugs and authorization issues in the 

theoretical final implementation of this mIoT system. Details provided in the example use-

case allowed the designs to have a starting point to build unambiguous security 

requirements off of, but each of the chosen three formal methods offered further design 

potential that expanded upon the given designs. The analyses in this section review what 

each design provided in direct translation from the original security framework, what it 

added or corrected in the designs due to the precise specifications required in each method, 

and what each formal method could further provide to the HPA system or any other security 

system if further details were given and further research/testing was conducted. 

6.1 Access Control Object Z-Schemas  

The Z-schemas that modeled the security components in the example HPA system 

added clarity to previously ambiguous set definitions and set relations, yet this ambiguity 

was not clear at first. It also added new system design details to set definitions, set relations, 

and constraints on the given authorization objects. 

The schema designs then went on to specify the set notational details of expected input 

and output for the primary algorithm in the HPA example for generating SATs. This 
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schema not only provided a detailed logical flow of where user access comes from within 

the defined authorization structure, but it also gave a quick and concise visual 

representation of what the high-level logic of the algorithm would be. This visual 

representation is something the Z notation accomplishes better than similar set notation 

methods such as TLA+. Although the TLA+ automated execution of the same algorithm 

was an easier method to find corrections within the original given design, a security system 

and the team implementing it in the real-world might find worthwhile value in taking the 

benefits of using both formal methods simultaneously due to the different specialized 

benefits from each. 

Many more aspects of an example HPA system can be modeled in Z. Schemas to specify 

AddUser, BlacklistUser, VerifySAT, and AssignDeviceOperations are all examples of 

further specification that would be useful in real implementation and would demonstrate 

the further design potential of Z. The schemas presented in this thesis outlined all available 

components and relationships presented in the example use-case, but Z notation shows its 

effective design representation when modeling aspects of a system throughout state 

changes, and these designs have not yet been created for the use-case. 

6.2 Authorization TLA+ Spec & TLC Model 

TLA+ specifications provided the opportunity for automated instance checking. 

Utilizing this opportunity required detailed set logic of the algorithm to be specified, and 

the definition of system invariants to force the designer to know exactly what defines a 
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broken or successful algorithm. It also added details to the SAT generation algorithm itself 

throughout the process of getting a working TLA+ spec together. Due to these details, 

misses in the original specifications were able to be concretely found and fixed with 

verification that the fix worked on the same input models that broke it before, all without 

needing actual code implementation. This instance checking with the TLC Model Checker 

provided holes in the generation/verification logic that could have been potentially fatal 

had it been implemented as is in a real-world doctor-to-patient environment. 

TLA+ is a powerful specification language that has high potential of expertise to better 

model and evaluate a system concept. All set specifications and concurrency proofs 

accomplished with the other methods could have been fully modeled in TLA+, but it 

potentially would not have given as much visual clarity to the design. 

The system invariants defined in this thesis worked for beginning demonstrations as the 

algorithm being modeled essentially was transitive set arithmetic. Invariants in general, 

however, can become much more complex, accurate, and encompassing of what a system 

needs to do and how it does not need to do it. The invariants even in the use-case can be 

much further expanded to evaluate sets of possible input models instead of having to 

specify the entire model yourself. Non-deterministic outcomes of serving mIoT requests 

and properties of liveness of the variable access sets that could be defined can all be added 

to the HPA example to make it more effective at being secure for every possible outcome. 

The TLAPS (TLA+ Proof System) is an additional toolset that works on top of TLA+ 

specifications and proofs to validate properties of a system. Proofs like the incidence matrix 
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done with Petri Nets would be a lower-level proof relative to the complexity that these 

tools can handle modeling. 

The potential modeling power of the tool used for formal specification would be related 

to the complexity of the design being modeled. These tools might not be worth the 

specification and rigorous notation required if the properties of the sets being modeled can 

be fully and effectively captured in simpler informal design methods. 

6.3 Mutual Exclusion Petri Net Proof 

Petri Net specification of a U2D request served in the proposed delegated gateway HPA 

system allowed for added visual clarity on the possible process flow that could occur with 

serving an mIoT device request. The original HPA example did provide details on the order 

of execution of a request after the SAT has been generated. However, the original given 

designs were semi-convoluted since they had to include details of public/private key 

verification and physical device mnemonics that were not relevant to the actual verification 

of the SAT. The simple Petri Net design provided in this paper abstracted away all of those 

details, so the designer would be able to see the relevant aspects of the system that would 

dictate successful SAT verification. 

The improved designs also allowed for the ability to address possibly concurrency issues 

with the system and presented a solution for the possible requirement of mutual exclusion. 

This solution was also able to be mathematically proven to be correct through solving an 
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incidence matrix vector representation of the system for all possible states of the request 

diagram. 

Petri Nets excel in concurrency-related design contexts, and these designs could be 

expanded for more situations that would arise in the actual implementation of an mIoT 

HPA system. Larger nets with more challenging properties could be modeled under these 

designs to visualize and solve more complicated request flow between mIoT devices in the 

HPA system. For example, with a mutex lock implemented in the proposed designs in this 

thesis you could add to the design and then have to solve any potential problems of 

deadlock and/or resource sharing. Petri Nets excel in visualizing these issues compared to 

most modeling methods, and the formality of their structure still allows concrete properties 

to be proven the values in these designs. 
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7 CONCLUSIONS 

The goal of creating secure application software is usually seen as primarily an      

implementation challenge with less stress on solving security issues at the design phase. 

Through the use of formal specification methods more often in the security environment, 

we can help ourselves improve the core security concepts about a system before coding 

even begins. Although the formal modeling process is rigorous and requires a relatively 

high mathematical learning curve to fully realize the return on investment, the 

demonstrations of three separate specification methods provided in this thesis showed the 

potential on what those benefits can be for improving clarity, pre-emptively solving 

execution flaws, and providing provably correct additions to a security system that is 

intended to function in a high-risk environment such as patient healthcare. As systems 

become more complex and vulnerabilities have higher consequences in an increasingly 

technological world, re-emphasizing the potential to find security solutions at the design 

phase could cause a worthwhile improvement in the safety and privacy of the final released 

product before the real-world consequences even have to occur.  
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