
Stephen F. Austin State University Stephen F. Austin State University

SFA ScholarWorks SFA ScholarWorks

Electronic Theses and Dissertations

5-2024

Formalization of a Security Framework Design for a Health Formalization of a Security Framework Design for a Health

Prescription Assistant in an Internet of Things System Prescription Assistant in an Internet of Things System

Thomas Rolando Mellema
Stephen F Austin State University, mellematr@jacks.sfasu.edu

Follow this and additional works at: https://scholarworks.sfasu.edu/etds

 Part of the Information Security Commons, Logic and Foundations Commons, Software Engineering

Commons, and the Theory and Algorithms Commons

Tell us how this article helped you.

Repository Citation Repository Citation
Mellema, Thomas Rolando, "Formalization of a Security Framework Design for a Health Prescription
Assistant in an Internet of Things System" (2024). Electronic Theses and Dissertations. 559.
https://scholarworks.sfasu.edu/etds/559

This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information,
please contact cdsscholarworks@sfasu.edu.

https://scholarworks.sfasu.edu/
https://scholarworks.sfasu.edu/etds
https://scholarworks.sfasu.edu/etds?utm_source=scholarworks.sfasu.edu%2Fetds%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sfasu.edu%2Fetds%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/182?utm_source=scholarworks.sfasu.edu%2Fetds%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.sfasu.edu%2Fetds%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.sfasu.edu%2Fetds%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.sfasu.edu%2Fetds%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
http://sfasu.qualtrics.com/SE/?SID=SV_0qS6tdXftDLradv
https://scholarworks.sfasu.edu/etds/559?utm_source=scholarworks.sfasu.edu%2Fetds%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cdsscholarworks@sfasu.edu

Formalization of a Security Framework Design for a Health Prescription Assistant Formalization of a Security Framework Design for a Health Prescription Assistant
in an Internet of Things System in an Internet of Things System

Creative Commons License Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0
License.

This thesis is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/etds/559

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://scholarworks.sfasu.edu/etds/559

FORMALIZATION OF A SECURITY FRAMEWORK DESIGN FOR A HEALTH

PRESCRIPTION ASSISTANT IN AN INTERNET OF THINGS SYSTEM

By

THOMAS ROLANDO MELLEMA, Bachelor of Science

Presented to the Faculty of the Graduate School of

Stephen F. Austin State University

In Partial Fulfillment

Of the Requirements

For the Degree of

Master of Science

STEPHEN F. AUSTIN STATE UNIVERSITY

May 2024

FORMALIZATION OF A SECURITY FRAMEWORK DESIGN FOR A HEALTH

PRESCRIPTION ASSISTANT IN AN INTERNET OF THINGS SYSTEM

By

THOMAS ROLANDO MELLEMA, Bachelor of Science

APPROVED:

Christopher Ivancic, Ph. D., Thesis Director

James Adams, Ph. D., Committee Member

Jeremy Becnel, Ph. D., Committee Member

Matthew Beauregard, Ph. D., Committee Member

Forrest Lane, Ph.D.

Dean of Research and Graduate Studies

i

ABSTRACT

Security system design flaws create greater risks and repercussions as the systems being

secured further integrate into our daily life. One such application example is incorporating

the powerful potential of the concept of the Internet of Things (IoT) into software services

engineered for improving the practices of monitoring and prescribing effective healthcare

to patients. A study was performed in this application area in order to specify a security

system design for a Health Prescription Assistant (HPA) that operated with medical IoT

(mIoT) devices in a healthcare environment [1]. Although the efficiency of this system was

measured, little was presented to provide verification of the given framework details to

ensure the absence of design flaws that might cause security errors within the final

implementation. Formal software modeling has long been utilized as a tool to combat

ambiguity, incompleteness, and inconsistencies in a given system design, but these

modeling methods lack frequent research application to modern technological concepts for

the purpose of preventing security vulnerabilities. This study translates components of an

existing security framework proposal for an IoT HPA system through the lens of three

different formal design methods: Z-notation, TLA+, and Petri Nets. Each formal model is

then expanded on in order to demonstrate the beginning iterative steps of how each

specification method can be applied to help improve the completeness, correctness, and

accuracy of any given design for a high-level security system.

ii

CONTENTS

ABSTRACT .. I

LIST OF FIGURES .. IV

1 INTRODUCTION ... 1

2 LITERATURE REVIEW ... 5

2.1 Formal Software Design Background and Use .. 5
2.1.1 Z-notation: Object and Behavior Specification ... 8
2.1.2 TLA+: Automated Instance Checking ... 10
2.1.3 Petri Nets: Solving for Concurrency.. 12

2.2 Securing IoT Systems ... 14
2.2.1 Use Case: mIoT HPA Framework ... 15

3 DEFINING SECURITY COMPONENTS (Z-NOTATION) 18

3.1 Defining Security Object Sets .. 18

3.2 Handling Assignment and Attributes ... 22

3.3 SAT Generation Schema ... 29

4 VERIFYING AUTHORIZATION (TLA+) .. 32

4.1 Blacklist TLC Model Example .. 34

4.2 Verifying All Access Invariants... 37

4.3 Correcting Authorization Algorithm .. 41
4.3.1 Multiple Role Assignment ... 41
4.3.2 Supporting Context Awareness ... 44

5 DESIGNING FOR CONCURRENCY (PETRI NETS) 48

5.1 U2D Petri Net Designs .. 48

iii

5.2 Proving State Reachability with Incidence Matrix ... 52

6 FORMAL DESIGNS ANALYSIS .. 57

6.1 Access Control Object Z-Schemas .. 57

6.2 Authorization TLA+ Spec & TLC Model .. 58

6.3 Mutual Exclusion Petri Net Proof ... 60

7 CONCLUSIONS .. 62

REFERENCES .. 63

APPENDIX .. 65

iv

LIST OF FIGURES

Figure 2.1 - Birthday Book Z Schema Example .. 9

Figure 2.2 – H20 Petri Net Example ... 13

Figure 3.1: HPA Authorization Components .. 19

Figure 3.2 - Authorization Core Object Z Schemas .. 20

Figure 3.3 - User Assignment Schema .. 23

Figure 3.4 - Operation Assignment Schema .. 25

Figure 3.5 - Permission Assignment Schema .. 27

Figure 3.6 - Context Awareness Schema ... 29

Figure 3.7 - SAT Generation Schema .. 30

Figure 4.1 - Generate SAT Algorithm ... 33

Figure 4.2 - Blacklist Input Model .. 35

Figure 4.3 – NotRevoked Invariant Example .. 36

Figure 4.4 - SAT Generation Invariants .. 38

Figure 4.5 - Sample HPA Input Model .. 39

Figure 4.6 - Generated SAT Output .. 40

Figure 4.7 - HPA Multiple Roles ... 41

Figure 4.8 - 1st Multi-Role Output .. 42

Figure 4.9 - PlusCal Role Correction ... 43

Figure 4.10 - Corrected TLC Roles Output ... 43

Figure 4.11 - Input Model w/ Context Constraints.. 44

Figure 4.12 - ContextAware Invariant Error Run ... 45

Figure 4.13 - Context Value Load Fix ... 46

Figure 4.14 - SAT Output w/ CC & CT ... 47

Figure 5.1 - U2D Request & Response Process .. 49

Figure 5.2: U2D Delegated Petri Net ... 50

Figure 5.3: Two Devices with Mutex .. 52

Figure 5.4 - Petri Net Incidence Matrix .. 53

Figure 5.5 - Mutex Reachability Equation .. 54

Figure 5.6 - Proof for No System Solution .. 55

1

1 INTRODUCTION

The potential for using technology to help automate the physical world has increased

over recent years as extensive and practical solutions continue to be researched and

implemented in various real-world contexts. An example of this includes the use of

widespread smart devices, sensors, and actuators on the edge of a network to track and

manipulate the environment around us based on the real-time data processing from that

network, commonly referred to as an Internet of Things (IoT). While the numerosity of

these devices can produce powerful data and control of an environment, this solution

context also encourages the majority of edge devices in an IoT network to be low-powered

and resource-constrained in order to meet the practicality standards of implementing these

physical network points in abundance. These intentional resource limits make cumbersome

encryption algorithms and advanced authorization logic difficult to implement for the edge

of the network and therefore give way to key security concerns over a broad attack surface

[2]. Encouraged by this, various research has been done to try and address the heightened

security risks that come with implementing an IoT system into real-world applications.

One piece of this research set out to propose a detailed IoT framework for the security

systems surrounding a health prescription assistant (HPA) that would theoretically provide

many conveniences to the normal healthcare process through the use of medical smart

device IoT (mIoT) technology [1].

2

Formal software design methods have long been utilized as solutions to help provide a

provably secure and/or complete design of any especially critical software system. There

has been a multitude of design methods used to improve upon various steps in the design

process and/or to demonstrate subtle use cases and their possible execution flaws within

applications of a system. The goal that they all have in common is that each method seeks

to provide a measurably complete or measurably correct overview of any component of a

software system using ideas derived from the same rules and reasoning used in discrete

mathematics. Because these methods frequently require the system design and all additions

to be completely logically sound, they provide more reasoning power with less ambiguity

than traditional informal software design practices.

The usefulness of an IoT environment with its high automation potential is mirrored by

its heightened risk of an increased area of exposure of smart devices that are susceptible to

cyber-attacks. Thus, as the number of systems that utilize an IoT environment increase

exponentially [2], so does the need for creating well-designed security systems and services

that oversee monitoring, authorizing, and authenticating the various devices and

interactions throughout the IoT system. Furthermore, an especially sensitive application

context, such as an IoT system managing healthcare services between staff and patient

users, places an even greater emphasis on the importance of having reliable and complete

security so that IoT system errors do not put the lives or health of the patients enrolled in

the system through any undue risk.

3

This specific context is where formal software design can be an extremely applicable

tool to use to meet the highly intensive need for these security software systems to be

complete, correct, and fundamentally safe. However, among current research, there is a

lacking application of these methods to an increasingly implemented and vulnerable system

concept such as IoT. This is possibly due to the low popularity of its use in the software

industry due to the perceived low return-on-effort provided by the formalization process,

and the relatively high mathematical/reasoning skills typically required to create the formal

designs [3]. This assumed low-payoff perception could be consequently causing critical

system flaws to be left undiscovered until implementation has already begun or during the

live use of the application, where repercussions would be more costly and unsafe, rather

than discovered in the preliminary design phase of a system. Therefore, the demonstrations,

verifications, and analyses of the formal methodologies applied in this paper are an attempt

to provide a fresh angle of research application to a concept area that invites the need for

precise and secure system modeling.

Several established formal methods have been chosen to be used in this study to give an

existing proposed mIoT security framework the opportunity to be translated through the

detailed design lens that is formal specification. The translations apply these methods to an

HPA security system in an IoT environment while concurrently evaluating the correctness

and completeness of the given research’s original designs as each model is presented. The

three formal modeling methods that are utilized within this study include Z-notation,

TLA+, and Petri Nets. Each of the three models presented are then analyzed on what the

4

design provided, how it improved and secured the HPA system, and further steps that can

be taken with each method to continue increasing the benefits or applicability onto a real-

world complete HPA mIoT system. Conclusions are then drawn on the usability of the

example formal methods and what unique benefits they can provide for ensuring the

software design process effectively meets a set of given security requirements.

5

2 LITERATURE REVIEW

The research sources available on the Internet of Things along with its emphasized

security requirements are abundant due to its relatively recent uptrend in industry interest.

In comparison to this, the research available for formal software design is more

chronologically spaced out, explanatory in nature, and rarely applied to the same IoT

security system topics. This review introduces the sources referenced in this paper that

were used to help create and verify the three formal methods presented as the experiment.

Then a more detailed summary is given for the Health Prescription Assistant (HPA) IoT

system proposed in the research that was chosen to formally model from the paper “An

Internet of Things-Based Health Prescription Assistant and Its Security System Design”,

as it relates to the HPA security components that are subsequently translated into each of

the three formal models [1].

2.1 Formal Software Design Background and Use

The formal specification and verification of software is a process that has been

developed and used on computer systems for over fifty years [4]. It is a process that relies

on heavily precise notation and logically sound object/behavior specification of either what

a system is and/or what the system is required to accomplish. If a formal model is held up

to these standards, then the model (and therefore system) is given the potential to be

reasoned about on the same logically accurate level of mathematical reasoning. This

reasoning potential can provide several unique benefits to the design of a system including

6

the precise understanding of the model and its properties, preemptive logical error detection

in the design before code implementation begins, the potential for automated testing or

edge case checking, and provably correct deductions about the properties of a system [5].

The preceding benefits are what is hoped to be gained from modeling the example IoT

HPA security system in the three chosen formal methods demonstrated in this paper.

Although most formal languages usually offer the potential to derive all of the previously

listed benefits within its own methodology, each formal method presented in this paper

shows a clear specialization in the type of improvements the method can add to the design

compared to the other methods shown.

Another common benefit that is unique to formal modeling as opposed to traditional

software modeling methods is universal standardization of all designs made with the same

formal method. Frequently, informal software system designs can be inconsistent between

different applications, heterogeneous technology stacks, or even between separate

components within the same application. Formal models abstract away all of the hardware

specifics and library dependencies to where the shared design of the system is purely

conceptual while remaining complete and logically valid [6]. This allows for additional

components to the system to be checked under the same standard as all additions before it.

In a real-world case, this standardization has also helped to allow better mental

synchronization for engineers on the details of a how a system works for complex products

being made at Amazon Web Services [3].

7

However, although the benefits of formal modeling can be uniquely powerful, these

processes are largely under-utilized in the current state of the software development

industry [3]. This can be due to a widely shared belief that formal modeling requires too

much skill, takes too many hours to create, and does not have a cost-effective return on

effort compared to traditional informal design methods [3]. In the appropriate problem

contexts, this high-entry fee of formalization can be outweighed by the various strengths

gained from a standardized specification, but the return on investment would most likely

be correlated to the complexity of the system being designed and the criticality that all

requirements are effectively met. A recent source reporting on the industry use of formal

verification commented on this by saying, “With the ever-increasing complexity of

software and the layers of abstraction, we have reached a time when writing secure,

efficient and resilient code requires some level of formal verification to be done, if not for

the whole software at least for the important sub-systems involved” [7].

A final assertion on the worth of balancing the benefits and costs of formal modeling is

beyond the scope of this study. Although these factors are considered and analyzed based

on the results of this experiment that provides three formal method demonstrations, the

primary goal of this study is to explore the potential of making security systems more

secure through formal modeling beyond what is already presented in currently accepted

standards of informal system design. This is the main motivation behind choosing three

different formal methods that should each emphasize a different area of improvement to

the software design process. Each presented design should then translate to concrete

8

security improvements in the final implementation of the example healthcare IoT security

system.

To better understand each formal design presented in this paper, basic formal design

structure and use are summarized in the following sections as it relates to each of the three

chosen methods: Z-notation, TLA+, and Petri Nets.

2.1.1 Z-notation: Object and Behavior Specification

Z notation is a formal specification language that specializes in precisely modeling

object properties, behaviors, and interactions using similar notation and logic used under

set theory in mathematics [8]. It was first developed in the 1970s and has been used for

several reputable industry design specifications since then [9]. It is not a specification

language that is directly executable, but it rather focuses on giving an unambiguous

representation of the abstract objects of a system by defining their properties, interactions

with other pre-defined objects, and expected input and output [9].

Specifications under this method can accomplish this by creating schemas. Schemas are

named after the object or behavior that it is trying to define, and they show definitions in

two separate sections: declarations and predicates [8]. The declaration or top section gives

the variables along with their variable types that are needed to outline the properties of the

system object. The predicate or bottom section specifies any restraints on the declared

variables that must hold true at all times for each defined property of the system [8]. To

illustrate a basic example, schema examples for a birthday book are given in Figure 2.1

[10].

9

Figure 2.1 - Birthday Book Z Schema Example

In this schema example provided from reference [10], we have an initial object declared

in BirthdayBook. It represents an object that would hold the names and dates of birthdays

in a record book. Variable birthday would be a partial mapping function of names to dates

and variable known would be a set of these names. The reason this relation requires partial

definition is because it is possible in this book to map the same name to different dates in

order to represent the birth dates of two different people with the same name. Since the

predicate specifies that the known set equals the domain of the function birthday, then we

know that this variable would represent the entire list of known birthday names. The second

schema shows the details for changing an object in this system by adding a birthday. It

details input variables for name and date and describes how the name must be new, as it is

not an element of the known set, and how these inputs are added to the existing list of

birthdays through a set union of the new mapping.

10

Further iterations on schemas like this are how one could use Z and mathematical sets

of unique values to define an entire system design. This is the basis of how this paper

defines the security authorization components of the HPA system in Z notation. Full

mathematical notation can be found in the Z notation references used for the creating of

the designs in this paper [8-9]. These schemas were created using downloaded zed style

options in LaTeX and references to commands and explanations were gathered from these

zed sources [11-12]. Use of Z in research examples of different software systems were also

used as reference for presentation and organizations of designs in this thesis [13-14].

2.1.2 TLA+: Automated Instance Checking

Temporal Logic of Actions (or TLA+) is a formal modeling language that is used to

provide a translated write-up of an algorithm presented in the example framework using

downloaded tools and resources provided on the TLA+ website [15]. It was invented by

Leslie Lamport in the late 1980s as a way to describe systems through the definition of

connecting mathematical formulas [16]. Recently, it has found industry use at Amazon due

to its ability for its specifications to be executed in verifiable ways to find subtle edge cases

and/or provide automated testability in the design of highly complex systems independent

of the actual code implementation [3].

Testability of a design under TLA+ is first achieved by creating a specification file in

the TLA+ language. The language is based off of specifying set behaviors using

propositional and predicate logic [16]. This is similar mathematical reasoning described

and used for Z notation. Documentation for the syntax of this language can be referenced

11

in the language textbook [16] or within the website reference that contains many beginning

TLA+ concepts [17]. As an alternative, specifications made within the TLA+ Toolbox can

also run from algorithms created in PlusCal. PlusCal is another algorithm language that

automatically translates to TLA+ code using options provided in the TLA+ Toolbox [18].

Many users of this formal method prefer the use of PlusCal over raw TLA+ code [17], and

that is also how the specification presented in this paper is generated.

Once an algorithm is specified in this language, the user needs to identify system

invariants in order to be able to verify the correctness of the design in question. System

invariants are logical formulaic definitions of what must be true for all related properties

in the invariant throughout all steps of execution of the algorithm [17]. A typical simple

and initial invariant of a system would be a type invariant. This would make sure that all

given properties in the initial state of the system would match the data types defined in this

invariant, and if it fails, then that would signify that the input model is incorrect, or the

properties of the algorithm start in an incorrect state [17]. However more frequently,

invariants are defined to be used to check throughout the execution of an algorithm over

several different input cases in order to find an enumerated path that breaks the invariant

and thereby show a flaw in the system design [16].

Execution models of TLA+ specifications can be created with the included software

within the TLA+ Toolbox with the TLC Model Checker. Models allow for specifying

ranges of instance checking to do automated testing with the connected algorithm [17].

Within the model you can also choose only a subset of all defined invariants to check

12

against so that design tests can target specific areas of logic within the system. These

models serve as the input cases for the HPA users and mIoT devices within the system

formalization presented in this paper, and they are verified within the translated

authorization algorithm given in the original HPA research.

2.1.3 Petri Nets: Solving for Concurrency

Beyond system specification in its initial static state, there are potential issues about a

system’s dynamic flow of execution that can cause erroneous behavior even if the final

implementation matched original informal specifications. Petri Nets are another formal

modeling method that require designs to accurately represent the state flow properties of

software execution. Still modeled under mathematical structures and reasoning behind the

design, Petri Nets also can primarily serve as a clear visualization of how input and output

can show certain behavior throughout execution of a system [19].

A Petri Net design structure requires several elements in every net. A place (or circle)

that represents a possible state of the system. A transition (or a bar or box) that represents

a state change between places. Tokens (dots within the circle) are the input to a Petri Net

and are required for a transition to fire, and they are always contained within a place. There

must then be an arc (arrow) that is directed towards the transition that requires a token from

the connected place. Arcs can also require a certain amount of tokens in order to fire the

connected transition [19]. All of these structure rules represent abstract moments in time

for what state a system can be in. These Petri Net graphs can also be translated into a

corresponding matrix to represent all values of the system in a specific state. A basic

13

example of the execution of a small Petri Net can be found in an existing research article

that gave an overview of the functionalities of these nets. This example is shown in Figure

2.2 [20].

Figure 2.2 – H20 Petri Net Example

From this example [20], the place values in the graph represent the atoms and a

subsequent molecule of water. The arcs connecting H2 and O2 to transition t then show what

is required for that state to change or for the transition to fire. The dots represent the

beginning token values for each place that the system has, and the second diagram shows

what tokens were passed to the transitioned state and what tokens were left in their initial

place after the transition t fired. Since the O2 arc only required one token, there is one token

left in that place after the transition [20].

Any standard Petri Net can be translated to a matrix representation of all current values

of each place and transition to represent the whole current state of the system. Further

14

explanation for the setup of this matrix can be found in the associated research [20]. What

is especially powerful about this matrix representation is that other states of the graph can

be calculated as reachable or unreachable based on the solution to a matrix equation called

the incidence matrix. This incidence matrix is what is used in the designs of this paper to

demonstrate a proof of state reachability by the device request structure of the Petri Nets

modeled after the HPA system.

2.2 Securing IoT Systems

The Internet of Things is a software system concept that was originally offered decades

ago but has been gaining traction recently due to its increased implementation viability

through using modern technologies. Various recent studies have been performed around

the concepts of IoT systems as they relate to the many security risks that naturally come

with their implementation. An encompassing survey paper done in 2019 covered the

prominent vulnerabilities present in each architectural layer of an IoT system [2]. Of the

IoT layers covered: sensing, network, middleware, gateway, and application layer, each

had a major security threat that was either directly or indirectly caused by a failure in

authentication or authorization protocols between some area of communication done

within the IoT system [2]. Besides access and access control attacks specifically listed in

the survey, other attacks mentioned such as node capturing, cloud malware injection, and

secure on-boarding are made initially possible through a failure in request authorization or

user authentication since each attack starts with restricted access to a different area of the

15

IoT system [2]. The survey goes on to list scenarios in IoT application that require

significant improvement before they can be safely implemented and available for

widespread use, and one of these suggestions is as follows: “Whenever a device wants to

interact with another device, an authentication process should be implemented. Digital

certificates can be a promising solution to provide seamless authentication with bound

identities that are tied to cryptographic protocols” [2]. This aforementioned gap in available

authentication research for the security of IoT systems is part of the basis of the research

that is utilized in this thesis as the experimental use-case of a given IoT security framework

to formally design.

2.2.1 Use Case: mIoT HPA Framework

The primary research source for this thesis is an experiment done to try and improve the

security standards surrounding an IoT-implemented health prescription assistant (HPA) by

proposing a detailed security system [1]. This theoretical system is presented with models

of components, component relationships, and services within the HPA and the specific

authentication and authorization processes that would be used to ensure correct access

within all communication done within the system. The authorization service detailed in the

paper is in charge of issuing a digital token, which they frequently refer to as a security

access token (SAT). After a user has been authorized, this SAT is primarily used to verify

all access rights in subsequent communication the user (or client) has with the system and

its devices [1]. This proposed implementation of utilizing an SAT is similar to the idea of

a “digital certificate” suggested as a solution from the survey paper [2].

16

The provided use case also presents a unique handle on access control compared to its

presented research counterparts within its related works section by proposing a delegated

context-aware capability-based access control (DCCapBAC) model to handle user and

request authorization [1]. This type of access control firstly emphasizes that all device

permissions are assigned to the roles and not the users of the system. The research asserts

that this style of access control offers flexibility and scalability required of an IoT

environment [1]. In addition to this, the research explains that the context awareness of the

access control allows for further control and security of the mIoT devices because access

can be variable to the current values of the requested devices outlined by their associated

context constraints [1]. These constraints can be loaded during SAT generation and will be

sent along with the authorized request within the condition script (CS), and this script is

simple stack execution that is verified within the ACLogic engine embedded in a smart

gateway device close to the edge of the network. This context awareness also allows

relative ease when updating IoT edge access policy because only the logic with the cloud

authorization service would have to be updated to load the new CS, and the devices and

gateways at the edge of the network can handle evaluating the new policy without re-

implementation of these lower-powered systems which is frequently a costly and time-

consuming process [1]. The access control model associated with supporting these

capabilities is the primary focus of the Z schemas and TLA+ specification presented in this

thesis.

17

The research goes on to emphasize its use of delegating constraint verification logic to

smart gateway devices close to the edge of the network. This differs from common

implementations of verification flow by not having it verified at the edge of the network

within the mIoT device and by not having the authorization service perform it on the cloud,

as both of these methods can cause inefficiencies in a quickly scalable environment such

as IoT [1]. This delegated approach offers a good balance of resource and device

management with smaller request delivery delays [1]. This approach is emphasized in the

presentation of the Petri Net execution design in this paper.

The provided design details within the authorization service that define component sets,

algorithms for SAT generation, and the process to verify these SATs outline the start-to-

finish example framework that is translated into formal software designs as the primary

experiment in this thesis [1]. These details include set representations, flow diagrams, and

high-level algorithms throughout the paper to illustrate its contents. Although the presented

details of the system seemed encompassing, its completeness for given sets of HPA use

cases or its correctness for expected input/output with the given algorithm wasn’t validated

within the original paper. This validation and other aspects of design clarity are the

foundation of what the created formal designs in this thesis are attempting to address.

18

3 DEFINING SECURITY COMPONENTS (Z-NOTATION)

The first aspects of the HPA security system that are formally modeled are the security

components defined within its Authorization Authority service. This service is in charge

of storing all access policies defined in the system, and it accomplishes this through

context-aware capability-based access control (CCapBAC) logic so that every user’s

access is defined on their assigned role capabilities instead of uniquely defining access for

each user. The service enforces this access control logic by generating a security access

token (SAT) that is attached to every request within the system for a medical IoT (mIoT)

device with the intent to send a lightweight and efficient validation script, or the condition

script (CS), that will be verified later within the local network of the device. The SAT

issued by the authorization service contains a list of authorized actions based on the mIoT

device(s) they are requesting, and generates this list based on pre-defined access

permission. These permissions account for users, roles, device operations, and context

values (context-aware) to be later evaluated with a ‘permit’ or ‘deny’ access value by the

ACLogic engine within the device network’s smart gateway.

3.1 Defining Security Object Sets

We will define the necessary sets, objects, and functions in various schemas to outline

the full authorization model that will each apply standard Z-notation formatting. These

schema definitions will be needed in the authorization service to accomplish complete and

accurate SAT generation and to uphold all access rights in any theoretical implementation

19

of this framework by making sure object definitions are complete and unambiguous

translations of the original HPA security components. Figure 3.1 depicts each of these

components and the conceptual flow of how they map to each other through assignment

relations along with each of the attribute constraints that can limit these assignments [1].

Figure 3.1: HPA Authorization Components

With these components shown from the example system, we can see a few core objects

that will be integral to design the beginning details of our full Z-specification. First to

define data types relevant to determining access control, we introduce four unique types of

stored data: Subject, Role, Operation, and Resource. These separate data concepts establish

the four basic type Z-definitions available in our authorization schemas:

[SUBJECT, ROLE, OPERATION, RESOURCE]

20

All initial object definitions consist of defining sets based around these data types. Since

the value types are unique from each other, direct comparison and equality between

different basic types is not logically sound across predicates and variables in all presented

schemas. Therefore, we require four separate initial schemas to establish the definitions of

the core objects in our authorization system which can be seen in Figure 3.2.

Figure 3.2 - Authorization Core Object Z Schemas

21

The Users schema has two sets defined of type SUBJECT. A subject represents any

entity that could be using the HPA system, as it won’t always be physical users because it

could also be automatic services or other mIoT devices that send a request for each other

[1]. The first set in the first schema represents the list of all_users that are currently defined

in the system with the amount being represented by num_users. The black_list represents

the list of all defined users that have been added to the revocation list needed later in SAT

generation [1]. The total users contained in the blacklist must be less than or equal to the

amount of all defined users, and this is specificied in the predicate through the subset

constraint on the black_list variable.

The next schema presented for Roles creates a similarly defined set using the set of

all_roles. It is worth mentioning here that the original set given in the use case [1] intended

each element of role to actually be a group of users, so this would remove the need for our

schema to define it under its own ROLE unique data type. However for simplicity and

clarity of the system, the set of roles are a separately defined set of values, as that would

better represent the HPA needing specific role definitions in order to create access

permissions.

The Operations schema is defined similarly and represents the possible network actions

available to request for each mIoT device. This concept representation is also why the

elements with in the all_actions set is represented by the ACT variable, as this is the JSON

object tag name of the required set of actions referenced later during SAT generation.

22

The Services schema details the set of all_resources (or mIoT devices) in the HPA

system as well as the set of all_services where each element contains a subset of all

resources that exist within the system. The rest of the presented Z designs only refers to

the all_resources set when deciding permission assignment, as the acutal executing

resource for the mIoT device request is all that is contained within the final SAT since that

is what is defined later in the use-case [1]. The defintion of all_services only accomplishes

further representation of original design by adding a property that represents the original

set definitions of services provided in the use-case [1].

Another detail of note in all four beginning schemas is that the variable for defining the

size of each core component set of the HPA authorization service is defined under the

natural number set and not the integer or whole number set. This is because the natural

number set starts at 1, and there must be at least one of each security component defined

in the HPA system at all times.

3.2 Handling Assignment and Attributes

We now need to handle specifications for mapping the core components to each other

in a way that defines all authorized access within the system. With many common access

control implementations [1], we would have enough unique basic data defined with the

four core schemas already given, but since access control with the use-case is context-

aware and capability based, we need to define two new basic types:

[ATTRIBUTE, CONTEXT]

23

The attribute basic type represents a background tuple of {name, value} that can be

added as any string values in the actual implementation of the system, since the use-case

specifies attributes to be custom-defined by the security system admin. However, this tuple

is not needed in the rest of the Z designs presented for assignment because we only need

to know if the corresponding data type is mapped to the attribute or not. We won’t need to

check or compare the actual values of attributes given to successfully define access.

The context data type acts similarly to the user and role types defined before, but it is

only relevant after assignment and SAT generation have been completed.

With all necessary data types now defined, we need to define assignment between users

and roles in the HPA system. The schema for this is shown in Figure 3.3.

Figure 3.3 - User Assignment Schema

24

This assignment schema inherited the properties of the Users and Roles schemas and

added four new variables. The first two are used for enforcing attribute assignment and

constraints on the set of user assignments. Attributes are not required to be assigned to all

users, but the attribute constraint set will always be a subset of the set of users with defined

attributes, as this set represents all users left over after the admin-defined constraints have

been applied and filtered on the list of all attributed users. Therefore, the full

user_assignment mapping domain consists of all users assigned to roles from this

constrained set and all users assigned to roles that did not exist in the original attribute set.

A side-effect of this design intention is that all users that have no attributes assigned will

automatically keep any assigned roles and are never filtered out until their attributes are

assigned. This design caveat is in keeping with the original use-case requirements as

attributes are only mentioned to have the purpose to add flexibility and customization to

HPA access control and not to be the primary tool for limiting user access to devices [1].

The HPA use-case also defines that all users must be assigned a role, so the set union of

our constrained user set, and all unattributed users should equal the domain of all_users.

This is specified in the predicate of the Z schema. The role_groups variable is a property

to address the previously mentioned requirement of the original design that each role

element will contain a list of assigned subjects. While we didn’t match this definition

previously for the Roles schema, the role_groups set should effectively accomplish the

same representation by populating through the Z-notation inverse set of user_assignments.

25

This schema will not require mention or predicates for the black_list set of users, since

blacklisted users can still be assigned roles.

The next assignments to be made will be from available network actions onto the mIoT

devices defined within our HPA system. This assignment can be specified in the following

OperationAssignments schema in Figure 3.4.

Figure 3.4 - Operation Assignment Schema

This schema accomplishes operation assignment with very similar logic described in the

previous UserAssignments schema. Attributes are defined and attached to devices in the

range of the mapping of op_assignments rather than the domain, since device attributes are

much more useful and relevant to managing the HPA system than any network operation

attributes, and this is how it is also described in the original use-case system. This causes

the constraint set and predicate on assignment mapping to restrict the mapped-to variable,

y, instead of the mapped-from variable, x. The schema also contains a set to reference all

26

resource_comands because this was an additional requirement in the use-case for the Si set,

or an element in the set of services SS [1].

This schema is also the first case in the presented Z designs that causes a

clarity/correction from the original specifications given in the use-case. Throughout several

points in the paper, it references operation assignment to be from service (resource) to

operation, and then later it defines the mapping as operation to resource. Therefore, this

schema clarifies the conflicting details by defining it as operation mapped to resource. This

is important for further specification as the sets RES × OP and OP × RES are not equal.

The research also defined the set of possible operations assigned to a given service to

be the proper subset of the set of operations, or:

This would mean that a given service would never be allowed to be assigned all

operations available in the HPA system, since the proper subset would have to be unequal

to the set of all operations OP due to the definition of proper subset. If the z schema

supported this detail in the specification, it would need to a predicate statement to not allow

all elements of all_actions to be mapped to the same element within all_resources.

However, this seems like an unnecessary limiting factor to the design of the system that

would prevent a resource such as a heartrate monitor from getting permissible access to all

operations for the roles of a senior physician or security admin for example. Therefore, the

presented Z schema does not include this predicate, and it counts this as a correction to the

original given design’s requirement of the proper subset relationship.

27

The final assignment schema that needs specification is the PermissionAssignments

schema. This schema will inherit the previous two assignment schemas and make one final

mapping definition necessary to define full authorization from system user to actions on an

mIoT device. This schema is given in Figure 3.5.

Figure 3.5 - Permission Assignment Schema

Since permission requirements given in the HPA research specify that it consists of role

mapped to the relation of operation to resource, the permission_assignments set in this

schema must restrict its possible range values to those existing elements of

op_assignments, or the total set of possible network actions on each mIoT device. The

domain type for this set is set to all_roles instead of the possibly more intuitive set of

range(user_assignments). This is because role permissions in this system will be able to

be defined without requiring users to be first assigned to each role. Furthermore, the

domain of this set does not need to be explicitly set equal to the set of all_roles to account

28

for the existence of roles with no permissions assigned to that role, as it would likely be

the case for a Guest role of the system for example.

For the rest of the variables, the schema accomplishes attribute constraints similar to its

inherited schemas, but this time it will be based on pre-defined attributes on each role in

the system. The role_attributes set will represent the custom attributes tied to each role

representing the same set as PAA that is presented in the use-case. The original RAA set in

the use case is better defined by the user_attributes set previously outlined in this design.

The HPA example also illustrates definitions and the use of the policy set and how each

role can be assigned a set of these policies. In the paper, it defines a policy to contain a

subset of the permission assignments and the operation assignments [1]. The Z designs in

this thesis will not specify actions based on policy, as this would be redundant definition

of the same types already presented in the preceding schemas with no added payoff of

clarification or functionality, since all access defined from policy can still be accomplished

using the permission assignments already stated in the system.

The final component needed to fully implement our CCapBAC model will be the details

behind supporting context. As mentioned earlier, context is an admin-defined set of values

that can be of any type, and they are mapped off of the available resources in the HPA

system. These contexts will also have their own attributes that will act as the values to

check for when implementing context constraints. The ContextAware schema illustrates

these definitions in Figure 3.6.

29

Figure 3.6 - Context Awareness Schema

The total number of contexts here is designated with an integer value in order to

represent that zero contexts is a valid state of the HPA system, if the system admin does

not have a need to enforce context constraints on requests. Context values and constraints

are also tied to the device or set of requested devices. This is implied in the original given

research, but it isn’t clearly specified that contexts are dependent on which device is being

requested. Since the final SAT JSON object only builds context from the requested

resource, we specify these mapping details as shown in the previous schema [1].

3.3 SAT Generation Schema

With our full design of authorization components and mappings defined in Z, we can

now expand upon our Z-designed system by adding further details on what it means to

check and generate access permissions for a potential user requesting to use the HPA

service. The schema for this definition is shown in Figure 3.7 below.

30

Figure 3.7 - SAT Generation Schema

Since authorization only validates and builds user permissions, the inherited schemas at

the beginning of this design are marked to show no change in values of the system through

execution of this function. The only input variable userID? is enough for our authorization

system to find all appropriately assigned permissions to the user, provided that the

requesting user ID exists in the system and is not blacklisted.

Through set mappings and domain restrictions, an assigned user can transitively build

its corresponding set of network actions on related mIoT devices into the output SAT!

variable. User contexts can also be derived from this list of requested devices, and these

31

contexts only need to be included in the final SAT output, since the context variables are

evaluated later in the system at the smart gateway of the local network of the requested

devices. If there needed to be schema design details on how the context constraints would

actually get evaluated before fully permitting the mIoT request, then it would likely need

to be detailed in a separate SATValidation schema, as it is out of the scope of this specific

function in our HPA system.

These schemas and set formulas provide our complete definition of the components and

component relationships contained within the authorization service in our HPA system,

and they go further to provide the visual specification for how authorization components

would be utilized in building access definitions for the generated SAT that is evaluated in

the next formal design of this HPA system.

32

4 VERIFYING AUTHORIZATION (TLA+)

The next part of the example HPA system to formally specify will be done using the

TLA+ specification language to model its presented algorithm that generates security

access tokens (SATs) within the HPA authorization service. This TLA+ spec (named

HPA.tla in Appendix) allows for automated instance checking on an input set of user access

policies needed to execute the algorithm’s logic for generating SAT permissions. Any

unintended execution in the specification represents an error in the given HPA

authorization service algorithm in enforcing correct access rights for authenticated users.

In a real-world context, unintended failures in the execution of authorization would cause

devices to be incorrectly accessible or inaccessible thus preventing the appropriate

healthcare to be prescribed to the effected patient.

Once the TLA+ specification is complete, the TLC Model Checker is able to find any

instances in a given input range that do not satisfy all invariants declared in the system

throughout execution. Since a full run of the algorithm being modeled represents a

successfully created SAT for the various input UserID values, an incomplete or TLC error

run of this algorithm represents the event that a UserID has been denied access to the HPA

system because they failed an access-invariant. Therefore, the necessary system invariants

defined for the TLA+ specification represent all enforced conditions that must be true in

order for a user to be authorized. Thus, the TLA+ specification combined with the TLC

model allow for iterative testing of the accuracy of the presented algorithm by

33

automatically finding execution traces with unexpected outputs for accepted and denied

authorizations.

For SAT generation, the Authorization Authority is tasked with taking an authenticated

user ID and outputting an encrypted SAT that carries all information regarding permissions

and context-aware access rights [1]. Figure 4.1 shows the SAT generation algorithm

presented in the example HPA system [1]:

Figure 4.1 - Generate SAT Algorithm

34

The above algorithm shows the source of what is translated into a TLA+ specification

that is then able to undergo automated instance checking with the TLC Model Checker

once an input model set is defined within the checker. There are parts of this algorithm that

remain constant for every request and/or do not relate to the user access definitions outlined

in the formalizations contained in this thesis. Therefore, variables relating to public/private

key signing, SAT instance, or OB values are not included in the TLA+ translation for the

evaluation of this algorithm.

4.1 Blacklist TLC Model Example

The logic in Figure 4.1 starts by checking if the authenticated user has been previously

blacklisted by checking for the existence of the userID in the revocationList property, and

if the user is found here, then the SAT returns with a null response ensuring that the mIoT

request is not served. If the user is not blacklisted, then the algorithm falls into its usual

process for loading all relevant information needed for permitted access in the proposed

CCapAC design. This blacklisted check is the source of the first system invariant in the

created specification code.

Invariants are defined states or properties of a system that are not allowed to change or

be compromised throughout all possible executions of the system or else the system fails.

We can use invariant definitions to check if access control is held up correctly by defining

all invariant rules needed to allow a User ID access to a generated SAT. Therefore, if any

35

of these invariants fail, then access is forbidden and the subject requesting the service will

be met with a denial response.

To introduce the most basic verification of correct algorithm logic in the TLA+

specification model with the TLC Model Checker, we will create an input set of users that

will have at least one user blacklisted, and based on the specification code, the TLC model

will output a representative access denied response to that user. Full TLA+ specification

code, HPA.tla, is provided for reference in the Appendix.

The model checker requires an input of sets and their values to use in algorithm

execution in order build all execution paths and find which path where any one of the

system invariants fail. This first model example starts with a basic set of three users that

are used iteratively as the different input UserID variables within the algorithm, with a

single user defined with the RevocationList property shown in Figure 4.2.

Figure 4.2 - Blacklist Input Model

Running the HPA_Checker model then gives an error trace of the system showing that

there exists a user that is denied authorization because their user ID has been blacklisted.

The output from this model run is shown in Figure 4.3.

36

Figure 4.3 – NotRevoked Invariant Example

The system invariant NotRevoked represents a Boolean in the TLA+ specification that

must remain TRUE at all times, or the opposite of the Blacklisted Boolean, or else mIoT

device access is denied in order to represent that all users must not be revoked to be able

to use the HPA system. Since “Alice” was a user that is defined in the RevocationList and

is also a user in the HPA system, the model checker found a state of the system where

Blacklisted was set to TRUE, which caused the NotRevoked invariant to be set to FALSE.

This ultimately and correctly indicated an execution path where an unauthorized user

existed from the given input and would have been denied an SAT in the real system.

37

4.2 Verifying All Access Invariants

In order to translate the full algorithm into a TLA+ specification, we need to define all

system invariants, similar to the previous one defined in Figure 4.3. All system invariants

that follow the original framework access design and also align with logic in the given

algorithm are listed below alongside their invariant name in Module HPA (Appendix):

• NotRevoked – User ID must not be blacklisted.

• RoleAssigned – User ID must be assigned to at least one Role.

• PermissionAssigned – Role(s) must be assigned at least one permission.

• ContextAware – If context constraints exist for a resource in the SAT, then the

SAT must include the same context values (CT) in order to pass context

validation during SAT Verification.

These invariants outline all requirements for a valid SAT object to be generated and

forwarded back to the user. Written in PlusCal and then translated into raw TLA+ code,

the module specification has algorithm logic mirrored to load necessary access values into

the SAT from user to role to permission (which is the set of operations mapped to devices).

Every next successful load of a new value to the SAT triggers a new TLA+ label and the

next invariant to be evaluated. The invariants are enforced by checking the cardinality of

the sets stored within the SAT object. Since the last three of the four invariants all require

a value to exist, these cardinality checks simply force the number elements loaded into

each object within the SAT to be greater than zero. These invariants defined in PlusCal

38

syntax, along with useful functions for the algorithm logic, are pictured in Figure 4.4

below.

Figure 4.4 - SAT Generation Invariants

Now that we have a full TLA+ specification with system invariants defined, we can run

a set of instances through the TLC Model Checker to find cases where the system would

fail these invariants based on the selected access inputs. For our first full HPA input test

model, we define sets and assignments under similar structure as the Z schemas for the

same objects formalized earlier in the paper. These input values are for: Users, Revocation

List, Roles, Operations, Resources, User Assignments, Operation Assignments, and

Permission Assignments. Definitions for context constraints and context values mapped

from resources are covered in a later section of this chapter, so this input model only

focuses on testing and verifying that access logic for the algorithm has expected output and

satisfies all defined invariants. The full input model entered within the HPA_Checker file

is shown in Figure 4.5.

39

Figure 4.5 - Sample HPA Input Model

In this model we have three users and none of them are now blacklisted. Each user is

assigned to a unique role with unique permissions for overlapping network actions that are

available for a set of two mIoT devices. Based on this instance, our expected output from

running the model would be that there should be no execution path possible that would

invalidate any of the previously defined system invariants. All users should transitively

build a set of permissions from their assigned roles and there are no context constraints

currently defined on these devices in this instance, so context values are not needed in any

iteration of an SAT.

When running the model, TLA+ and TLC functionalities do not only specialize in

efficiently enumerating all possible execution paths to find potential flaws. You can also

output relevant object data throughout or at the end of execution to further check that the

design is getting the output that you expect. In order to see if all SAT objects for each user

are getting loaded accurately, we display the results of the algorithm in the model output

as shown in Figure 4.6 below.

40

Figure 4.6 - Generated SAT Output

Output for input model was possible due to no error traces being thrown which confirms

that none of the system invariants were violated throughout algorithm execution

representing a valid SAT being generated for all three users in this instance. The SAT

object in this specification is stored as a function with the domain coming from a pre-

defined set of SAT keys. These keys represent equivalent JSON parameters given in the

SAT example within the research [1]. Since the domain is a set of strings, they are

unordered and not displayed conveniently. However, with this output, it is confirmed that

each user got their correct set of unique permissions on either of the two mIoT devices

defined in the HPA. This output would suggest that the original algorithm given in the

research that is now translated to TLA+ has correct and sufficient logic for loading

41

necessary SAT values for a given user in order to enforce effective CCapBAC

authorization.

4.3 Correcting Authorization Algorithm

This section demonstrates how further iterations of TLA+ specification can find flaws

in algorithm designs based on either algorithm output or breaking defined invariants. You

can then improve upon system invariants or the logic of the design and this would directly

translate to added benefits to the originally modeled system.

4.3.1 Multiple Role Assignment

To further assess the accuracy of the SAT generation algorithm we can change the input

model from the previous test to give more variation on the possible role and permission

assignments it can create. One such possible variation of an HPA input assignment scheme

can be done as shown in Figure 4.7.

Figure 4.7 - HPA Multiple Roles

In this new input model, we can see that a user is assigned to multiple roles, Ray is

defined as a Doctor and an Admin. This is specified to be a valid assignment in the HPA

system by the use-case and previously formalized Z schema requirements, and it could also

42

represent a very common use case in a real-world healthcare system. Therefore, it follows

that Ray would be expected to be assigned all of the permissions of a doctor and all of the

permissions of an admin.

If we run the TLC Model Checker and check through manually coded output, we can

see the final resulting SAT based off of the current algorithm logic that would have all of

Ray’s assigned permissions. This output is pictured in Figure 4.8.

Figure 4.8 - 1st Multi-Role Output

The model was able to run without breaking any system invariants. However, if we

check through the resulting values in each SAT key we see an incorrect output. Bob has all

of the expected permissions of a nurse role, but Ray only has permissions for the pill_box

resource when the input model suggests that he should also have GET access to the

pacemaker since that is a permission assigned to the role of Admin.

The algorithm presented in the research uses a getRole(userID) pseudocode call to load

the user’s role and necessary policy and permissions for the user. The TLA+ spec code

mirrored this functionality and chose a single role assigned for Ray when that input variable

43

got to that part of the execution. To fix this access right logic, we need to rework this

assignment loading to gather all elements of UserAssignment such that the key is equal the

given UserID. The way the syntax would look for this fix in PlusCal is shown in Figure

4.9 below.

Figure 4.9 - PlusCal Role Correction

Now that the Role key in the SAT object is loaded with all mappings of UserAssignment

instead of just one element, we can re-run the same TLC model and verify that the user

Ray is getting all necessary permissions assigned to them. Re-run output is pictured below

in Figure 4.10.

Figure 4.10 - Corrected TLC Roles Output

44

The corrections made for this algorithm show how being forced to formally specify and

run conceptual tests of a function can reveal gaps in the original pseudocode for many high-

level algorithm proposals.

4.3.2 Supporting Context Awareness

Now we need to make sure that the SAT generation algorithm can logically support full

CCapBAC capabilities, so it needs to account for device context values and context

constraints. We can rework the existing input model to include mappings for these

attributes to be eventually loaded into the final SAT object. Mappings of resource to

context attributes represent the similarly defined structures in the previous ContextAware

Z schema. The new input model is shown in Figure 4.11.

Figure 4.11 - Input Model w/ Context Constraints

From this instance, we have a constraint on the medical pill box that limits its battery

status to a certain value. In this case, the constraint would allow all battery statuses to be

valid in the serving of a pill box request, but since the defined invariants on the system

earlier required all constraints to have matching context values loaded, the SAT object will

45

still need to load the 80% battery that is the current charge left on the pill box. If we re-run

the model checker with the new input range, then we should be expecting to see the “CC”

and the “CT” SAT keys loaded with the constraint and value respectively stored in the

authorization database. Figure 4.12 shows the model checker output when re-running the

algorithm against this input set.

Figure 4.12 - ContextAware Invariant Error Run

46

The TLC Error Trace displays that the tested instance violated the ContextAware

invariant that was defined with our original SAT access system invariants. This invariant

forces the cardinality of all defined context constraint sets to equal the cardinality of the

set of context values loaded into the SAT object. The input model did define a matching

context value to the loaded {BatteryStatus |-> “All”} constraint that we can see was

successfully loaded into the SAT.CC object in Figure 4.12. This implies that there is a flaw

in the SAT loading logic itself.

Re-checking the original Algorithm 1 given in the use-case shows that the algorithm

only loaded values for cc or context constraints and never specified logic to also load the

associated context values mapped from the requested resource. Since the spec code

mirrored this flaw, the SAT object in the model was also missing the required context

values. Fixing this error in the logic is shown in Figure 4.13.

Figure 4.13 - Context Value Load Fix

With the added logic to load the matching context value to the context constraint for the

requested resource, we expect that a re-run of this specification produces an SAT object

with full CCapBAC relevant values defined. Figure 4.14 shows the output of the re-run of

the TLC model with this fix.

47

Figure 4.14 - SAT Output w/ CC & CT

Thus, with the logic fix in place, we have output of a fully verifiable SAT object with

both input runs of the model that would represent the JSON object passed on to smart

gateway verification with the ACLogic engine in a real-world implementation.

This process of iterating over the security authorization algorithm and defining new

ranges of instances to check can be repeated to further improve completeness of the

authorization service design while focusing on prioritizing the most prevalent and/or

highest repercussion use-cases that could cause the HPA system to not operate securely.

48

5 DESIGNING FOR CONCURRENCY (PETRI NETS)

Although the proposed framework in the use-case has a very detailed plan for

controlling access rights logic efficiently and how the flow of verification and

communication work, it does not give design/execution details on addressing the issues of

device concurrency. Race conditions that can happen when running medical devices

concurrently could mean fatal results in the context of handling patient care with the HPA

system. IoT systems especially must account for this since realizing the full potential of an

IoT system encourages many devices to run in unison and with frequent network

communication. This can make concurrency issues more likely to happen than in the usual

technological context and therefore must be accounted for in this security system if it were

ever to be fully implemented in a real-world environment.

5.1 U2D Petri Net Designs

Petri Nets offer a standardized specification method to visualize, demonstrate, and solve

these concurrency issues. The research example presents a diagram to visualize the

communication flow in the case of authorizing a user-to-device (U2D) request within their

newly proposed delegated approach of authorization within the IoT system [1]:

49

Figure 5.1 - U2D Request & Response Process

From this figure presented in the example research, it is clear that the SAT validation

logic is accomplished at the smart gateway. This gateway is local to the network that the

requested mIoT device is a part of. Focusing on verification, we can translate this request

state flow into the first Petri Net design.

The translation of this diagram into a Petri Net design can be as it is displayed in Figure

5.2.

50

Figure 5.2: U2D Delegated Petri Net

Standardization of this design with a Petri Net provides a clearer visual of the execution

flow for the intended process of serving a user request in this system that delegates

authorization logic to the smart gateway instead of having it run on the mIoT service

device. The flow of user input to response output can be seen from each place in the net

through each possible transition state. Each place represents a possible current state of the

user’s request, including the case where the ACLogic engine denies authorization within

the smart gateway of the local network before the request ever gets forwarded to the mIoT

device.

51

However, this current design still does not solve any case of concurrency. One problem

that commonly applies to simultaneously communicating devices in a network is when we

would want to introduce mutual exclusion. For example, suppose the HPA system was

implemented for a patient that needed two implanted mIoT devices to be available at all

times so that each device could prescribe their related healthcare function, but we also

wanted to always ensure that both of these medical devices did not act at the same time.

This could be due to ensuring the effectiveness of each device performing their full

function without the interference of the other device executing simultaneously on the same

patient. The request process details given in the original research for the example HPA

system, or the previously given U2D petri net design could not guarantee against that, as

both devices would essentially have their own separate Petri Net to represent their

execution.

However, combining the Petri Net design in Figure 5.3 below to account for the

simultaneous request for both devices, we can see a possible solution to the case of mutual

exclusion. To simplify this second Petri Net design, places and transitions involved in

deciding a permit or deny for a request within SAT validation have been removed from the

flow of the net, as those states of the execution would not be involved in enforcing mutual

exclusion.

52

Figure 5.3: Two Devices with Mutex

In this new design, we see the representation of how a U2D request for two devices

would be served at the same time, but with a newly added place: Mutex Lock. This new

place acts as a foolproof guard against having the HPA system serve both requests to both

devices at once, since the Mutex Lock place must be given a token from the firing of a

response transition from either device A or B before it is able to provide a token for either

Activate Device transitions to fire.

5.2 Proving State Reachability with Incidence Matrix

We can prove that the assertion that this added state always guarantees against

simultaneous execution of these two devices. Petri Nets have a formal design feature of

53

being able to be translated to an incidence matrix. This matrix, IM, shown in Figure 5.4

below, represents all state-to-transition relationships for all cases at any given moment in

the system. We have the columns representing the transitions in the previous Petri Net, the

rows representing each place, and the matrix values representing how each transition

effects the corresponding place in the amount of net tokens.

Figure 5.4 - Petri Net Incidence Matrix

We also can represent the initial place values with vector, M0, to represent a state where

both devices are requested with one token in each Req_A, Mutex, and Req_B, and a target

state vector, M, to represent both devices being activated with 1 token in Dev_A and Dev_B.

This target vector would represent a state that would fail our mutual exclusion requirement,

so proving against a possible state, such as both mIoT devices being fired at once, would

be equivalent proving that no solution exists for the corresponding matrix equation that

include both of these vectors, the incidence matrix, and a solution vector. Therefore, the

formula we are trying to verify there is no solution for can be represented in the following

in Figure 5.5:

54

Figure 5.5 - Mutex Reachability Equation

Solving for the reachability of the target state means finding the solution for the �⃗�

transition vector that would give the amounts of each transition required to reach the target

vector in terms of x, y, z, and w. No solution existing for this formula would mean that there

are no values of this transition vector that could satisfy this equation and therefore no

combination of transitions that would achieve the Petri Net to the M state, or the state where

both Device A and Device B has been activated at once. Using matrix multiplication to

write out these equations in a linear system of equations, the proof that no solution exists

is equivalent to showing there is no solution to the following linear system:

55

Through basic algebra, we can see that the first equation is identical to the second

equation, and the fourth equation is identical to the fifth equation, so this reduces the system

to only three equations. In Figure 5.6, the proof below shows that there is no possible

solution which satisfies all equations at once:

Figure 5.6 - Proof for No System Solution

56

Since the system in Figure 5.6 can be algebraically simplified to a false statement, there

is no solution for the system. Therefore, there are no values of the transition matrix that

can turn the initial vector state into the target vector state.

Now we know beyond any doubt that the Petri Net design successfully enforces mutual

exclusion for these two mIoT devices because there is not a possible set of transitions that

can take the net from two simultaneous requests to the simultaneous execution of each

device. If the real-world implementation of this security system matched the process flow

requirements presented of the mutual exclusion Petri Net in Figure 5.3, then we have

guaranteed mutually exclusive activation of the two desired mIoT devices in the final

implementation of the system by matching our formal model design.

57

6 FORMAL DESIGNS ANALYSIS

In this paper we have demonstrated the beginning iterative steps of three different

formal methods used to design specific concept areas of the HPA security system presented

in the existing research. These formal designs provided corrections and further additions

to the service logic that could be translated to fewer bugs and authorization issues in the

theoretical final implementation of this mIoT system. Details provided in the example use-

case allowed the designs to have a starting point to build unambiguous security

requirements off of, but each of the chosen three formal methods offered further design

potential that expanded upon the given designs. The analyses in this section review what

each design provided in direct translation from the original security framework, what it

added or corrected in the designs due to the precise specifications required in each method,

and what each formal method could further provide to the HPA system or any other security

system if further details were given and further research/testing was conducted.

6.1 Access Control Object Z-Schemas

The Z-schemas that modeled the security components in the example HPA system

added clarity to previously ambiguous set definitions and set relations, yet this ambiguity

was not clear at first. It also added new system design details to set definitions, set relations,

and constraints on the given authorization objects.

The schema designs then went on to specify the set notational details of expected input

and output for the primary algorithm in the HPA example for generating SATs. This

58

schema not only provided a detailed logical flow of where user access comes from within

the defined authorization structure, but it also gave a quick and concise visual

representation of what the high-level logic of the algorithm would be. This visual

representation is something the Z notation accomplishes better than similar set notation

methods such as TLA+. Although the TLA+ automated execution of the same algorithm

was an easier method to find corrections within the original given design, a security system

and the team implementing it in the real-world might find worthwhile value in taking the

benefits of using both formal methods simultaneously due to the different specialized

benefits from each.

Many more aspects of an example HPA system can be modeled in Z. Schemas to specify

AddUser, BlacklistUser, VerifySAT, and AssignDeviceOperations are all examples of

further specification that would be useful in real implementation and would demonstrate

the further design potential of Z. The schemas presented in this thesis outlined all available

components and relationships presented in the example use-case, but Z notation shows its

effective design representation when modeling aspects of a system throughout state

changes, and these designs have not yet been created for the use-case.

6.2 Authorization TLA+ Spec & TLC Model

TLA+ specifications provided the opportunity for automated instance checking.

Utilizing this opportunity required detailed set logic of the algorithm to be specified, and

the definition of system invariants to force the designer to know exactly what defines a

59

broken or successful algorithm. It also added details to the SAT generation algorithm itself

throughout the process of getting a working TLA+ spec together. Due to these details,

misses in the original specifications were able to be concretely found and fixed with

verification that the fix worked on the same input models that broke it before, all without

needing actual code implementation. This instance checking with the TLC Model Checker

provided holes in the generation/verification logic that could have been potentially fatal

had it been implemented as is in a real-world doctor-to-patient environment.

TLA+ is a powerful specification language that has high potential of expertise to better

model and evaluate a system concept. All set specifications and concurrency proofs

accomplished with the other methods could have been fully modeled in TLA+, but it

potentially would not have given as much visual clarity to the design.

The system invariants defined in this thesis worked for beginning demonstrations as the

algorithm being modeled essentially was transitive set arithmetic. Invariants in general,

however, can become much more complex, accurate, and encompassing of what a system

needs to do and how it does not need to do it. The invariants even in the use-case can be

much further expanded to evaluate sets of possible input models instead of having to

specify the entire model yourself. Non-deterministic outcomes of serving mIoT requests

and properties of liveness of the variable access sets that could be defined can all be added

to the HPA example to make it more effective at being secure for every possible outcome.

The TLAPS (TLA+ Proof System) is an additional toolset that works on top of TLA+

specifications and proofs to validate properties of a system. Proofs like the incidence matrix

60

done with Petri Nets would be a lower-level proof relative to the complexity that these

tools can handle modeling.

The potential modeling power of the tool used for formal specification would be related

to the complexity of the design being modeled. These tools might not be worth the

specification and rigorous notation required if the properties of the sets being modeled can

be fully and effectively captured in simpler informal design methods.

6.3 Mutual Exclusion Petri Net Proof

Petri Net specification of a U2D request served in the proposed delegated gateway HPA

system allowed for added visual clarity on the possible process flow that could occur with

serving an mIoT device request. The original HPA example did provide details on the order

of execution of a request after the SAT has been generated. However, the original given

designs were semi-convoluted since they had to include details of public/private key

verification and physical device mnemonics that were not relevant to the actual verification

of the SAT. The simple Petri Net design provided in this paper abstracted away all of those

details, so the designer would be able to see the relevant aspects of the system that would

dictate successful SAT verification.

The improved designs also allowed for the ability to address possibly concurrency issues

with the system and presented a solution for the possible requirement of mutual exclusion.

This solution was also able to be mathematically proven to be correct through solving an

61

incidence matrix vector representation of the system for all possible states of the request

diagram.

Petri Nets excel in concurrency-related design contexts, and these designs could be

expanded for more situations that would arise in the actual implementation of an mIoT

HPA system. Larger nets with more challenging properties could be modeled under these

designs to visualize and solve more complicated request flow between mIoT devices in the

HPA system. For example, with a mutex lock implemented in the proposed designs in this

thesis you could add to the design and then have to solve any potential problems of

deadlock and/or resource sharing. Petri Nets excel in visualizing these issues compared to

most modeling methods, and the formality of their structure still allows concrete properties

to be proven the values in these designs.

62

7 CONCLUSIONS

The goal of creating secure application software is usually seen as primarily an

implementation challenge with less stress on solving security issues at the design phase.

Through the use of formal specification methods more often in the security environment,

we can help ourselves improve the core security concepts about a system before coding

even begins. Although the formal modeling process is rigorous and requires a relatively

high mathematical learning curve to fully realize the return on investment, the

demonstrations of three separate specification methods provided in this thesis showed the

potential on what those benefits can be for improving clarity, pre-emptively solving

execution flaws, and providing provably correct additions to a security system that is

intended to function in a high-risk environment such as patient healthcare. As systems

become more complex and vulnerabilities have higher consequences in an increasingly

technological world, re-emphasizing the potential to find security solutions at the design

phase could cause a worthwhile improvement in the safety and privacy of the final released

product before the real-world consequences even have to occur.

63

REFERENCES

1. Mahmud Hossain et al., “An Internet of Things-Based Health Prescription Assistant

and Its Security System Design,” Future Generation Computer Systems, vol. 82, pp. 422-

439, May 2018, doi: 10.1016/j.future.2017.11.020.

2. Vikas Hassija et al., “A Survey on IoT Security: Application Areas, Security

Threats, and Solution Architectures,” IEEE Access, vol. 7, pp. 82721-82743, 2019, doi:

10.1109/ACCESS.2019.2924045.

3. Chris Newcombe et al., “How Amazon Web Services Uses Formal Methods,”

Communications of the ACM, vol. 58, pp. 66-73, April 2015, doi: 10.1145/2699417.

4. Ashish Darbari. A Brief History of Formal Verification, 2019. Accessed: Nov. 1,

2023. [Online]. Available: https://www.eeweb.com/a-brief-history-of-formal-verification/

5. University of Koblenz-Landau. (2006). Formal Verification of Software. [Online].

Available: https://formal.kastel.kit.edu/~beckert/teaching/Verification-SS06/01intro.pdf

6. R. Presson. “TLA+.” pron.gtihub.io. Accessed: May 10, 2023. [Online.] Available:

https://pron.github.io/posts/tlaplus_part1#tla-in-practice

7. S. Raju, K. Rytarowski. An introduction to Formal Verification for Software

Systems, 2020. Accessed: July 3, 2022. [Online]. Available:

https://www.moritz.systems/blog/an-introduction-to-formal-verification/

8. J. Woodcock and J. Davies, Using Z: Specification, Refinement, and Proof.

University of Oxford, England. 1996.

9. J. Bowen, “The Z Notation: Whence the Cause and Whither the Course?”

Engineering Trustworthy Software Systems, vol. 9506, pp. 103-151, 2016, doi:

10.1007/978-3-319-29628-9_3.

10. J. M. Spivey, “The Z Notation: A Reference Manual,” Programming Research

Group, University of Oxford, England. 1989.

https://formal.kastel.kit.edu/~beckert/teaching/Verification-SS06/01intro.pdf
https://pron.github.io/posts/tlaplus_part1#tla-in-practice

64

11. Mike Spivey, A Guide to the zed Style Option. Westlands Grove, Stockton Lane,

York, England, December 1990.

12. Leo Freitas, “Standard Z-LaTeX style explained,” Community Z Tools (CZT),

University of York, United Kingdom. September 2008.

13. Jonathan Jacky et. al., “Formal Specification of Control Software for a Radiation

Therapy Machine,” Radiation Oncology Department RC-08, University of Washington,

Seattle, WA, January 9, 1997.

14. Emmanuel Tuyishimire, Antoine Bigomokero Bagula, “A Formal and Efficient

Routing Model for Persistent Traffics in the Internet of Things,” in Int. Conf. on

Information Comm. Tech. and Society, March 2020. doi:

10.1109/ICTAS47918.2020.234002.

15. Leslie Lamport, Learning TLA+, 2021. Accessed: Sept. 22, 2022. [Online].

Available: http://lamport.azurewebsites.net/tla/learning.html

16. Leslie Lamport, “Specifying Systems,” The TLA+ Language and Tools for

Hardware and Software Engineers. Boston, MA, USA: Microsoft Research, July 2002.

17. Hillel Wayne, Learn TLA+, 2022. Accessed: May 4, 2022. [Online]. Available:

https://learntla.com/index.html.

18. Leslie Lamport, A PlusCal User’s Manual, P-Syntax Version 1.8. March 11, 2024.

Accessed: March 25, 2024. [Online]. Available: https://lamport.azurewebsites.net/tla/p-

manual.pdf

19. Rober A. McGuigan, “Petri Nets,” Applications of Discrete Mathematics,

Department of Mathematics, Westfield State College, ch. 24, pp. 431-453.

20. Tadao Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings of

the IEEE, v. 77.4, 1989, pp. 541-580.

21. Benmiloud Mohammed, “It’s Time to Learn drawing Petri Nets in TikZ,” February

21, 2021. Accessed: March 26, 2023. Available: https://latexdraw.com/petri-nets-tikz/

http://lamport.azurewebsites.net/tla/learning.html
https://lamport.azurewebsites.net/tla/p-manual.pdf
https://lamport.azurewebsites.net/tla/p-manual.pdf

65

APPENDIX

A. TLA+ Specification: HPA.tla

66

67

68

VITA

After graduating high school from The Colony High School, in The Colony,

Texas, in 2013, Thomas Rolando Mellema entered Stephen F. Austin State University at

Nacogdoches, Texas. He received the degree of Bachelor of Science from Stephen F.

Austin State University in May 2018 with a double major in Computer Science and

Mathematics. During the following six years, he was employed as a software developer at

Elliott Electric Supply and NacSpace. In August 2018, he entered the Graduate School of

Stephen F. Austin State University and received the degree of Master of Science in May

2024 with a major in Cybersecurity.

Permanent Address: Cole STEM Building, 1720 Clark Blvd

 Nacogdoches, TX 75965

The style manual used in this thesis is the IEEE Editorial Style Manual for Authors

(V.11.12.18).

This thesis was typed by Thomas R. Mellema.

	Formalization of a Security Framework Design for a Health Prescription Assistant in an Internet of Things System
	Repository Citation

	Formalization of a Security Framework Design for a Health Prescription Assistant in an Internet of Things System
	Creative Commons License

	tmp.1717625505.pdf.MQOe2

