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ABSTRACT

The Mandelbrot set is a mathematical mystery. Finding its home somewhere be-

tween holomorphic dynamics and complex analysis, the Mandelbrot set showcases

its usefulness in fields across the many realms of math—ranging from physics to nu-

merical methods and even biology. While typically defined in terms of its bounded

sequences, this thesis intends to illuminate the Mandelbrot set as a type of param-

eterization of connectivity itself, specifically that of complex-valued rational maps

of the form z 7→ z2 + c. This fully illustrated guide to the Mandelbrot set merges

the worlds of intuition and theory with a series of self-contained arguments found in

published texts over the years since the Mandelbrot set’s conception—all to answer

one question: is the Mandelbrot set connected? That is, are there any pieces of the

Mandelbrot set just ‘hanging off’? To answer this, we will appeal to the proof by the

now-famous collaborators Adrien Douady and John Hubbard, whose work deep-dives

into topologically grounded ideas and makes use of some functional analysis.
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1 INTRODUCTION

1.1 GOAL OF THE THESIS

Complex dynamics is a field of mathematics dedicated to the dynamical systems

given by iterating complex-valued functions. Of particular interest in the field are

the infinitely intricate regions of space in which properties of interest occur, usually

exhibiting fractal-like behavior. Due to an increase in available computing power in

recent years, images and analysis of these fractal regions increased in popularity and

gave way to new findings and puzzles which the mathematics community continues

to devour to this day. Among perhaps the most iconic and captivating of these

discoveries is the Mandelbrot set: a fractal-like set possessing as much intricate detail

as is possible in two dimensions [7]. This set, discovered by Benoit Mandelbrot in 1980,

exhibits many interesting properties and shows up in strange places across all realms

of mathematics. Despite this shape’s infinite roughness, mathematicians argued over

its connectivity until it was proven to be connected by collaborators Adrien Douady

and John Hubbard. This result, at first glance, is strikingly unintuitive and poses

a threat to those pursuing the mysteries of complex dynamics. This thesis aims to

produce within the reader a general understanding and appreciation of the arguments

used to show that the Mandelbrot set is, indeed, connected.

Our discussion starts by presenting underlying principles that all complex dynam-

ics rely upon. After establishing the basics, we dive into what dynamics means, then

hone in on some specific examples that broaden well to other topics. Among these

specific maps (called rational maps) are maps of particular interest, called the de-

pleted quadratic. We then analyze these maps under the guise of the metric space of

C and its properties that pertain to connectivity, proving theorems and results when

1



possible. Finally, we parameterize connectivity in C and then shift to defining the

Mandelbrot set, all in hopes of proving that it is connected. To do this, we rely on

the aforementioned arguments in a paper by Douady and Hubbard: an enlightening

view of the Mandelbrot set as an intersection of many closed sets. Finally, we look

into the Mandelbrot set’s various extensions and problems left unresolved.

1.2 PRELIMINARY RESULTS

We use this section to introduce fundamental concepts to the study of complex

dynamics. While the explanation in this thesis relies upon these concepts, in-depth

discussion surrounding them is excluded for time. Those with a further interest are

encouraged to view the thesis bibliography, upon which all arguments in this paper

are based. In the case of section one, we mostly utilize the comprehensive nature

of Conway’s Functions of One Complex Variable [3], which is an invaluable resource

for those interested in complex analysis. The results, definitions, and theorems that

follow are found in an introductory analysis course.

Definition 1.1. The imaginary unit is denoted i and is defined by the property that

i2 = −1.

Definition 1.2. A complex number z is a number with a ‘real’ part a and an ‘imagi-

nary’ part b, such that z = a+ bi, where a, b ∈ R. In shorthand, we say the real part

of z is RE(z) = a, and the imaginary part is IM(z) = b.

Complex numbers are typically called imaginary numbers due to the use of the

imaginary unit i =
√
−1. This name, while certainly fun, is outdated and sometimes

causes preconceptions that imaginary numbers ‘are not real’. This could not be

further from the truth. In fact, many real-world applications utilize complex numbers

and functions between the complex plane. These applications appear in such fields as

2



electronics, physics, and almost anything involving waves or cyclic information, such

as seasonal data sets.

The complex numbers form a field, meaning they can be operated on like any

other number, with the additional rule that i2 = −1. For this reason, i is treated

algebraically like a variable. Due to the separation enforced by like terms, complex

numbers come embedded with two parts: real and imaginary. This makes complex

numbers behave a lot like two-dimensional vectors with a real first coordinate and an

imaginary second coordinate (demonstrated below).

CIM

RE

3 + 2i

−4− 4.5i

Definition 1.3. For any complex number z = a + bi a, b ∈ R, the modulus (or

magnitude) of z, denoted |z|, is given by:

|z| =
√
a2 + b2.

Remark 1.4. The magnitude of a complex number z can be geometrically viewed as

the distance from the origin to z.

IM

RE

|z|

2 + 3i

a

b

|z| =
√
a2 + b2 =

√
32 + 22 ≈ 3.317

3



It is sometimes helpful to consider the distance between complex numbers. This is

possible by taking the magnitude of their difference (exactly like vectors). Concretely,

the distance between complex numbers z and w is given by |z − w|. To check this,

we break z and w down into their real and imaginary parts. Let z = a + bi and

w = c+ di, where a, b, c, d ∈ R. It follows that:

|z − w| = |a+ bi− (c+ di)| =
√

(a− c)2 + (b− d)2.

This is illustrated more clearly below.

CIM

RE

3 + 2i

−4− i

|z − w|

c a
d

b

Definition 1.5. The principal argument of a complex number z is denoted Arg (z)

and is the angle on [−π, π) such that tan(Arg (z)) = IM(z)/RE(z), provided RE(z) ̸= 0.

Definition 1.6. For any complex number z the argument of z is denoted arg z and

given by:

arg z = Arg(z) + 2kπ, k ∈ Z.

Definition 1.7. For any complex number z, the polar form of z is given by z = reiθ

for r = |z| and θ = arg(z).

Remark 1.8. For most of the discussion, we refer to Arg z, but the problem of dealing

with the infinitely many possible angles of z is of relevance later.

Remark 1.9. For some positive n, the nth roots of unity are the solutions to zn = 1.

4



We find the roots of unity a lot behind the scenes throughout the text. We often

want to find the roots of a particular polynomial or count the number of solutions

to aid in simplifying a problem. The roots of unity tell us how many complex-valued

solutions we can expect alongside the fundamental theorem of algebra. Additionally,

roots of unity demonstrate a key problem in taking roots of a complex number.

Example 1.10. Suppose z7 = 1. Seven distinct values solve this equation in C. We

first note that z = 1 is a solution. But, if any time during multiplication z lands

on 1, it stays there (since 1n = 1 for any n). That is, e2iπ/7 is a solution since(
e2iπ/7

)7
= e2iπ = 1. Similar solutions include e4iπ/7, e6iπ/7, e8iπ/7, e10iπ/7, and e12iπ/7.

As such there are seven distinct solutions to z7 = 1. These are called the seventh

roots of unity.

If we were to imagine taking the nth root of zn, we now note that there are n

possible complex numbers to consider.

5



2 BACKGROUND

2.1 TOPOLOGY ON THE COMPLEX PLANE

Topology is the study of properties and relations that are preserved under contin-

uous deformations. In the realm of complex analysis, topology offers unique insights

into the way interesting regions of space behave after being mapped through a func-

tion. This is a big part of showing that the Mandelbrot set is connected. Connectivity

itself is a topological property we later define. While much of topology deals with

generic spaces, we restrict ourselves to the results for metric spaces (spaces where

distance has meaning) since we are working in C.

2.1.1 METRIC SPACE TOPOLOGY

Definition 2.1. The distance function (or often just metric) on C is given by

d(z1, z2) = |z1 − z2|.

The meaning of distance in the complex plane is equivalent to that of vectors in

R2 (as seen in Chapter 1) where the real part of z is the first coordinate, and the

second is the imaginary part of z. This is the main idea of metric space topology,

where a distance between elements contextualizes them with one another.

We now use the sense of distance to form open sets that are used to lay the

groundwork of topology. These sets are called open balls, or epsilon balls, and are the

complex number equivalent to the open intervals or epsilon bands discussed in real

analysis.

Definition 2.2. The epsilon ball centered at z0 and radius ε is denoted B(z0, ε) and

6



is given by:

B(z0, ε) = {z ∈ C : |z − z0| < ε}

Definition 2.3. A set C ⊂ C is open if for every point z ∈ C, B(z, ε) ⊊ C for some

ε > 0.

Every point z0 in an open set has a neighborhood centered at z0 that fits entirely

inside the set (shown in figure 2.1). Intuitively, this can be imagined as a set without

a border or edge. No matter how close z0 inches towards the edge, there is always

some nonzero distance between them.

Definition 2.4. A set C ⊂ C is closed if and only if C− C is open.

B(z0, ε)

Figure 2.1: An open set containing

B(z0, ε).

B(z0, ε)

Figure 2.2: A closed set not containing

B(z0, ε).

Remark 2.5. It is worth noting that open and closed are not perfect opposites; some

sets are open and closed (such as C and ∅), and some are neither open nor closed.

Example 2.6. Consider the open ball B1 centered at 1 of radius 2:

B1 = {z ∈ C : |z − 1| < 2}. Additionally, consider its closed variant across the

imaginary axis, given by B2 = {z ∈ C : |z + 1| ≤ 2}. Then B1 ∩B2 is not open since

the point 1 does not admit a neighborhood contained in B1 ∩ B2. Its complement

C−B1∩B2 is similarly not open since the point at −1 now cannot find a neighborhood

contained within C − B1 ∩ B2. As such B1 ∩ B2 is neither open nor closed. This is

visually shown in figure 4.20.

7



Figure 2.3: B1 ∪B2 Figure 2.4: B1 ∩B2 Figure 2.5: C−B1 ∩B2

Theorem 2.7. The union of countably many open sets is open. Precisely, for a

collection of open sets {Dλ}λ∈Λ,
⋃

λ∈ΛDλ is open (Λ countable).

The proof of this is a fun exercise in element chasing should the reader so desire.

When completed, the next corollary follows from DeMorgan’s laws.

Corollary 2.8. The intersection of countably many closed sets is closed. For a

collection of closed sets {Dλ}λ∈Λ,
⋂

λ∈ΛDλ is closed (Λ countable).

Figure 2.6: A union of two open sets is open.

Definition 2.9. For a set D ⊂ C, the interior of D is denoted int (D) or D◦ and is

given by:

int (D) =
⋃

{G : G open , G ⊂ D}.

That is, the interior of D is the union of all open subsets of D. If a set is open,

then int (D) = D. By Theorem 2.7, int (D) is always open. This can also be thought

of as the largest open set contained inside of D.

8



Figure 2.7: An intersection of two closed sets is closed.

Definition 2.10. For a set D ⊂ C, the closure of D, denoted D is given by:

D =
⋂

{F : F closed , D ⊂ F}.

The closure of D is the intersection of all closed sets containing D. The closure of

D is likewise always closed, by Corollary 2.8. The interior and closure of D are also

shown in the given figures 2.6 and 2.7. The closure of D is also the smallest closed

set containing all of D.

Definition 2.11. The border of a set D ⊂ C is denoted ∂D and is given by:

∂D = D − int D.

The border is a helpful topological tool that comes up in many fields of math.

It is especially relevant for our discussion, and its definition is quite intuitive in the

metric space C. An image of two borders is given in figure 2.8.

Definition 2.12. An open set D ⊂ C is disconnected if it can be written as the union

of two disjoint open sets.

Definition 2.13. An open set D ⊂ C is connected if it is not disconnected.

Connectivity, being the main topic of this thesis, can be defined in many equivalent

ways in topology. In a metric space (like C) we provide a helpful theorem from Dr.

9



Figure 2.8: Similar open sets and their borders.

John Conway’s Functions of One Complex Variable [3] as an example which is often

insightful in determining whether an open set is connected. It does, however, require

the construction of polygonal paths (called simply polygons in Conway’s work), which

are defined below.

Definition 2.14. For z1, z2 ∈ C, the straight line [z1, z2] is called a segment and is

constructed with the parameterization:

[z1, z2] = {tz2 + (1− t)z1 : 0 ≤ t ≤ 1}

Definition 2.15. For any a, b ∈ C, a polygonal path P from a to b is a given by:

P =
n⋃

k=1

[zk, zk+1]

where z1 = a, zn = b.

The left two images of figure 2.9 demonstrate polygonal paths. The right two

examples show non-polygonal paths. The first is disjoint, so it cannot be written

10



Figure 2.9: Left: polygonal path examples. Right: not polygonal paths.

as a polygonal path (but can be written as two paths). The furthest right could

be smooth, demonstrating a discrepancy among analysts. Although not a polygonal

path, a near-infinite number of polygonal paths can approximate this path.

With the definition of polygon in mind, we can now create a theorem for connec-

tivity in C. It is worth noting that this particular theorem struggles to generalize

to topological spaces that are not metric spaces. Without a sense of distance, a

polygonal path becomes more difficult to understand, and there are other methods

for determining connectivity.

Theorem 2.16. An open set D ⊂ C is connected if for any two points a, b ∈ D there

is a polygonal path from a to b contained in D.

Figure 2.10: Various connected regions and their respective example polygonal paths.

Three connected domains and some path examples are shown in figure 2.10. It is

worth reminding the reader that a path must exist for any two points in the region.

11



We are only showing one such path for demonstration.

Definition 2.17. For a set C and function f , the components of C are the maximal

connected subsets of the preimage of C under f .

The image/preimage of sets are staples in dynamics and complex analysis alike.

Look to figure 2.14 in the following section for what components look like in C.

2.1.2 CLOSURE OF C

Often in mathematics, infinity presents itself as a limit. It is the unattainable repre-

sentation of that which is beyond every finite value. In dynamics, we need infinity to

present normally (like other numbers) so that we can take its actions on the plane into

account. To achieve this, we simply call infinity a new point: ∞. This point resides

somewhere off the plane, but finding it is difficult. Theoretically, traveling in any

direction from the origin long enough sends you ‘towards’ this new point ∞. Then

we need every single direction of the plane away from the origin to be mapped to

the same point. Fortunately, this mapping already exists and is called stereographic

projection.

To achieve this mapping, often called π, we first reside in three-dimensional space

R3. To avoid confusion, we delineate a coordinate in 3-space as vector (a, b, c), and

the complex number z = x + iy. With the complex plane serving as the plane at

c = 0, a complex number’s real part is thus a and its imaginary part is b. We then

nest a unit sphere in the complex plane, with its equator intersecting the unit circle.

We plan to map every point in the plane to this sphere. Now pick any point in z ∈ C,

and draw a line through z to the sphere’s north pole, (0, 0, 1) ∈ R3. Wherever this

line intersects the sphere is z∗, the image of z under π (shown in figure 2.11). Most

importantly, we have a place to put ∞: right at the top, thus setting (0, 0, 1) = ∞.

The reader should take a minute to note that moving in any direction away from the

12



C∞∞

C

z

z∗ π

π(0)

Origin

Figure 2.11: The projection map π : C → C∞

origin results in you approaching ∞, but no point in C maps to ∞. Under the map

π, we see that π(0) = (0, 0,−1) (the sphere’s southern pole). We are now ready for

the next definition.

Definition 2.18. The Riemann sphere is denoted C∞ and is given by: C∞ = C∪{∞}

for ∞ the limiting point of C.

Adding ∞ into the complex plane can be seen as plugging a hole remaining in the

space since divergent sequences (those approaching ∞) could potentially “converge

to ∞”. In this sense the point ∞ is viewed as a limit point of C, and including it

would complete C. For this reason, C∞ is often called the closure of C, and denoted

C or Ĉ.

Definition 2.19. The stereographic projection from C to C∞ can be written as π :

C → C∞ such that π(z) = t · (2x, 2y, |z|2 − 1) for z = x+ iy and t = 1
|z|2+1

.

Avoiding complete topological justification, we note that the reliability of this new

space is guaranteed since C∞ and C are equivalent metric spaces under an isomor-

phism π : C → C∞. Here, π behaves as a stereographic projection from C to C∞,

with C∞ appearing as a sphere. Note that ∞ is seated neatly atop the projection
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at the north pole and 0 hangs from its south pole. The intersection of the plane

and sphere is the unit circle (serving as the equator of C∞), and all points along the

sphere map in a bijective fashion to C.

It is possible to induce many metrics on C∞ and from these we choose the chordal

metric, due to its versatility in dealing with our newfound point ∞.

Definition 2.20. The chordal metric on C∞ is defined as σ(z, w) = |π(z) − π(w)|.

Note that in this case, the absolute value bar denotes the Euclidean length of the

now-R3 vectors z and w after having been mapped through π.

Due to the bijectivity of the map π, we find that C∞ and C are equivalent under

π as metrics. In short, we are now able to switch between the use of C and C∞

in matters where it is convenient or useful (such as needing to alleviate ∞ of its

significance).

2.2 COMPLEX NUMBERS SYSTEM

A deep understanding of complex-valued functions is paramount to progressing

through the capstone proof of this thesis. This section aims to demonstrate the

properties of complex-valued functions to give an intuition for the later portions of

the thesis.

Any function that maps C into itself is called a complex-valued function. These

functions (often called “maps”) differ from real-valued functions only in their domain

and codomain. From this point forward, unless otherwise specified, all results and

discussion surrounding functions are assumed to reside in the complex plane.

Definition 2.21. A function f : C → C is a complex-valued function.

Since C requires two dimensions to visualize, it is difficult to view functions in the

normal sense. This is to say we can not use typical x and y axes. We’ll require one

plane for our domain and another for the range. It is also common to show arrows
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z 7→ z2

Figure 2.12: Image of the shown grid through z2.

that demonstrate the movement occurring in the plane. The first idea is exemplified

in figure 2.12.

On the left, we see a particular section of the complex plane, and on the right,

we see those same lines after transformation f(z) = z2. Later we demonstrate that

this particular map has the property of duplicating all regions (mapping two points

to the same place), so there are fewer squares visible in the right image than in the

left one. Specifically, we might say this map is not surjective: there exists z, w ∈ C,

with z ̸= w, such that f(z) = f(w). For example f(1) = f(−1), since (−1)2 = 1.

Example 2.22. Suppose f(z) = z2. Then 1 7→ 1, i 7→ −1, and so forth.

While mapping certain points through the function is fun, it may be easier to

realize the behavior of a particular function by mapping multiple points at a time.

Fortunately, we can map as many points as we want at once by considering the images

of sets.

Definition 2.23. For any set C ⊂ C, the image of C through f is denoted f(C) and

given by:

f(C) = {w ∈ C : f(c) = w, c ∈ C}

15



f

Figure 2.13: Image of the closed disk through f(z) = z2.

Thanks to the properties of C, this can be intuitively thought of as the function

moving regions of C around. An example of doing this mathematically is given next.

Example 2.24. Suppose f(z) = z2 and D = {z ∈ C : |z| ≤ 1} (the closed unit

disk). It is easier in this case to think of f in its polar form. Then suppose z = reiθ

for r the magnitude of z and θ the argument of z. Thus f(z) = z2 =
(
reiθ

)2
=

r2ei(2θ). Assuming z ∈ D, we know |r| ≤ 1 by construction. Thus |r2| ≤ 1, showing

r2ei(2θ) ∈ D (since any argument θ lands in the unit circle provided |r| ≤ 1). This

proves f(D) = D. We also note that f(1) = 1, and f(0) = 0. These are special cases

for the particular map z 7→ z2. They are the only points that do not move, remaining

fixed. Additionally, 0 is the only number in C having only one preimage (defined next

in definition 2.25.)

Shown in figure 2.13 are the depicted domain and image of f respectively. We

note that each point in the image of f corresponds to two values, since f(z) = z2.

That is, f is a 2-to-1 mapping. As shown, points outside the unit circle are blown up

and wrapped counter-clockwise around the origin, while those inside the unit circle

sink in. This is because the magnitude is squared, so magnitudes r with |r| > 1

bet bigger, while those r with |r| < 1 get smaller. The spiraling is the result of the

argument of z being added to itself.

One can also take a preimage of a set, which is the equivalent of “undoing” an
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action caused by a function.

Definition 2.25. For any set C ⊂ C, the preimage of C through f is denoted f−1(C)

and given by:

f−1(C) = {z ∈ C : f(z) = c, c ∈ C}

Note the key differences between this definition and its predecessor. In this case,

we observe what f maps to C, whereas we previously saw where f sent C. We again

observe the example of z 7→ z2.

Example 2.26. Let f(z) = z2. Then f−1(z) =
√
z = z1/2. Consider the set

C = {z ∈ C : |z − 1 − i| < 1}. Thus C is the disk of radius one, centered at 1 + i.

When attempting to find f−1(C) we immediately notice an issue. Each value of C

has two possible values that could have been mapped to it. For example, consider

1+i ∈ C. In polar form, 1+i =
√
2eπi/4. Thus f−1(

√
2eπi/4) = 21/4eπi/8+2kπ for k ∈ Z

since there are many angles whose doubling is equivalent to π/4. For this reason, we

typically limit the angles to their principal values, thereby removing the “+2kπ”

term. For now, we’ll assume that there are only 2 such values. Shown in figure 2.14

Figure 2.14: 1st Preimage Figure 2.15: 2nd Preimage
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are both regions in question. Each of these colored circles maps to the original circle

(shown in gray). As shown in the next section, these two colored regions are called

the components or connected components of C under f . Taking f−1(f−1(C)) further

reveals the components of f−1(C), shown in figure 2.15. Since each component of C

has two more components, we end up with four total possible regions that map to C

(after two compositions).

Just as there are useful properties of real-valued functions that serve to illuminate

their machinations, there are similar properties of complex-valued functions that can

help us dig deeper. Our first such result is continuity, defined in its typical sense.

Definition 2.27. A function f : C → C is continuous on a set D ⊂ C provided that

for all ε > 0, there exists some δ > 0 such that:

|z − d| < δ =⇒ |f(z)− f(d)| < ε,

for d ∈ D. In short, this definition requires that the closer z gets to d, the closer the

image of z gets to the image of d.

Definition 2.28. For an open set D ⊂ C, the function f is said to be differentiable

on D whenever

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

exists for a ∈ D. This is, of course, the derivative of f at a.

Here we find the first big distinction between the complex and real numbers. In

the real numbers, limits exist only when they are equal from both directions (left

and right). However, the complex numbers are two-dimensional, thus requiring all

two-dimensional paths that exist to agree. This means the existence of a complex

derivative is much stronger than the existence of a real one.

Definition 2.29. A function f : C → C is holomorphic on a set D ⊂ C if f is

differentiable in some neighborhood of each d ∈ D.
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Definition 2.30. A function f : C → C∞ is meromorphic on a set D ⊂ C if either

f or 1/f is holomorphic on D.

The meromorphic definition may seem overshadowed by its predecessor, but its

existence is used interchangeably with holomorphic, especially in dealings with the

Riemann sphere. Since the Riemann sphere includes this new point at infinity, we

define holomorphic/meromorphic for ∞ next.

Definition 2.31. A function f(z) is holomorphic (or meromorphic) at ∞ if f(1/z)

is holomorphic (or meromorphic) at 0.

Example 2.32. Consider f(z) = z2. Note that z2 is differentiable in a neighborhood

of 0 and thus we say f(z) is holomorphic at zero. Is f(z) holomorphic at ∞? By defi-

nition, this limit is not finite and cannot exist. However, 1/f(z) = z−2 is holomorphic

at∞, since 1/f
(
1
z

)
= z2 is holomorphic at 0. In this case, as is often done in texts, we

say f is holomorphic at ∞ since f is meromorphic at ∞. This example demonstrates

the power of the Riemann sphere to remove the uniqueness from infinity, allowing it

to be analyzed as any point by simply considering the reciprocal mapping.

We could also similarly have continuity and convergent sequences near ∞. We

need only flip over to 1/f for points approaching ∞ to tend to 0, making divergent

behavior appear to converge to ∞. It is worth noting that neighborhoods of ∞ are

typically defined this way in texts.

Definition 2.33. A function f : C → C is conformal at z0 if and only if the derivative

of f exists at z0 and is nonzero.

Conformal maps have the unique property of locally preserving angles. That is, the

angle between intersecting lines is unchanged through the transformation. However,

conformality does not ensure that parallel lines remain parallel (as seen in figure 2.12).

Definition 2.34. A function f : C → C is analytic at a point z0 if f ′(z0) exists and

is continuous at z0.
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Theorem 2.35. If a function f : C → C is analytic at a point z0, then:

f(z0) =
∞∑
n=0

an(z0 − a)n

with a nonzero radius of convergence.

This previous result follows from Taylor’s Theorem and demonstrates any ana-

lytic function to be infinitely differentiable at z0. This is often called the polynomial

expansion of f at z0. Under the umbrella of analytic functions, we can study many

other strange types of functions by appealing to their polynomial expansions.
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3 DYNAMICS

3.1 INTRODUCTION TO DYNAMICS

Many real-life processes deal with applying a certain action repeatedly or over

time. If this action has a function representation, it can be repeatedly iterated, and

its long-term behavior categorized. For example, if applying a particular sunscreen

blocks 50% of damaging UV rays, one may re-apply to block more. Assuming this

process blocks 50% of the remaining rays after each application, we can think of the

UV rays blocked as a function of the previous application. That is, for fn the amount

of UV-rays blocked on the nth application, fn = 0.5fn−1. Then we could suppose that

f0 = 1, since after zero applications, you still receive 100% of the UV-rays. We now

witness fn unravel from its starting point, composing each iteration with the previous

to see into the future applications of f .

For instance, f0 = 1 =⇒ f1 = 0.5 · f0 = 0.5 ·1 = 0.5 =⇒ f2 = 0.5 · f1 = 0.25 . . . .

To truly encapsulate the long-term behavior of such a sequence, one might form a

graph of its outcomes.

We might say that the behavior of this particular function is very predictable.

After a time, the sun’s rays lessen in impact until they have a negligible impact (if

any). In short, this process exhibits very stable behavior whenever the initial value

is 1. We can also deal with other initial values, representing stronger or weaker

versions of the sun’s rays, and view their long-term “stability” as well (barring any

environmental/astrological impacts of seriously altering the sun’s brightness).

Admittedly, this example is quite simple and demonstrates only a small percentage

of the eye-catching behaviors possible for maps of this type. There are many more

real-world properties that are studied under the lens of their long-term behavior, with

21



their properties and results being among the most popular mathematics results of

recent. This field, prevalent in mathematics, physics, finance, and astronomy (among

many others) is often called the study of dynamics. Among such examples include the

swinging of a pendulum, population growth/decline, dribbling a basketball, and water

flowing over rocks. While the study of such phenomena is difficult, their applications

and beauty are found strewn across all fields of mathematics.

Remark 3.1. It is worth noting that the previous sunscreen example resides in R and

it is the goal of this chapter and the next to translate this process to C and isolate a

particular set of interesting behaviors.

3.2 ITERATING IN C

We first give rise to a notational standard for iterating functions. For a function

f(z) we denote f 1 = f(z), f 2(z) = (f ◦ f) (z), and fn(z) = (f ◦ fn−1) (z). This is

simply to define a notation fn, meaning f composed with itself n times. This is the

nth step in an iterative sequence.

Definition 3.2. A fixed point z of a function f is any z in C (or sometimes C∞) such

that f(z) = z. That is, z 7→ z.

Example 3.3. For f : C → C, let f(z) = z2. Then f 2(z) = (z2)2 = z4. Inductively,

fn(z) = z2
n
. It is usually in the interest of mathematicians to partition space into

regions that behave similarly. In this case, we note that values of z = reiθ with

r > 1 exhibit diverging behavior. Simply put, fn(reiθ) =
(
reiθ

)2n
= r2

n
e2

niθ. Then

we note that as n → ∞, r2
n → ∞ and so the region outside the unit disk maps

further and further outside, approaching ∞. Note that on the Riemann sphere, we

can simply write fn(∞) = ∞. Within the unit disk, r < 1, values map further inside,

sinking in towards 0. Additionally, fn(0) = 0. Lastly, to cover all of C∞, we should

also consider values where r = 1. Something interesting happens here. Notice that
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fn(eiθ) = e2
niθ, which is r = 1. This says that the unit circle maps to itself, but arg z

is altered. From complex analysis and our knowledge of roots of unity, we know that

all arguments which are rational multiples of π eventually have fn(z) = 1 for some

n, and fn(1) = 1. All those z with arguments that are irrational multiples of π never

“settle down”; these iterates endlessly careen around the unit circle as n increases.

Thus we have found three distinct regions: two open sets and a closed set. The

open sets are {z ∈ C : |z| > 1} and {z ∈ C : |z| < 1}. These are the sets containing

∞ and 0 respectively. These set’s elements contain neighborhoods that likewise tend

toward their respective fixed points. However, the closed set bordered between them

exhibits a much different behavior – a point’s neighbors need not follow its example,

need not tend to one, and need not even stay near. These two behaviors are the

purpose of the discussion and are detailed further in later chapters.

Now that we have some idea of complex analysis, the topology of the complex plane

and Riemann sphere, and a field of math called dynamics which is of interest to us, it

is time to take what we know and form the basis of the theory of complex dynamics

so we can begin discussing the Mandelbrot set. The usual way to do this is to try and

understand the dynamics of a particular family of complex-valued functions, called

rational maps. This is the subject of the next chapter. The following theorems and

definitions come from Alan F. Beardon’s Iteration of Rational Functions [2], where he

provides a more in-depth discussion of general rational maps. Our focus lies primarily

on degree two maps.

3.3 RATIONAL MAPS

Here we begin to explore the dynamics of a certain classification of maps called

rational maps. Rational maps are constructed from two polynomials: one in the

numerator, and one in the denominator. Since analytic maps have their Taylor series
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expansions as polynomials, understanding the dynamics of rational maps is the first

step to understanding more general analytic maps.

Definition 3.4. A rational map R : C∞ → C∞ is denoted R(z) and is given by

R(z) = P (z)/Q(z), where P and Q are complex polynomials. Rational maps are

defined even when Q(z) = 0, and in this case, we say R(z) = ∞, thanks to the

Riemann sphere.

Rational maps are the basis for most complex dynamics and were the first maps

discussed during the field’s conception. It is worth noting that the polynomial maps

of interest in this thesis are typically considered rational maps with Q(z) = 1, so the

findings of rational maps generally apply to these as well.

We have previously defined f 0(z) = z for any f . The nth image of f is denoted

fn(z) and is f composed with itself n times. Similarly, the nth preimage of f is f−1

composed with itself n times.

We are very interested in composing f with itself, and as a result, the shorthand

notation is very lenient in its depiction throughout most academic writing. For our

purposes, we say f 3(z) = f ◦ f ◦ f(z), or f−3(z) = f−1 ◦ f−1 ◦ f−1(z). These are

also sometimes called the forward or backward images of f respectively, and their use

is so frequent we may even omit the typical composition notation and write fff(z)

to denote f 3(z). This use is extended to other functions, and juxtaposed functions

are assumed to be composed with one another. For example, R(Q(f(z))) is denoted

RQfz. We also call fn(z) the nth forward orbit of z, and f−n(z) its nth backward

orbit.

Definition 3.5. A fixed point for a function f is sometimes called ζ and is given by

f(ζ) = ζ.

A fixed point for any map is simply a point that maps to itself; one that does not

move under the function iteration.
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Figure 3.1: Forward image of a circle under z 7→ z2 − 1.

Figure 3.2: Backwards image of a circle under z 7→ z2 − 1

Example 3.6. Consider the function f(z) = z2 + i. To find the fixed points for this

map, we can solve the equation f(z) = z. It follows that:

f(z) = z

z2 + i = z

z2 − z + i = 0

Thus z = 1±
√
1−4i
2

by the quadratic formula. These are illustrated below.

Later in the next chapter, we demonstrate a particular fascination with functions

of the form f(z) = z2 + c, for c ∈ C. This form is sometimes called the depleted

quadratic, as it lacks a first-degree term. The fixed points of a map with this form

can be found by solving the familiar-looking equation z2 + c = z. By the quadratic

formula, we find z = 1±
√
1−4c
2

.
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Figure 3.3: A dendrite with map f(z) = z2 + i. Quickly-diverging points are bluer

while slowly-diverging points are whiter.

Remark 3.7. We note that on the Riemann sphere, f(∞) = ∞ for any value of c,

thus making ∞ a fixed point for the depleted quadratic when dealing with C∞.

Definition 3.8. A cycle of length n for a value z underf is a fixed point of fn.

An cycle of length n is a collection of n-many points that each have a cycle

of n. For example, the forward orbit of 0 may have a cycle of 4 for a partic-

ular map. Then f 4(0) = 0. Thus the forward orbit of zero would oscillate as

{0, f(0), f 2(0), f 3(0), 0, f(0), . . . }.

In the case of the map f(z) = z2 + c, we can solve for the orbits of length two by

solving the equation f 2(c) = z, as such:

f 2(z) = z

(z2 + c)2 + c = z

z4 + 2cz2 − z + c2 + c = 0

This leaves us with a quartic equation to solve. To do this, we note that a fixed point

26



in f also has a cycle of length 2. To show this, let ζ be a fixed point of f . Thus

f 2(ζ) = f(f(ζ)) = f(ζ) = ζ. Therefore ζ has a cycle of length 2. Most notably, this

means that z− 1±
√
1−4c
2

are factors of the given quartic, and as such z2 − z+ c evenly

divides the quartic polynomial. Then we can perform polynomial long division.

z2 + z + (c+ 1)

z2 − z + c )z4 + 2cz2 − z + c2 + c

−(z4 − z3 + cz2)

z3 + cz2 − z + c2 + c

−(z3 − z2 + cz)

(c+ 1)z2 + (−1− c)z + c2 + c

−
(
(c+ 1)z2 − (c+ 1)z + c(c+ 1)

)
0.

Thus,
(
z4+2cz2− z+ c2+ c

)
/
(
z2− z+ c

)
= z2+ z+ c+1. By the quadratic formula,

we then conclude:

z =
−1±

√
1− 4(c+ 1)

2
=

1

2

(
−1± i

√
3 + 4c

)
. (3.1)

These are the orbits of length two, which are not length 1 (fixed). We can now

apply this knowledge to show the orbits of length 2 on the dendrite, by letting c = i,

yielding: z = 1
2

(
−1± i

√
3 + 4i

)
(shown in figure 3.3).

In the case of the depleted quadratic map, there are always two orbits (the positive

and negative). Since there are only two possible points, and each must have a cycle

of length two, we can conclude that these points must map to each other. This is a

fascinating result but is not true in general nor for other types of maps. We solidify

this idea as a theorem.

Theorem 3.9. Let fc(z) = z2 + c. The cycles of length 2 of fc map to each other.
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Figure 3.4: A dendrite, with fixed points in red and cycles of length two in orange.

Proof. By a previous result, we note that the orbits of length 2 which are not fixed

can be written as ζ1 =
1
2

(
− 1 + i

√
3 + 4c

)
and ζ2 =

1
2

(
− 1− i

√
3 + 4c

)
. We can now

demonstrate that f(ζ1) = ζ2 and f(ζ2) = ζ1.

f(ζ1) = (ζ1)
2 + c

=

(
1

2

(
− 1 + i

√
3 + 4c

))2

+ c

=
1

4

(
1− 2i

√
3 + 4c+ i2(3 + 4c) + c

=
1

4
− 1

2
i
√
3 + 4c− 3

4
− c+ c

=
1

2
− 1

2
i
√
3 + 4c

=
1

2

(
1− i

√
3 + 4c

)
= ζ2.
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Likewise we perform the case of f(ζ2):

f(ζ2) = (ζ2)
2 + c

=

(
1

2

(
− 1− i

√
3 + 4c

))2

+ c

=
1

4

(
1 + 2i

√
3 + 4c+ i2(3 + 4c) + c

=
1

4
+

1

2
i
√
3 + 4c− 3

4
− c+ c

=
1

2
+

1

2
i
√
3 + 4c

=
1

2

(
1 + i

√
3 + 4c

)
= ζ1.

Then we have shown f(ζ1) = ζ2 and f(ζ2) = ζ1, and we conclude the orbits of length

2 of fc map to each other.

We can also classify cycles/fixed points based on the derivative evaluated at

the given point. Analytically we know the derivative to measure the amount of

stretch/contraction in a neighborhood of the discussed point. Thus we can classify

these points as such:

Definition 3.10. An n-cycle point ζ of the map fn is:

1. Repelling if |(fn)′(ζ)| > 1 ,

2. Indifferent if |(fn)′(ζ)| = 1,

3. Attracting if |(fn)′(ζ)| < 1,

4. Super-attracting if |(fn)′(ζ)| = 0.

This definition opens the door to discussing when and where certain cycles occur

with a classified behavior, such as finding all the points with an attracting three-cycle.

This is touched on further in Chapter 4.

Occasionally we observe a ‘fixed behavior’ for an entire set. To avoid confusion,

sets with these properties are called invariant sets.
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Definition 3.11. A set C is forward invariant in f provided that f(C) = C. Simi-

larly, a set is backward invariant if f−1(C) = C and completely invariant if it is both

forward and backward invariant.

Note that this does not necessarily imply elements of C are fixed points. It is still

possible for elements of C to move around as long as they stay in C.

Completely invariant sets are instrumental but we will not be using them until the

following chapter, where we can form a sense of continuity between function iterates.

For now, in keeping with the dendrite theme, the map z 7→ z2+ i (figure 3.3) has two

invariant sets: the white set and the blue set.
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4 JULIA AND FATOU SETS

The Julia and Fatou sets get their name from their math-famous counterparts who

studied them. Pierre Fatou and Gaston Julia were French mathematicians around

the time after World War I, and just before the precipice of the modern computing

era. While dynamics as a field had yet to be conceived, these men are attributed

with establishing the theory in the case of holomorphic dynamics. The following

theorems and results are continuations from the previous section. They are all found

in Beardon’s Iteration of Rational Functions [2], mostly from Chapters 5 and 6.

4.1 DEFINING THE FATOU AND JULIA SETS

In short, these sets serve to demonstrate the two possible behaviors examined in

holomorphic dynamics: regions of stability and instability. Before defining these sets

we must first borrow from the theory of equicontinuity.

Definition 4.1. A family of functions {fn} is simply a collection of functions of some

type. We are most interested in the family of the iterates of f .

Example 4.2. The function f(z) = z2 has a family of iterates:

{fn} = {. . . , f−2, f−1, f 0, f, f 2, . . . } = {. . . , z1/4, z1/2, z, z2, z4, . . . }.

Definition 4.3. A family of functions {fn} is equicontinuous at a point z0 ∈ D ⊂ C

if for all ε > 0 there exists a δ > 0 such that for all f ∈ {fn} and all z ∈ D:

|z − z0| < δ =⇒ |f(z)− f(z0)| < ε.

For a set D ⊂ C, the family {fn} is equicontinuous on D if the family {fn} is

equicontinuous at each z0 ∈ D. This in turn implies that for various subsets Dν on

which {fn} is equicontinuous,
⋃
Dν is also an equicontinuous region for {fn}.
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The presence of equicontinuity on a given set D for a family of iterates {fn} means

neighborhoods of points in D behave similarly through iteration. If equicontinuity

fails, then some local behaviors are not preserved under iteration. This leads us to

our first definition of the Fatou set.

Definition 4.4. The Fatou set of a function g is denoted F (g) or simply F , and

is the maximal open subset of C∞ on which the family of iterates of g, {gn}, is

equicontinuous.

Just from the definition, we first form that F is an open subset of C∞, dealing

with the entire family of iterates of some function (g in this case). It is also the

maximal version of itself, meaning there is one and only one F for a particular family

of iterates. We are now ready to define the Julia set.

Definition 4.5. The Julia set of a function g is denoted J(g) or simply J and is the

complement of Fg in C∞. Alternatively, this is the region of C∞ on which the family

of iterates of g, {gn}, is not equicontinuous.

It is now visible to the observer the reasoning for declaring F and J to be stable

and unstable outside of simple intuition. These regions of C∞ for a given function

isolate the preservation of closeness across all the iterates of a particular function. In

its truest form, the regions of C∞ which belong to J fail to preserve continuity across

either the whole region or all of its iterates. The result is that some kind of ‘tearing’

is happening to the region locally over time.

Similarly, equicontinuity guarantees that regions contained in F stay ‘knit-together’

as the iterates progress, always guaranteed to have some sense of continuity between

any points in f and iterate of the function. In dynamics, J and F are like black and

white; complete, utter, and total opposites.
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4.2 PROPERTIES OF THE FATOU SET

The Fatou set, while very interesting, gets most of its attention as being the

counterpart to the much more chaotic and difficult-to-fathom Julia set. This text is

no exception, and we begin to understand the Fatou set as a means to understand J .

However, before diving into Fatou sets, we first require some prerequisite ideas from

topology. These results help solidify stability in terms of the metric space C∞.

Definition 4.6. A set D is simply connected if any closed curve can be continuously

deformed to a point without leaving D.

In metric spaces, simply connected sets have no holes. If ever a hole occurs in a

given set, then the loop around that hole is suddenly no longer able to be contracted

to a point. This means their sets can be connected and not simply connected (see

the left image of figure 4.2).

Remark 4.7. Our current definition of simply connected allows for disconnected open

sets with no holes to be simply connected since no closed curves joining the two spaces

need to be considered, as they are not contained in the space.

Theorem 4.8. The closure of a connected set is connected.

A connected set in the closure of C is the collection of all of its accumulation

points. Since this set is already connected, it is not jeopardized by the addition of its

accumulation points. This is shown below:

It is worth noting the converse of this statement is not necessarily true, and the

reader is encouraged to break the converse with a counterexample.

Theorem 4.9. A domain D is simply connected if and only if its complement is

connected.

This result seems unintuitive at first but can be quickly understood in the context

of metric spaces. If the domain D is simply connected, then there are no holes. Thus,
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Figure 4.1: The closure of a connected set is connected.

the complement of such as shape cannot have disjoint pieces. This result is most

helpfully demonstrated in an example.

Shown in figure 4.2 is a projection of a coffee mug (which can represent an open

region in C). Taking its complement in C reveals two disjoint pieces – the hole in the

handle becomes an island, separate from the rest of the set and breaking connectivity.

Figure 4.2: A set is not simply connected if its complement is disconnected.

The next image (figure 4.3) is that same coffee mug but with its handle removed.

This region has no handle, and thus no problematic holes to be turned into islands.

The result is a shape that is most certainly connected.

Theorem 4.10. A domain D is simply connected if and only if its boundary is con-

nected.

Intuitively, we can imagine that a shape that is simply connected in C (no holes)

would have one border—a closed loop around the outside (figure 4.3). However, a
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Figure 4.3: A set is simply connected if its complement is connected.

shape with one or more holes would break up its border, since the hole also needs its

border (figure 4.2).

4.3 PROPERTIES OF THE JULIA SET

It is worth reminding the reader that the Fatou and Julia sets differ absolutely;

they are opposites of one another, and their behavior is such. In general, the Fatou

set is wide and stable, while the Julia set is thin and unstable. The Fatou set cradles

its fixed points in sinks so that nearby points spiral towards them. The Julia set holds

its fixed points on mountain peaks, with neighborhoods diverging from it rapidly and

in all directions.

We first consider the Julia set of some simpler rational functions before moving

on to degree two polynomials. We set the stage with the deceptively simple map

f(z) = z+1. In the spirit of the text, we ask: what is F (f) and J(f)? Since the two

are complements, it is enough to find one of them. To do this, we should first observe

the family of iterates of f . It follows from a simple argument that fn(z) = z + n.

Thus for any starting point z, the nth iterate lies n units away in the direction of

the positive real axis. This is equivalent to shifting the entire plane by 1 in the real

direction of each step of composition. This is loosely demonstrated in figure 4.4.
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C

Figure 4.4

On C, {fn} is equicontinuous for every z, since for a given ε > 0 choose δ = ε so

that |z − z0| < δ =⇒ |f(z)− f(z0)| = |z + n− z0 − n| = |z − z0| < δ = ε. However,

the question of ∞ remains. We first note that ∞ is a fixed point for the map f , since

f(∞) = ∞. However, when viewing the Riemann sphere, we see that ∞ behaves

like a sort of ‘saddle’ fixed point, with one side sinking in, and the other drifting

away. This behavior prevents equicontinuity at ∞, thereby solidifying F (f) = C and

J(f) = ∞.

C∞∞

Figure 4.5: Movements of points induced by z 7→ z + 1

Above is the map f on a very rough Riemann sphere that has been tilted a little

bit forward to show ∞ at the top. The median line represents the line RE(z) = 0.

On the RE(z) > 0 half of the sphere, points converge to ∞. On the RE(z) < 0 side,

points diverge from ∞ and remove the ability for {fn} to be equicontinuous, thereby

placing ∞ ∈ J(f).
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Remark 4.11. While it is possible for F to be empty, these maps are few and far

between, with their discoveries previously being a great achievement [2]. Their prop-

erties are, however, outside the scope of the thesis.

The thin, wiry nature of J is exemplified in sets called dendrites.

Figure 4.6: Julia set of z 7→ z2 + i

Intuitively, “thin” and “thick” refer to the size of the interior; thick shapes should

have a wide interior, and thin shapes should have an almost empty interior. In the

case of J , it is as thin as possible. This is demonstrated by the theorem below.

Theorem 4.12. If J is not equal to C∞, then J has an empty interior. [2]

This result loosely follows from F consuming the sphere to maintain its equicon-

tinuous nature. Without specifics of the Juila set it is proven by first showing J to

be minimal, meaning J has no components that map to each other. Since F does

consist of these components, it tends to take up more space on the sphere and edges

out J .

Some examples are shown in Figure 4.7. Note that the Julia set is the region
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bordered between solid white and blue (this is the result of a computational approx-

imation of the Julia set).

Figure 4.7: Julia sets of z2 − 1 + 0.35i, z2 − 0.5i, z2 − 0.226 + 0.7449i, and z2 − 1.2.

In this section we provide the crux of the thesis; we intend to demonstrate that ra-

tional maps of the form z 7→ z2+c for c ∈ C exhibit specifically identifiable properties

that can allow us to categorize the parameter c in meaningful ways. Specifically, we

intend to demonstrate their connectivity and implement a strategy for determining

the connectivity of these sets. We then parameterize c by its resulting connected sets

and form the Mandelbrot set as a final result before exploring it in the later chapters.

4.3.1 THE BASILICA

For our first example let us consider in full the case when c = −1. This produces

the map f(z) = z2 − 1. When iterated, this map characterizes regions of the plane
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by their orbits. We know that depleted quadratic maps have two fixed points (in C)

counting multiplicity (barring c = 0, who has one fixed point), and ∞ also behaves

like a fixed point. These fixed points are given by ζ1 =
1
2

(
1+i

√
5
)
and ζ2 =

1
2

(
1−i

√
5
)

3.6. Since f ′(z) = 2z, we see that |f ′(ζ1)| = 2
∣∣1
2

(
1 + i

√
5
)∣∣ = 6. By similar reasoning

we find |f ′(ζ2)| = 4. This classifies both points as repelling and cements them in the

Julia set of f , which we denote by ζ1, ζ2 ∈ J(f).

The astute may recall we can also find the points with an orbit of length 2 by

similar methods. While this is not useful for all maps, in the case of c = −1 it is

particularly enlightening. To find these orbits, we’ll use our established formula as

ζ3 =
1
2

(
− 1+ i

√
3− 4

)
= 1

2

(
−1 + i

√
−1

)
= 1

2
(−1 + i2) = −1. Similarly ζ4 = 0. This

can be reaffirmed since f(2) = (−1)2−1 = 0, and f(0) = 02−1 = −1. Most notably,

|f ′(0)| = 0, proving ζ3 and ζ4 to form a sinking orbit of 2. This places ζ3 and ζ4 in

the Fatou set. Since the Fatou set is defined in terms of equicontinuity, we know that

points neighboring −1 form an orbit with neighborhoods of 0. That is, points in the

Fatou set near −1 must converge to the orbit between −1 and 0.

Figure 4.8: An orbit starting at −1.1 + 0.1i converges to the 2-cycle
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One can also imagine taking this to the next level, solving increasingly higher-

degree polynomials, each with solutions guaranteed to exist by the fundamental theo-

rem of algebra. These points lie in J (since ∞ is fixed). This reasoning concludes that

the various bulbs seen in 4.8 must correspond to some orbit length, with many being

coupled by their orbits. However, solving these higher-degree polynomials quickly

becomes tricky, and often researchers implement a form of Newton’s method to find

these roots since the derivatives of polynomials are straightforward. Performing this

reveals that all bulbs eventually map back to the two-cycle (due to their super-

attracting nature). An example is given. Before moving on, we should also take a

Figure 4.9: A chosen point in one of the northern bulbs converges to the orbit of 2

near zero.

minute to observe F0 and F∞. In the case of 0, we find not only that 0 ∈ F , but 0

is a member of a super-attracting orbit of length 2. Likewise, ∞ also behaves like an

attracting fixed point. Thus the region F∞ forms the outside of the basilica, and the

regions similar to F0 form the various bulbs. Since these shapes are equicontinuous

by definition and completely invariant by a previous result, regions contained in any

of these bulbs inevitably expand and fill each bulb under backward iteration. This

shows each region inside the basilica to be F0.

The idea of F0 can help us answer if any maps behave like the given Basilica (are
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there other Basilicas?). In short, the answer is yes ! We demonstrate this after the

next example, the rabbit.

4.3.2 THE DOUADY RABBIT and VARIANTS

Figure 4.10: Julia set for c = −0.12256 + 0.74486i

Figure 4.11: Douady Rabbit: c =

−0.12256 + 0.74486i

Figure 4.12: Quadruple Rab-

bit: c = 0.282271− 0.530061i

Similar to the basilica, we note that the formation of bulbs here is due to the
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length of the cycle at 0. This can be achieved by solving the resulting quadratic from

f 2(0) = 0 for c. This is the definition for 0 to have a cycle of 2. We first get c2+c = 0,

begetting c = 0 and c = −1 (the basilica).

To find others, one can simply solve higher compositions, such as f 3(0) = 0, which

yields (c2 + c)2 + c = 0. Removing the fact that c = 0, we solve the resulting cubic to

find that c1 ≈ −1.75488, c2 ≈ −0.12256 + 0.74486i and c3 = c2. Note these are the

approximate solutions since the exact solutions involve radicals.

Extending this idea further is only natural, but the higher-degree polynomials

require computational work. Additionally, each polynomial in terms of c have a

degree twice that of the previous, resulting in exponential growth of the number of

Julia sets meeting the given criteria, barring repeats due to the repeats such as those

discussed in equation 3.6. Below are those for which F0 is a sinking orbit of length 4.

These are sometimes called quadruple rabbits. Both the plane and regular variants

exist.

Figure 4.13: Twisted Plane-Like Rabbit:

c = −0.156520− 1.032247i

Figure 4.14: Quadruple Rab-

bit: c = 0.282271− 0.530061i
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4.3.3 THE SEAHORSE

The seahorses get their name from the swirly nature they present. These shapes

result from high-valued orbits for F0. One is shown here only to visualize the intricacy

possible from Juilia/Fatou sets. Due to this level of detail, clear images of these sets

are tough to produce. While these images are clear, they are technically imperfect

representations – merely approximations of a shape with infinite intricacy littered

throughout.

Figure 4.15: A seahorse Julia set for f(z) = z2+

4.3.4 THE DENDRITE

The dendrite is very difficult to find, very difficult to draw, and—most importantly—

they represent the edge between maps that have connected Julia sets and those that

have disconnected ones. In essence, these dendrites visually show us what it looks

like to be on the edge of divergence, poetically demonstrating connectivity as a math-

ematical consequence of the very shape sets can form. To understand dendrites is to

43



understand Julia sets.

We have previously used the example of z 7→ z + i as a dendrite. While there

are many, they are particularly difficult to find due to their nature of lying between

connected and not. We later see that this is because dendrites occur on the border

of the Mandelbrot set. For now, we provide an image of c = i.

Figure 4.16: Dendrite: c = i

So far we have viewed Julia sets that are connected (in this section). To understand

this, we begin considering the backward images of F∞. Of course, if we were to start

near ∞, we would never reach the Julia set in backward images. It is thus wise to

start near where we believe the border to be. Instead, pick a circle, arc, or line and

view its possible preimages. Since F∞ is equicontinuous and backward invariant, our

points never map to J , causing the edge of the region to approach the Julia set.

Additionally, since ∞ is a sinking fixed point (or at least behaves like one on

C∞) we know that iterates tend away from ∞ and toward 0 since we are looking at

preimages. Thus the resultant map produces simply connected regions (on C∞) for

each step in the iteration. Go back far enough, and we meet the border of F∞, which

is J . This is exemplified a in figures 4.17, 4.18, and 4.19.
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Figure 4.17: Approaching

Basilica: c = −1

Figure 4.18: Approaching

Dendrite: c = i

Figure 4.19: Approaching

Rabbit: c = −0.12256 +

0.74486i

Since each region encroaches on J a little further, we can see that these regions

approach J as the backward image (f−n
c (z)) approaches∞. Since each of these regions

is simply connected, we state that its complement is connected by theorem 4.9. As

such, J is connected.

4.3.5 CANTOR DUST

Julia sets can also be disconnected. Using the previous argument of preimages, we

know that maps with disconnected Julia sets have J split repeatedly. For this reason,

after splitting infinitely many times, J is not only disconnected but totally discon-

nected. This means no two points of J are connected. When this happens, we say

that a set is constructed of disjoint points. This is often referred to as Cantor dust,

due to Cantor’s similar examples found in topology. We would say that these sets

have measure zero—in our case, this means that the set J has no length and no area.

This is in stark contrast to connected sets J , which have infinite length.

Note. In figure 4.21, we see the splitting of J happening as the Fatou set at infinity

tears through, mapping over regions and removing the possibility for J to exist there.

Since F∞ has no simply-connected preimages (besides the trivial case), we conclude
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Figure 4.20: Cantor Dust

Figure 4.21: Approaching

Cantor Dust

that J is not connected.

4.3.6 CRITICAL POINTS

In the previous examples, the points zero and ∞ characterize the Fatou and Julia set

for a particular c value. In this subsection we illustrate the reason for this by the use

of critical points.

Definition 4.13. A point ζ is a critical point for a function f if |f ′(z)| = 0.

Note this is the calculus definition of the critical point, and we have previously

assigned this behavior to be super-attracting when ζ is a fixed point. It might come

as no surprise that for the depleted quadratic fc(z) = z2 + c, we have f ′
c(z) = 2z,

which has critical points at 0 and ∞ when dealing in C∞.

The characteristics of these critical points uniquely determine the dynamics of the

map for a given c. For example, supposing you wanted to find Julia sets where zero

admits a cycle of one, then solve the polynomial given by f(0) = 0 for c. That is

02 + c = 0 =⇒ c = 0. Then the only map that fixes 0 is z2. Continuing onward,

we may also find those where 0 admits a 2-cycle: f 2
c (0) = 0 =⇒ c2 + c = 0. Then

c = 0 and c = −1. Here we ignore c = 0 since we know it to be a fixed point from the

previous result. Additionally, we have seen c = −1 to represent the basilica, which
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was already shown for zero to admit a two-cycle.

Theorem 4.14. For any n, there exists a c ∈ C such that 0 has an n-cycle in

fc(z) = z2 + c.

The proof of this theorem follows directly from the fundamental theorem of algebra

since fn(0) = 0 is a complex-valued polynomial. Trying this same strategy but with a

general value z0 is framed as solving for c in the expression fc(z0) = z0, which results

in systems similar to that of (3.6) in chapter 3.

Attempting this strategy for ∞ yields fn(∞) = ∞. Since fn
c (z) is a polynomial,

we know that ∞ is fixed. This means ∞ is a fixed point for all n and for every c of

the depleted quadratic. We note that |(fn
c )

′(∞)| = ∞ by similar reasoning. Thus fn
c

meromorphically distinguishes ∞ as a super-attracting n-cycle on the sphere for all

n. For this reason, ∞ ∈ F (fc) for all c.

With this knowledge, we are ready to discuss the Mandelbrot set.
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5 THE MANDELBROT SET

So far, we have demonstrated that for any unique c, there is a unique Julia set

Jc corresponding to it, under the iteration of the map z 7→ z2 + c. However, even

between the fascinating behaviors exhibited prior, there is one distinct behavior of

these Julia sets which we would like to capture: their connectivity. We have observed

a few examples demonstrating that only two possibilities occur: either a Julia set

is connected (these are the filled Julia sets), or it is completely disconnected (the

Cantor-dust Julia sets).

One convenient way of visualizing this would be to take those values of c ∈ C

who have connected Julia sets and color them (say, black), then leave the values of

c who have Cantor Julia sets white. We would have then created a parameter space

for c, thereby partitioning C into two distinct regions. This process produces quite

an interesting figure.

Figure 5.1 depicts this partition. The white regions are the values of c which have

connected Julia sets, often called the Mandelbrot set. Although to grasp a definition

of the Mandelbrot set (often called simply M), we first offer a change in perspective.

5.1 DEFINING M

Unfortunately, defining M in terms of the connectivity of its Julia sets is difficult

and not very helpful to the arguments made later in the thesis. To achieve the desired

feats, we first reconsiderM rather as a collection of c values corresponding to bounded

sequences.

Our previous discussion has mentioned connectivity and its closeness to F0. In

fact, should 0 be in the Fatou set and remain bounded, then J is connected. This
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Figure 5.1: The Mandelbrot Set

is because F0 must form a neighborhood near it to satisfy equicontinuity, thus sand-

wiching J = ∂F between F0 and F∞. If ever F0 and F∞ were to touch, then F0 ceases

to exist (0 diverges to ∞) and is absorbed by ∞. This explains the sharp drop-off

between connected and disconnected.

However, F0 can only be separated from F∞ if F0∪J remains bounded (otherwise

those points would be in F∞. This leads us to the newest definition of M, but to

make it easier we first define a recursive polynomial on which to base the definition.

Let Pc(z) = z2 + c, and define the sequence (cn) = P n
c (0) as the iterates of 0. We

can now define the Mandelbrot set in its most common sense:
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Definition 5.1. The Mandelbrot set M can be defined as:

M = {c ∈ C : (cn) is bounded}

It is worth noting that the next representation of M is its typical definition in

most texts and papers due to its flexibility and simplicity, but there are many such

representations of M useful in other contexts.

For each bounded sequence (cn), we say that c ∈ M. This means that the Julia

set corresponding to c has separate Fatou sets for F∞ and F0, which distinguishes J

as the connected border between them.

5.2 THE CONNECTIVITY OF M

The next logical question to ask is the connectivity of M, but not for the same

reasons we have previously. In previous sections, connectivity is almost a gauge of

a set’s ability to keep itself together; in essence, as a way to remove tears. We have

previously seen connectivity as the result of equicontinuity and invariance between

maps. In the context of M, however, we plan to use connectivity to answer the

question of M: are there Julia sets entirely separate from M? That is, are we

missing any? If we were to show that M is connected, then there would be no

Mandelbrot islands, and this means we be able to find every Julia set without ever

leaving M. We begin by warming up a useful idea to show if something is connected

with a simple proof, as featured in Alan Beardon’s Iteration of Rational Functions,

chapter 10 [2]. We be using this proof to help demonstrate why Pc has the effect of

expanding C for values of z ∈ C with |z| > 2.

Theorem 5.2. The Mandlebrot set can be expressed as the following: M = {c ∈ C :

|cn| ≤ 2}.

Proof. We start by considering the set: W = {z : |z| ≥ |c|, |z| > 2}. This partic-

ular set can vary in construction since |c| is not restricted; however, the construction
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of z need only guarantee it is strictly greater than 2, with z ≥ |c| making the proof a

little easier without losing generality.

C

|z| = 2
W

For each z ∈ W , there exists some ε > 0 such that |z| ≥ 2 + ε, seeing as |z| > 2

and |z| ≥ |c|. It follows that:

|Pc(z)| = |z2 + c| ≥ |z2| − |c| ≥ |z|2 − |z| = |z|(|z| − 1) ≥ |z|(1 + ε).

Since 1 < 1+ ε it follows that |z|(1+ ε) > |z| and consequently Pc(W ) ⊂ W . This

is a demonstration that Pc maps all z with |z| > 2 even further away from the origin.

Then, iterating once more, P 2
c (W ) ⊂ Pc(W ) by similar reasoning. It follows from

a simple inductive argument that Pm
c (W ) → ∞ as m → ∞, visually demonstrated

below.

C

W
Pc(W )

P 2
c (W )

We now see that for any sequence (cn) with an element |ck| > 2, the sequence

(cn) diverges, and as such c ̸∈ M. All sequences (cn) such that |cn| ≤ 2 must remain

bounded trivially. Then we can rewrite M = {c ∈ C : |cn| ≤ 2}.
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We have now shifted from viewing M as the parameter space of the connectivity

of filled Julia sets to viewing M as the collection of complex sequences bounded by

two under the iteration of Pc(z) = z2 + c. Armed with this newfound theorem, we

are now prepared to demonstrate the core reasoning behind the connectivity of the

Mandelbrot set. The following arguments are made in Dr. Alan Beardon’s Iteration

of Rational Functions [2], and its original conception is found in the paper Exploring

the Mandelbrot Set by Adrien Douady and John Hubbard [5].

Theorem 5.3. The set M is connected.

Proof. As Pc is iterated, we compose polynomials with polynomials. It then

stands to reason that, for a particular entry in the sequence ck, ck = Qk where Qk

is the inductively-defined polynomial Qn+1(c) = [Qn(c)]
2 + c. We now consider the

closed disk of radius two, given by K = {z : |z| ≤ 2}. Under Qn, we know that

Qn+1(C∞ \K) ⊂ Qn(C∞ \K) from the previous proof. Thus Qn+1(K) ⊃ Qn(K), and

we write:

M =
∞⋂
n=1

Q−1
n (K)

C∞ \M =
∞⋃
n=1

Q−1
n (C∞ \K),

where the second equality follows from DeMorgan’s Law. This shows M to be com-

pact. Note that for any Q, Q−1(C∞ \K) is open (since K is closed). Additionally,

Q−1(C∞ \K) cannot be expressed as the union of two disjoint open sets and is conse-

quently connected. Lastly, Q−1(C∞ \K) must contain ∞. Since each of these three

properties is preserved under union, we find
⋃∞

n=1Q
−1
n (C∞ \K) to share these traits.

Therefore C∞ \M is open and connected.

At this point, we begin constructing a conformal map from C∞\M to {z : |z| > 1}.

Creating and demonstrating the conformal properties of such a map is the focus of the

work of Douady and Hubbard, summarized in the first half of their paper Exploring
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the Mandelbrot Set [5]. We only dip our conceptual toes into the argument, which

relies upon the theory of functions of two complex variables and Green’s functions.

We first get φc, an isomorphism guaranteed by the Riemann mapping theorem.

While φc varies for each c, each is of the form φc : C − Kf → C − D, for Kf

the connected components of f . In essence, we would show that Green’s function

g(z) = log |φc(c)| is positive in the neighborhood of ∞, then conjugate the polynomial

Pc(z) = z2 + c to a map z 7→ zd. Since φc is the unique analytic function such

that φc(z) → z as z → ∞, and φc(Pc(z)) = φc(c)
2, we then construct its analytic

continuation into C∞ × C.

To do this, one first demonstrates the map g : (z, c) 7→ gc(z) is continuous and

is represented as g(z, c) = gc(z) = 2−ngc(P
n
c (z)). Thus, for a fixed value of n, we

can imagine finding the roots (the 2n-th roots) of P n
c (z), denoted Φn(z, c). By its

construction:

Φn(Pc(z), c) = [Φn+1(z, c)]
2

when (z, c) ∈ {(z, c) ∈ C∞ × C : c ∈ C \M, z ∈ Fc, gc(z) > gc(0)}.

In short, it can be shown that the sequence (Φn) converges uniformly to a function

called simply Φ, which is analytic and behaves like φc for values of c near ∞. This is

why Φ is called an analytic continuation.

Finally the results demonstrate c 7→ φc(c) = Φ(c, c) for every c ∈ C∞ \M. Seeing

as gc(z) > 0 (by the properties of Green’s function), then |φc(c)| > 1 and as such φc

maps C∞ \ M into {|z| > 1}. Since this map is analytic, the local connectivity of

{|z| > 1} is preserved onto C∞ \M, and as such the region is also simply connected.

We now recall from an earlier section that a set is simply connected if and only if its

complement is connected. This shows M to be a connected set.
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5.3 ADDITIONAL MANDELBROT SET INSIGHTS

5.3.1 DISCOVERED RESULTS

We have now shown the Mandelbrot set to undeniably be a connected set—to think

it all boiled down to finding a map that takes C−M to the outside the unit disk. We

can now safely draw some additional lemmas of interest and explain their relevance

before dipping into the things still unknown about the Mandelbrot set.

Fact 5.4. M can also be shown to be connected with a more topological argument.

It is unclear who was first to do this, but there is a nice argument made in Kahn [6]

which is included in the bibliography. It also borrows from the work of Douady and

Hubbard, making it a very natural read should you feel comfortable with the previous

proof.

Fact 5.5. M is simply connected [5]. Because of the map Φ we can also conclude M

to be simply connected (that is, M has no holes). This result may seem dull, but

holes on similar maps form whenever the function ends up wrapping back onto itself.

These loops can create space inside the set and jeopardize its simple connectivity.

These considerations are important to the Mandelbrot set because of its many spirals

and links; the simple-connectivity means that any peninsula observed in any region

of M must never loop completely back onto itself.

Fact 5.6. M is path connected. This is a topological result extending from the

previous fact. The theorem mentioned in Chapter 3 of this work is from Conway [3]

and also demonstrates this.

Fact 5.7. These facts together produce perhaps the most interesting result of all: all

connected Julia sets are continuous deformations of one another. This idea is because

each Julia set is related to its respective value of c ∈ C. Then if we pick any two

c1, c2 ∈ M, there must exist a polygonal path between those points contained in M,

54



and thus the Julia sets at both values can be continuously deformed to one another

by varying c along the path. (This is the reason that videos of flipping through Julia

sets are so satisfying!) Of course, even the Cantor-dust Julia sets lying outside of M

can be continuously deformed to any other c ∈ C, but having this path in M shows

the way these connected J are linked.

5.3.2 CONJECTURES AND QUESTIONS

The leading conjectures for the Mandelbrot set are some of the most interesting

questions in dynamics. Solutions to these problems could open realms to new mathe-

matical principles and ideas that apply to every field where the Mandelbrot set can be

found. First among these is the notorious MLC: the ‘Mandelbrot Locally-Connected’

conjecture. We are currently unequipped to topologically define locally connected in

the last few paragraphs of the thesis, but being locally connected at a point z essen-

tially means that every open ball containing z also contains a ball that is connected

and contains z. For the Mandelbrot set, this causes problems on the border, where

thin, wiry regions may not admit to a small enough connected neighborhood being

possible. It was mentioned by Douady and Hubbard [5] that the solution to the MLC

is near, though it has been 15 years since and no solution has been found. The local

connectivity is the main point of the article which we draw our capstone proof from;

Douady and Hubbard require MLC to be true to draw several incredible conclusions

about the Mandelbrot set and its border, all available to the reader in [5].

Another currently-unsolved Mandelbrot puzzle is the area of the Mandelbrot set.

Researchers have bounded the area of M (AM) to 1.3744 < AM < 1.68288, but is

estimated to be around 1.5. The difficulty in these approximations has to do with

the very thin regions of M along its border. If MLC were solved, this could help

researchers make better estimates.

The Mandelbrot set is representative of mathematics in the sense that although
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challenging and difficult to understand, its feats of interest captivate us to solve

new problems and answer new questions in hope of understanding something deeper.

Without such goals, there is little meaning to continuing in the discovery and creation

of mathematics. Mathematics, a lot like the Mandelbrot set, is a great and challenging

mystery with captivating beauty.
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