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ABSTRACT 

A remote sensing study was performed to quantify current soil brine 

contamination across the historic Smackover Oil Field in south-central Arkansas, United 

States. The oil field was established in 1922 and was not subject to the future waste 

regulations created by the Arkansas Oil and Gas Commission. Brine is a waste product of 

oil manufacturing which contains water with high salt levels. The storage and transport of 

brine in the oil field created landscape scarring across the study area.  

Landsat 9 multispectral digital imagery was utilized to create supervised 

classification maps based on earthen pits and creek scarring across the Smackover Oil 

Field. The results from these maps were compared to a previously completed brine 

contamination study which used Landsat 7 digital imagery to quantify brine 

contamination from oil production in west Texas. 

Upon completion of this brine quantification study, it was determined that the 

scattered small areas of brine contamination identified as training sites for the supervised 

classifications of brine and non-brine areas of the Smackover Oil Field could not be 

quantified using the same classification methods as were used for the west Texas study 

that utilized larger, more uniform training sites representative of brine contamination. 

Classifications to quantify brine contamination are scene dependent and for oil fields 

similar to the Smackover Oil Field, a higher spatial resolution dataset than the 30m 

Landsat data used would be needed to more precisely quantify brine contamination.
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 INTRODUCTION  

In Smackover, Arkansas, heavy and light crude oil was produced in the 

approximately 30,000-acre historic Smackover Oil Field (SOF) during the early 1900s 

(Figure 1). The data for Figure 1 were compiled from multiple sources including: the 

Arthur Temple College of Forestry and Agriculture (ATCOFA) Geographic Information 

Systems (GIS) server, GloVis, and “Bulletin 2: Oil and Gas Geology of the Gulf Coastal 

Plain in Arkansas” by W. C. Spooner (1935). The SOF comprises two districts: the 

Louann District on the western side and the Norphlet District on the eastern side. During 

the first decade of oil production, it was estimated that over one billion barrels of 

discarded saltwater contaminated the landscape during the oil production process (Barrett 

2002). Brine contamination across the SOF resulted in one of the most historically 

scarred petroleum production areas in the United States. Remote sensing techniques were 

applied to digital imagery of the area of interest, obtained from Landsat 9 and a DJI 

Phantom 4 Pro Multispectral RTK (P4RTK) Unmanned Aerial Vehicle (UAV), and were 

used to identify the spectral signature of soil brine contamination and further quantify the 

areas affected.
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Figure 1. The Smackover Oil Field located in south-central Arkansas, United States. 

In 1922 the first oil boom within the SOF occurred, launching the field into its 

major production era. Official state regulation for oil, gas, and brine related issues did not 

come into place until 1939 with the Arkansas Conservation Act and subsequent creation 

of the Arkansas Oil and Gas Commission (AOGC) (Norvell, 2015). As a result, the SOF 

oil production and waste practices were grandfathered in and did not comply with 

updated oil and gas conservation regulations (Barrett, 2001). During the SOF’s period of 

operation earthen lease pits and tank farms stored crude oil, oil emulsions, and 

freshwater. There was a lack of uniformity in the construction of earthen storage pits and 

tanks. Several earthen storage tanks can be identified as dark rectangular landscape 

features while scarring that was associated with the pits is identified by the bare white 

linear features scattered throughout Figure 2.  Towards the end of the production era, the 
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earthen pits previously used for oil were used to store saltwater (Barrett, 2001; Barrett, 

2002). This saltwater was left in field pits to evaporate or leach into the surrounding soils 

until the pits were empty (Barrett, 2002). The effects of saltwater, or brine, on the SOF’s 

landscape are still visually observable a century later. 

 

Figure 2. 1936 aerial photograph of earthen storage tanks in the Smackover Oil Field 

which demonstrates the variation in size and shape of earthen storage features (Barrett, 

2001). 

The impacts of soil brine contamination are present across all areas where oil and 

gas are produced. Brine is a waste product of oil and gas manufacturing that contains 

water with high salt concentrations, primarily sodium chloride (Meehan et al., 2017). 

Brine is also called produced water and can come from multiple sources including 
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directly from the geologic formation being drilled into, injection water used to force 

crude oil to the surface, and emulsions of oil and salts (Meehan et al., 2017). When brine 

contaminates an ecosystem there may be negative impacts on vegetation and soils as it 

deteriorates soil texture and is toxic to plant life resulting in soil erosion (Otton, 2006). 

Brine solutions are characterized by their high electrical conductivities (EC), sodium 

adsorption ratios (SAR), and more acidic pH (Allison et. al., 1954; Meehan et al., 2017; 

Sonon et al., 2015). Solutions are considered brine when there is a measured EC greater 

than 4 deciSiemens per meter (dS/m), an SAR greater than 13, and pH less than 8.5 

(Allison et. al., 1954; Sonon et al., 2015). In the SOF, damage to the landscape from 

brine contamination was documented in a 1936 and 1996 aerial photography comparison 

(Barrett, 2002).  

Remote sensing is the science of obtaining information about the Earth’s 

resources from a distance using reflective and emitted electromagnetic energy. Figure 3 

illustrates the data collection process of remote sensing from the source, the Sun, to a 

platform’s sensor (National Space Development Agency of Japan, 1999). 

Electromagnetic energy from the Sun moves through the atmosphere and interacts with 

objects on the Earth’s surface. The data from the reflective and emitted energy of an 

object is picked up by a sensor that has been mounted to a platform. Remote sensing has 

been used to identify soil brine contamination in oil-field sites in west Texas and southern 

Illinois (Unger et al., 2013; Hensel et al., 1989).  Brine contamination on soils may be 

distinguishable within a landscape due to its unique spectral signature (Panigrahy & Ray, 
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2005). Each object on Earth has a unique distribution of reflected, emitted, and absorbed 

electromagnetic energy, known as a spectral signature. Digital remote sensing techniques 

can be used to identify, interpret, and classify spectral signatures of soil brine 

contamination across oil fields. 

 

Figure 3. A depiction of data collection in remote sensing. 

Four main principles guide remote sensing applications: spectral differentiation, 

spatial differentiation, radiometric differentiation, and temporal difference. These terms 

may also be referred to as resolutions, e.g., spectral resolution, and can be used to 

describe the properties of a sensor that is being used for image acquisition (Hacker & 

Pickell, n.d.). Sensors are mounted to platforms such as satellites or UAVs. The 

individual resolution characteristics of sensors will have varying levels of efficacy 
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depending on their intended use which should be considered during remote sensing 

applications. 

Spectral resolution refers to the different wavelengths across the electromagnetic 

energy spectrum that a sensor may be able to detect. Electromagnetic energy travels from 

the Sun to the Earth in waves where it interacts with objects, such as vegetation, on the 

Earth’s surface and is either reflected, emitted, and/or absorbed (Nowatzki et al., 2004). 

The energy waves are typically measured by length in micrometers (μm) and classified 

into the electromagnetic spectrum (ES). The spectral resolution of a sensor is determined 

by the number of spectral bands across the ES that can be discerned in an area of interest 

(Hacker & Pickell, n.d.). Some sensors are only able to identify visible light waves while 

others may identify visible, near infrared, and thermal energy wavelengths across the ES. 

Spatial resolution is the area of land represented per pixel in a digital image.  

In a digital image with a spatial resolution of 1 meter (m), each pixel constitutes one 

square meter of land. The spatial resolution of a sensor is generally classified as low, 

medium, high, or very high resolutions based on the level of detail that is detected in a 

digital image (Omali, 2018). Sensors with a low spatial resolution are more suited for 

classifying larger global areas of interest, while higher spatial resolutions are more suited 

for smaller local areas (Panigrahy & Ray, 2005). Digital imagery obtained from a sensor 

with a 30 m resolution will have a lower (coarser) spatial resolution than a sensor with 1 

m resolution. 
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Radiometric resolution involves the level of detail a sensor can capture. Energy 

differences picked up by a sensor are quantified as digital numbers which represent the 

amount of energy detected in a pixel (Hacker & Pickell, n.d.). A larger radiometric 

resolution increases the maximum digital number a pixel may contain. A sensor with a 

higher radiometric resolution can differentiate brightness levels of objects better than 

sensors with lower radiometric resolutions (NCERT, 2006). A larger radiometric 

resolution increases the maximum digital number a pixel may contain making it easier to 

detect differences in energy reflectance across pixels. 

Temporal resolution is the amount of time it takes for a sensor on a platform to 

complete its orbit over an area (Nowatzki et al., 2004). Temporal resolution influences 

the choice of a sensor’s platform based on how frequent data is needed (Congalton, 

2010).  Platforms with a higher temporal resolution can complete their orbits in a shorter 

amount of time and will produce more consecutive data of an area of interest.  

In a previous study, Bowes assessed the ability of Landsat 7 ETM+ derived data 

to identify brine contaminated sites across a petroleum affected area in west Texas 

(Unger et al., 2013). It was found that the supervised classification technique used in the 

study successfully identified brine contaminated areas (Unger et al., 2013). With the 

recent launch of Landsat 9 OLI/TIRS-2 in 2021, digital imagery with a higher 

radiometric resolution than Landsat 7 is accessible to process for remote sensing studies.  

In this study, multispectral digital imagery acquired from two platforms was 

processed to determine how accurately and precisely current soil brine contamination 



8 
 

would be identified across the SOF. Digital imagery from a mid-spatial resolution 

Landsat 9 satellite was analyzed to determine and identify the spectral characteristics of 

soil brine contamination using a supervised classification technique in ERDAS 

IMAGINE® 2022 v. 16.7. Soil samples were taken from brine and non-brine areas 

identified in the supervised classification map to validate the brine identification. The 

sampling sites were further assessed by performing an unsupervised classification on 

digital imagery obtained from a P4M-RTK UAV to determine if a platform with a higher 

spatial resolution would be able to validate the results from the supervised classification 

performed with the Landsat 9 platform. 

The remote sensing study to identify the spectral characteristics of soil brine 

contamination across the SOF was completed using common image classification and 

accuracy assessment methods. Sensor characteristics for platforms used were considered 

so that obtained data was able to be compared to the accuracy assessment of a previous 

remote sensing study. The utilization of Landsat 9 imagery with 14-bit radiometric 

resolution was assessed to determine if it could provide a more accurate supervised 

classification result for brine affected oil fields. 

The increased radiometric resolution in Landsat 9 compared to Landsat 7 

provided an opportunity to analyze how differences in radiometric resolution affect the 

accuracy of supervised classifications across oil fields with brine contaminated sites. In a 

previous study mapping oilfield soil brine contamination across a region in west Texas, 

Unger et. al. (2013), classified contaminated sites using Landsat 7. The most current 
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Landsat 9 hosts a sensor with a higher radiometric resolution (14-bit) than Landsat 7 (8-

bit) (Masek et. al., 2020 and Table 1). Furthermore, digital imagery with a higher spatial 

resolution (5.26 cm) than Landsat imagery (30 m) was obtained over soil sampling sites 

in the SOF with a P4M-RTK UAV to identify the presence/absence of soil brine 

contamination at a more localized scale. Table 1 below was compiled with information 

from several sources (Chastain et al., 2019; Lulla et al., 2021; Sefercik et al., 2021). 

Table 1. Platforms associated with this study and their sensor resolution characteristics. 

Platform Sensor Spatial Spectral Radiometric Temporal 

Landsat 7 ETM+ 15m Panchromatic 8 bit 16 days 

  30m Blue, Green, Red, 

*NIR, *MIR, MIR 

  

  60m *FIR   

Landsat 9 OLI-2/TIRS-2 15m Panchromatic 14 bit 16 days 

  30m Aerosol, Blue, Green, 

Red, NIR, MIR, MIR, 

Cirrus 

  

  100m FIR   

Phantom 4 

Multispectral 

UAV 

(Six) 1/2.9 

CMOS Sensors 

5.26 cm Blue, Green, Red, Red 

Edge, NIR 

16 bit n/a 

*The following spectral bands have been abbreviated as: Near-Infrared (NIR), Mid-Infrared (MIR), and Far-

Infrared (FIR). 

 

Additionally, the historic nature of the study area provided a unique opportunity 

to identify lasting effects of soil brine contamination in regions associated with oil 

production. To date, landscape scarring from brine in the SOF has only been mapped 

digitally across the Norphlet District of the SOF by Alison D. Culver and Dr. Mary 

Barrett (Barrett, 2001; Culver & Barrett, 2001; Barrett, 2002). A supervised classification 
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of both the Louann and Norphlet Districts provided the ability to create a more current 

identification of brine-affected areas within the SOF. Earthen pits within the SOF are the 

last unaltered pits in the United States and, because of the delayed regulations to maintain 

the SOF, the landscape of the study area was considered to be one of the most historically 

brine-damaged petroleum production areas in the U.S. (Barrett, 2001; Barrett, 2002). 

Furthermore, soil brine contamination continues to affect the Earth’s surface as oil 

production continues throughout the world. In the United States it is estimated that five 

percent of the wastewater or brine from oil and gas industries are unintentionally or 

illicitly introduced into the environment (Konkel, 2016). Common sources of spillage 

occur during transportation or addition/removal of brine from storage tanks (Lauer et al., 

2016). The completed image classification technique may provide natural resource 

managers with a method to efficiently locate and quantify soil brine contamination in 

areas related to ongoing brine production, transport, and storage.
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OBJECTIVES 

The purpose of this study was to determine if soil brine contamination may be 

identified across the SOF using multispectral digital data obtained from Landsat 9. A 

supervised classification map was created with data acquired from the satellite to 

determine if soil brine contamination was able to be classified from its spectral signature. 

Soil samples were randomly collected from three sites to validate whether areas classified 

as brine contaminated in the supervised classification were accurate. A P4M-RTK drone 

was operated to obtain digital imagery for a more precise and highly detailed analysis of 

the three sampling sites. The results from this study were used as an example to 

determine the robustness of the techniques used to identify soil brine contamination 

previously quantified in a similar remote sensing study (Unger et al., 2013).  

Specific objectives of this study were: 

1. To determine if the spectral signature of soil brine contamination was able 

to be identified in a supervised classification of Landsat 9 remotely sensed 

data. 

2. To ascertain the accuracy of the brine and non-brine areas identified in the 

SOF by comparing the classification to random soil sampling results.



12 
 

3. To evaluate the presence or absence of brine contamination across the 

sampling sites with high spatial resolution imagery obtained from a P4M-

RTK drone. 

4. To confirm the validity of the method of soil brine contamination 

identification used in the Landsat 7 study conducted over petroleum 

producing regions in west Texas (Unger et al., 2013). 

5. To determine if the higher radiometric resolution of Landsat 9 impacts the 

accuracy of soil brine contamination mapping across oil fields compared 

to results from Cindy Bowes Landsat 7 study (Unger et al., 2013). 

6. To quantify the current amount of soil brine contamination within the SOF 

to compare with previously documented soil brine contamination from the 

study, “Landscape Modification of the Smackover Field, Arkansas” 

(Culver & Barrett, 2001). 

 

Hypotheses: 

 

H01: A supervised classification of Landsat 9 data will not significantly 

differentiate between brine and non-brine contaminated sites across the 

Smackover Oil Field. 

Ha1: A supervised classification of Landsat 9 data will be able to clearly 

differentiate between brine and non-brine contaminated sites across the 

Smackover Oil Field. 
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H02: The higher spatial resolution of the P4M-RTK will not have a 

significant effect on precisely identifying the presence or absence of soil 

brine contamination within sampling sites. 

Ha2: The higher spatial resolution of the P4M-RTK will more precisely 

identify the presence or absence of soil brine contamination within 

sampling sites. 

H03: The higher radiometric resolution (14-bit) of the obtained Landsat 9 

data will not significantly affect the accuracy of soil brine identification 

results across petroleum affected fields compared to results from Landsat 

7 data (8-bit). 

Ha3: The higher radiometric resolution (14-bit) of the Landsat 9 will 

produce a more accurate soil brine identification across petroleum affected 

fields compared to accuracy results from Landsat 7 (8-bit). 
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LITERATURE REVIEW 

History of the Smackover Oil Field Production 

 

“The manner in which the El Dorado and Smackover fields were operated is a 

disgrace to the industry. Millions of barrels of oil were allowed to escape, 

polluting the waters of Smackover Creek and thereafter the Ouachita River.” 

- W. Henry Rector in Legal History of Conservation of Oil and Gas 16 (Norvell, 

2015) 

Oil Waste History 

The SOF is a distinctive oil field because of how wasteful petroleum practices 

were during its era. In April 1922 the J. T. Murphy No. 1 oil well exploded, resulting in 

the SOF’s first oil boom and a lasting crater (Barrett, 2001). The crater is pictured in 

Figure 4, based on coordinates and location descriptions from Van Zbinden’s approved 

National Register of Historic Places Inventory/Nomination Form for the J.T. Murphy No. 

1 crater (2008). Figure 4 was taken by Victoria Williams July 23, 2022, with a DJI Mini 2 

UAV at the following coordinates: 33° 20’ 32.6219” N and 92° 40’ 6.3775” W. The oil 

field is divided into two districts: the western Louann District and the eastern Norphlet 

District (Barrett, 2001).  The Louann District principally produced light oil (23° to 28° 

American Petroleum Institute gravity (API)) while the Norphlet District produced heavy 

oil (18° to 23° API) (Barrett, 2001). In the first decade of oil production, between 5 to 10 
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million barrels of oil were estimated to be lost because of leaching into the ground, 

storage issues, and spills which occurred during floods and fires (Barrett, 2001). 

According to Dr. Mary Barrett in The Oil Waste History of Smackover Field, Arkansas, 

the Norphlet District was more impacted by oil wastes than the Louann District (2001). 

The lack of regulation during the early stages of production allowed oil, gas, and 

saltwater to stream openly onto the surface of the land (McEwen, 1970).   

 

Figure 4. The J.T. Murphy no. 1 crater in the Norphlet District of the Smackover Oil 

Field. 

Oil Storage 

The SOF was the final oil field in the United States to utilize earthen tank farm 

storage, storage carved directly into the Earth’s surface, for oil production, the other two 
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fields were in southeast Texas and central California (Barrett, 2001). Most crude oil was 

purchased by the Standard Oil Company of Louisiana, which also built the majority of 

earthen storage in the SOF (Barrett, 2001). Earthen tank storage varied in size and 

purpose and within the first year over 5 million barrels of oil were stored in earthen tank 

storage (Barrett, 2001). Most of the earthen tanks in the United States were constructed 7 

ft below the surface with 6 ft walls encircling the pit (Barrett, 2001). Much of the earthen 

storage was constructed in silty and sandy soils in the lower elevations towards the center 

of the field, while earthen storage at the field edge was constructed in soils with a higher 

abundance of clay (Barrett, 2001). In earthen storage and drainage areas across the oil 

field, asphaltic crusts formed as the crude oil began to break down and aggregate (Barrett, 

2001). Near drainage areas across the SOF, narrow layers of asphaltic crusts from oil 

waste material are still present at and below the surface (Figure 5) (Barrett, 2001). The 

arrows in figure 5 point to thin layers of asphaltic crusts in the soils, which originated 

from waste oil materials. In Figure 6, the location of earthen storage visible across the 

Norphlet District in 1936 is depicted from a previous study over landscape change within 

the SOF (Culver & Barrett, 2001). The “Lease Pits” and “Pit Scars” digitized in Figure 6 

were identified from a culmination of 1936 aerial photographs over the SOF (Culver & 

Barrett, 2001). More productive areas of the Norphlet District during can be identified by 

higher densities of lease pits and pit scarring, such as seen in areas of higher elevation in 

Figure 6 (Culver & Barrett, 2001). 
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Figure 5. Layers of asphaltic crust are present in the soils near an intermittent creek 

(Barrett, 2001). 
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Figure 6. Earthen storage and storage scarring in 1936 across the Norphlet District 

(Culver & Barrett, 2001). 

  In the SOF two main kinds of earthen storage were utilized to store oil 

depending on their purpose. Larger earthen pits were built in areas of higher elevation 

towards the field edge to store oil more safely for longer periods of time and were 

collectively referred to as “tank farms” (Culver & Barrett, 2001). While smaller earthen 

pits, known as “lease pits,” were located closer to well sites to store oil temporarily such 

as pictured in Figure 7 (Culver & Barrett, 2001). Towards the end of 1925 there were 

nearly 23 million barrels of crude oil in earthen tank storage in the SOF (Barrett, 2001). 
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Crude oil was stored in earthen storage until it was finally extracted from the tanks in 

1933 (Barrett, 2001). The SOF continues to produce oil and, as of 2016, over 

606,627,681 barrels of crude oil had been produced (Office of the State Geologist, n.d.). 

 

Figure 7. Historic photograph of lease pits near an oil well in the Smackover Oil Field 

(Culver & Barrett, 2001). 

 

Historical Regulation of the Smackover Oil Field 

As mentioned in the introduction, the SOF was not subject to the regulations of 

the AOGC. Arkansas oil and gas fields that were in production prior to January 1, 1937, 

are referred to as “uncontrolled”, and fields created after this time are referred to as 

“controlled” (McEwen, 1970). Based on this terminology the SOF is considered an 

“uncontrolled field”, which prevented the AOGC from exercising authority over 

production and waste practices in the SOF (McEwen, 1970). An example of a detrimental 
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waste practice of the SOF production era can be identified in the removal process of 

saltwater or brine. Oil field operators would send brine from their wells through sloughs, 

shallow swamp-like areas, into Smackover Creek which eventually flowed into the 

Ouachita River introducing brine contamination into these freshwater bodies (McEwen, 

1970).  

Eventually the effects of brine contamination on freshwater bodies were 

acknowledged. The first pushback towards this contamination was delivered by the 

Arkansas Pollution Control Commission (APCC). In 1958 the Ouachita River was 

estimated to be contaminated by 185 million pounds of chlorides per month, with much 

of the contamination being traced back to the contaminants entering the Smackover 

Creek within the SOF (McEwen, 1970). After 1958, APCC issued pollution controls that 

granted oil producers a five-year period to terminate their release of brine into any 

surface waters, i.e., above ground water sources (McEwen, 1970). The pollution controls 

enacted by the APCC resulted in the SOF oil operators shifting to other methods of brine 

disposal. Most of the brine was reinjected into the geologic formation it originated from, 

while other brine waste products were stored in earthen tanks (McEwen, 1970). 

History of Smackover Saltwater Production and Storage 

Brine Effects on the Landscape 

 The mismanagement of saltwater produced from the SOF resulted in lasting 

landscape changes. As the production of oil declined from the SOF, the earthen pits 

previously used for oil storage transitioned into storing the increasing amount of 
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production water (Barrett, 2002). For petroleum fields located in non-coastal areas it was 

routine to dispose of saltwater into earthen pits, and in the SOF, pits were constructed to 

store the increasing amount of produced saltwater (Barrett, 2002).  

Lasting effects of soil brine contamination across the SOF are identified by the 

damage to vegetation and changes in the structure of linear water features, such as seen in 

a comparison of 1936 to 1996 aerial photographs in Figures 8 and 9 (Barrett, 2002). Four 

common features from the aerial photographs were labeled as A, B, C, and D. Prior to oil 

production in 1922, the land was originally a wetland mainly dominated by cypress trees 

and multiple intermittent creeks which followed a “natural meandering pattern,” (Barrett, 

2002). The natural stream patterns, shown at A in Figure 8, transformed as erosion in 

drainage areas created sand bars and narrow braided waterways (shown at A in Figure 9). 

Feature B in Figures 8 and 9 illustrates the recovery and transformation of a 1936 barren 

drainage scar to smaller landscape scar capable of hosting salt tolerant vegetation in 1996 

(Barrett, 2002). In Figure 8, features C and D hosted visible landscape scarring related to 

earthen storage pits (Barrett, 2002). The outlines of earthen pits seen at C and D were still 

identifiable in 1996 aerial photography in Figure 9 (Barrett, 2002). In Figure 10, 

remnants of cypress stumps and asphaltic crusts are visible in an altered intermittent 

stream in the SOF due to low levels of water (Barrett, 2001).  
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Figure 8. 1936 aerial photograph taken over part of the Smackover Oil Field (Barrett, 

2002). 
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Figure 9. 1996 aerial photograph taken over part of the Smackover Oil Field (Barrett, 

2002). 

 

Figure 10. Asphaltic crusts and cypress stumps in an intermittent creek (Barrett, 2001). 
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In 1935, information to accurately quantify the amount of produced water coming 

from the SOF was not available, but it is approximated by W.C. Spooner in the Oil and 

Gas Geology of the Gulf Coastal Plain in Arkansas that, “not less than 75 percent of the 

fluid produced is water”, which is estimated to be equivalent to one billion barrels of 

brine produced between 1922 and 1933 (Barrett, 2002). Historical water sample analysis 

for wells in two types of the producing sands within the SOF revealed that they both were 

producing water with a primary salinity greater than 75% and that the three main 

constituents found in the wells were sodium, calcium, and chloride (Spooner, 1935) 

(Tables 2 and 3). The constituents identified in the production water from the water 

samples were believed to have been combined chemically as sodium chloride, 

magnesium chloride, calcium sulfate, and calcium carbonate (Tables 2 and 3). 
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Table 2. Results of a 1935 water analysis from well drilling in the Meakins producing 

sands within the Smackover Oil Field depicted in a table from W.C. Spooner in the Oil 

and Gas Geology of the Gulf Coastal Plain in Arkansas. 
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Table 3. Results of a 1935 water analysis from well drilling in the Graves producing 

sands within the Smackover Oil Field depicted in a table from W.C. Spooner in the Oil 

and Gas Geology of the Gulf Coastal Plain in Arkansas. 
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Brine Regulation of the SOF 

After regulations in 1958 required oil producers to cease disposing of brine into 

surface waters within five years, the most intense period of brine pollution in freshwater 

occurred in 1962 when it was estimated that Smackover Creek was transporting 275 

million pounds of chlorides per month (Barret, 2002). Eight years later the brine 

contamination transported by the creek had decreased to 25 million pounds, which was 

attributed to salts from contamination leaching into the soil rather than directly being 

poured into surface waters (Barrett, 2002). In the 1970s, brine was no longer released into 

surface waters but was directly reinjected into producing sands, or deposited in earthen 

pits, and in the 1980s the state of Arkansas began terminating the practice of storing 

saltwater in older unlined earthen pits (Barrett, 2002). In 1993, the Arkansas Pollution 

Control and Ecology Commission (APCEC) further restricted the disposal of brine into 

earthen pits by requiring pits be constructed in an area with highly compacted soils or 

with a liner made of impermeable materials such as asphalt to prevent the leaching of the 

pit contents into the surrounding soils (Barrett, 2002). Also, in 1993, the APCEC required 

that any earthen pits within the 100-year floodplain of streams in Arkansas must be 

discontinued to prevent brine contamination from overflowing earthen pits (Barrett, 

2002). 
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Brine Validation 

Soil Sampling 

Soil sampling may follow many methods and can be altered to cater towards the 

purpose of a study. In Cindy Bowes thesis, “Detecting Oilfield Brine Contaminated Sites 

Using Satellite Remote Sensing”, the electrical conductivity (EC), pH, and sodium 

adsorption ratio (SAR) levels of soil samples were assessed to determine the presence of 

soil brine contamination (2007). When taking soil samples related to plant vigor, 

measuring the conductivity of a soil sample extract is preferred (Allison et. al., 1954). 

Soil extracts characterized as “saline” are associated with EC levels greater than 4 

mmhos/cm (Allison et. al., 1954). The pH of saline soils is closer to the acidic end of the 

pH spectrum with levels less than 8.5 (Allison et. al., 1954). As concentrations of 

electrolytes increase in the soil, the pH of soils becomes more acidic (Sparks et al., 2024). 

The concentrations of sodium, calcium, and magnesium are quantitatively assessed in 

Equation 1 below to determine the SAR of a soil extract (Gharaibeh et al., 2021). 

𝑆𝐴𝑅 =  
𝑁𝑎

√𝐶𝑎 + 𝑀𝑔
2

 

Soil extracts with SAR levels higher than 13 indicate there is an overabundance of 

sodium present in the samples, which contributes to soil erosion as soil particles are 

unable to aggregate together (Sonon et al., 2015). 

(1) 
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Image Acquisition 

Landsat 

In 1972, the Landsat-1 was launched, beginning the decades-long collection of 

remotely sensed data available by collaboration between the National Aeronautics and 

Space Administration (NASA) and the US Geological Survey (USGS) (Masek et al., 

2020). In 2001, the USGS launched the Global Visualization Viewer (GloVis) website, 

which made remotely sensed data available to the public via the internet (Educational 

Resources, n.d.). Landsat 1-5 and Landsat 7-9 data bundles are available to download for 

no cost through GloVis. Landsat imagery may be used in remote sensing studies to create 

land-cover classification maps of Areas of Interest (AOI). 

An advantage to the utilization of Landsat data is that, prior to image collection, 

the radiometric and geometric effects on Landsat scientific instruments and satellites are 

already considered. For Landsat related devices, the Earth Resources Observation and 

Science (EROS) CalVal Center of Excellence (ECCOE) are the main authority for 

radiometric and geometric calibration (Haque et al., 2023). ECCOE regularly updates 

Landsat instruments based on identified radiometric and geometric effects (Haque et al., 

2023). Information about the performance if the most recent mission, Landsat 9, is not 

available yet, but the ECCOE publishes “ECCOE Landsat Quarterly Calibration and 

Validation Report(s)” (n.d.) on the USGS.gov webpage, Landsat Calibration and 

Validation regarding the radiometric and geometric performance of Landsat missions. 
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Landsat-9 OLI/TIRS-2 

Landsat 9 scenes became available in GloVis on June 15, 2022, when the Landsat 

Collection 2 Level-1 data was integrated into the interface (Landsat Missions, n.d.c). The 

Landsat 9 Platform bears two imaging sensors, the Operational Land Imager 2 (OLI-2) 

and the Thermal Infrared Sensor 2 (TIRS-2) with varying sensor characteristics which 

can be seen in Table 4 below (Lulla et al., 2021). Landsat 9 collections were updated in 

early 2023 to account for calibration improvements based on data collection from the first 

year (Landsat Missions, n.d.c). 

Table 4. Image resolution characteristics of Landsat-9 OLI/TIRS-2. 

Platform Sensor Spatial Spectral Radiometric Temporal 

Landsat 9 OLI-2 15m Panchromatic 14 bit 16 days 

  30m Aerosol, Blue, 

Green, Red, *NIR, 

*MIR-1, MIR-2, 

Cirrus 

  

 TIRS-2 100m *FIR-1, FIR-2   

*The following spectral bands have been abbreviated as: Near-Infrared (NIR), Mid-Infrared (MIR), and 

Far-Infrared (FIR). 

 

 

DJI Phantom 4 Multispectral UAV with RTK 

The utilization of UAVs has been integrated into the science of remote sensing. 

UAVs act as efficient tools to collect high spatial resolution data, can be maneuvered in a 

variety of landscapes and allow for prompt data acquisition (Lu et. al, 2020). A UAV is 

capable of conveying information to its remote controller to deliver important 

information about the vehicle's status such as battery performance, altitude, and Global 
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Positioning System (GPS) coordinates (Austin, 2011). UAVs can collect data with higher 

spatial resolution and possess a more immediate temporal acquisition than satellites. 

The P4M-RTK is a DJI brand quadcopter with DJI Onboard D-RTK™ (Real-

Time Kinematic), which produces a more precise positioning accuracy (DJI, n.d.b). The 

UAV hosts six 1-/2.9” CMOS (complementary metal oxide semiconductor) sensors 

which separately collect visible light (RGB), blue, green, red, red-edge, and near infrared 

spectral bands (DJI, n.d.b). The six sensors and their associated bands are depicted in 

Figure 11. In Figure 11, the range of each spectral band is also included if applicable. The 

P4M-RTK can participate in pre-programmed flights to collect data for orthomosaiced 

digital images. Multiple images taken from different angles during a pre-programmed 

flight can be mosaiced together based on tie points in overlapping images to create a final 

orthophoto mosaic of the AOI (Sefercik et al., 2021). 

 

Figure 11. The Phantom 4 Multispectral RTK UAV sensors. 
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Image Classification 

Once remotely sensed data has been collected, the imagery may be classified into 

various groups based on the need of the project. Groups of pixels within a digital image 

may be aggregated to delineate land cover classes in an AOI (Sathya & Deepa, 2017). 

Primarily, three image classification methods are utilized in remote sensing studies to 

classify digital images: supervised, unsupervised, and object-based classification (Sathya 

& Deepa, 2017). A supervised classification approach to remotely sensed data allows 

natural resource managers to select pixels that should be classified together before the 

chosen software processes the image into classes (Sathya & Deepa, 2017). In an 

unsupervised classification, a computer groups together pixels with similar digital values 

into distinct classes, allowing users to determine what each class represents after the 

classes are created (Li et al., 2017). Finally, object-based classification relies on object-

based models which delineate classes from features such as groups of roads or trees, to 

classify objects across digital imagery rather than analyzing pixels like the previously 

mentioned classification schemes (Li et al., 2017). An Object-based classification 

approach was not used in the study as the presence of soil brine contamination may not 

be specific to groups of land features. 

Supervised Classification 

In supervised classification a user actively selects groups of pixels called training 

sites to represent known classes (Perumal & Bhaskaran, 2010). A spectral signature is 

created based on the training sites and is unique for each class (ERDAS, 2005). Untrained 
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pixels in a digital image are compared to the spectral characteristics of training sites to 

determine how they should be classified. The accuracy of this classification method is 

affected by the selection of training sites (Sathya & Deepa, 2017). If selected training 

sites are not representative enough of the desired classes, the spectral signature based on 

the training sites may cause pixels across the image to be misrepresented in the produced 

classification map. A user collects remotely sensed data, e.g., a Landsat scene, and selects 

training sites to represent user desired classes. The computer completes the classification 

by grouping pixels in the most comparable class based on the prior delineated training 

sites. The output is evaluated by the user to determine its accuracy and present a final 

classified map. 

Unsupervised Classification 

 In an unsupervised classification, a computer creates multiple classes across a 

digital image and requires a user to determine what the computer-generated classes are 

after the unsupervised classification has been completed. The computer will group 

together pixels with similar spectral characteristics to create a predetermined number of 

classes the user defines (ERDAS, 2005). All pixels within a digital image will be forced 

into a class with the most similar spectral characteristics available (Congalton, 2010). 

Accuracy Assessment 

Error Matrix 

  A standard measure of accuracy assessment is performing an error matrix. An 

error matrix is a table that compares samples from a classified map to samples taken from 
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a validated reference data source (Congalton, 2010). Data such as user accuracy, 

producer accuracy, overall accuracy, and Kappa statistics can be obtained from an error 

matrix (Congalton, 2010). According to Klaus Tempfli et al., 2009 in Principles of 

Remote Sensing: an introductory textbook, user accuracy is “the probability that a certain 

reference class has also been labeled that class” and producer accuracy is “the probability 

that a sampled point on the map is that particular class.” The overall accuracy of an error 

matrix is determined by calculating how many pixels in a map were classified accurately 

compared to the overall quantity of pixels examined (Tempfli et al., 2009).  

Kappa Statistic  

Another standard measure of accuracy assessment is the Kappa statistic or �̂�-

statistic, which can be calculated from an error matrix (Rwanga & Ndambuki, 2017). The 

�̂�-statistic quantifies the amount of error produced from the utilized classification process 

in a study compared to the amount of error a user may expect when using any arbitrary 

classification scheme (ERDAS, 2005). An advantage of the calculation of the �̂�-statistic 

is that it enables natural land use resource managers to determine if there are significant 

differences between to error matrices in remote sensing studies (Congalton, 2010; 

Tempfli et al., 2009). The calculation and variables for the �̂�-statistic are as follows in 

Equation 2 from the study, A Review of Assessing the Accuracy of Classifications of 

Remotely Sensed Data (Congalton, 1991): 

�̂� =  
𝑁 ∑ 𝑥𝑖𝑖 − ∑ (𝑥𝑖+ × 𝑥+𝑖)

𝑟
𝑖=1

𝑟
𝑖=1

𝑁2 − ∑ (𝑥𝑖+ × 𝑥+𝑖)
𝑟
𝑖=1
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Congalton (1991) described the variables for this equation as, “r is the number of rows in 

the matrix, 𝑥𝑖𝑖 is the number of observations in row i and column i, 𝑥𝑖+ and 𝑥+𝑖 are the 

marginal totals of row i and column i, respectively, and N is the total number of 

observations.”

(2) 
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METHODOLOGY 

Study Area 

The SOF historically encompassed 29,505 acres and was in south-central 

Arkansas in the Ouachita and Union counties (Figure 12). Due to the large size of the 

study area, it encompasses both private and public lands. In Arkansas, the precipitation is 

ample throughout the year and fluctuates frequently, but the seasons which experience 

the most moisture throughout the year are spring and winter (Runkle et al., 2022).
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Figure 12. A study site map of the Smackover Oil Field with color-infrared imagery.
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A general model for the completed study to identify current soil brine 

contamination within the SOF is illustrated in Figure 13. The study includes three main 

processes. The main process was the creation of two supervised classifications of Landsat 

9 OLI/TIRS-2 imagery, one which represented pit scarring and one which represented 

creek scarring. The soil sampling process and image acquisition process using a P4M-

RTK UAV were dependent upon the completion of the supervised classification of 

Landsat 9 OLI/TIRS-2 digital imagery. Once the three main processes were completed, 

an accuracy assessment and data comparison occurred. 

 

Figure 13. The general method performed for the Smackover Oil Field soil brine 

contamination study. 
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Image Acquisition 

The characteristics of brine were considered to determine the optimum time for 

image acquisition. The buildup of salts from soil brine contamination are more apparent 

across the surface of a landscape during periods where there is an absence of moisture 

(Sukchan & Yamamoto, 2002). Digital image acquisition of the SOF was restricted to 

data obtained during a summer month (July) in Arkansas. A summer acquisition date 

ensured less moisture was present across the study area, which allowed for more accurate 

identification of brine contaminated soils.  

Landsat 9 OLI/TIRS-2 

Digital images for the proposed study were obtained from two different platforms: 

Landsat 9 and the P4M-RTK. A single Landsat 9 scene was acquired to create two 

supervised classifications of the SOF. The spectral bands from Landsat 9 data used for 

landcover/land use classification were kept consistent with bands used in the remote 

sensing study, Mapping Oilfield Brine Contaminated Sites with Mid-spatial Resolution 

Remotely Sensed Data, to test the effect of radiometric difference on classification 

accuracy (Unger et al., 2013). The spectral characteristics of bands from Landsat 7 and 

Landsat 9 relevant to the proposed study are listed in Table 5 and were compiled with 

information from “Landsat 7” by Landsat Missions, n.d.a and “Landsat 9” by Landsat 

Missions, n.d.b. 
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Table 5. Spectral characteristics of Landsat platforms relevant to the study. 

Platform and Sensor Spectral Band Band Length (µm) 

Landsat 7 ETM+ Blue 

Green 

Red 

*NIR 

*MIR 

MIR 

0.45 - 0.52 

0.52 - 0.60 

0.63 - 0.69 

0.75 - 0.90 

1.55 - 1.75 

2.09 - 2.35 

Landsat 9 OLI/TIRS-2 Blue 

Green 

Red 

NIR 

MIR 

MIR 

0.45 - 0.51 

0.53 - 0.59 

0.64 - 0.67 

0.85 - 0.88 

1.57 - 1.65 

2.11 - 2.29 

*NIR: Near Infrared, MIR: Mid Infrared 

 

P4M-RTK Sensor 

After a supervised classification of the SOF was completed, sites identified in 

both brine and non-brine areas were further assessed with soil sampling to determine if 

the presence/absence of contamination was identified correctly in the classification. 

Additionally, preprogrammed flights across the soil sample sites were conducted using a 

P4M-RTK to obtain multispectral digital imagery. Orthophoto mosaics of the sampling 

sites were created from a pre-programmed flight orchestrated using the DJI Ground 

Station Pro (GS Pro) app on iPad (DJI, n.d.a).  

The imagery was assessed to determine if the presence/absence of soil brine 

contamination would be more precisely identified in datasets with higher spatial 

resolution compared to the mid-spatial resolution dataset from Landsat 9. To maintain 
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consistency throughout this proposed study, the blue, green, red, and near infrared 

spectral bands were layer-stacked in ERDAS IMAGINE® 2022 v. 16.7 to create a 

multispectral digital image (Table 6). Information for Table 6 was compiled from DJI’s 

P4 Multispectral User Manual v1.0, 2019. 

Table 6. Spectral characteristics of Phantom 4 Multispectral RTK UAV relevant to the 

study. 

Spectral Band Band Length (µm) 

Blue 0.434 - 0.466 

Green 0.544 - 0.576 

Red 0.634 - 0.666 

*NIR 0.814 - 0.866 

*NIR: Near Infrared 

 

Image Corrections 

Radiometric Corrections 

It is sometimes necessary to perform radiometric corrections on a multispectral 

digital image before conducting an image classification. In remote sensing studies where, 

multiple multispectral images are compared across time such as in a landscape change 

study, radiometric corrections are needed to nullify the effects of detector errors and 

atmospheric conditions (Chen et al., 2005). Previously, Landsat Missions, an author for 

USGS, has identified a detector error known as the “solid state recorder (SSR) bad block 

issue,” pictured in Figure 14 (Landsat Missions, n.d.b). The Landsat scene in Figure 14 

was in WRS Path 225 WRS Row 64 and was acquired on November 13, 2021. Although 
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uncommon, this error results in loss of data and can be identified by missing sections of 

data in a Landsat 9 scene (Landsat Missions, n.d.b).  

 

Figure 14. An example of a Landsat 9 OLI/TIRS-2 solid state recorder bad block issue. 

The Landsat 9 scene in consideration for the SOF study was visually inspected 

and was not affected by the SSR Bad Block Issue. Additionally, the multispectral data 

acquired from Landsat 9 was not compared to other multispectral digital imagery, thus 

radiometric corrections did not have a significant effect on the SOF study and were not 

performed on the data acquired from Landsat 9. 

Geometric Correction 

 Errors in digital imagery may also be caused by differences in terrain and the 

Earth’s arc across an area of interest (ERDAS, 2005). Geometric correction ensures that 

coordinates of features identified in raw data are representative of the actual coordinates 

of those features (Dave et al., 2015). Geometric correction on images should be 
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performed if multiple images are going to be compared in remote sensing study (Dave et 

al., 2015). Although only one image was used for the SOF study, a relevant aspect of 

geometric correction is image rectification. Rectification ensures that the coordinates of 

an image match the coordinates on a mapping or coordinate system, such as the Universal 

Transverse Mercator (UTM) coordinate system (Dave et al., 2015). The Landsat 9 

imagery relevant and available for the SOF study is projected as UTM Zone 15 with the 

World Geodetic System (WGS) 1984 datum. The imagery of the SOF was compared to 

digital orthophoto quarters (DOQs) from the Arkansas GIS Office to visually assess and 

confirm there were no geographic differences between major land features. 

Image Classification 

Supervised Classification 

 A Landsat 9 scene was processed using ERDAS IMAGINE® 2022 v. 16.7 

software (ERDAS, 2022). The scene was subset so that only areas relevant to the SOF 

study were classified. Two supervised classifications were executed on the subset image 

based on identified pit and creek scars and were restricted by the following decision 

rules: non-parametric rule- parallelepiped, overlap rule- parametric, unclassified rule- 

unclassified, and a parametric rule- maximum likelihood. A nonparametric signature does 

not originate from digital image statistics, but rather from defined objects such as training 

sites which means when a parallelepiped algorithm is used, the classification considers 

the mean value of pixels which comprise the training sites for each class (ERDAS, 2005; 

Sathya & Deepa, 2017). With the overlap rule of parametric, if training sites have 
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overlapping spectral characteristics in a feature space, pixels will be assigned to the 

appropriate class according to the statistic distribution of the dataset (ERDAS, 2005). The 

unclassified rule determines the standard deviation of the pixels from the mean value 

creates boundaries to delineate what class unclassified pixels should be grouped into 

(Sathya & Deepa, 2017). For the parametric rule, maximum likelihood was chosen so that 

pixels were assigned to the class they had the highest probability of being in based on the 

statistic distribution of the dataset (Sathya & Deepa, 2017). Only one class was created to 

delineate brine contaminated areas, so only pixels with values that coincide with the 

previously mentioned decision rules were classified. 

Selected training sites were chosen based on the 346 known brine affected areas 

that were mapped and digitized in 1996 for the study, Saltwater Waste and Landscape 

Change, Smackover Field, Arkansas (Figure 15) (Barrett, 2002). Eleven training sites 

were selected based on 1996 pit scars for one supervised classification and ten training 

sites were selected based on 1996 pit scars for the second supervised classification. 
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Figure 15. Land scarring from brine contamination across the Norphlet District in the 

Smackover Oil Field that was visually present in 1996 (Barrett, 2002). 

Unsupervised Classification 

 Areas of soil brine contamination identified in the supervised classifications were 

further assessed with an unsupervised classification. P4M-RTK imagery was taken over 

brine affected areas at an altitude which maintained a spatial resolution of 5.26 cm per 
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pixel. Imagery was acquired within two weeks of the time soil samples were taken in the 

SOF to ensure the temporal (summer/low moisture) conditions needed for multispectral 

digital imagery in this study were met. An unsupervised classification created classes 

within the multispectral data that were assessed to determine if unique classes of soil 

brine contamination were absent/present. 

Sample Site Selection 

Three sites located within the SOF were chosen as sampling sites. Initially the 

eight training sites used in the supervised classifications were attempted to be sampled 

but access to these areas was prohibited by the landowners. To locate appropriate 

sampling sites, publicly accessible sites within the SOF were selected and assessed 

visually prior to conducting field research in CONNECTexplorer™ (Eagle view 

Technologies, n.d.). CONNECTexplorer™ provides high spatial resolution datatsets with 

spatial resolutions of one to six inches. The sites were designated as: Louann Park, 

Norphlet Park, and Fishing Area. Louann Park and Norphlet Park were chosen to 

represent areas that had been classified as brine-contaminated following the supervised 

classification. The Fishing Area was chosen to act as a control as it was not deemed to be 

brine contaminated based on the supervised classifications. 

Soil Sampling 

 An important aspect of this study is the validation of the supervised classification 

results. Composite sampling of soil in identified brine and non-brine areas was conducted 
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to assess the accuracy of the supervised classification (Tempfli et al., 2009). Soil 

sampling was also used to validate the results of the unsupervised classifications over the 

P4M-RTK imagery at higher spatial resolution. The methodology for soil sampling is 

based on techniques used in “Detecting Oilfield Brine Contaminated Sites Using Satellite 

Remote Sensing,” a thesis authored by Bowes in 2007. Bowes’ methodology was 

simulated as her study also involved identifying soil brine contamination across a 

petroleum affected field. Additionally, the accuracy of the SOF study was compared to 

the accuracy of Bowes’ study to compare the effects of radiometric resolution. By 

minimizing the differences between the soil validations in the two studies, a more 

definitive conclusion can be given about the effects of radiometric differences on 

supervised classification accuracy. The general methodology for soil sampling in the SOF 

study is outlined in Figure 13. 

Soil Sample Collection 

 A composite soil sample was taken for each of the three sites. Prior to soil sample 

collection the boundaries of each sampling site were identified and uploaded in ArcGIS 

Online so that they could be accessible on ESRI’s Field Maps app when field research 

was conducted (ESRI, n.d.). This allowed for the boundary of each site to be viewed 

when soil samples were collected and ensured that the soil samples taken to create the 

composite soil sample would be collected within the site boundaries. Five soil samples 

were collected with a sharp-nosed shovel at each site to create a composite sample. This 

composite sample and two duplicates of the sample were stored in soil bags labelled with 
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a sharpie to indicate where and when the samples were taken. The location of each 

sample was taken and stored in ESRI’s Field Maps app. Each soil sample was collected 

15 cm below the surface to determine if the presence of brine contamination was near the 

surface of the soil and able to be detected with remote sensing methods. The collected 

soil was mixed in a clean bucket with other samples from the site to create the composite 

sample. 

Soil Sample Analysis 

 The soil samples were processed at the SFASU Soil, Plant, and Water Analysis 

Laboratory. The samples from each soil bag were dried on plates in a well-ventilated 

room based on guidance from the laboratory employees. After the soil samples were 

dried, they were ground and sieved to remove excess debris and create a finer consistency 

and 250 mg of each sieved soil sample were measured out into beakers. Nanopure water 

was added to each beaker and the soil samples were mixed to create a saturated soil paste. 

Following this, the samples were transferred into a Buchner funnel that contained filter 

paper at the bottom. The liquids from the soil samples were pulled through the filter with 

a vacuum so that electric conductivity, pH and sodium adsorption ratio information could 

be obtained from the extracts. 

Accuracy Assessment 

 Soil sample results were used to validate the supervised classification results to 

determine how accurately brine and non-brine areas were classified across the SOF. Two 
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error matrices for the classifications of brine in the SOF were created based on the results 

from soil sampling which serve as reference data. Once the error matrices were 

completed, two �̂�-statistics were calculated to determine the accuracy of the SOF 

supervised classification and to compare to the results of Cindy Bowes’ Landsat 7 study 

identifying brine contaminated sites (Bowes, 2007; Unger et al., 2013). 

An Example: Error Matrix 

 An example of an accuracy assessment of a land cover classification used in this 

study is given by Dr. Russell G. Congalton in, A Review of Assessing the Accuracy of 

Classifications of Remotely Sensed Data (1991). In his error matrix example, shown in 

Figure 16, a hypothetical land cover classification study has been conducted using four 

different classes: deciduous, conifer, barren, and shrub. Classified data is compared to 

reference data in the error matrix.  

 

Figure 16. An example error matrix for accuracy assessment on land cover classification. 
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The overall accuracy for the SOF error matrix was determined by dividing the 

sum of correctly identified pixels in each category by the total number of pixels in the 

study area. The overall accuracy derived from the error matrix in Figure 16 reveals that 

the overall accuracy of the classified map was only calculated to be 74%, which was 

regarded as fair quality by Dr. Congalton. 

The user's accuracy for the SOF error matrix was calculated by dividing the 

correctly classified number of pixels for a specific class over the total amount of pixels 

assigned to that class. In Figure 16, 90 pixels were correctly classified as shrub by the 

classified data while a total of 104 pixels were categorized as shrub by the classification, 

resulting in a user’s accuracy of 87%.  

The producer's accuracy for the SOF error matrix was calculated by dividing the 

correctly classified number of pixels for a specific class over the actual total amount of 

pixels for the class based on the reference data. In the example shown in Figure 16, 90 

pixels from the classified data were in the shrub category while in fact a total of 141 

pixels were identified in the reference data as shrub, making the producer's accuracy for 

the barren class of 64%.  

An Example: Kappa Statistic 

 A �̂�-statistic for the SOF was evaluated using the example by Rwanga and 

Ndambuki’s study (2017), Accuracy Assessment of Land Use/Land Cover Classification 

Using Remote Sensing and GIS. The calculated value of the �̂�-statistic for the SOF was 
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evaluated for strength of agreement, a measure of agreement beyond random chance 

assignment (Table 7).  

Table 7. A table describing the quality ranges of kappa statistics. 
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RESULTS 

Landsat 9 Image Acquisition 

Identifying the Boundary 

 The boundary for the SOF was georeferenced from the map boundary depicted in 

Arkansas Geological Survey, Bulletin 2 illustrated in Figure 17 (Spooner, 1935). 

Although there is no formal boundary designating the difference between the Louann 

District and the Norphlet District within the SOF, in Figure 17, the Louann District 

encompasses the western portion of the SOF while the Norphlet District encompasses the 

eastern portion of the field. This boundary was georeferenced in Environmental Systems 

Research Institute, Inc. (ESRI) ArcGIS Pro v. 3.1.0 to determine the full extent of the 

SOF and ensure the correct Landsat 9 scene was downloaded. Public Land Survey 

System (PLSS) shapefiles for the townships and sections were downloaded for Ouachita 

and Union counties from the Arkansas GIS Office website (Figure 18 and Figure 19). 

The downloaded shapefiles were merged into one shapefile in ESRI ArcGIS Pro v. 3.1.0 

software to make the georeferencing process more efficient (Figure 20). The downloaded 

shapefiles were projected in UTM Zone 15 N with a WGS 1984 datum (Figure 21). 

These shapefiles were clipped so that only sections that matched those shown in Figure 

17 were visible (Figure 22). 
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Figure 17. Smackover Oil Field map boundary from the Arkansas Geological Survey, Bulletin 2 (Spooner, 1935).
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Figure 18. Public Land Survey System sections downloaded for Ouachita and Union 

counties from the Arkansas GIS Office, n.d.. 

 

 

Figure 19. Public Land Survey System townships downloaded for Ouachita and Union 

counties from the Arkansas GIS Office, n.d. 
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Figure 20. Merging the four PLSS related areas across the Ouachita and Union County 

shapefiles into one shapefile in ESRI ArcGIS Pro v. 3.1.0 software. 

 

Figure 21. Projecting the merged PLSS shapefile into the UTM Zone 15 N WGS 1984 in 

ArcGIS Pro v. 3.1.0 software. 
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Figure 22. Exporting the PLSS sections that are consistent with sections in the 

Smackover Oil Field boundary in Figure 17. 

 Once the PLSS sections relevant to the SOF were exported into a shapefile, 

Figure 17 was georeferenced to the PLSS sections (Figure 23). A 1st order polynomial 

(affine) transformation was used on Figure 17 with 61 ground control points (GCPs) and 

a total RMSE error of 95.301 m. Once Figure 17 was georeferenced, the boundary of the 

SOF was digitized in ArcGIS Pro v. 3.1.0 (Figure 24).  
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Figure 23. Figure 17 is georeferenced to the PLSS sections so that the Smackover Oil 

Field boundary can be digitized in ESRI ArcGIS Pro v. 3.1.0. 

 

Figure 24.  Digitized boundary of the Smackover Oil Field based on the historic 

Smackover Oil Field map boundary in ArcGIS Pro v. 3.1.0. 
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Landsat 9 OLI/TIRS-2 

 A Landsat 9 scene that included the SOF was downloaded from the USGS GloVis 

website (Figure 25). The spatial reference for the image was UTM Zone 15 N WGS 1984 

and the image was acquired during the summer on July 26, 2022 (GloVis, n.d.). The 

scene was in WRS Path 024 and WRS Row 037 and possessed a scene cloud cover 

percentage of 8.56% (GloVis, n.d.). ERDAS IMAGINE® 2022 v. 16.7 software was 

used to import the multispectral Landsat 9 scene data (Figure 26) (ERDAS, 2022). The 

multispectral Landsat 9 scene was subset in ERDAS IMAGINE® 2022 v. 16.7 based on 

the previously digitized boundary of the SOF to create a digital image solely of the SOF 

(Figure 27). When the Landsat 9 scene was subset based on the SOF boundary, 6 spectral 

bands were used to create a digital image consistent with the spectral bands used for 

Bowe’s study: blue, green, red, near-infrared, and two mid-infrared bands (Figure 28 and 

Figure 29) (Unger et. al., 2013). 

 

Figure 25. A Landsat 9 OLI/TIRS-2 scene that included the SOF in the online interface, 

GloVis. 
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Figure 26. The downloaded Landsat 9 scene from USGS in ERDAS IMAGINE® 2022 

v. 16.7. 

 

Figure 27. The area that was subset from the Landsat 9 OLI/TIRS-2 image in ERDAS 

IMAGINE® 2022 v. 16.7 of the Smackover Oil Field. 
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Figure 28. Creating the subset digital image and including the blue, green, red, near-

infrared, and two mid-infrared bands spectral bands in ERDAS IMAGINE® 2022 v. 

16.7. 

 

Figure 29. The 6-band multispectral digital image of the Smackover Oil Field. 
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Radiometric Corrections 

 There was no SSR bad block issue identified in the Landsat 9 scene that was used 

to create a subset image for the supervised classification (Figure 26). The Landsat 9 scene 

used was not compared to other multispectral digital imagery and as a result no 

radiometric corrections were performed on the Landsat scene. 

Geometric Corrections  

No geometric corrections were performed on the subset Landsat 9 scene depicted 

in Figure 29. The area was geometrically validated by ensuring that the boundary used to 

subset the Landsat scene was georeferenced correctly and was projected in the UTM 

Zone 15 WGS 1984 coordinate system (Figure 24). The subset Landsat 9 scene was 

compared to One Foot Digital Orthophoto Quadrangles (DOQs) from the Arkansas GIS 

Office. Although the data could not be directly downloaded from the Arkansas GIS 

Office website, the website hosted a link to a Tile Footprint of the DOQs in an ESRI 

ArcGIS Online web map that contained the DOQ datasets (Figure 30) (Arkansas GIS 

Office, n.d. & ESRI, n.d.). To efficiently select the DOQs that encompassed the SOF 

boundary, the SOF boundary layer was added to the web map and each tile which 

represented part of the SOF on the web map was downloaded (Figure 31). A total of 31 

tiles were downloaded from the web map and contained a spatial reference of North 

American Datum (NAD) 1983 UTM Zone 15N. The “Mosaic to New Raster” tool in 

ESRI ArcGIS Pro v. 3.1.0 was used to mosaic the downloaded DOQs and the data was 

reprojected to a spatial reference of WGS 1984 UTM Zone 15N to match the spatial 
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reference of the subset Landsat 9 scene (Figure 32). The subset of the Landsat 9 scene 

that displayed the SOF and the mosaicked DOQ digital image was compared to ensure 

that the landscape features within the subset Landsat 9 scene visually matched (Figure 

33). The subset Landsat 9 scene was not compared to other digital images in the study, so 

no further geometric corrections were performed on the subset Landsat 9 imagery of the 

SOF. 

 

Figure 30. The One Foot Digital Orthophotographs dataset provided by the Arkansas 

GIS Office (Arkansas GIS Office, n.d.). 
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Figure 31. The process of selecting data from each relevant tile in the ESRI ArcGIS 

Online web map (ESRI, n.d.). 

 
Figure 32. The Mosaic to New Raster tool in ESRI ArcGIS Pro v. 3.1.0 was used to 

mosaic the DOQs and reproject them into the desired spatial reference. 
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Figure 33. A comparison of landscape features between DOQ and Landsat 9 data. 

Landsat 9 Image Classification 

Reference Data 

The reference data used for the supervised classifications were georeferenced to 

ensure chosen training sites were accurately located. A map depicting the 1996 earthen 

pit scars and creeks scars within the Norphlet District was used as reference data for the 

supervised classification of brine across the SOF (Figure 15) (Barrett, 2002). The location 

of the Norphlet District in the SOF is depicted in Figure 34. The ESRI ArcGIS Pro v. 

3.1.0 software was used to georeference the reference map to the appropriate location 
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with a WGS 1984 UTM Zone 15N spatial reference. The reference map depicting pit and 

creek scarring lacked discernable enough landscape features to georeference the reference 

map to the correct location, so another historic map, Figure 35, which shared the same 

boundary as the reference map, was georeferenced first (Barrett, 2002). Figure 35 hosted 

streams across the Norphlet District so it was possible to match the streams in Figure 35 

to streams across the Ouachita and Union counties (Figure 36). Shapefiles representing 

streams across the Ouachita and Union counties were retrieved from the Arkansas GIS 

Office website.  

 

Figure 34. The Norphlet District in the eastern portion of the Smackover Oil Field. 
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Figure 35. Norphlet District streams that were discernable in 1996 (Barrett, 2002). 

 

Figure 36. The streams of Ouachita and Union counties, Arkansas shown in ESRI 

ArcGIS Pro v. 3.1.0 and retrieved from the Arkansas GIS Office website. 
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The stream shapefiles for Ouachita and Union County were merged into a single 

shapefile using ESRI ArcGIS Pro v. 3.1.0 software (Figure 37). The merged shapefile 

was projected into UTM Zone 15 with a WGS 1984 Datum to match the downloaded 

Landsat 9 scene (Figure 38). Figure 35 was georeferenced based on the matching stream 

features from the Arkansas GIS office and was exported as a TIFF file with the spatial 

reference UTM Zone 15 N and WGS 1984 datum (Figure 40). A total of 17 GCPs were 

used to georeference Figure 35 with a root mean square error (RMSE) of 28.01 m using a 

1st order polynomial (Affine) transformation.  

 

Figure 37. The streams of Union and Ouachita counties were merged into one shapefile 

using the Merge tool in ArcGIS Pro v. 3.1.0. 
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Figure 38. The Project tool was used in ESRI ArcGIS Pro v. 3.1.0 to project the merged 

streams into UTM Zone 15 in the datum WGS 1984. 

 

 

Figure 39. The streams across the 1996 map of lease pits and pit scars were 

georeferenced to the projected streams in Ouachita and Union counties. 

After Figure 35 was georeferenced, the desired reference map, Figure 15, was 

georeferenced by matching the boundary of the Norphlet District to the same boundary in 
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Norphlet District in Figure 35. Figure 15 was transformed using a 1st Order Polynomial 

(affine) method with six GCPs as shown in Figure 40. There was an RMSE error of 12.10 

m. Once the reference map, Figure 15, was georeferenced, it was used to identify 11 

potential pit-based training sites and ten potential creek-based training sites which 

represented brine affected areas in the supervised classifications. 

 

Figure 40. The reference map to identify potential training sites was georeferenced to the 

map containing streams across the Norphlet District using ArcGIS Pro v. 3.1.0. 

Training Site Acquisition 

 The reference map identified pit and creeks scars that were visible in 1996. To 

mitigate the temporal difference between the reference map and more current data, the 

CONNECTexplorer™ website by EagleView Technologies was utilized to assess more 

current conditions of the pit and creek scars. The subset Landsat 9 scene of the SOF and 

the reference map were reprojected into a geographic coordinate system in ERDAS 
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IMAGINE® 2022 v. 16.7 so that pit and creek scars could be identified with 

Latitude/Longitude decimal degree coordinates in CONNECTexplorer™ (Figure 41 and 

Figure 42). Once potential training sites were identified in CONNECTexplorer™ based 

on the reference map’s coordinates, the sites were evaluated to determine if they 

possessed an area larger than 1 acre and still showed visible signs of brine related 

scarring such as a lack of vegetation (Figure 43).  

 

Figure 41. The coordinates of pit and creek locations were identified to facilitate locating 

the scarred areas in CONNECTexplorer™. 
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Figure 42. A potential training site located in CONNECTexplorer™ with coordinates 

from the reference map (EagleView Technologies, n.d.). 

 

 

Figure 43. A potential training site located in CONNECTexplorer™ that was measured 

to identify acreage of the area (EagleView Technologies, n.d). 

 Initially, 11 training sites representative of pit scarring and ten training sites 

representative of creek scarring were chosen after the CONNECTexplorer™ evaluation 
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(Figure 44 and Figure 45). These training sites were exported as KML layers from 

CONNECTexplorer™ so that the training sites chosen in CONNECTexplorer™ could be 

converted into feature classes using the “KML to Layer” conversion tool in ESRI ArcGIS 

Pro v. 3.1.0. The feature classes representing the pit and creek scarring were converted 

into AOI layers in ERDAS IMAGINE® 2022 v. 16.7 where they would be further 

evaluated in a feature space layer.  

 

Figure 44. The 11 potential training sites which represented pit scarring across the 

Norphlet District. 
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Figure 45. The ten potential training sites which represented creek scarring across the 

Norphlet District. 

Pit Training Sites 

 Originally 11 potential training sites were chosen to represent brine contaminated 

pit scarred sites, but only four were chosen for the supervised classification. In the 

software, the signature editor feature was used to create a feature space layer which 

plotted band 1 (Blue) versus band 4 (Near-Infrared) of the subset against each other 

(Figure 46). Each AOI representing the pits were added individually and labelled by 

selecting them and adding them to the signature editor (Figure 47 and Figure 48). After 

all the pit AOIs were added to the signature editor, the signature objects button was used 
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to label and plot the ellipses of each pit to the second deviation in the created feature 

space layer (Figure 49 and Figure 50). The pits were visually assessed in the feature 

space layer and the AOIs for pit 2, 3, 5, and 8 were selected to be used as training sites 

for the supervised classification based on their overlap with each other and determination 

to not represent landscape features such as roads (Figure 51). 

 

Figure 46. The blue and near-infrared bands were chosen to be plotted against each other 

in a feature space layer in ERDAS IMAGINE® 2022 v. 16.7. 
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Figure 47. The selection of an individal AOI representing a the first pit scar in ERDAS 

IMAGINE® 2022 v. 16.7. 

 

Figure 48. The first pit scar added to the Signature Editor tool in ERDAS IMAGINE® 

2022 v. 16.7. 
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Figure 49. Each Signature Object based on the added pit AOIs were plotted and labelled 

at a standard deviation of 2. 

 

Figure 50. The Signature Objects of each pit AOI shown in the created feature space 

layer. 
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Figure 51. The Signature Objects of the chosen pit AOIs for the pit-based supervised 

classification. 

Creek Training Sites 

There were originally ten potential training sites representing brine contaminated 

creek scarred areas across the SOF, but only four were chosen for the supervised 

classification. These sites were selected individually and added to the Signature Editor 

tool in ERDAS IMAGINE® 2022 v. 16.7. Band 1 and Band 4 were again plotted against 

each other, and the Signature Object (ellipses) of each training site were labelled based 

on the training site they represented (Figure 52). Creek AOIs 3, 4, 6, 10 were chosen as 

training sites for the supervised classification of the Smackover Oil Field (Figure 53). 
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Figure 52. The Signature Objects of each creek AOI in a feature space layer in ERDAS 

IMAGINE® 2022 v. 16.7. 

 

Figure 53. The Signature Objects of the chosen creek AOIs for the pit-based supervised 

classification. 
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Supervised Classification 

 Two supervised classifications were conducted over the Smackover Oil Field 

(SOF) using ERDAS IMAGINE® 2022 v. 16.7 software (ERDAS, 2022). The subset of 

the Landsat 9 scene which represented the SOF was used as the digital imagery for the 

supervised classifications (Figure 29). The same method was used for both 

classifications, with the only difference being the type of training sites used: pit scarred 

areas vs. creek scarred areas.  

 The two supervised classifications were run using the following decision rules: 

non-parametric rule- parallelepiped, overlap rule- parametric, unclassified rule- 

unclassified, parametric rule- maximum likelihood (Figure 54). The supervised 

classification based on the pit training sites is demonstrated in Figure 55 and the 

supervised classification based on creek training sites is demonstrated in Figure 56. 

 

Figure 54. The decision rules selected for the pit-based and creek-based supervised 

classifications. 
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Figure 55. The supervised classification based on the chosen pit training sites. 

 

Figure 56. The supervised classification based on the chosen creek training sites. 

To create a more accurate representation of brine contamination across the 

classification, pixels which may not truly represent brine contamination needed to be 
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removed. The “Clump” tool was used in ERDAS IMAGINE® 2022 v. 16.7 to create 

polygons of neighboring groups of pixels representing the original thematic class values, 

such as pit 2 and pit 3 or creek 3 and creek 4 (Figure 57). The results of the “Clump” tool 

for the pit- based supervised classification and creek-based supervised classification are 

shown in Figure 58 and Figure 59. The attribute table for each of the clumped supervised 

classifications was viewed to ensure each classified polygon was represented by the 

preselected pit or creek training sites (Figure 60).  

 

Figure 57. The Clump tool in ERDAS IMAGINE® 2022 v. 16.7 used to refine the 

supervised classifications. 
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Figure 58. The pit-based supervised classification after the “Clump” tool was applied. 

 

 

Figure 59. The creek-based supervised classifcation after the “Clump” tool was applied. 
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Figure 60. The attribute table for the pit-based clumped supervised classification was 

viewed to ensure each classified polygon was represented by the preselected pit training 

sites. 

Following the use of the “Clump” tool in ERDAS IMAGINE® 2022 v. 16.7, the 

“Eliminate” tool was used to remove island polygons from the clumped classifications 

which represented areas less than about an acre, or 4 pixels (Figure 61). The effects of the 

tool “Eliminate” on the pit-based and creek-based classification are demonstrated in 

Figure 62 and Figure 63 respectively. To make the final classification of brine 

contaminated areas clearer after the “Eliminate” tool was run, all classified pixels were 

turned red and the opacity of classes which contained no pixels were turned to 0. 
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Figure 61. The Eliminate tool was used to remove island polygons from the clumped 

supervised classifications. 

 

Figure 62. The effects of the Eliminate tool on the clumped pit-based supervised 

classification in red overlain across the subset Landsat 9 scene. 

Brine-contaminated soils 
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Figure 63. The effects of the Eliminate tool on the clumped creek-based supervised 

classification overlain in red across the subset Landsat 9 scene. 

The statistics were calculated from the histogram values in the final “eliminated” 

supervised classifications and compared to calculated histogram values from the initial 

subset Landsat 9 scene to determine the percentage of pit-based and creek-based brine 

contamination currently present within the SOF. The initial statistics for the histogram of 

the subset Landsat 9 scene indicated that 136,725 pixels were present total (Figure 64). 

The statistics for the histogram value of the pit-based classification revealed a total of 

5,374 classified pixels which indicated that 3.93% of the SOF was brine contaminated 

based on the pit training sites (Figure 65). The statistics for the histogram value of the 

creek-based classification revealed a total of 3,218 classified pixels which indicated that 

2.35% of the SOF was brine contaminated based on the creek training sites (Figure 66). 

Brine contaminated soils 
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Figure 64. The initial statistics for the histogram of the subset Landsat 9 scene of the 

Smackover Oil Field indicated a total of 136,725 pixels in the digital image. 

 

 

Figure 65. The statistics for the histogram value of the pit-based clumped and eliminated 

supervised classification revealed a total of 5,374 classified pixels. 
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Figure 66. The statistics for the histogram value of the clumped and eliminated creek-

based supervised classification revealed a total of 3,218 classified pixels. 

 

Sample Site Selection 

 Access to the training sites used for the supervised classifications was denied by 

landowners so three publicly accessible sites were chosen based on results from the 

supervised classifications. The sampling sites, Louann Park, Fishing Area, and Norphlet 

Park are displayed in Figure 67 with yellow boundaries. 
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Figure 67. A map representing the three chosen sampling sites in yellow across the 

Smackover Oil Field. 

Louann Park 

The Louann Park site encompasses 1.92 acres and is in the northwestern portion 

of the SOF. There was a lack of vegetation other than grasses present across the site but 

there was vegetation bordering the sample site. The vegetation included both hardwoods 

and pine trees based on CONNECTexplorer™ EagleView Technologies imagery (Figure 

68). This site was identified based on a public land boundary shapefile that was 

downloaded from the Arkansas GIS Office website. Although this part of the area was 

partially identified as potentially containing brine contaminated soils based on the pit-

based classification, the creek-based classification visually indicated a larger extent of 

brine contamination compared to the pit-based classification (Figure 69). It was 
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determined that this sample site was brine contaminated based on the creek-based 

classification and would represent a brine contaminated site in the creek-based supervised 

classification map error matrix. 

 

Figure 68. A CONNECTexplorer™ image of the Louann Park sampling site which 

displayed a lack of vegetation other than the bordering trees and was taken January 7, 

2020 (EagleView Technologies, n.d.). 

 

Figure 69. The boundary of the Louann Park site is delineated in black and brine 

contamination is indicated with red. The pit-based classification is displayed on the left, 

while the creek-based classification is displayed on the right. 
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Fishing Area 

The Fishing Area site encompasses 1.15 acres and is located toward the center of 

the SOF. This site acted as a control sample as there was no brine contamination 

indicated by the previously created brine classifications. There were power lines, 

hardwood trees, and pine trees located on the sampling site based on 

CONNECTexplorer™ imagery (Figure 70). This site is located near a roadway known as 

Old Camden Road to the Smackover locales but is more widely known as Highway 67 or 

Ouachita Road 67. Part of this site is located adjacent to Smackover Creek and both 

hardwoods and pines were seen bordering the area. The Fishing Area site was identified 

by a Smackover City Hall employee who referred to it as a popular public fishing area.  

 

Figure 70. Fishing Area sampling site with the Smackover Creek located toward the 

southwestern part of the sampling site. Imagery was taken January 8, 2020 (EagleView 

Technologies, n.d.). 
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Norphlet Park 

The Norphlet Park site encompasses 1.73 acres and is located toward the 

southeastern part of the SOF boundary. The surface across the sampling area had some 

grass vegetation present (Figure 71). Brine contamination for this sampling site was 

indicated by both creek-based and pit-based brine classifications, although for this site, 

the pit-based classification indicated a larger extent of brine contaminated soil across the 

site (Figure 72). The site was determined to be brine contaminated based on the pit-based 

classification rather than the creek classification. As a result, the sample site represented a 

brine contaminated site for the pit-based supervised classification map error matrix. 

 

Figure 71. Norphlet Park sampling site with a lack of vegetation across the surface. A 

part of the Norphlet Middle School may be identified toward the southern part of the 

sampling site. The imagery was taken January 20, 2020 (EagleView Technologies, n.d). 
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Figure 72. The boundary of the Norphlet Park site is delineated in black and brine 

contamination is indicated with red. The pit-based classification is located on the left, 

while the creek-based classification is on the right. 

Soil Sampling 

Soil Sample Collection 

On July 17, 2023, five soil samples were collected at each sampling site to create 

a composite sample. To ensure that each sample was collected at a 15 cm depth, a 

measuring tape and a permanent marker were used to measure 15 cm from the tip of the 

shovel down the blade (Figure 73). As each of the five samples were taken for the 

sampling sites, their locations were recorded and uploaded into ESRI’s Field Maps 

(Figure 74). The composite soil sample was mixed in a clean bucket and was then 

separated into three soil sample bags. A permanent marker was used to identify each soil 

sample map with the location, date, and time the sample was taken.  A total of nine soil 

samples were collected once soil sampling was completed (Figure 75).  



93 
 

 

Figure 73. The 15 cm length was measured on the shovel to ensure soil samples were 

taken at a consistent depth. 

 

Figure 74. The five soil samples which were collected for the Louann Park sampling site 

and uploaded with ESRI’s Field Maps displayed as red stars. 
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Figure 75. The composite samples from each of the three sampling sites labelled in soil 

bags August 2, 2023. 

Soil Sample Analysis 

 The soil samples were taken to the SFASU Plant, Soil, and Water Analysis 

Laboratory. At the laboratory the samples were dried in a well-ventilated room so they 

could be ground (Figure 76). A soil grinder was used to remove debris and a 2 mm sieve 

was used to create a fine consistency in the soil samples (Figure 77). Approximately 250 

mg of each sample was placed into a beaker and nanopure water was added to create a 

saturated paste (Figure 78). After the saturated pastes had sat overnight, the pastes were 

transferred into a Buchner funnel that was lined with filter paper (Figure 79). The soil 

samples were extracted using a vacuum to pull the leachate from the soil samples (Figure 

80). The liquid extracts were tested with a Metrohm 914 pH/Conductometer for pH and 

EC (Figure 81). The results for the pH and EC of each sampling site are in Table 8. After 
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the extracts’ pH and EC were measured, the extracts were analyzed with an Inductive 

Couple Plasma Analyzer (ICP) to determine the concentrations of elements in the 

solutions from each sample (Figure 82). The SAR results were calculated after this 

analysis and are displayed in Table 9. 

 

Figure 76. The soil samples were dried on separate plates. 

 

Figure 77. The grinder used to process the soil samples. 
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Figure 78. The saturated pastes were created by adding nano pure water to each sample. 

 

Figure 79. The saturated soils placed in a Buchner funnel lined with filter paper. 

 

Figure 80. The extraction of the soil samples with a vacuum setup. 
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Figure 81. The Metrohm 914 pH/Conductometer was used to analyze pH and EC of the 

soil samples. 

 

Table 8. The pH and Electrical Conductivity results for the sampling sites. 

Lab # Sample ID pH Electrical Conductivity 

(dS/m) 

R47884 Louann Park 6.46 1.287 

    

R47885 Fishing Area 5.43 1.385 

    

R47886 Norphlet 5.87 8.130 
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Figure 82. The ICP machine used to identify the concentration of the constituents in the 

liquid extracts 

 

Table 9. The concentrations of sodium, calcium, and magnesium and the SAR results for 

the sampling sites. 

Lab # Sample ID Sodium 

Na 

(mg kg-1 soil) 

Calcium 

Ca 

(mg kg-1 soil) 

Magnesium 

Mg 

(mg kg-1 soil) 

SAR 

R47884 Louann Park 26.6 44.9 13.7 0.892 

      

R47885 Fishing Area 10.4 6.08 1.32 0.997 

      

R47886 Norphlet Park 14.5 1.45 1.26 2.130 

 

Norphlet park was the only sampling site that contained an EC greater than 4 

dS/m (Table 8). The pH for each of the sampling sites was below 8.5 (Table 8). The SAR 

results for each site were below 13 (Table 9). As none of the sites met all three EC, pH, 

and SAR characteristics of saline soils, the soils from each testing site were considered 

non-brine contaminated based on laboratory analysis (Allison et. al., 1954; Sonon et al., 

2015). 
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P4M-RTK Image Acquisition 

 A total of six preprogrammed flight missions were completed with the P4M-RTK 

UAV on July 30, 2023. Each flight was flown at 93.54 m above ground level with an 

overlap of images at 80% for the front lap and 70% for the side lap (Figure 83). At each 

sampling site an “Inner” flight mission and “Outer” flight mission were flown to ensure 

that the acquired imagery fully encompassed the study areas.  The imagery was collected 

on July 30, 2023 between 10:00 am and 2:00pm Central Time (CT) to mitigate the 

negative effects of shadows on aerial imagery. 

 

Figure 83. A preprogrammed drone flight mission for Louann Park created in the Ground 

Station Pro app (DJI, n.d.a). 

Processing the UAV Multispectral Imagery 

 The multispectral imagery obtained from the P4M-RTK UAV was processed in 

PIX4Dmapper as “Ag Multispectral” data for each preprogrammed flight mission (Figure 

84). In the processing options, the “DSM, Orthomosaic, and Index” option was chosen so 
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that an orthophoto mosaic of the data obtained from the flight would be created (Figure 

85). The six cameras on the P4M-RTK separately collected images which resulted in 

separate orthophoto mosaics of the visible (standard blue, green, red) imagery, as well as 

the blue, green, red, red-edge, and near-infrared imagery for each preprogrammed flight 

mission (Figure 86). 

 

Figure 84. The Ag Multispectral procesing option chosen in PIX4Dmapper. 
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Figure 85. The DSM, Orthomosaic, and Index option was chosen so that an orthophoto 

mosaic of each band that was captured by the multispectral camera obtained from the 

flight would be created. 

 

Figure 86. The orthophoto mosaic and easch individual band generated from drone 

imagery collected during the Louann Park Inner preprogrammed flight. 
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 In ERDAS IMAGINE® 2022 v. 16.7, the blue, green, red, and near-infrared band 

were combined into a multispectral digital image with the “Layer Selection and Stacking” 

tool for each of the preprogrammed flight missions (Figure 87). The 4-band multispectral 

digital images from each preprogrammed flight mission are displayed in Figure 88. 

Finally, a Normalized Difference Vegetation Index for each of the multispectral digital 

images was conducted in ERDAS IMAGINE® 2022 v. 16.7 using the “Indices” tool 

(Figure 89). The NDVI for each of the preprogrammed flights is displayed in Figure 90. 

Areas in the image with bright white colors indicated healthy vegetation, while areas of 

dull white indicated unhealthy vegetation. Black areas across the NDVI images indicated 

that features such as roads or buildings were present. In the Louann Park NDVIs the 

vegetation at the northwestern portion of the sampling side was not as bright as the 

southeastern portion of the field. In the Fishing Areas NDVIs, there didn’t visually 

appear to be major differences in the health and vitality of the vegetation across the site. 

In the Norphlet Park NDVIs the vegetation within the sampling areas seemed to be a 

much duller white/ greyish compared to vegetation outside of the sampling area. The 

NDVI was validated by comparing red and near-infrared pixel values from the 

multispectral digital images to the corresponding pixel value in the NDVI using Equation 

3: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 (3) 
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Figure 87. The blue, green, red, and near-infrared bands were combined into a 

multispectral digital image with the Layer Selection and Stacking tool in ERDAS 

IMAGINE® 2022 v. 16.7 for each dataset from the preprogrammed flights. 
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Figure 88. The six preprogrammed drone flights flown with the P4M-RTK each 

designated by a red letter: A – Louann Park Inner, B- Louann Park Outer, C- Fishing 

Area Inner, D- Fishing Area Outer, E- Norphlet Park Inner, F- Norphlet Park Inner. 
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Figure 89. The Indices tool in ERDAS IMAGINE® 2022 v. 16.7 used to create the 

NDVI of each preprogrammed flight dataset. 
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Figure 90. The created NDVI of the six preprogrammed drone flights each designated by 

a red letter: A – Louann Park Inner, B- Louann Park Outer, C- Fishing Area Inner, D- 

Fishing Area Outer, E- Norphlet Park Inner, F- Norphlet Park Inner. 
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P4M-RTK Image Unsupervised Classification 

 In ERDAS IMAGINE® 2022 v. 16.7 the 6 multispectral orthophoto mosaics from 

the P4M-RTK data were classified with an unsupervised classification method (Figure 

91). The clustering options chosen for the unsupervised classification were: Initialize 

from Statistics, K Means, and a total class number of 36. The Maximum Iterations were 

limited to 10 iterations and a Convergence Threshold of 0.950. The result of each 

unsupervised classification for the six multispectral orthophoto mosaics are displayed in 

Figure 92. The same color palette was used for each unsupervised classification. Since 

the soils sample results revealed that there was no soil brine contamination across the 

sampling sites, precise identifications of the absence/presence of soil brine contamination 

based on the unsupervised classifications of the drone data could not be performed. 

 

Figure 91. The clustering options chosen for the unsupervised classifications of the P4M-

RTK multispectral data. 
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Figure 92. The created unsupervised classifications of the six preprogrammed drone 

flights each designated by a black letter: A – Louann Park Inner, B- Louann Park Outer, 

C- Fishing Area Inner, D- Fishing Area Outer, E- Norphlet Park Inner, F- Norphlet Park 

Inner 

Accuracy Assessment 

 Based on the SFASU Plant, Soil, and Water Analysis Laboratory results and the 

supervised classification results two error matrices and two �̂�-statistics were calculated 

(Table 10 and Table 11) The columns represented the results of the number of brine 
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contaminated vs. non-brine contaminated sites from the laboratory analysis viewpoint. 

The row represented the sites that were brine contaminated vs, non-brine contaminated 

from the user’s created classification map. In Table 10, the pit-based supervised 

classification was assessed and in Table 11, the creek-based supervised classification was 

assessed. 

Table 10. The error matrix, and kappa statistic for the pit-based supervised classification 

of the Smackover Oil Field. 

  Reference Data  Accuracy 

  

C
la
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at
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n
 M

ap
 

Class Brine Non-Brine Row Total User’s 

Brine 0 1 1 0% 

Non-Brine 0 2 2 100% 

Column Total 0 3 3 
Overall           67% 

 

�̂�-statistic      0 
Accuracy Producer’s N/A 67%  
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Table 11. The error matrix, and kappa statistic for the creek-based classification of the 

Smackover Oil Field. 

  Reference Data  Accuracy 

  

C
la

ss
if

ic
at

io
n
 M

ap
 

Class Brine Non-Brine Row Total User’s 

Brine 0 1 1 0% 

Non-Brine 0 2 2 100% 

Column Total 0 3 3 
Overall           67% 

 

�̂�-statistic      0 
Accuracy Producer’s N/A 67%  

 

 The calculated overall accuracy for both supervised classification maps 

identifying brine contamination was 67%. The user’s accuracy in both maps was 0% for 

brine contaminated sites and 100% for non-brine contaminated sites.  The producer’s 

accuracy for both brine contaminated sites was not applicable for brine contaminated 

sites and 67% for non-brine contaminated sites. 

The �̂�-statistic for both classifications were 0 which indicated that there was a 

poor chance that the supervised classifications would correctly classify brine versus non-

brine contaminated soils better than what could be expected by random chance 

assignment (Table 7) (Rwanga & Ndambuki, 2017).
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DISCUSSION AND CONCLUSIONS 

The overall accuracy from pit-based and creek-based classification error matrices 

indicates that there was a 67% chance brine and non-brine contaminated areas would be 

correctly classified in the supervised classification map.  The User’s accuracy for the 

brine contaminated results were 0% for the error matrices of both classified maps and the 

Producer’s accuracy was not applicable for both error matrices, which indicated that 

brine contamination on the classified maps could not be accurately classified. However, 

the User’s accuracy for non-brine contaminated areas in the error matrices was 100% and 

the Producer’s accuracy for non-brine was 67%, which indicated that although 67% of 

the non-brine areas were classified as non-brine based on the maps, all the accessible 

sampling sites were non-brine contaminated based on the SAR laboratory analysis. Based 

on the calculated �̂�-statistic for both error matrices, there was a poor chance that the 

supervised classification maps would correctly classify brine versus non-brine 

contaminated soils better than what could be expected by random chance assignment.  

The statistics from the error matrices and �̂�-statistics may not be truly 

representative of the completed brine identification study for several reasons. The 

Overall, Users, and Producer’s accuracies were based on laboratory soil analysis from 

three publicly accessible sampling sites. Due to prohibited access, soil samples were 
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unable to be taken from the training sites used for the supervised classification maps. The 

samples were taken from publicly accessible areas. The Louann and Norphlet site were 

both located in public recreation areas. These sites were well maintained and regularly 

mowed. As these sites have been previously modified to create recreation areas it is 

possible fill dirt may have been brought in during their construction. Soil samples from 

the actual undisturbed training sites used for the classifications may have provided a 

better representation of the accuracy of the classified maps if they were able to be 

sampled. As there was no validation for the chosen training sites, the results may give the 

reader a misinterpretation of the results based on the error matrices and �̂�-statistics. 

Another reason the results from the error matrices and �̂�-statistics may not be 

truly representative of the study is that the spatial resolution of Landsat data is 30m per 

pixel. The chosen training sites ranged from approximately 1 to 4 acres, representative of 

4.54 to 18.18 pixels. The training sites represented areas of land across the SOF that on 

average were too small to accurately be classified with the mid-spatial resolution digital 

imagery provided by Landsat 9 data. With the mid-spatial resolution of 30m per pixel, 

there are several features within each pixel which represent different amounts of emitted, 

absorbed, or reflected electromagnetic energy, or spectral responses. This may have 

resulted in an error known as mixed pixels, due to the lack of uniformity in the spectral 

signatures from individual pixels in the Landsat 9 data. 

The temporal difference between the utilized 1996 reference data and the more 

current 2022 Landsat 9 data may have also introduced error into the supervised 
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classification maps. Vegetation growth/recovery in areas which were previously 

delineated as brine-contaminated in the reference data may have disrupted discernable 

brine spectral signatures in the more current Landsat 9 data which was used for the 

supervised classification maps. These areas may still be brine damaged, but the soils may 

no longer be severely brine-contaminated enough that vegetation recovery is not possible. 

This study used remote sensing techniques to assess discernable brine contamination on 

the surface of the earth and this would not have picked up brine-contamination located at 

lower depths in the soils of sampling sites. 

The training sites chosen were scene dependent and represented multiple small 

brine-contaminated areas scattered throughout the study area. In the SOF brine-

contamination did not occur in areas as large as the brine-contaminated areas observed in 

west Texas for the study, Detecting Oilfield Brine Contaminated Sites Using Satellite 

Remote Sensing (Bowes, 2007). The training site AOI’s for brine contamination in the 

SOF encompassed less acreage than chosen training sites for the 2007 comparison study. 

In the SOF study the average size of the 352 brine scars were representative of 0.48 acres, 

or 2.19 pixels, across the reference data (Figure 15). In Bowe’s study it was determined 

that a minimum mapping size of 2 acres, or 9.09 pixels, was necessary to correctly 

classify brine-contamination with 30m spatial resolution Landsat data. Based on this, the 

minimum mapping size of the training sites for the SOF study were too small to 

effectively delineate brine and non-brine areas across the SOF in a supervised 
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classification map. The methodology used in Bowe’s study in west Texas to identify 

brine contamination is not robust for oil production areas similar to the SOF. 

Additionally, there is a difference in the amount of annual precipitation west 

Texas encounters compared to the study area, the SOF in south central Arkansas. 

Annually west Texas receives less than ten inches of precipitation while south central 

Arkansas receives an estimated 52 inches of precipitation annually (NOAA’s National 

Weather Service, n.d.; Texas State University, n.d. The larger amount of precipitation in 

south central Arkansas may aid in the transport of brine contamination out of affected 

areas whereas the lower amounts of precipitation in west Texas may contribute to the 

accumulation of brine in affected areas. A higher accumulation of brine contamination in 

the surface soils of west Texas would make brine more identifiable than in areas which 

experience larger amounts of annual precipitation such as the SOF. 

There are also differences in the topography between the SOF and the west Texas 

area analyzed in Bowes’ 2007 study. The surface of the SOF is dynamic and can be 

separated into flood plains, hilly-uplands, and minor stream terraces, with the whole field 

being located in the Smackover Creek watershed (Barrett, 2002). In Bowe’s study, the 

area of interest was located in the western portion of the Edwards Plateau ecoregion. This 

portion of the elevated plateau is much flatter compared to the topography of the SOF 

(TPWD, n.d.). The digital imagery used to classify soil brine contamination in west 

Texas may not have been as affected by shaded areas created from hills or large slopes. 
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However, the methods used to create the supervised classification maps for this 

study followed traditional remote sensing methods. Based on the visual analysis of 

training sites in the feature space layers in ERDAS IMAGINE® 2022 v. 16.7, there is 

confidence that the percentage of brine contamination within the SOF is correct. Training 

sites that visually represented brine contamination were added individually to the feature 

space layers to assess which training sites would best represent unique areas of brine 

contaminated land across the imagery and not represent similar features such as roads. 

Training sites that were determined to not be representative of brine contamination in the 

feature space layer were deleted. 

In the future, to effectively delineate brine-contamination across a study area 

similar to the SOF, it is recommended that digital imagery with a higher spatial 

resolution, such as 0.65m QuickBird-2 or 1.64m GeoEye satellite imagery be used 

(European Space Agency, 2022a and European Space Agency, 2022b). It is also 

recommended that pre-authorization of potential training sites be granted to create more 

representative accuracy assessment results for classification maps. 
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