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ABSTRACT

In 1869, prompted by his work in differential equations, Sophus Lie wondered

about categorizing what he called “closed systems of commutative transformations,”

while around the same time, Wilhelm Killing’s work on non-Euclidean geometry en-

countered related topics. As mathematicians recognized this as a division of abstract

algebra, the area became known as “continuous transformation groups," but we now

refer to them as Lie groups.

Patterns and structures emerged from their work, such as describing Lie groups

in connection with their associated Lie algebras, which can be categorized in many

important ways. In this paper, we focus on Lie algebras over the complex numbers,

and how simplicity and the related notion of semisimplicity, as well as root spaces

and their representations, reveal that there are, up to isomorphism, surprisingly few

simple complex Lie algebras, a result which Killing examined intuitively.

Élie Cartan’s influence on the development of the theory of Lie algebras, though

chronologically slightly later, was key to making the theory of Lie algebras the in-

fluential topic it continues to be today. He brought the rigor Lie preferred to bear

on ideas and patterns generated by Killing; among other impacts of his approach, in

solving the classification problem of simple complex Lie algebras.
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1 INTRODUCTION

In this paper, we will embark on an exploration of Lie algebras, which “ranks

among the most important developments in modern mathematics” [16]. Our special

interest will be those referred to by the name, which seems at first glance to be

contradictory, “simple complex Lie algebras”—simple for their structure, which we

will define in detail, and complex as in complex numbers, the algebraic closure of the

real numbers. Following in the footsteps of leading early contributors, such as Sophus

Lie, Wilhelm Killing, and most of all Élie Cartan, we shall see that there are in fact

very few possible structures among simple complex Lie algebras. The importance of

Lie algebras and their structures to modern mathematics and physics, about which

it is said that “almost every subject in mathematics uses Lie groups" [17] led Nathan

Jacobsen to write his book, Lie Algebras, published in 1962—less than a hundred

years after the first discernible inklings of the topic—which was the first in the field

to organize key ideas into a systematic introduction to Lie algebras [16].

Classifying math problems is key to identifying solution strategies, but before we

can identify a problem as belonging to a particular category, we must determine a

sensible classification method for the problems. Galois theory, for example, revo-

lutionized the study of polynomial equations. By finding connections between field

theory and group theory, one major contribution of Galios theory is a system for de-

scribing polynomials by their roots, which allows mathematicians to identify whether,

and if possible how, polynomial equations can be solved.

Sophus Lie was aware of these developments, for while he was an undergraduate at

the University of Christiania, he attended lectures on abstract algebra by Peter Ludvig

Meidell Sylow, who found a useful tool for classifying groups. Though Lie claimed
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not to have understood many of the lectures, it is easy to suspect the idea of using

abstract algebra as a classification tool for other problems remained as an influence

for his future research. After receiving his undergraduate degree, Lie’s career goal was

to become a researcher—in what field, he hadn’t determined. Before mathematics,

he considered biology, chemistry, and physics, and it is plausible that the importance

of applications of differential equations in these subjects influenced the formation

of his eventual main idea. In 1867–68, he had and refined the idea to investigate

what he referred to as “closed systems of infinitesimal transformations,” to which

we now refer in his honor as “Lie groups.” Lie hoped to find a connection between

systems of differential equations and their symmetries. This connection would prove

to be informative about solutions of differential equations, comparable to how the

relationships between fields and groups identified in Galois theory provided tools for

classifying polynomial equations [23].

As it turned out, each of these Lie groups is related to a Lie algebra which as

desired gives structural information. A Lie algebra L is a vector space, with all

the familiar properties of vector addition and scalar multiplication, together with a

bilinear map called the bracket from L× L to L, where each ordered pair of vectors

(x, y) 7→ [x, y] such that

1. [x, x] = 0

2. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, known as the Jacobi identity.

When we say the bracket operation is bilinear , we mean that it is linear with regard

to both elements x and y of the Lie algebra.

Whenever the characteristic of the underlying field is not equal to 2, such as in the

complex numbers which we will be using, the first condition is equivalent to requiring

that [x, y] = −[y, x]. That is, Lie algebras are anticommutative.

The Jacobi identity is a particular case of the more general Jacobi Bracket Theo-
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rem for partial differential equations [31]. This axiom was not arbitrary: By reordering

the Jacobi identity above to C, and considering x, y, and z as corresponding to f , g,

annd the derivative respectively, we see a strong resemblance to the familiar product

rule (fg)′ = (f ′)g+ f(g′). In this way, the Jacobi identity encodes derivative-like be-

havior needed based on Lie’s interest in examining continuous transformation groups

with the transformations characterized as functions related to systems of differential

equations.

Other mathematicians would pick up similar and related ideas—Killing, around

the same time as Lie, from a geometrical perspective; Weyl, later, in extending con-

cepts as well making connections to theoretical physics; Dynkin with his diagrams

for visualizing structures of Lie algebras; but the greatest contribution to Lie algebra

was that of Élie Cartan. In 1894, Élie Cartan’s doctoral thesis, “Sur la structure

des groupes de transformations finis et continus (The structure of finite continuous

groups of transformations),” shed much light on the topic of classifying Lie algebras.

As we shall see in detail, he found, by considering the weight space decomposition

of simple Lie algebras and the root systems associated with these decompositions,

that only certain root systems were possible, and therefore, up to isomorphism, only

certain simple Lie algebras [4].

1.1 Examples of Lie Algebras

To understand different kinds of Lie algebras, it will be useful to consider some

examples.

Example 1.1 (Abelian Lie Algebras). Let L be any vector space and define [x, y] = 0

for all x, y,∈ L. These Lie algebras are referred to as abelian because, owing to

anticommutativity, no other abelian Lie algebras are possible: the usual notion of

what it means to be abelian would tell us that in such spaces [x, y] = [y, x], but if we
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have simultaneously [x, y] = −[y, x] (anticommutativity), as needed by a Lie algebra,

it must be the case that [y, x] = −[y, x], which is only feasible if [y, x] = 0.

Although at first glance abelian Lie algebras seem too easy to be interesting, they

will play important roles. For example, Cartan subalgebras, a necessary structure for

understanding the classification of simple Lie algebras, are abelian.

Example 1.2 (General Linear Algebras). More interesting examples of Lie algebras

occur when we consider the set of n×n matrices with complex entries, gln(C). These

are the same elements as in the familiar general linear group, GL(n,C); using German

calligraphy to refer to a Lie algebra by otherwise the same letters as a correspond-

ing Lie algebra is a common communicational practice. Within the general linear

algebras, we define the bracket product as [x, y] = xy − yx for x, y ∈ gln(C), where

xy refers to the usual matrix product. The four classic Lie algebras, which will be

described in Section 1.4, are subalgebrassubalgebras of gln(C)—that is, subsets which

are closed under the bracket product [x, y].

As we will make much use of gln(C) and their subalgebras, it is well to demonstrate

that they follow the Lie axioms. The first axiom, requiring that [x, x] = 0, is easy to

demonstrate, as [x, x] is defined to be xx−xx, which is obviously zero. Demonstrating

the Jacobi identity requires a bit more work; we begin by developing a formula for

[x, [y, z]], one of the three terms of the Jacobi identity, using matrix algebra properties

and the definition of [x, y] in this proposed Lie algebra.

[x, [y, z]] = [x, (yz − zy)]

= x(yz − zy)− (yz − zy)x

= xyz − xzy − yzx+ zyx.

4



Similarly, we find that

[y, [z, x]] = yzx− yxz − zxy + xzy

[z, [x, y]] = zxy − zyx− xyz + yxz.

Consequently,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = xyz − xzy − yzx+ zyx+ yzx− yxz

− zxy + xzy + zxy − zyx− xyz + yxz

= 0.

Example 1.3 (One-Dimensional Lie Algebras). The most elementary low-dimensional

Lie algebra is the n = 1 case of the general linear algebra, gl1(C). By considering any

two elements x, y ∈ gl1(C) and applying the bracket product [x, y] = xy−yx, we find

that gl1(C) is abelian. In fact, any one-dimensional Lie algebra L will equally prove

to be abelian: choosing any element e ∈ L as a basis, any two elements {x, y} can be

written in the form {ae, be} where a and b are scalars. Then by ordinary vector space

properties we have [ae, be] = ab[e, e], but owing to the first axiom of Lie algebras this

is equivalent to ab · 0 = 0.

Example 1.4 (Two-Dimensional Lie Algebras). When a Lie algebra L is two-dimensional,

we have more options as to its structure. It may be the case that L is abelian, in

which case we can fully describe it by a basis {e1, e2} and the relation [e1, e2] = 0.

On the other hand, if we suppose that a different two-dimensional Lie algebra

with basis {f1, f2} is not abelian, then the relation we use to define it must be in the

form [f1, f2] = a1f1 + a2f2 where a1 and a2 are scalars. Then, we may compute the
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bracket product of any two elements x = a1f1 + a2f2 and y = b1f1 + b2f2 as follows:

[x, y] = [a1f1 + a2f2, b1f1 + b2e2]

= [a1f1, b1f1 + b2f2] + [a2f2, b1f1 + b2f2]

= [a1f1, b1f1] + [a1f1, b2f2] + [a2f2, b1f1] + [a2f2, b2f2]

= a1b1[f1, f1] + a1b2[f1, f2] + a2b1[f2, f1] + a2b2[f2, f2]

= a1b2[f1, f2] + a2b1[f2, f1]

= a1b2[f1, f2]− a2b1[f1, f2]

= (a1b2 − a2b1)[f1, f2].

When we collect the set [L,L] of all bracket products [x, y], where x and y are

elements of any Lie algebra L, this set is called that Lie algebra’s derived algebra.

For the non-abelian two-dimensional Lie algebra L, our calculations above show that

any element [x, y] of [L,L] is a scalar multiple of the bracket product [f1, f2] of our

original basis elements. So, f = [f1, f2] serves as a one-element basis for [L,L];

therefore, the derived algebra [L,L] of any two-dimensional non-abelian Lie algebra

L is the one-dimensional Lie algebra.

Example 1.5 (Three-Dimensional Lie Algebras). Among three-dimensional Lie al-

gebras, there are more potential structures. Again, it is informative to consider the

Lie algebra’s derived algebra, which we can categorize by its dimension and whether

it is abelian.

Assuming the Lie algebra is not itself abelian, one possibility is that the derived

algebra is one-dimensional, therefore abelian. We can describe this algebra using the

basis {e1, e2, z}, with the relations [e1, e2] = z, [e1, z] = 0, and [e2, z] = 0. This

Lie algebra, called the Heisenberg algebra, is used in quantum physics to analyze

problems such as those involving quantum harmonic oscillators [13]. It is isomorphic
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to the algebra of strictly upper triangular 3× 3 matrices, with basis

e1 =


0 1 0

0 0 0

0 0 0

 , e2 =


0 0 0

0 0 1

0 0 0

 , z =


0 0 1

0 0 0

0 0 0

 .

Another possibility is that the derived algebra is the one-dimensional non-abelian

algebra, in which case the Lie algebra must be the direct sum of the one-dimensional

non-abelian Lie algebra and the two-dimensional non-abelian Lie algebra. A three-

dimensional Lie algebra may have as its derived algebra either of the two-dimensional

algebras above. Or, it may be the case that a three-dimensional Lie algebra’s derived

algebra is also three-dimensional—that is, that [L,L] = L; the Lie algebra’s derived

algebra is itself, which we shall now see.

1.2 The Special Linear Algebra, sl2(C)

One important subalgebra of the general linear algebra gl2(C) is the special lin-

ear algebra sl2(C), which is those matrices whose trace (that is, the total of the

entries on their diagonals) is equal to zero. Because of this Lie algebra’s key role in

representation theory, we will often use it to illustrate examples of further concepts.

Any matrix c a

b −c


in sl2(C) can be written as ax+ by + ch, using the convenient basis

x =

0 1

0 0

 , y =

0 0

1 0

 , h =

1 0

0 −1

 .

This basis can also help us in verifying sl2(C) is a Lie algebra. As mentioned pre-

viously, subsets of the general linear algebra gl2(C) such as sl2(C) inherit anticom-

mutativity and the Jacobi identity, so we need only verify closure. Since we have a
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basis for sl2(C), one easy method to verify closure is to compute bracket products

for all pairs of the basis elements, and to observe that the results are elements of

sl2(C); as all other elements of the algebra are linear combinations of basis elements,

the bracket products of pairs of elements of the algebra will be linear combinations

of bracket products of basis elements.

The three bracket products of each basis element and itself are already determined

by the first axiom of Lie algebras. The remaining six bracket products can be paired

according to anticommutativity, allowing us to describe the full structure with the

three relations [x, y] = h, [h, x] = 2x, and [h, y] = −2y, which can be verified using

usual matrix multiplication. It is interesting that [h, x] is a scalar multiple of x, and

[h, y] is a scalar multiple of y; we will see this again.

Another interesting feature of these three relations is that their results, {h, 2x,−2y},

are linearly independent of each other, since one is an element of the original basis and

the other two are scalar multiples of different basis elements. Therefore, {h, 2x,−2y}

could also serve as a basis for sl2(C). This serves to prove that sl2(C) is the last type

of low-dimensional Lie algebra described above in Example 1.5, where [L,L] = L.

1.3 Ideals

As Lie’s idea was to classify continuous transformation groups, and many im-

portant structural features of a group are defined by the group’s subgroups, it is

unsurprising that analogous subsets play roles in describing the structures of Lie al-

gebras. Some of these subsets, called subalgebras , though smaller are Lie algebras in

their own right, inheriting all operational properties from the wider algebra but being

also closed under the bracket operation. Not all subalgebras are created equal; some

are called ideals , defined unsurprisingly as subalgebras I ⊂ L with the property that,

for any y ∈ I and x ∈ L, [y, x] ∈ I. This property, somewhat stronger than closure,

8



is called absorption.

Example 1.6. We have already seen one example of an ideal. Taking gl2(C) as the

Lie algebra L, certainly sl2(C) ⊂ gl2(C), so to say that the 2×2 special linear algebra

is an ideal of the 2×2 general linear algebra requires only verifying that, for any y ∈ I

and x ∈ L, [y, x] ∈ I. As it turns out, an even stronger statement holds: regardless

of whether even one of the two is an element of sl2(C), any bracket product of two

elements of gl2(C) is an element of sl2(C), due to the following theorem.

Theorem 1.7. For any two n× n matrices a and b, the trace of ab− ba is 0.

Proof. We will use the dot product formula for matrix product entries, so, (ab)ij =∑n
k=1 ainbnj and (ba)ij =

∑n
k=1 binanj. However, we are only concerned with the

entries on the diagonal, where i = j; (ab)ii =
∑n

k=1 aikbki and (ba)ii =
∑n

k=1 bikaki =∑n
k=1 akibik.

To calculate the trace of [a, b], we take the sum of the diagonal entries of ab− ba.

Tr(ab− ba) =
n∑

i=1

(ab− ba)ii

=
n∑

i=1

((ab)ii − (ba)ii)

=
n∑

i=1

(
n∑

k=1

aikbki −
n∑

k=1

akibik

)

=
n∑

i=1

n∑
k=1

aikbki −
n∑

i=1

n∑
k=1

akibik

=
n∑

i=1

n∑
k=1

aikbki −
n∑

k=1

n∑
i=1

akibik.

Noting that the letter assigned to an index variable is unimportant, we can in-

terchange the index variables and rewrite the second term as −
∑n

i=1

∑n
k=1 aikbki,

making it apparent that the two terms are identical except for their sign. Therefore,

the trace of [a, b] is 0.
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The trivial ideals of any Lie algebra L are L itself and {0}; among Lie algebraists,

{0} is often written more concisely as 0. When a Lie algebra L has only trivial ideals,

and [L,L] ̸= 0, we refer to that algebra as simple. As a consequence, in simple Lie

algebras, the center Z(L) is the trivial ideal 0, and since the derived algebra [L,L]

must be some ideal due to the impossibility of escaping absorption, [L,L] is the trivial

ideal L.

Recalling that sl2(C), like simple Lie algebras, has the property that [L,L] = L,

we may wonder whether sl2(C) is simple. In fact, we can prove that this is the case

fairly directly.

Theorem 1.8. The special linear algebra on 2× 2 matrices, sl2(C), is simple.

Proof. Let I ⊆ sl2(C) such that there is at least one nonzero element ax+by+ch ∈ I.

Now we may examine what other elements must be in I for absorption to hold; we

can begin by taking its bracket product with x:

[x, ax+ by + ch] = a[x, x] + b[x, y] + c[x, h]

= bh− 2cx.

Since bh − 2cx ∈ I, we can compute from it further elements which are required

for absorption, such as by applying x again:

[x, bh− 2cx] = b[x, h]− 2c[x, x]

= −2bx.

Applying a convenient scalar reveals that x ∈ I.

But then since [x, y] = h, we also have h ∈ I. And, applying another convenient

scalar, [−1
2
h, y] = −1

2
(−2y) = y. Then, since we have the entire basis {x, y, h} ⊂ I,

from which we could generate all elements of L as part of the ideal I, it must be the

case that I = sl2(C).

10



1.4 The Classical Lie Algebras

It was Wilhelm Killing (1847—1923) who conceived of the problem of classifying

all simple finite dimensional Lie algebras over the complex numbers. Killing worked

worked on this problem for many years, publishing his research in Mathematische

Annalen [18, 19, 20, 21]. Killing arrived at the conclusion that the only simple Lie

algebras were four families of Lie algebras and a small number of Lie algebras that did

not fit into any family, although his proofs were incomplete and sometimes wrong, as

Cartan mentioned in the introduction to his thesis [4], which completely solved the

classification problem.

One of Cartan’s main goals in writing his thesis was to rigorously classify all

simple Lie algebras over the complex numbers. He reworked the ideas and results

of Killing, while adding ideas of his own such as the Cartan-Killing form. Many

consider Cartan’s thesis one of the great works of algebra in the nineteenth century;

for example, Poincaré referred to Cartan’s work, of which his thesis is a cornerstone,

as “among the most important ... of mathematics” [6, 27]. Cartan determined that

nearly all simple Lie algebras are isomorphic to one of four families of the classic Lie

algebras, Aℓ, Bℓ, Cℓ, or Dℓ. In addition, there are five exceptional Lie algebras that

do not belong to any of the classical Lie algebras: E6, E7, E8, F4, and G2 [9, 15].

Élie Cartan (1869–1951) was born and raised in the village of Dolomieu, France,

whose population was then about 2300, where his father was the village blacksmith.

He was fortunate to be noticed while attending the village primary school and encour-

aged to continue his education beyond what was typically available to children from

working-class families, secondary and university education being a luxury in 19th cen-

tury France. By noticing and encouraging Cartan, his teacher M. Dupuis and school

inspector Antonin Dubost plucked him and his family from obscurity. Cartan would

influence his sister Anna to become a mathematics teacher, and his children would all
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go into lines of work diverging from their roots as rural peasants [25]. His son, Henri

Cartan, would become an influential mathematician in his own right and a member

of the Bourbaki textbook-writing collective.

But that was all far in the future, as the ten-year-old Élie Cartan began winning

scholarships to attend secondary schools and was admitted to the highly selective

École Normale Superieure in Paris. There, many of the leading mathematicians of

the day were among the faculty he studied under, and his peer group was on the whole

very academically inclined. One of his classmates, Arthur Tresse, had been a pupil of

Lie, and suggested to Cartan the topic still known as finite continuous transformation

groups. Cartan also examined Killing’s work on the topic, but found it unsatisfactory,

expressing in the introduction to his thesis the need for someone to revisit Killing’s

results but rigorously [4]. Much of Cartan’s doctoral thesis consisted of putting the

topic that would be known as Lie algebra on logically firm footing. Disenchantment

with Killing’s work would have endeared Cartan to Lie, due to the interpersonal and

professional problems between Lie and Killing. It may also be the case that Lie’s

opinion of Killing influenced or reinforced Cartan’s; whatever the precise case may

have been, Lie had a high opinion of Cartan [12].

Here we will describe each of the families of classical Lie algebras, followed by the

exceptional Lie algebras. In some places, we will use terminology in passing which

remains to be defined later in our exploration of the topic.

The Special Linear Algebras, Aℓ. The special linear algebra, Aℓ, is the set of

(ℓ+ 1)× (ℓ+ 1) matrices with trace 0. For example, the 2× 2 special linear algebra,

described above, is A1. In fact, understanding A1 = sl2(C) and its representations is

key to understanding the work of Cartan and Killing.

The Orthogonal Algebras of Odd Dimension, Bℓ. The orthogonal algebra,

Bℓ, is the set o2ℓ+1(C) of matrices x of endomorphisms with the property
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f(x(v), w) = −f(v, x(w)), where v and w are vectors, and f is a transformation whose

matrix is 
1 0 0

0 0 Iℓ

0 Iℓ 0

 .

These matrices follow the form 
0 b1 b2

−bT2 m n

−bT1 p −mT


where b1 and b2 are row vectors with ℓ elements, m, n, p, and q are ℓ × ℓ matrices,

and both n and p have a property called skew-symmetry : taking their transpose in

equivalent to taking their additive inverse, so nT = −n and pT = −p.

When ℓ = 1, we get B1, where b1, b2,m, n, p, and q are single elements of F , and to

make taking their transposes equivalent to taking their additive inverses, n = p = 0;

so, B1 is matrices in the form 
0 b1 b2

−b2 b3 0

−b1 0 −b3

 .

The Symplectic Algebras Cℓ. The set of matrices in the formm n

p −mT

 ,

where m, n, p are ℓ-by-ℓ matrices, and n and p are symmetric (that is, nT = n and

pT = p), is known as the symplectic algebra, Cℓ.

The Orthogonal Algebras of Even Dimension, Dℓ. These algebras are very

similar to Bℓ; they are the orthogonal algebra o2ℓ(C) of endomorphic matrices which
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follow the formula f(x(v), w) = −f(v, x(w)). Matrices in these algebras follow the

form m −pT

p n

 ,

where m, n, and p are ℓ× ℓ matrices, and m and n are skew-symmetric.

The Exceptional Lie Algebras. In addition, there are five exceptional Lie alge-

bras that do not belong to any family: E6, E7, E8, F4, and G2. The exceptional

Lie algebra called E8 is a 248-dimensional algebra with many applications in parti-

cle physics, string theory, and crystallography [22, 30]. The Lie algebra G2 arises

in theoretical physics when one studies mirror symmetry [3]. Lie’s rival, Wilhelm

Killing, was aware of these as well as the other exceptional Lie algebras, E6, E7, and

F4, but rather than grasping their significance, he treated them as a problem to be

eliminated [24].

1.5 Solvable and Semisimple Lie Algebras

In group theory, we define solvable groups as those groups whose derived series—

that is, the sequence of groups formed iteratively by taking the derived group of the

previous set—terminates in the trivial group. As this notion is important in Galois

theory, finding it echoed in Lie algebra is unsurprising.

In Lie algebra, the derived series is the sequence of derived algebras of the previous

step in the sequence: L(n) = [L(n−1), L(n−1)], where L(0) is L itself. In some Lie

algebras, by following the derived series sufficiently far, we find a value of n where

L(n) = 0; such Lie algebras are called solvable; such algebras are never simple, because

simple Lie algebras have the property [L,L] = L which prevents the derived series

from progressing through any smaller ideals toward 0.

Semisimple algebras are defined by different books in two common ways. The
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most natural way of understanding why such algebras are called semisimple is by

defining them as algebras which are direct sums of simple algebras. However, many

sources such as [16, 15, 7] define semisimple algebras differently, as algebras whose

maximal solvable ideal is 0.

Theorem 1.9 (Alternative definition of semisimple). The two definitions of semisim-

ple are equivalent.

Proof. First we must show that semisimple Lie algebras have maximal solvable ideal

0. Let L be a semisimple Lie algebra; then we can say L = L1 ⊕L2 ⊕ · · · ⊕Ln, where

the Li sets are simple Lie algebras. Let I ⊆ L so that I is a solvable ideal of L; we

can decompose I as well, as I = (I ∩ L1)⊕ (I ∩ L2)⊕ · · · ⊕ (I ∩ Ln).

Now let us consider the sets in the form I ∩ Li. Since the intersection of an ideal

and a subalgebra is an ideal in that subalgebra, I ∩ Li is an ideal in Li. But, Li is

simple; so, either I ∩ Li = 0 or I ∩ Li = Li. If, for each i, I ∩ Li = 0, then the direct

sum of the I ∩ Li algebras would be 0, so let us suppose for contradiction that there

exists some i such that I ∩ Li = L.

As always, I ∩ Li ⊆ I. That is, Li is a subalgebra of a solvable algebra, so Li

is solvable. However, Li is defined to be simple, and Lie algebras cannot be both

solvable and simple, because a solvable Lie algebra contains an abelian ideal as the

penultimate step in its derived series, while a simple Lie algebra’s derived algebra, and

therefore every step it its derived series, is itself. Our supposition for contradiction

must have been wrong: there is no i such that I ∩Li = L, so it must be the case that

I ∩ Li = 0. The direct sum of any number of 0 sets is 0, as desired.

We must also show that any Lie algebra with maximal solvable ideal 0 is semisim-

ple. We will do so by describing a procedure for determining the decomposition.

If a Lie algebra L with maximal solvable ideal 0 contains no nontrivial ideals, L

is simple, therefore semisimple; so, we will focus on the case where a Lie algebra L

with maximal solvable ideal 0 contains at least one nontrivial ideal I. We know I is
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not solvable because the maximal solvable ideal of L is 0. Then we can consider the

derived series of I, I ⊇ I(1) ⊇ I(2) ⊇ ....

Now let us consider the dimensions of the ideals in that sequence. Certainly a

subset cannot have a greater dimension than its superset, so dim I ≥ dim I(1) ≥

dim I(2) ≥ ... . Since the dimension is a whole number, if the dimensions of each step

of the derived series were strictly decreasing, it would necessarily be the case by the

time i = dim I that dim I = 0, i.e. that I is the trivial ideal 0. However, since I is

not solvable, we cannot have dim I(i) = 0 for any i. Instead, it must be the case that

there exists n < dim I such that I(n−1) = I(n), and then for any m ≥ n, I(m) = I(n).

We will call this stopping point of the derived series J . If J is simple, let L1 = J ;

that is, J is the first simple Lie algebra in the decomposition of L. However, if J is

not simple, choose a nontrivial ideal K of J , and take the derived series of K to its

stopping point. That stopping point again either is simple or may be iterated from,

just like J and K, until finding a simple ideal which we may call L1.

Then we can take L′ such that L = L1⊕L′, which we think of as the “rest of L” in

the sense that it contains the structure of L not accounted for in L1. Starting again

with L′, we can repeat the process until all needed simple ideals for the decomposition

are found, as must happen because in a finite-dimensional space we must eventually

run out of ideals. The collected results are a decomposition of L into simple Lie

algebras, so L is semisimple.

Killing’s definition of a semisimple Lie algebra, one with no nontrivial abelian

ideals, is also equivalent to these two modern definitions [24]. Of the two modern

definitions, the second, requiring a maximal solvable ideal 0, is easiest to compare

with Killing’s definition: an abelian ideal is certainly solvable, and a nontrivial solv-

able ideal certainly contains an abelian algebra as the penultimate element of its

derived series. Perhaps the widespread use of the second definition, despite the first

definition’s more natural connection to the core idea for which the concept is named,
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reflects Killing’s influence.

1.6 Nilpotent Lie Algebras and Homomorphisms

The derived series, for all its importance, is not the only sequence of ideals which

can be generated by iteratively applying the bracket operation, beginning with all

possible elements of a Lie algebra. The descending central series of a Lie algebra is a

sequence of ideals defined by L0 = L and Ln = [L,Ln−1]. The similarity of notation

between these two sequences can be confusing; as a mnemonic, we can remember

that parentheses are used in matched pairs and the sequence term referred to with

parentheses on the index, that of the derived series, is the result of taking the bracket

product of a matched pair of the previous term.

Like a derived series, a descending central series may eventually have 0 as a term.

When this happens—that is, there exists some N so that Ln = 0 for all n ≥ N—

the Lie algebra is called nilpotent . A sequence of subalgebras of a finite dimensional

vector space V where the smallest subalgebra is 0, 0 = V0 ⊂ V1 ⊂ ... ⊂ Vn = V , is

called a flag .

Homomorphisms, more generally understood as operation-preserving functions,

also occur in Lie algebra. Lie algebra homomorphisms are functions between two Lie

algebras, preserving the bracket operation. That is, if f is a homomorphism between

a Lie algebra domain L and a Lie algebra codomain M , such that, if l1 and l2 are

elements of L, m1 = f(l1), and m2 = f(l2), f([l1, l2]) = [m1,m2]. Homomorphisms

among Lie algebras can be of special types. Of particular interest are isomorphisms ,

i.e., homomorphisms which establish a one-to-one correspondence between elements

of L and of M , and endomorphisms ; i.e., homomorphisms where the domain L and

codomain M are the same Lie algebra.

Like Lie algebras themselves, endomorphisms can be nilpotent. A nilpotent endo-
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morphism is a homomorphism ϕ where, for some n, ϕn = 0.

Through their mutual friend, the more famous mathematician Felix Klein, Friedrich

Engel and Sophus Lie met and began working together in 1884 [26]. Seeing Lie’s strug-

gles to make his ideas comprehensible to others in the sixteen years since 1868, Klein

suggested that Engel could help. Engel’s help was in fact so extensive that “with the

collaboration of Friedrich Engel” appears as a subtitle of the volumes of Lie’s Theory

of Transformation Groups, and the following theorem, for which we can find a proof

in [10], bears his name.

Theorem 1.10 (Engel’s Theorem). Let gl(V ) be the Lie algebras of the endomor-

phisms of a finite dimensional vector space V and g ⊂ gl(V ) a subalgebra. Then the

following are equivalent:

1. Each x ∈ g is a nilpotent endomorphism on V .

2. There exists a flag

V = V0 ⊃ V1 ⊃ · · · ⊃ Vn = 0,

with codimVi = i such that g·Vi ⊃ Vi+1, where g·Vi indicates that the subalgebra

g is acting on the subspace Vi.

One wonders how, despite such a fruitful collaboration, the working relationship

and personal friendship between Engel and Lie broke down in the late 1880s, and

Lie’s connection with Klein followed a few years later. Klein attributed the breakdown

between Lie and colleagues to the thinness of the line between genius and insanity, and

certainly mental symptoms of the vitamin B12 deficiency from which Lie suffered could

have played a role. However, attributing the entirety to such causes seems excessively

convenient in absolving Engel and Klein of any responsibility. As it turns out, the

rivalry between Lie and Killing provided an additional component for suspicions,

regardless of how rational they might have been, to latch onto: beginning in the
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mid-1880s, Engel also corresponded about transformation groups with Killing, and

continued after it was clear that Lie and Killing did not get along. This was enough

for Lie to suspect that Killing was, through Engel, stealing ideas for which Lie already

felt underappreciated.

Whether Killing did or did not maintain contact with Engel with the goal of

extracting Lie’s ideas through Engel, and whether such did or did not happen, one

thing we can be sure of is that Engel, even after their falling out, had no interest in

erasing the accomplishments of Sophus Lie. To the contrary, even after Lie’s death,

Engel continued editing Lie’s work and brought forth several more volumes he referred

to as Lie’s [26].
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2 Representations and Modules

The theory of representations is critical to understanding the classification of Lie

algebras. A representation of a Lie algebra L on a vector space V is a Lie algebra

homomorphism ρ : L → gl(V ). This means that ρ([x, y]) = ρ(x)ρ(y) − ρ(y)ρ(x)

for x, y ∈ L. The vector space V , together with the representation ρ, is called an

L-module. Given a representation ρ : L → gl(V ), we say that a subspace W of V

is invariant if ρ(x)w ∈ W for all w ∈ W and x ∈ L. A nonzero representation is

said to be irreducible if the only invariant subspaces are V itself and the zero space

{0}. As we have mentioned previously, one of the key examples for understanding

the classification of simple Lie algebras over the complex numbers is understanding

the irreducible representations of sl2(C).

2.1 The Adjoint Representation

One very important representation is the adjoint representation, ad(x)(y) = [x, y]

for any elements x and y of the Lie algebra; in the same way that sin(θ) is commonly

written as sin θ, while we shall in some intricate contexts write ad(x), it is also common

to write or see the adjoint representation written without parentheses as adx. That

the adjoint is from L is clear, and as we shall demonstrate a method for writing adx as

a matrix in Example 2.1, certainly the adjoint maps into gl(V ). To convince ourselves

that the adjoint is truly a representation, we must also demonstrate that the adjoint

is a homomorphism. So, we would like to show that ad([x, y]) = [ad(x), ad(y)]. Since

we define the adjoint by its effect on another element of the original Lie algebra, we
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can do so by showing that ad([x, y])(z) = [ad(x), ad(y)](z), as follows:

ad([x, y])(z) = [[x, y], z]

= [[x, z], y] + [x, [y, z]]

= [x, [y, z]]− [y, [x, z]]

= ad(x)[y, z]− ad(y)[x, z]

= ad(x) ad(y)(z)− ad(y) ad(x)(z)

= (ad(x) ad(y)− ad(y) ad(x))(z)

= [ad(x), ad(y)](z).

While all other steps are basic matrix algebra or our formula definitions of the

bracket product and adjoint representation, the less familiar jump in the second line

is from the reordered form of the Jacobi identity through which we saw a connection

to the product rule: 
2 0 0

0 −2 0

0 0 0


This hints at the deep connection between the adjoint representation and the Jacobi

identity which causes some to describe [14] the Jacobi identity as a property stating

that the adjoint representation is truly a representation, as we have now shown.

Since ad([x, y])(z) = [ad(x), ad(y)](z), we can be certain that the adjoint repre-

sentation is truly a representation.

Example 2.1 (Adjoint Representation of sl2(C)). We can determine the adjoint rep-

resentation of an element by computing its bracket product with each basis element,

and it is informative to do so for each element of the basis. Each result from the

bracket product multiplication table for x, when written as a linear combination of
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basis elements, determines, through its coefficients, a column of adx:

[x, x] = 0 = 0x+ 0y + 0h

[x, y] = h = 0x+ 0y + 1h

[x, h] = −2x = −2x+ 0y + 0h

This yields the result that

adx =


0 0 −2

0 0 0

0 1 0

 .

By the same method we also can find

ad y =


0 0 0

0 0 2

−1 0 0

 , adh =


2 0 0

0 −2 0

0 0 0

 .

Recalling that any element of w of sl2(C) can be written as the linear combi-

nation ax + by + ch of these basis elements, since the adjoint representation is a

homomorphism, we can summarize the adjoint representation by the formula

adw = a


0 0 −2

0 0 0

0 1 0

+ b


0 0 0

0 0 2

−1 0 0

+ c


2 0 0

0 −2 0

0 0 0

 .

Among the adjoint matrices of these basis elements, adh has some interesting

features: as a diagonal matrix, its eigenvalues are the entries on its diagonal, 2, −2,

and 0. We previously noticed the nonzero eigenvalues of h in Section 1.2 in the context

of generators and relations, as scalar-like behavior of h: [h, x] = 2x and [h, y] = 2y.

A contemporary of Sophus Lie, Wilhelm Karl Joseph Killing was born in 1847, into

a family where his father was a legal clerk and politician. As his family expectations

as to how he would situate himself in life would have been high, but his health as a
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child was far less than his cleverness, academia was a natural career direction. His

secondary school geometry education led him to focus on mathematics, and many of

his early career’s publications were in geometry. Killing was particularly interested

in non-Euclidean geometry which led him to symmetry and ultimately to be one of

the founders of the research field of Lie algebras.

Among other contributions, the Killing form of a Lie algebra is a matrix which

uses the adjoint representation, together with a basis, to encode some important

properties of Lie algebras, such as whether the Lie algebra is semisimple. Although

we previously demonstrated determining that any non-empty ideal of sl2(C) must be

sl2(C) itself, therefore that sl2(C) is simple, these calculations were minimized by the

low dimension of sl2(C), and we would want a much more efficient method for dealing

with larger Lie algebras.

The entries of the Killing form matrix are calculated according to the formula

κ(x, y) = Tr(adx ad y). The Killing form is symmetric, bilinear, and is also associa-

tive. That is, κ(x, y) = κ(y, x) and κ((x, y), z) = κ(x, (y, z)).

Example 2.2 (Killing Form of sl2(C)). First we recall from above the adjoint repre-

sentations of the three elements of the standard basis of sl2(C):

adx =


0 0 −2

0 0 0

0 1 0

 , ad y =


0 0 0

0 0 2

−1 0 0

 , adh =


2 0 0

0 −2 0

0 0 0

 .

Using these adjoints and the formula above, we calculate the entries, as follows. Each
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entry on the main diagonal must be computed separately:

κ(x, x) = Tr(adx adx)

= Tr



0 0 −2

0 0 0

0 1 0



0 0 −2

0 0 0

0 1 0




= Tr


0 −2 0

0 0 0

0 0 0


= 0.

Similarly, κ(y, y) = 0 and κ(h, h) = 8.

However, since the Killing form is symmetric—that is, κ(a, b) = κ(b, a)—we com-

pute the remaining entries two at a time:

κ(x, y) = κ(y, x) = Tr(adx ad y)

= Tr



0 0 −2

0 0 0

0 1 0




0 0 0

0 0 2

−1 0 0




= Tr



2 0 0

0 0 0

0 0 2




= 4.

By the same process, we find out that κ(x, h) = κ(h, x) = 0 and κ(y, h) = κ(h, y) = 0.

So, we find that the Killing form of sl2(C) is
0 4 0

4 0 0

0 0 8

 .
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In contrast to Lie’s goal of using symmetry to classify differential equations,

Killing’s goal of studying geometries in terms of infinitesimal motion led him to in-

vestigate Lie algebras. He was, therefore, more interested in the real-valued cases

of Lie groups and algebras, though found their complexifications necessary for theo-

retical and calculational purposes. While Cartan is rightly credited for putting Lie

algebra on logically firm footing, Killing’s boldness in recognizing patterns and form-

ing conjectures deserves recognition as well. Not all of these conjectures turned out

to be accurate; for example, Killing conjectured at one point that the special linear

and orthogonal Lie algebras were the only simple Lie algebras, though he would soon

discover additional algebras. He also introduced both the Cartan subalgebra and the

Cartan matrix of a Lie algebra, and used these tools to examine possibilities among

structures of Lie algebras. As a result of this work on a more intuitive level, Killing

had found all the exceptional Lie algebras and families of classical Lie algebras, and

had convincing if not absolute evidence that the classification was complete.

2.2 Theorems from Lie and Cartan

As we saw in Section 1.5, solvable Lie algebras are those where, given that L(n) =

[L(n−1), L(n−1)], for some sufficiently large value of n, L(n) = 0. To better understand

solvable Lie algebras, we will need theorems from Lie and Cartan.

Theorem 2.3 (Lie’s Theorem). If L is a solvable Lie subalgebra of gl(V ), where

dimV = n < ∞, then the matrices of L relative to a suitable basis of V are upper

triangular.

Theorem 2.4 (Cartan’s Criterion for Solvability). Let L be a Lie subalgebra of gl(V ),

where dimV = n < ∞. Suppose that Tr(xy) = 0 for all x ∈ [L,L] and y ∈ L. Then

L is solvable.

Proofs for Theorems 2.3 and 2.4 can be found on p. 16 and p. 20, respectively,
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in [15]. One notable consequence of this theorem is that, with a suitable choice of

basis—in this case meaning a basis in which at least one basis element is in [L,L]—

the Killing form of a solvable Lie algebra will have a zero row (and column), and,

therefore, a determinant equal to zero.

Theorem 2.5 (Cartan’s Criterion for Semisimplicity). Let L be a Lie algebra. Then L

is semisimple if and only if its Killing form is nondegenerate; that is, the determinant

of the Lie algebra’s Killing form is nonzero.

The original proof for this theorem is the first given in Chapter 4 of [4]. Compared

with Cartan’s Criterion for Solvability, we see that since semisimple Lie algebras have

Killing forms with nonzero determinants, while solvable Lie algebras have Killing

forms with determinant zero, any Lie algebra will be either solvable or semisimple

but never both.

Example 2.6 (Semisimplicity of sl2(C)). We determined in Example 2.2 that the

Killing form of sl2(C) is 
0 4 0

4 0 0

0 0 8

 .

Since

det


0 4 0

4 0 0

0 0 8

 = −128,

we can conclude that sl2(C) is semisimple. This fact is precisely what we already

expect from knowing that sl2(C) is simple, as per Theorem 1.8, since all simple Lie

algebras are semisimple. Although determining directly that sl2(C) is simple was

not difficult due to the small number of elements in its basis, the task would grow in

difficulty for larger Lie algebras, in which case the process we have illustrated of using

the Killing form and Cartan’s criterion for semisimplicity would be more efficient.
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2.3 Modules and Reducibility of Representations

We refer to a vector space V as an L-module, for a Lie algebra L, when there exists

a bilinear function ϕ : L× V → V such that [x, y].v = x.(y.v)− y.(x.v) for all v ∈ V ,

x, y ∈ L. These L-modules can have submodules, subsets which have the absorption

property familiar from ideals. Corresponding to simple Lie algebras, L-modules with

only the trivial submodules (0 and itself) are called irreducible. Also, corresponding

to semisimple Lie algebras, completely reducible L-modules are those which can be

written as direct sums of irreducible L-submodules. Modules and representations are

different notations for the same concept, so that whichever is more convenient at the

time can be used.

Theorem 2.7. In the sense that the existence of an L-module implies a representation

connecting the module to the Lie algebra, and that the existence of a representation

implies a module containing the range of the representation, modules and representa-

tions are equivalent.

Proof. We will show that from any representation, a module can be naturally defined,

and likewise from any module, a representation can be naturally defined. First, let us

take a representation ρ : L → gl(V ), and define an action of L on V by x.v = ρ(x)(v).

We want to check whether this action is bilinear as well as whether it follows the

other defining formula for L-modules, [x, y].v = x.(y.v)− y.(x.v).

We begin by verifying that this action is bilinear; i.e. that it complies with the two

formulas (ax+by).v = a(x.v)+b(y.v) and x.(av+bw) = a(x.v)+b(x.w). First, we use

the definition of the action and properties of representations to compute (ax+ by).v,
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as follows:

(ax+ by).v = ρ(ax+ by)(v)

= (ρ(ax) + ρ(by))(v)

= ρ(ax)(v) + ρ(by)(v)

= aρ(x)(v) + bρ(y)(v)

= a(x.v) + b(y.v),

from which we can see that (ax + by).v = a(x.v) + b(y.v) as needed. Our strategy

for checking that this action complies with the second bilinear condition will be very

similar, in that we will compute x.(av + bw) = a(x.v) + b(x.w):

x.(av + bw) = ρ(x)(av + bw)

= ρ(x)(av) + ρ(x)(bw)

= aρ(x)(v) + bρ(x)(w)

= a(x.v) + b(x.w).

We see from this that this action is bilinear.

Now, we need only verify the L-module condition [x, y].v = x.(y.v)− y.(x.v),

[x, y].v = ρ([x, y])(v)

= ([ρ(x), ρ(y)])(v)

= (ρ(x)ρ(y)− ρ(y)ρ(x))(v)

= ρ(x)ρ(y)(v)− ρ(y)ρ(x)(v)

= ρ(x)(y.v)− ρ(y)(x.v)

= x.(y.v)− y.(x.v).

Therefore, V is an L-module.

Next, we would like to see that modules similarly define representations. So, let

V be an L-module, and define ρ : L → gl(V ) by ρ(x) = x.v. Since ρ is defined as
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having the needed domain and codomain, we need only see that ρ is a homomorphism

to verify that ρ is a representation. We want to see that ρ([x, y])(v) = [ρ(x), ρ(y)](v):

ρ([x, y])(v) = ρ(xy − yx)(v)

= ρ(xy)(v)− ρ(yx)(v)

= xy.v − yx.v

= x(y.v)− y(x.v)

= x.ρ(y)(v)− y.ρ(x)(v)

= ρ(x)ρ(y)(v)− ρ(y)ρ(x)(v)

= [ρ(x), ρ(y)](v).

Since each of a homomorphism and a module can define the other, homomorphisms

and modules are equivalent.

Another important tool that we will need is due to Issai Schur (1875–1941), and

traditionally known as Schur’s Lemma. A proof of Schur’s Lemma can be found in

[15].

Theorem 2.8 (Schur’s Lemma). Let ϕ : L → gl(V ) be reducible. Then the only

endomorphisms of V commuting with all ϕ(x) are the scalars.

Another important contributor to Lie algebra, and in fact to mathematics more

generally with major contributions to fundamentals, differential equations, number

theory, theoretical physics, and other topics, was Hermann Weyl. Born in 1885, he

emigrated from Nazi Germany in 1933, leaving a chair which Hilbert had held before

him at Gottingen to take up a position at Princeton. Lie algebras became his latest

research focus late in life—his book on the subject was published in 1952, only three

years before his death in 1955—from the direction of his previous work in differential

equations and quantum mechanics [1], though it was somewhat before this time that
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he was the first to refer to the topic previously known as infinitesimal groups by the

name we now know, Lie algebras [16].

Theorem 2.9 (Weyl’s Theorem). Let ϕ : L → gl(V ) be a representation of a semisim-

ple Lie algebra. Then ϕ is completely reducible.

One consequence of Weyl’s Theorem, together with Schur’s Lemma, is that any

semisimple Lie algebra L will contain, for each of its elements, the semisimple and

nilpotent parts of that element’s Jordan decomposition—by which we refer to writing

any matrix as the sum of a simple and a nilpotent matrix. Furthermore, when ρ is a

representation of L, where x = s+ n is the Jordan decomposition in the Lie algebra,

ρ(x) = ρ(s) + ρ(n) is the Jordan decomposition in gl(V ) [15].

2.4 Representations of sl2(C)

In 1914, Cartan determined all irreducible representations of the simple Lie alge-

bras over the complex numbers [5]. We shall see how this works with sl2(C) as an

example.

Let V be an L-module, where L is sl2(C). That is, there exists a ϕ : sl2(C)×V → V

satisfying the defining requirements of an L-module, and therefore a corresponding

representation ρ : sl2(C) → V . Since h is diagonal, ρ(h) will also be diagonal, so h.v

will be equal to λv for some value of λ. The set of vectors with the same value for λ

is the space Vλ = {v ∈ V |h.v = λv}, called a weight space for the weight λ. Since V

is finite-dimensional, there can only be finitely many different values of λ, so we can

take the greatest. In this case, vectors in Vλ are called maximal vectors .

We will determine the irreducible representations of sl2(C) in this section. That

is, we will prove the following theorem.

Theorem 2.10. Let V be an irreducible representation of sl2(C) with dimV = n+1.
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Then there exists a nonzero vector v ∈ V such that h.v = −nv, y.v = 0, and

V = ⟨v, x.v, . . . , xn.v⟩

over C. Under this basis, the action of h is diagonal with weights −n,−n+ 2, . . . , n.

The action of x has just been described, and the action of y is described in the lemma

below.

In other words, Theorem 2.10 tells us that sl2(C) has a unique irreducible repre-

sentation for every finite dimensional vector space V . We will need several lemmas

to prove our theorem.

Lemma 2.11. If v ∈ Vλ, then x.v ∈ Vλ+2 and y.v ∈ Vλ−2.

Proof. We will make use of the fact that V is an L-module. For the purpose at hand,

it will be convenient to reorder the L-module condition [x, y].v = x.(y.v)− y.(x.v) as

x.(y.v) = [x, y].v + y.(x.v). Then we proceed to calculate:

h.(x.v) = [h, x].v + x.h.v

= 2x.v + x.h.v

= 2x.v + xλv

= (λ+ 2)x.v.

Since h.(x.v) = (λ+2)x.v, λ+2 is the eigenvalue associated with x.v, so x.v is in

the eigenspace, or weight space, Vλ+2. The proof for y.v proceeds in quite the same

way.

The actions of L on elements of V are illustrated in Figure 2.1. In this diagram,

V is partitioned into eigenspaces.
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Figure 2.1: Actions of L on Vn

VnVn−2Vn−4
xx

yy

h hh

If we choose v from the nontrivial eigenspace which would be furthest left in this

diagram, V−n, we satisfy the requirements that h.v = −nv and y.v = 0. Furthermore,

by repeatedly applying the x action, the set of n + 1 vectors {v, x.v, ...xn.v} will be

from different eigenspaces, thus linearly independent, so will form a basis for V .

We can make further observations about the repeated action of x and y.

Lemma 2.12. When Vλ is the weight space where, for any v in that space, y.v = 0,

1. y.xn.v = −n(λ+ n− 1)xn−1.v

2. yn.xn.v = (−1)nn!λ(λ+ 1)...(λ+ n− 1).v

Proof. The first of these two statements is proven using induction, with the easy base

case n = 0: y.x0.v = y.v = 0 and −0(λ+ 0− 1)x0−1.v = 0.

Now we consider y.xn+1.v; we want to show y.xn+1.v = −(n + 1)(λ + n)xn.v. To

that end, we will use the L-module criterion formula together with our base case.

Using the fact that [x, y].v = x.y.v − y.x.v as well as the calculation in the proof of
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Lemma 2.11, we have

y.xn+1.v = y.x.xn.v

= −[x, y].xn.v + x.y.xn.v

= −h.xn.v + x.y.xn.v

= −(λ+ 2n)xn.v +−n(λ+ n− 1)xn.v

= −(n+ 1)(λ+ n)xn.v.

So, y.xn.v = −n(λ+ n− 1)xn−1.v as desired.

For the second of these two statements, once again we will use induction on n

with the base case n = 1; clearly, y.x.v = −h.v = (−1)11!λv. Assuming yn.xn.v =

(−1)nn!λ(λ+ 1)...(λ+ n− 1).v, we have

yn+1.xn+1.v = yn.y.x.xn.v

= yn.([y, x].xn.v + x.y.xn.v)

= yn.(−h.xn.v − n(λ+ n− 1)xn.v)

= yn.(−(λ+ 2n)xn.v − n(λ+ n− 1)xn.v)

= (−(λ+ 2n)− n(λ+ n− 1))yn.xn.v

= (−nλ− n2 − λ− n)yn.xn.v

= −(n+ λ)(n+ 1)yn.xn.v

= (−1)n+1(n+ 1)!λ(λ+ 1)...(λ+ n).v.

We see here that not only can we determine into which eigenspace xk.v any yb.xa.v

within a given dimensional representation V falls, we can, through use of these scalar

formulas and applying the eigenvalues −n,−n + 2, ..., n as needed to account for h,

determine an exact element of V related to the action of any element of sl2(C). In

short, the defining properties of an irreducible representation of sl2(C) are sufficient
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to determine the entire behavior of that representation with respect to all elements

of sl2(C). Therefore, we may conclude that all irreducible representations of sl2(C)

of the same dimension are identical up to an isomorphism.

Representation theory pays a good deal of attention to sl2(C) for several im-

portant reasons. Among these reasons is that, as the smallest simple complex Lie

algebra, sl2(C) makes a more comprehensible example than—for example—the 248-

dimensional E8. It also has applications in physics in its own right, as part of analyzing

the Lorentz group [2]. Also, in the next chapter we shall encounter Dynkin diagrams,

for which the graph of sl2(C) is a single vertex; for reasons we shall then see, this

implies the structure of sl2(C) influences the structure of all other simple complex Lie

algebras.
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3 Roots and Root Spaces

Cartan and Killing realized that the best way to approach the classification of

simple Lie algebras over the complex numbers was to examine their root systems,

and eventually their root space decompositions. The requirements of these systems

and structures will give rise to our main result, that all Lie algebras are isomorphic

to either one of the classical or one of the exceptional Lie algebras.

3.1 Maximal Toral Subalgebras and Root Space Decompositions

We have mentioned Cartan subalgebras in passing, but as we will now use them in

detail, it is time to get specific. A Cartan subalgebra of a Lie algebra L is a nilpotent

subalgebra H such that if [x, y] ∈ H for all x ∈ H, then y ∈ H. Within the context

of finite-dimensional semisimple complex Lie algebras, Cartan subalgebras are made

up of diagonal elements; these algebras are called toral, so Cartan subalgebras are

also known as maximal toral subalgebras . Since Cartan subalgebras are made up on

diagonal elements, these subalgebras are abelian. Therefore, one way to verify that

a proposed Cartan subalgebra is truly maximal is to compute the bracket product of

each of its elements with a potential additional element and check whether the result

is 0.

We also need to examine the properties of roots , which are a type of elements of

the dual space H∗ of linear functionals from a Cartan subalgebra H to the field over

which the Lie algebra was defined, in our case the complex numbers. In particular,

each root has a non-empty root space defined by the formula

Lα = {x ∈ L| for all h ∈ H, [h, x] = α(h)x}.

For example, if L contains at least one element x such that [h, x] = 2x, we can define

a root α so that α(h) = 2. This is the case, in particular, in sl2(C), and while sl2(C) is
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on our minds, we recognize Lα as the familiar one-dimensional weight space generated

by x.

Theorem 3.1. Let L be a semisimple Lie algebra, H a maximal toral subalgebra, and

Φ ⊂ H∗ the set of roots of L (relative to H), and

L = H +
⊕
α∈Φ

Lα.

Let E be Euclidean space, where dimE = ℓ over R. Then

(a) Φ spans E and 0 does not belong to Φ.

(b) If α is a root, then −α is a root. No other scalar multiple of α is a root.

(c) If α, β ∈ Φ, reflecting β across the hyperplane perpendicular to α through the

origin, the result of which we can calculate using the formula

β − 2(β, α)

(α, α)
α,

is a root.

(d) If α, β ∈ Φ, then
2(β, α)

(α, α)
∈ Z.

Owing to the importance of the formula

2
(β, α)

(α, α)

in these properties, and related calculations, a common shorthand for this formula

is ⟨β, α⟩. In particular, the last of these properties is often written as “⟨α, β⟩ is an

integer.” The integers so calculated are referred to as Cartan integers .

A fully detailed proof can be found in Chapter 2 of [15], across several subsections.

In particular, the third and fourth subsections of Section 8 prove the properties of

such a set of roots, and the fifth subsection summarizes them.

36



These properties overlap; the third, related to reflection across hyperplanes, is

particularly influential, and is related to Weyl groups, which we will discuss further

when an important example is at hand. For example, reflecting any root α across

the hyperplane defined by itself must give −α as another root, as is required by the

second of these properties.

More intricately, the property that ⟨α, β⟩ is an integer helps show why no scalar

multiples of roots, except k = ±1, are themselves roots. To see why, we use some

properties of dot products and trigonometry to find a technique for calculating Cartan

integers related to the angle between roots θ, and consider the θ = 0 case.

Since the dot product has the properties that (α, β) = |α||β| cos θ and (α, α) =

|α|2, we can calculate ⟨α, β⟩ as follows:

⟨α, β⟩ = 2
(α, β)

(β, β)
= 2

|α||β| cos θ
|β|2

= 2
|α| cos θ

|β|
.

In such a case, we would have θ = 0, so cos θ = 1. (It suffices to consider the positive

case because any negative scalar multiple of α would be a positive scalar multiple of

−α.) Then, taking the fact that ⟨α, β⟩ = 2|α| cos θ/|β| is some integer n between 0

and 4 inclusive, we may restrict the possible values of k by calculating:

2
|α| cos θ

|β|
= n

2
|α|
|β|

= n

|β|
2|α|

=
1

n

|β| = 2

n
|α|,

from which we see by considering values of n that k may only be 2, 1, 2/3, or 1/2,

the case where n = 0 resulting in k undefined; but when k = 1, β is just α, which

we have no need to include twice, and as reversing the order of the roots in a pair

would allow us to switch between reciprocals, we need only consider one of 1/2 and 2.

Therefore, let us consider whether 2α/3 or 2α is a root.
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If β = 2α/3, we could equivalently say α = 3β/2, but 3/2 is not among the

allowed values of k. So, 2α/3 is not a root. Together with another limitation that

k cannot be 2, and therefore also not 1/2 or their opposites, no scalar multiple of a

root α other than −α is another root [15].

To gain a better understanding of these properties and how they apply to Lie

algebras, it is beneficial to examine them in the context of an example from a familiar

Lie algebra. Therefore, in Example 3.2 we will examine a root system of sl2(C)

3.2 Root Systems of Lie Algebras

Considering the importance of the properties from Theorem 3.1 in describing

Lie algebras, we would like to define a type of structure based on these properties.

Relative to a Cartan subalgebra H, we refer to a subset R ⊂ H∗ as a root system of

a Lie algebra L if it has the following properties:

1. The set R is finite, does not contain 0, and spans the Euclidean space E which

contains R.

2. For all α ∈ R, the only scalar multiples kα ∈ R are those where k = ±1.

3. For all α ∈ R, the reflection sα across the hyperplane perpendicular to α, defined

for calculation purposes by

sα(r) = r − 2
(r, α)

(α, α)
α,

permutes R.

4. For all α, β ∈ R,

2
(β, α)

(α, α)

is an integer.
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Example 3.2 (Root system for sl2(C)). As mentioned, a root system is relative to a

particular Cartan subalgebra. Since sl2(C) contains only a single Cartan subalgebra,

the weight space V0 generated by h, this is the Cartan subalgebra we will use.

Where α = 2h, or we may say in matrix form

α =

2 0

0 −2

 ,

I claim R = {α,−α} is a root system for sl2(C), and will show this to be true by

checking each property from the above definition.

1. The root system R is finite, does not contain 0, and spans the Euclidean space

E which contains R: By inspection, R contains two elements, neither of which

is zero. Since ℓ = 1, we are basically trying to span R; {nα} is isomorphic to R

with one possible isomorphism being f(nα) = 2n.

2. For all α ∈ R, the only scalar multiples ka ∈ R are those where k = ±1: The

only two elements of R are precisely a k = ±1 pair.

3. For all α ∈ R, the reflection sα(r) permutes R: We have two functions to check,

sα(r) and s−α(r), the first of which proceeds as follows:

sα(α) = α− 2
(α, α)

(α, α)
α

= α− 2α

= −α

sα(−α) = −α− 2
(−α, α)

(α, α)
α

= −α + 2α

= α.

By inspection, sα(r) permutes elements of R. We would compute s−α(r) the

same way, and determine that this reflection permutes R.
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4. For all α, β ∈ R, ⟨α, β⟩ is an integer: Considering the two options α and −α,

we see that it will be necessary to determine whether each of ⟨α, α⟩, ⟨α,−α⟩,

⟨−α, α⟩, and ⟨−α,−α⟩ is an integer. However, recalling the formula

⟨α, β⟩ = 2
(α, β)

(β, β)
,

and observing that we can factor -1 as needed from terms within the formula

for the dot product, we have that (−r, r) = (r,−r) = −1(r, r) and (−r,−r) =

−1 ·−1(r, r); that is, the four cases can differ only in sign, so it suffices to check

the simplest, positive, case as follows:

⟨α, α⟩ = 2
(α, α)

(α, α)

= 2 · 1 = 2.

From this we see that ⟨α, β⟩ = ±2 for any pair α, β from our proposed root

system.

Having shown that all properties hold, we may conclude that R is in fact a root

system for sl2(C).

Root systems can be illustrated and visualized in various ways which help with

understanding their properties. For example, a vector diagram for A1 can depict the

two roots α and −α as opposite vectors from a common origin (Figure 3.1). Any root

system with a single simple root—that is, a positive root which cannot be written as

a linear combination of other simple roots—would be depicted in this same way.

Figure 3.1: Root Systems of Rank 1

−α α
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Once we know a root system for a Lie algebra, we can use it to determine that

Lie algebra’s root space decomposition. First, we define the root space Lα, for each

root α, as the set of all elements of the Lie algebra such that, for any element h from

the Cartan subalgebra H, [h, x] = α(h)x:

Lα = {x ∈ L| for all h ∈ H, [h, x] = α(h)x}.

Then, the Lie algebra can be decomposed as

L = CL(H) +
⊕
α∈R

Lα,

where CL(H) denotes the centralizer in L of H—that is, the set of all elements x of

L such that [x, h] = [h, x]. But since H is maximal, CL(H) = H, so the root space

decomposition is usually more simply written as

L = H +
⊕
α∈R

Lα.

Example 3.3 (Root system decomposition of A1). We have established a root system,

{α,−α}, for A1. Based on this root system, we would like to examine the root space

decomposition of A1,

A1 = H + Lα + L−α.

We already know that H is the Cartan subalgebra generated by h. Using the

definition above for the root space Lα, the set of all elements of A1 such that [h, x] =

α(h)x (where x is a variable referring to an A1 element); but since we chose α so that

α(h) = 2, Lα is the space where [h, x] = 2x. Recognizing that this is the same as the

basic relation [h, x] = 2x where x is the usual basis element, we conclude that Lα is

the space generated by the basis element x.

Likewise, L−α is defined as the set of all elements of A1 such that [h, x] = −α(h)x =

−2x. From this we recognize the relation [h, y] = −2y, leading us to conclude that

L−α is the space generated by the basis element y. Incidentally, we also may recall
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that the root spaces Lα and L−α are the same, respectively, as the weight spaces V2

and V−2 from Section 2.4.

3.3 Abstract Root Systems

In or shortly before 1889, Killing realized that the properties of Lie algebra root

systems could be further abstracted to a purely geometric object, abstract root sys-

tems; he first mentioned them in [20], and this seems to be the first time they were

mentioned in any publication. As with so many of Killing’s ideas, Cartan confirmed

that root systems of Lie algebras and abstract root systems are equivalent, as part

of his thesis. This abstraction allows us to set aside all other complicating features

of Lie algebras and examine abstract root systems, to understand and completely

determine all simple Lie algebras over the complex numbers.

An abstract root system, R, is a subset of an ℓ-dimensional Euclidean space E

with the following properties:

1. The root system R is finite, 0 ̸∈ R, and R spans E.

2. For all α ∈ R, the only scalar multiples kα ∈ R are those where k = ±1, in

both the sense that no other scalar multiplies are permitted and the sense that

−α is necessarily a root.

3. For all α ∈ R, the reflection sα, defined for calculation purposes by

sα(r) = r − 2⟨α, β⟩α,

permutes R.

4. For all α, β ∈ R, ⟨α, β⟩ is an integer.

As they are more interesting than the case we previously saw of rank 1, where

rank refers to the dimension of the Euclidean space E spanned by the set of roots,
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we shall now determine all root systems of rank 2. Let us consider, for reasons which

will shortly become apparent, the product ⟨α, β⟩⟨β, α⟩. By closure of integers under

multiplication we know that this product is an integer; and, using the formula we just

found, we can be more specific:

⟨α, β⟩⟨β, α⟩ = 2
|α| cos θ

|β|
2
|β| cos θ

|α|
= 4 cos2 θ.

Therefore, we know that 4 cos2 θ is an integer. This is a significant constraint on θ,

the angle between roots α and β, since cos2 θ is necessarily both an element of the

closed interval from 0 to 1 and a rational number whose denominator is 4 or a factor

thereof. Furthermore, we need only consider angles between 0 and π inclusive, as we

are discussing an actual angle rather than angular motion.

cos2 θ cos θ θ

0 0 π/2

1/4 ±1/2 π/3 or 2π/3

1/2 ±
√
2/2 π/4 or 3π/4

3/4 ±
√
3/2 π/6 or 5π/6

1 ±1 0 or π

Table 3.1: Feasible angles between pairs of roots

The situation where the angle between two roots is π describes precisely the

requirement that a root’s opposite be part of the root system; thus, this angle will

appear in all root systems. We can describe the other options by the smallest angle

in each: when the smallest angle between roots in a rank 2 system is π/2 we have

A1 ×A1, while when we have π/3 and multiples thereof this is A2, π/4 and multiples

thereof describes B2, and π/6 and multiples thereof describes G2. As we cannot have

a root system with π/4 angles without π/2, nor π/6 without both π/2 and π/3 nor

the converse, nor yet both π/4 and π/6 for how that would require the disallowed
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angle π/12, we can be sure that all possible root systems of rank 2 are included

in Figure 3.2. Furthermore, we have uncovered a powerful way of classifying root

systems and their Lie algebras.

Figure 3.2: Root Systems of Rank 2

α

β

A1 × A1

α

β

A2

α

β

B2

α

β

G2

On any of these vector diagrams, we can also illustrate hyperplanes, which assist

us in examining the Weyl group of the Lie algebra. In rank 2, the hyperplanes are

one-dimensional, i.e. lines, through the origin.

Taking the specific example of A2, with α as a root on the horizontal axis, we

have hyperplanes at angles of π/2 (orthogonal to α), π/6 (orthogonal to β), and 5π/6

(orthogonal to α + β). These three hyperplanes split E into six regions, meeting at
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Figure 3.3: The Weyl Group of A2

α

β

the origin, each of which includes one root and points with θ strictly within ±π/6 of

that root; these regions are called Weyl chambers . Reflecting across any hyperplane

maps the points of one Weyl chamber to the points of another, and therefore the root

contained within one Weyl chamber to the root within another. Since we have three

reflections, which may be composed in any order, the Weyl group of A2 is isomorphic

to the dihedral group on 3 vertices; that is, to the symmetry group of an equilateral

triangle.

3.4 Classification of Root Systems

Dynkin diagrams are another important way of illustrating root systems. Named

for Evgenii Dynkin, who was also called Eugene since moving from the Soviet Union to

the United States, these diagrams illustrate roots as vertices rather than as vectors,
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and not even all roots; instead, they only illustrate simple roots , roots which are

positive and not the sum of other positive roots.

Since A1 has only one simple root, α, the Dynkin diagram representing A1 is

a single vertex. When plotting out any more complicated root system, however,

we will have more vertices, and therefore need to decide how and when to connect

them. Between any pair of roots, a Dynkin diagram—or the earlier Coxeter diagrams

which Dynkin modified—is defined as having ⟨α, β⟩⟨β, α⟩ edges, but we previously

determined that this is 4 cos2 θ. So, we will draw a single edge when the angle between

roots is π/3 or 2π/3 as seen in A2, a double edge when the angle is π/4 or 3π/4 as

seen in B2, a triple edge when the angle is π/6 or 5π/6 as seen in G2, and no edge

at all when the angle is π/2 as seen in A1 × A1. We may seem at this point to have

overlooked the possibility of drawing four edges, but this would happen when the

angle between roots is 0 or π, which we will not draw: the angle π occurs between

each root and its opposite, but we are only illustrating simple roots, while the angle

0 would occur between a root and either itself or a positive scalar multiple, but as we

have seen, root systems never contain scalar multiples other than ±1. Since drawing

a four-loop on each vertex in order to represent angle 0 between it and itself would

not be informative, we never draw four edges between vertices in a Dynkin diagram,

nor will we draw any loops.

Dynkin’s innovation, transforming Coxeter diagrams to Dynkin diagrams, was to

note that the root systems whose diagrams contain a double or triple edge are also

those with roots of varying length, and therefore to apply an inequality symbol on the

double or triple edges to indicate which is the longer and which the shorter root. This

convention makes it feasible to begin with a Dynkin diagram and work backward to

the corresponding root system and ultimately to a particular Lie algebra. Therefore,

we can use Dynkin diagrams to determine definitively what Lie algebras are possible.

Rather than Dynkin diagrams which would come later, when Cartan proved that
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Figure 3.4: Dynkin Diagrams

G2:
1 2

F4:
1 2 3 4

E8:
1 3 4 5 6 7 8

2

E7:
1 3 4 5 6 7

2

E6:
1 3 4 5 6

2

Dℓ (ℓ ≥ 4):
1 2 3 ℓ− 2ℓ− 3

ℓ− 1

ℓ

· · ·

Cℓ (ℓ ≥ 3):
1 2 3 ℓ− 1ℓ− 2 ℓ

· · ·

Bℓ (ℓ ≥ 2):
1 2 3 ℓ− 1ℓ− 2 ℓ

· · ·

Aℓ (ℓ ≥ 1):
1 2 3 ℓ− 1 ℓ

· · ·

the simple complex Lie algebras whose Dynkin diagrams are given in Figure 3.4 are,

up to isomorphism, the only simple complex Lie algebras, he stated the reasons in
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terms of Cartan matrices , which are matrices whose entries are the Cartan integers.

However, his reasons were equivalent to these.

We call a proposed set of n simple roots admissible if the roots are linearly in-

dependent, (α, α) = 1, (α, β) ≤ 0 whenever α and β are distinct, and 4(α, β)2 is 0,

1, 2, or 3. Furthermore, an admissible Dynkin diagram is the Dynkin diagram of

an admissible set of simple roots. We may note that 4(α, β)2 is a simplified formula

for the number of edges between vertices (i.e. the product of symmetrically-located,

though possibly distinct, Cartan integers ⟨α, β⟩⟨β, α⟩) as follows:

⟨α, β⟩⟨β, α⟩ = 2
(α, β)

(β, β)
2
(β, α)

(α, α)

= 4
(α, β)2

(α, α)(β, β)

= 4(α, β)2.

Such a set of roots or vertices—we will use whichever terminology is convenient at the

time, while understanding that the properties apply in corresponding ways to both

the roots and the vertices—has certain properties.

1. As removing some roots could not introduce any inadmissible traits to the set,

any subset of an admissible set of roots is itself another admissible set of roots;

that is, a root system for a smaller Lie algebra, at least one isomorphic copy of

which is contained as a subset of the original Lie algebra.

2. Recalling that the set contains n vertices, the number of directly connected

pairs of vertices is at most n − 1. The reason for this is somewhat intricate.

Since the roots are linearly independent, if we define ϵ as the sum of the roots,

we know ϵ ̸= 0, so (ϵ, ϵ) > 0; and, we could calculate (ϵ, ϵ) precisely as

n∑
i=1,j=1

(αi, αj).
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Of the terms in this summation, n have i = j, so (αi, αj) = (αi, αi) = 1; so, the

total of these n terms will be n. The remaining terms may be paired (αi, αj)

with (αj, αi). Together these properties of terms allow us to rewrite:

0 < n+ 2
n∑

i=1

i−1∑
j=1

(αi, αj)

−n < 2
n∑

i=1

i−1∑
j=1

(αi, αj)

n > 2
n∑

i=1

i−1∑
j=1

(αi, αj)

While we do not know the value of each (αi, αj), we know that it is related to

the number of edges between αi and αj: 0 if they are not connected, and at

most −1/2 if they are connected. Let us call the number of directly linked pairs

of vertices m; then, the total
∑n

i=1

∑i−1
j=1(αi, αj) is at most −(1/2)m, giving us

n > −2
−1

2
m = m,

that is, the number of vertices must exceed the number of pairs of directly linked

vertices.

3. As a consequence of items 1 and 2, we know that an admissible graph contains

no cycles, since if an admissible graph did contain a cycle, we could remove the

k vertices which are not part of the cycle to make an admissible graph which

had n vertices and n directly linked pairs of vertices.

4. Each vertex is an end for no more than three edges. To see why, let us examine

the behavior of a vertex α, around which we will refer to each of its k neighbors

as βi for some i ≤ k. To prevent cycles, we must have that each (βi, βj) = 0;

that is, all the neighbors of α are orthogonal to each other.

Now let us select β0 from within S = span{α, βi} such that β0 is orthogonal to

each previous βi and |β0| = 1; then, {βi} where 0 ≤ i ≤ k forms an orthonormal
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basis for S, which contains α, so α can be described as the total of projection

vectors onto βi. From this fact, we can calculate:

α =
k∑

i=0

(α, βi)βi

(α, α) =
k∑

i=0

(α, βi)(βi, α)

1 =
k∑

i=0

(α, βi)
2.

Since β0 replaced α as a generator of S, α and β are not orthogonal, so (α, β0)
2 >

0, allowing us to further calculate:

1 >
k∑

i=1

(α, βi)
2

4 >
k∑

i=1

4(α, βi)
2.

But now each of those terms is the number of edges between α and βi. As this

sum across all neighbors of α is strictly less than four, there can be no more

than three edges with each vertex as an end.

An immediate consequence of this fact is that if a pair of vertices are connected

to each other by a triple edge, they cannot be connected to anything else. So,

the only connected Dynkin diagram with a triple edge is the Dynkin diagram

for G2.

5. Whenever an admissible Dynkin diagram contains a line graph, i.e. a sequence

of n vertices αi connected by single edges, this line can be collapsed to a single

vertex called α and calculated as α =
∑n

i=1 αi. The resulting graph is another

admissible Dynkin diagram, which we can verify by checking the properties that

(α, α) = 1 and 4(α, β)2 is an allowed value (0, 1, 2, or 3) whenever β is a vertex

from off the line.

50



We previously calculated

(α, α) = n+ 2
n∑

i=1

i−1∑
j=1

(αi, αj).

But since (αi, αj) = −1/2 whenever j = i+ 1, which happens n− 1 times, and

0 otherwise, we can further simplify and say

(α, α) = n+ 2 · −1

2
· (n− 1) = 1.

As for the second property we must check, we will use the fact that (α, β) =∑n
i=1(αi, β) since any other root β necessarily has an edge in common with no

more than one vertex αi: otherwise, there would have been a cycle in the original

Dynkin diagram, which is not admissible. If none at all, 4(α, β)2 = 0. If there

is an i for which αi and β share an edge, (α, β) = (αi, β), so 4(α, β)2 = (αi, β)
2.

We can summarize these facts by saying that α inherits the edges of the αi

vertices.

Since α inherits the edges of the αi vertices, we can further conclude that no

connected Dynkin diagrams contains two double edges, nor two branch vertices

(where a branch vertex is a vertex directly connected by single edges with three

different vertices), nor one of each. If there were two such features, we could

collapse a path between them, creating a vertex with four edges, which is not

admissible.

6. To summarize our work up to this point, an admissible graph may have at most

one special feature distinguishing itself from a line of singly-connected vertices.

It may contain no special features at all, or a branch vertex, or a double edge,

or a triple edge. However, with the exception of the triple edge (in which case

the triple edge and its two vertices are the entire admissible graph), we have

not shown what else may happen in the two or three directions extended from

that special feature.
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7. To extract a formula to help us further describe line subgraphs of Dynkin di-

agrams, let us take a line graph with ultimate endpoints α1 and αn, define

a =
∑n

i=1 ivi, and calculate (a, a):

(a, a) = (
n∑

i=1

ivi,

n∑
i=1

ivi)

=
n∑

i=1

n∑
j=1

(iαi, jαj)

=
n∑

i=1

n∑
j=1

ij(αi, αj).

By separately considering terms where i = j, so ij(αi, αj) = i2(αi, αi), and

i ̸= j, so we can as before pair each with the term with reversed subscripts, we

can split the summation to

(a, a) =
n∑

i=1

i2(αi, αi) + 2
n∑

i=1

i∑
j=1

ij(αi, αj).

But like before, (αi, αj) = −1/2 when j = i−1 which happens n−1 times, and

0 otherwise, and (αi, αi) = 1, so

(a, a) =
n∑

i=1

i2 + 2
n−1∑
i=1

(i(i+ 1)
−1

2
)

= n2 −
n−1∑
i=1

i2 −
n−1∑
i=1

(i2 + i)

= n2 −
n−1∑
i=1

(i2 − i2 − i))

= n2 +
n−1∑
i=1

i

= n2 +
n(n− 1)

2

=
n2 + n

2
.
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8. Next we apply the formula (a, a) = n2+n
2

to an admissible Dynkin diagram

which contains a double edge and extends with line subgraphs from each vertex

at the end of the double edge. Starting with the longer of the two subgraphs

if they are not the same length, if we name the n roots in one line subgraph

αi sequentially from the outer end toward the vertex which is one end of the

double edge, then define a as in item 7, and similarly name the m roots in the

other line subgraph βi and correspondingly define b, we have,

(a, a) =
n2 + n

2
, (b, b) =

m2 +m

2
.

We already know n ≥ m, but we can find out more about the possible values of

n and m by considering (a, b); owing to other available information, it is actu-

ally more convenient to begin with (a, b)2. Using the facts from the structure

of the Dynkin diagram that αn and βm are connected by a double edge, i.e.

4(αn, βm)
2 = 2 therefore (αn, βm)

2 = 1/2, and (αi, βj) = 0 for all other values

of i and/or j, we can calculate:

(a, b)2 = (nαn,mβm)
2

= [nm(αn, βm)]
2

=
n2m2

2
.

We can also use the Cauchy-Schwarz inequality [8] to investigate (a, b)2. Since a

and b are constructed in such a way as to not be scalar multiples of each other,

(a, b)2 < (a, a)(b, b).

53



Combining these formulas, we find

n2m2

2
<

n(n+ 1)

2

m(m+ 1)

2

2n2m2 < n(n+ 1)m(m+ 1)

2nm < nm+m+ n+ 1

0 < −nm+m+ n+ 1

0 > nm−m− n− 1.

For reasons which will shortly become apparent, we shall now investigate the

product of the integers one less than each of n and m:

(n− 1)(m− 1) = nm−m− n+ 1

= nm−m− n− 1 + 2

< 0 + 2.

So we see that the integers one less than each of m and n are a factor pair for

a product which is less than 2. If that product is 0, then m = 1 and n may be

any positive whole number; this describes the diagrams for Bℓ and Cℓ. On the

other hand, if that product is 1, it must be the case that n− 1 = m− 1 = 1, in

which case n = m = 2, which describes the F4 diagrams.

That is, the only Lie algebras whose Dynkin diagrams have a double edge are

Bℓ, Cℓ, and F4.

9. Finally, let us consider the cases where a Dynkin diagram has one special feature,

but rather than a double edge, it is a branch vertex, which we may name δ.

Like before, we shall name the other vertices by the line in which they appear,

numbered from outside to inside, with αn, βm, and γp being the neighbors of

δ, with the αi branch being the longest, the βi branch being next longest, and

γi the shortest (though none of these branch length comparisons are strict);
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that is, n ≥ m ≥ p. Also like before, for each branch we shall have a vector,

a and b as before and c correspondingly made from the γi roots. Our goal is

to determine valid combinations for n, m, and p, the lengths of the three lines

extending from the branch vertex.

To form an orthonormal basis for a space containing δ, take a′ = a/|a|, b′ = b/|b|,

and c′ = c/|c|, and let d′ be some unit vector orthogonal to a, b, and c, but not

orthogonal to δ so that we will have (δ, d′) ̸= 0. Then we can write δ as

δ = (δ, a′)a′ + (δ, b′)b′ + (δ, c′)c′ + (δ, d′)d′,

from which we may further calculate

(δ, δ) = ([(δ, a′)a′ + (δ, b′)b′ + (δ, c′)c′ + (δ, d′)d′], δ)

1 = (δ, a′)2 + (δ, b′)2 + (δ, c′)2 + (δ, d′)2

1− (δ, d′)2 = (δ, a′)2 + (δ, b′)2 + (δ, c′)2

1 > (δ, a′)2 + (δ, b′)2 + (δ, c′)2.

Now we would like to rewrite each term of the right hand side of this inequality.

Beginning with the first term, we have

(δ, a′)2 =

(
δ,

1

|a|
a

)2

=
1

|a|2
(δ, a)2

=
1

(a, a)
(δ, nαn)

2.

=
1

(a, a)

(
n∑

i=1

(δ, iαi)

)2

.

At this point, we will find it useful to recall the formula for (α, α). We will also

take advantage of the fact that (δ, αi) = 1/2 because these are roots which do

not share an edge, as well as the fact that the only nonzero term of
∑n

i=1 is the
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nth term, (δ, nαn), to continue simplifying:

(δ, a′)2 =
2

n2 + n
(δ, nαn)

2

=
2

n2 + n
[n(δ, αn)]

2

=
2n2

n2 + n
(
1

2
)2

=
2n2

4n(n+ 1)

=
n

2(n+ 1)
.

Applying the same pattern to the second and third terms, we obtain

(δ, b′)2 =
m

2(m+ 1)
, (δ, c′)2 =

p

2(p+ 1)
,

which we can substitute into the inequality from above, yielding

1 >
n

2(n+ 1)
+

m

2(m+ 1)
+

p

2(p+ 1)
.

A sequence of basic algebra steps in [28] shows that this is equivalent to

1

n+ 1
+

1

m+ 1
+

1

p+ 1
> 1.

Now bearing in mind both this inequality and n ≥ m ≥ p, let us consider

possible triplets (n,m, p). First trying a simple case where n = m = p, their

value is, we have 1/2 + 1/2 + 1/2 = 3/2, which complies with the inequality;

this is D4. Also, we can notice from this case that 1/(n + 1) + 1/2 + 1/2 > 1

for any value of n; therefore, if m = p = 1, n may have any value, giving Dn+3.

However, if n = m = p = 2, we have 1/3 + 1/3 + 1/3 = 1, which is not strictly

greater than 1, so is not an admissible diagram.

One feature we notice from these calculations is that the 1/(p+1) contribution

to the total is the greatest, due to p being the smallest of the three branch
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lengths. Therefore we must have that

1

p+ 1
>

1

3
,

so p must be less than 2; that is, p = 1. Then we can say

1

n+ 1
+

1

m+ 1
>

1

2
,

and similarly infer that m < 3, so either m = 1 or m = 2. As we saw before, if

m = p = 1, n is unbounded and we have Dn+3, so let us consider the case when

p = 1 and m = 2:

1

n+ 1
+

1

m+ 1
+

1

p+ 1
> 1

1

n+ 1
+

1

3
+

1

2
> 1

1

n+ 1
>

1

6

6 > n+ 1

5 > n.

If (n,m, p) = (4, 2, 1), we have E8; if (n,m, p) = (3, 2, 1) we have E7; and if

(n,m, p) = (2, 2, 1) we have E6.

Therefore, the Dynkin diagrams illustrated in Figure 3.4 are the only admissible

Dynkin diagrams. As a consequence of this, we have our main result:

Theorem 3.4. The only simple complex Lie algebras are those from the four classical

families Aℓ, Bℓ, Cℓ, and Dℓ and the five exceptional algebras E6, E7, E8, F4, and G2.

Proof. We have already done almost all the work for this result. It only remains to

point out that, as we know all the admissible Dynkin diagrams, and a Dynkin diagram

determines a simple complex Lie algebra, we also know all the simple complex Lie

algebras.
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This unusually tidy set of possibilities is an exceptionally useful feature of Lie

algebra. Together with the close connection between Lie algebras and the trans-

formation groups and symmetries which attracted Lie and Killing’s attention, this

means that mathematicians can be well on their way to understanding a wide variety

of phenomena by understanding a comparatively small set of structures.

Though the result is tidy, the story behind the result is a tangled tapestry of human

lives: the convergent ideas and insights, but also rivalry, of Sophus Lie and Wilhelm

Killing; the ability of Friedrick Engel to communicate with other mathematicians

but not to understand the jealousy he provoked; Élie Cartan’s fortune, and all of

ours, that he had teachers through whose attention he was able to be plucked from

obscurity; the escapes of Hermann Weyl and Evgenii Dynkin from hostile countries

to the United States where their ideas could reach the main stream of mathematical

thought.

By examining and appreciating the motivations and processes of mathematicians

before us, we can better understand how mathematics in general and Lie algebra in

particular continue to serve as fields of exploration for mathematicians today and in

the future.
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4 Appendix

4.1 Vector Spaces

Vector spaces over a field F are commonly defined as having the following prop-

erties, for any vectors u, v, w from the vector space, and scalars a, b from the field:

1. Associativity of vector addition: (u+ v) + w = u+ (v + w)

2. Commutativity of vector addition: u+ v = v + u

3. Identity element under vector addition: 0 such that v + 0 = v

4. Inverse elements under vector addition: −v such that v + (−v) = 0

5. Compatible behavior of scalar multiplication generally: a(bv) = (ab)v

6. Compatible behavior of scalar multiplication by the field’s multiplicative iden-

tity element: 1v = v

7. Distributivity of scalar multiplication across vector addition: a(u+v) = au+av

8. Distributivity of scalar multiplication across field addition: (a+ b)v = ab+ av
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