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ABSTRACT

In this work, we provide an overview of the Cox proportional hazards model for

time to event or survival analysis and the notion of propensity score matching to deal

with confounding factors. A full analysis is reported in Chapter 2 concerning mortality

for in-center dialysis patients with sickle cell disease to demonstrate the application

of a general analysis strategy that has some logistical benefits over more traditional

approaches to accounting for confounding variables. We also provide some insight

and discussions on the challenges and future research questions that will emerge when

trying to implement this strategy as a monitoring tool over time.
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1 INTRODUCTION

Survival analysis is a branch of statistics that analyzes the expected duration of

time until an event occurs. Often, survival analysis is used in medical research, and

the event being considered is death of a patient, hence the name survival analysis.

This thesis is motivated by an internship experience working with Fresenius Medical

Care for the Fall Semester of 2022 and Spring Semester of 2023. Fresenius Medical

Care creates equipment for and provides dialysis treatments for patients with kidney

disease. As there is no known cure for kidney disease except for a kidney transplant,

patients often undergo dialysis treatments regularly for the rest of their lives. Fre-

senius collects data from their clinics in order to analyze and improve outcomes for

patients. Fresenius is with patients for long periods of time, with typical outcomes for

patients being either death or transplantation. Survival analysis allows Fresenius to

get an idea of how long a patient on dialysis will live and assess what clinical factors

and treatment strategies impact the outcome.

The thesis is structured as follows. In this chapter, a review is given on the main

methodology of survival analysis in context of using a Cox proportional hazard model

to compare two populations. To help the discussion, a motivating example using a

publicly available data set is provided. Many survival analyses are conducted with

data generated from observational studies. While this can be handled including ad-

ditional covariates in the model, we introduce an alternative method for adjustment

using propensity score matching. In Chapter 2, our focus will be on the analysis of the

sickle cell disease (SCD) data. A thorough review of the analysis plan, data collection,

data processing, analysis, and conclusions is provided. Chapter 3 provides a discus-

sion of current challenges and solutions when performing survival analyses in more

1



adaptive but realistic ways. In Chapter 4, a brief discussion of life-lessons and general

experiences of working in the hospital sector are discussed along with suggestions of

future work in regards to propensity score matching and survival analysis.

1.1 Survival Analysis By Example

The example dataset was collected from patients with advanced lung cancer from

the North Central Cancer Treatment Group [3]. The first six rows of the data set are

provided in Figure 1.1.

Figure 1.1: Lung Cancer Data Set

There are two main variables to focus on. The variable “time” is the survival time

of the patients in the clinic until either an event occurs (in this case, death), or the

data is censored. Censoring is a common practice in survival analysis to let us know

that at the time the study stopped and the data was collected some patients had

not experienced the event of interest yet. We are still aware of how long they have

survived currently but it is an underestimate of what their true survival time actually

will be. The censoring described is referred to as right censored. In practicality, the

reason for the censoring can be for additional reasons other than the termination of

the study. This could, for example, be a patient leaving the trial for personal reasons

or a completely different event occurred that altered our ability to follow up on the

patient’s status. In this dataset, a 1 in the status category indicates that the patient

died, and a 2 indicates that the data has been censored.

In this dataset, the status variable and takes two values 1 and 2 that indicate the

2



different censoring statuses. There is nothing special about the choice of values for

this variable. For example, most of the time, 0 and 1 are used instead. As long as the

number indicating censoring is specified, any value for censoring status is allowed.

The additional variables listed in Figure 1.1 provide additional information for

the patients. Performance scores are ratings that describe how well the patient can

perform usual daily activities. For example, “ph.ecog” is the physician’s rating of

the patient’s status on a scale of 0-5 using the Eastern Cooperative Oncology Group

(ECOG) system. The ECOG system is graded on a 0-5 scale, with 0 being peak

condition, and 5 being death. The Karnofsky system is a similar system to the

ECOG system, but on a 100 point scale. Physicians and patients both rated patient’s

condition on this scale. Lastly, there are other measurements such as how many

calories are in a patient’s meal, and how much weight the patient has lost. While all

of these variables may help determine how long the person survives, we will discuss

how to handle these situations a little later. For now, we will introduce key definitions

and general framework of a survivor model.

With both survival time and the event status of all of the patients, we must have

some sort of function to describe survival data. Three functions that are of interest to

us are the survivor function, the hazard function, and the cumulative hazard function.

For a more detailed discussion, see [1]. Let the actual survival time of an individual

be t, and let T be the random variable associated with the survival time. Suppose

that this random variable has a probability distribution with underlying probability

density function f(t). The distribution function of T is then given by

F (t) = P (T ≤ t) =

∫ t

0

f(u)du. (1.1)

This function represents the probability that the survival time is less than some value

t. This function is called the cumulative incidence function because it summarizes

the cumulative probability of an event occurring before time t. The survivor function,

3



S(t), is defined to be the probability that the survival time is greater than t, so

S(t) = P (T > t) = 1− F (t). (1.2)

The hazard function is used to express the risk, or hazard, of an event occurring

for an individual at some time t, conditional on that individual surviving (or not

having an event happen yet) until that time. The hazard function can be defined as

follows

h(t) = lim
δt→0

Pr(t ≤ T < t+ δt|T ≥ t)

δt
(1.3)

The notion of the definition is as follows. Consider a time interval (t, t + δt). The

numerator of this expression is the conditional probability that an event will occur

within this interval, given that is has not occurred before. The denominator is the

width of this interval. Dividing the numerator by the denominator gives us a rate of

event occurrence per unit of time and taking the limit as the interval width goes to

zero gives us an instantaneous rate of occurrence.

Next, we can use the properties of conditional probabilities to show some useful

relationships. Consider the conditional probability in the numerator of our hazard

function. Due to the properties of conditional probabilities, it can be expressed as

P (t ≤ T < t+ δt)

P (T ≥ t)
(1.4)

which is equal to
F (t+ δt)− F (t)

S(t)
. (1.5)

Upon reexamining the hazard function definition, we can see that

h(t) = lim
δt→0

(
F (t+ δt)− F (t)

δt
)

1

S(t)
. (1.6)

Note that the quantity in parentheses,

lim
δt→0

F (t+ δt)− F (t)

δt
(1.7)
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is the definition of the derivative of F (t), the density function f(t). Hence, we arrive

at the result

h(t) =
f(t)

S(t)
. (1.8)

With real survival data, censoring always comes into play, so the survival function

S(t) cannot simply be estimated as a simple step function. The most commonly used

estimate for survival functions is the Kaplan-Meier estimate of the survival function

[1]. If we consider time intervals tj, where each j indicates at least one event has

occurred, and dj, the number of events (or deaths) that occurred in the interval tj,

and nj, the number of individuals known to have not have an event occur or been

censored up to time tj the Kaplan-Meier estimator is defined as

Ŝ(t) =
∏
i:ti≤t

ni − di
ni

(1.9)

and is the estimated probability that a subject survives longer than time t.

The Kaplan-Meier estimate for the lung data set is displayed in Figure 1.2.
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Figure 1.2: Kaplan-Meier Estimate

As shown, the Kaplan-Meier function gives an easily interpretable visualization of

how long patients are expected to survive over time. Each ”+” on the figure indicates

that a patient’s follow-up time was censored at that point. Confidence intervals can

also be calculated and are included within the graph.

For this thesis, we are primarily concerned with the scenario where we wish to

compare survival times between two groups. First, consider the Kaplan-Meier func-

tion for the lung cancer data, but stratified by sex.

6



Figure 1.3: Kaplan-Meier Graph Separated by Sex

It seems possible that there is a difference in the distribution of survival times

between the two sexes based on the Kaplan-Meier estimates. We need a method

that allows us to answer the following questions: does this difference exist, and if so,

how large is it? There are multiple methods that exist to tackle these questions, but

the method we are focused on is the Cox Proportional-Hazards Model. The term

“proportional-hazards” here is important, as it is an underlying assumption we must

make in order to use this method. Let h1(t) be the hazard function for group 1 and

let h2(t) be the hazard function for group 2. If the two hazards are proportional,

then we can say that h1(t) = φh2(t), where φ is a constant that does not depend

on time. This assumption can be assessed informally by looking at a graph of the

estimated survival functions. If the two functions do not cross, then the assumption

is probably met. For example, the estimates in Figure 1.3 show that the lines for

male and female do not cross, and therefore we see that our assumption has been

met. This assumption can be tested more rigorously with the “cox.zph” function in
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R’s survival package.

Under the proportional hazard model assumption h1(t) = φh2(t), φ is known as

the relative hazard or hazard ratio. If φ > 1, then we could say that the hazard of

death at time t is greater for group 1. If φ < 1, we would say the opposite.

Next, we can re-parameterize φ. Let φ = eβ. Then β = ln(φ) and now a value

greater than 1 for φ will lead to a positive value for β and a value between 0 and 1

will lead to a negative value for β (φ is a ratio, so φ > 0).

The purpose of this parameterization is a common strategy among the generalized

linear model framework [7]. The parameter φ is strictly positive and when trying to

include covariates as one would attempt to do with multiple linear regression, the

linear regression equation to model the hazard ratio φ = β0 + β1x1 + ...+ βpxp, is not

guaranteed to keep φ strictly positive. However, eφ = β0 + β1x1 + ... + βpxp will be

strictly positive.

If we assume a scenario with a control and treatment group, let x1 be an indicator

variable such that x1 = 0 designates the control group, and x1 = 1 designates the

treatment group. Then our hazard function can now be expressed as

h(t) = eβxih0(t) (1.10)

This is the Cox Proportional Hazards model with one predictor. In this function,

h0(t) essentially serves as our intercept and represents the hazard function for the

reference group x1 = 0. Under the null hypothesis, it is the common hazard function

characterizing both groups.

If we have more predictor variables, then the model can be extended similar to that

of multiple linear regression. The full Cox Proportional Hazards model is expressed

as

h(t) = (eβ1x1+β2x2+...+βnxn)h0(t) (1.11)
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which can be represented as

h(t)

h0(t)
= eβ1x1+β2x2+...+βnxn (1.12)

and finally

ln
h(t)

h0(t)
= β1x1 + β2x2 + ...+ βnxn (1.13)

Since the predictor variables are linked to φ, the general model is in a form that

is easily interpretable. The regression coefficients, β1, ..., βn, represent the expected

change in the natural log of the hazard ratio for one unit change in X, holding all

other predictors constant. Using software, the hazard ratio across two groups can

easily be estimated after fitting the proportional hazards model, as well as a confi-

dence interval for this hazard ratio. Parameter estimation is conducted by maximum

likelihood (MLE) and hypothesis testing and confidence intervals are conducted using

the asymptotic properties of MLE’s [1].

For the lung cancer data, if we are interested estimating the effect that sex has

on survival, we can fit the following Cox proportional model:

ln
h(t)

h0(t)
= β1Sex (1.14)

where Sex is a dummy variable coded as 1 for females and 0 for males.

Figure 1.4 provides the fit and summary of results using the R package gtsum-

mary. The estimate of the hazard ratio, or HR for short, is eβ̂x1 = 0.59. We see that

1 is not within our confidence interval and our p-value, testing H0 : β1 = 0 versus

Ha : β1 6= 0 is significant (.001) concluding that the hazard ratio is different from 1.

Based on the interval, we are 95% confident that the hazard for female patients is

0.42 to 0.82 times less than the male patients. This is reflected in Figure 1.3, as the

survival curve for females is consistently higher than the curve for males.

This example analysis and discussion highlights that the Cox proportional hazard

model can be utilized for a simple two group analysis but has the flexibility to include

9



Figure 1.4: Hazard Ratio

additional explanatory variables in the model to allow for estimates of the HR to be

adjusted for other potential confounding variables in the model. For our purposes, we

are mostly interested in the one predictor case, as we will be using propensity score

matching to control for confounding factors across the two groups. This is a standard

practice for many researchers and will be discussed in the next section.

1.2 Propensity Score Matching

Because clinical studies are often observational studies and are thus not random-

ized experiments, often times potential bias from confounding variables, or covariates,

must be considered. Propensity Score Matching is a method commonly used in clin-

ical settings that attempts to reduce this bias when comparing outcomes across two

groups [8]. The process of Propensity Score Matching is typically done by estimating

propensity scores for each patient, which are generally created by building a logistic

regression model using the treatment group status as the response and any potential

confounding variables as the explanatory variables. Propensity scores in this case

are the predicted probabilities of an individual patient being in the treatment group

based on the confounding variables in the logistic model. As data sets get increas-

ingly large, one could theoretically use non-parametric classification models, such as

random forests and classification trees, to generate the propensity scores.

After propensity scores are calculated, the main goal is to down-sample the orig-

inal data set so that the smaller data set exhibits properties of a randomized exper-
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iment. Primarily, the confounding variables are evenly distributed across the treat-

ment groups. To do this, we wish to pair up patients, one patient in the treatment

group and one patient in the control group, that have the same propensity score.

There are various methods that could be used for matching, but the method that is

be used for our purposes is generally be nearest neighbor matching [9]. With this

method, patients in the treatment group are be matched with patients from the con-

trol group based on their propensity scores being as close as possible. In many clinical

settings, the number of observations in the treatment group is smaller than that of

the control group. Because of this, each observation from the treatment group is

matched to its ”closest” observation among the control group. This process yields

only the removal of observations from the treatment group generally, as most of the

time the control group will be much larger than the treatment group. Oftentimes, if

the control pool is large enough, matching will be done in a ratio. For example, 3:1

matching would mean that 3 patients from the control pool are be matched with 1

patient from the treatment pool.

In theory, after matching is done, the covariates are much more balanced between

the treatment and control groups in the matched patients compared to the covariates

across both groups when considering all patients. Typically, this is measured by

comparing the difference of the mean between the control and treatment groups before

and after matching for every independent variable included in the matching process.

This difference is then standardized by dividing by the standard deviation of the

treatment group before matching.

Below is an example from a 2018 study on patients with Chron’s disease [5].

Various covariates were used is the propensity score calculation and the standardized

mean differences between groups were compared before and after matching.

For the points labeled “unadjusted”, these values are the difference in means

(standardized) between the treatment and control groups before matching, while the

11



Figure 1.5: Example of Covariate Balance before and after Propensity Score Matching

points labeled “adjusted” are the differences after matching. For variables that are

categorical, dummy variables were assigned to each potential level. In that case,

the absolute mean difference shown is the difference between the proportions of the

treatment and control group that have that trait. For example, dummy variables

were assigned for both “smokers” and “non-smokers”, and the shown differences are

the difference of the proportions of the control and treatment groups that have each

trait.

Overall, after matching, the absolute standardized mean difference for each co-

variate was kept below .1 in this case. Thus, it is evident that the covariates are much

12



more balanced after propensity score matching. After propensity score matching, the

researchers would be able to proceed with the analysis between treatment and con-

trol groups without worrying about potential bias caused by covariates such as colic

localization, smoker vs. non-smoker status, etc.

A common question asked among analysts who have not been exposed to propen-

sity score matching is ”why bother when you can just include the confounding vari-

ables in your Cox proportional hazard model?”. There are a few logistic advantages.

The first is in regard to the process of building a model with multiple explanatory

variables. If the number of potential confounding variables is large, the modeler

must make numerous decisions such as feature selection, transformations, and adding

model complexity such as interaction terms. These time-consuming processes are

what allow us to obtain an estimate of the hazard ratio between two groups holding

the confounding variables fixed. The matching process effectively does this and only

a single predictor is needed to estimate the hazard ratio. The second advantage is

the simplicity of the final model and the ease of communication of the entire analy-

sis process. For any given analysis, a traditional approach will be a unique process

that must effectively be explained each time. Under the propensity score matching

framework, the focus is just building a predictive model that can produce accurate

predictive probabilities, comparing matching results such as the output displayed in

Figure 1.5, and a simple Cox model with one explanatory variable is applied. Another

concern may be that a potentially large amount of data in the control pool could be

lost in the process of propensity score matching. With this in mind, propensity score

matching should only be performed if it is feasible that subjects in the treatment

group could have reasonably come from the control group.
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2 EFFECTS OF SICKLE CELL DISEASE ON DIALYSIS

In this chapter a report is provided on one of the primary analyses that was

completed during an internship experience with Fresenius Medical Care on patients

with sickle cell disease (SCD) who received in-center care from Fresenius. Sickle cell

disease is an inherited blood disorder that causes a problem with hemoglobin in the

body. Normally these red blood cells are disc-shaped and flexible enough to move

through the blood vessels, but a patient with SCD has sickle shaped red blood cells.

This causes complications and makes it difficult for the cells to bend or move easily,

and can block blood flow to the rest of the body or cause other medical complications

[6]. SCD is a genetic mutation that evolved to combat malaria, so it is primarily

found in patients from parts of the world where malaria is an issue. For that reason,

SCD is primarily found in people of African descent, however a person of any race or

ethnicity can have SCD. The goal of this report was to quantify the effect of sickle cell

disease on mortality for dialysis patients. In doing so, Fresenius Medical Care and

other dialysis providers may be able to better understand how SCD impacts a patient

health, and ultimately provide better care. The report is summarized in 5 sections

that provide the study design, data collection and cleaning processes, propensity

score matching, interpretation of results from a cox proportional hazard model, and

additional discussions.

2.1 Study Design and Data Collection

In-center dialysis patients with and without SCD treated by Fresenius Medical

Care from 1/1/2017 to 12/31/2021 were observed and regular measurements were col-

lected including basic demographic data, what method of access was used for dialysis,
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hospitalizations, lab measurements, quality of life data, etc. The data is deidentified

so that it is not possible to identify any patients based on their information. Basic

steps for deidentification include each patient being assigned a random ID, as well as

all dates recorded being relative to the patient’s first date of dialysis (FDD).

Because not all patients started dialysis with Fresenius Medical Care, it is possible

that not all medical data for a patient is recorded. However, a patient’s first date of

dialysis (FDD) is always well recorded, regardless of the dialysis provider. All recorded

dates for a patient are relative to this FDD, meaning it is possible to determine

whether a patient started dialysis with Fresenius, or if they started dialysis somewhere

else and then became a patient with Fresenius. With this in mind, there are two dates

that are important for each patient: the patient’s first date of dialysis (FDD) and the

patient’s first Fresenius date (FFD). For some patients these two dates may align,

and for others they will not.

For each patient, there is a baseline period and a performance period. A patient’s

baseline period is considered 6 months from First Fresenius Date (FFD) and follow-

up/performance period is thereafter. The day a patient’s performance period starts

is considered the index date for that patient. Performance period ends with last day

of follow-up or first occurring event among death or transplantation.

Figure 2.1: Study Timeline

Patients that started dialysis with Fresenius and patients that started dialysis

elsewhere and then came to Fresenius make up two different populations. These two

populations are referred to as the ”incident” and ”prevalent” groups respectively,

and a separate analysis was done for each group. In this study, a patient’s inci-

dence/prevalence status was determined based on the patient’s first fresenius date. If
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the patient’s first Fresenius date was within 120 days of the patient’s first date of dial-

ysis, then the patient is considered an incident patient. Otherwise, the patient falls

into the prevalent group. With this distinction, there will be two separate analysis

done: one for the incident population, and one for the prevalent population.

2.2 Data Processing and Summary Statistics

At the start of the project, data was pulled from all Fresenius Medical Care

patients from 1/1/2017 to 12/31/2021. From the various sources of data, the first

Fresenius date for each patient was found, along with statistics for each patient’s

baseline period. The total number of patients to begin with was 541,978. From here,

patients who did not have a 180 day baseline period due to death, transplantation,

or any other reason were not considered. Follow-up time for patients for which an

event did not occur was calculated by subtracting the index date for a patient from

the last time a patient showed up in any data. Lastly, after many discussions it

was decided that the study would apply to patients who only received in-center care

during the baseline period. This left the study with 365,748 patients. Figure shows

the breakdown of these patients by SCD and incident status.

Figure 2.2: Patient Population by Status

Many summary statistics were collected for these patients, Figure 2.3 shows im-

portant summary statistics that were discussed.
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Figure 2.3: Summary Statistics

Of note in Figure 2.3 is the ”Missing” line beneath several variables. If a patient

was missing data for HGB or albumin lab readings, the missing data was replaced

by an average value for the SCD and incidence/prevalence status of the patient.

Variables were then made to notate which patients had data that was filled in by

averages.
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2.3 Propensity Score Matching

Propensity score matching of non-SCD patients to SCD patients was employed

with data as of 6 months post FFD. Matching was done with a 1:1 ratio in order to

get as much accuracy as possible on the match.

Variables matched on were decided based upon a previously written analysis plan

for the study, before any work was done. Matching was done with the following vari-

ables included in a logistic regression model with the probability of the patient being

in the SCD group as the response variable: sex, race, ethnicity, age, vintage, albumin,

hemoglobin, access type, the indicator variables for missing data being replaced, and

all two-way interaction terms for the mentioned variables.

Figure 2.4: Incident Match Balance

Figure 2.4 shows absolute standardized mean differences before and after matching
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for the incident population. A similar graph for the prevalent population would

show similar results. The ”distance” variable shown on Figure 2.4 is simply the

standardized difference between the mean of the propensity scores between groups.

The decision to include two-way interaction terms in the model was based on the idea

that interaction terms should provide better predictive capabilities for the model, as

interpretation is not as much of an issue for the model. Summary statistics before

and after matching have been provided for the incident population.

Figure 2.5: Summary Stats Before Matching in Incident Population
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Figure 2.6: Summary Stats After Matching in Incident Population

As is evident in Figure 2.5 and Figure 2.6, after matching, the covariates are

balanced between groups after matching. The prevalent population showed similar

results after matching.

2.4 Interpretation of Results from Cox Proportional Hazards Model

After performing both matches, the incident group of 602 SCD patients was

matched with 602 non-SCD patients and the prevalent group of 541 SCD patients
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was matched with 541 non-SCD patients. Both of these matched groups have been fit

to a Cox proportional hazards model. Kaplan Meier curves stratified by SCD status

for both populations have been provided.

21



Figure 2.7: Kaplan Meier Curve for Incident Patients
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Figure 2.8: Kaplan Meier Curve for Prevalent Patients

On Figures 2.4 and 2.7, we see that the curves for the SCD and non-SCD groups

look very similar for both incident and prevalent patients.

Figure 2.9: HR for Incident Population
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Figure 2.10: HR for Prevalent Population

Our hazard ratios include 1 in their confidence intervals and our p-value is greater

than .05, so we cannot say that there is a statistically significant difference between

the SCD and non-SCD groups in either population.

2.5 Discussions and Further Investigative Work

The fact that no difference was found between the SCD and non-SCD groups in

both populations was surprising, given that similar studies in the past have yielded

results that contradict this [10]. A further review of methods between our analysis and

similar studies could provide some insight. Two potential limitations in our analysis

are the method used to calculate follow-up time for a patient, and the variables

included in the propensity score. Follow-up time for a patient for which an event did

not occur was calculated as the time from the patient’s index date to the last time the

patient appeared in any data. While this should be a relatively accurate estimate, an

exact amount of follow-up time is not possible to know due to the way the data was

gathered. In regards to the variables included in the propensity score, it is possible

that some of the variables related to lab results for a patient could be part of the

causal pathway. The notion of causal pathway is that certain variables may actually

be part of what causes or is a fundamental characteristic of the primary conditions

we wish to compare. For example, if one were interested in comparing patients

with an autoimmune disease such as lupus versus patients without and included in

their matching routine genetic measurements related to inflammation, the resulting
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matching could potentially remove the effect one would expect to see between the two

groups. The matching would directly force patients with similar immune responses in

each group, but it is the very unique immune response is what we wish to compare.

It is for this reason, matching on variables that are part of the causal pathway is

not advised. In the SCD analysis, lab values such as hemoglobin appear to have a

difference between the SCD and non-SCD groups and could potentially be a part of

the causal pathway for SCD. Further discussions with a medical professional would

help to determine if matching with these variables in our model is appropriate. From

a statistical standpoint, including these variables is also problematic based on the

distance between propensity scores being so high. The larger this distance is, the

idea that our treatment group could have feasibly come from the control pool comes

into question. If matching only includes non-SCD patients with the comparable levels

of hemoglobin to SCD patients, then it is possible that the patients from the non-SCD

group included in the match are not representative of the entire non-SCD group, and

thus our analysis would definitely be biased.

2.6 Analysis with Different Matched Variables

As discussed in the previous section, it is possible that some of the variables

previously used in the matching process could be a part of the causal pathway. It is

suspected that hemoglobin specifically may be a variable that should not be included

in the matching process due to this. In this section we will perform the same analysis

as the previous section, but without the lab values (hemoglobin and albumin) in our

matching process. Keeping the matching process down to only essential variables

that have plenty of representation accross both groups should ensure that our results

are not biased.

So, the matching process now only includes age, sex, race, ethnicity, access type,
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and two-way interaction terms in the logistic regression model. The standardized

mean differences before/after matching have been included.

Figure 2.11: Matching Balance Without Lab Values

A similar figure for the prevalent population would look similar to Figure 2.11. Of

note in 2.11 is the fact that ”distance” is now very small after matching. With this

in mind, matching with a ratio higher than 1:1 could be possible, however, in this

analysis this was not done for the sake of consistency. Now, fitting a Cox proportional

hazards model with the patients included in this match yields different results than

seen previously.
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Figure 2.12: Kaplan Meier Curve for Incident Patients Without Lab Values
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Figure 2.13: Kaplan Meier Curve for Prevalent Patients Without Lab Values

We now see a difference between the two curves visually in both the incident and

prevalent populations (Figures 2.12 and 2.13). Hazard ratios have been provided for

each population.
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Figure 2.14: Hazard Ratio for Incident Patients Without Lab Values

Figure 2.15: Hazard Ratio for Prevalent Patients Without Lab Values

Under this alternative matching strategy, the test suggests there is enough ev-

idence to conclude that a difference in mortality between the SCD and non-SCD

groups exists for both populations based on our p-values being significant for each

population and the hazard ratios not containing 1. With a HR of 1.45, a patient with

SCD in the incident group is 45% more likely to pass away than a patient without

SCD at any given time. Similarly, a patient in the prevalent group with SCD is 23%

more likely to pass away than a patient without SCD at any given time.

The difference in our analysis based on the variables in the matching process

emphasizes the importance of speaking to an expert in the subject matter before

doing an analysis. While it is important not to ”fish” for results, it seems plausible

that hemoglobin is a part of the causal pathway in this case. If that is the case, then

the first analysis is flawed and therefore the analysis in this section is more accurate.

Alternatively, it is possible that the previous study referenced is flawed and should

have considered lab values for patients in their matching process. It is speculated

that the truth is that hemoglobin is part of the causal pathway for SCD, however,

that is a conclusion that would be better decided after discussions with a medical

expert.
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3 SEQUENTIAL ANALYSIS CONSIDERATIONS

Projects involving survival analysis, like the one presented in Chapter 2, tend to be

conducted over numerous years, and follow-ups are conducted throughout the studies

and not just at the final endpoint. Similar to clinical trials, it is natural to want to

perform preliminary analysis (looks) at an earlier time point or at multiple time points

such as every 3 months. This creates a multiple testing issue. One solution is to take

the approach that clinical trials take and adjust the significance level at each look.

this is referred to as alpha spending and is a well-developed and studied procedure

[4]. In this chapter, we will offer some helpful equations to derive effective sample

sizes and power calculations and offer some insight as to how these calculations are

impacted if an alpha spending approach is applied. Some additional discussion on

potential future work are also discussed.

3.1 Alpha Spending

A brief summary of the alpha spending approach is provided, while a full review

of technical details and summary of alpha spending in clinical trials can be found in

[4] and [2]. The main objective in taking multiple looks during a study is to maintain

the control of the type-I error rate. To do this for K looks, assuming a two-sided test

statistic Z(k) at the kth look, we wish to find critical values for each interim analysis

(Zc(k), k = 1, 2, ..., K) such that the type-I error rate over the sequential run of tests

maintains a specified level. The procedure starts at the first look and decides to

continue data collection if |Z(1)| < Zc(1) and otherwise the analysis is stopped since

Ha is concluded. If data collection continues, the next interim analysis is conduced

with the same decision process except using a different critical value Zc(2). The
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process continues until a rejected test is observed or the final analysis is conducted.

The critical values must be chosen so that, under the null hypothesis,

P (|Z(1)| ≥ Zc(1), or|Z(2)| ≥ Zc(2), or..., or|Z(K)| ≥ Zc(K) = α (3.1)

If the distribution of the test statistic is Normally distributed, the joint distribution

of Z(1), Z(2), ..., Z(K) can be determined and their covariances are simply functions

of the sample sizes observed at each look . The critical values can be determined in

a sequential way, obtaining a critical value for Z(1), then Z(2)||Z(1)| ≤ Zc(1), and

so on. Under this conditioning, a significance level αk must be specified and there

is no unique approach to its selection. However, since the sum of the conditional

probabilities must equal the overall significance level α, each αk represents the amount

of α being spent at each interim analysis, and the cumulative proportion of α spent

at the kth test is 1
α

Σk
j=1αk. For example, if it were decided to conduct 3 looks, and

we choose α1 = .001, α2 = .011, α3 = 0.038, the evidence reflected in the earlier test

statistics must be extremely strong in order for a rejection to be made. This is often

a reasonable choice given that the preliminary looks have smaller sample sizes and

thus stronger effect sizes should be observed in order to reject.

Demett and Lang proposed that the choice of how much α is getting spent at each

sequential look can be specified using a spending function α(tk), which returns the

total significance level spent at the kth look which can be expressed as Σk
j=1αk [4, 2].

The input to the function tk is referred to as the information fraction at the kth look.

For comparing two means, tk is the ratio of the current sample size at look k divided

by the total sample size that will be observed at the final look. For survival analysis,

tk is the total number of deaths at look k divided by the total number of expected

deaths at the final look.

Two common spending functions noted in [2] are the O’Brien-Fleming and Pocock
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functions, denoted α1(tk) and α2(tk) respectively, are as follows:

α1(tk) = 2− 2Φ(zα2/
√
tk)

α2(tk) = αln(1 + (e− 1)tk)
(3.2)

Note that both functions return 0 at tk = 0 and α at tk = 1 and are strictly increasing.

As long as the spending function is a non-decreasing function with the property that

α(0) = 0 and α(1) = α, critical values can be obtained in a sequential fashion using

the previously described method and setting αk = α(tk)− α(tk−1).

To illustrate the spending functions’ utility, suppose that we wish to take 5 looks

during a survival analysis study. If we assume that each of the looks will be conducted

once one-fifth of the total number of expected deaths are observed, the information

fractions are thus 0.2, 0.4, 0.6, 0.8, and 1. Figure 3.1 provides a plot of the two-

sided critical values at each look using the O’Brien-Fleming spending function with

α = 0.05. This particular spending function spends very little of α for low information

fractions. This can be seen by observing the large critical regions at the early look

Figure 3.1: Critical Values For 5 Looks Using the O’Brien Fleming Spending Function

The advantage of the spending function approach is sequential testing. Original

testing approaches had restrictions such as specifying the number of tests in advance

as well as restrictions on what situations the preliminary looks should occur. Due to
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its sequential nature and its ability to create critical values based on information frac-

tion, critical values at later looks can be easily updated to reflect real-world changes

and challenges during data collection.

Since the critical values of the alpha spending approach are different for each look,

in situations like the SCD data analysis where data was collected over a 5-year period,

the number of preliminary looks could be quite large. The larger number of tests and

choice of spending function could yield situations in which the power to detect a

meaningful hazard ratio could be astronomically low. In these cases, it would be of

interest to know what effect sizes still maintain good power so a decision could be

made if the additional look is even warranted.

Sample size planning for survival analysis involved not just the number of patients

but the number of deaths observed over the time period of the study. While it

is difficult to determine power calculations for Cox proportional hazard models in

general, it is recommended that power analysis derived from the log Rank test is an

appropriate surrogate when comparing two groups [1]. Suppose one wishes to detect

a hazard ratio Ha : φ 6= 1, such that the power of the log Rank test is 1 − β and

significance level α, the total number of deaths, d that should be observed by the end

of the study is:

d =
(zα/2 − zβ)2

π(1− π)θ2
(3.3)

where π is the proportion of observations in one of the two groups, zl is the upper

lth−percentile of the standard normal distribution, and θ = log(φ).

Recall that when using spending functions in survival analysis, the information

rate tk is the fraction of observed deaths at look k divided by the total expected

number of deaths. If the design is planned such that the expected number of deaths

is d, determining the value of φ at look k such that the power remains at 1−β can be

easily obtained by multiplying both sides of Equation (3.4) by the information rate
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yields

tkd =
(zα/2 − zβ)2

π(1− π) θ
2

tk

. (3.4)

Since tkd is the number of deaths at look k, the power of the test holding the

remaining values fixed remains at 1 − β when the log hazard ratio is θ2

tk
. Using the

thresholds produced by Figure 3.1, Figure 3.2 plots the hazard ratio effect size needed

to maintain a power of 0.8 and the intended effect size at the end of the study was

φ = 1.5.

Figure 3.2: HR Effect Sizes Versus Information Fraction

At the first look, tk = 0.2, that hazard ratio must be almost 2.5 in order to have

statistical power of 0.8. This could very well not make any practical sense to expect

or implore. Since the information rates do not have to be equally spaced, it may be

more beneficial to taking multiple looks for values of tk that are larger.

Rather than consider different hazard ratios, it may also be beneficial to examine

the power for a fixed hazard ratio that is of key interest and was used to determine
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the needed number of deaths d at the end of the study period. The power at each

look can be derived by first solving Equation (3.4) for zβ which yields

zβ =
√
tkdπ(1− π)θ2 − zα/2. (3.5)

For a given look k, the values of tk and α in Equation (3.5) are updated where

α is determined by the corresponding significance level using the critical value Zc(k).

Once zβ is computed, the power is Φ(zβ). Using our current example which produced

Figures 3.1 and Figure 3.2, Figure 3.3 provides the statistical power at each look when

φ is held fixed at 1.5. Since the number of deaths observed is just a small fraction,

the statistical power is essentially 0 at the first look and gradually improves as the

information fraction increases to one.

Figure 3.3: Power for HR of 1.5 at Each Look

While the example may not be realistic, the formulas provided in this section

will allow for further exploration of how to optimally incorporate multiple looks in
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survival analysis and how it can potentially help healthcare providers make better

decisions. For large studies taken over a long period of time, an investigation of best

practices in terms of picking an appropriate spending function and selecting appropri-

ate information fractions while handling a large number of looks is needed. There are

also some additional questions on how the incorporation of propensity score matching

would play a role in sequential testing. Is it appropriate to keep the groups balanced

(1:1 matching), or are there any benefits to matching in unique or unbalanced ways

that could help studies in terms of statistical properties or logistical issues? If the

tests are quite large, another consideration is if type-I error is the ultimate metric we

wish to control or perhaps if the number of looks is large, controlling a different error

rate would be meaningful. We leave these questions for further work.
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4 DISCUSSIONS AND FUTURE WORK

4.1 The Internship Experience

This section will provide a brief review of my internship experience at Fresenius

Medical Care and provide some final discussions on future work. Key advice to future

students ho will experience an internship in a healthcare setting similar to mine is

discussed.

Firstly, managing an internship and coursework at the same time is not easy. With

regular meetings and work to complete for an internship, it can be hard to stay on

top of your coursework as a student. In my experience, most mornings before classes

were spent working on internship work, and afternoons were spent for coursework

generally. ”Real work” and ”school work” require slightly different skill sets, but the

statistical knowledge gained from school is definitely necessary. To expand on this

idea, often times for my internship work I’d have a problem that needed to be solved,

but lacked the programming knowledge to solve whatever problem I had. A lot of

time can be spent searching for programming solutions to problems, and basic tasks

can lead to other ”sub-problems” that consume more time. Over time I learned some

basic data processing strategies which may or may not be useful in the future, but the

overall process of having a programming problem and having to search for or come

up with a solution is a process that I grew accustomed to and expect to encounter in

any future work experience.

Another major difference between school and work experience is the way data is

prepared. In my school experience, often times I would simply be presented with a

dataset and told to do an analysis. In my internship experience, I learned that it

is usually never that simple. Companies can have massive databases of data, often

37



times with many different entries per patient that need to be aggregated to one entry

per variable per patient. The data processing steps from the raw data to the eventual

”final dataset” are usually heavily discussed and different decisions can be made. In

my experience, doing actual analysis on data is not the time consuming part of any

project. The time consuming part of a project is the data processing, discussions,

and eventual decisions that will lead to a dataset being finalized for analysis.

One expectation from school that definitely held true in this experience is the fact

that clinical/real-world data is not always clean. Missing data or data not recorded

properly can be encountered regularly, and identifying these problems and fixing them

is a process in itself. Sometimes missing data can be indicative of a larger problem

or be a hint to something else. For example, in the SCD project, at one point it

was found that approximately four percent of the patients did not have any data

for what access method was used in the baseline period. After multiple discussions

and explorations of this, the decision was made to pull data about where patients

received their treatment and to explore. It was found that the patients missing access

data were patients not receiving in-center treatments. The decision was then made to

exclude them from the study and have the study’s population be patients who only

received in-center treatments. A problem like this can be very difficult to trace down

to the root of the problem, and in this instance, due to the fact that new data needed

to be pulled, finding the solution took time due to the team that pulls data having

other responsibilities and workloads to handle before they can immediately help with

any requests.

Ultimately, the internship experience was a great way to learn and gain experience

in an environment outside of academia. I personally learned a lot, and would highly

recommend a similar experience to any student interested.
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4.2 Final Remarks

In addition to the previous problems listed in Chapter 3 involving sequential test-

ing in settings outside of clinical trials. A closer investigation of propensity scores

could be another potential route for future research. Propensity scores can be utilized

to adjust for confounding factors outside of matching. Two such examples of this are

inverse probability weighting or including the propensity score as a confounding vari-

able in a model. While these methods make the modeling process a little bit more

difficult to explain, exploring whether they are equivalent approaches that yield simi-

lar results would be worthwhile. Additionally, exploring whether there any situations

that are problematic for propensity score matching such that another approach would

be more appropriate may be worthwhile.

A confounding variable is a variable that is correlated to independent variable(s),

as well as the response variable. Since the confounder should be associated with both

the group status variable and the outcome, including key confounding variables in

the Cox model could be beneficial even after matching. A better cox model fit would

theoretically results in smaller confidence intervals and more powerful tests (helpful

when studies are underpowered).

In summary, this thesis set out to provide a general foundation in survival analysis

and provide an overview of the propensity score matching strategy to help adjust

the effects of confounding variables. The analysis of the SCD data in Chapter 2

demonstrated propensity score matching strategies, provided an example of survival

analysis, and provided an important discussion on the choice of what information to

perform PSM. Additionally, the SCD data set is curated in such a way that it could

be effectively used as a case study to investigate the behavior of different sequential

strategies and PSM strategies by future students at SFASU.
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