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ABSTRACT

A common issue in some statistical inference problems is dealing with a high fre-

quency of zeroes in a sample of data. For many distributions such as the gamma,

optimal inference procedures do not allow for zeroes to be present. In practice, how-

ever, it is natural to observe real data sets where nonnegative distributions would

make sense to model but naturally zeroes will occur. One example of this is in the

analysis of cost in insurance claim studies. One common approach to deal with the

presence of zeroes is using a hurdle model. Most literary work on hurdle models will

focus on modeling the frequency of zeros separate from the nonnegative values. While

this approach has some advantages, it doesn’t typically provide an interval estimator

for the global population mean of the variable of interest. In this work we developed

a Wald interval for the population mean assuming the gamma hurdle model. Using

simulation, we investigated our procedure along with traditional interval estimation

strategies such as the t-interval and bootstrap techniques and provided some recom-

mendations and insights. Currently, we recommend the bootstrap t-interval overall

as it has better coverage properties across all scenarios we considered.
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1 INTRODUCTION

When performing standard statistical inference using a parametric approach, an-

alysts decide on an appropriate probabilistic model that governs the population of

interest. Each probabilistic model typically contains 1 or more parameters that de-

scribes various characteristics of the model including its mean and variance. With

a model determined and an appropriate parameter of interest defined, various tech-

niques can be applied to a random sample of data to estimate the parameter with a

confidence interval or conduct a hypothesis test for a specific value. When learning

about standard statistical inferences and hypothesis tests, there are discussions about

robustness of the procedure. Robustness is the ability of a statistical inference proce-

dure to perform at is predefined significance or confidence level when the assumptions

made under the procedure are suspect. For example, the t-test is relatively robust to

the normal assumption when the distribution of the data is mildly skewed or sym-

metric for small sample sizes. The t-test is also robust to more extreme departures

from normality if the sample size is large enough. Another example where robustness

is discussed happens with analysis of variance (ANOVA). The error rate when per-

forming an ANOVA F-test is said to be robust to the constant variance assumption

if the sample sizes are equal across all the groups being observed.

Another statistical concern that is similar to robustness is settings where data sets

exhibit a large number of zeros. For some models, it is expected that zeros would

occur, but it is not consistent with the rate observed in the actual data set. Other

models do not allow for zeros at all and yet they are still observed. This “inflation

of zeros” problem, raises a question of robustness to any statistical procedure being

utilized under an assumed model. The most common discussion of this issue, and
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how to handle it, is the zero inflated Poisson model. While the Poisson model allows

for zeros, the question becomes how to model the data when there are much fewer

or many more zeros present in a given data set than what would be expected under

the traditional Poisson model. For the Poisson model with inflated zeros, the mean-

variance relationship would be broken, and the variance would be larger than the

mean. This is referred to as over-dispersion [5].

A common issue in the continuous cases arises for probability models that are

defined for strictly positive values such as the Gamma, F, Pareto, and Weibull. In this

case, zeroes are typically not allowed due to estimation strategies such as maximum

likelihood estimates. If the data is continuous, which is common in cost data for

insurance companies, then there tends to be a large amount of zeroes that cause a

skeweness of the data with a longer right tail for the nonzero data. The issue of data

being skewed in this way is common in health care and insurance. For instance, Figure

1.1 provides an example of cost data in the hospital setting by way of a histogram.

In addition to the data, there are four proposed models: the normal, three parameter

gamma, lognormal, and log-lognormal distributions. After parameter estimation,

their density curves are overlaid as a quick visual comparison. One can see that

raw data is clearly non-normal, right skewed, and contains a portion of zeroes, and

significant outliers. The ability to model the zeros and the heavy tail simultaneously

is of general concern. While nonparametric intervals are available for the median, the

goal in many cases such as the cost data in Figure 1.1 is to provide inference on the

population mean which directly informs of us of total cost for the population.

There are generally two approaches to trying to model data with zero inflation.

The first method is using the traditional zero inflated model. This is common for

discrete data. Consider the zero inflated model in terms of the Poisson distribution

[3]. The common problem that zero inflated data has on the Poisson distribution

is that there are more zeros than the distribution can accommodate with its mass

2



Figure 1.1: Cost data

function. The zeros that naturally occur in the Poisson model are referred to as

sampling zeros. The additional zeros are seen as structural zeros from an additional

random source.Hence, the zeroes are modeled using a mixture distribution. The

Zero-inflated model for the Poisson Distribution:

P (Y = y) =

π + (1 + π)e−µ y = 0

(1− π) e
−µ(µ)y

y!
y = 1, 2, ...

, (1.1)

where µ is the mean of the Poisson distribution and π is the proportion of structural

zeroes [3]. Note that the probability for Y = 0 is a mixture of a Bernoulli and Poisson

mass function evaluated at 0. For all nonzero values of Y , the Poisson components of

the mass function are scaled by (1 − π) to ensure a proper mass function that sums

to 1.

The second approach is the Hurdle Model. For this model, there is a mixed

distribution as well. The difference is the 2 distributions of the mixture are on an

entirely different support. Staying consistent with the previous example, a Poisson

hurdle model is defined as

P (Y = y) =

π y = 0

(1−π)
(1−e−µ)

e−µ(µ)y

y!
y > 0

, (1.2)

under this model, the 0 is modeled exclusively with a Bernoulli trial and a truncated

3



Poisson random variable models the non-zero outcomes. When applying the hurdle

model to a continuous random variable, f(y), with non-negative support, the observed

random variable is a mixed type with a point mass at 0 and scaled continuous density

function for non-negative values:

P (Y = y) =

π y = 0

(1− π)f(y) y > 0

, (1.3)

One convenient result of this approach is that the zeroes can be modeled by themselves

separate from the rest of the data. Since there are just two models, the Hurdle Model

is convenient because you can use standard techniques for estimating the parameters

in the model. There is also a clean interpretation for the rate of the zeroes and the

parameters specified by f(y). In more complex problems, such as when dealing with

explanatory variables in a regression setting, the hurdle model can be extended where

logistic regression is used to model the rate of zero occurrences, and a generalized

linear model can be used to model the mean of the non-zero elements. This approach

is quite applicable in areas such as insurance since understanding the frequency of

customers who do not make a claim is of importance and can be interpreted from a

logistic regression model. The generalized linear model would then be used to model

the mean cost of claims made and investigating relationships here. Typical models

for data such as costs use Gamma or Generalized Gamma hurdle models with a focus

on the regression setting [6] [9].

If we let the random variable X with density function f(X) denote the nonegative

part of the hurdle model Y , the expected value of Y is

E(Y ) = (1− π)E(X). (1.4)

4



1.1 Research Question

For this research, we will be investigating the Gamma Hurdle Model. While the

application of the gamma hurdle model is heavily focused on the regression setting,

we find it interesting that there is little to no discussion of how well the model works

in simple cases as well as providing inference on the global mean rather than the

mean of the nonzero part of the variable. For this reason we would like to investigate

the Gamma Hurdle Model in the single population setting with no covariates. There

is also very little discussion on whether a t-test procedure would be robust to a zero

inflated model such as the gamma hurdle model. If it is robust, then under what

degree of inflation becomes a key question as well for making decisions in practice.

The goal of this research can be summarized in two main points. The first is

to develop a Wald confidence interval procedure for the global mean of the Gamma

hurdle model under a single population setting. The second is to investigate the

performance of the developed interval estimation assuming the Gamma hurdle model

framework is true and then compare its performance against more standard techniques

such as the t-interval and various bootstrap intervals.

5



2 Methods

In order to develop confidence intervals for the mean of a Gamma hurdle model, it

will be helpful to discuss the general properties of estimating the mean of a traditional

Gamma model in which there is no inflation of zeros. First, we will introduce the den-

sity function of the gamma and provide the necessary details to estimate parameters

via maximum likelihood including Fisher’s information for a mean parameterization

of the gamma. Finally, we will introduce a Wald type interval to estimate the mean

of a hurdle model and three standard based interval estimation strategies. The three

strategies are two version of the bootstrap, the percentile bootstrap and the bootstrap

t-interval, as well as the standard t-interval.

2.1 The Gamma Distribution

The density function of the gamma distribution along with its mean, variance,

moment generating function, can be found in [8]. Under the shape and scale param-

eterization, the density function for the gamma random variable, X, is:

f(X;α, β) =
xα−1e

−x
β

Γ(α)βα
(2.1)

where the Gamma function is

Γ(α) =

∫ ∞

0

yα−1e−y dy.

The mean and variance for Gamma distribution are:

E[X] = µ = αβ,

Var(X) = σ2 = αβ2.

6



The Gamma distribution has a shape parameter, α, and a scale parameter, β.

These two parameters determine what the density function will look like. As seen

in Figure 2.1, when the α value increases from 1 to 2 to 10, the shape becomes less

skewed. When the distribution has α = 1, Figure 2.1 shows that there is more of an

exponential shape. We see that the Gamma distribution can have a skewness to it

and when the α increases, it pushes the shape of the distribution out and away from

the exponential distribution to more of a bell shape.

Figure 2.1: Gamma density
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2.2 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a commonly used method for estimating

parameters of a probability model from a sample. Suppose that we have a random

sample x = x1, ..., xn, that are independent and identically distributed from a common

probability density function f(x; θ), where θ = (θ1, θ2, ..., θk) is a vector of unknown

parameters. The joint density function of the random sample is thus:

f(x) = f(x1, x2, ..., xn) =
n∏

i=1

f(xi; θ), (2.2)

Once the data has been observed, the only unknown values of Equation (2.2) are

the parameters θ. The joint density function, when viewed only as a function of θ,

is referred to as the likelihood function, L(θ;x). To estimate the parameters for our

given data set x, the general approach is to choose values of θ that maximize the likeli-

hood function. It is also typical to maximize the log likelihood l(θ) = log(L(θ)) as the

calculus is usually easier to implement, and log is an order-preserving transformation.

l(θ) = logL(θ) =
n∑

i=1

logf(xi; θ). (2.3)

In general, if l(θ) is differentiable, the parameter estimates θ̂ are obtained by

solving the system of equations:

∂l

∂θi
= 0, i = 1, ..., k. (2.4)

For some cases, closed form solutions will exists. In situations where there is no closed

form solution, numerical optimization routines such as Newton-Raphson are utilized.

It should also be noted that θ̂ is a function of the observed values x1, x2, ..., xn and

therefore, a random variable.

8



2.2.1 MLE of the Gamma Distribution.

Consider a random sample of x1, ..., xn that has been collected for a random variable

X from the gamma distribution defined by equation 2.1. Here, θ is a two parameter

vector, θ = (α, β). The log likelihood function, using Equation 2.3, for the sample is

l(θ) = −nαLn(β)− nLn(Γ(α))

+ (α− 1)
n∑

i=1

Ln(xi)−
1

β

n∑
i=1

xi (2.5)

Taking the first derivative with respect to both α and β of equation 2.5, yields

the system of equations:

−nLn(β) +
n∑

i=1

Ln(xi)− nΨ′(α)) = 0

−nα

β
+

1

β2

n∑
i=1

(xi) = 0

(2.6)

where Ψ′(α) = d
dα
Ln(Γ(α)). There is no closed form solution for the system but

can easily be solved using the R package mle which, by default, utilizes the routine

developed by [7].

Fisher’s information allows one to derive the asymptotic variance covariance ma-

trix for maximum likelihood estimators. We will first state the definition of Fisher’s

information and then derive it for the Gamma model. Let X be a random variable

with probability density function f(x; θ). Fisher’s information matrix for a sample of

size n is denoted as I(θ) where the (i, j)th entry, Iθi,θj is defined as:

Ii,j = −nE

[
∂2logf(x; θ)

∂θi∂θj

]
. (2.7)

Since there are two parameters for the gamma distribution, Fisher’s information

is a 2× 2 matrix which we will denote I(α, β). Using Equation (2.3), we have

9



I(α, β) = −E

 ∂2l
∂α2

∂2l
∂α∂β

∂2l
∂β∂α

∂2l
∂β2

 =

I(α,α) I(α,β)

I(α,β) I(β,β)

 . (2.8)

The elements of I(α, β) are derived as follows:

Iα,α = −E(
∂l

∂α2
) = nΨ′′(α),

I(β,β) = −E(
∂l

∂β2
) =

−n

β2
+

2αβ
∑n

i=1 xi

β3
=

nα

β2
,

and

I(α,β) = −E(
∂l

∂α∂β
) =

n

β
.

where Ψ′(α) = d
dα
Ln(Γ(α)) and Ψ′′(α) = d2

dα2Ln(Γ(α)).

Thus, Fisher’s information for the gamma distribution with parameters α and β

is:

I(α, β) =

nΨ′′(α) n
β

n
β

n
β2

 (2.9)

It will be beneficial to reparameterize Fisher’s information using µ = αβ and β.

Following the notation of [10] Fisher’s information under the new paramaterization,

denoted K(µ, β), is expressed as

K(µ, β) = J ′I(α =
µ

β
, β)J (2.10)

where J is the Jacobian matrix from the transformation of (α, β) to (µ, β). The

elements for the Jacobian matrix are defined as

J =

 1
β

−µ
β

0 1

 (2.11)

10



Substituting Equation (2.11) into Equation (2.10) yields the final result:

K(µ, β) =

 1
β

−µ
β

0 1

nΨ′′(µ
β
) n

β

n
β

n
β2

 1
β

0

−µ
β

1

 , (2.12)

This can then be simplified to

K(µ, β) =

nβ2Ψ′′(µ
β
)−2nµβ+nµ2

β4
nβ−nµ

β3

nβ−nµ
β3

n
β2

 (2.13)

K−1(µ, β) =

 −β2

n−nΨ′′(µ
β
)

β2−βµ
n−nΨ′′(µ

β
)

β2−βµ
n−nΨ′′(µ

β
)

−µ2+2βµ−β2Ψ′′(µ
β
)

n−nΨ′′(µ
β
)

 (2.14)

Due to the general asymptotic properties of MLEs, the joint distribution of (µ̂,β̂)

follows a multivariate Normal distribution with mean vector (µ, β) and covariance

matrix K−1. Thus, the standard error of the MLE for the mean is the square root of

the first row and column entry of K−1 and can be used for constructing a confidence

interval for µ:

µ̂± zα/2

√
β2

nΨ′′(µ
β
)− n

. (2.15)

2.2.2 Estimating a population proportion

Consider a random sample of y1, ..., yn that has been collected from a Bernoulli dis-

tribution with mass function f(y) = py(1 − p)1−y for y = 0, 1. It is easily shown

that the estimator p̂ =
Σn

i=1yi
n

maximizes the log likelihood and Fishers information

is I(p) = n
p(1−p)

. Similar to µ̂ previously, a confidence interval for p can easily be

obtained and yields the widely known Wald interval:

p̂± zα/2

√
p̂(1− p̂)

n
. (2.16)
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2.3 Interval Estimation for the Mean of the Gamma Hurdle Model

In this section we will derive and discuss four approaches to estimating the popula-

tion mean of the Gamma Hurdle Model. We will consider three standard approaches

while introducing a fourth new approach that, to our knowledge, has not been inves-

tigated before. The three standard approaches are the classic student t-interval, the

percentile bootstrap, and the Bootstrap t-interval. All three methods are widely used

and applicable in numerous settings. While we will consider an approach that assumes

the hurdle model, it will be informative to compare it to commonly used procedures

that have been known to behave robustly in numerous settings. Our approach will

be based on maximum likelihood estimation similar to the previous discussions when

working with the gamma and Bernoulli models.

2.3.1 t-Interval

Due to the Central Limit Theorem, we know that this type of interval is robust to its

own assumption of normality and can be used to estimate the population mean from

any scenario given the sample size is adequate enough. For the following development,

let X be a random variable and x1, x2, ..., xn be a random sample. let X̄ be the sample

mean and s2 be the sample variance. When n is large, we have that

X̄∼N(µ,
σ2

n
).

This can be used to standardized the sample mean to give

X̄ − µ

σ/
√
n
∼N(0, 1).

If it is assumed that X ∼ N(µ, σ2), replacing σ with s in the ratio yields the t-statistic

which follows a t-distribution with n− 1 degrees of freedom.

X̄ − µ

s/
√
n
∼tn−1.

12



A (1 − α)100% confidence interval for µ can be constructed by writing out a

probability statement for the t-statistic and algebraically manipulating the statement

to get an interval estimate which contains the true mean (1− α)100% of the time.

x̄± tα/2
s√
n

(2.17)

2.3.2 Bootstrap Intervals

The percentile and bootstrap t-intervals provide an approach to working with statis-

tics in which their sampling distributions are unknown. Without this knowledge, con-

struction of an interval would not be possible. The bootstrap procedure can also be

used on well known statistics, such as the sample mean, in cases where the t-intervals

robustness properties do not apply. While there are many versions of bootstrapping

statistics, we will briefly discuss two bootstrap intervals that are relatively easy to

implement.

Let x1, x2, ..., xn be a random sample for a random variable X obtained from a

distribution that depends on a parameter θ. Let θ̂ be a statistic that is used to

estimate θ. Any bootstrap interval procedure first begins by creating B bootstrap

samples. These samples are obtained by sampling, with replacement, n observations

from the original random sample. For each one of these samples, we can then obtain

the statistic of interest θ̂j where j = 1, 2, ..., B. This resampling procedure allows for

one to obtain an estimate of the sampling distribution of the statistic θ̂ essentially

for free without taking any additional random samples. This is why it was given

the name ”bootstrap” as we are picking our self up by our own bootstraps. With

the bootstrap statistics θ̂1, θ̂2, ..., θ̂B, a confidence interval can be constructed using

different strategies.
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Percentile Bootstrap

The percentile Bootstrap is a very intuitive, natural approach to producing a CI for

the parameter θ. Consider ordering the bootstrapped statistics denoted as θ̂(1), θ̂(2), ..., θ̂(B).

Denote θ̂(α/2) and θ̂(1−α/2) as the α/2 and 1 − α/2 percentiles from the bootstrap

sampling distribution which can be easily obtained from the ordered bootstrapped

statistics. These values serve as the lower and upper limits for a (1− α)100% confi-

dence interval for θ. Implementing the percentile bootstrap is straightforward for the

gamma hurdle model. One simply treats the statistic of interest as the sample mean,

θ̂ = X̄, and an interval is produced using the percentiles of the bootstrapped sample

means.

There are some short comings to using a percentile bootstrap intervals. For some

situations, the mean of the bootstrap distribution is biased away from the original

sample’s observed value. Additionally, the skeweness observed in a bootstrapped

sampling distribution is often ill represented in the tails. Both of these issues can

result in poor coverage. Additionally, the percentile bootstrap does not perform

well in the presence of nuisance parameters which is common for many problems.

An example of this is the Normal distribution in which we may only be interested

in the population mean but we must estimate the population variance as well even

though we do not care about inference on that parameter. There have been numerous

modifications proposed to alleviate these shortcomings of the percentile bootstrap.

One of these extensions is the bootstrap t-interval.

Bootstrap t-interval

The bootstrap t-interval builds on the approach of the traditional t-statistic discussed

in the previous section. Recall that the traditional t-statistic is a ratio of the random

variable X̄ and its estimated standard error SE(X̄) = s√
n
.
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t =
X̄ − µ

SE(X̄)

When samples are taken from a normal distribution, we know that the t-statistic

follows a t-distribution, and thus the theoretical percentiles of the t-distribution are

used to create the upper and lower limits. When we are not dealing with normally

distributed data or the sample mean as a statistic, we could still construct a t-statistic

but we would no longer know the distribution of this t-statistic. The bootrap t-interval

suggest that we create a bootstrap distribution of t-statistics to approximate what

the sampling distribution is. From this distribution, we can estimate the α/2 and

1− α/2 percentiles and use these to construct a ”t-like” interval.

Formally, let θ̂ be the sample statistic and let SE(θ̂) be the estimated standard

error obtained on a sample x1, x2, ..., xn. Note that the standard error computation

can be obtained in a multitude of ways depending on how θ̂ is defined. For example,

if we are dealing with the sample mean statistic or an MLE, we have derived formulas

for the standard errors that can be used. If the standard error formula is not known

then the bootstrap samples of the statistic can be used to obtain a standard error

estimate as all one needs to do is calculate the standard deviation of the θ̂j’s.

Using the bootstrap statistics, one can create the sampling distribution of the

analogous t-statistic by calculating, for j = 1, 2, ..., B,

Tj =
θ̂j − θ̂

SE(θ̂j)
(2.18)

The simplicity of the expression above should not be taken for granted. As stated

previously, the standard error of the statistic can be computed in different ways

depending on the statistic of interest. When computing SE(θ̂j), we must obtain the

standard error of the statistic for the jth bootstrap sample. So in situations where

there is no theoretical form of the standard error, an additional bootstrap procedure

on the bootstrap sample, must be implemented. This highlights the fact that the
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bootstrap t-interval in some cases is more computationally expensive to run.

Letting T(α/2) and T(1−α/2) be the percentiles of the Tj’s, a confidence interval is

obtained by obtaining the upper (U) and lower (L) limits as follows:

L = θ̂ − T(α/2)SE(θ̂)

U = θ̂ + T(1−α/2)SE(θ̂)
(2.19)

For the gamma hurdle model, we will be performing the bootstrap t-interval where

θ̂ = X̄ and thus an estimate of the standard error is easily obtained for each bootstrap

sample.

2.3.3 A Wald type interval for (1− π)µ

Under the gamma hurdle model, estimation of the proportion of zeros, π, can be

obtained via maximum likelihood as described in Section 2.2 treating the observed

value of zero as Y = 1 in the Bernoulli model. Similarly, for the nonzero values within

the sample, a maximum likelihood estimate for the mean can be obtained. Denoting

these two MLES as π̂ and µ̂ respectively, the MLE for mean of the hurdle model is

simply (1 − π̂)µ̂. The purpose of this section is to derive an approximate standard

error for the MLE, then a Wald interval can be constructed utilizing the large sample

properties of the MLE.

To derive an appropriate standard error, we will utilize the multivariate delta

method [4]. For our case we will simply introduce this when working with two vari-

ables. Suppose that X1 and X2 converge in distribution to a multivariate normal

distribution with mean vector (µ1, µ2) and covariance matrix Σ. Denote the entries

of Σ as σ11, the variance of X1. The variance of X2 is σ22 and the covariance between

X1 and X2 is σ12 = σ21. Let g(x1, x2) be a scalar function for which we would like to

derive a distribution for the new random variable Y = g(X1, X2).

Letting ∆ be the gradient of g, ∆ = ( ∂g
∂x1

, ∂g
∂x2

), the delta method states that
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Y = g(X1, X2) converges in distribution to a Normal distribution,

g(X1, X2)
D−→ N

(
g(µ1, µ2),∆Σ∆T

)
(2.20)

For the Gamma hurdle model, the joint distribution of π̂ and µ̂ converges to a

multivariate normal distribution with mean vector (π, µ) and covariance matrix Σ.

The elements of Σ are obtained from Sections 2.1 and 2.2.1 yielding σ11 = π(1−π)
n

and σ22 = β2

nΨ′′(µ
β
)−n

. The off diagonal element, σ12, is assumed to be zero, since the

proportion of zeros and the mean of the nonzero values are modeled independently

of each other.

With the above information, we wish to derive an asymptotic results for Y =

(1−π̂)µ̂. Note in this case, g(x1, x2) = (1−x1)x2 and the gradient is ∆ = (−x2, 1−x1)

and thus ∆Σ∆T = x2
2σ11 + (1 − x1)

2σ22. Using the delta method result in Equation

2.20, we have the following asymptotic result:

(1− π̂)µ̂
D−→ N

(
(1− π)µ, µ2σ11 + (1− π)2σ22

)
. (2.21)

A (1− α)100% confidence interval for the mean of the gamma hurdle model can

be obtained using Slutsky’s theorem, and replacing the estimates of π and µ in the

the variance covariance matrix Σ.

(1− π̂)µ̂± zα/2
√
µ̂2σ̂11 + (1− π̂)2σ̂22 (2.22)
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3 Simulation Studies

The simulation studies will be conducted assuming data are observed from the

gamma hurdle model previously defined. For a given sample size, a Binomial random

variable is drawn with parameter π to determine the number of 0’s present in the sam-

ple. The remaining nonzero observations will be randomly sampled from a gamma

distribution with parameters α and β (µ = αβ). For a given scenario, 10000 simula-

tions were conducted and an estimate of the coverage and average interval width was

obtained for each of the four interval approaches described in Chapter 2. We also

recorded the parameter estimates of the MLE’s to investigate their point estimate

properties such as bias and mean square error.

3.1 Simulation Overview

In terms of simulation scenarios, we varied the total sample size n = 50, 100, 200, 400.

For each sample size, α and β were set as defined in Table 3.1. The choice of pa-

rameters were chosen because we wanted there to be a mean that was close to the

inflated zeroes and one that is further out. So, we varied α and β values, keeping

the mean fixed at either 10 and 100. Doing so allowed us to investigate situations

where the gamma distribution part of the model is strictly decreasing (α = 1) while

others behaved far less skewed. We also varied the proportion of zeros, π. The π

value ranged from 0.0 to 0.8, by increments of 0.2.
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α β µ = αβ

1 10 10

1 100 100

2 5 10

2 50 100

10 10 100

Table 3.1: Selected α, β, and µ scenarios

Pseudo code is provided below on the general flow of the simulation conducted

in R. The following is a description of one scenario for a chosen choice of n,π, and

µ = αβ:

• For 10000 iterations

– Generate data from hurdle model

– Compute CI for the various techniques

– Store intervals and parameter estimates

– Count if interval was correct

• Compute Overall Coverage and Average Widths

• Compute parameter estimate properties (Bias)

3.2 Results

To help clearly show the results of the simulations, graphs were created to examine

the coverage performance across the scenarios. For reach of the scenarios, there will

be a graph showing the coverage of the four interval estimation techniques discussed

in Chapter 2 followed by a graph of the estimated widths of the intervals. Both
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graphs are stratified over varying sample sizes. There is also a legend on each graph

that distinguishes the different interval methods. The label ”boot” is the bootstrap

method, ”boot2” is the bootstrap-t method, ”t” is the t-interval method, and ”wald”

is the Wald interval method. For each of the graphs, there are 4 panels. For the

coverage, each panel has the labeled sample size above the graph and then the coverage

was plotted by the π values. For the widths, the layout and legends are the same,

except the widths are being plotted by sample size and π values.

Our first scenario sets α = 1 and β = 10. Looking at Figure 3.1, we see that the

bootstrap t-interval method generally performed better for the sample size of 50, but

only included the desired 95% coverage when π = .2, .4. When the π value is .80, this

means that the proportion of zeroes is much higher. Even though the bootstrap-t

does not quite reach the desired coverage, it does perform significantly better than

the other intervals. Also, recall Figure 2.1, when α = 1 the gamma distribution

is an exponential distribution, which is strictly decreasing, and not the case when

α > 1. So, when the distribution was strictly decreasing and the π value increases, the

bootstrap-t seems to perform better, even though it still does not contain the desired

coverage level. When the sample size was 100, the bootstrap-t interval still performed

better than the others, but only included the desired 95% when π = .2, .4, .6. When

the sample size was 200 and 400, all the methods seemed to perform more similar to

each other, but there is still slight variations. When the sample size was 400, all of

the methods include the desired 95% coverage.
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Figure 3.1: Interval coverage for all types across varying sample sizes and π values

when α = 1, β = 10

When looking at Figure 3.2, the widths seem to follow a similar pattern. The

widths tend to behave similarly across methods. However, when the sample size was

50, the regular bootstrap method shows that the width was noticeably smaller than

the width of the other intervals. The width of the bootstrap t interval is wider than

the other intervals as well when the sample size is 50 and corresponds to the only

procedure close to a nominal coverage rate. As the π values increases, we can see that

the width of the intervals becomes narrower as expected. For the standard methods

this makes a great deal of sense. The large number of zeroes, shrink the sample

standard deviation in most generated samples. For the Wald interval, seeing a tighter

interval was at first counter intuitive. Having a smaller number of nonnegative values

to estimate the parameters of the gamma part of the model intuitively would suggest

that a wider interval would be reflected. We will discuss some issues with the Wald

interval in greater detail in the next chapter.
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Figure 3.2: Interval widths for all types across varying sample sizes and π values when

α = 1, β = 10

Next, we consider the coverage and widths when α = 1 and β = 100. When

looking at Figure 3.3, we can see that the methods perform in a similar fashion when

the sample size was 50 as they did when β was 10. The coverage seems to under

perform for all intervals as π gets closer to 1. The bootstrap-t method still performs

better than the other methods for the small sample size, but the difference is that

now all the intervals include the desired 95% coverage when the sample size was 50

and π = 0.0, 0.2, 0.4, and the bootstrap-t includes the desired coverage when π = .8

as well. When the sample size was 100, all of the methods either include the desired

95% or almost do for π = 0.0, 0.2, 0.4, and 0.6. When π was 0.8, only the bootstrap-t

has the desired coverage. For the sample size of 200 and 400, the methods perform

better than they did when β was 10 because the 200 sample size shows all methods

except the t interval includes the desired coverage for all π values. When π is 0.8,

the t interval shows slight under performance. When the sample size was 400, all
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intervals include the desired coverage at all π values.

Figure 3.3: Interval coverage for all types across varying sample sizes and π values

when α = 1, β = 100

When examining the widths of when α = 1 and β = 100 in Figure 3.4, we see

that the widths tend to perform similarly as the previous scenario. The sample size

of 50 shows that the regular bootstrap method is slightly tighter than the widths of

the other intervals. The other sample sizes show that all of the methods seem to have

similar widths, and there is the slight pattern when the widths become tighter as the

π value approaches 1. We also see that as the sample size gets larger, the widths for

all the intervals gets smaller.
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Figure 3.4: Interval widths for all types across varying sample sizes and π values when

α = 1, β = 100
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Next consider when α = 2 and β = 5. Upon examination of Figure 3.5, we can

see that there is an obvious under performance from the Wald interval at all π values

and all sample sizes. When the sample size is 100, 200, and 400, the other three types

of intervals perform well since we can see that at all π values the intervals include the

desired 95% coverage. When the sample size is 50, the only interval that appears to

include the desired coverage at all π values is the bootstrap-t method. As the π value

grows, the performance of the other 3 intervals appears to be worse. The exception

to this would be when π is 0.6, the t-interval performs just as well as the bootstrap-t

methods, but then the t-interval under performs for the next two π values.

Figure 3.5: Interval coverage for all types across varying sample sizes and π values

when α = 2, β = 5

The widths in Figure 3.6 show that the Wald interval seems to have slightly tighter

widths for all sample sizes. These tighter widths would explain the under coverage

of the interval. One interesting note, the interval widths appear to be a quadratic

function of π. In fact, upon further examination of all of the previous scenarios, a
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quadratic relationship seems plausible. This intuitively makes sense as the margin of

error for the Wald interval contains the standard error of the sample proportion of ze-

ros. How dominant the quadratic relationship exists appears to depend on the choice

of parameters for the gamma distribution as we will see in an upcoming scenario.

Figure 3.6: Interval widths for all types across varying sample sizes and π values when

α = 2, β = 5
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When looking at Figure 3.7 where α = 2 and β = 50, we can see that there is

still the general under performance by the Wald interval. There is a general trend

for the Wald interval where the interval gets better from π = 0.0 to 0.4, and then as

π increases to 0.6 and 0.8 the Wald interval becomes further from the desired 95%

coverage. For sample size of 200 and 400 the other 3 intervals contain the desired

coverage at all π values. One notable difference between 3.5 and 3.7 is that for the

β = 50, when the sample size was 50 we see that the bootstrap-t method does not

contain the desired coverage in the interval when π is 0.6.

Figure 3.7: Interval coverage for all types across varying sample sizes and π values

when α = 2, β = 50

The widths in figure 3.8 show what would be expected based on the results from

Figure 3.7. We can see that the Wald interval seems to have a more narrow width,

which can explain the reason why the interval does not contain the desired coverage.

We also see that as the sample size gets larger, the widths for all the intervals gets

smaller. The quadratic relationship for the widths as a function of π becomes more
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pronounced as well.

Figure 3.8: Interval width for all types across varying sample sizes and π values when

α = 2, β = 50
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The last scenario considered was α and β were 10, which creates a highly vari-

able gamma distribution which is much less skewed than the other gamma models

considered. Here there is a clear separation from the nonzero data and the inflated

zeroes when visualizing simulated data with histograms. In Figure 3.9 we see that in

general, it seems that all the interval types include the desired 95% coverage. This

is even true for the sample size of 50. For the sample size of 50, we can see that

the Wald interval does have an obvious under performance. For all the other sample

sizes, the desired coverage is reached for all the intervals.

Figure 3.9: Interval coverage for all types across varying sample sizes and π values

when α = 10, β = 10

In Figure 3.10, we can see that there does seem to be a general trend where all the

widths for the interval types are about the same, where the most noticeable difference

in widths occurs when the sample size is 50. There is still the general decreasing in

the width as the sample size increases and the the quadratic relationship is the most

pronounced of all the scenarios.
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Figure 3.10: Interval widths for all types across varying sample sizes and π values

when α = 10, β = 10

Based on the results that are seen throughout the graphs, it seems that the interval

that generally performs the best when working with a Gamma Hurdle model is the

bootstrap-t interval. The Wald interval that was created using the idea of MLEs and

Fisher’s information is not recommended without further refinement.
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4 Final Remarks and Future Work

From our simulation studies, the general conclusion is that the bootstrap t-interval

procedure performs at the pre-specified coverage more consistently over the other

methods we considered. This is most noticeable when the proportion of zeroes in

the hurdle model are high. Our newly constructed Wald interval, along with the

t-interval and percentile bootstrap under-covered in numerous situations where π is

large. Additionally, in scenarios where the gamma is more symmetrically shaped,

the Wald interval under-covered even when the sample sizes were quite large. The

t-interval and bootstrap percentile interval for these more symmetric cases performed

poorly as well when dealing with large proportion of zeroes, however they benefited

more from the larger sample sizes than the Wald interval.

Perhaps a more troubling concern is that when the proportion of zeroes was set

to 0, the coverage for the Wald interval performed more poorly than when zeroes

were present in the data. The following discussion attempts to provide some insight

as to why this was indeed the case along with some theories as to why the bootstrap

t-interval did a much better job overall.

Table 4.1 below provides simulated biased estimates of the MLE for the gamma

parameters µ and β when n = 50 under the hurdle model. The simulated biases are

provided under different values of π as well. It should be noted that the only impact

that π plays on estimation of µ and β is the fact that fewer and fewer observations

are used in the estimation. So for example, when π = 0.8, on average there will

only be (1− 0.8)50 = 10 observed values that are generated from the gamma. Upon

examination of the table, we can see that the bias in estimation of the β parameters

is consistently negative and as π gets closer to 0, the bias is much less pronounced.
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This intuitively makes sense due to the asymptotic unbiased properties of maximum

likelihood estimators. There are more nonzero observations used in estimation when

π is low. The bias of the mean estimate is much less severe and within simulation

error of the true value.

Recall Equation 2.15. When looking just at the standard error in this confidence

interval, when β̂ is too small, this causes everything under the radical to decrease.

Consider hypothetical values where β̂ = 10, µ̂ = 10, and n = 400. The β̂ value in the

numerator is being squared, so this would make the numerator 100. Notice that if you

have a slightly smaller β̂ value of say 9.9 being squared, the numerator would become

98.01, causing the whole SE to decrease. One potential option for future work is to

provide a biased corrected estimate using the work of Barndorff-Nielsen and Cox [1]

E(β̂)− β E(µ̂)− µ π

-0.5022 0.0396 0.8

-0.2331 0.005269 0.6

-0.1463 -0.02912 0.4

-0.1292 -.002218 0.2

-0.1264 -.009338 0.0

Table 4.1: Estimate bias of MLEs with n = 50, α = 2, β = 5 (µ = 10)

While we do not provide the results here, we should note that the sampling dis-

tributions of 1 − π̂ and µ̂ look to be approximately normal as expected. However,

the product of two normally distributed random variables is not normally distributed

except for some specific cases [2] It is possible that poor performance observed for the

Wald interval is also due to skeweness within the sampling distribution of (1 − π̂)µ̂.

Future work could potentially investigate these concerns as well.

The difference in confidence interval coverage between the two bootstrap proce-

dures is an interesting one. It provides some evidence for additional considerations to
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improve upon the hurdle model. The bootstrap t-interval was introduced to address

some of the shortcomings of the bootstrap percentile interval. One of these situations

is that the percentile bootstrap does not perform well when estimating a parameter

in the presence of nuisance parameters. In our case we are solely interested in the

global mean, (1− π)µ, but the additional parameter β must still be estimated. Clas-

sic statistical inference teaches us that an optimal test or interval should be based

on conditioning on statistics used to estimate these nuisance parameters. The Wald

interval does not consider this approach. The t-interval does this but its derivation

hinges on the fact the sample mean and sample variances are independent of each

other. This is most certainly not the case when dealing with the gamma distribution.

The bootstrap t-interval does allow a form of conditioning since the standard error is

computed on each bootstrap sample.

To illustrate this point, we performed an additional simulation study to examine

the relationship between the sample mean and standard deviation when zeroes are

inflating the samples. In addition to examining the Gamma hurdle model, we also

performed simulations under a truncated Normal hurdle model, where µ = 10 and

σ = 5. The truncation was conducted at 0 to create a nonnegative Random variable.

The advantage of using the truncated Normal model in this case is that when we

select the mean and standard deviation of the truncated normal density to be far

away from the truncation at 0 along with π = 0, we are simply looking at the Normal

probability model with no inflated zeroes. Under this special case, the sample mean

and standard deviation will be independent of each other. This would not be the case

with the gamma hurdle model.

Figure 4.1 provides scatterplots of 10,000 randomly generated sample means of

size, n = 400, from the truncated normal hurdle model using truncated normal pa-

rameters µ = 10 and σ = 5 with π set to 0 and 0.8 respectively. When π = 0, we can

see that there is essentially no (very mild) correlation between the sample mean and
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standard deviation. Under this chosen setting of parameters, the truncated normal

is skewed enough to create a small dependency between the two statistics. On the

contrary, when we investigate the behavior at π = 0.8, the relationship between the

standard deviation and mean is strongly linearly related with a Pearson’s correlation

coefficient of 0.9098.

Figure 4.1: This is the truncated normal mean vs standard deviation. The mean is

10 and the sample size is 400. The left graph has π = 0.0 and the right graph has

π = 0.8.

Figure 4.2 provides an additional scenario holding the parameters in the previ-

ous example fixed except for the mean parameter which was increased to 100. The

truncation is so small in this case, the hurdle model we are producing is essentially

a traditional normal distribution with inflated zeroes. When π = 0, the relationship

between the sample mean and variance is uncorrelated again as expected. When

π = 0.8, the dependency between the mean and variance is even stronger than in the

first scenario.

In summary, our current investigations suggest that a Bootstrap t-interval us-

ing the mean statistic performs the best in terms of nominal coverage of the overall

population mean of the Gamma hurdle model. It is the most robust across various
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Figure 4.2: This is the truncated normal mean vs standard deviation. The mean is

100 and the sample size is 400. The left graph has π = 0.0 and the right graph has

π = 0.8.

properties including distributional properties of the gamma, for high rates of zero

inflation, and with moderate sample sizes of 50 and 100. The Wald interval, as we

have currently derived it, is not recommended. The dependencies between the sample

mean and variance are captured in the bootstrap t-interval since the bootstrapped

t-statistics use the sample variance of each bootstrap sample in addition to the esti-

mated mean. This insight leads to some additional suggestions for future work.

The first approach would be to use the bootstrap t-interval approach on the MLE

of the gamma hurdle model. This should help with conditioning on the nuisance pa-

rameter β. An interesting question would be to determine if this approach would also

solve the issue of biased estimates of the β parameter. If not, additional work should

be considered to create a less biased estimator of β when working with the Wald

interval directly. A second approach is to potentially study the dependency of the

sample mean and standard deviation both analytically across a wide range of hurdle

models to develop a more general approach to condition on nuisance parameters in
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the hurdle model family of problems. A third approach would be to investigate a like-

lihood ratio type statistic and create a confidence interval through p-value inversion

[10]. This approach would allow for conditioning of any nuisance parameters and uses

large sample theory that is typically more accurate in finite samples relative to the

normal approximation of Wald intervals. Lastly, a Bayesian approach could be used

to create a credible set for the overall population mean. Additional investigations on

appropriate prior structure could then be conducted.
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