
Stephen F. Austin State University Stephen F. Austin State University

SFA ScholarWorks SFA ScholarWorks

Electronic Theses and Dissertations

12-2022

Differentiate Metasploit Framework Attacks From Others Differentiate Metasploit Framework Attacks From Others

Gina Liu Ajero
Stephen F Austin State University, ajerogl@sfasu.edu

Follow this and additional works at: https://scholarworks.sfasu.edu/etds

 Part of the Information Security Commons, and the Other Computer Sciences Commons

Tell us how this article helped you.

Repository Citation Repository Citation
Ajero, Gina Liu, "Differentiate Metasploit Framework Attacks From Others" (2022). Electronic Theses and
Dissertations. 482.
https://scholarworks.sfasu.edu/etds/482

This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information,
please contact cdsscholarworks@sfasu.edu.

https://scholarworks.sfasu.edu/
https://scholarworks.sfasu.edu/etds
https://scholarworks.sfasu.edu/etds?utm_source=scholarworks.sfasu.edu%2Fetds%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sfasu.edu%2Fetds%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sfasu.edu%2Fetds%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://sfasu.qualtrics.com/SE/?SID=SV_0qS6tdXftDLradv
https://scholarworks.sfasu.edu/etds/482?utm_source=scholarworks.sfasu.edu%2Fetds%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cdsscholarworks@sfasu.edu

Differentiate Metasploit Framework Attacks From Others Differentiate Metasploit Framework Attacks From Others

Creative Commons License Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0
License.

This thesis is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/etds/482

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://scholarworks.sfasu.edu/etds/482

DIFFERENTIATE METASPLOIT FRAMEWORK ATTACKS FROM OTHERS

by

Gina L. Ajero

Presented to the Faculty of the Graduate School of

Stephen F. Austin State University

In Partial Fulfillment

of the Requirements

For the Degree of

Master of Science

STEPHEN F. AUSTIN STATE UNIVERSITY

December 2022

DIFFERENTIATE METASPLOIT FRAMEWORK ATTACKS FROM OTHERS

by

Gina L. Ajero

APPROVED:

Christopher Ivancic, Ph.D., Thesis Director

Timothy Nix, Ph.D., Committee Member

Jeffrey Zheng, Ph.D., Committee Member

Brian Barngrover, Ph.D., Committee Member

Sheryll Jerez, Ph.D.
Interim Dean of Research and Graduate Studies

ABSTRACT

Metasploit Framework is a very popular collection of penetration testing tools.

From auxiliaries such as network scanners and mappers to exploits and payloads,

Metasploit Framework offers a plethera of apparatuses to implement all the stages

of a penetration test. There are two versions: both a free open-source community

version and a commercial professional version called Metasploit Pro. The free ver-

sion, Metasploit Framework, is heavily used by cyber crimininals to carry out illegal

activities to gain unauthorized access to targets.

In this paper, I conduct experiments in a virtual environment to discover whether

attacks originated from Metasploit Framework are marked with unique patterns and

features so that these special characteristics can help identify and block Metasploit

Framework attacks. Inside this virtual environment, I will set up two virtual ma-

chines: one attacker and one victim. The victim machine is designed to have vulner-

abilities for penetration testing. The attacker virtual machine will attack the victim

machine by using Metasploit Frameowrk. Wireshark will be used to capture and

analyze the packets. The conclusion reached from the experiment results is that,

even though the attacks from Metaploit Framework share certain common patterns,

these characteristics are not significant enough to be used to create scanners or alerts

with to keep victim machines immune from the attacks. The Metasploit Framework

attacks keep evolving and it is still a very lofty goal to block cyber attacks from

Metasploit Framework. This paper shares the experiment process, data and insight

with readers.

iii

ACKNOWLEDGEMENTS

I would like to express my deep thanks to Dr. Christopher Ivancic for guiding

me throughout my whole process at the master program of Cyber Security in the

department of Computer Science at Stephen F. Austin State University. This program

has provided me a treasureable opportunity to learn cyber security, a very current

and critical field in our world. I have been working at a full time job while going

through this program. Dr. Ivancic has always be there each step of the way. I would

not be able to finish this program without the help and guidance from Dr. Ivancic.

I would also like to thank my family: my husband, Mario Ajero, my son, Nio Ajero

and my daugher, Olivia Ajero, for their understanding, support and love. When I

had to study late at night, when I asked them to listen to my explanations about

the potential dangers that could happen to their computers, when I pointed out the

risky behaviors my children implemented to their phones and computers, they showed

tremendous patience and tolerance. They have instilled great meaning and purposes

to my continuing education.

I will keep on studying to live and learn.

iv

CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

1 INTRODUCTION 1

2 OBJECTIVES 5

2.1 OBJECTIVES . 5

2.2 JUSTIFICATION . 5

2.3 HYPOTHESIS . 6

2.4 RESEARCH QUESTIONS . 7

3 LITERATURE REVIEW 8

4 EXPERIMENTS 13

4.1 EXPERIMENTAL SETUP . 13

4.2 PROTOCOLS TESTED . 14

4.3 VSFTPD . 15

4.3.1 Protocol Exploited . 15

4.3.2 VSFTPD Vulnerability . 15

4.3.3 Two Methods to Attack VSFTPD 16

4.3.4 Analysis of Wireshark Captured Packets: FromMetasploit Frame-

work to Metasploitable 2 VM 19

4.3.5 Analysis of Wireshark Packets Captured: Manual Attack to

Metasploitable 2 VM . 22

4.4 SAMBA . 23

v

4.4.1 Protocol Exploited . 23

4.4.2 Remote Command Injection Vulnerability 24

4.4.3 Analysis of Wireshark Captured Packets 24

4.5 UNREAL IRCD . 24

4.5.1 Protocol Exploited . 24

4.5.2 UnrealIRCd Backdoor Vulnerability 25

4.5.3 Analysis of Wireshark Captured Packets 25

4.6 JAVA RMI . 26

4.6.1 Vulnerability . 26

4.6.2 Wireshark Packet Analysis . 27

4.7 METASPLOIT PAYLOAD GENERATION 27

4.7.1 Binaries . 29

4.7.2 Scripting Payload . 30

4.7.3 Shellcode . 30

4.7.4 Submission to VirusTotal . 30

4.8 NMAP SCANNING INDEPENDENTLY VS AS A MODULE INSIDE

METASPLOIT FRAMEWORK . 35

5 CONCLUSION 37

6 BLAME VULNERABILITY NOT VIRUS 39

BIBLIOGRAPHY . 40

VITA . 44

vi

LIST OF FIGURES

2.1 Module Class definition and Inheritance 6

4.1 Experiment Design . 14

4.2 Attack Diagram . 16

4.3 Metasploit Framework Exploit Against Vsftpd 17

4.4 Root Access Gained from Exploit Against Vsftpd 17

4.5 Closing Root Access from Vsftpd Attack 18

4.6 Manual Attack Against Vsftpd . 19

4.7 Root Access Gained from Manual Attack 20

4.8 Vendor Revealed in Frame 12 . 21

4.9 Error with Malformed Packet SMB 24

4.10 Email Quote . 25

4.11 Error from Packet from Unreal IRCD Attack 26

4.12 TCP Stream of IRC Protocol . 26

4.13 TCP Stream . 28

4.14 Encoders Offered in MSF . 28

4.15 Generating Executable File in Metasploit Framework 29

4.16 Generating Executable and Linkable Format Exploit 29

4.17 Generating Shell Script . 30

4.18 Generating Exploit in Python in Metasploit Framework 31

4.19 Custom Generated Exploits in Metasploit Framework 31

4.20 Windows Detects and Deletes Exploits 32

4.21 Exploit in Python passes VirusTotal Website Scanning 32

4.22 Exploit in Sh file format passes the Virustotal website scanning . . . 32

4.23 VirusTotal website catches Exploit in Executable File Format 33

vii

4.24 VirusTotal Website catches Exploit in ELF format 33

5.1 Focus Shift in Cyber Security Industry 38

LIST of TABLES

4.1 Comparing Submissions to VirusTotal 34

4.2 Comparing Two NMAP Scans . 36

viii

1 INTRODUCTION

Metasploit is one of the most popular frameworks of exploitation tools and pay-

load collections, abbreviated as MSF [1].It is not only used by ethical, professional

cyber security experts (white hat hackers) to discover and eliminate vulnerabilities

in target machines but also by malicious cyber criminals (black hat hackers) to gain

unauthorized, illegal access to targets for data. H. D. Moore, the founder of Metas-

ploit Project, started to build Metasploit Framework in 2003 in Perl [2]. Before the

time of MSF, penetration testers had to seek, collect, and maintain their own testing

tools, which was very time consuming. For example, a tester would have to diligently

check with tool vendors that their tools were in the latest version or stay updated.

Missing a patch or upgrade might render a tool unreliable. A tool would also need

to be configured. If one wrong parameter was set, the tool would not work in the in-

tended ways and might deem the original code package unusable. To reuse Abraham

Lincoln’s quote, ”give a pentester six hours to test a site and the tester will spend

the first four tuning and preparing their tools”. Metasploit Framework changed this

hassle once and for all. Metasploit Framework not only grouped the testing tools to-

gether but also automated the process of updating tools. A community of developers

collaborated to develop new tools and maintain the framework. With MSF, penetra-

tion testers did not need to worry about missing new tools or using outdated tools

anymore. The repositories keep tools organized and updated. Penetration testers can

focus more on testing, confident that they are always using updated and new tools.

Metasploit Framework was re-written in Ruby by 2007 and was acquired by Rapid7,

a Boston-based company in 2009 [2]. The newest version of Metasploit Framework is

6.2.0 with 2,227 exploits and 864 payloads [3].

1

In 2012, H. D. Moore stated that on a typical month there were about 65,000

unique downloads of the Metasploit installer, with more than 170,000 additional

unique IP addresses updating their Metasploit software. In the past year (2011),

more than one million unique downloaders had accessed the Metasploit update server

[4]. In 2014, Rapid7, the owner of Metasploit Project, claimed that Metasploit Project

was downloaded over 200,000 times. In April 2015, The Metasploit Framework ranked

in the top 10 of the more than 45,000 active Ruby open-source projects based on the

number of project forks, according to GitHub [5]. Even though the updated infor-

mation can not be found to show the recent downloading statistics of Metasploit, a

search online about top penetration testing tools shows that Metasploit is definitely

on the top of the chart by numerous professional ranking websites.

Metasploit Framework’s modules can be categorized into exploits, payloads and

auxiliaries. Exploits are used to take advantage of code vulnerabilities in a target

machine to help hackers get inside the target system. Once inside the target system,

payloads are executed to carry out hackers’ missions–stealing or manipulating data

illegally. Auxiliaries serve as tools such as scanners or certain protocol clients. The

word of “meterpreter” was coined by combining “Metasploit” and “interpreter”. Me-

terpreter is a payload that provides an interactive shell from a target machine back to

an attacker’s machine. Through this reverse shell, an attacker can control the target

machine directly by executing commands. Meterpreter is an in-memory Dynamic

Link Libraries (DLL) injection which runs only in memory. Normally, a hacker will

always want to escalate privilege to root once a meterpreter is gained. Meterpreter

makes Metasploit Framework attacks very powerful because it does not write to disk,

thus makes attacks stealthy and the detection very difficult. It also makes it easy for

attackers to reconnect to the target later [6].

Metasploit Framework is not only very powerful but also easy to use. At a beginner

level, a user only needs to do the following steps to launch a cyber-attack:

2

� Scan a particular or a group of IP addresses for open ports

� Pinpoint a desired vulnerability

� Pick an exploit and a payload

� Enter the IP address of a target machine

� Type a simple command—run

At a professional level, a seasoned attacker can create or customize payloads or

tools for specific missions within MSF. MSF has both a free open-source community

version and a commercial version, which is called Metasploit Pro and costs approxi-

mately $15,000 per year. Therefore, MSF is very popular among both amateur and

professional users.

Because many malicious attackers use MSF, this research project tries to discover

if the attacks perpetrated by Metasploit Framework share certain patterns or common

signatures that make Metasploit unique from other hacking tools. Such discoveries can

help trace the attacks back to Metasploit. Based on any unique traits found among

the Metasploit attacks, this paper discusses how to protect the victim machines from

MSF attacks with the aid of the discovery. Though there is no way to distinguish

Metasploit-originated attacks from those committed by other hacking tools, this paper

describes how this research contributes to the protection from cyber attacks.

In order to find the common patterns among MSF-originated exploits and their

unique traits, two virtual machines were installed inside a virtual environment: one

representing a malicious attacker; and the other representing a target machine. The

attacker machine was used to hack into the target machine in two different ways:

using Metasploit Framework; and using other hacking methods unrelated to MSF.

Wireshark, a packet sniffer tool, was used to capture the packets from both types of

attacks. The packets were then studied to see whether MSF-attack packets share any

3

common patterns with each other or have any unique features distinguishable from

other non-MSF-related attacks.

The Metasploit Framework also contains tools that create exploit code. Custom

exploit code is generated in MSF and submitted to the website called Virustotal [7] to

see if the vendors listed on the website of Virustotal are able to block the customized

exploits. This scanning result reveals if MSF-generated exploits can be recognized

and blocked by antivirus vendors.

4

2 OBJECTIVES

2.1 OBJECTIVES

This project intends to find out if Metasploit Framework’s attacks can be distin-

guished from the cyber-attacks waged by other cyber hacking tools. If MSF-originated

attacks are unique, this project will try to investigate how the uniqueness can help

create some scanning or alert technique so that target machines can circumvent the

attacks from MSF. If MSF-originated attacks are not unique, this project seeks to

provide some insight into protection from cyber-attacks.

2.2 JUSTIFICATION

Written in Ruby, Metasploit Framework is a collection of exploits, payloads and

tools created by the wider MFS community of creators. This requires MSF to be

highly modular. Contributors build modules by following certain rules such as file

paths, class definitions and class inheritance. Then they submit their modules to a

committee. Once the submission passes inspection, the new modules are added to

the Framework to be downloaded by and to benefit public users.

If a user just wants to create their own modules and to use their private tools

with other tools in Metasploit Framework rather than contributing and sharing their

creations with the public, the user can do so by importing their own tools into MSF.

Whether the newly added modules are meant to be shared in public or to be used

in private, one submission must not tear down any other part of the project. This

poses very strict requirements for modularity. This means that developers have to

follow certain rules so that their additions can seamlessly ”talk to” or be accepted by

5

all the other family members in MSF. These interactions require certain hard coding.

These hard and mandatory rules make it possible that all the modules share certain

patterns and these patterns potentially reveal the source of attacks.

MSF is written completely in Ruby. Ruby is an object-oriented programming

language. If a programmer wants to create or modify modules in Metasploit Project,

the programmer must follow object-oriented programming language principles and the

Ruby syntax. The requirements of these compliances help identify whether attacks

are originated from Metasploit Framework or not.

For example, in order to develop an auxiliary module, an author has to type the

syntax in Figure 2.1.

Figure 2.1: Module Class definition and Inheritance

”Require” is the keyword in Ruby to import class and method definitions. ”msf/core”

is the required file path. Class Metasploit3<Msf::Auxiliary is the mandatory syn-

tax for class inheritance. The hard coding should be revealed in payloads of captured

packets. The study of captured packets may discover these patterns unique to Metas-

ploit Framework modules. Wireshark will be used to capture packet traffic between

an attacker machine and a target machine.

2.3 HYPOTHESIS

Metasploit exploitations and payloads share certain patterns, unique traits and

signatures that reveal to the victims of cyber-attacks that the culprit of attacks is the

6

Metasploit Framework.

2.4 RESEARCH QUESTIONS

Because the focus of this research project is to find out if Metasploit Framework

modules such as exploits and payloads share certain patterns that make them unique

from attacks by other hacking tools, the following questions will be tested and at-

tempted throughout the whole project:

� Are Metasploit-Framework-originated attacks unique in any way from the at-

tacks waged by other exploitation tools?

� Can it be determined if the payloads are modified or adapted from Metasploit

modules or created by non-Metasploit Framework hacking tools?

� How can potential victim machines make good use of the discovery of this re-

search and protect themselves from attacks originated from Metasploit Frame-

work if any Metasploit trait can be recognized?

7

3 LITERATURE REVIEW

H.D. Moore stated in the forward of ”Metasploit, The Penetration Tester’s Guide”:

”This open source platform provides a consistent, reliable library of constantly up-

dated exploits and offers a complete development environment for building new

tools and automating every aspect of a penetration test [9].” Inevitably, some con-

tents are obsolete now, eleven years after its publication. For example, two inter-

faces—MSFconsole and MSFcli—are replaced with MSFVenom. However, as Moore

commended this book, ”by the time that a given chapter has been proofread, the con-

tent may already be out of date. The authors took on the Herculean task of writing

this book in such a way that the content will still be applicable by the time it reaches

its readers.”

When the readers try to follow a certain task step by step while reading this

book, some URLs and screenshots may no longer exist. Some websites may have been

updated many times since then. However, readers should still be able to understand

what the authors are trying to illustrate and follow through despite variations.

This book starts by explaining the phases in a typical penetration test and the

types of penetration tests. Once familiarizing readers with what a penetration test is,

the book explains the basic terminologies and interfaces in MSF to pave the road for

the following four chapters, each devoted to one phase in a penetration test: infor-

mation gathering, scanning, exploitations and payloads. Since this book is designed

for both beginners and experts in the field of penetration testing, the second half

of the book illustrates more advanced topics such as the client-side attacks, social-

engineer toolkits, faking access points (Karmetasploit), and how to create exploits

and payloads. The book provides excellent examples such as attacking examples with

8

different techniques step by step, screenshot by screenshot, making it possible for

beginners to follow and repeat the same attacks. In summary, even though some

specifications about MSF in this book are obsolete, this book remains a valuable in-

troductory reading for those who are interested in penetration testing and want to

get their hands wet.

Mark Baggett authored ”Effectiveness of Antivirus in Detecting Metasploit Pay-

loads” in 2008, which was published by SANS Institute [10]. This book explains why

Metasploit-customized payloads were rarely detected by antivirus scanners using the

website of Virustotal: it is because that most payloads run in memory rather than

in storage. Iterations of encoding also obscure viruses effectively. Understandably,

this book contains depreciated commands, such as msfpayload and msfcli, which are

replaced by msfvenom.

Carlos Joshua Marquez authored ”An Analysis of the IDS Penetration Tool:

Metasploit” [11]. This is more of a Metasploit tutorial than an analysis; however,

it does state: ”It seems relatively safe to say that the answer for protection against

Metasploit payloads doesn’t reside in antivirus software.” This hints at the potential

answer to my research questions that Metasploit attacks do not carry any recognizable

signatures that facilitate detection before damage is done.

Nathan Wallace and Travis Atkison shared their observation in ”Observing In-

dustrial Control System Attacks Launched Via Metasploit Framework” [12]. Their

experimental setup included a work station under attack, an attacker’s workstation, a

monitoring workstation and a Siemens’ Totally Integrated Automation Portal. They

compared the legitimate and spoofed packet streams and found ”substantial time

differences”. Their ”findings suggest a unit of measure that may be used in future

detection schemes which can differentiate between legitimate and spoofed command

and control packet” [12].

Karan Chauhan et al. published ”Network Security (Confidentiality, Integrity &

9

Availability) Protection Against Metasploit Exploit Using Snort and Wireshark [13]”

in December 2020. Snort is an open-source intrusion prevention system [25]. Its

official website claims that Snort can be used as a packet sniffer, a packet logger and

an intrusion prevention system. This paper describes in detail three experiments of

three exploits Kali made to Metasploitable 2. It is more a tutorial on Metasploit and

Snort than real analysis on the patterns of attacks sourced from Metasploit.

Mujahid Tabassum authored ”Ethical Hacking and Penetrate Testing using Kali

and Metasploit Framework” [14]. This paper does a great job explaining the basic

terms in the field of cyber security and provides a full range of literature review on

research papers that focused on most commonly known cyber-attacks. It can serve

as a tutorial for Metasploit; however, it does not provide new or in-depth perspective

on Metasploit Framework and the characteristics of its exploits.

Wazuh is a name for a computer and network security company created in 2015 in

Silicon Valley. Its website claims that its free and open-source platform—Wazuh—can

detect Metasploit attacks. Its blog dated June 25th, 2020, authored by Jesus Linares

explains how Wazuh 3.13 fights against Drupal, CVE-2018-7600 vulnerability [15].

First, it is helpful to know some background about Wazuh before learning how

Wazuh counters MSF attacks. Wazuh is built with a module called Vulnerability

Detector module. This module gets data feeds from National Vulnerable Database

and collects a list of the applications that have known vulnerabilities. If an attack

deviates from any recorded vulnerability in the database, Wazuh must manually ad-

just its security configuration assessment (SCA) policy to counter any variation. So,

Wazuh is pre-configured with a vast database of known vulnerabilities.

On top of such a huge database, Wazuh observes new attacks and expands its

database. In the experiment, Drupal was installed using a zip file rather than a

package to create a variation from known vulnerabilities (Drupal property injection

in the Forms of API). Metasploit was then used to gain root access to a victim machine

10

by waging Drupal Drupalgeddon 2 Forms API Property Injection exploit. During the

attack, root access was gained because the Set-User Identification (SUID) bit was set

in the ”find” command. This bit gives other users the same privileges as a file owner.

In light of this bit information, one new SCA policy was created to alert about the

binaries with SUID bit set. If some cases had the SUID bit legitimately, these cases

had to be manually excluded.

During the attack experiment, some suspicious processes were also observed. One

process tried to evaluate some base64 code. So, the new SCA policy also ran a process

to list the process. If any process had a string ”eval(base64 decode”, the policy would

generate an alert.

After the new policy was created, it was added to Wazuh and the updated Wazuh

was installed in the victim machine. So, Wazuh policies grow as the database of

vulnerabilities grows. Then Metasploit was used again to attack the victim machine

with the same exploit. This time the victim machine was able to detect the attack

with the updated version of Wazuh.

The logic behind Wazuh is simple: know your enemy thoroughly and grow with

your enemy. To summarize, Wazuh has to pick one specific exploit in Metasploit to

study, one at a time. Then Metasploit is used to attack a victim machine with this

specific exploit and its processes are meticulously studied. Then Wazuh creates a new

policy to detect these specific processes and sends alerts.

The downsides of Wazuh are obvious: it does not scale well and is always one step

behind new attacks. One policy in Wazuh only targets one specific process or one

particular exploit in Metasploit. It is a spot check. If Metasploit Framework creates

a new exploit whose process varies from the existing and known processes, the whole

previously-mentioned process has to be run again to create a new SCA policy to

block the new variety. As much as MSF is a collection of penetration exploits, Wazuh

is a collection of anti-Metasploit-exploits alerts. One exploit in Metasploit has a

11

matching alert in Wazuh. This makes the creation of new policies in Wazuh labor

intense, time-consuming and passive. Automation is urgently needed to improve the

efficiency of the learning process by Wazuh. Even though Wazuh is always lagging

behind MSF, mirroring MSF, it is doable. After all, there are a finite number of

exploits in Metasploit. This means that a finite number of policies are needed in

Wazuh.

After learning how Wazuh counters MSF, it is understandable why Wazuh is

calling programmers to join its community. Wazuh currently has 142 employees

located all over the world. It needs people to join its team. Just like most of other

open-source software, collaboration is the key to the success of Wazuh [15].

As a detection software can study Metasploit Framework’s exploits and get cus-

tomized to alert the Metasploit’s exploits, Metasploit can counter detection software

by modifying exploits. Virtue Security[16] posted an article titled ”Evading An-

tivirus with Better Meterpreter Payloads”. The gist of this article is that an attacker

can create a custom meterpreter –an interactive shell—with the tools provided by

Metasploit. This matches the quote from MSF founder, H.D. Moore: ”MSF offers a

complete development environment for building new tools”. An attacker can make a

variation inside the exploit code to create a new attack to avoid detection. It is an

endless game of a cat and a mouse.

Even though there are an abundance of readings on Metasploit Framework, most

of them focus on teaching how to install and use Metasploit. It is hard to find papers

that share exact or even similar focus as my research project: how to differentiate

Metasploit attacks from the attacks by other hacking tools.

12

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

VMWorkstation Pro was used as the virtual environment, inside which experi-

ments were conducted. VMWorkstation was chosen because it is considered to be the

state of art in terms of desktop hypervisors. It can run on Windows or Linux. Inside

VMWorkstation Pro, two virtual machines were installed: one machine running Kali

Linux (an attacker) and the other running Metasploitable-2 (a vulnerable machine).

Kali Linux was chosen because it is an open-source Linux distribution that focuses on

cyber security tasks and it comes with a wide range of cyber security tools, especially

Metasploit Framework and Wireshark, one of the most popular open-source packet

sniffers and protocol analyzers. Metasploitab-2 was chosen because it was intention-

ally designed with protocols with vulnerabilities so that cyber security testing could

be conducted. The author launched attacks fromMSF in Kali to Metasploitable-2 VM

and captured the packets with Wireshark to analyze the potential packet patterns for

MSF-sourced attacks. The author also launched attacks from other non-MSF hacking

tools inside Kali to Metasploitable-2 to see if there was any difference between those

packets and those from MSF. The artifacts were observed such as logs to see if any

unique behavior triggered by Metasploit could be discovered to help trace the attacks

back to MSF.

The author also created payloads via Metasploit and submitted them to the web-

site of Virustotal to see if the scanners in that website could uncover any behaviors of

the exploits that would aid the author to gain any insight into the patterns of payloads

created by Metasploit. The reason that virus scanners were tried to test exploit be-

13

haviors was that exploits and virus had some goals in common. First, both exploits

and viruses take advantage of vulnerabilities in code. Secondly, both exploits and

viruses are maliciously constructed to implement unauthorized functions. Thirdly,

both exploits and viruses employ disguise techniques to hide their true identities or

intentions. Therefore, antivirus scanners can contribute to discovery or diagnoses of

exploits. The website of Virustotal was chosen because this website has over 70 an-

tivirus scanners and tools that extract signals from submissions. This website makes

it very easy for users to submit either files or website URLs: users can either drop

files on the website or upload files from their own computers. This website provides

a detailed report as far as which antivirus tools or engines detect virus. The service

is free and claims to be unbiased [26].

The diagram (Figure: 4.1) illustrates the experiment design for this project.

Figure 4.1: Experiment Design

4.2 PROTOCOLS TESTED

Metasploitable-2 virtual machine is designed to test cyber security tools and to

demonstrate vulnerabilities. Among its many security flaws, its four protocols were

chosen to be attacked by MSF in this project and the packets were captured and diag-

nosed by Wireshark to discover any patterns. These protocols under attack represent

14

the most common vulnerability: unsanitized user input. In order to take advantage

of this type of vulnerability, a hacker needs to specify the structure of malicious in-

put—the desired string or symbol, and this may increase the likelihood of discovering

specific patterns in packets. This is the reason why these protocols were chosen.

4.3 VSFTPD

4.3.1 Protocol Exploited

The protocol being exploited was FTP (file transfer protocol), a standard network

protocol for transferring files between a server and a client on a computer network.

However, FTP has severe security issues and Vsftpd is the default FTP server for

some operating systems, such as Ubuntu, CentOS, Fedora, etc. Vsftpd stands for

very secure FTP daemon and is an FTP server for Unix-like systems, including Linux.

4.3.2 VSFTPD Vulnerability

The CVE (Common Vulnerabilities and Exposures) ID for Vsftpd 2.3.4 vulner-

ability is CVE-2011-2523. Its CWE (Common Weakness Enumeration) ID is 78:

improper sanitization of special elements used in an OS command (’OS Command

Injection’).

Between June 30th, 2011 and July 3rd, 2011, a backdoor was added to Vsftpd-

2.3.4.tar.gz archive. The code does not sanitize or incorrectly sanitize the user input

and the maliciously structed user input becomes part of OS commands that are sent

to victim servers for process. This backdoor detects if the login starts by ”:)”, and

then opens a shell on the port 6200/tcp. A remote attacker can use this backdoor to

access the system.

Line 67 in vsftpd 234 backdoor.rb, inside exploit method, shows the vulnerable

15

code— sock.put("USER #rand text alphanumeric(rand(6)+1):)\r\n")

4.3.3 Two Methods to Attack VSFTPD

The author attacked the VSFTPD protocol inside Metasploitable 2 VM in two

ways: one attack was fromMetasploit Framework in Kali VM and the other attack was

manually launched from terminal command lines in Kali VM without using Metasploit

Framework. The packets from both attacks were captured byWireshark (Figure: 4.2).

Figure 4.2: Attack Diagram

4.3.3.1 MSF Attacking VSFTPD

First, the author launched Metasploitable2 VM and noted down its IP address:

144.96.164.86. Then the author launched Kali then Metasploit Framework. The

exploit module chosen was exploit/unix/ftp/vsftpd 234 backdoor. The author set

the target’s IP address as the remote host then entered the command-Run (Figure

4.3).

These steps echoed the previous statement that it is easy to use Metasploit Frame-

work. A beginner without much cyber security experience could launch attacks by

pointing exploit code at a specific IP address.

16

Figure 4.3: Metasploit Framework Exploit Against Vsftpd

Figure 4.4: Root Access Gained from Exploit Against Vsftpd

17

After one session was opened successfully, the author saw the files in the victim

machine by using the ”ls” command (Figure: 4.4).

The command ”exit” was used to close the session. The command ”quit” was

used to get out of MSF (Figure: 4.5).

Figure 4.5: Closing Root Access from Vsftpd Attack

4.3.3.2 Attack VSFTPD Manually

Inside Kali, the author launched a terminal to launch a manual attack. This

manual attack was not related to Mestasploit Framework at all. The command was:

telnet 144.96.164.86 21.

The USER keyword was typed to tell the target that a username was to be sub-

mitted. Since the vulnerability was that any random text ending with ”:)” would

work, a random text followed by ”:)” was used. The password was a random text.

Such a username and password combination should open up the port 6200 in the

target machine (Figure: 4.6).

Then the author launched another terminal and used Nmap, an open-source net-

work mapper and scanner, to confirm that the port 6200 was open. Seeing the port

6200 being open, the author telnetted to the victim machine’s port 6200 and gained

the root access (Figure: 4.7).

Wireshark inside Kali was used to capture the packets for both experiments.

18

Figure 4.6: Manual Attack Against Vsftpd

4.3.4 Analysis of Wireshark Captured Packets: From Metasploit

Framework to Metasploitable 2 VM

4.3.4.1 Techniques for Analysis

The techniques used inside Wireshark to analyze captured packets included:

� Filters were used to focus on some specific IP address, ports and string values.

� Under the Analyze dropdown menu, the Follow command was used to follow

certain streams. Most of the time, these were TCP streams.

� Under the Analyze dropdown menu, the item of Expert information provided a

list of warnings based on severity level: Error, Warning, Note, and Chat.

� Statistic menu showed the quantitative analysis.

4.3.4.2 Packet Analysis

The experiment of MSF attacking Metasploitable 2 VM was carried out several

times. Various usernames were used and they all shared the same feature: the clear

19

Figure 4.7: Root Access Gained from Manual Attack

text ended with ”:)”. The packet analyzed in this section had a different username

from the screenshot above.

� In Frame 12 (Figure: 4.8), the clear text of ”MSFT 5.0” was detected under

Vendor Class.

20

Figure 4.8: Vendor Revealed in Frame 12

� In Frame 34, Metaploitable 2 sent to Kali a response code of 220 after MSF

identified the protocol of vsFTPd 2.3.4. 220 means ”service ready for new user”.

� In Frame 36, Kali sent the packet to Metasploitable 2. The destination port

was 21. The protocol was FTP. The request from the attacker to the victim

machine was ”USER X ZimH:)”. It matched Line 67 in vsftp 234 backdoor.rb.

� In Frame 38, Metaploitable 2 sent the response to the attacker: Please specify

the password. The protocol was FTP.

� In Frame 40: Kali sent the password to Metasploitable 2. The destination port

was 21. The protocol was FTP. The attacker sent the command: PASS.

� In Frame 44, Kali sent a packet to Metasploitable 2. The TCP payload consisted

of 3 bytes: id. It matched Line 99 in the ruby code—s.put("id\n").

� In Frame 46, Metaploitable 2 sent a packet to Kali. The victim’s TCP payload

showed "uid=0(root) git=0(root)”, which confirmed the attacker’s success

in compromising the victim machine.

� In Frame 48, Kali sent a packet to Metasploitable 2. The protocol was TCP

21

and the destination port was 6200. This meant that the backdoor in the victim

machine successfully opened a shell on the attacker’s port 6200. The TCP

payload was ”nohup > /dev/null2 > &1”, which was the hard string in Line

110 in the ruby code.

These frames proved that, once detected and analyzed, the captured packets could

show solid evidences to point out that the source of the attack was from Metasploit

Framework. All these captured packet files are available upon request.

4.3.5 Analysis of Wireshark Packets Captured: Manual Attack to

Metasploitable 2 VM

Wireshark caught a lot of valuable information from the packets captured from the

MSF attack to Metasploitable 2; however, Wireshark presented a lot less information

for the packets captured from the manual attack from Kali to Metasploitable 2.

The differences between the packets captured from the attack from the command

lines and those captured from the attack straight from MSF were:

� MSF exploits were coded in Ruby and the hard strings contained in Ruby code

showed clearly in payloads such as ”nohup > /dev/null2 > &1”, which was the

hard string in Line 110 in the ruby code. MSF packets also contained the clear

text of ”MSF”. The packets from the command line attack didn’t have these

hard strings about the code and the vendor.

� The attack from the command lines was simpler and smaller in size. MSF

added more overhead to exploits than command line attacks. This is a com-

mon difference between an IDE platforms and simple text tools. For example,

Pycharm or Visual Studio can be used to code a Python program. These IDEs

automatically create packages to wrap the code. Even a simple ”Hello World”

22

would have a package in Pycharm. These preset packages increase the size of

code. On the other hand, a simple text editor can also allow a programmer to

code in Python to make the code simple and concise.

4.4 SAMBA

4.4.1 Protocol Exploited

The protocol is the server message block (SMB) protocol. SMB protocol is a

server-client model that is used to share files, printers and other resources on a net-

work [17]. A server holds resources such as files and printers. A client sends a request

to the server to initiate a connection and the server sends a reply to the client to

establish the connection. Such a request-response process is the SMB protocol, used

for communications in networks. A server-client model is ubiquitous in networks and

many commonly used protocols follow such a model such as FTP, HTTPS and etc.

Samba is an open-source implementation of the SMB protocol and ”has provided

secure, stable and fast file and print services for all clients using the SMB/CIFS pro-

tocol since 1992 [18].” Samba is important for Linux/Unix servers to talk to Windows

System’s Active Directory environments. Smbd is the server daemon that provides

filesharing and printing services to Windows clients, defined by samba.org.

The MS-RPC (Microsoft remote procedure call) functionality in smbd in Samba

versions 3.0.0 through 3.0.025rc3 (inclusive) allows a remote attacker to execute arbi-

trary commands via shell metacharacters involving the SamrChangePassword func-

tion when the ”username map script” smb.conf option is enabled. It also makes it

possible for remote authenticated users to execute commands via shell metacharacters

involving other MS-RPC functions in the remote printer and file share management.

Its CVE ID is 2007-2447.

23

4.4.2 Remote Command Injection Vulnerability

The root cause is passing unfiltered user input via MS-RPC calls to /bin/sh when

invoking externals scripts defined in smb.conf [19].

4.4.3 Analysis of Wireshark Captured Packets

The Metasploit module used was exploit/multi/samba/usermap script.

Once the captured packets were opened in Wireshark, the Expert Information

under the Analyze menu showed one error about Frame 30—Malformed Packet SMB

(Figure: 4.9). It was from Kali to Metasploitable 2.

Figure 4.9: Error with Malformed Packet SMB

This mirrors the code on Line 74 in the exploit titled usermap script.rb: "username

= "/=’nohup " + payload.encoded + "’"

4.5 UNREAL IRCD

4.5.1 Protocol Exploited

IRC stands for Internet Relay Chat. Created in 1988, it is a protocol to support

group chats via real-time messaging carried out in computers connected to networks.

It also allows two users to exchange private messages and data. Commands can

be transferred via server-side and client-side commands. It is a network of internet

servers [21].

24

4.5.2 UnrealIRCd Backdoor Vulnerability

The CVE ID is 2010-2075. It is triggered by entering ”AB;” upon connecting.

It allows an attacker to execute arbitrary code on the affected host. The common

port for IRC is 6667. The screenshot in Figure 4.10 is an email sent from satmd to

acknowledge this vulnerability.

Figure 4.10: Email Quote

The exploit in MSF used to attack this vulnerability is

exploit/unix/irc/unreal ircd 3281 backdoor.

4.5.3 Analysis of Wireshark Captured Packets

� The Expert Information under Analyze caught one error that ”a root-only do-

main name cannot be resolved” (Figure 4.11).

� Frame 620 contained a packet from Kali to Metasploitable 2. The destination

port was 667 and it revealed a clear text of ”AB;perl”. This vulnerability is very

similar to the Vsftpd vulnerability: user input was viciously structured to gain

unauthorized access. This matches the code in Line 63 in the exploit named ”un-

25

Figure 4.11: Error from Packet from Unreal IRCD Attack

real ircd 3281 backdoor.rb”: sock.put("AB;" + payload.encoded + "\\n").

� Following the TCP stream of the packet above, the script was revealed to show

the illegal command in Figure 4.12.

Figure 4.12: TCP Stream of IRC Protocol

This stream reveals the target machine—Metasploitable; however, it does not

show that the attacker was MSF.

4.6 JAVA RMI

4.6.1 Vulnerability

The CVE ID is 2011-3556. The online search about this vulnerability all lead to an

ambiguous description—”unspecified vulnerability in the Java Runtime Environment

component in Oracle Java SE JDK and JRE. . . (versions)”. Even the Oracle website

does not specify the vulnerability [22].

The MSF module used was exploit/multi/misc/java rmi server.

26

4.6.2 Wireshark Packet Analysis

� The timeline of the attack was:

– Step 1: Metasploit in Kali hit RMI port on 1099.

– Step 2: The victim machine, Metaploitable 2 VM, was triggered to make

an HTTP request for JAR file to Kali on TCP port 8080.

– Step 3: The Meterpreter Shell created a listener on TCP port 4444 in the

attacker machine.

– Step 4: Metasploit Framework connected to the Meterpreter listener, sent

additional code and used TCP port 4444 as the communication channel

for the Meterpreter shell.

� Frame 172 contained a packet from Kali to Metasploitable 2 and it revealed

the following information when right clicking on this frame to pick Follow->tcp

stream. The clear texts included ”Metasploit/RMILoader.class” (Figure 4.13).

These clear texts reveal that the attacks are from Metasploit Framework.

4.7 METASPLOIT PAYLOAD GENERATION

Metasploit Framework allows users to generate payloads that are compatible with

a wide range of platforms and obscured with varieties of encoders. The platforms

available for customized payloads include Windows, Android, Apple Ios, Linux, Unix,

Android, Java, Cisco and etc. The command—msfvenom –list platforms—can

generate a long list of platforms inside MSF. Various encoders inside MSF help conceal

payloads. The command—msfvenom -l -encoders—shows a long list of encoder

options available in MSF (Figure 4.14). Another benefit of using encoders is to fix

bad characters in a customized payload.

27

Figure 4.13: TCP Stream

Figure 4.14: Encoders Offered in MSF

The author created four types of payloads in Metasploit and submitted them to

Virustotal website to see whether the customized payloads could avoid detection.

28

The four types are the executive (.exe), executable and linkable format (.elf), shell

scripting (.sh) and Python(.py). They are chosen because they represent some of the

most common file types. The command to create payloads in MFS is msfvenom.

4.7.1 Binaries

The payload (Figure: 4.15) was created for the platform of Windows, so the file

type was executable. The goal was to create a reverse shell.

Figure 4.15: Generating Executable File in Metasploit Framework

4.7.1.1 Linux (file name: shell.elf)

The payload (Figure: 4.16) was also to create a reverse shell for the Linux platform.

The format of the file was set to be Executable and Linkable.

Figure 4.16: Generating Executable and Linkable Format Exploit

29

4.7.2 Scripting Payload

Figure 4.17: Generating Shell Script

The payload (Figure: 4.17) creates a reverse shell in the format of Shell Script if

the target is Unix.

4.7.3 Shellcode

The payload (Figure: 4.18), coded in Python, creates a reverse shell in a target

machine.

The screenshot (Figure: 4.19) shows the generated payload files in the root folder.

The moment the author moved these payload files into the Windows 10 desktop,

the antivirus software in Windows 10 immediately issued two warnings and deleted

”payload.exe” and ”shell.elf” (Figure: 4.20). The two files remain—”shellcode.py”

and ”shell.sh”. This means that the executable file and the Executable and Linkable

Format are more likely to be detected than the Python format and Shell Script in a

Windows operating system.

4.7.4 Submission to VirusTotal

The author submitted the four types of payloads to the website of Virustotal to

see how well the vendors there would detect the customized virus. No flag was raised

at all to Python shellcode. The passing rate was 100% (Figure: 4.21).

30

Figure 4.18: Generating Exploit in Python in Metasploit Framework

Figure 4.19: Custom Generated Exploits in Metasploit Framework

The VirusTotal result showed that the file type of shellcode.py was text and the

magic number, a specific numeric value to show the file type, was ASCII text. The

size of this submission was 613 bytes. The shell.sh file also encountered no resistance

with a passing rate of 100% (Figure: 4.22).

The result from VirusTotal for shell.sh was similar to the result for shellcode.py in

that VirusTotal also judged that the file type for shell.sh was text. Its magic number,

according to VirusTotal, was ASCII text with no line terminator. The file size was

only 67 bytes.

31

Figure 4.20: Windows Detects and Deletes Exploits

Figure 4.21: Exploit in Python passes VirusTotal Website Scanning

Figure 4.22: Exploit in Sh file format passes the Virustotal website scanning

The author uploaded payload.exe to Virustotal. Fifty-two out of sixty-eight ven-

dors flagged this file and 16 vendors gave green lights (Figure: 4.23). The result was

32

very different from the previous two submissions.

Figure 4.23: VirusTotal website catches Exploit in Executable File Format

The result stated the file type was Win32 executable and its magic number was PE

32 executable. The file size was 73802 bytes, much bigger than the python and shell

script files. VirusTotal found one malware and one Trojan inside the payload.exe.

VirusTotal believed that the submitted file was obfuscated to try to evade defense

because ”Binary may include packed or crypted data.” VirusTotal detected TCP or

UDP traffic on non-standard ports. The author did specify Port 6001 to be used

while creating this payload. So, this port arrangment was detected by vendors in

VirusTotal.

The author uploaded shell.elf to virustotal. Twenty-four out of sixty-one vendors

raised a flag about this payload and thirty-five vendors gave green lights (Figure:

4.24). VirusTotal judged that the file type of this submission was ELF and its magic

number was ELF 32-bit least-significant-byte (LSB) executable. An alternative ex-

pression of LSB is little-endian. The file size was 207 bytes. The Executable and

Linkable File’s passing rate was slightly better than that of the Executable; however,

it was still likely to be detected.

Figure 4.24: VirusTotal Website catches Exploit in ELF format

33

The VirusTotal website treated the four payloads differently: the Python and Shell

Script passed 100% while the executable file was almost guaranteed to be caught and

the Executable and Linkable Format file had better luck than the executable file but

were still detected by one third of the vendors. The comparison of the results (Table

4.1) shows that VirusTotal’s vendors or scanners trust text file types while staying

cautious or highly alert about executable file types.

Payload Type Detection Perc File Type Size

Python 0% Text 613 bytes

Shell Script 0% Text 67 bytes

Executable 76.47% Win32 Executable 73802 bytes

Executable and Linkable Format 39.34% ELF 32-bit LSB Executable 207 bytes

Table 4.1: Comparing Submissions to VirusTotal

One explanation that VirusTotal may generate false negative results is that Virus-

Total offers two versions: a free version and a paid version. The author was using

the free version and the free version does a static analysis for submitted files. The

paid version scans in a more detailed way and more thoroughly. The python and

shell script files are text files and a static analysis may consider plain text innocuous.

The 100% passing rate for shellcode.py and shell.sh shows that not all virus scanners

and detectors can recognize or block MSF-originated payloads if payloads are in a file

format that isn’t considered dangerous.

Another possible reason for false negative results is that virus files are getting

trickier and trickier. VirusTotal is such a well-known testing tool that hackers can

program their virus files to tell if the scanners are from VirusTotal. If the virus files

believe that they are in VirusTotal environment, the behaviors in the submitted files

are not triggered to lure VirusTotal to reach a false negative conclusion. Once the

user mistakenly trusts that the file is safe, having passed VirusTotal scanners, and

runs the file in a real-world environment, the nefarious virus will show its poisonous

fangs [23].

34

The VirusTotal provides such a disclaimer to its results:

”VirusTotal simply aggregates the output of different antivirus vendors and URL

scanners, it does not produce any verdicts of its own. As such, if you are experiencing

a false positive issue, you should notify the problem to the company producing the

erroneous detection, they are the only ones that can fix the issue [24]”.

The author noticed that Windows 10 OS and VirusTotal reached the same con-

clusion: flagging the payload in executable file format and executable and linkable file

format as malicious malware. The python and shell script versions of the shellcode

evaded detection successfully. This proves that it is not possible to detect exploits

from Metasploit Framework successfully. Hackers can create payloads in a plethora

of file formats and antivirus tools are not able to catch them all.

4.8 NMAP SCANNING INDEPENDENTLY VS AS A MODULE INSIDE

METASPLOIT FRAMEWORK

As the author conducted the experiments above, the author was curious whether

NMAP works differently as an independent scanner than as an integral tool inside

Metasploit Framework. An experiment was conducted to answer this question. The

author scanned the Metasploitable 2 VM in two ways:

1. Using Nmap independently that was inside Kali VM

2. Using the Nmap module that is a module inside Metasploit Framework (MSF

inside Kali VM)

The results were compared line by line in Table 4.2.

The two scanning reports are almost identical except for some very minor differ-

ences which are listed in the table below. The author believes that these variances

can be neglected.

35

NMAP Independent A Module Inside MSF

command db nmap 192.168.1.115-A nmap 192.168.1.115 -A

nmap version 7.92 7.92

host is up latency 0.0011s 0.00095s

host clock-skew mean 1h00m10s 1h25m55s

median 9s 2h25m56s

Table 4.2: Comparing Two NMAP Scans

Both reports show the identical discoveries of the port numbers and port descrip-

tions. The author also used Wireshark to capture the packets for both scans and

compared the packets. The packets are very similar; both show features of a typical

scanning:

� The handshake of SYN, SYN ACK, RST

� A small window size of 1024

� The options of 4 bytes

� The maximum segment size of 1460 bytes

The conclusion is that NMAP is not used differently when it is an independent module

inside Kali VM from when it is a module inside Metasploit Framework inside Kali

VM.

36

5 CONCLUSION

The literature review, experiments and observation of captured packets lead to a

conclusion that:

� It is highly possible that the attacks, if launched from MSF and successfully

executed, can be traced back to MSF after detection.

� The MSF-originated attacks share some patterns such as clear texts of Ruby

code; however, these patterns are not significant enough for targets to circum-

vent MSF-originated attacks.

� There are not unique attacking patterns from MSF that are significant enough

for targets to stop MSF-attacks from happening in a general way.

� Metasploit Framework evolves as counter-attack techniques grow.

Even though it is hard to make a computer bullet-proof against attacks from MSF, it

is relatively easy to trace attacks back to Metasploit Framework once the attacks have

happened, are detected, and the packets are captured and analyzed. Some captured

packets contain ”Metasploit” word explicitly. Metasploit exploits are coded in Ruby

and the Ruby code for MSF exploits is public information online at GitHub.

Even if some software claims to be able to protect machines from attacks origi-

nated from MSF, it is spot detection, which means that it can only temporarily stop

certain specific exploits because the software alerts specific features from specific MSF

exploits. Once MSF makes variations to their existing exploits, the validation of the

anti-MSF-exploit software is sharply damaged.

Most efforts in the literature covered in this report were about how to circumvent

an existing exploit from MSF after observing the attacks. No literature or experiment

37

that I have seen could prevent MSF exploit variations. Metasploit Framework keeps

involving and expanding with new exploits. Therefore, as of now there is no method

to preemptively protect victim machines from Metasploit-originated attacks.

Rapid7 submitted its Registration Statement under The Securities Act of 1933 to

the United States Securities and Exchange Commission on June 11, 2015. This file

admitted that ”to the extent that the identification of new exploits and vulnerabilities

by the Metasploit community enhances the knowledge base of cyber attackers or

enable them to undertake new forms of attacks, we could suffer negative publicity

and loss of customers and sales, as well as possible legal claims [5].” This report

also pointed out that the industry focus had shifted from ”block and prevention” to

”analytics-driven approach” (Figure: 5.1). The old model of ”block and prevention”

proved to be inefficient and the new model helped organizations balance ”investments

in prevention, detection and correction [5]”. The diagram below was from this report

of Rapid 7 and it confirms the answers to the research questions in this project that

there are not general or generic antivirus techniques to block attacks from Metasploit

Framework or even any other cyber-attack generating platforms.

Figure 5.1: Focus Shift in Cyber Security Industry

38

6 BLAME VULNERABILITY NOT VIRUS

Even though this research project concludes that there is not a general way to

protect victims from Metasploit Framework attacks, the research process has inspired

the author to garner some insight into how to protect networks from attacks. Vulner-

abilities are weakness of the code. Because vulnerability is about the way code being

written, it is intrinsic to code and software. A virus is an external malicious code

that exploits vulnerabilities. Even though patches fix vulnerabilities, it is rewriting

code that removes vulnerabilities. Antivirus software does not fix vulnerabilities in

lines of code and it only works as a line of defense external to vulnerable code. The

root solution is to remove vulnerabilities in code by writing safe code.

39

BIBLIOGRAPHY

1. 11 popular penetration testing tools for web, mobile and network, SecureTriad

Blogs, https://securetriad.io/popular-penetration-testing-tools/

2. M. Buckbee, What is Metasploit? The Beginner’s Guide, Varonis, https://ww

w.varonis.com/blog/what-is-metasploit#:~:text=With%20Metasploit%2

C%20the%20pen%20testing,systemic%20weaknesses%20and%20prioritize%2

0solutions

3. Gurubaran, Metasploit 6.2 Released—138 New modules, 148 New Enhancements

and 150+ Bugs Fixed. Cyber Security News, https://cybersecuritynews.co

m/metasploit-6-2/

4. G. Hulme, Metasploit Review: Ten Years Later, Are We Any More Secure?.

TechTarget Network, October 2012, https://www.techtarget.com/searchsec

urity/feature/Metasploit-Review-Ten-Years-Later-Are-We-Any-More-S

ecure#:~:text=According%20to%20Moore%2C%20on%20a,accessed%20the%2

0Metasploit%20update%20server

5. Rapid7, Inc., FORM S-1, Registration Statement Under The Securities Act of

1933, United States Securities and Exchange Commission, .https://www.sec.

gov/Archives/edgar/data/1560327/000119312515220243/d908531ds1.htm

6. Meterpreter Secret Double Octopus. https://doubleoctopus.com/security-w

iki/threats-and-tools/meterpreter/#:~:text=Meterpreter%20is%20a%20

Metasploit%20attack,and%20writes%20nothing%20to%20disk

7. VirusTotal, https://www.virustotal.com

40

8. Building a Module., Offensive Security.https://www.offensive-security.co

m/metasploit-unleashed/building-module/

9. D. Kennedy, J. O’Gorman, D. Kearns, and M. Aharoni, , Metasploit: The Pene-

tration Tester’s Guide. San Francisco: No Starch Press, 2011

10. M. Baggett, Effectiveness of Antivirus in Detecting Metasploit Payloads. SANS

Institute, 2008, https://sansorg.egnyte.com/dl/B8M2U4fZwi

11. C.J. Marquez, An Analysis of the IDS Penetration Tool: Metasploit. Dept. Tech-

nology Systems, East Carolina University, NC, http://www.infosecwriters.c

om/text_resources/pdf/jmarquez_Metasploit.pdf

12. N. Wallace and T. Atkison, Observing Industrial Control System Attacks

Launched Via Metasploit Framework. http://dl.acm.org/citation.cfm?doid

=2498328.2500067

13. K. Chauhan, J. Seth, and A. Kaur, Network Security

Confidentiality, Integrity&Availability Protection Against Metasploit Us-

ing SNORT and Wireshark. , December 2020, Final Research Project for the

Degree of Master of Information , System Security Management at Concordia

University of Edmonton, December 2020, Edmonton, Alberta

14. M. Tabassum, S. Mohaman, and T. Sharma, Ethical Hacking and Penetrate

Testing using Kali and Metasploit Framework,International Journal of Innova-

tion in Computational Science and Engineer, ISSN: 2708-328, May, 2021,https:

//webportal.hct.edu.om/ijicse/pages/upload/library/2020/2/P2.pdf

15. J. Linares, Detecting Metasploit Attacks, Wazuh Blog, June 25, 2020,https:

//wazuh.com/blog/detecting-metasploit-attacks

41

16. Evading Antivirus with Better Meterpreter Payloads, https://www.virtuesecu

rity.com/evading-antivirus-with-better-meterpreter-payloads

17. R. Sheldon, J. Scarpati, Server Message Block protocol (SMB protocol), TechTar-

get, August 2021, https://www.techtarget.com/searchnetworking/defini

tion/Server-Message-Block-Protocol#:~:text=The%20Server%20Message%

20Block%20protocol%20(SMB%20protocol)%20is%20a%20client,transactio

n%20protocols%20for%20interprocess%20communication.

18. About Samba, samba.org, https://www.samba.org/

19. The Samba Team, Samba.org, https://www.samba.org/samba/security/CVE

-2007-2447.html

20. seclist.org, https://seclists.org/fulldisclosure/2010/Jun/277

21. IRC, Internet Relay Chat, Radware, https://www.radware.com/security

/ddos-knowledge-center/ddospedia/irc-internet-relay-chat/#:~:

text=IRC%20(Internet%20Relay%20Chat)%20is,side%20and%20client%2Dsi

de%20commands

22. Oracle Java SE Critical Patch Update Advisory – October 2011, Oracle, https:

//www.oracle.com/security-alerts/javacpuoct2011.html

23. 4 things you should know about testing AV software with VirusTotal’s free online

multiscanner, Malwarebytes Labs, May 18, 2021, https://www.malwarebytes

.com/blog/news/2021/05/4-things-you-should-know-about-testing-av-s

oftware-with-virustotal

24. I am experiencing a false positive, my file or site should not be detected., Virus-

Total > FAQ > General, https://support.virustotal.com/hc/en-us/arti

42

cles/115002121185-I-am-experiencing-a-false-positive-my-file-or-s

ite-should-not-be-detected-

25. snort.org, https://www.snort.org/

26. Contributors, VirusTotal, https://support.virustotal.com/hc/en-us/arti

cles/115002146809-Contributors

43

VITA

Gina Ajero earned her bachelor degree in English in Heilongjiang University, Peo-

ple’s Republic of China, in 1997. She obtained her Master of Business of Administra-

tion at Temple University, Philadephia, Pennsylvania, in 2000. She is finishing her

Master of Science in the graduate program of Cyber Security in the department of

Computer Science at Stephen F. Austin State University in December, 2022. She has

been accepted into Master of Professional Accountancy at Rusche College of Business

at Stephen F. Austin State University and will start the program in January, 2023.

The style manual used in this thesis is A Manual For Authors of Mathematical Papers
published by the American Mathematical Society.

This thesis was prepared by Gina L. Ajero using LATEX.

44

	Differentiate Metasploit Framework Attacks From Others
	Repository Citation

	Differentiate Metasploit Framework Attacks From Others
	Creative Commons License

	tmp.1670878378.pdf.t2ObM

