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ABSTRACT 

 The Bachman’s Sparrow (Peucaea aestivalis) is a declining songbird that occurs 

throughout the southeastern United States. Bachman’s Sparrow is a Species of Greatest 

Conservation Need in Texas, but information crucial to management efforts, such as 

factors affecting their detectability and occupancy, is lacking. I investigated the 

predictors of Bachman’s Sparrow occupancy and phenology in Texas using detections 

from autonomous recording units coupled with site characteristics and weather data. My 

results indicate that Bachman’s Sparrow occupancy is associated with increasing 

herbaceous ground cover and decreasing basal area, distance to the nearest source 

population, and basal area when canopy height is high. Singing phenology is affected by 

photoperiod and precipitation, with singing occurring between January and October. 

These results highlight the optimal spatial and temporal conditions for this species to 

guide future management and monitoring efforts. 
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CHAPTER I: SITE OCCUPANCY OF BACHMAN’S SPARROW (PEUCAEA 

AESTIVALIS) AT THE WESTERN EDGE OF ITS RANGE 

 

INTRODUCTION 

 Habitat is among the most crucial requirements for the success of a species in its 

environment as it provides the resources needed for survival and reproduction (Odum 

1971, Jourdan et al. 2021). Each species is adapted uniquely to the biotic and abiotic 

components of its habitat and this uniqueness improves fitness (MacArthur 1958, Block 

and Brennan 1993, Matich et al. 2017, Wei et al. 2021). While some species are habitat 

generalists and can tolerate a wide range of habitat conditions, other species are habitat 

specialists and are highly reliant on certain characteristics of their habitat for survival 

(Pandit et al. 2009). Habitat generalists can persist following habitat alteration (e.g., those 

associated with land use change) due to their wide niche breadth enabling them to adapt 

to new conditions or move to different habitats (Feinsinger et al. 1981). Habitat 

specialists, however, are more sensitive to deviation from optimal conditions as 

specialization limits their ability to move into other habitat types (Hansson 1991, Beger 

2021). Because they are adapted to a narrow range of conditions, specialist species in 

suboptimal habitat experience lower fitness, resulting in decreased population sizes and 

in some cases, extirpation (McKinney 1997, Beger 2021). Consequently, habitat 
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fragmentation, degradation, or loss has a severe negative impact on populations of 

specialist species (Winiarski et al. 2017, Betts et al. 2021). A species’ tolerance to diverse 

environmental conditions may limit its distribution (Sexton et al. 2009). Distributions are 

often defined by a gradient of environmental conditions (biotic and abiotic) that a species 

can tolerate, with the least tolerable conditions at range edges (Sexton et al. 2009). 

Populations at range edges are therefore subject to less optimal conditions than interior 

populations and are further faced with increased variability in gene flow and abundance 

(and consequently fitness) due to fewer and less varied source populations (Sexton et al. 

2009). Because of this, local extinctions are more likely at range edges than in interior 

populations (Doherty et al. 2003). Specialist species are particularly vulnerable at the 

fringe of their distribution as their narrow niche breadth exacerbates the effects of 

occupying regions with suboptimal habitat (Doherty et al. 2003, Swihart et al. 2006).  

Habitat fragmentation and isolation of populations further exacerbate these issues 

by inhibiting movement among populations (Devictor et al. 2008). Where range 

boundaries exist in severely fragmented regions, the risk for extirpation and range 

reduction is enhanced (Hornseth et al. 2014). It is crucial to understand the factors that 

influence site occupancy on range edges to mitigate population losses through habitat 

management. This is especially critical for species of concern that are already 

experiencing population declines due to habitat fragmentation and loss, including some 

species of birds in the southeastern USA, such as Red-cockaded Woodpecker (Dryobates 

borealis) and Bachman’s Sparrow (Peucaea aestivalis).  
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Bachman’s Sparrow is a declining specialist in woodland savannas and early 

successional fields with sufficient grass cover in the southeastern United States (Dunning 

and Watts 1990, Allen and Burt 2014). Sites supporting Bachman’s Sparrow have been 

described as park-like, with reduced density of overstory trees and a minimal or absent 

woody midstory component (Plentovich et al. 1998, Brooks and Stouffer 2010, Allen and 

Burt 2014, Hannon et al. 2021). Most importantly, a copious amount of bunchgrass 

present in the understory is necessary for the persistence of this species, as it uses grass 

for foraging, cover, and nesting (Jones et al. 2014, Taillie et al. 2015, Fish et al. 2018). 

These habitat characteristics are maintained by fire, as it mitigates woody overgrowth in 

the understory, promoting the success of fire-adapted grasses and forbs (Tucker et al. 

2004, Conner et al. 2005, Fish et al. 2018, Hannon et al. 2021). Individuals are known to 

abandon sites burned less frequently than 3 years and a burning regime of 2-3 years is 

necessary for continued occupancy by the species (Tucker et al. 2004).  

Pine and oak savanna are the primary habitat types associated with Bachman’s 

Sparrow due to low tree density and frequent fires allowing for an increased amount of 

grass (Dunning and Watts 1990, Farley et al. 2008). These habitat types reach their 

western edge in the West Gulf Coastal Plain ecoregion along with their associated 

species, including Bachman’s Sparrow. Although pine savanna (primarily longleaf pine 

[Pinus palustris] savanna) once dominated upland landscapes across the southeast, it 

persists in a severely fragmented 3% coverage across its original range (Van Lear et al. 

2005). Similarly, post oak (Quercus stellata) savanna experienced a 99% decrease since 
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European colonization (Nuzzo 1986). With these losses in suitable habitat, Bachman’s 

Sparrow populations have plummeted by 76% in the last century (Rosenberg et al. 2016). 

As pine and oak savannas have been severely fragmented, populations of Bachman’s 

Sparrow are now isolated, exacerbating their population declines (Winiarski et al. 2017). 

The majority of information on Bachman’s Sparrow comes from populations on 

the eastern portion of their range (i.e., east of the Mississippi River) (Dunning and Watts 

1990, Brooks and Stouffer 2010, Taillie et al. 2015, Fish et al. 2018, Fish et al. 2020) and 

information on habitat preferences on the western range edge (Texas, Oklahoma, and 

Arkansas) come from small-scale surveys (Conner et al. 2002, Conner et al. 2005, Farley 

2008, Allen and Burt 2014). Given the decline of the species across its range and the 

increased vulnerability of specialists on the periphery of their distribution, it is crucial to 

understand the habitat requirements of Bachman’s Sparrow across the entirety of the Gulf 

Coastal Plain. To determine the habitat covariates associated with Bachman’s Sparrow 

occupancy on its western range edge in Texas, I used an occupancy modeling approach 

with ecologically relevant observation-level and site-level covariates that not only 

elucidated local-scale predictors of detection and occupancy, but also investigated the 

importance of habitat connectivity using a regional-scale covariate. I hypothesized that 

occupancy would be associated with sites with an open understory (i.e., reduced basal 

area and shrub foliage density and little to no midstory) and abundant grass and forb 

ground cover. I also hypothesized that because of habitat fragmentation, isolation of 

populations would result in a decrease in occupancy probability at sites far from 
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established populations (Dunning et al. 1995). This study builds on the current 

knowledge of Bachman’s Sparrow ecology by offering results of site occupancy on the 

western fringe of its range. These results may better inform management efforts for 

Bachman’s Sparrow in the West Gulf Coastal Plain. Furthermore, because Bachman’s 

Sparrow is regarded as an indicator for pine savanna quality (Hannah et al. 2017, 

McIntyre et al. 2019), these results could have a broader application as a metric for 

habitat quality in this region or across the range of Bachman’s Sparrow.  
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METHODS 

Study Area 

 In the West Gulf Coastal Plain, Bachman’s Sparrow is restricted to the 

Pineywoods and Post Oak Savanna ecoregions (Griffith et al. 2007), limiting the range of 

Bachman’s Sparrow to east of the Brazos River (Lockwood and Freeman 2004). The 

geography in this region is characterized by xeric, sandy uplands historically dominated 

by longleaf pine, shortleaf pine (P. echinata), and post oak (Quercus stellata) and 

bottomlands dominated by an oak-gum-cypress cover type (Griffith et al. 2007). 

Replacement of longleaf and shortleaf pine by short-rotation plantations of the more 

commercially viable loblolly pine (P. taeda) has severely fragmented the pine savanna 

ecosystems in this region and across its range (Van Lear et al. 2005). These savanna 

ecosystems are fire-maintained and fire regimes less frequent than 3 years can cause the 

understory of dense herbaceous ground cover to become shaded beneath less fire-

resistant successional species, such as American sweetgum (Liquidambar styraciflua) and 

yaupon holly (Ilex vomitoria) (Tucker et al. 2004). The sites I surveyed contained areas 

of pine and hardwood habitats at varying levels of succession. Habitat types included 

upland pine and post oak savanna, upland loblolly-shortleaf pine stands, upland oak-

hickory forests, restored prairie with Osage-orange (Maclura pomifera) and eastern red 

cedar (Juniperus virginiana) mottes, and oak-gum-cypress bottomlands. 
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Survey Sites 

I surveyed 10 study sites (accessible properties containing multiple survey 

locations) within the Pineywoods and Post Oak Savanna ecoregions of Texas 

representing a variety of wooded habitats with varying ground cover types. I placed plots 

(specific survey locations within study sites) in areas of low, medium, and high 

likelihood of Bachman’s Sparrow occurrence based on a species distribution model 

(SDM) developed by Andersen and Beauvais (2013). This SDM used training data 

(confirmed records of Bachman’s Sparrow) paired with data on climate, topography, land 

use/landcover, soils and substrate, and surface water to develop a spatial model that 

predicts the distribution of Bachman’s Sparrow in Texas by low, medium, and high 

relative likelihood of occurrence (Andersen and Beauvais 2013). In 2020 and 2021 

between April and August, I surveyed 40 plots in each habitat quality category (low, 

medium, and high) per year for a total of 120 plots per survey season (n = 240 plots 

total). 

I selected study sites in 3 United States Forest Service National Forests (NFs) and 

1 National Grassland (NG), 2 Texas Parks and Wildlife Department Wildlife 

Management Areas (WMAs), and 2 privately-owned properties (see Appendix 1). I 

sampled a total of 12 counties across eastern Texas: Anderson, Angelina, Fannin, 

Freestone, Houston, Jasper, Nacogdoches, Newton, Sabine, San Augustine, Shelby, and 

Trinity. The northmost and southmost latitude I surveyed were 33.44° N and 31.02° N, 
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respectively, while the westmost and eastmost longitudes I surveyed were 96.04° W and 

93.70° W, respectively (Figure 1.1).
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Figure 1.1. Sites selected for occupancy surveys of Bachman’s Sparrow in eastern Texas in 2020 and 

2021. Sites were selected based on their occurrence in low, medium, and high relative likelihood of 

Bachman’s Sparrow occurrence based on Andersen and Beauvais’ (2013) species distribution model.  

Abbreviations are NF and NG for National Forest and National Grassland, respectively, and WMA for 

Wildlife Management Area. 
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I selected study sites in ArcMap (Version 10.6.1, Environmental Systems 

Research Institute, Redlands, CA) by overlaying the Andersen and Beauvais (2013) 

model raster over accessible properties to determine which possible study sites fell within 

each category of Bachman’s Sparrow occurrence. To ensure plots were selected in 

homogeneous landscapes, I filtered the model raster to minimize patchiness of each 

category. I overlaid a 400 m by 400 m grid of points (i.e., plots) over each study site 

using the Create Fishnet tool and manually removed inaccessible points (in bodies of 

water, on roads, beyond impassable creeks or rivers). I included a buffer zone of 200 m 

for each plot to ensure independence of plots. At most study sites, I randomly selected 

plots using a command in the ArcPy tool that removed a random set of points. At study 

sites with a limited amount of space to fit plots (Caddo NG, Gus Engeling WMA, and 

both north and south Sabine NF sites), I selected all possible plots instead of randomly 

removing plots. If space allowed, I randomly selected a maximum of ten plots per site as 

back-up plots in case the originally selected plots were inaccessible in the field. At 

Sabine NF (S.), I determined 3 plots to be inaccessible in the field due to steep ravines, so 

I subsequently randomly selected 3 plots from another study site, Angelina NF, to replace 

them.  

Data Collection 

 I used autonomous recording units (ARU; Wildlife Acoustics SM4s and SM 

Minis) to gather Bachman’s Sparrow detection data. I deployed up to 30 ARUs at their 

respective plots simultaneously, programming a schedule to record daily for 5 
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consecutive days, recording 5 minutes every half-hour from sunrise until 3 hours after 

sunrise. This time window is the period of the day that songbirds are most likely to 

exhibit singing behavior and therefore most likely to be detected (Leopold and Eynon 

1961). I deployed ARUs (n = 120) between May 18 and July 12 in 2020, and April 17 

and June 16 in 2021, during the peak season for Bachman’s Sparrow singing phenology 

(see Chapter 2). I attached ARUs at the base of a tree or at breast height, depending on 

susceptibility of the plot to fire or flooding. To account for any changes in detection 

within a season, plots were resampled with ARUs between July 19 and August 17 in 

2020, and June 22 and July 22 in 2021. Some ARUs (n = 3) failed to record due to 

memory card errors during the resampling period of 2021.  

 Following retrieval of ARUs, I downloaded recorders and scanned recordings 

using Wildlife Acoustics Kaleidoscope software. Although Wildlife Acoustics offers a 

version of Kaleidoscope with cluster analysis that can be used to isolate bird song by 

type, I opted to scan all recordings by visual scanning of the spectrogram paired with 

listening. Bachman’s Sparrow has a diverse repertoire with at least 6 different song types 

with multiple sub-types (Borror 1971, Wolff, unpublished data), making cluster analysis 

a potentially time-consuming process. Additionally, I opted to scan recordings to reduce 

the chances of false negative detections from the automated cluster analysis. 

At each plot, I measured ecologically relevant habitat covariates to be used as 

predictors of occupancy based on results from prior studies (Table 1.1) (Brooks and 

Stouffer 2010, Allen and Burt 2014, Taillie et al. 2015, Fish et al. 2018). I centered plots 
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at the ARU attachment tree and measured subplots at 25 m and 50 m in each cardinal 

direction away from the tree (Table 1.1). Basal area was measured with a 10-factor 

wedge prism at plot center and at 50 m subplots, canopy cover was measured with a 

spherical densiometer at 25 m and 50 m subplots, midstory density was categorized from 

1-5 sensu Conner et al. (1999) from plot center, percent ground cover of grass, forbs, leaf 

litter, and bare ground were estimated using Daubenmire classes in a 1 m2 quadrat 

(Daubenmire 1968) at 25 m and 50 m subplots, and foliage density was measured with a 

density board at plot center and 50 m subplots. I also collected observation-level data to 

use as predictors of detection based on previous studies (Taillie et al. 2015, Fish et al. 

2018). I recorded hourly weather data (rain, wind, and temperature) from the nearest 

United States Forest Service Remote Automated Weather Station and averaged values 

from the 3-hour recording window of the ARU for each survey date. The average 

distance to a weather station was 23 km (range 1.9 km ̶ 43 km). I also recorded Julian 

date for each date the ARUs surveyed. 
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Table 1.1. Habitat covariates measured at each plot as potential predictors of Bachman’s 

Sparrow detection and occupancy. Observation-based covariates were measured to be 

included in detection models while state-based covariates were measured to be included 

in both detection and occupancy models.  

Covariate Description Subplot 

Measured 

Observation-based 

     Julian Date 

  

Number of days since the beginning of 

the Julian Year 

- 

     Temperature (°C) Temperature values averaged across the 

3-hr recording period  

- 

     Wind (m/s) Wind values averaged across the 3-hr 

recording period 

- 

     Precipitation (mm) Rain values averaged across the 3-hr 

recording period 

- 

State-based 

Local Scale 

  

     Basal Area (m²/ha) Square meters per hectare occupied by 

tree stems 

Plot center 

     Canopy Cover (%) Percentage of canopy foliage covering 

the plot 

Plot center 

     Midstory Density (1-5) Density of sub-canopy trees over 3 m tall 

at plot 

Plot center 

     Grass Ground Cover (%) Percentage of ground covered by grass in 

a 1 m2 quadrat 

25m, 50m 

     Herbaceous Ground Cover (%) Percentage of ground covered by 

herbaceous plants in a 1 m2 quadrat 

25m, 50m 

     Leaf Litter Ground Cover (%) Percentage of ground covered by leaf 

litter in a 1 m2 quadrat 

25m, 50m 

     Bare Ground Cover (%) Percentage of bare ground in a 1 m2 

quadrat 

25m, 50m 

     Foliage Density (m2/m3) Area of density board covered by shrub 

foliage 

Plot center, 

50m 

Regional Scale   

Distance to Nearest Source 

Population (km) 

Distance of the plot to the nearest known 

population location 

- 
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Data Cleaning 

Prior to analysis, I averaged habitat measurements from plot center, 25 m, and 50 

m subplots after proofing all data from each site. I converted ground cover percentage 

classes from ordinal data to continuous by replacing categories with their median 

percentage value and averaging across subplots. I converted foliage density 

measurements from raw values (distance in meters from observer to density board) to 

m2/m3 of foliage density using the formula derived from MacArthur and MacArthur 

(1961) and adjusted by Conner and O’Halloran (1986). I used variance inflation factor 

(VIF) to evaluate collinearity among all variables in global model and found that only 

ground cover covariates were collinear (VIF >5). Because grass and forb ground cover 

have been previously implicated as important predictors of Bachman’s Sparrow 

occupancy, I combined the two covariates into one covariate, herbaceous ground cover, 

by summing their values prior to averaging. By only including one ground cover 

covariate or the combined herbaceous cover covariate in any one model, I was able to 

investigate whether these covariates affected occupancy without violating the assumption 

of the independence of independent variables. I used a Mann-Whitney U test to determine 

if sites with Bachman’s Sparrow detections and sites without detections were 

significantly different in their habitat characteristics. 

Occupancy Modeling 

 I used an occupancy modeling approach to determine which habitat covariates 

were the most important predictors of Bachman’s Sparrow site occupancy. To meet the 
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assumptions of single-season occupancy modeling (MacKenzie 2006), I repeated surveys 

by recording 5 consecutive days to keep my detection data within a closed season (i.e., 

there were no colonization or extinction events), which ensures that probability of 

occupancy (ψ) does not change between surveys and that the probability of detection (p) 

and ψ remain equal across all plots. The plot selection process established plot 

independence, reducing the chance an individual is detected at more than one site. 

Although I sampled plots during two 5-day sampling events in the same season, 

sufficient time had passed between the two sampling events that they could not be treated 

as a closed season (MacKenzie 2006). Because colonization and extinction dynamics 

modeled in multi-season occupancy modeling were not within the scope of this study, I 

utilized a single-season occupancy modeling approach and treated the second survey 

dataset as unique plots sharing habitat data with the first survey data, but with unique 

detection histories, resulting in 477 total unique plots. 

I developed single-species, single-season hierarchical occupancy models using the 

unmarked package of R 4.0.3 (Fiske and Chandler 2011, R Core Team 2019). I assessed 

model fit of the saturated model using the MacKenzie and Bailey Goodness-of-fit Test 

for single-season occupancy models (MacKenzie and Bailey 2004). Using the saturated 

model for goodness-of-fit provides a baseline to assess the fit of less complex a priori 

models (Cooch and White 2002). Because the ĉ statistic indicated slight overdispersion (ĉ 

= 2.17), I ranked models using Quasi-Akaike Information Criterion (QAIC) and inflated 

nominal variance by multiplying the estimated standard error of each parameter by the 
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square-root of ĉ. This method accounts for overdispersion by penalizing more complex 

models during model ranking and by correcting any bias in the standard error from 

possible collinearity of covariates (Cooch and White 2002). If any of the models were 

competitive with the top model (ΔQAIC less than 2 units from the top model), I selected 

the most parsimonious of the competitive models (Burnham and Anderson 2002).  

I fit 9 detection-based a priori detection models with different combinations of 

Julian date and weather data. I included a variation of Julian date with a quadratic effect 

as well as an interaction term of Julian date with temperature. Occupancy modeling can 

incorporate state-based covariates as predictors of detection as well, so I included 

combinations of ecologically relevant habitat covariates in some detection models.  

Using the parameters from the top-ranked detection model, I then fit 20 a priori 

state-based occupancy models with ecologically relevant habitat covariates. Previous 

studies on Bachman’s Sparrow habitat preferences have implicated basal area, canopy 

height, foliage density, herbaceous ground cover, and woody midstory components as 

predictors of Bachman’s Sparrow occupancy (Plentovich et al. 1998, Conner et al. 2005, 

Brooks and Stouffer 2010, Allen and Burt 2014, Taillie et al. 2015, Fish et al. 2018, Fish 

et al. 2020, Hannon et al. 2021), so a priori models had varying combinations of these 

covariates. I expected herbaceous ground cover and basal area to have a quadratic 

relationship with site occupancy (Taillie et al. 2015) or to only be a strong predictor of 

Bachman’s Sparrow occupancy when canopy height was high, suggestive of savanna-

type habitats over prairie-type habitats. Because of this, I included variants of herbaceous 
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ground cover and basal area with a quadratic effect and with interactions with canopy 

height. I also included a regional-scale covariate, distance of each plot to the nearest 

source population, in case dispersal barriers limit individuals from occupying suitable 

habitat far from source populations. Using the training points from the Andersen and 

Beauvais (2013) model as source populations, I calculated the distance in kilometers 

from each plot to the closest model training point in ArcMap. Some sites, such as Davy 

Crockett NF, have areas with dense herbaceous cover and moderately low basal area, but 

are far enough from source populations that dispersing Bachman’s Sparrow have a 

decreased chance of discovering them, or have not had sufficient time since the site was 

restored to do so. Furthermore, some individuals may occupy habitat that is suboptimal 

but close to conspecifics within their source population. A distance to source population 

covariate may therefore explain variance in the data caused by either occupancy of poor 

habitat near source populations or lack of occupancy in adequate habitat far from source 

populations.  

Model inference was performed using the linearComb function of the unmarked 

package of R, setting all coefficients at their mean (Fiske and Chandler 2011). Because of 

the wide range of values for the distance to source population covariate, the median was 

used for model inference instead of the mean. I used the R package ggplot2 to construct 

plots of the marginal effect of each covariate to visualize relationships between the 

covariate and ψ. 
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In addition to performing this modeling procedure with all plots, I also repeated it 

with only the plots located within the high likelihood of Bachman’s Sparrow occurrence 

as suggested by the Andersen and Beauvais (2013) model. Because of the localness of 

most of the habitat covariates measured, I proposed that they may be stronger predictors 

of Bachman’s Sparrow occupancy at a more local scale. All plots with Bachman’s 

Sparrow detections were within the high likelihood category of the Andersen and 

Beauvais (2013) model and all plots in this category were relatively close together (<60 

km), limiting variation in the data caused by distance and multiple disparate habitat types. 

Because I developed the 20 a priori occupancy models before analyses, I used the same 

set of candidate models in both modeling efforts. 
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RESULTS 

Bachman’s Sparrow Surveys 

 During 2020 and 2021, I detected Bachman’s Sparrow at a total of 40 unique 

plots (Figure 1.2). Across both 2020 surveys, I detected Bachman’s Sparrow at 12 unique 

plots. During the first 2020 survey, Bachman’s Sparrow was detected at all 12 plots, but 

only 8 of those plots retained Bachman’s Sparrow detections during the second 2020 

survey. Across both 2021 surveys, I detected Bachman’s Sparrow at 28 unique plots. 

During the first survey, I detected Bachman’s Sparrow at 23 plots, 22 of which retained 

detections in the second 2021 survey. However, Bachman’s Sparrow was detected at 5 

additional plots in the second 2021 survey for a total of 27 plots with Bachman’s 

Sparrow. 
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Figure 1.2. Plots surveyed in 2020 and 2021. Sites with Bachman’s Sparrow detections 

are represented by triangles while sites without detections are represented by white 

circles. Areas of low, medium, and high probability of Bachman’s Sparrow occurrence 

from the Andersen and Beauvais (2013) species distribution model are represented by 

white, light gray, and dark gray, respectively. 
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 Plots with Bachman’s Sparrow detections were located in Angelina, Jasper, 

Newton, Sabine, and San Augustine counties (Appendix 1). All plots with detections 

from both years were located in the high likelihood of Bachman’s Sparrow occurrence 

category of the Andersen and Beauvais (2013) species distribution model (Appendix 1). 

Furthermore, all these plots except one were located within the 93,000 ha Longleaf Ridge 

Conservation Area (LRCA), which has been identified by the United States Forest 

Service as an area of “excellent habitat” for Bachman’s Sparrow (United States Forest 

Service 2011). The single plot outside of this area was located nearby in San Augustine 

County <10 km from LRCA (Appendix 1). Bachman’s Sparrow was detected at plots 

with lower median values of midstory density (U = 5870, p < 0.01) and distance to source 

population (U = 6783, p = <0.01) and higher median values of canopy height (U = 3038, 

p = 0.02), herbaceous ground cover (U = 2637, p < 0.01), and foliage density (U = 2931, 

p < 0.01) (Table 1.2).  
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Table 1.2. The median (min – max) values of habitat variables measured at unoccupied 

and occupied plots in 2020 and 2021. Plots were considered occupied if they had at least 

one Bachman’s Sparrow detection. All occupied plots were within a region of high 

likelihood of Bachman’s Sparrow occurrence as defined by a species distribution model 

by Andersen and Beauvais (2013). Asterisks indicate a statistically significant difference 

between the median values for that covariate at p <0.05 (*) and p < 0.01 (**) as 

determined by a Mann-Whitney U test. 

 Unoccupied Plots Occupied Plots 

Habitat Variable Median (min – max) Median (min – max) 

All Plots (n = 200) (n = 40) 

Basal Area (m2/ha) 63.27 (1.51 – 165.70) 67.79 (24.10 – 158.17) 

Canopy Height (m) * 

Midstory Density Category ** 

24.40 (2.74 – 42.98) 27.58 (11.89 – 34.44) 

3.00 (1.00 – 5.00) 2.00 (1.00 – 4.00) 

Canopy Cover (%) 27.03 (0.00 – 94.40) 23.35 (13.31 – 88.15) 

Ground Cover – Grass (%) 22.06 (3.00 – 90.00) 29.50 (3.00 – 75.31) 

Ground Cover – Forbs (%) ** 19.75 (3.00 – 69.00) 32.34 (10.31 – 64.68) 

Ground Cover – Herbaceous (%) ** 54.00 (7.50 – 100.18) 66.93 (28.19 – 100.06) 

Ground Cover – Bare Ground (%) ** 8.81 (3.00 – 79.37) 3.00 (3.00 – 32.18) 

Ground Cover – Leaf Litter (%) 33.52 (3.00 – 95.50) 31.50 (6.00 – 72.00) 

Foliage Density (m²/m³) ** 0.01 (0.00 – 0.08) 0.02 (0.00 – 0.06) 

Distance to Nearest Source Population 

(km) ** 

56.83 (0.03 – 164.40) 0.86 (0.03 – 19.33) 

High Likelihood of Occurrence Plots (n = 40) (n = 40) 

Basal Area (m²/ha) ** 90.38 (22.60 – 165.70) 67.79 (24.10 – 158.17) 

Canopy Height (m)  28.96 (11.89 – 36.88) 27.58 (11.89 – 34.44) 

Midstory Density Category ** 3 (1.00 – 5.00) 2.00 (1.00 – 4.00) 

Canopy Cover (%) ** 32.70 (8.98 – 92.28) 23.35 (13.31 – 88.15) 

Ground Cover – Grass (%) ** 16.43 (3.00 – 60.25) 29.50 (3.00 – 75.31) 

Ground Cover – Forbs (%) ** 23.56 (3.00 – 69.00) 32.34 (10.31 – 64.68) 

Ground Cover – Herbaceous (%) ** 44.25 (7.5 – 81.00) 66.93 (28.19 – 100.06) 

Ground Cover – Bare Ground (%) ** 4.5 (3.00 – 57.25) 3.00 (3.00 – 32.18) 

Ground Cover – Leaf Litter (%) ** 51.19 (14.94 – 95.50) 31.50 (6.00 – 72.00) 

Foliage Density (m²/m³)  0.01 (0.00 – 0.08) 0.02 (0.00 – 0.06) 

Distance to Nearest Source Population 

(km) ** 
4.23 (0.21 – 37.80) 0.86 (0.03 – 19.33) 
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Detection Modeling 

 State-based covariates were stronger predictors of Bachman’s Sparrow detection 

than observation covariates alone. The top-ranked detection model (QAIC = 351.16; p = 

0.962) included 2 state-based covariates, midstory density and herbaceous ground cover 

(Table 1.3). Probability of detection (p) increased with increasing herbaceous ground 

cover and decreased with increasing midstory density. The second-ranked model (QAIC 

= 353.72; p = 0.989) included midstory density and an interaction term of Julian date and 

temperature but was not considered competitive with the top model (ΔQAIC >2; Table 

1.3). Additional detection models had a ΔQAIC >10 from the top-ranked model (Table 

1.3).  

Occupancy Modeling 

 From the dataset containing all categories of occurrence likelihood, 3 models 

were competitive and included various combinations of herbaceous ground cover, 

midstory density, foliage density, distance to nearest source population, and an 

interaction term of basal area with canopy height (Table 1.3). The most parsimonious 

model from this dataset, which was also the top-ranked model (QAIC = 263.04, ψ = 

0.39), contained herbaceous ground cover, midstory density, distance to nearest source 

population, and an interaction of basal area and canopy height. For this dataset, values of 

ψ increased with increasing herbaceous ground cover and decreased with increasing 

midstory density and distance to source population as inferred from marginal effect of the 
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covariate plots produced from the selected model (Appendix 2). The values of ψ were 

highest when basal area was low and canopy height was relatively high (Appendix 2).  
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Table 1.3. Top-ranked detection and occupancy models sorted by Quasi-Akaike’s 

Information Criterion (QAIC). K represents number of parameters, ΔQAIC is change in 

QAIC value from the top model, ω is model weight, and –QLogLike represents –Quasi-

log likelihood. Plots within the high likelihood of Bachman’s Sparrow occurrence were 

based on the results from Andersen and Beauvais (2013). 

Model K QAIC ΔQAIC ω –QLogLike 

Detection (p) 

     MDa + Herbb 

     

5 351.16 0.00 0.67 170.58 

     MD + JD*Tempc 7 353.72 2.55 0.19 169.86 

Occupancy (ψ) 

All plots 

     

     Herb + MD + DNSPd + BA*CHe 11 263.04 0.00 0.36 120.52 

     Herb + MD + DNSP + FDf + BA*CH 12 264.10 1.06 0.21 120.05 

     Herb2 + MD + DNSP + FD + BA*CH 12 265.03 1.99 0.13 120.52 

     Herb + MD + DNSP2 + BA*CH 12 265.17 2.13 0.12 120.58 

     Herb*CH + MD + DNSP + FD + BA*CH 13 265.80 2.76 0.09 119.90 

Plots in high likelihood of Bachman’s Sparrow occurrence 

     Herb + MD + DNSP + BA*CH  11 254.05 0.00 0.35 116.02 

     Herb + MD + DNSP + FD + BA*CH 12 255.87 1.82 0.14 115.93 

     Herb2 + MD + DNSP + BA*CH 12 256.02 1.97 0.13 116.01 

     Herb + MD + DNSP + BA*CH2 13 256.95 2.90 0.08 115.48 

     Herb2 + MD + DNSP + FD + BA*CH 13 257.85 3.80 0.05 115.92 
a Midstory Density  
b Herbaceous Ground Cover 
c Julian Date × Temperature 
d Distance to the Nearest Source Population 
e Basal Area × Canopy Height 
f Foliage Density 
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Results for the analysis containing the high likelihood of Bachman’s Sparrow 

occurrence were similar to those with all plots surveyed, with the top 2 competitive 

models remaining the same (Table 1.3). The most parsimonious model (QAIC = 254.05) 

was selected for inference and had a ψ estimate of 0.90. Occupancy probability increased 

with increasing herbaceous ground cover and decreased with increasing midstory density 

and increasing distance to nearest source population based on marginal effect of the 

covariate plots (Figure 1.3) produced from the selected model. The values of ψ were 

highest when basal area was low and canopy height was moderately high (Figure1.3). 
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Figure 1.3. Occupancy probability (Ψ) and 95% confidence intervals (gray ribbon) for a. 

herbaceous ground cover, b. midstory density, and c. distance to the nearest source 

population from the top occupancy model for plots located within areas of high 

likelihood of Bachman’s Sparrow occurrence. The interaction of basal area and canopy 

height is represented by a contour plot (d.) with the darker areas having increased 

probability of occupancy.  

a.) 

 

b.) 

 

c.) 

 

d.) 
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DISCUSSION 

At the western fringe of its distribution, Bachman’s Sparrow was found to occur 

in forested habitat types that have an open understory with dense grass and forb cover, 

characteristics restricted to pine savanna and post oak savanna habitat in this region 

(Griffith et al. 2007). These results support my hypothesis that Bachman’s Sparrow 

occupancy would best be predicted by covariates associated with woodland savannas. 

The relationship of occupancy probability with herbaceous ground cover, midstory 

density, basal area, and canopy height is consistent with occupancy studies on eastern 

populations (Taillie et al. 2015, Fish et al. 2018, Hannon et al. 2021), suggesting that 

local-scale habitat requirements remain consistent across the range of Bachman’s 

Sparrow. Furthermore, the relationship of occupancy with plot distance to nearest source 

population corroborate prior studies (Taillie et al. 2015, Winiarski et al. 2017) that large-

scale factors such as habitat contiguity are important predictors of Bachman’s Sparrow 

site occupancy on the fringe of their range. 

Detection of Bachman’s Sparrow may be enhanced by surveying with ARUs in 

place of point-counts and by surveying in optimal habitat. Prior studies suggest that use 

of ARUs increases the chance of detecting highly vocal species, as ARUs can survey a 

wider time window and more sites using significantly less effort (Zwart et al. 2014, 

Furnas and Callas 2015, Bobay et al. 2018). My use of ARUs likely enhanced my 

detection results since I was able to survey many plots simultaneously across the duration 

of peak singing hours. In my study, detection was better predicted by the presence of 
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high-quality habitat than by weather and Julian date during the breeding season. At plots 

in poor quality habitat, individuals may have been detected singing from nearby, higher-

quality habitat or may have been singing from the periphery of their territory and spent 

more time elsewhere in their territory out of range of detection, reducing their probability 

of being detected from repeated surveys. Although date appears frequently as an 

important predictor of Bachman’s Sparrow detection in prior occupancy studies (Taillie 

et al. 2015, Fish et al. 2018), site-based covariates (basal area and shrub density) have 

also appeared in top prediction models (Taillie et al. 2015), corroborating my results. 

Furthermore, I surveyed almost entirely during the peak singing season for Bachman’s 

Sparrow, May to August (Wolff, unpub. data), so singing detections may have been more 

consistent over time than in prior studies that surveyed earlier in the year (Taillie et al. 

2015, Fish et al. 2018, Hannon et al. 2021).  

Fragmentation may inhibit colonization or recolonization of Bachman’s Sparrows 

at suitable but isolated sites. Occupancy probability decreased with increasing distance 

from a source population, suggesting that although suitable habitat may exist in a region, 

it may be difficult for Bachman’s Sparrow to discover if it is isolated from established 

populations. Previous studies (Sexton et al. 2009) have highlighted that this lack of 

occupancy at suitable yet unoccupied sites is generally attributed to factors that limit its 

movement, such as a lack of habitat connectivity on the landscape. Although Bachman’s 

Sparrow has previously been known to be an accomplished disperser, as demonstrated by 

its northward expansion in the early 1900s (Brooks 1938), the extent of this ability on the 
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current landscape is unknown. Furthermore, the northward expansion of Bachman’s 

Sparrow in the early 1900s was the result of conversion of optimal pine savanna habitat 

(that supported high population densities) to vast swaths of suboptimal early successional 

habitat (that supported low population densities) that spread from Texas to Illinois and 

Pennsylvania (Brooks 1938, Dunning and Watts 1991, Lee 1999).  

Although some of the longleaf pine savanna habitat in the southeast has been 

restored, optimal habitat in the West Gulf Coastal Plain remains severely fragmented by 

not only the conversion of historic pine savanna to timber stands that prioritize product 

yield, but also by an increase of fire exclusion efforts that enables the persistence of 

woody plants in the understory (Brockway et al. 2005). This region is now dominated by 

private land that typically contains heavily grazed pasture or short-rotation timber 

plantations, neither of which support Bachman’s Sparrow (Conner and Rudolph 1994). 

Short-rotation timber stands have been noted to have a negative association with 

Bachman’s Sparrow, as they may not allow sufficient growth of bunchgrasses (Messick 

et al. 2021). The result is a patchy landscape that limits suitable habitat to isolated 

“islands” of pine savanna habitat among pine plantations or post oak savanna among 

pastures. Dunning et al. (1995) determined that this type of habitat fragmentation inhibits 

colonization of Bachman’s Sparrow at sites with suitable habitat that are far from 

established populations. They further found that habitat corridors increase the ability of 

Bachman’s Sparrow to find and colonize restored sites. Conner and Rudolph (1994) 

demonstrated that fragmentation in the West Gulf Coastal Plain negatively impacts 
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clusters of Red-cockaded Woodpecker, a species that is commonly managed alongside 

Bachman’s Sparrow (Plentovich et al. 1998), so it is likely that Bachman’s Sparrow 

populations are similarly affected in this region. Fragmentation is known to heavily 

impact site occupancy of Bachman’s Sparrow at the northeast fringe of its range (Taillie 

et al. 2015, Winiarski et al. 2017) and the species likely suffers the same effects on the 

western fringe of its range as well. 

Conversely, I did not detect Bachman’s Sparrow in the Post Oak Savanna 

ecoregion at locations that source populations had previously occupied in low 

abundances as recently as 2017 (McInnerney et al. 2021). Bachman’s Sparrow in post 

oak savanna habitat utilize similar habitat characteristics as in pine savanna (Farley et al. 

2008). Despite my lack of detections, my top model likely predicts Bachman’s Sparrow 

occupancy probability with similar accuracy as in pine savanna because these habitat 

types are very similar in their structure (i.e., open understory with herbaceous ground 

cover) (Griffith et al. 2007). The lack of Bachman’s Sparrow detections in this region 

may be an example of a local extirpation resulting from habitat fragmentation and 

isolation of populations on the westernmost edge of their range. Farley et al. (2008) noted 

that populations in this ecoregion have extremely low abundances and known source 

populations are 80-160 km away, reducing the likelihood of immigration and 

recolonization (Andersen and Beauvais 2013, Pardieck et al. 2020). If this population has 

been extirpated from the central Post Oak Savanna ecoregion, it could indicate a range 

reduction of ~160 km from its western periphery south of the Ozark Plateau.  
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Previous studies have highlighted bimodality in Bachman’s Sparrow habitat use, 

occupying mature woodland savanna habitat as well as early successional fields (Wan 

Ramle 1987, Dunning and Watts 1990, Brooks and Stouffer 2010, Allen and Burt 2014, 

Fish et al. 2018). This species is known to prefer mature forest over early successional 

fields and areas with reduced basal area and high canopy height are more likely to host 

Bachman’s Sparrow (Dunning and Watts 1990, Allen and Burt 2014). It is also known to 

frequently occupy territories that include both enclosed woodland as well as forest edge 

or canopy gaps (Fish et al. 2018). Although I did not survey enough plots in early 

successional habitat, Allen and Burt (2014) provided a thorough examination of 

differences in Bachman’s Sparrow habitat selection in these two habitats in Texas. Their 

findings in forested habitat types reflected the results of my study, but in early 

successional habitats, Bachman’s Sparrow was associated with areas of increased grass 

cover and reduced bare ground. This emphasizes the importance of grass ground cover 

for the species, suggesting that Bachman’s Sparrow will not occupy earliest successional 

habitat where dense grass is replaced by increased bare ground. 

Frequent burning of sites is crucial for continued occupancy by Bachman’s 

Sparrow (Tucker et al. 2004). Previous studies (Tucker et al. 2004, Conner et al. 2005, 

Hannon et al. 2021) have stressed the importance of fire for promoting the appropriate 

habitat characteristics for Bachman’s Sparrow, emphasizing its role in eliminating woody 

growth in the understory, permitting the success of the fire-adapted grass that Bachman’s 

Sparrow requires. Although I did not assess the effects of fire directly due to the 
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challenge of acquiring time-since-fire data, the effects of fire disturbance can be inferred 

by the conditions of the habitat covariates associated with Bachman’s Sparrow 

occupancy (Taillie et al. 2015). 

In addition to fire, forest maturity may be beneficial for Bachman’s Sparrow 

occupancy. In recent decades, management for old-growth conditions (i.e., forests with 

trees in the later stages of development and with the related site conditions such as tree 

size, coarse woody debris, and species composition) has gained traction (Glen et al. 

1997). Old-growth conditions in pine savanna ecosystems favor Bachman’s Sparrow, as 

they are fire-climax communities that have reduced tree density and increased grass cover 

compared to short-rotation plantations (Noel et al. 1998, Cox and Jones 2007). These old-

growth pine savannas in the southeast host the federally endangered Red-cockaded 

Woodpecker, which requires living, mature trees for cavity excavation (Plentovich et al. 

1998, Gault et al. 2004). Red-cockaded Woodpecker management has been shown to 

enhance habitat for Bachman’s Sparrow and the two species can be managed for 

concurrently (Plentovich et al. 1998). Both species respond positively to fire and the 

usage of fire in maintaining habitat for both species is consistent across their ranges. 

However, differences in soil and vegetation across their ranges result in varying 

outcomes of burning. Martin et al. (2021) recommend that regional management 

practices based on local environmental conditions should be implemented to enhance 

habitat in that region. 
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My findings corroborate those of studies in the east on important predictors of 

Bachman’s Sparrow occupancy and build on the current knowledge of the species by 

offering results from the western fringe of its range. In Texas, Bachman’s Sparrow 

occupancy is predicted by similar covariates as populations in the east, indicating that 

populations may respond to management similarly across its entire distribution. However, 

at the western fringe of the range, habitat connectivity is crucial as increasing distance 

from source populations greatly reduces the probability of Bachman’s Sparrow site 

occupancy. On the western fringe of Bachman’s Sparrow’s distribution, management 

should not only focus on reducing basal area and midstory density to promote the growth 

of herbaceous ground cover but should also aim to increase habitat connectivity to reduce 

isolation of populations. 
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CHAPTER II: THE SINGING PHENOLOGY OF BACHMAN’S SPARROW 

(PEUCAEA AESTIVALIS): IMPLICATIONS FOR MONITORING PROGRAMS 

 

INTRODUCTION 

Temporal patterns of activity of a species are critical to understanding its life 

history as these patterns are a response to ecological constraints or resources (Körner and 

Basler 2010, Haest et al. 2019). An organism’s phenology can be a result of the interplay 

between biotic factors (e.g., antagonistic interactions, food resources, and mate 

availability) and abiotic factors (e.g., temperature and rainfall) (Schalk and Saenz 2016, 

Lautenschleger et al. 2020). The timing of these phenological events can have cascading 

effects on the type and strength of interactions that an organism may experience in an 

ecological community (Körner and Basler 2010, Carter et al. 2018).  

Seasonal differences in photoperiod lead to cyclic changes in temperature and 

precipitation and these factors often regulate the availability of resources (e.g., food, 

water, and nutrients) an organism needs to survive and reproduce (Varpe and Fiksen 

2010, Ernakovich et al. 2014). On a shorter temporal scale, species may respond to 

fluctuations in environmental conditions (e.g., temperature or precipitation) that affect 

activity and behavior (Schalk and Saenz 2016, Kucera et al. 2020). The relative 

importance of these factors to an organism’s phenology is also a result of their life history 

or reproductive strategies. For example, aquatic or semiaquatic organisms such as fish
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and anurans, rely heavily on precipitation events to create suitable habitat for breeding 

(Saenz et al. 2006, Varpe and Fiksen 2010, Schalk and Saenz 2016) while terrestrial and 

aerial organisms such as birds and bats depend more on increasing temperatures to 

sustain food sources such as insects (Jenni-Eiermann et al. 2008, Kravchenko et al. 

2017). 

An important factor underlying songbird phenology is change in ambient 

temperature that coincides with increasing or decreasing periods of daylight (Schaper et 

al. 2012). Breeding behavior in songbirds begins as a hormonal response to ambient 

warming in late winter and spring caused by lengthening photoperiods (Frankl-Vilches et 

al. 2015). The increase in food availability associated with these seasonal shifts provides 

resources to meet demands associated with reproduction (Jenni-Eirmann et al. 2008), 

while increased hours of daylight enable them to extend their foraging period (Mieke et 

al. 2012). Changes in weather patterns that affect food availability (e.g., drought) can 

shift the timing of phenological events such as breeding by limiting the number of 

successful broods (Ganier 1941, Brown and Brown 2014). This mismatch between the 

phenology of a species and environmental conditions can have detrimental effects on 

populations, a subject that has gained much credence in light of global climate change 

(Gordo and Hoi 2012, Schaper et al. 2012, Brown and Brown 2014). It is therefore 

crucial to understand the cyclical dynamics of species to design monitoring programs and 

conservation efforts. 
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Baseline knowledge on the variability underlying a species’ phenology can 

increase the effectiveness of monitoring programs as it can elucidate the ideal temporal 

windows and environmental conditions for surveys (Furnas and McGrann 2018). Such 

information can be acquired through various survey methodologies (e.g., mist-netting, 

nest box surveys), but among the most time- and cost-effective methods for highly vocal 

species is detection of songs or calls (Strebel et al. 2014, Furnas and McGrann 2018). 

During the breeding season, songbirds defend their territory and advertise to mates by 

singing, not only increasing their probability of detections, but also enabling researchers 

to track important life history events (e.g., breeding) with these acoustic signals (Strebel 

et al. 2014, Wood et al. 2021). However, challenges arise from the variability of detection 

caused by factors that might affect singing behavior on a smaller temporal scale (e.g., 

daily wind speed, heavy rainfall, extreme temperatures). To maximize the efficacy of 

monitoring programs, efforts should consider the role that abiotic factors have on the 

singing behavior across broader (i.e., seasonal) and short-term (i.e., daily) temporal 

scales. 

The Bachman’s Sparrow is a species of conservation concern that inhabits the 

southeastern United States (Allen and Burt 2014, Taillie et al. 2015, Malone et al. 2021). 

Following habitat fragmentation and loss due to conversion of suitable pine savanna 

habitat to pasture, cropland, or short-rotation pine plantations, Bachman’s Sparrow 

experienced, and continues to experience, severe population declines (Dunning and Watts 

1990, Taillie et al. 2015, Winiarski et al. 2017), resulting in many U.S. states listing it as 
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a threatened or endangered species (Dunning et al. 2020). Although Bachman’s Sparrow 

is difficult to detect by visual observation, it is easily detected by its song (Meanley 

1959). Despite this, little empirical information exists on its singing phenology across its 

range. Anecdotal accounts have indicated that it sings from late winter until early fall 

(Meanley 1990, Farley et al. 2008) and other shorter-term studies have investigated song 

rate within the breeding season (Allen 2004), but no empirical studies have investigated 

its singing phenology across the entire year nor the abiotic factors that predict its singing 

behavior.  

For over 2 years, I surveyed for Bachman’s Sparrow at sites of known occupancy 

to determine the abiotic factors that affect the singing phenology of the species. I 

hypothesized that singing phenology would be associated with an increase in temperature 

and daylength, as these conditions correspond to optimal breeding periods for the species, 

and that wind and precipitation would decrease the day-to-day chances of singing. The 

singing season should therefore extend from warm days in late winter until the end of the 

breeding season in early fall. These results of the optimal conditions and seasons to detect 

Bachman’s Sparrow are important not only for conservation efforts for the species (i.e., 

monitoring and management), but also because Bachman’s Sparrow detections can be 

used as a bioindicator of habitat quality in pine ecosystems (Hannah et al. 2017, McIntyre 

et al. 2019).  
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METHODS 

Study Area and Survey Sites 

 This study was conducted in the West Gulf Coastal Plain of Texas, near the 

southwestern edge of Bachman’s Sparrow’s distribution in the Longleaf Ridge 

Conservation Area (United States Forest Service 2011). This region is characterized by 

hilly, xeric longleaf pine savanna habitat with an open understory containing dense 

bluestem (Schizachyrium spp.) and bracken fern (Pteridium aquilinum) and sparse 

bluejack oak (Quercus incana), sassafras (Sassafras albidum), and American beautyberry 

(Callicarpa americana) in restored areas (Griffith et al. 2007). Restoration efforts by the 

U.S. Forest Service (USFS) have created over 4,000 ha of longleaf savanna that are 

frequently managed with thinning operations and prescribed fire (United States Forest 

Service 2011). Much of this restored area contains optimal habitat for Bachman’s 

Sparrow (United States Forest Service 2011, Allen and Burt 2014). 

 Survey sites (n = 9) for Bachman’s Sparrows were located within the Angelina 

National Forest in Angelina and Jasper counties, Texas, at USFS point-count survey sites 

that had Bachman’s Sparrow detections consistently in the 5 years prior to 2020 (USFS, 

unpublished data). These sites were regularly burned to maintain the appropriate pine 

savanna habitat of the region (Appendix 3), and more than half of the sites (n = 5) were 

associated with Red-cockaded Woodpecker clusters. All sites had an overstory 

characterized by mature longleaf pine, but vegetation in the midstory and understory 
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varied with some sites having more woody shrubs in the understory and less grass cover 

and more bluejack oak and immature longleaf pine in the midstory. 

Data Collection 

 I used Wildlife Acoustics SM4 and SM Mini autonomous recording units (ARUs) 

to detect singing behavior at each site. ARUs recorded daily from February 8, 2020 to 

March 3, 2022 on a schedule of 5 minutes every half-hour starting at sunrise and ending 

at 3 hours after sunrise for a total of 30 minutes of recording per day. Recordings were 

scanned for Bachman’s Sparrow songs using Kaleidoscope (Version 5.3.0, Wildlife 

Acoustics, Inc. Maynard, MA). Some data loss occurred at various sites over the survey 

years due to equipment failure and damage from prescribed fires, but every date had data 

from at least one site for the entire study period. To assess the window during which 

Bachman’s Sparrow sang, I plotted the presence of detections for each site against Julian 

date using the absolute presence of detections across all survey years (2020, 2021, and 

2022). 

 I downloaded daily weather data (temperature, precipitation, and wind) from the 

nearest USFS Remote Automated Weather Station in Zavalla, Texas (range of distance to 

each site 13.85 ̶ 20.63 km) and averaged hourly values from the 3-hour recording window 

for each day. Daily photoperiod values were calculated using the daylength formula 

derived by Kirk (1994) and Julian date was recorded for each date as well. 
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Statistical Analysis 

I used multiple logistic regression to assess the effect of each independent 

variable on singing behavior (α = 0.05). Variance inflation factor (VIF) was used to 

assess potential multicollinearity among independent variables in the global. 

Temperature, Julian date and photoperiod were moderately collinear (VIF between 1 and 

5), so I only used one of these three parameters in any given model. I ranked models with 

varying combinations of the independent variables and interaction terms using Quasi-

Information Criterion (QIC) and selected the highest-ranked, most parsimonious model. 

Because my data were repeated measurements, I fit generalized estimating equations 

(GEE) with a first-order autoregressive correlation structure using SAS (version 9.4, SAS 

Institute, Inc., Cary, USA). GEE models average population responses (Ballinger 2004) 

and therefore it was not necessary to consider variation caused by differences in site 

characteristics (Ballinger 2004). Since I surveyed the same sites across 3 years, I included 

year as an independent variable in each model to account for any yearly variation in 

singing. Two top-ranked models were competitive (QIC = 5740.17 and 5740.47) and 

differed only in the inclusion of wind as an independent variable, so I proceeded with the 

more parsimonious model for inference. I modeled the relationship between observed 

singing behavior (where 0 = no singing and 1 = singing) and year, photoperiod, and 

precipitation. This analysis was conducted only on data from months with Bachman’s 

Sparrow detections (January to October) to avoid nuance in the effects of parameters 
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derived from modeling dates in the late fall and early winter when Bachman’s Sparrow 

do not sing.  
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RESULTS 

Bachman’s Sparrow Surveys 

  The first and last dates Bachman’s Sparrow was detected were February 8 and 

September 10, respectively, in 2020 and January 21 and October 6, respectively, in 2021. 

Singing in 2022 began on January 19, but recorders were pulled on March 3 so no 

inference on singing cessation dates could be made for that year. Most sites had 

consistent singing detections between late February and early August (Figure 2.1). The 

proportion of sites with singing detections slowly increased between late January and late 

February and steeply declined in late August (Figure 2.1). Bachman’s Sparrow was 

detected most consistently across sites between March and July of each year (Figure 2.1). 

During January, September, and October, Bachman’s Sparrows were noted to sing 

subsongs, which are low-amplitude and unstructured song types (Dabelsteen et al. 1998), 

in place of regular, higher amplitude songs.
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Figure 2.1. Bachman’s Sparrow singing detections across the singing season (January 19 

to October 6) at 9 sites in the Angelina National Forest, Texas, USA pooled from all 

survey years (2020-2022). Sites are arrayed along a gradient of decreasing detections. 

Singing detections for each date and site are represented by black dots while missing data 

are represented by gray x symbols. Sites 7 and 8 are missing data between March 28 and 

April 22 due to equipment malfunction in 2020 and fire damage in 2021. Bachman’s 

Sparrow songs were not detected between October 6 and January 19 across all years, so 

dates from October 8 to December 31 are not displayed in this figure. 
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Abiotic Influences on Singing Behavior  

 Precipitation occurred on 68 days across the 3 singing seasons (January to 

October) and totaled 61.67 mm of precipitation (daily max = 14.61 mm) (Figure 2.2; 

Appendix 4). Wind speeds were relatively low (mean = 0.66 m/s), with a max of 6.30 m/s 

across the 3 singing seasons (Appendix 4). Temperature increased with photoperiod 

(mean = 18.95 °C, range = -10.58 ̶ 28.88 °C) during the singing season (Appendix 4). 

Average temperature across all years exhibited high daily fluctuations in fall, winter, and 

spring, but were consistently high during the summer (Figure 2.2). 

Bachman’s Sparrow was more likely to sing as photoperiod increased (P < 0.01) 

(Table 2.1). Precipitation had a negative relationship with the probability of singing, 

though this effect was not statistically significant (P = 0.06) (Table 2.1). Wind and 

temperature did not occur in any of the top models and models including temperature had 

ΔQIC values of 418 or more, suggesting that they did not explain as much of the 

variation in the data as models with photoperiod.  
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Figure 2.2. Average temperature (black dashed line) and precipitation (gray solid line) 

values for each Julian date surveyed in the Angelina National Forest, Texas, USA, 

averaged across all survey years (2020, 2021, and 2022).  

 

Table 2.1. Logistic regression model based on a survey of 9 sites in the Angelina 

National Forest, Texas, USA between January and October 2020-2022, showing the 

relationship between Bachman’s Sparrow singing and year, photoperiod, and 

precipitation. 

Parameter Estimate SE LCL95 UCL95 Z P 

Intercept -9.45 1.16 -11.73 -7.17 -8.12 <0.01 

Year-2020 -0.06 0.28 -0.61 0.50 -0.20 0.84 

Year-2021 -0.23 0.28 -0.79 0.33 -0.81 0.42 

Year-2022 0.00 0.00 0.00 0.00 ̶ ̶ 

Photoperiod 0.74 0.11 0.52 0.95 6.72 <0.01 

Precipitation -0.15 0.08 -0.31 0.01 -1.89 0.06 
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Figure 2.3. The relationship of photoperiod and the probability of Bachman’s Sparrow 

singing. The bold line represents the marginal effect with 95% confidence intervals 

represented by the shaded blue region. These results were based on a survey of 9 sites in 

the Angelina National Forest, Texas, USA from 2020-2022. 
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DISCUSSION 

My results indicate that Bachman’s Sparrow in Texas are most likely to sing from 

February to August, reflecting anecdotal observations that note singing in other 

populations starts in mid-February (Farley et al. 2008) and continues into August, with 

few birds continuing singing behavior into September (Brooks 1938, Meanley 1990). 

Singing detections of Bachman’s Sparrow are most frequent in March, consistent with 

the Allen (2004) study conducted in east Texas. My results also supported my hypothesis 

that Bachman’s Sparrow singing phenology is affected by photoperiod. Although I was 

not able to model temperature and photoperiod simultaneously, daily averages in 

temperature increased with daily increases in photoperiod, suggesting that it may still 

play a role in determining singing behavior. The relationship between precipitation and 

singing further agree with my hypothesis that precipitation influences daily variation in 

singing behavior, although this relationship was not significant in this study. Wind was 

not found to be a strong influence on Bachman’s Sparrow singing behavior, likely due to 

the consistency of low to absent wind speeds throughout the year at these sites.  

Photoperiod is likely the primary driver of singing phenology of Bachman’s 

Sparrow, with the likelihood of singing increasing as daylength increases. This is 

consistent with the current knowledge of how photoperiod regulates hormonal activation 

of breeding behavior by increasing testosterone levels (Smith et al. 1997). This increase 

in testosterone triggers gonadal growth and promotes singing behavior (Gahr 2014). 

Bachman’s Sparrow is known to sing after dark on moonlit nights (Brooks 1938), a 
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phenomenon observed in many songbirds that is likely a photosensitive response to an 

increase in ambient light (Bruni et al. 2014). Photoperiods in southern latitudes are less 

extreme than in northern latitudes, resulting in longer photoperiods at earlier dates. 

Bachman’s Sparrow may start singing in mid-winter (i.e., mid-January) in southeastern 

Texas as a result of increasing daylength at early dates. However, Bachman’s Sparrow 

ranges as far north as Kentucky (Hockman 2013) and singing phenology may differ at 

more northerly latitudes. Further studies are needed to assess latitudinal variation in 

singing phenology for this species. 

Temperature changes, associated with changes in photoperiod, likely also affect 

the singing phenology of Bachman’s Sparrow. Temperature is known to affect singing 

behavior in other songbirds with individuals more likely to sing during warmer 

temperatures (Bruni et al. 2014, Kucera et al. 2020). Anecdotal accounts of Bachman’s 

Sparrow singing have noted similar patterns, especially early in the season (Meanley 

1959), and cold spells in spring result in interruptions in seasonal singing behavior 

(Brooks 1938). Furthermore, prior studies on songbirds have indicated that increasing 

temperatures are stronger drivers of breeding behavior than mean temperatures at the 

beginning of the breeding season (Schaper et al. 2012). Highly variable temperature in 

late winter and early spring across the range of Bachman’s Sparrow likely underlies why 

its singing behavior has a strong association with high temperatures (Brooke 1938, 

Meanley 1959) and why March has the highest detection rate (Allen 2004). 
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Photoperiod may also drive singing cessation in Bachman’s Sparrow in late 

summer. As photoperiod decreases in September, birds become photorefractory from 

hormonal deactivation of photosensitivity, leading to reductions in gonad size and 

cessation of singing behavior (Nicholls et al. 1988, Wilson and Reinert 1993). I observed 

a decrease in the frequency of Bachman’s Sparrow singing detections in August and 

September as photoperiod, and to a lesser extent temperature, decreased over time. This 

period is also associated with fledgling care and the prebasic molt (Willoughby 1986, 

Haggerty 1988), so breeding males may expend less energy on territory defense during 

this time to accommodate parental responsibilities and molt. 

Precipitation may influence daily variation in singing behavior in Bachman’s 

Sparrows. The pattern I found of decreasing singing detections as precipitation increased 

is supported by prior studies that have demonstrated negative associations of singing and 

precipitation (Catchpole and Slater 2008, Keast 1994, Hasan 2010, Bruni et al. 2014). 

Detection of singing birds during rain events is challenging due to rainfall filling acoustic 

space and masking other sounds (Smith et al. 2014). Birds singing during rain events may 

go undetected if their song is masked by the sound of rain (Bruni et al. 2014, Smith et al. 

2014). However, this phenomenon may extend to a bird’s ability to detect conspecifics, 

and individuals might not expend energy advertising during rain events when 

vulnerability to predation and thermal stress increases (Keast 1994, Link et al. 2011).  

Bachman’s Sparrow sings potentially non-territorial songs (subsongs) outside of 

the breeding season in late winter and fall. Singing behavior in songbirds can take the 
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form of whisper songs (low amplitude variations of territorial song types) or subsongs 

(soft and unstructured non-territorial songs) during certain times of the year (Schafer 

1916, Dabelsteen et al. 1998). Although whisper songs are known to be a form of 

aggressive signaling during the breeding season in Bachman’s Sparrows and Song 

Sparrows (Melospiza melodia) (Searcy et al. 2014, Ali and Anderson 2018), the function 

of subsongs in songbirds during the non-breeding season is enigmatic and does not 

appear to occur in antagonistic contexts (Janes 2017). Unstructured subsongs are 

associated with song development in young male birds during the fall but are also 

exhibited by adults during the non-breeding season (Thorpe 1958, Dabelsteen et al. 

1998). I noted Bachman’s Sparrow singing unstructured subsongs in place of primary 

songs during the fall following the breeding season and in late winter preceding the 

breeding season. This could be non-territorial singing from young males developing their 

song repertoire or adults practicing singing and may not be reflective of breeding 

behavior in the species, per se. 

Implications for Monitoring Programs 

The reliability of monitoring programs is dependent on correct spatial and 

temporal coverage for a species and study designs should consider phenology in addition 

to spatial factors to accurately monitor species. Poorly designed monitoring programs can 

lead to false negative detections which can misconstrue occupancy and abundance 

estimates and result in misled policy decisions (Thompson 2002, Amundson et al. 2014, 

Kellner and Swihart 2014). This is especially significant for monitoring programs that 
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focus on species of conservation concern, as results have inferences on the success or 

failure of management applications (Oppel et al. 2014). 

Surveys should therefore be conducted when detections are most likely and using 

optimal survey methods to maximize detections. Surveys for songbirds (e.g., point-count 

surveys) emphasize the importance of focusing surveying efforts on when temperatures 

are moderately warm and wind and precipitation are minimal (Ellis and Taylor 2018, 

Holt and Butler 2019). My results corroborate this for Bachman’s Sparrow, suggesting 

that detection is most likely on days without precipitation and during warmer months 

during the year (March to early August). If surveys are conducted prior to March, 

temperature should be considered as an influence on the probability of detecting a 

Bachman’s Sparrow and efforts should be focused on warmer days. Bachman’s Sparrow 

is a highly vocal species during this period and the use of ARUs in this study 

demonstrates their efficacy for detecting Bachman’s Sparrow. This knowledge on the 

optimal survey conditions and methods for Bachman’s Sparrow should be used in concert 

with information on their ideal habitat characteristics (see Chapter 1) for accurate 

monitoring efforts.  
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Appendix 1. Plots surveyed for Bachman’s Sparrow between May and August 2020 and April and July 2021. Plots were placed in 

regions of low, medium, and high likelihood of Bachman’s Sparrow occurrence (n = 40 plots per category per year) based on a species 

distribution model developed by Andersen and Beauvais (2013). Plots were placed randomly on accessible sites using an ArcMap 

random selection Python command. Wildlife Management Area is abbreviated to “WMA” in the site names and National Forest and 

National Grassland are abbreviated to “NF” and “NG,” respectively. Latitude and longitude are in World Geodetic System (WGS84) 

decimal degrees. Bachman’s Sparrow detections are designated by an X. The latitude and longitude of plots at Boggy Slough 

Conservation Area have been obscured per request of the landowner. 

Year 

Surveyed 

Model 

Category County Site Plot Latitude Longitude 

Bachman's Sparrow 

detections 

2020 Low Freestone Richland Creek WMA RC01 31.9104 -96.0454  

2020 Low Freestone Richland Creek WMA RC02  31.9085 -96.0427  

2020 Low Freestone Richland Creek WMA RC05 31.9118 -96.0433  

2020 Low Freestone Richland Creek WMA RC07 31.9127 -96.0385  

2020 Low Freestone Richland Creek WMA RC08 31.9138 -96.0103  

2020 Low Freestone Richland Creek WMA RC10 31.9151 -96.0352  

2020 Low Freestone Richland Creek WMA RC11 31.9174 -96.013  

2020 Low Freestone Richland Creek WMA RC12 31.9161 -96.0109  

2020 Low Freestone Richland Creek WMA RC14 31.9185 -96.0315  

2020 Low Freestone Richland Creek WMA RC15 31.9174 -96.0275  

2020 Low Freestone Richland Creek WMA RC16 31.9183 -96.0242  

2020 Low Freestone Richland Creek WMA RC17 31.9201 -96.0129  

2020 Low Freestone Richland Creek WMA RC19 31.9217 -96.0268  

2020 Low Freestone Richland Creek WMA RC20 31.9215 -96.0245  

2020 Low Freestone Richland Creek WMA RC21 31.9164 -96.031  

2020 Low Freestone Richland Creek WMA RC22 31.9219 -96.0171  

       (continued) 
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Year 

Surveyed 

Model 

Category County Site Plot Latitude Longitude 

Bachman's Sparrow 

detections 

2020 Low Freestone Richland Creek WMA RC25 31.9243 -96.0239  

2020 Low Freestone Richland Creek WMA RC31 31.9286 -96.0276  

2020 Low Freestone Richland Creek WMA RC32 31.9287 -96.0245  

2020 Low Freestone Richland Creek WMA RC37 31.9304 -96.0276  

2020 Low Freestone Richland Creek WMA RC38 31.9315 -96.0246  

2020 Low Freestone Richland Creek WMA RC69 31.9195 -96.0171  

2020 Low Freestone Richland Creek WMA RC99 31.9069 -96.045  

2020 Low Shelby Sabine NF SNF00 31.762 -94.0359  

2020 Low Shelby Sabine NF SNF02 31.762 -94.0323  

2020 Low Shelby Sabine NF SNF03 31.765 -94.0323  

2020 Low Shelby Sabine NF SNF04 31.7685 -94.0355  

2020 Low Shelby Sabine NF SNF05 31.7681 -94.0323  

2020 Low Shelby Sabine NF SNF06 31.7681 -94.0251  

2020 Low Shelby Sabine NF SNF07 31.7712 -94.0359  

2020 Low Shelby Sabine NF SNF08 31.7712 -94.0323  

2020 Low Shelby Sabine NF SNF09 31.7712 -94.0287  

2020 Low Shelby Sabine NF SNF10 31.7713 -94.0205  

2020 Low Shelby Sabine NF SNF11 31.7711 -94.0212  

2020 Low Shelby Sabine NF SNF12 31.7712 -94.0179  

2020 Low Shelby Sabine NF SNF13 31.7742 -94.0179  

2020 Low Shelby Sabine NF SNF14 31.7773 -94.0179  

2020 Low Shelby Sabine NF SNF15 31.7803 -94.0215  

2020 Low Shelby Sabine NF SNF16 31.7833 -94.0253  

       (continued) 
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Year 

Surveyed 

Model 

Category County Site Plot Latitude Longitude 

Bachman's Sparrow 

detections 

2020 Low Shelby Sabine NF SNF17 31.7834 -94.0215  

2020 Medium Trinity Boggy Slough Conservation Area SBS01 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS02 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS03 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS04 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS05 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS06 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS07 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS08 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS09 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS10 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS11 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS12 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS13 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS14 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS16 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS17 ̶ ̶  

2020 Medium Trinity Boggy Slough Conservation Area SBS19 ̶ ̶  

2020 Medium Houston Davy Crockett NF DCNF00 31.3992 -95.1814  

2020 Medium Houston Davy Crockett NF DCNF02 31.3502 -95.0504  

2020 Medium Houston Davy Crockett NF DCNF03 31.3588 -95.0485  

2020 Medium Houston Davy Crockett NF DCNF05 31.3696 -95.0469  

2020 Medium Houston Davy Crockett NF DCNF07 31.3686 -95.0918  

       (continued) 
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Year 

Surveyed 

Model 

Category County Site Plot Latitude Longitude 

Bachman's Sparrow 

detections 

2020 Medium Houston Davy Crockett NF DCNF08 31.3801 -95.1006  

2020 Medium Houston Davy Crockett NF DCNF10 31.3799 -95.0758  

2020 Medium Houston Davy Crockett NF DCNF11 31.3954 -95.1552  

2020 Medium Houston Davy Crockett NF DCNF12 31.4013 -95.1957  

2020 Medium Houston Davy Crockett NF DCNF14 31.4061 -95.1504  

2020 Medium Houston Davy Crockett NF DCNF15 31.4102 -95.1946  

2020 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF01 31.5005 -94.7599  

2020 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF02 31.503 -94.7645  

2020 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF03 31.4978 -94.7648  

2020 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF04 31.4976 -94.7648  

2020 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF05 31.508 -94.7645  

2020 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF06 31.4973 -94.7857  

2020 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF07 31.5006 -94.7826  

2020 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF08 31.5004 -94.7713  

2020 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF09 31.5036 -94.7821  

2020 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF10 31.5035 -94.7713  

2020 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF20 31.4972 -94.7768  

2020 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF21 31.5064 -94.7733  

2020 High Angelina Angelina NF H011 31.0915 -94.2858  

2020 High Angelina Angelina NF H013 31.1008 -94.3109  

2020 High Angelina Angelina NF H014 31.1069 -94.3217  

2020 High Angelina Angelina NF H018 31.1438 -94.2894  

2020 High Angelina Angelina NF H020 31.1654 -94.3397  

       (continued) 
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Year 

Surveyed 

Model 

Category County Site Plot Latitude Longitude 

Bachman's Sparrow 

detections 

2020 High Angelina Angelina NF H021 31.193 -94.4187  

2020 High Angelina Angelina NF H023 31.2084 -94.4223  

2020 High Angelina Angelina NF H103 31.0878 -94.2549  

2020 High Angelina Angelina NF H104 31.0865 -94.2346 X 

2020 High Angelina Angelina NF H105 31.1371 -94.3699  

2020 High Angelina Angelina NF H107 31.1921 -94.3163  

2020 High Angelina Angelina NF H111 31.2446 -94.4849  

2020 High Angelina Angelina NF H200 31.054 -94.3699  

2020 High Angelina Angelina NF H204 31.0817 -94.2298 X 

2020 High Angelina Angelina NF H205 31.0909 -94.2298  

2020 High Angelina Angelina NF H206 31.1309 -94.3052 X 

2020 High Angelina Angelina NF H207 31.1342 -94.3115 X 

2020 High Jasper Angelina NF H001 31.0177 -94.1852  

2020 High Jasper Angelina NF H004 31.0546 -94.1385  

2020 High Jasper Angelina NF H005 31.0669 -94.275 X 

2020 High Jasper Angelina NF H006 31.0731 -94.2283 X 

2020 High Jasper Angelina NF H008 31.0822 -94.1959 X 

2020 High Jasper Angelina NF H010 31.0885 -94.178 X 

2020 High Jasper Angelina NF H100 31.0447 -94.3304  

2020 High Jasper Angelina NF H101 31.0662 -94.1938  

2020 High Jasper Angelina NF H201 31.0601 -94.2801 X 

2020 High Jasper Angelina NF H203 31.0632 -94.1547 X 

2020 High Jasper Angelina NF H300 31.0701 -94.1524 X 

       (continued) 
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Year 

Surveyed 

Model 

Category County Site Plot Latitude Longitude 

Bachman's Sparrow 

detections 

2020 High San Augustine Angelina NF H022 31.207 -94.2525  

2020 High San Augustine Angelina NF H027 31.2668 -94.2069  

2020 High San Augustine Angelina NF H029 31.2944 -94.2212  

2020 High San Augustine Angelina NF H030 31.3006 -94.2894  

2020 High San Augustine Angelina NF H109 31.2385 -94.2046 X 

2020 High San Augustine Angelina NF H110 31.2416 -94.1866  

2020 High San Augustine Angelina NF H112 31.2476 -94.2478  

2020 High San Augustine Angelina NF H114 31.2846 -94.3016  

2020 High San Augustine Angelina NF H116 31.4042 -94.2549  

2020 High San Augustine Angelina NF H117 31.4134 -94.1795  

2020 High San Augustine Angelina NF H118 31.4441 -94.1866  

2020 High San Augustine Angelina NF H119 31.4502 -94.219  

2021 Low Fannin Caddo NG CNG00 33.4055 -96.0083  

2021 Low Fannin Caddo NG CNG01 33.4137 -96.0228  

2021 Low Fannin Caddo NG CNG03 33.4191 -96.0412  

2021 Low Fannin Caddo NG CNG04 33.4196 -96.0318  

2021 Low Fannin Caddo NG CNG05 33.4221 -96.0434  

2021 Low Fannin Caddo NG CNG06 33.4241 -95.9972  

2021 Low Fannin Caddo NG CNG07 33.4255 -96.0415  

2021 Low Fannin Caddo NG CNG08 33.4265 -96.0373  

2021 Low Fannin Caddo NG CNG10 33.428 -96.0197  

2021 Low Fannin Caddo NG CNG11 33.4267 -96.0157  

2021 Low Fannin Caddo NG CNG12 33.4274 -95.9973  

       (continued) 
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Year 

Surveyed 

Model 

Category County Site Plot Latitude Longitude 

Bachman's Sparrow 

detections 

2021 Low Fannin Caddo NG CNG14 33.4297 -96.0374  

2021 Low Fannin Caddo NG CNG17 33.4303 -96.0158  

2021 Low Fannin Caddo NG CNG18 33.4309 -95.9971  

2021 Low Fannin Caddo NG CNG21 33.4338 -96.016  

2021 Low Fannin Caddo NG CNG24 33.4348 -95.9902  

2021 Low Fannin Caddo NG CNG29 33.4453 -96.0178  

2021 Low Fannin Caddo NG CNG32 33.4096 -96.0068  

2021 Low Fannin Caddo NG CNG35 33.442 -95.9821  

2021 Low Fannin Caddo NG CNG36 33.3954 -96.0191  

2021 Low Fannin Caddo NG CNG37 33.3987 -96.0185  

2021 Low Fannin Caddo NG CNG38 33.4022 -96.0177  

2021 Low Fannin Caddo NG CNG39 33.4086 -96.0157  

2021 Low Fannin Caddo NG CNG40 33.4087 -96.0113  

2021 Low Fannin Caddo NG CNG41 33.4093 -96.0025  

2021 Low Fannin Caddo NG CNG43 33.4062 -96.0043  

2021 Low Fannin Caddo NG CNG46 33.4453 -95.9904  

2021 Low Fannin Caddo NG CNG47 33.4465 -95.9818  

2021 Low Fannin Caddo NG CNG48 33.4419 -95.9907  

2021 Low Fannin Caddo NG CNG49 33.4164 -96.03  

2021 Low Fannin Caddo NG CNG50 33.4167 -96.0349  

2021 Low Fannin Caddo NG CNG51 33.438 -95.9826  

2021 Low Fannin Caddo NG CNG52 33.4384 -95.9876  

2021 Low Fannin Caddo NG CNG55 33.4192 -96.0453  

       (continued) 
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Surveyed 

Model 

Category County Site Plot Latitude Longitude 

Bachman's Sparrow 

detections 

2021 Low Fannin Caddo NG CNG56 33.4355 -96.0222  

2021 Low Fannin Caddo NG CNG57 33.436 -96.0264  

2021 Low Fannin Caddo NG CNG58 33.4392 -96.0241  

2021 Low Fannin Caddo NG CNG60 33.4238 -96.0206  

2021 Low Fannin Caddo NG CNG61 33.4026 -96.0132  

2021 Low Fannin Caddo NG CNG63 33.4392 -95.9918  

2021 Medium Anderson Gus Engeling WMA GE00 31.9461 -95.9073  

2021 Medium Anderson Gus Engeling WMA GE01 31.945 -95.9034  

2021 Medium Anderson Gus Engeling WMA GE02 31.9443 -95.8993  

2021 Medium Anderson Gus Engeling WMA GE03 31.9489 -95.9066  

2021 Medium Anderson Gus Engeling WMA GE04 31.9489 -95.9005  

2021 Medium Anderson Gus Engeling WMA GE05 31.9489 -95.8962  

2021 Medium Anderson Gus Engeling WMA GE06 31.9506 -95.8919  

2021 Medium Anderson Gus Engeling WMA GE08  31.952 -95.9003  

2021 Medium Anderson Gus Engeling WMA GE10 31.9506 -95.8918  

2021 Medium Anderson Gus Engeling WMA GE12 31.9552 -95.9005  

2021 Medium Anderson Gus Engeling WMA GE13 31.9538 -95.8963  

2021 Medium Anderson Gus Engeling WMA GE14 31.9542 -95.8917  

2021 Medium Anderson Gus Engeling WMA GE15 31.9575 -95.9044  

2021 Medium Anderson Gus Engeling WMA GE16 31.9587 -95.9005  

2021 Medium Anderson Gus Engeling WMA GE17 31.9581 -95.8962  

2021 Medium Anderson Gus Engeling WMA GE18 31.9579 -95.8915  

2021 Medium Anderson Gus Engeling WMA GE20 31.9613 -95.9087  

       (continued) 
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Surveyed 

Model 

Category County Site Plot Latitude Longitude 

Bachman's Sparrow 

detections 

2021 Medium Anderson Gus Engeling WMA GE21 31.961 -95.9045  

2021 Medium Anderson Gus Engeling WMA GE22 31.9623 -95.9007  

2021 Medium Anderson Gus Engeling WMA GE23 31.9614 -95.8961  

2021 Medium Anderson Gus Engeling WMA GE24 31.9616 -95.8916  

2021 Medium Anderson Gus Engeling WMA GE25 31.9645 -95.9041  

2021 Medium Anderson Gus Engeling WMA GE26 31.9692 -95.8955  

2021 Medium Anderson Gus Engeling WMA GE27 31.9648 -95.8956  

2021 Medium Anderson Gus Engeling WMA GE28 31.9651 -95.8902  

2021 Medium Anderson Gus Engeling WMA GE29 31.9682 -95.904  

2021 Medium Anderson Gus Engeling WMA GE30 31.9684 -95.9  

2021 Medium Anderson Gus Engeling WMA GE31 31.9725 -95.894  

2021 Medium Anderson Gus Engeling WMA GE32 31.9689 -95.89  

2021 Medium Anderson Gus Engeling WMA GE34 31.9721 -95.8892  

2021 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF-A01 31.496 -94.7817  

2021 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF-A03 31.5009 -94.7774  

2021 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF-A05 31.5033 -94.7893  

2021 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF-A06 31.5053 -94.7857  

2021 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF-A07 31.5043 -94.7756  

2021 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF-A08 31.5053 -94.7677  

2021 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF-A09 31.5106 -94.7622  

2021 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF-A11 31.51 -94.7749  

2021 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF-A12 31.5113 -94.769  

2021 Medium Nacogdoches Stephen F. Austin Experimental Forest SFAEF-A13 31.5131 -94.7734  

       (continued) 
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Surveyed 

Model 

Category County Site Plot Latitude Longitude 

Bachman's Sparrow 

detections 

2021 High Angelina Angelina NF ANF01 31.0818 -94.2486 X 

2021 High Jasper Angelina NF ANF02 31.0722 -94.2488  

2021 High Jasper Angelina NF ANF03 31.0733 -94.2352 X 

2021 High Sabine Sabine NF (S.) FHH00 31.1713 -93.7315 X 

2021 High Sabine Sabine NF (S.) FHH01 31.1716 -93.7115 X 

2021 High Sabine Sabine NF (S.) FHH03 31.1749 -93.7266 X 

2021 High Sabine Sabine NF (S.) FHH04 31.1749 -93.7224 X 

2021 High Sabine Sabine NF (S.) FHH05 31.1749 -93.7182  

2021 High Sabine Sabine NF (S.) FHH06 31.1757 -93.7139  

2021 High Sabine Sabine NF (S.) FHH07 31.1749 -93.7098  

2021 High Sabine Sabine NF (S.) FHH08 31.1749 -93.7055  

2021 High Sabine Sabine NF (S.) FHH10 31.1785 -93.7309  

2021 High Sabine Sabine NF (S.) FHH11 31.1785 -93.726 X 

2021 High Sabine Sabine NF (S.) FHH12 31.1785 -93.7224  

2021 High Sabine Sabine NF (S.) FHH13 31.1781 -93.7179 X 

2021 High Sabine Sabine NF (S.) FHH14 31.1785 -93.714 X 

2021 High Sabine Sabine NF (S.) FHH15 31.1785 -93.7097 X 

2021 High Sabine Sabine NF (S.) FHH16 31.1785 -93.7055 X 

2021 High Sabine Sabine NF (S.) FHH17 31.1821 -93.7266 X 

2021 High Sabine Sabine NF (S.) FHH18 31.1821 -93.7224  

2021 High Sabine Sabine NF (S.) FHH19 31.1821 -93.7182 X 

2021 High Sabine Sabine NF (S.) FHH20 31.1821 -93.714 X 

2021 High Sabine Sabine NF (S.) FHH21 31.1821 -93.7098 X 

       (continued) 
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Model 
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Bachman's Sparrow 

detections 

2021 High Sabine Sabine NF (S.) FHH22 31.1842 -93.7064  

2021 High Sabine Sabine NF (S.) FHH23 31.1858 -93.7224 X 

2021 High Sabine Sabine NF (S.) FHH24 31.1858 -93.7182 X 

2021 High Sabine Sabine NF (S.) FHH25 31.1858 -93.714 X 

2021 High Sabine Sabine NF (S.) FHH26 31.1855 -93.7098  

2021 High Sabine Sabine NF (S.) FHH27 31.1894 -93.7182 X 

2021 High Sabine Sabine NF (S.) FHH28 31.1894 -93.714 X 

2021 High Newton Scrappin Valley SV00 31.1413 -93.7906 X 

2021 High Newton Scrappin Valley SV01 31.1411 -93.7868  

2021 High Newton Scrappin Valley SV02 31.1366 -93.7946 X 

2021 High Newton Scrappin Valley SV03 31.1376 -93.7904  

2021 High Newton Scrappin Valley SV04 31.1384 -93.7979 X 

2021 High Newton Scrappin Valley SV05 31.1364 -93.8014 X 

2021 High Newton Scrappin Valley SV06 31.1232 -93.7966 X 

2021 High Newton Scrappin Valley SV07 31.1293 -93.7917 X 

2021 High Newton Scrappin Valley SV08 31.1342 -93.7976 X 

2021 High Newton Scrappin Valley SV09 31.1232 -93.7924 X 
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Appendix 2. Occupancy probability (Ψ) and 95% confidence intervals (gray ribbon) for a. 

herbaceous ground cover, b. midstory density, and c. distance to the nearest source 

population from the top occupancy model for all plots surveyed. The interaction of basal 

area and canopy height is represented by a contour plot (d.) with the darker areas having 

increased probability of occupancy.  

a.) 

 

b.) 

 

c.) 

 

d.) 

 



85 

Appendix 3. Local-scale habitat characteristics measured at each survey site in the Angelina National Forest in March 2021. Sites are 

ordered according to their total number of days with Bachman’s Sparrow detections (range 16 – 361 days). Basal area, foliage density, 

canopy cover, and ground cover values are the mean values averaged across all subplots. See Chapter 1 for methods on how habitat 

variables were measured. 

Site Total 

Detections 

Basal 

Area 

(m2/ha) 

Canopy  

Height 

(m) 

Midstory 

Density 

(category) 

Foliage  

Density 

(m2/m3) 

Canopy  

Cover 

(%) 

Grass  

Ground  

Cover 

(%) 

Forb 

Ground 

 Cover 

(%) 

Herbaceous 

 Ground  

Cover (%) 

Bare  

Ground 

(%) 

Leaf 

Litter  

(%) 

1 361 21.36 28.65 1 43.72 89.72 35.00 7.19 42.19 2.50 47.19 

2 333 44.43 27.43 2 32.64 92.50 7.19 7.19 14.38 2.50 76.56 

3 312 34.18 26.82 2 35.12 89.00 30.94 11.56 42.5 4.06 55.94 

4 254 41.87 25.00 2 42.51 91.22 31.88 4.06 35.94 2.50 65.31 

5 250 41.87 19.20 2 49.84 89.09 20.63 6.88 27.50 2.50 73.75 

6 190 42.72 27.13 1 43.79 89.17 10.00 20.63 30.63 4.06 64.69 

7 117 59.81 12.20 3 14.12 90.06 30.63 10.00 40.63 4.06 57.81 

8 36 34.18 25.30 2 18.25 90.63 2.50 16.25 18.75 4.06 80.94 

9 16 32.47 29.87 2 32.16 89.91 20.63 2.50 23.13 2.50 73.75 
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Appendix 4. Values of precipitation, temperature, and wind from all seasons and only the singing season (defined as the first and last 

dates Bachman’s Sparrow was detected singing). Singing behavior extended from February 8 to September 10 in 2020 (recorders were 

set February 8), January 21 to October 6 in 2021, and January 19 to March 3 in 2022 (recorders were retrieved on March 3).  

 

 Precipitation (mm) Temperature (°C) Wind (m/s) 

All Seasons Total Max Daily  Average Daily Min Daily Max Daily Average Daily Max Daily Average Daily 

20201 45.25 14.61 0.14 -3.05 28.88 18.58 3.90 0.61 

2021 31.98 4.07 0.09 -10.58 28.18 17.50 6.30 0.59 

20222 2.22 1.27 0.04 -2.53 23.47 6.30 2.45 0.70 

All Years 110.61 14.61 0.07 -10.58 28.88 17.06 6.30 0.62 

Singing Season 
        

20201 31.16 14.61 0.14 -0.125 28.88 20.96 3.90 0.71 

2021 28.55 4.07 0.11 -10.58 28.18 19.38 6.30 0.58 

20222 1.96 0.11 0.04 -2.53 21.95 6.12 2.45 0.69 

All Years 61.67 14.61 0.10 -10.58 28.88 18.95 3.90 0.66 
1 Data from 2020 starts at February 8, when recorders were first placed (326 survey days). 
2 Data from 2022 ends at March 3, when recorders were retrieved (62 survey days). 
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