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Abstract 

The Mississippi Canyon is in the northeastern part of the Gulf of Mexico, south of 

the state of Mississippi. In this area, there are many different salt structures present 

including salt canopies, diapirs, and salt pillows. The Callovian aged Louann Salt covers 

this area and is the cause of many of the salt structures and structures of the overlying 

formations seen in Gulf of Mexico today. Salt is mobile when subjected to stress from 

overlying sediment and gravity. Stress will force the salt to not only move upward, but to 

also move down slope deeper into adjacent basins through the process of halokenesis. 

Salt movement may commence as early as when deposition has been completed  and may 

trigger the formation of structural features such as faults, rafts, and displacement of the 

overlying formations. 

By careful analysis of 3-D seismic data in combination with available sea floor 

imaging, these subsurface structures were mapped and interpreted. This study involves 

the mapping of salt structures and surrounding features affected by salt movement to 

detail the tops of the Louann Salt using structure maps created within the study area. 

These maps were used along with other structural data to reconstruct the salt canopy 

through time. A detailed reconstruction of the study area has produced a model that 

demonstrated salt migration over time and showed how gravity and the overlying 

formations were affected by it over time. As the salt moved downslope into adjacent 
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basins, the formations on top of the salt faulted and moved due to the additional stress. 

The salt movement also caused nearby formations to separate and attach to the salt 

moving down dip into the basin, thus separating it from the rest of the formation. These 

faults also caused some rotation of the layers along the fault. 
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Chapter 1: Introduction 

The Northern Gulf of Mexico (GOM) is home to large deposits of salts called the 

Louann Salt which over time caused formation of structures within the area to allow for 

the trapping of economic materials. The Mississippi Canyon contains a large 

allochthonous salt structure which is in the Gulf of Mexico in Figure 1 off the coast of 

Mississippi. The Louann Salt is a large evaporite body of halite that, like all sedimentary 

rocks, was originally deposited horizontally across that area in Callovian time, Mid-

Jurassic period. The salt had begun to move into the basin over time altering the shallow 

subsurface. In present time the salt is in the form of a canopy where it was pushed up to a 

shallower point in the subsurface and then slowly crept into the basin creating the 

canopy. The 3-D seismic data was acquired from Tomlinson Geophysical Services Inc. 

(TGS) which covers a section of the Mississippi Canyon area.  

Seismic data are obtained by using artificial energy sources to cause vibrations 

near the surface or on the surface and then collecting the arrival times of the vibrations at 

the surface as they reflect off the different lithologies in the subsurface. 3-D seismic data 

can be manipulated to produce a visual representation of structural and stratigraphic 

subsurface features. Each reflector represents a change in basic lithology of the rock and 

not what formations are present. This makes seismic data suitable for analyzing the 

structures between two very different lithologies such as a mudstone and salt contact.  
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A detailed examination at the toe of the salt as well as the channels in the area revealed 

structural information about this canyon. With the seismic interpretation these attributes 

can be seen on the seafloor using pictures of deep-sea bathymetry. Using images of the 

sea floor with the interpretated data it has been determined what types of structures can 

be observed on the surface. 
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 Figure 1 The green box represents the extent of the 3D-seismic data that was used in this study 
that is surrounding the Whiting Dome. The red box is the location of the study area with 

perspective to the south-eastern US. 
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1.1 Study Area 

The Gulf of Mexico is a widely observed area for the purpose of both economic and 

academic studies. The Callovian Louann Salt that is present over much of the GOM and 

its coast is the main cause for the formation of the geologic structures present in the 

GOM. The Whiting Dome is located 40 miles off the coast of Louisiana. In Figure 1 the 

green rectangle is the extent of the study area as well as the extent of the seismic data that 

was provided by TGS. The study area is 10 miles wide and 15 miles long following the 

same trend of the Whiting Dome itself.  

To the east of the study area there is the Mississippi Canyon which is the very 

dominant feature in the north central GOM according to the U.S. Geologic Survey. 

Within the study area and around the GOM the dome structures that are visible in Figure 

1 are caused by halokinesis or the movement of salt. The Louann Salt’s movement is 

down slope into the basin which follows the trend of the dome and study area in Figure 1. 

Halokinesis has caused structures such as the round raised sea floor that is visible in the 

Figure 1 sea floor map inside the green study area box and other form of structures like 

rafting and rotating beds that are present in the subsurface. 

1.2 Objectives 

1. To identify the key salt structures within the Mississippi Canyon in the Gulf of 

Mexico using 3-D seismic data. 
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2. Relate the structures found in the seismic data to the sea floor of the Mississippi 

Canyon using deep sea bathymetry images. 

a. See which of the structures can be identified from the sea floor alone. 

b. Check for any other identifying sea floor structures that can aid in the 

interpretation of the salt’s movement. 

3. Create a reconstruction of the salts movement to show the order and impact of the 

structures on the sea floor. 
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1.3 Significance 

 The salt structures being studied in the Gulf of Mexico are currently active sites 

for petroleum exploration which are of economic importance. The salt creates anticlinal 

structures which forms traps for the accumulation and storage of economic resources. 

The value of these resources promotes the study of the structures that allow for the 

accumulation of these resources. Finding the important structures present in the Whiting 

Dome can aid in the interpretation of other salt canopies in the future.  

The comparison of salt induced structures along with their impact on the surface 

or sea floor allows for the general interpretation of salt structures without geophysical 

tools or surveys. A detailed analysis of the structure can reveal its history and how it 

migrated over time after its deposition. Being able to analyze subsurface structures by 

investigating a deep-sea bathymetry map can give some assumptions before the 

subsurface data is taken. 

1.4 Limitations 

 The data that was acquired from TGS was limited to the seismic data and the 

bathymetry images were used from Google Maps satellite view of the Gulf of Mexico 

area (Figure 2). While geophysical data gives a large amount of information it is best 

paired with physical data to ensure that the data is as accurate as possible. Deep-sea 
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bathymetry images were being used for the ground truthing of what can be seen on the 

sea floor in the study area. 

 Geophysical data is based on the idea that there is a change or contrast in a 

physical property between the units or strata that are being observed. For seismic data to 

be effective there needs to be an acoustic impedance contrast between different rock 

strata that are being studied. Acoustic impedance is equal to the density times the 

acoustic velocity. Salt has the unusual property of having a low density at 2.2 g/cc and a 

high velocity at 10,000 ft/s. The greater the velocity contrast, the stronger the reflectors 

become in the data. If adjoining rock strata have the same or very similar wave velocities, 

the change in lithologic units might not show up in the seismic data. This means that the 

focused units need to differ in this wave velocity. The Louann Salt has a very high 

seismic wave velocity compared to the overlying beds 
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Figure 2 A satellite view of the Gulf of Mexico Mississippi Canyon area. Shows the many different salt structures that 
trend in south-eastern direction. The direction of the salt structures movement shows the direction that leads into the 

basin. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Whiting Dome 
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Chapter 2 Literature Review 

2.1 Geologic History 

 “The Gulf of Mexico (GOM) originated as a small ocean basin created by 

seafloor spreading in the Middle Jurassic through Early Cretaceous.” (Galloway et al. 

2011) The Gulf of Mexico Basin commenced formation in the Triassic age as rifting 

occurred between the North American plate and the Yucatan plate. “Pennsylvanian to 

Triassic deposits derived from erosion of the Ouachita tectogene” (Wilhelm and Ewing 

1972). This basin began relatively small but grew due to the rifting process. Rifting 

continued through the early Cretaceous period creating a deep basin. During the Jurassic 

period, the largest amount of crustal extension occurred within the basin. This thinning 

also extended the basin more allowing for the deposition of large amounts of Jurassic salt 

deposits.  

“Pre-Oxfordian Louann salt and post-Oxfordian Buckner anhydrite and salt were 

deposited in the earlier periods of the Jurassic transgression” (Wilhelm and Ewing 1972). 

As with all sedimentary rocks this evaporite “was deposited in a single broad basin, 

which eventually split in two as the gulf widened” (Hudec et al. 2013). The Gulf of 

Mexico was creating from rifting in the GOM plate during the Late Jurassic time and 

split the large basin into two smaller basins. The splitting of the basin caused some 

deformation within the allochthonous salt with the most notable be the faulting. During 
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the extension of the Gulf of Mexico the “salt stretched and thinned, allowing the top of 

the salt to subside well below the sea level” allowing the salt to be buried by sediment 

(Hudec et al. 2013).  

“By the middle Oxfordian, intra-continental extension in the Gulf of Mexico had 

reached a point (constrained South America divergence rate) where it had opened enough 

to accommodate the entire extent of the Louann and Campeche evaporite basin, but salt 

deposition may have been in the Callovian or earlier” (Pindell 1994) Figure 3 displays the 

diverging of the North and South American plates enlarging the basin for the evaporite 

deposits. During this time the African plate was also diverging from the American plates 

starting the opening of the Atlantic Ocean along the Mid-Atlantic ridge.  

Starting in the Late Aptian in Figure 4 the basin has widened to a very large 

extent. This is the start of the Proto-Caribbean with the GOM now split between north 

and south based on the divergent boundary between the Americas.  

Figure 5 shows the GOM in the Middle Campanian is a calm period where most 

of the action was the continued expansion of the GOM Basin. Due to the expansion of the 

Farallon the Proto-Caribbean is also beginning to be overtaken.  

During the Late Paleocene the Proto-Caribbean had been completely taken over 

and is now covered by what is now seen as the Caribbean as shown in Figure 6. The 

expansion of the GOM Basin has also slowed to a halt during this time. “Collision 

between the Greater Antilles and the Bahamas began in the Paleocene, although 
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subduction accretion packages occur onshore Cuba which formed during the late 

Cretaceous and included late Cretaceous orogenic sediments probably derived from 

Yucatan, confusing the definition of the exact age of the onset of the Cuba-Bahamas 

collision.” (Pindell 1994) 

Figure 7 shows the GOM in the Late Eocene beginning to take shape to resemble 

what it looks like in present day with the Caribbean plate moved closer to its present-day 

position. The boundary that separates the American plates in the GOM has stopped 

diverging and is now a transform fault.   

The Early Miocene in Figure 8 has the less active movement of the plates, and the 

action is focused on the splitting point along the center of the GOM basin.  

During the Cenozoic period, the accumulation of sediment into the basin was 

almost constant. This post-Laramide sediment varied in composition depending on its 

origin. The sediment varied in location from southern Louisiana to northern Mexico 

following the coast. This heavy influx of sediment put a lot of pressure on the Louann 

salt and as such caused more movement in this unit. There are “25 principal depositional 

systems that constitute the bulk of the sand-bearing Northern GOM Cenozoic basin fill” 

(Galloway et al. 2000). These 25 different depositional systems each vary in duration and 

location of the sediment influx. Figure 9 shows the position of the plates as they are in the 

present day. 
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Over time, the Gulf of Mexico received a large amount of sediment, adding more 

and more weight over the Louann Salt. The pressure of the sediment on top of the salt 

caused the salt flow deeper and deeper into the Gulf of Mexico basin, as well as initiating 

the structures that are observed in the salt today. These two segments of the gulf suggest 

that there is a transform fault that offset the basins. This fault was named that Brazos 

transfer fault and is a “northwest- trending structure” (Simmons 1992). The Brazos 

Transfer fault was formed during the rifting of the gulf and marks the cut off between the 

inner and outer parts of the basin. However, “the Cretaceous and earlier Tertiary times, 

was the period of construction of the Florida and Yucatan platforms” (Wilhelm and 

Ewing 1972). During the late Cretaceous time the large-scale Laramide orogeny began to 

alter the Gulf of Mexico basin. This large event shaped how and what kinds of sediment 

would be accumulating in the basin as well as eroding away some of the structures and 

sediment that was present at the time. 
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   Figure 4 GOM tectonic plates during the Late Aptian, 118.7 Ma. (Ross and Scotese 1987) 

Figure 3 Gulf of Mexico (GOM) tectonic plates during the Oxfordian, 160 Ma. (Ross and Scotese 

1987) 
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Figure 6 GOM tectonic plates during the Late Paleocene, 59.2 Ma. (Ross and Scotese 1987)  

 

Figure 5 GOM tectonic plates during the Middle Campanian, 84 Ma. (Ross and Scotese 1987) 
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Figure 8 GOM tectonic plates during the Early Miocene, 20.5 Ma. (Ross and Scotese 1987) 

Figure 7 GOM tectonic plates during the Late Eocene, 44.1 Ma. (Ross and Scotese 1987)  
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Figure 9 GOM tectonic plates during the present day, 0 Ma. (Ross and Scotese 1987) 
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2.2 Salt Structures 

 “Salt is the type example of a rock flowing in the solid state by gravity alone, 

because it has such low density and negligible yield strength.” (Jackson and Talbot 1986) 

“Salt structures can be triggered by a variety of mechanisms” (Ge et al. 1997). With all 

three factors “gravity is the main driving force” for the salt structures as it impacts the 

overbearing rock (Wu et al. 1990). Within the study area the main styles are a “result of 

extensional and gravitational deformations” (Wu et al. 1990). Like other sedimentary 

rocks salt is initially deposited horizontally, but over time the salt will begin to in 

response to the overbearing weight of the rock. The salt will move laterally and begin to 

concentrate in adjacent areas over time while leaving other areas to contain only a thin 

layer after the movement. Once accumulated the salt will begin to move upwards if more 

pressure is applied causing salt structures such as seen in east Texas or the Gulf of 

Mexico. These are called either salt diapirs or salt pillows with the latter being a larger 

area with less uplift and the diapirs being relatively narrow uplifts of salt. “Salt pillows 

are broad, plano-convex domes of salt that represent a less mature, more primitive stage 

of salt-dome growth. Salt diapirs consist of a core of intrusive salt— the salt stock— 

surrounded in most instances by an aureole of domed sediments.” (Jackson 1984) In the 

Gulf of Mexico, the slope is dipping down into the basin and so over time the salt 

structures begin to move down slope into the basin. The horizontal movement gives these 
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canopy structures to the salt in the area. These canopy structures are the sloped fan-like 

structures in the Gulf of Mexico such as in Figure 10.  

 As with all sedimentary rocks, the rock that overlies the salt was originally 

deposited horizontally but as it adds pressure on the salt the salt will move and 

accumulate in areas of reduced pressure. The rock layers above the concentrated areas 

will then begin to fold around the salt. These structures have a strong impact on the 

surrounding rock formations in the area due to the uplifting of the concentrated areas and 

the down dropping of the areas of salt withdrawal. The salts uplift creates anticlinal 

structures over the top of the salt. These anticlinal structures formed in the overlying rock 

layers will also cause fracturing and faulting. With a proper seal in place, these additional 

structures can provide reliable traps for economic resources such as oil or gas. These 

structures can also reveal genesis and migrational history of the salt. 

 These structures are usually located deep in the subsurface and, in of the Gulf of 

Mexico, visualizing these structures without any geophysical aid is impossible. Due to 

the difficulty associated with observing these subsurface structures they are commonly 

imaged using 2-D or 3-D seismic data as it allows for an overall view of these large 

structures and lithologic changes in the subsurface. The use of seismic allows the imaging 

of these subsurface structures, as well as their structural impact on the surrounding rock 

layers.  
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 Within the GOM basin “the size and type of salt-related structures seem to be 

directly controlled by the thickness of the underlying salt.” (McGowen 1984) With the 

thickness of the Louann Salt changing across the basin means that the structures that are 

found can be different from area to area.  
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Figure 10 Shows the parts of a salt canopy as well as how the canopy can move over time. In section (a) the two-time 
images show the parts of a salt canopy in a cross-sectional view. Section (b) shows the same salt canopy structures, but as 
a top-down view. (Jackson and Hudec 2017) 
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2.3 Depositional Systems 

In order to identify the different kinds of depositional systems found in deep sea 

subsurface rocks the use of 2-D and 3-D seismic data is a valuable tool. Turbidity 

channels can be found within slope and basin floor environments and may have levees 

present. “At the base of a channel complex, most leveed channels are characterized by 

inclusion into the immediately underlying substrate” which can be seen in the slices in 

the seismic data (Posamentier and Venkatarathnan 2003). The fills of channels can be 

seen within the seismic data and can be determined as passive fills or active fills. In 

general, the passive fills will sit on top of the active fills and fill in the area that the active 

fill could not. These channel fills “are characterized primarily by high-amplitude seismic 

reflections and are interpreted to be sand-rich” for the most part (Posamentier and 

Venkatarathnan 2003). The size of these deposits is dependent on the degree of the 

meander loops of the system.  

Overbank and levee deposits are where the sediments are deposited over the floor 

plain outside of turbidite channel due to overflow of the channel. These sedimentary 

deposits can form what are called sediment waves in flood plains where the sediment will 

form wave-like structures as it is deposited. These sediment waves can vary in size and 

wavelength depending on the amount of energy in the system at the time with a higher 

energy giving a longer wavelength. As the overbank flows farther away from the system 
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there is an increase in the volume of sand when compared to the volume of mud. These 

“deposits have been documented to contain reservoir-quality thin-bedded sandstones” 

and as such provide potential for trapping an economic resource.  

“The transition from leveed channel to splay complex is associated with a marked 

reduction in channel width, channel depth, channel sinuosity, and levee height” 

(Posamentier and Venkatarathnan 2003). The splays are fed by the leveed channels and is 

more of the system out flowing into unconfined areas. These areas can possess high 

reservoir qualities depending on the quality and volume of sand present. These 

unconfined sections can also be very widespread allowing for many resources to be 

present.  

Debris-flows are when large amounts of sediment begin to flow down a slope like 

a liquid. These “deposits take a variety of forms, ranging from sheets to lobate tongues to 

channel fill” (Posamentier and Venkatarathnan 2003). These flows are generally not 

widespread but instead are condensed to a smaller area. No matter which of the types of 

depositions that occur with the debris flow there will always be grooves present. These 

grooves are great identifying factors for the presence of a debris flow.  

There are many factors that determine the type of deposition that will occur within a 

deep-water environment. Each of these factors determines different properties of the 

deposition and so various mixes may cause very different results. The amount of sand 

compared to the amount of mud can determine whether there is one channel, or a network 
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and the gradient of the floor can determine the shape of the network or levee. When 

analyzing the deposits in the seismic data all the properties can be linked back to the 

initial determining factors of the depositional system. 

  

2.4 Seismic Data  

“Geophysical inversion involves mapping the physical structure and  properties of 

the subsurface of the earth using measurements made on the surface of the earth.” 

(Russell 1988) Seismic method focuses on the collection of the arrival times of the 

various seismic waves that are created during the process. Seismic surveys can be done 

on both land and sea using slightly different processes to get the data. Each seismic 

survey has two major parts which are the source and the receivers.  

 “A disturbance propagates outward as a series of wave fronts quite analogous to 

the ripples on the lake.” (Burger et al. 2006) A seismic source is used to create the initial 

seismic waves that are reflected off interfaces between geologic strata with different 

seismic properties.  This is a singular location that creates a wave and for small land 

surveys a hammer hitting a metal plate will work to create an initial wave. “The passage 

of the wave fronts by each point on the surface is marked by the motion of that surface, 

which can be measured and recorded by sufficiently sensitive detecting equipment and 

recording instruments.” (Burger et al. 2006) For larger seismic surveys, the most 

common source that is used is a thumper truck or controlled source explosives. For 
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marine surveys, air guns or water cannons attached to the back of the boat are used as 

sources. The type of source is mainly determined by costs and environmental 

considerations.  

 In addition to a source, exploration seismologists need to record seismic travel 

times from source to geological interfaces and back to receivers. For a 2-D survey these 

receivers are strategically placed around the source to produce optimum levels of 

geometric coverage. For a 3-D survey a grid of receivers is set up instead of just one line. 

For the 3-D surveys receivers, there is a difference between the way the receivers are 

arranged. On a land survey, geophones are staked into the ground and for a marine survey 

the geophones are often floating very close to the surface of the water. 

 There are three different ways that the waves from the source can travel. The first 

is the simplest wave and is called the direct wave. This wave travels just parallel to the 

ground surface or water surface. Since it only travels on one surface the velocity of this 

wave is consistent as it is traveling only on one surface.  

 Refracted waves travel down into the subsurface and when they hit rock layers of 

varying velocities, they will experience a chance in direction as they travel across that 

boundary. Waves will also begin to create new waves as they travel so as the wave 

travels across the contact surface it creates new waves that return to the surface. These 

waves are then timed by the receivers at the surface. These are generally only used in 

shallow surveys with only one or two changes in wave velocity. 
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 The third wave type is the reflected waves which are the most common wave type 

used in deep surveys which can have numerous amounts of impedance boundaries. 

“When a compressional seismic wave travels through a material—whether solid, liquid, 

or gas—part of the wave reflects wherever a change in acoustic impedance occurs” 

(Dragoset 2005). In other words, these waves will hit a velocity change and bounce off it 

and return to the surface at the same angle that it hit the boundary. The wave will also 

bend and continue down as well reflecting off deeper velocity boundaries.  Each 

boundary will have a recorded two-way time at the receivers and can then be processed 

into a full seismic section. 

 The interpretation of processed seismic data is mostly done through the reflected 

waves. Post-processed seismic data shows different reflectors which are the visual 

representation of the velocity changes in the subsurface. These reflectors are typically 

seen using black and white in Figure 11 however “Color-encoded displays of attribute 

values aid in interpretation of seismic data relevant to stratigraphy.” (Taner 1979) Figure 

12 shows various colors patterns that can be used to make some kinds of reflectors more 

visible than others.   
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Figure 11 Black and white seismic reflectors being used to show salt structures. (Jones and 

Davison 2014) 
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Figure 12 Examples of different color patterns that can be used to make various 
structures easier to see. (Taner et al. 1979) 
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2.5 Analog 

 Salt is commonly found in various parts of the world. In addition to being found 

in the Gulf of Mexico, salt strata are similarly located in the Kwanza Basin off the west 

African coast which is seen in Figure 13. “Outboard of the escarpment lies a region of 

salt-detached raft blocks, which are closely analogous to type examples in the Kwanza 

Basin, Angola, in terms of structural style, scale, and amount of extension.” (Pilcher et al. 

2014) Due to the many similarities, this basin was used as a good reference as to what 

should be seen when analyzing the Gulf of Mexico. 

 Rafting is one of the lesser-known structures caused salt movement but is a very 

impactful structure. Rafting is the movement of the overlying rock by the horizontal 

movement of the salt into the basin. The overlying rock will ride on top of the salt as it 

moves into the basin. The Kwanza Basin has this occur in multiple stages and the units 

will continue to move if there is a constant supply of salt moving deeper and deeper into 

the basin. The various structures of the Kwanza Basin that were influenced by rafting are 

depicted in Figure 13. Figure 14 shows the rafting caused by the salt is shown in both a 

diagram and in the uninterpreted seismic data. 

 The Kwanza Basin when compared to the Gulf of Mexico basin tends to have 

thicker salt strata included in it. This means that the salt structures in the Kwanza Basin 

can be fed for a longer period. In the Gulf of Mexico Basin much of the salt structures 

have already started to spread themselves a little bit thinner due to being cut off from the 
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salt or not having enough salt. A good example of this is how in the study area the 

canopy is cut off from the source of salt. Along with the Kwanza Basin offshore Israel 

also shares the extensional domain of salt-basin margins are normal faults associated with 

the salt pinch-out. (Gradmann et al. 2005)  
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Figure 13 A structural map showing the geographical location of the Kwanza Basin in Africa. The Kwanza 
Basin is off the coast of Angola, Africa containing many extensional strike-slip faults that run south-west to 

north-east. This map focuses on the major salt and faulting structures that are found in this basin. The salt 
walls above are rafts that were moved down into the basin by the underlying salt layers. Duval (1992) 
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Figure 14 The upper image shows the uninterpreted seismic data that was seen in 
the Kwanza Basin. Between the 1 and 2 second two-way times small triangles can 

be seen that are the rafted units. The bottom image shows the interpretation of 
the section above including the rafts and faults. Duval (1992) 
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Chapter 3 Methodology 

 

3.1 Data Acquired 

 The data is presented in the form of 3-D seismic data from the Mississippi 

Canyon area covering the Whiting Dome. This seismic data was acquired from 

Tomlinson Geophysical Services, Inc (TGS). over the study area. The 3-D seismic survey 

was conducted over the Whiting Dome and used the parameters shown in the tables 

Figure 15 and Figure 16 shown below. These Figures include the acquisition time, 

crossline distance separation, and survey orientation that were used. This seismic data 

allowed for the mapping and analyzing of the Louann Salt and the structures that are 

created by its movement within the study area. This seismic data was provided in two-

way time format from 0-3 seconds in time depth. The seismic data was used for all the 

data interpretation of the Whiting Dome and the associated structures, which will be 

compared to the sea floor map in Figure 2.  

 The deep-sea bathymetry data was acquired in two ways for the purpose of this 

study. The first is an image of the sea floor that is used from Google Maps. The second 

image is a seismic interpretation of the sea floor horizon from the seismic data provided 

by TGS. The seismic data interpretation can give more detailed information on the 

subsurface structures than what can be viewed on general sea floor images. Both were 
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used to not only round out the data, but also ground truth the seismic sea floor to that of 

the sea floor imaging. 
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Figure 15 The table shows numerical values that were used by TGS in order to take the seismic data in the Mississippi 

Canyon. This includes information about the types of instruments that were used to record the data and how they were 

positioned. 
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Figure 16 This table lists what was done in order, for processing the raw seismic data that was acquired by TGS. The 

deliverables section is what comes with the data that was processed. 
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3.2 Data Interpretation 

 The Kingdom Software (TKS) by IHS was used to interpret the 3-D seismic 

dataset. The TKS allowed for the viewing and manipulation of the seismic inlines and 

crosslines as well as the ability to map horizons over the study area through their 

respective reflectors. “A horizon is a generic term for a picked surface within the seismic 

data.” (Worrell 2017) The bulk of the study was based on observing at the structures that 

are directly caused by the Louann Salt’s movement into the basin.  

 “Louann salt that is at least Oxfordian but more likely Callovian in age.” (Bartok 

1993) The top of the Louann Salt provides a very strong reflector in the seismic section 

as it spans most of the study area and is the major factor in the creation of the structures 

that are found in the study area. The strength of the reflector makes it differentiable from 

the other reflectors in the seismic data. The sea floor was also mapped using the seismic 

data as a secondary resource to use alongside the sea floor imaging. The use of both were 

used to verify the accuracy of the data and information interpretation.  

 The major unit that is being mapped throughout the study area is the top of 

Allochthonous Louann Salt Canopy. The age of the depositional units that are located on 

top of the Whiting Dome salt are deposited in the Pliocene epoch (Worrell 2017). Though 

these unit’s tops will not be individually mapped from not having well log data these are 

the units that are present in the study area. The units that are listed above are in order 



 

37 
 

from the oldest to the youngest in geologic age. The structures in the study area are 

heavily influenced by the halokinesis of the Louann Salt. 

The faults have also been mapped across the area and then split into sections 

based on how the faults formed and where the faults had formed in the study area. The 

faults were split up into four different sections that cover the study area in Figure 18. The 

head of the salt is located right above the neck of the salt canopy. The next section is the 

toe of the salt which is located at the farthest point of the canopy from the head of the 

salt. The center of the salt canopy and the sides of the salt canopy are the remaining two 

sections where faults were observed. 
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Figure 17  A stratigraphic section of the Gulf of Mexico area from the late Triassic to the late 
Cretaceous. The Callovian Louann Salt is the major unit that is being studied. Above the Louann 
Salt is the Norphlet, Smackover, Haynesville, and Cotton Valley which were deposited just after. 
(King 2019) At Whiting Dome the salt canopy is allochthonous and has been remobilized downdip 
and up section from its original location of deposition. During the remobilization, the original roof 
rock is often not preserved and today the age of the sediments on top of Whiting dome are 
Pliocene (Worrell, 2017) 
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Figure 18 The salt canopy was split into 4 different sections. The neck is the section where the salt is being fed 
into the canopy. The toe is the furthest section into the basin. The edge are the sides of the salt canopy where 
the salt had moved perpendicular to the direction of the basin. The center is the area where the previous four 

sections meet. 
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Chapter 4 Interpretations 

4.1 Canyon Infills 

 A canyon occurs where a deep gorge is present in the surface rock through a 

period of erosion in the area. A canyon infill is where these deep gorges are filled in 

entirely with sediment. Canyon infills are visible in seismic sections where the reflector 

makes a U-shaped dip. These infills are present across the major unconformity in the 

study area. 

 Figure 19 shows five different canyon infills that were present in inline 17840. In 

Figure 19 the canyon infills are centered around crosslines 15540, 15480, 15360, 15240, 

and 15080. The canyon infills cover between 1.5 and 1.6 seconds deep on the two-way 

time. These are located across the Upper Pliocene horizon and a representative of the 

change between the rafted units that are present below this horizon and the flat lying unit 

present above this horizon.  

 The canyon infills are not found throughout the study area and are focused on the 

northeastern part of the study area in areas where the salt is present below in Figure 19. 

The southwestern part of the study area is void of the canyon infills, but still containing 

the Upper Pliocene horizon and is still an unconformity. 
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Figure 19 Displays the canyon infills along the 
Upper Pliocene horizon at the crossline 15540, 
15480, 15360, 15240, and 15080. The canyon 

infills stay in the north-eastern portion of the 
study area. The infills are between 1.5 and1.6 

seconds on the inline cross-section 
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4.2 Faulting 

 Faults located in the study area are consistent with faulting that would be 

expected in areas associated with salt movement. The movement of the salt mostly 

vertically in the process of creating newer diapirs will cause many normal faults to be 

formed around and above the new diapir.  Faulting observed in the study area was 

determined to be normal faulting, which is typical for salt structures to create during their 

movement. The study area has been split into four sections for the identification of the 

faults. These sections are the neck, toe, sides, and the center of the salt canopy.  

 The neck of a salt diapir is the area where the canopy or diapir was being fed 

more salt from the source. This can be connected to the source presently or be cut off 

from the source creating a detached diapir or canopy. This section of the study area is the 

oldest area as this is where the salt first moved vertically and before the salt diapir had 

moved horizontally. These faults above the neck of the salt canopy are normal faults they 

extend upward all the way to the sea floor in the study area. In Figure 20 the faults 

created a depression in the sea floor horizon. A fault created depression is visible on the 

sea floor which gives an idea of where the neck of the salt canopy is located  if looking at 

just the sea floor. 

 The center of the salt canopy is a large area where the salt seems to dip downward 

creating a bowl-shaped horizon such as that shown in Figure 24. This area has a limited 
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number of faults present. In Figure 21 there a very few faults present in the area, but there 

are other structures that were created by the movement of the salt  such as the rafting of 

the units and uplift of the sea floor that is caused by the vertical movement of the salt 

canopy.  

 The toe of a salt canopy is the point that has moved the furthest into the basin 

through the halokinesis process. In Figure 22, the toe is the point furthest southeast in the 

study area. The toe of the canopy has risen to be a structurally high point relative to the 

center of the salt canopy. There is also the presence of new salt diapirs that are being 

formed in this area. Above the newly created salt diapir and in various parts of the toe, 

there are normal faults. The faults that can be found above the new salt diapir create a 

depression that is visible in Figure 24. The uplifted salt at the toe it expressed as a salt 

high and a sea-floor high. There could be trust faulting at the edge of uplifted salt seen in 

figure 22 on the SW edge, but most of the uplift/thrusting appears to have taken place 

within the salt and not clearly visible as thrust faults in the section above the salt . 

 The remaining area of the salt canopy is the north-eastern and south-western 

areas, sides or edges of the study area.  These areas are very similar to the toe of the salt 

canopy as they are high points in respect to the canopy. This leads to the creation of 

normal faults above these sections in Figure 21. These faults are also visible from the sea 

floor as depressions. With these depressions present in Figure 24, there is a circle of 

depressions that wrap around the area in which the salt is present.  
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Figure 20 Located above the neck of the salt diapir there are the first normal faults that were formed from 
the original creation of the salt diapir. These normal faults dip towards the center of the salt neck and also 

cause a depression in the sea floor. 

  
TWT(Seconds) 

C
ro

sslin
e

s 

N
o

rm
al Fau

lts 

Lo
u

an
n

 Salt 

H
o

rizo
n

 

U
p

p
e

r P
lio

cen
e 

H
o

rizo
n

 

U
n

id
e

n
tified

 

H
o

rizo
n

 

Se
a Flo

o
r H

o
rizon 

To
p

 Salt M
ap

 



 

45 
 

      
 
    

 

 
 
 
 
 
  

      

 
 
    

 

                  

 
 
    

 
 

 
  

  
   

    
     

 
    

 
 

 
  

  
  

   
        

        

                

 

   
            

 
   

         

Figure 21 Faults tend to not be located in the center of the salt canopy, but instead tend to be on 

the edges of the boundaries. 
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Figure 22 Near the toe of the salt 

canopy the faulting gets more and 
more common as this is a high point 

in the canopy’s level as well as the 
large new diapir that is in the center 
of the toe. This new diapir creates 

new normal faults above it similar to 
the ones above the neck, but they do 
not all dip towards the center of the 
diapir. 
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4.3 Rafting 

 “Raft tectonics is an extreme form of thin-skinned extension” (Duval and Cramez 

1992) and “occurs where the pressure gets so extreme that the blocks separate and no 

longer share a mutual contact.” This pressure is usually due to the movement of the 

underlying halokinesis and is common in areas where there is a lot of salt movement such 

as the Kwanza Basin and the Gulf of Mexico Basin. This type of lateral extension 

requires horizontal space unlike the rest of the structures that are discussed which require 

the vertical space to move.  

 The Pliocene units in Figure 23 have all been moved from their originally 

deposited positions and deeper into the basin while riding on the Louann Salt. Since the 

movement occurs on the salt the north-western side of the units that is in contact, the salt 

will begin to fold the unit slightly due to the pressure from halokinesis. This folding of 

the units is more extreme the older the units is as the Pliocene horizons can be seen 

deviating more from the original horizontal deposition than the younger Pliocene units.   
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Figure 23 The units that are located over the salt canopy have been moved deeper into 
the basin at inline 177110. The Pliocene units were all moved from their original location 
in the above. As the units are moved into the basin the side of the units that are closer 

to the neck tend to fold down towards the salt. 
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4.4 Rotated Beds 

 A unit or bed is considered rotated when the originally horizontally deposited unit 

begins to rotate in the direction that it is being pulled. This may be due to pressure from 

the surrounding units in the area and is generally associated with compression in the area. 

The compression within the study area is also associated with the faulting that surrounds 

the rotated bed, Figure 24. The reflectors in the Figure shown are at an angle relative to 

the surrounding flatter units showing that the units have been rotated due to compression.  

 The extensional force that caused these units to be rotated was caused by the 

movement of the underlying salt. The movement of the salt rafts the sediment pods down 

dip and there is accommodation space up dip where there are thicker sediments filling the 

accommodation space. The thicker sedimentation up dip may also push the underlying 

salt downdip due to differential loading. There is a newly created diapir on the canopy 

centered around crossline 15400 in Figure 25. The new diaper may be the result of 

extension, perpendicular to the toe due to the spreading outward of the salt canopy. The 

newly formed diapir has surrounded the rotated beds creating a room like structure that 

can be seen in Figure 25. The room can be used to see the extent at which the beds were 

rotated as well as to why the rotated beds are not seen throughout the study area and are 

instead localized to a small area.  
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Figure 24 Above is a 3-D image of the salt canopy created from the horizon picks. The 
arrow points to the location that the creation of a smaller salt diapir has created a 
room that contains the rotated bed. 
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Figure 25 Cross-sectional image of the rotated bed using the inline on the seismic data. The rotated beds are outlined in 
the above image with the small salt diapir that they are pressed against being shown on the right-hand area of the 
cross-section. 
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4.5 New Diapirism 

 Salt migration will follow the path of least resistance during the process of 

halokinesis by finding points of weakness in the areas as it moves down into the basin or 

upward through overlying formations. While the canopy in the study area is moving 

horizontally into the basin if it finds vertical weaknesses in the overlying units, the 

canopy will create new vertical diapirs using the canopy as a source.  

 Figure 26 shows a diapir that spans over a large area of the canopy’s toe. This 

new diapir will ultimately cause the faulting of the overlying units that was mentioned 

previously. This indicates that this area had some form of weakness vertically that 

incentivized the vertical movement of the salt over the given area. While this is the 

largest example of new diapirism in the study area there are many smaller areas such as 

the area where the rotated beds are located at; however, the diapir located at the toe 

appears to be the diapir that has had a major impact on the sea floor, as the faults above it 

caused a depression oriented perpendicular to the toe front which is generally an area of 

uplift.  
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Figure 26 Shows the creation of the new salt diapir at the toe of the salt canopy 

using the 3-D image of the salt. 
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4.6 Unconformity 

An unconformity is a surface separating two rock boundaries showing a gap in 

time that was created by a period of nondeposition or erosion of previously deposited 

strata. Unconformities show a period where the strata that were deposited were exposed 

to the surface for natural processes to erode the units away. These unconformities can be 

used to track changes in sea level during the time of the unconformity. The upper portion 

of the units that was studied ends at an unconformity which is represented as the Upper 

Pliocene Horizon in Figures 22 and 23. The unconformity stays at a TWT depth of 1.6 to 

1.7 seconds in the Figures.  

Above this unconformity surface, the units are deposited and had minor changes 

by the process of the salt. These units are relatively horizontal in orientation and have 

very little structures caused by the salt besides the area above the neck of the salt canopy.  

However, below this line the units are very heavily influenced by the movement of the 

salt. They begin to show heavy faulting and rafting over their existence. Based on this, it 

is assumed that the salt supply may have been cut-off at that time. 
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4.7 Sea Floor 

Parts of salt movement can be traced by examining the seafloor as it will cause a 

change in the shape of the sea floor. Using this idea, other salt canopies can have a 

general interpretation of their subsurface structures before any major data is collected. 

This will allow for a more accurate placement of wells and seismic data areas.  

 Canyon infills and the rafting of the units on top of the salt are not easily 

observable when examining the seafloor data in the study area, as their structural impact 

on the overlying units dissipates very quickly. Rafting is not visible at the sea-floor, but 

the canyon infills do affect some of the overlying units. 

 The diapirs that are created during the process of halokinesis leave very large 

imprints on the seafloor in the form of faults and related depressions.  These faults are 

typically normal faults and, depressions will normally be observed on the seafloor. Since 

there are faults present completely around the perimeter of the salt canopy, the size of the 

canopy can be estimated by extending a little past the stop of the depressions. The last 

section of the area that shows the faults is the new diapir that is near the toe but runs in a 

north-western direction in Figure 26 which is perpendicular to the salt-toe uplift. This 

area does have the same depression as caused by the faults around the parameter of the 

canopy.  
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A seafloor study is an ideal way to get a general idea of how the salt might be moving 

vertically and horizontally over the area. They tend to radiate out and move downdip 

from a feeder. They are usually covered by a relatively thin veneer of sediments that 

show the general shape but do not show the detailed faulting that can be seen on seismic. 

The thin veneer of sediment on top of a salt canopy near the sea-surface may be related to 

the low density of salt relative to all but the shallowest sediments. These observations can 

be used to identify diapirs regarding other salt canopies in the Gulf of Mexico as well as 

any other canopies around the world.  
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Figure 27 A 3-D image of the sea floor that was created from mapping the sea floor reflector in the 
seismic data. The large hill present is where the salt canopy is located and the various dips on top of 
and surrounding the hill are cause by the subsurface structures. 
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Chapter 5 Conclusions 

The allochthonous salt domes present in the Gulf of Mexico have a complex 

history that can be tracked by the structures that are formed during its movement over 

time. These structures were anywhere from simple normal faulting that appears above 

almost all the salt diapirs to rafting of units down slope on top of the salt. A convenient 

way to analyze how the structures were influenced by the salt is through carful analyses 

of 3-D seismic data, which could be used to propose the mechanism of the salt migration 

over time. Figures 28 through 36 provides a possible mechanism for the evolution of the 

salt canopy over time. 

Stage 1 is representing the original deposition of the evaporite in its original 

position in Figure 28. This will follow the normal rules of the deposition of salt for a 

horizontal layer of it is placed down. At this point in time there is no movement of the 

salt as there is no overlying pressure to drive halokinesis.  

Stage 2 once the salt was deposited there was sections of sediment that were 

placed on top of the salt in Figure 29. The deposition of the new sediment on top of the 

salt layer will add overlying pressure to initiate salt migration. The overlying pressure is 

gravity driven and as it increases the salt will become mobilized and flow towards areas 
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of reduced pressure, usually upwards. Buoyancy of the relatively low-density salt also 

contributes to its up-section movement over time. 

Stage 3 When that Louann Salt finally has enough pressure from gravity and the 

overlying sediments, the salt will begin to migrate vertically creating a salt diapir in the 

location in Figure 30. This is the first major structure that is created through this process. 

The salt diapir will fracture overlying to create normal faults, similar to those located 

directly above the diapir. These normal faults will also cause visible depressions in the 

sea floor. These depressions will allow for a quicker identification of the major diapirs 

locations. The creation of the diapir will also cause the units to its side to bend upward 

with it. These two sections are both very good traps for various kinds of liquids and 

gasses that might be present in the subsurface.  

Stage 4 after the creation of the diapir the slope that leads into the basin will begin 

to affect the diapir and force it to start moving down slope shown in Figure 31. This 

means that there is a change in the direction that the salt is moving from vertical to a 

horizontal movement. This is the creation of the salt canopy and is also where most of the 

deformation of the overlying units happens. The salt in this study formed a bowl-shaped 

canopy trapping the units inside of itself and moving them down slope with it in a process 

called rafting. These units are cut off from the rest of their unit and moved away from 

their location by riding on the horizontal salt movement.  
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Stage 5 the salt continues to move deeper and deeper into the basin forming the 

canopy in Figure 32. As the salt moves into the basin it carry of rafts some of the 

overlying units along with it. The oldest rafted unit is the smallest as there was less salt 

moving the surface area grew allowing for more and more of the overlying units to be 

moved deeper into the basin. 

Stage 6 is a period of little to no deposition at the top of the Pliocene units. The 

period of little to no deposition will represent a gap in geologic time at the top of the 

Pliocene units. There has been some erosion present at the top of this section which will 

become more defined in stage 7.    

Stage 7 with the period of little to no deposition happening on top of the Pliocene 

units the natural erosion would dig deeper in some areas than others in Figure 34. These 

canyons created at the end of the Pliocene are areas where there was a heavy amount of 

erosion. With the aid of faults currents were able to cut canyons into the sea floor.  

Stage 8 The previously exposed units continued to have new deposition on top of 

them in Figure 35. This gap between deposition periods is what section of time that is 

missing in the study area. This will also finish the creation of the canyon infills as the 

overlying units fill in the previously created canyons. 

Stage 9 is the last section where the salt could be fed and is cut off from the 

original section of salt below shown in Figure 36. The lack of more salt will slow or stop 



 

61 
 

the creation of new salt structures in the present area until the presence of more pressure 

is put on the salt.  
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Figure 28 Stage 1 Initial deposition of the Louann salt in the Gulf of Mexico. The evaporation of the water here leaving 
behind salt in order to start the first steps of evaporite deposition. 

Figure 29 Stage 2 Deposition of the initial units on top of the salt horizontally. These are the first units that put pressure 
on the salt and will begin its movement. 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

  



 

63 
 

Figure 30 Stage 3 The salt begins to move vertically due to the pressure that the overlying unit caused. This is the first 

creation of the salt diapir which caused the normal faults that are located above the neck of the salt canopy. 

Figure 31 Stage 4 With the pressure from the overlying units still acting on the salt it will begin to move in the 
direction where there are weaknesses in the rock. The salt begins to move deeper into the basin changing from the 

vertical movement to the horizontal movement. 
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Figure 32 Stage 5 As the salt moves deeper into the basin it will begin to move some of the units that are present on top of the 

canopy in the rafting process. 
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Figure 33 Stage 6 During this stage there is little to no deposition of new units causing an unconformity along the top of the 

Pliocene units. 
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Figure 34 Stage 7 Before the deposition of the new unit’s sections of the landform canyons in the surface exposed units.  

Figure 35 Stage 8 After a time the deposition of units begins again filling in the canyons that were made and covering the once 

exposed sections. 
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Figure 36 Stage 9 Lastly the salt canopy's neck thins and eventually detaches from the original feeder unit. This means that the unit 

no longer has a new influx of salt. 
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Future Work 

 One of the major improvements on this study would be to examine if the sea floor 

structure correlation can be done with other salt canopies in the Gulf of Mexico as well as 

any other places where salt canopies can be found. If salt diapirs and canopies can be 

better described by just seeing the seafloor than exploration could be aided as well. 

 Another way to improve on this study is to acquire better seismic data with more 

detailed shallow sections. This will allow for a better description of the shallow units 

while ignoring the data below the salt.  
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