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ABSTRACT

Statistical inference for the mean of a beta distribution has become increasingly

popular in various fields of academic research. In this study, we developed a novel

statistical model from likelihood-based techniques to evaluate various confidence in-

terval techniques for the mean of a beta distribution. Simulation studies will be

implemented to compare the performance of the confidence intervals. In addition

to the development and study involving confidence intervals, we will also apply the

confidence intervals to real biological data that was gathered by the Department of

Biology at Stephen F. Austin State University and provide recommendations on the

best practice.

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my family for their love and support

through my graduate experience. Without them I do not think I would have made

it through this journey. I would also like to express my appreciation to the following

individuals who have helped me through this process: My thesis advisors Dr. Kent

Riggs and Dr. Jacob Turner for all those long hours that they poured into me to help

me succeed and for their immense patience. To my committee members, Dr. Robert

Henderson and Dr. Lindsay Porter for their guidance and sage wisdom. I would also

like to thank all my friends for their support. We had some good times and some bad

but at the end we can say we finally did it.

iv



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . iv

1 INTRODUCTION 1

2 Mathematical Preliminaries 3

2.1 Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 5

2.2.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 MLE of the Beta Distribution. . . . . . . . . . . . . . . . . . . 6

2.3 Fisher’s Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Fisher’s Information for the Beta Distribution. . . . . . . . . . 8

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Confidence Intervals for µ 11

3.1 Confidence Interval Definitions . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Wald Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 t-test Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.3 Bootstrap Interval . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Results from Simulation Studies . . . . . . . . . . . . . . . . . 15

4 Biological Application 18

4.1 Amblyomma americanum Background . . . . . . . . . . . . . . . . . 18

4.2 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Concluding Remarks and Future Applications 27

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A Coverage Tables 31

B R Code 41

C Coverage Plots 45

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vi



LIST OF FIGURES

2.1 Beta Density Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.1 Box plots of the experimental and control A. americanum cell counts. 21

4.2 Histograms of the Experimental A. americanum cell counts and Con-

trol A. americanum cell counts . . . . . . . . . . . . . . . . . . . . . 22

4.3 Beta distribution QQ plots of the experimental and control A. amer-

icanum cell counts. The rough estimates for the experimental and

control tick parameter values are α = 29.7 and β = 3.3, and α = 23.4

and β = 2.6, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 23

C.1 Phi=10, n=5,20,50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

C.2 Phi=50, n=5,20,50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

C.3 Phi=50, n=5,20,50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



1 INTRODUCTION

The beta distribution has a rich history in the field of statistics. It is often used to

model data that are represented as proportions or percentages. The beta distribution

is also reserved for representing all the possible values of a probability when the true

value of the probability is unknown [6, 9]. A modified version of the beta distribution

can be used to model continuous random variables that are defined on the closed

interval [0,1] [6, 9].

According to the literature, very little attention has been given to the performance

of asymptotic interval estimation for the mean of a beta random variable. However

[3], has provided some work in this area, but their methods assume that the precision

parameter is known in advance, a situation that is unlikely to occur in practice.

Conversely, this study will assume the precision parameter is unknown. Confidence

interval using likelihood-based estimation are quite standard and widely accepted in

practice, however, [4] states that this technique is inaccurate for a large sample size.

Moreover, past simulation studies have revealed that the Wald method is conservative

for 95% confidence intervals [4]. A work around for this might be to employ a simple

t-test since it is robust in many settings [7].

In this research, our intention is to perform simulation studies by developing a

statistical model to determine appropriate scenarios and sample sizes to evaluate

how various confidence interval techniques perform versus nominal coverage rates for

the beta distribution. These investigations will allow numerous recommendations

to be made on when an interval should and should not be applied, and offer up

understanding about which methods may perform better than others.

In chapter 2, we present the formal probability density, maximum likelihood es-
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timators (MLE) and Fisher’s information for the beta distribution. In chapter 3, we

present the Wald, t-interval, and bootstrap confidence intervals for the mean of a beta

distribution. As an illustration of the confidence intervals, we consider an application

to biological data in chapter 4. Lastly, in chapter 5, we will provide conclusions and

make comments for future work.

2



2 Mathematical Preliminaries

In this chapter, we introduce the beta distribution, and topics related to likelihood-

based estimation, such as maximum likelihood estimation and Fisher’s information.

Furthermore, the likelihood based applications to the beta distribution will be intro-

duced. The results can be found in [2, 6, 9].

2.1 Beta Distribution

The formal mathematical constructs for the beta distribution can be found in [2]

and they will be presented here. The probability density function for a beta random

variable, X, is as follows:

f(X;α, β) =
xα−1(1− x)β−1

B(α, β)
, 0 ≤ x ≤ 1, α > 0, β > 0; (2.1)

where the Beta function is

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)

and the gamma function is

Γ(a) =

∫ ∞
0

wa−1e−w dw.

Three important parameters and their expressions are:

E[X] = µ =
α

α + β

,

Var(X) = σ2 =
αβ

(α + β)2)(1 + α + β)
,

Precision = φ = α + β.

3



The beta distribution has two shape parameters alpha (α) and beta (β). The

shape parameters, denoted by α and β, control and describe the shape of the beta

distribution [6, 9]. The parameters, α and β, can be estimated by using the maximum

likelihood estimation (MLE) technique [2]. The MLE technique is a common method

of estimating parameters of a probability distribution. Assuming the beta distribution

is a reasonable model, the MLE will find α and β values that results in a model that

”best fits” a given data set.

Figure 2.1: Beta Density Curves
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Figure 2.1 highlights how flexible the beta density curves can be for different

values of µ and φ. This is appealing since many data sets are often not symmetric or

bell shaped. Alternatively, the beta distribution can be roughly bell and symmetric

but can also be skewed and u-shaped. To demonstrate this property of the beta

distribution, figure 2.1 provides the pdfs for certain values of the parameters. The

pdfs of the beta can become u-shaped (µ = .33, φ = .3), symmetric (µ = .5, φ = 4),

and left-skewed (µ = .66, φ = 6). The versatility of the beta distribution can account

for many distributional shapes that one might encounter in practice.

2.2 Maximum Likelihood Estimation

In this section, the maximum likelihood estimation (MLE) method will be intro-

duced. The method of maximum likelihood is one of the most popular methods for

deriving statistical estimators. The general theory will be discussed first, then the

MLE for the beta distribution will be derived. The general discussion will be for a

continuous case.

2.2.1 General Theory

In a typical statistics problem, there is a random variable of interest, often denoted as

X that has a probability density function (pdf) in the form of f(x; θ), where θ ∈ Ω for

a specified set Ω, and θ is the unknown parameter of the distribution. Now suppose,

that X1, ..., Xn are independent and identically distributed (iid) random variables

from a common pdf f(x; θ). The basis of many inferential procedures is done by

using the following function, which is called the likelihood function:

L(θ;x) = L(θ) =
n∏
i=1

f(xi; θ), (2.2)

where x = (x1, ..., xn)′ is a random vector and θ = (θ1, ..., θk)
′ is the parameter

5



vector. It is common practice and often more convenient to take the log of the

likelihood function, called the log-likelihood:

l(θ) = logL(θ) =
n∑
i=1

logf(xi; θ). (2.3)

Note that there is no loss of information in using l(θ) because the log is a one-

to-one transformation and order preserving. Furthermore, for each observed random

sample x, let the value θ̂(x) be the parameter value that maximizes l(θ;x), which also

maximizes L(θ).

Moreover, if the log-likelihood function is differentiable (in θi), the possible can-

didates for the MLE’s are values of (θ1, ..., θk) that solve the equations:

∂l

∂θi
= 0, i = 1, ..., k. (2.4)

the previous expression is often referred to as the ”estimating equations”.

2.2.2 MLE of the Beta Distribution.

This subsection will apply the results from 2.2.1 to the pdf of the beta distribution.

Suppose a random sample of x1, ..., xn has been collected for a random variable X

from the beta distribution defined by equation 2.1. Here, we define θ = (α, β)′.

Additionally, recall the log likelihood equation, defined by equation 2.3. The log-

likelihood function is a computationally convenient tool to find the MLE’s of α and

β. Using expression (2.1), the likelihood function of the beta distribution is

L(θ) =
n∏
i=1

f(xi;α, β) =
n∏
i=1

[
Γ(α + β)

Γ(α)Γ(β)

]
x

(α−1)
i (1− xi)(β−1). (2.5)

Hence, the natural log-likelihood function is:

l(θ) = Ln(L(θ)) =
n∑
i=1

Ln(f(xi; θ)

6



which is

l(θ) = nLn(Γ(α + β))− nLn(Γ(α))− nLn(Γ(β))

+ (α− 1)Ln[
n∑
i=1

xi] + (β − 1)Ln[
n∑
i=1

(1− xi)] (2.6)

Now that the log-likelihood function has been derived, we must take the first

derivative with respect to α and β of 2.6, and we have the following result:

∂l
∂α

= [n(Γ′(α+β)
Γ(α+β)

)− n(Γ′(α)
Γ(α)

) + Ln(
∑n

i=1 xi)]

and

∂l
∂β

= [n(Γ′(α+β)
Γ(α+β)

)− n(Γ′(β)
Γ(β)

) + Ln(
∑n

i=1(1− xi))].

Now, we will set ∂l
∂α

= 0 and ∂l
∂β

= 0 to get the estimating equations. Addition-

ally, by the relationship Γ′(a)
Γ(a)

= Ψ(a) = ∂
∂(a)

logΓ(a), we can rewrite the estimating

equations as the following:

−Ψ(α + β) + Ψ(α) + 1
n
Ln[
∑n

i=1 xi] = 0

and

−Ψ(α + β) + Ψ(β) + 1
n
Ln[
∑n

i=1 1− xi] = 0.

To obtain the the MLE for α and β, we will let R studio numerically solve for

the α and β estimates since no closed form solution exists. Note that if α̂ and β̂ are

MLE’s for α and β, then by the invariance property of MLE’s, the MLE’s for µ and

φ are: µ̂ = α̂

α̂+β̂
and φ̂ = α̂ + β̂ [9].

2.3 Fisher’s Information

This section will briefly introduce the general theory of Fisher’s information and

then it will be applied to the beta distribution, equation (2.1).

Let X be a random variable with pdf f(x; θ), where θ = (θ1, ..., θk)
′ ∈ Ω ⊆ Rk,

where the parameter space Ω is an open interval. Fisher’s information matrix is

7



denoted as I(θ); where Iθi,θj where i, j = 1, ..., k make up the elements of I(θ) and

are defined as

Iθi,θj = −
∫ ∞
−∞

∂2logf(x; θ)

∂θi∂θj
f(x; θ)dx = −E

[
∂2logf(X; θ)

∂θi∂θj

]
. (2.7)

The diagonal entries of I(θ) provides the bounds for the variance of an unbiased

estimator for the corresponding element of θ. As the information number gets larger,

a smaller bound on the variance of the estimator will be produced.

2.3.1 Fisher’s Information for the Beta Distribution.

Now that the theory of Fisher’s information has been introduced in section 2.3, it will

be applied to the pdf of the beta distribution. Consider Fisher’s information matrix:

I(α, β) = −E

 ∂2l
∂α2

∂2l
∂α∂β

∂2l
∂β∂α

∂2l
∂β2

 =

I(α,α) I(α,β)

I(α,β) I(β,β)

 . (2.8)

Now, if we take the second derivatives with respect to α and β, the entries for

Fisher’s information matrix are as follows:

Iα,α = −E(
∂l

∂α2
) = Ψ′′(α + β)−Ψ′′(α),

I(β,β) = −E(
∂l

∂β2
) = Ψ′′(α + β)−Ψ′′(β),

and

I(α,β) = −E(
∂l

∂α∂β
) = −Ψ′′(α + β).

Therefore, Fisher’s information for the beta distribution under the α and β pa-

rameterization is,

8



I(α, β) =

Ψ′′(α)−Ψ′′(α + β) −Ψ′′(α + β)

−Ψ′′(α + β) Ψ′′(β)−Ψ′′(α + β)

 . (2.9)

To reparameterize Fisher’s information in terms of µ and φ, we must consider that

Fisher’s information depends not only on the value of θ, but also on the reparame-

terization. For more information refer to [5]. Hence, Fisher’s information is:

I(µ, φ) = B′I(µφ, (1− µ)φ))B, where B is the Jacobian matrix. (2.10)

The elements for the Jacobian are defined as bij =
∂g−1
i

∂θj
, where g1(α, β) = α

α+β
= µ

and g2(α, β) = α + β = φ. Furthermore, note that

g−1
1 (µ, φ) : α = µφ

and

g−1
2 (µ, φ) : β = φ− µφ.

Thus, the Jacobian is:

B =

 φ µ

−φ 1− µ

 . (2.11)

The principle of parametrisation invariance is a valuable basis for choosing between

different inferential procedures. For the verification of the result, refer to [5], page

147. So, by applying equation 2.10 and the relationship between µ and φ, Fisher’s

information for µ and φ is the following,

I(µ, φ) =

φ −φ

µ 1− µ

Ψ′′(µφ)−Ψ′′(φ) −Ψ′′(φ)

−Ψ(φ) Ψ′′((1− µ)φ)−Ψ′′(φ)

 φ µ

−φ 1− µ

 ,
(2.12)

9



which will simplify to the following:

I(µ, φ) =

Iµ,µ Iµ,φ

Iφ,µ Iφ,φ

 . (2.13)

The entries for I(µ, φ) matrix are

Iµ,µ = φ2Ψ′′(µφ) + φ2Ψ′′((1− µ)φ)

Iµ,φ = φµΨ′′(µφ)− φ(1− µ)Ψ′′((1− µ)φ),

Iφ,µ = φµΨ′′(µφ)− φ(1− µ)Ψ′′((1− µ)φ),

and

Iφ,φ = µ2Ψ′′(µφ) + (1− µ)2Ψ′′((1− µ)φ)−Ψ′′(φ).

Thus, the desired result of reparameterizing Fisher’s information for µ and φ has

been achieved.

2.4 Conclusion

This chapter introduced the mathematical preliminaries for the beta distribution.

Additionally, the general theory of likelihood estimation and Fisher’s information

were introduced and then applied to the beta distribution. In the next chapter, we

will introduce interval estimates and discuss how the results from this chapter can

assist in the construction of confidence intervals.

10



3 Confidence Intervals for µ

In this chapter, the Wald, t-interval, and bootstrap intervals for the mean of a

Beta distribution will be introduced. Moreover, the coverage and the width properties

of the intervals will be studied and presented in a simulation study.

3.1 Confidence Interval Definitions

The first confidence interval that will be discussed is the Wald interval. The Wald

interval is a basic and popular method for calculating confidence intervals for MLE’s

[4], and it was the main interest. Despite the popularity of the Wald interval, [4]

states that the Wald interval is flawed and inaccurate for small sample sizes and

larger probability values. Additionally, it has been reported that the Wald confidence

intervals are very conservative meaning it will still produce interval estimates but

they could potentially be wider than necessary [4].

In addition to the Wald interval, the two other intervals that were considered

for estimating µ in this study were the t-interval and the bootstrap interval. The

t-interval is also a popular parametric inferential technique among researchers. The

use of the t-interval under the assumption of a non-normal population is based on

the central limit theorem (CLT) [7, 10]. The CLT states that the mean of a random

sample given a sufficiently large sample size, n, from a population with mean, µ,

and variance, σ2, is approximately normally distributed with mean, µ, and variance,

σ2

n
, regardless of the population distribution [7, 10]. Because of the CLT, the t-

interval is fairly robust to departures from normality since it is based on the sample

mean and the fact that the t-distribution approaches the Normal distribution for

large n. Lastly, the bootstrap interval is another inferential technique. The basis of

11



the bootstrap interval is to build a sampling distribution for the statistic of interest

through the generation of artificial samples by sampling with replacement from the

original sample.

3.1.1 Wald Interval

Because µ̂ and φ̂ are MLE’s, we have that

µ̂
φ̂

 ∼̇N2

µ
φ

 , 1
n
I−1(µ, φ)

 ,

where I−1(µ, φ) is a 2× 2 matrix.

Also, for large sample size n and by properties of MLE’s (refer to Corollary 6.4.1

in [9]), we have the following

µ̂− µ√
1
n
I−1(µ, φ)11

∼̇N(0, 1),

.

for large n and by Slutsky’s theorem [9], we have the expression:

µ̂− µ√
1
n
I−1(µ̂, φ̂)11

∼̇N(0, 1)

.

So, a 100(1− α)% a large sample confidence interval for µ is:

µ̂± Zα/2

√
1

n
I−1(µ̂, φ̂)11, (3.1)

where Z1−α
2

is the upper 1− α
2

quantile of a Z-distribution.

12



3.1.2 t-test Interval

Here, we present the the t-interval, which is robust to departures from normality

because of the CLT.

Let X be a random variable and suppose X1, ..., Xn is a random sample. Also, we

will let X̄ and s2 denote the sample mean and variance, respectively. For large n, the

CLT dictates that

X̄∼̇N(µ,
σ2

n
).

If the sample mean is standardized, then we have

X̄ − µ
σ/
√
n
∼̇N(0, 1).

Also, by Slutsky’s theorm [9],

X̄ − µ
s/
√
n
∼̇N(0, 1).

So, by the CLT and with a sufficiently large sample size, the confidence interval

is:

X̄ ± Zα/2
s√
n
.

However, recall that the t-interval is more robust than a Z interval, so we can

rewrite the previously listed confidence interval formula as:

(x̄± tα/2
s√
n

), (3.2)

where tα/2 is the lower α
2

quantile of a tn−1 distribution.

3.1.3 Bootstrap Interval

In this subsection, we present the non-parametric percentile bootstrap procedure,

which is a resampling procedure, and it has become increasingly popular in statistical

13



inference.

The bootstrap procedure will resample from the original sample. The sampling is

done at random and with replacement and the resamples are all size n, the original

sample size. Now suppose, x′ = (x1, ..., xn) denotes the original realization of the

sample drawn from the pdf f(x; θ), where θ ∈ Ω. Also, let θ̂ be a point estimator for

θ, and let B ∈ Z where Z is an integer, so let B denote the number of resamples.

Also, let θ̂1, θ̂2, .., θ̂B be the statistic θ̂ evaluated on each of the B bootstrap samples.

Thus, the 100(1− α)% percentile bootstrap confidence interval is:

(θ̂(α/2), θ̂(1−α/2)); (3.3)

where θ̂(α
2

) and θ̂(1−α
2

) is the α
2

and 1− α
2

percentiles of the θ̂i’s for i = 1, ..., B. For

more information on the percentile bootstrap confidence interval refer to page 274 in

[9].

3.2 Simulation Studies

For each of the three approximate confidence intervals in this study we will evalu-

ate the coverage probabilities for varying values of µ, φ, and n. Also, we will compare

the precision of the three intervals by comparing their average widths. The coverage

and width properties will be examined in a simulation study.

Below is pseudo code to illustrate of how the simulations were performed by the

open-source statistical package R studio.

1. For i in 1 : 10000

a. Randomly generate a sample from the Beta distribution.

b. Compute the MLE of the Beta distribution.

c. Make confidence intervals for the mean of the Beta distribution.

14



d. Count how many times the true parameter value falls in the confidence

interval and store result as a count.

e. Store the widths of each interval.

2. End Loop

3. Calculate the estimated coverage probabilities, average widths.

3.2.1 Results from Simulation Studies

The results from section 3.2 will be presented here. For the following discussion the

reader may refer to Tables A and refer to the Graphs C in the appendix.

In the simulation studies we explored the coverage probabilities and the widths

of the intervals for the Wald, t-interval, and bootstrap confidence intervals for values

of µ = .1, ..., .9 by .1. We will discuss three cases for the simulation studies. The

first case is when φ = 10 and n = 5, 20, 50. The second case is when φ = 30 and

n = 5, 20, 50. Lastly, the third case is when φ = 50 n = 5, 20, 50. The values for φ

were chosen arbitrarily.

For the first case when φ = 10 and n = 5, 20, 50 the results are displayed in

Tables A.1, A.3, and A.5 and Figure C.1 in the appendix. The t-test outperformed

both the Wald and bootstrap confidence intervals for each sample size, and the Wald

and bootstrap intervals produced similar coverage probability values to each other.

For each sample size, the t-interval was near the nominal value of .95 for all values µ,

which is the target value for all the confidence intervals. The Wald interval performed

poorly when the sample size was small (n = 5), but when the sample sized increased

(n = 20, 50), we noticed the Wald began to produce values closer to the nominal

level. A similar trend was noticed for the bootstrap interval. The bootstrap interval

performed poorly for when the sample size was n = 5, 20. The highest value for the

bootstrap interval when n = 5 was .845, and the highest value when n = 20 was .933.
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However, when the sample size was large (n = 50), the bootstrap was closer to the

nominal value.

For the second case when φ = 30 and n = 5, 20, 50, the results are displayed in

Tables A.7, A.9, and A.11 and Figure C.2 in the appendix.The t-interval outperformed

both the Wald and bootstrap intervals by producing coverage probabilities near the

nominal value of .95 for each sample sizes, n = 5, 20, 50. The Wald interval under-

performed when the sample size was n = 5, 20, but when the sample size was large

(n = 50), the Wald interval began producing values near the nominal level of .95.

The bootstrap interval under-performed by producing values well below the nominal

value for in each sample size, n = 5, 20, 50.

For the last case when φ = 50 and n = 5, 20, 50, the results are displayed in Tables

A.13, A.15, and A.17 and Figure C.3 in the appendix. The t-test still out-performed

both the Wald and bootstrap intervals by producing coverage probabilities close to

the nominal value of .95 for each sample size (n = 5, 20, 50). The Wald interval under-

performed when the sample size was n = 5, 20. However, like in the first two cases

when the sample size was n = 50, the Wald interval produced coverage probabilities

near the nominal value of .95. The bootstrap under performed for each of the sample

sizes n = 5, 20, 50.

In addition to the coverage probabilities, we also examined the widths of the

confidence intervals of interest in this study. In the case when φ = 10 refer to Tables

A.2, A.4, and A.6 in the appendix. When the sample size is small, n = 5, the

widths for each of the confidence intervals are incredibly wide. This indicates that

for this case not much information can be drawn from the intervals, and that further

information is required. When the sample size increased, n = 20, 50, the widths of

the confidence intervals become considerably smaller. However, despite the reduction

in width sizes, the Wald and bootstrap intervals were not at the nominal level of .95,

so even though the widths were smaller, the intervals were not producing appropriate

16



coverage probabilities.

In the second case, when φ = 30 refer to Tables A.8, A.10, and A.12 in the

appendix. When the sample size is small, n = 5, we notice that the widths were still

fairly large. Although, when the sample sized increased (n = 20, 50), the widths of

the intervals began to reduce and the coverage probabilities were near the nominal

level of .95.

For the last case when φ = 50, refer to Tables A.14, A.16, and A.18. A similar

pattern was noticed in the last case when φ = 50. When the sample size was small

the widths of the intervals were larger, but as the sample size increased, the widths

became more narrow while maintaining appropriate probabilities as expected. The

narrower the widths, the more precise the confidence interval is and more information

is provided from the interval.

In summation, for each of the three cases, the t-interval outperformed both the

Wald and bootstrap intervals for coverage, but at the cost of wider intervals. The

Wald and the bootstrap interval produced interval estimates that were below the nom-

inal level. For both methods, when size increased it produced coverage probabilities

closer to the nominal level.
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4 Biological Application

In this chapter, the confidence intervals introduced in chapter 3 will be applied to

biological data. The data consists of counts of hemocytes using a Corning cell counter

of Amblyomma americanum infected with Escherichia coli (E. coli). The data was

collect by Miss Jacquelyn May under the supervision of Dr. Lindsay Porter in the

fall of 2021.

4.1 Amblyomma americanum Background

Amblyomma americanum, (A. americanum), is an ectoparasitic arthopod that

primarily feeds on vertebrates such as mammals, birds, and reptiles [1]. A. ameri-

canum is commonly called the lone star tick because of the distinct star-shaped spot

near the posterior portion on an adult female. A. americanum is distributed across

the south eastern United States and currently occupies 37 states [8].

Moreover, A. americanum is a vector of pathogens that cause diseases such as

Ehrlichiosis, Tularemia, and rickettsiosis [1, 8]. Pathogens transmitted by A. ameri-

canum have both medical and veterinary importance. These diseases are transferred

during a blood meal when the tick is feeding. The tick immune system consists of

hemolymph which is comprised of hemocytes that secrete a variety of proteins to

combat pathogens [1]. However, despite the measures the ticks make to combat these

pathogens, they manage to evade the ticks immune system. The data that was gath-

ered by the Miss Jacquelyn May consists of cell counts between immune-compromised

ticks and non-compromised ticks to explore the impact on hemocyte response. To in-

vestigate this further, E. coli was used in the experiment as a model for tick infection

with bacteria similar to those that are pathogenic.
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4.2 Statistical Analysis

This section will discuss the analysis of the A. americanum cell counts by applying

the confidences intervals that were introduced and developed in chapter 3. A typical

total cell count is generally in the millions of cells. Moreover, the variable ”viability”

indicates the ability of A. americanum to maintain itself or recover its potentialities

from an infection. The control group in this study is the group of A. americanum is

the non-immune-compromised ticks and the experimental group in this study is the

group of A. americanum that is immune-compromised ticks that were infected with

Escherichia coli. The data that was used in this is analysis is:

Viability (%) Control Group Experimental Group

98.1 90.9

93.9 83

86.3 99

94.5 87.3

92.8 95.9

94.6 96.7

86.8 96.1

91.9 94.3

97.5 90.3

80.4 92.7

87.3 94.3

93.2

Table 4.1: Viability percentages of A. americanum cell counts.

The viability (%) was calculated by:
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Precentage of Viable cells =
number of viable cells

total number of cells
· 100.

Hemocyte viability was calculated and used to analyze the biological data because

viability provides some measure of how well hemocytes are defending the tick during

the infection and also provides a suitable dataset to accomplish the goals of this thesis.

In addition to the coverage probabilities and widths of the intervals, we plotted the

data sets to determine if the distribution of the data sets follow a beta distribution.

Below are box plots, histograms, and QQ plots of the data sets.
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Figure 4.1: Box plots of the experimental and control A. americanum cell counts.

Figure 4.1 provide a good indication of the spread of the data. Both of the box

plots appear to be left-skewed but the control tick cell counts are heavily left-skewed.

There appears to be a lot of spread in the data sets but there are no outliers present.
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Figure 4.2: Histograms of the Experimental A. americanum cell counts and Control

A. americanum cell counts

Along with the box plots, histograms provide an additional way to look at the

distribution of the data sets. The histograms in Figure 4.2 emphasize the skewness in

the data sets. Both of the histograms are unimodal and left-skewed with no outliers.

The center of both histograms is around .90 viability, which indicates that about 90%

of the hemocytes are surviving and to continue to fight the infection.
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Figure 4.3: Beta distribution QQ plots of the experimental and control A. ameri-

canum cell counts. The rough estimates for the experimental and control tick param-

eter values are α = 29.7 and β = 3.3, and α = 23.4 and β = 2.6, respectively.

In addition to the box plots and histograms, a QQ plot provides additional evi-

dence to determine if the data sets follow a beta distribution. Notice in the experi-

mental QQ plot, there is a slight non-linearity of the data points. The control tick

QQ plot appears more reasonable for the beta distribution. However, recall that the

sample sizes for the control tick group and experimental tick group are 11 and 12,

respectively. With the samples sizes being relatively small, it is difficult to ascertain

a distribution assumption, but since the data is presented as percentages, the beta

distribution is still appropriate in this scenario.

Below are the confidence intervals of interest in this study for the control group

and experimental group of A. americanum cell counts with their respective lower and

upper 95% bounds.
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Viability of Uninfected Ticks Confidence Intervals Lower 95% Upper 95%

t-interval 0.876 0.949

Wald 0.879 0.942

Bootstrap 0.897 0.927

Table 4.2: The t-interval, Wald, and bootstrap confidence interval for the control

group of A. americanum

Viability for Infected Ticks Confidence Intervals Lower 95% Upper 95%

t-test 0.9 0.956

Wald 0.912 0.940

Bootstrap 0.904 0.951

Table 4.3: The t-test, wald, and bootstrap confidence interval for the experimental

group of A. americanum that was infected with Escherichia coli.

Upon closer examination of tables 4.2 and 4.3 we notice that the control group

and experimental group confidence intervals were roughly similar. To investigate

this further, we ran an additional simulation to estimate µ and φ for the control

and experimental datasets to get a sense of which interval will perform best. The

estimated µ and φ for the control group is .9 and 26, respectively. The estimated µ

and φ for the experimental group is .9 and 33, respectively. Below are the coverage

probabilities and widths of the confidence intervals for the estimated values of µ and

φ for the control and experimental A. americanum data.
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Method Coverage Probability Width

t-test 0.933 0.075

Wald 0.903 0.063

Bootstrap 0.893 0.063

Table 4.4: Coverage probability and confidence intervals widths when µ = .9, φ = 26,

and n = 11.

Method Coverage Probability Width

t-test 0.94 0.063

Wald 0.911 0.055

Bootstrap 0.907 0.054

Table 4.5: Coverage probability and confidence intervals and widths when µ = .9,

φ = 33, and n = 12.

The above simulation results provides more insight into which intervals are more

appropriate for this data set. Notice in table 4.4 that both the t-interval and Wald

interval are above .9 and the widths for the intervals are narrow, but the t-interval is

closer to the nominal level of .95. So, in this case it better to use the t-interval over

the other two methods. Additionally, notice in table 4.5 that each of the intervals are

above .9, but again, the t-interval is closer to the nominal level so this data set would

benefit more from the t-interval.

4.3 Conclusion

In this chapter, we applied the confidence intervals that were developed in chapter

3 to data that was gathered by the Department of Biology at Stephen F. Austin State

University. The data consists of tick cell counts that were infected in a bacterium.
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Upon closer examination, we discovered that the t-interval is the best method in this

scenario.
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5 Concluding Remarks and Future Applications

The purpose of this research was to investigate interval estimates of the mean

of a beta distribution by developing a novel statistical model. Through simulation

studies, we compared the performance of the Wald, t-interval, and bootstrap intervals.

The t-interval performed the best in all three cases we examined, even when the µ

values were close to the boundaries, which produces the most skewed distributions.

This information suggests that standard built-in tools can be used for data such

as the biological example that was explored in chapter 4, rather than developing an

elaborate model. Furthermore, it should be noted that the simulation studies could be

considered at greater breadth. For instance, when φ is set to values of 30 and 50, the

beta distribution begins to behave more symmetrically. Of course in this situation, the

t-interval will perform well given the distribution are very bell-shaped. Investigating

more situations when φ is small with smaller sample sizes could potentially reveal

additional discrepancies between the methods explored in this study.

For future work, this study did not investigate the estimation properties for the

MLE of µ and φ. While we do not suspect that the MLE for µ to be a biased

estimator, we do suspect that φ might be a biased estimator. This estimate is directly

inserted into Fisher’s information, which helps control the margin of error for the Wald

interval. If such a bias is discovered, future work might be to create an unbiased

estimate for for φ and modify the Wald interval. By modifying the Wald interval,

it could potentially have better properties and possibly outperform the t-interval in

some occasions. Moreover, this manuscript provides the foundation of a confidence

interval for the mean of the beta distribution. Future applications of this can be

extended to the Wald interval for the difference of two means, µ1 − µ2, or the ratio
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of two means, µ1
µ2

, for a beta distribution.
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A Coverage Tables

Below are the results for the coverage probabilities of the three intervals we were

interested in this study.

Counts (φ=10, n=5) t-test Wald Bootstrap

µ=.1 0.9 0.814 0.802

µ=.2 0.927 0.831 0.83

µ=.3 0.941 0.841 0.839

µ=.4 0.942 0.834 0.84

µ=.5 0.951 0.839 0.845

µ=.6 0.947 0.838 0.836

µ=.7 0.941 0.833 0.836

µ=.8 0.932 0.834 0.825

µ=.9 0.9 0.809 0.801

Table A.1: Overall mean count when φ = 10 and when the sample size is 5.

31



Widths (φ=10, n=5) t-test Wald Bootstrap

µ=.1 0.204 0.132 0.126

µ=.2 0.278 0.176 0.172

µ=.3 0.323 0.202 0.201

µ=.4 0.346 0.214 0.216

µ=.5 0.357 0.219 0.222

µ=.6 0.347 0.215 0.216

µ=.7 0.324 0.200 0.202

µ=.8 0.280 0.176 0.174

µ=.9 0.202 0.132 0.124

Table A.2: Overall mean width when φ = 10 and when the sample size is 5.

Counts (φ=10, n=20) t-test Wald Bootstrap

µ=.1 0.928 0.916 0.916

µ=.2 0.946 0.923 0.926

µ=.3 0.944 0.926 0.925

µ=.4 0.948 0.929 0.929

µ=.5 0.950 0.93 0.933

µ=.6 0.946 0.925 0.927

µ=.7 .945 0.923 0.928

µ=.8 0.939 .923 0.922

µ=.9 0.929 0.916 0.913

Table A.3: Overall mean count when φ = 10 and when the sample size is 20.
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Widths (φ=10, n=20) t-test Wald Bootstrap

µ=.1 0.082 0.076 0.075

µ=.2 0.111 0.101 0.102

µ=.3 0.128 0.116 0.117

µ=.4 0.137 0.124 0.125

µ=.5 0.140 0.126 0.128

µ=.6 0.137 0.124 0.125

µ=.7 0.128 0.116 .0117

µ=.8 0.111 0.101 0.101

µ=.9 0.082 0.076 0.075

Table A.4: Overall mean width when φ = 10 and when the sample size is 20.

Counts (φ=10, n=50) t-test Wald Bootstrap

µ=.1 0.9435 0.933 0.938

µ=.2 0.946 0.940 0.939

µ=.3 0.949 0.935 0.941

µ=.4 0.952 0.941 0.944

µ=.5 0.946 0.943 0.939

µ=.6 0.951 0.943 0.945

µ=.7 0.951 0.939 0.945

µ=.8 0.947 0.937 0.941

µ=.9 0.938 0.937 0.933

Table A.5: Overall mean count when φ = 10 and when the sample size is 50.

33



Widths (φ=10, n=50) t-test Wald Bootstrap

µ=.1 0.051 0.049 0.049

µ=.2 0.068 0.066 0.066

µ=.3 0.078 0.075 0.076

µ=.4 0.083 0.08 0.081

µ=.5 0.085 0.082 0.083

µ=.6 0.084 0.08 .081

µ=.7 0.078 0.075 0.076

µ=.8 0.068 0.066 0.066

µ=.9 0.051 0.049 0.049

Table A.6: Overall mean width when φ = 10 and when the sample size is 50.

Counts (φ=30, n=5) t-test Wald Bootstrap

µ=.1 0.934 0.847 0.823

µ=.2 0.947 0.841 0.837

µ=.3 0.945 0.844 0.837

µ=.4 0.945 0.848 0.84

µ=.5 0.948 0.848 0.837

µ=.6 0.951 0.845 0.836

µ=.7 0.95 0.841 0.845

µ=.8 0.943 0.842 0.829

µ=.9 0.928 0.841 0.827

Table A.7: Overall mean count when φ = 30 and when the sample size is 5.
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Widths (φ=30, n=5) t-test Wald Bootstrap

µ=.1 0.124 0.080 0.077

µ=.2 0.168 0.106 0.105

µ=.3 0.192 0.121 0.119

µ=.4 0.206 0.129 0.128

µ=.5 0.211 0.133 0.131

µ=.6 0.207 0.130 0.129

µ=.7 0.194 0.120 0.121

µ=.8 0.167 0.105 0.104

µ=.9 0.124 0.08 0.077

Table A.8: Overall mean width when φ = 30 and when the sample size is 5 .

Counts (φ=30, n=20) t-test Wald Bootstrap

µ=.1 0.94 0.923 0.919

µ=.2 0.951 0.930 0.932

µ=.3 0.953 0.927 0.931

µ=.4 0.951 0.928 0.929

µ=.5 0.951 0.926 0.932

µ=.6 0.952 0.924 0.93

µ=.7 0.949 0.931 0.928

µ=.8 0.948 0.928 0.927

µ=.9 0.941 0.923 0.923

Table A.9: Overall mean count when φ = 30 and when the sample size is 20.
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Widths (φ=30, n=20) t-test Wald Bootstrap

µ=.1 0.049 0.045 0.045

µ=.2 0.066 0.06 0.061

µ=.3 0.0762 0.069 0.070

µ=.4 0.081 0.074 0.074

µ=.5 0.083 0.076 0.076

µ=.6 0.081 0.074 0.074

µ=.7 0.076 0.069 0.070

µ=.8 0.066 0.061 0.061

µ=.9 0.050 0.046 0.045

Table A.10: Overall mean width when φ = 30 and when the sample size is 20.

Counts (φ=30, n=50) t-test Wald Bootstrap

µ=.1 0.943 0.94 0.924

µ=.2 0.949 0.942 0.929

µ=.3 0.943 0.942 0.921

µ=.4 0.949 0.936 0.928

µ=.5 0.952 0.943 0.944

µ=.6 0.953 0.94 0.930

µ=.7 0.951 0.941 0.929

µ=.8 0.950 0.94 0.928

µ=.9 0.95 0.94 0.943

Table A.11: Overall mean count when φ = 30 and when the sample size is 50.
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Widths (φ=30, n=50) t-test Wald Bootstrap

µ=.1 0.49 0.029 0.045

µ=.2 0.066 0.039 0.061

µ=.3 0.076 0.045 0.070

µ=.4 0.081 0.048 0.075

µ=.5 0.051 0.049 0.049

µ=.6 0.081 0.48 0.074

µ=.7 0.080 0.045 0.069

µ=.8 0.066 0.039 0.061

µ=.9 0.03 0.029 0.029

Table A.12: Overall mean width when φ = 30 and when the sample size is 50.

Counts (φ=50, n=5) t-test Wald Bootstrap

µ=.1 0.938 0.856 0.828

µ=.2 0.946 0.845 0.836

µ=.3 0.952 0.846 0.839

µ=.4 0.943 0.858 0.831

µ=.5 0.952 0.856 0.840

µ=.6 0.949 0.850 0.839

µ=.7 0.946 0.851 0.835

µ=.8 0.946 0.846 0.835

µ=.9 0.939 0.853 0.832

Table A.13: Overall mean count when φ = 50 and when the sample size is 5.
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Widths (φ=50, n=5) t-test Wald Bootstrap

µ=.1 0.097 0.063 0.06

µ=.2 0.131 0.083 0.081

µ=.3 0.15 0.095 0.094

µ=.4 0.159 0.102 0.099

µ=.5 0.163 0.104 0.101

µ=.6 0.161 0.101 0.1

µ=.7 0.149 0.094 0.093

µ=.8 0.131 0.083 0.082

µ=.9 0.097 0.064 0.06

Table A.14: Overall mean width when φ = 50 and when the sample size is 5.

Counts (φ=50, n=20) t-test Wald Bootstrap

µ=.1 0.943 0.925 0.924

µ=.2 0.946 0.927 0.926

µ=.3 0.948 0.929 0.926

µ=.4 0.949 0.930 0.931

µ=.5 0.949 0.937 0.928

µ=.6 0.954 0.929 0.935

µ=.7 0.953 0.934 0.930

µ=.8 0.949 0.926 0.929

µ=.9 0.945 0.928 0.923

Table A.15: Overall mean count when φ = 50 and when the sample size is 20.
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Widths (φ=50, n=20) t-test Wald Bootstrap

µ=.1 0.039 0.036 0.035

µ=.2 0.052 0.047 0.047

µ=.3 0.059 0.054 0.054

µ=.4 0.063 0.058 0.058

µ=.5 0.065 0.059 0.059

µ=.6 0.063 0.058 0.058

µ=.7 0.059 0.054 0.054

µ=.8 0.052 0.047 0.047

µ=.9 0.039 0.036 0.035

Table A.16: Overall mean width when φ = 50 and when the sample size is 20.

Counts (φ=50, n=50) t-test Wald Bootstrap

µ=.1 0.948 0.947 0.94

µ=.2 0.948 0.943 0.939

µ=.3 0.949 0.942 0.942

µ=.4 0.949 0.943 0.941

µ=.5 0.947 0.946 0.939

µ=.6 0.953 0.943 0.945

µ=.7 0.949 0.944 0.941

µ=.8 0.954 0.939 0.944

µ=.9 0.946 0.945 0.939

Table A.17: Overall mean count when φ = 50 and when the sample size is 50.
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Widths (φ=50, n=50) t-test Wald Bootstrap

µ=.1 0.024 0.023 0.023

µ=.2 0.032 0.031 0.031

µ=.3 0.036 0.035 0.035

µ=.4 0.039 0.038 0.038

µ=.5 0.040 0.038 0.038

µ=.6 0.039 0.038 0.038

µ=.7 0.036 0.035 0.035

µ=.8 0.032 0.031 0.031

µ=.9 0.024 0.023 0.023

Table A.18: Overall mean width when φ = 50 and when the sample size is 50.
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B R Code

Here is the R code that was used to perform the simulations in this study.

l ibrary ( s t a t s 4 )

l ibrary ( boot )

beta . mle<−function ( x ){ l o g l . un<−function (mu, s ){

−1∗sum(dbeta (x , shape1=mu∗s , shape2=(1−mu)∗s , log=TRUE) )

}

mystart<−l i s t (mu=mean( x ) , s=(mean( x )∗(1−mean( x ) ) ) /var ( x)−1)

f i t . un<−mle ( l o g l . un , start=mystart ,

method = ”L−BFGS−B” , lower = c (0 . 00001 , 0 . 00001) ,upper=c ( . 99999 , I n f ) )

return ( f i t . un )

}

mysummary<−function ( x ){ s d e r r o r<−sd ( x )

xmax<−max( x )

r e s u l t<−c ( xbar , sder ro r , xmax) return ( r e s u l t )}

mymean<−function (x , idx ){

mydat<−x [ idx ]

mean(mydat )

}

#I n i t i a l i z e s i m u l a t i o n parameters

mu=.9

phi=26

n=11
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n . sims =10000

l e v e l =.95

#I n i t i a l i z e s i m u l a t i o n r e s u l t o b j e c t s

count . t<−c ( )

count . wald<−c ( )

count . boot<−c ( )

width . t<−c ( )

width . wald<−c ( )

width . boot<−c ( )

#Perform Simulat ion f o r above s c e n a r i o

se . r e s u l t s<−c ( )

mu. r e s l t s<−c ( )

phi . r e s u l t s<−c ( )

#s i m u l a t e data s e t

for ( i in 1 : n . s ims )

{dat<−rbeta (n , shape1=mu∗phi , shape2=(1−mu)∗phi )

t t e s t . c i<−t . t e s t ( dat , conf . l e v e l=l e v e l )$conf . i n t

mles<−beta . mle ( dat )

tryCatch ({

} , e r r o r=function ( e ){ cat ( ”Warning : Skipping Row” , i , ”\n” )} )

#b o o t s t r a p i n t e r v a l

boots t rap<−boot ( dat , mymean ,R=1000)

boo tc i<−boot . c i ( boot . out=bootstrap , type=” perc ” )$percent [ 4 : 5 ]
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mu. hat<−coef ( mles ) [ 1 ]

phi . hat<−coef ( mles ) [ 2 ]

#Fisher ’ s Informat ion

a=phi . hatˆ2∗trigamma(mu. hat∗phi . hat )

+phi . hatˆ2∗trigamma((1−mu. hat )∗phi . hat )

b=phi . hat∗mu. hat∗trigamma(mu. hat∗phi . hat )

−phi . hat∗(1−mu. hat )∗trigamma((1−mu. hat )∗phi . hat )

d=mu. hatˆ2∗trigamma(mu. hat∗phi . hat)+(1−mu. hat )ˆ2

∗trigamma((1−mu. hat )∗phi . hat)−trigamma( phi . hat )

i f ( a∗d−bˆ2 >0){wald . se<−sqrt (abs (d/ ( a∗d−b ˆ2 ) ) )∗(1/sqrt (n ) )}

i f ( a∗d−bˆ2<0){wald . se<−sqrt (1/a )∗(1/sqrt (n ) )}

wald . c i<−c (mu. hat−1.96∗wald . se ,mu. hat+1.96∗wald . se )

se . r e s u l t s [ i ]<−wald . se

mu. r e s l t s [ i ]<−mu. hat

phi . r e s u l t s [ i ]<−phi . hat

#Count and check i f mu i s i n s i d e or not .

count . t [ i ]<−i f e l s e (mu<t t e s t . c i [ 2 ] & mu>t t e s t . c i [ 1 ] , 1 , 0 )

count . wald [ i ]<−i f e l s e (mu<wald . c i [ 2 ] & mu>wald . c i [ 1 ] , 1 , 0 )
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count . boot [ i ]<−i f e l s e (mu<bootc i [ 2 ] & mu>bootc i [ 1 ] , 1 , 0 )

width . t [ i ]<−t t e s t . c i [2] − t t e s t . c i [ 1 ]

width . wald [ i ]<−wald . c i [2] − wald . c i [ 1 ]

width . boot [ i ]<−bootc i [2] − bootc i [ 1 ]

}

#compute coverages

counts<−cbind (count . t , count . wald , count . boot )

widths<−cbind ( width . t , width . wald , width . boot )

r e s u l t 1<−apply ( counts , 2 ,mean)

r e s u l t 2<−apply ( widths , 2 ,mean)

r e s u l t 3<−apply ( widths , 2 , mysummary)

r e s u l t 1

r e s u l t 2

r e s u l t 3
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C Coverage Plots

Figure C.1: Phi=10, n=5,20,50
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Figure C.2: Phi=50, n=5,20,50

46



Figure C.3: Phi=50, n=5,20,50
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