
Stephen F. Austin State University Stephen F. Austin State University 

SFA ScholarWorks SFA ScholarWorks 

Electronic Theses and Dissertations 

5-2021 

The Effect of Initial Conditions on the Weather Research and The Effect of Initial Conditions on the Weather Research and 

Forecasting Model Forecasting Model 

Aaron D. Baker 
Stephen F Austin State University, bakeraarond@gmail.com 

Follow this and additional works at: https://scholarworks.sfasu.edu/etds 

 Part of the Atmospheric Sciences Commons, Meteorology Commons, Numerical Analysis and 

Scientific Computing Commons, and the Partial Differential Equations Commons 

Tell us how this article helped you. 

Repository Citation Repository Citation 
Baker, Aaron D., "The Effect of Initial Conditions on the Weather Research and Forecasting Model" (2021). 
Electronic Theses and Dissertations. 377. 
https://scholarworks.sfasu.edu/etds/377 

This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in 
Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information, 
please contact cdsscholarworks@sfasu.edu. 

https://scholarworks.sfasu.edu/
https://scholarworks.sfasu.edu/etds
https://scholarworks.sfasu.edu/etds?utm_source=scholarworks.sfasu.edu%2Fetds%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/187?utm_source=scholarworks.sfasu.edu%2Fetds%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/190?utm_source=scholarworks.sfasu.edu%2Fetds%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.sfasu.edu%2Fetds%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.sfasu.edu%2Fetds%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=scholarworks.sfasu.edu%2Fetds%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
http://sfasu.qualtrics.com/SE/?SID=SV_0qS6tdXftDLradv
https://scholarworks.sfasu.edu/etds/377?utm_source=scholarworks.sfasu.edu%2Fetds%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cdsscholarworks@sfasu.edu


The Effect of Initial Conditions on the Weather Research and Forecasting Model The Effect of Initial Conditions on the Weather Research and Forecasting Model 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 
License. 

This thesis is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/etds/377 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://scholarworks.sfasu.edu/etds/377


THE EFFECT OF INITIAL CONDITIONS ON THE WEATHER RESEARCH
AND FORECASTING MODEL

by

Aaron Baker, B.S.

Presented to the Faculty of the Graduate School of

Stephen F. Austin State University

In Partial Fulfillment

of the Requirements

For the Degree of

Master of Science

STEPHEN F. AUSTIN STATE UNIVERSITY

May 2021



THE EFFECT OF INITIAL CONDITIONS ON THE WEATHER RESEARCH
AND FORECASTING MODEL

by

Aaron Baker, B.S.

APPROVED:

Lynn Greenleaf, Ph.D., Thesis Director

Jeremy Becnel, Ph.D., Committee Member

Christopher Ivancic, Ph.D., Committee Member

Jacob Turner, Ph.D., Committee Member

Pauline M. Sampson, Ph.D.
Dean of Research and Graduate Studies



ABSTRACT

Modeling our atmosphere and determining forecasts using numerical methods has

been a challenge since the early 20th Century. Most models use a complex dynamical

system of equations that prove difficult to solve by hand as they are chaotic by nature.

When computer systems became more widely adopted and available, approximating

the solution of these equations, numerically, became easier as computational power

increased. This advancement in computing has caused numerous weather models to

be created and implemented across the world. However a challenge of approximating

these solutions accurately still exists as each model have varying set of equations and

variables to approximate.

The model under consideration in this paper is the Weather Research and Forecast

model (WRF). This model takes input from data files as initial conditions, often from

other models, and runs a simulation based on its own set of equations and conditions.
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1 INTRODUCTION

Modeling the physical world involves the use of partial differential equations. This

can usually be found when modeling fluid flows, electricity, mechanics, and optics.

These equations are useful because most laws of physics, like Newton’s equations

of motion and the Navier-Stokes equations, can be described by relating to space

and time derivatives. These derivatives represent natural things like velocity and

acceleration and the relationship between the rate of change of these natural things

can be used to study the world around us [6].

1.1 Motivation

Meteorology is a subset of the physical world that pertains to the fluid flow of the

atmosphere. When it comes to forecasting the weather, the atmosphere is modeled

by a system of partial differential equations that are then approximated to estimate

the value of certain unknown variables given a set of boundary and initial conditions.

The purpose of this paper is to analyze one of these models and to compare and

contrast the output of various simulations based on the different initial conditions

the model was given.

1.2 Introduction to Partial Differential Equations

A partial differential equation (PDE) is an equation containing partial derivatives.

Unlike ordinary differential equations, the unknown function of the PDE depends on

multiple variables such as time and space.

1



Some well-known PDEs include:

ut = uxx heat equation in one dimension (1.1)

utt = uxx + uyy + uzz wave equation in three dimensions (1.2)

utt = uxx + αut + βu telegraph equation (1.3)

In the examples above, the variable u is the dependent function and the function

we use to differentiate. The variables x, y, z, and t are the independent variables we

use to differentiate u with respect to. For instance, ut = ∂u
∂t

is the partial derivative

of u with respect to t.

The order of a partial derivative in a PDE is determined by the maximum number

of terms listed in the subscript of the variable. For example,

ut =
∂u

∂t
first order (1.4)

utt =
∂2u

∂t2
second order (1.5)

uttt =
∂3u

∂t3
third order (1.6)

Likewise, the order of the PDE is the order of the highest partial derivative in the

PDE itself (ut = uxx is a second order PDE since the order of uxx is two).

Another classification of PDEs is the linearity. A PDE is considered to be linear

if the dependent function, u and its derivatives appear in a linear fashion and can be

modeled in the form of

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G (1.7)

where x and y are the independent variables of the equation and A, B, C, D, E,

F , and G can be constants or given functions of the independent variables. Some

2



examples between linear and nonlinear PDEs include:

e−tuxx + sin t = utt linear (1.8)

uuxx + ut = 0 nonlinear (1.9)

uxx + yuyy = 0 linear (1.10)

xux + yuy + u2 = 0 nonlinear (1.11)

Notice that (1.8) and (1.10) are linear because the order of u in each term is one.

Whereas (1.9) and (1.11) are nonlinear due to the uuxx term in (1.9) and the u2 term

in (1.11).

PDEs can also be classified by homogeneity. For instance, if a PDE is modeled

similar to (1.7), then it’s considered to be homogeneous if the term G = G(x, y) =

0, otherwise it’s considered to be nonhomogeneous. In equation 1.8, the PDE is

considered to be nonhomogeneous since in this case, G = G(t) = sin t when rearranged

to fit the form of (1.7) and t is an independent variable of the equation. Likewise,

(1.9) - (1.11) are considered to be homogeneous since G = 0.

Determining the correct solution to a PDE or a system of PDEs depend on the var-

ious classifications mentioned above. Many analytical solutions have been developed

and can be used to find the exact solution. However, due to constraints of bound-

ary and initial conditions, there are times where the analytical solutions cannot be

used and therefore the system of PDEs must be solved by finding an approximation

numerically. Several methods have been developed to find the closest approxima-

tion with minimal error. These methods include finite differences, Monte Carlo, and

Runge-Kutta time integration scheme.

3



2 NUMERICAL WEATHER PREDICTION

Forecasting the weather by means of numerical methods has been one of the most

significant scientific advances in the last century. Forecasts prior to these advances

were made primarily based on what had been observed in previous years and the fore-

caster’s knowledge of how the weather usually is for that particular time of the year.

However, the advances of thermodynamics resulted in the fundamental principles

governing the flow of the atmosphere [8].

2.1 Early Advances

In the late 19th century, the move to view the atmosphere as a moving fluid

started to come about. In 1890, meteorologist Cleveland Abbe began this recognition

by stating “meteorology is essentially the application of hydrodynamics and thermo-

dynamics to the atmosphere” [15] and in fact hoped that through his proposal of

taking a mathematical approach to forecasting, someone would take up the task of

figuring out a way to do this using either a graphical, analytical, or numerical method

[1].

It would not take long for someone to step up to this task and propose the set

of equations needed to solve numerically. Norwegian scientist Vilhelm Bjerknes de-

termined that forecasts should be completed in two steps: a diagnostic step and a

prognostic step [2]. The diagnostic step would contain the current observed condi-

tions of the atmosphere at the initial time step, while the prognostic step would use

the laws of motion to calculate how the state changes over time. This last step was to

be taken by assembling a set of seven independent equations, one for each dependent

variable that describes the atmosphere: pressure, temperature, density, humidity,

4



and the three components of velocity. These seven equations consist of the three

hydrodynamic equations of motion, also known as the conservation of momentum,

the continuity equation, or the conservation of mass, the conservation equation for

water mass, the conservation of energy, or the first law of thermodynamics, and the

equation of state.

2.2 The First Forecast

Progress wouldn’t be made on Bjerknes’ equations until 1913 when English Quaker

Scientist Lewis Fry Richardson started working at the Meteorological Office. Richard-

son had learned of Bjerknes’ work and decided to attempt a way to solve them, as

Richardson was not a fan of the current method of forecasting. During this time,

forecasting was done based on previous years’ data and was not very accurate.

Richardson was then appointed Superintendent of Eskdalemuir Observatory in

Scotland, and during his time there, Richardson began serious work on weather

prediction. Richardson took the idea of taking the equations that Bjerknes sug-

gested, and put them together as a system of equations and used his finite-difference

method to solve the system. In Richardson’s first run, the forecast failed miserably.

Richardson notes in his book that in a six hour forecast, the pressure rose about 145

millibars, where, when compared to the actual observations, the pressure remained

steady. Richardson then speculated that this error was not caused by errors in the

values of the initial conditions, but because of the unnatural distribution of the ini-

tial conditions. To fix this, Richardson suggested that the data be smoothed so that

the distribution of data became more natural. The solution would be to modify the

analysis to restore the balance between the wind fields and pressure, a process called

initialization.

5



2.3 From Human Computers to Machines

While the results of Richardson’s forecast were not widely received, they were not

forgotten. Mathematician John von Neumann became interested in turbulent fluid

flows in the mid 1930s and recognized that advances in this area could be greatly

accelerated if there were a readily available means to solve the complex equations

for these flows, numerically. A solution to this issue would require very fast au-

tomatic computing machinery. Von Neumann then helped develop the design and

construction of an electronic computer at the Institute for Advanced Studies (IAS)

at Princeton University. The Electronic Computer Project was comprised of four

groups, with one of the groups dedicated to meteorology. Von Neumann recognized

that weather forecasting would be an ideal problem for the IAS to solve. Aware of

Richardson’s work, as well as the further work done by Courrant, Friedrichs, and

Lewy that had progressed solving PDEs numerically, von Neumann made the next

step in the advancement of weather forecasting by creating a formal proposal to the

United States Navy requesting financial backing for the establishment of a Meteo-

rology Project that was later accepted. The Meteorological Research Project was

established in July, 1946.

Not long after the establishment of the Meteorological Research Project, a Con-

ference on Meteorology was arranged at the IAS to discuss how to implement the

equations Richardson used so that the IAS Computer could solve them. However, it

was then realized a smaller time step would be needed to minimize the errors and the

computational power of the IAS computer would not be sufficient, leaving member

Jule Charney to find a way to find a solution.

The proposed solution would find a way to simplify the seven equations developed

by Bjerkens and Richardson and eliminate gravity waves. This new system of equa-

tions would be known as the quasi-geostrophic system as it would use the barotropic

6



vorticity equation. By 1950, the group had completed the mathematical analysis

needed to design an algorithm to approximate these new equations. Arrangements

were made to run the forecast on the Electronic Numerical Integrator and Computer

(ENIAC) in Aberdeen, Maryland. The team made four 24-hour forecasts, and each

24 hour integration took about 24 hours of computation allowing the team to just

keep pace with the weather.

With the good initial results of the ENIAC computations, interest and expecta-

tions began to grow for a operationally useful computer forecast to be implemented.

Karl-Heinz Hinkelmann tackled the problem of finding the ideal initial conditions for

the primitive equations integrations. Hinklemann proposed that if the right initial-

ization parameters were set, then the errors would decrease and the accuracy would

increase. Work on this problem by several people help create the first operational

model for Deutscher Wetterdienst, the weather forecasting office for Germany in 1966

with the National Meteorological Center in Washington implementing a multi-level

model later that year. These advancements of the models and computing power have

helped create multiple types of atmospheric models that are now in use today.

2.4 NWP Today

Today there are many models in use by several meteorological agencies across the

world that all have their specific use cases. Some of these include the Global Forecast

System (GFS), the North American Mesoscale Forecast System (NAM), The High-

Resolution Rapid Refresh (HRRR), the European Centre for Medium-Range Weather

Forecasts (ECMWF), and the Weather Research and Forecasting Model (WRF).

The two most well-known models are the GFS and the ECMWF, also known as the

American and European models, respectively. These models are used to forecast the

weather across the world on a global scale. The NAM and HRRR are called mesoscale

7



(fine scale) models. These models are useful in determining small weather features

like severe thunderstorms, due to the finer grid resolution that these models are able

to use compared to the global models [5]. Updates to these models are applied as

warranted. For instance, the National Centers for Enviromental Prediction (NCEP)

have recently updated the GFS to version 16 in March 2021. Doubling the number of

vertical layers from 64 levels to 127, extending the model from the upper stratosphere

(about 55 kilometers in height) to the mesopause (about 80 kilometers in height) [7].
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3 THE WEATHER RESEARCH AND FORECASTING MODEL

3.1 Introduction

A special model used today is the Weather Research and Forecasting Model

(WRF) [12], a community driven weather model that is hosted by the National Center

for Atmospheric Research (NCAR) and allows contributions to the model from the

active user base worldwide. As the name implies, the WRF is an atmospheric model

designed for both research and NWP that has grown to provide specialty capabilities

for a range of Earth system prediction applications, such as air chemistry, hydrology,

wildland fires, hurricanes, and regional climate [11]. In its lifetime, the community

has developed the model to run on various types of computing systems. Ranging

from major super computing clusters down to the low power project computer board

of the Raspberry Pi [4].

3.2 WRF Development

Development of the WRF started around 1995 when National Centers for Environ-

mental Prediction (NCEP) started to get an interest of developing a nonhydrostatic

model for operating in finer scales. The idea of this new model took shape on the

premise that there could be a beneficial synergy in a NWP model shared by research

and operational groups and to move past the limitations of other models, such as the

then widely used Pennsylvania State University - NCAR Mesoscale Model Version 5

(MM5), and create a platform for an extensive research community to develop the

needed capabilities that operations could readily exploit. This would then facilitate

the “research to operations” development of a model, while leading to sharpened
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research and development efforts on identified needs for operation.

The original members of the partnership that formed to develop the WRF were

NCAR, the National Oceanic and Atmospheric Administration (NOAA), the U.S. Air

Force, the Naval Research Laboratory, the University of Oklahoma, and the Federal

Aviation Administration (FAA). The initial focus of development was the model’s

dynamical solver and the related numerics, and when compared to previous models,

the solver became superior in higher-order numerical accuracy and properties of scalar

conservation. Next, a software framework was created for the model’s dynamics,

physics, and the input/output. Work was also done to create the preprocessors, to

handle the domain and input preparation, and the data assimilation for the solver.

Finally, through all the efforts of the original partners, the first release of the WRF

was in December 2000.

3.3 The WRF Solver

The current version of the WRF is version 4 released in 2019. The main solver is

known as the Advanced Research WRF (ARW) and is a configuration of the WRF

system that features the ARW dynamics solver together with other compatible compo-

nents to produce a simulation [12]. While smaller version updates have been released,

the overall governing equations, boundary and initial conditions remain the same.

In this section we will introduce the equations, boundary, and initial conditions as

described by the authors of the WRF Version 4 Technical Manual [12].
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3.3.1 Governing Equations

The WRF uses equations that are formulated using a terrain-following hydrostatic-

pressure vertical coordinate, denoted as η and is defined by:

η =
pd − pt
ps − pt

(3.1)

where pd is the hydrostatic component of the pressure of dry air, and ps and pt

refer to values of pd along the surface (lower) and top (upper) boundaries in height,

respectively. Here the coordinate definition of (3.1) is the traditional sigma coordinate

used in many hydrostatic atmospheric models where η varies from a value of 1 at the

surface to 0 at the upper boundary of the model domain.

In the version 4 release, the vertical coordinate was changed to a more generalized

form to allow the influence of terrain to be removed more rapidly as height is increased.

This hybrid sigma-pressure vertical coordinate is given by

pd = B(η)(ps − pt) + [η −B(η)](p0 − pt) + pt (3.2)

where p0 is a reference sea-level pressure, and B(η) defines the relative weighting

between the terrain-following sigma coordinate and a pure pressure coordinate, such

that η corresponds to the sigma coordinate defined in (3.1) for B(η) = η and reverts to

a hydrostatic pressure coordinate for B(η) = 0. To smoothly transition the coordinate

between the surface and the upper levels, B(η) is defined by the third order polynomial

B(η) = c1 + c2η + c3η
2 + c4η

3 (3.3)

subject to the boundary conditions

B(1) = 1, Bη(1) = 1, B(ηc) = 0, Bη(ηc) = 0,

such that

c1 =
2η2c

(1− ηc)3
, c2 =

−ηc(4 + ηc + η2c )

(1− ηc)3
, c3 =

2(1 + ηc + η2c )

(1− ηc)3
, c4 =

−(1 + ηc)

(1− ηc)3

11



where the subscript η in Bη denotes differentiation, and ηc is the specified value of η

at which it becomes a pure pressure coordinate. Now the vertical coordinate metric

is defined as

µd =
∂pd
∂η

= Bη(η)(ps − pt) + [1−Bη(η)](p0 − pt) (3.4)

Since µd∆η = ∆pd = −gρd∆z is proportional to the mass per unit area within a grid

cell, the flux forms of the prognostic variables are defined as

V = µdv = (U, V,W ), Ω = µdω, Θm = µdθm, Qm = µdqm

where v = (u, v, w) are the covariant velocities in the horizontal and vertical di-

rections, ω = η̇ is the contravariant vertical velocity, θm ≈ θ(1.61qv) is the moist

potential temperature and Qm represents the the mixing ratios of moisture variables

(water vapor, cloud water, rain water, etc.), denoted as qm = qv, qc, qr, . . . .

Using the variables defined above, the flux-form Euler equations can be written

as

∂tU + (∇ ·Vu) + µdα∂xp+ (α/αd)∂ηp∂xϕ = FU (3.5)

∂tV + (∇ ·Vv) + µdα∂yp+ (α/αd)∂ηp∂yϕ = FV (3.6)

∂tW + (∇ ·Vw)− g[(α/αd)∂ηp− µd] = FW (3.7)

∂tΘm + (∇ ·Vθm) = FΘm (3.8)

∂tµd + (∇ ·V) = 0 (3.9)

∂tϕ+ µ−1
d [(V · ∇ϕ)− gW ] = 0 (3.10)

∂tQm + (∇ ·Vqm) = FQm (3.11)

with the diagnostic equation for dry hydrostatic pressure

∂ηϕ = −αµd (3.12)
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and the diagnostic relation for the full pressure (dry air and water vapor)

p = po

(
Rdθm
p0αd

)γ

, (3.13)

where αd is the inverse density of air (1/ρ) and α is the inverse density taking into

account the full parcel density α = αd(1 + qv + qc + qr + . . . )−1.

In (3.5) - (3.11) the subscripts x, y, and η denote differentiation, ∇·Va = ∂x(Ua)+

∂y(V a) + ∂η(Ωa), and V · ∇a = U∂xa+ V ∂ya+Ω∂ηa (where a is a generic variable),

γ = cp/cv = 1.4 is the ratio of the heat capacities for dry air, Rd is the gas constant

for dry air, and p0 is a reference surface pressure (typically 105 Pascals). The right-

hand-side (RHS) terms FU , FV , FW , and FΘm represent forcing terms arising from

model physics, turbulent mixing, spherical projections, and the earth’s rotation.

3.3.2 Map Projections

A map projection is a way to transpose the earth’s surface onto a flat surface.

This requires a systematic transformation of the latitudes and longitudes of loca-

tions on the earth’s surface into locations on a plane [13]. One such projection is

the Lambert conformal, which seats a cone on the earth and projects the surface

conformally onto the surface of the unrolled cone. This isotropic transformation re-

quires (∆x/∆y)|earth = constant everywhere on the grid. To transform the governing

equations, a map-scale factor, denoted as m, is defined as the ratio of the distance in

computational space to the corresponding distance on the earth’s surface:

(mx,my) =
(∆x,∆y)

distance on the earth (3.14)

For the purposes of this paper, we are only looking at the Lambert conformal. Due to

the projection being isotropic, mx = my = m and typically only varies with latitude.

The WRF solver includes the map-scale factors in the governing equations by
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redefining the moments variables as

U = µdu/m, V = µdv/m, W = µdw/m, Ω = µdω/m

Likewise, the RHS variables in (3.5) - (3.7) also contain the Coriolis and curvature

terms along with mixing terms and physical forcings. Using the map-scale factors from

(3.14), the Coriolis and curvature terms are cast in the following form:

FUcor =

(
f + u

∂m

∂y
− v

∂m

∂x

)
V −

(
u

re
+ e cosαr

)
W (3.15)

FVcor = −
[(
f + u

∂m

∂y
− v

∂m

∂x

)
U +

(
v

re
− e sinαr

)
W

]
(3.16)

FWcor = e (U cosαr − V sinαr) +
1

re
(uU + vV ) (3.17)

where αr is the local rotation angle between the y-axis and the meridians, ψ is the

latitude, f = 2Ωe sinψ, e = 2Ωe cosψ, Ωe is the angular rotation rate of the earth,

and re is the radius of the earth. The terms containing the map-scale factors represent

the horizontal curvature terms, those containing re relate to vertical (earth-surface)

curvature and those with e and f are the Coriolis force.

3.3.3 Perturbation Form of the Governing equations

The WRF uses perturbation variables to reduce the truncation errors in the hor-

izontal pressure gradients and the machine rounding errors in the vertical pressure

gradient and buoyancy calculations. These new variables are defined as perturbations

from a hydrostatically-balanced reference state, and (denoted as overbars) are defined

as a function of height only and that satisfy the governing equations for an atmo-

sphere at rest. That is, the reference state is in hydrostatic balance and is strictly

only a function of z. Therefore, p = p(z) + p′, ϕ = ϕ(z) + ϕ′, α = αd(z) + α′
d, and

µd = µd(x, y)+µ
′
d. Because the η coordinate surfaces are generally not horizontal, the

reference profiles p, ϕ, and α are functions of (x, y, η). The hydrostatically balanced
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portion of the pressure gradients in the reference sounding can be removed without

approximation to the equations using these perturbation variables. The momentum

equations (3.5) - (3.7) can now be written as

∂tU +m[∂x(Uu) + ∂y(V u)] + ∂η(Ωu)

+ (α/αd)[µd(∂xϕ
′ + αd∂xp

′ + α′
d∂xp) + ∂xϕ(∂ηp

′ − µ′
d)] = FU (3.18)

∂tV +m[∂x(Uv) + ∂y(V v)] + ∂η(Ωv)

+ (α/αd)[µd(∂yϕ
′ + αd∂yp

′ + α′
d∂yp) + ∂yϕ(∂ηp

′ − µ′
d)] = FV (3.19)

∂tW +m[∂x(Uw) + ∂y(V w)] + ∂η(Ωw)

−m−1g(α/αd)[∂ηp
′ − µd(qv + qc + qr)] +m−1µ′

dg = FW (3.20)

and the mass conservation equation (3.9) and geopotential equation (3.10) become

∂tµ
′
d +m[∂xU + ∂yV ] +m∂ηΩ = 0 (3.21)

∂tϕ
′ + µ−1

d [m(U∂xϕ+ V ∂yϕ) +mΩ∂ηϕ−mgW ] = 0 (3.22)

and the diagnostic equation for dry hydrostatic pressure, (3.12) becomes

∂ηϕ
′ = −µdα

′
d − αdµ

′
d (3.23)

The conservation equations for the potential temperature (3.8) and the scalar mois-

ture (3.11) do not need to be redefined using a perturbation technique, but will still

have changes made to reflect the map projection. These equations become

∂tΘm +m[∂x(uθm) + ∂y(V θm)] +m∂η(Ω) = FΘm (3.24)

∂tQm +m[∂x(Uqm) + ∂y(V qm)] +m∂η(Ωqm) = FQm (3.25)

(3.18) - (3.25), and the equation of state (3.13) represent the equations used in the

WRF solver. The Coriolis terms (3.15) - (3.17), mixing terms, and parameterized

physics are all included in the RHS terms defined in these equations.1

1For more information about the various mixing terms and parameterized physics settings used

in the WRF, please see Chapters 4 and 8 of the WRF Version 4 Technical Manual [12]
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3.4 The WRF Preprocessing System – Initial and Boundary Conditions

The WRF may be run with user-defined initial conditions for idealized simulations,

or it may be run using interpolated data files from either an external analysis or

forecast for real-data cases. For the scope of this paper, we will talk about initializing

the WRF using real-data cases as defined by the authors of the technical manual.

Initial conditions for real-data cases are pre-processed through a separate package

called the WRF Preprocessing System (WPS). Output from the WPS is passed to the

ARW real-data preprocessor, which generate initial and lateral boundary conditions.

Here we will discuss the steps taken to build these conditions using a real-data case.

Although the WPS is outside of the ARW, it is appropriate to show how the system

converts the raw meteorological and static terrestrial data into data that can be used

for the solver.

3.4.1 Use of the WPS by ARW

The WPS is a set of programs that takes terrestrial and meteorological data that is

usually in the GRIB2 format and transforms them for input to the ARW pre-processor

program for real-data cases. Figure 3.1 shows the flow of data for the WPS. Text in

the rectangular boxes indicates program names. The first step that the WPS takes

is to define a physical grid (which includes projection type, location on the globe,

number of grid points, nest locations, and grid distances) and to interpolate static

field to the prescribed domain. Independent of the domain configuration, an external

forecast is processed by the WPS GRIB decoder, which diagnoses required field and

reformats GRIB data into an internal binary format. When given a specified domain,
2GRIB or GRIdded Binary is a data format developed by the World Meteorological Organization

(WMO) that is commonly used to store historical and forecast weather data. For more information

please see GRIB FM 92-IX in the WMO Manual on Codes No.306
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Figure 3.1: Schematic showing data flow and program components in WPS, and how

WPS feeds initial data to ARW (From Figure 5.1 in [12])

the WPS horizontally interpolates meteorological data onto the projected domain.

The output data supplies a complete three-dimensional snapshot of the atmosphere

on the selected model grid’s horizontal staggering, at the selected time slices.

Input to the ARW real-data processor from WPS contain surface and three-

dimensional fields that include temperature (K), relative humidity (%), geopotential

height (m), pressure (Pa), and the horizontal components of wind speed (m/s, ro-

tated to the model projection). The two-dimensional static terrestrial fields include

land/water mask, map scale factors, map rotation angle, annual mean temperature,

and latitude/longitude. After WPS processing, the two-dimensional time-dependent

fields from the external model include surface at sea-level pressure (Pa), snow depth

(m), skin temperature (K), and sea surface temperature (K).
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3.4.2 Reference State

The meteorological data are partitioned into reference and perturbation fields.

For real-data cases, the reference state is defined by terrain elevation and several

user-definable constants that include

• p0 (105 Pa) reference sea level pressure;

• T0 (usually 270 to 300 K) reference sea level temperature;

• A (50 K) temperature difference between the pressure levels of p0 and p0/e;

• Tmin (200 K) minimum temperature permitted;

• γstrat (-11 K) standard stratosphere lapse rate;

• pstrat (0 Pa) pressure at which stratospheric warming begins.

Using these parameters, the dry reference state surface pressure is

ps = p0 exp

−T0
A

+

√(
T0
A

)2

− 2ϕsfc

ARd

 (3.26)

From (3.26), the three-dimensional reference pressure (dry hydrostatic pressure pd) is

computed as a function of the vertical coordinate η levels and the model top pt:

pd = B(η)(ps − pt) + [η −B(η)](p0 − pt) + pt. (3.27)

With (3.27), the reference temperature, though not permitted to get colder than Tmin,

is a straight line on a skew-T plot, defined as

T d = max

(
Tmin, T0 + A ln

pd
p0

)
.

For vertical locations where the pd < pstrat, the reference profile warms:

T d = Tmin + γstrat ln
pd
pstrat

18



The isobaric temperature and the stratospheric correction supply a reasonable refer-

ence temperature up to approximately 100 Pa. From the reference pressure and the

final reference temperature, the reference potential temperature is then defined as

θd = T d

(
p0
pd

)Rd
Cp

(3.28)

and the reciprocal of the reference density using (3.27) and (3.28) is given by

αd =
1

ρd
=
Rdθd
p0

(
pd
p0

)−Cv
Cp

. (3.29)

Using (3.27), the base state coordinate metric is given as

µd =
∂pd
∂η

= Bη(η) (ps − pt) + [1−Bη(η)] (p0 − pt) . (3.30)

From (3.29) and (3.30), the reference state geopotential defined from the hydrostatic

relation is

δηϕ = −αdµd.

3.4.3 Vertical Interpolation and Extrapolation

The ARW real-data processor vertically interpolates the three-dimensional input

field using functions of dry pressure. Input data from the WPS contain both a total

pressure and a moisture field (typically relative humidity is used). Starting at the

top of each column of input pressure data, integrated moisture is subtracted from

the pressure field, step-wise, down to the surface. This total dry surface pressure ps
defines the vertical coordinate metric

µd = µd + µ′
d = Bη(η)(ps − pt) + [1−Bη(η)](p0 − pt). (3.31)

With the ARW vertical coordinate η, the model lid pt, and the column dry pressure

known at each (i, j, k) location, the three-dimensional arrays are interpolated.
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These vertical calculations are always interpolations in the free atmosphere, how-

ever when near the model surface, it is possible that there will be an inconsistency

between the input surface pressure and the ARW surface pressure which may lead to

an extrapolation. The default behavior for extrapolating the horizontal winds and

the relative humidity below the known surface keeps the values constant, with no gra-

dient. For potential temperature, a default value of 6.5 K/km lapse rate is applied.

Vertical interpolation of the geopotential field is optional and is handled separately.

Since a known lower boundary condition exists, no extrapolation is required.

3.4.4 Perturbation State

In the real-data preprocessor, first a topographically defined reference state is

computed, then the input three-dimensional data are vertically interpolated in dry

pressure space. With the potential temperature θ and mixing ratio qv available on

each η level, pressure, density, and height diagnostics are handled. The perturbation

µ′
d, given the reference value µd defined in (3.30) and the vertical coordinate metric

µd defined in (3.31), is defined as

µ′
d = µd − µd. (3.32)

Starting with the reference state fields (3.27) - (3.30) and the perturbation equa-

tion (3.32), the perturbation fields for pressure and inverse density are diagnosed.

The pressure perturbation includes moisture, and is diagnosed from the hydrostatic

equation

δηp
′ = µ′

d (1 + qv
η) + qv

ηµd,

which is integrated down from the model top (where p′ = 0) to recover p′. The total

dry inverse density is given as

αd =
Rd

p0
θm

(
p′d + pd
p0

)−Cv
Cp

,
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which defines the perturbation field for the inverse density

α′
d = αd − αd.

The perturbation geopotential is diagnosed from the hydrostatic relation

δηϕ
′ = −(µdα

′
d + µ′

dαd)

by upward integration, using the terrain elevation as the lower boundary condition.

3.4.5 Lateral Boundary Conditions

For real-data cases, the specified lateral boundary condition for the coarse grid

is supplied by an external file that is generated by the real-data processor. This file

contains records for the fields u, v, θ, q − v, ψ′, and µ′
d that are used by ARW to

constrain the lateral boundaries. The lateral boundary file holds one less time period

than was processed by WPS. Each of these variables has both a valid value at the

initial time of the lateral boundary time, and a tendency term to get to the next

boundary time period. For example, assuming a three-hourly availability of data

from WPS, the first time period of the lateral boundary file for u would contain data

for both coupled u (map scale factor and µD interpolated to the variable’s staggering)

at the 0 hour time step (0h)

U0h =
µdxu
mx

∣∣∣∣
0h

,

and a tendency value defined as

Ut =
U3h − U0h

3h
,

which would take a grid point from the initial value to the value at the three-hour

simulation time. The horizontal momentum fields are coupled both with µd and the
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Figure 3.2: Specified and relaxation zones for a grid with a single-specified row and

column, plus four rows and columns for the relaxation zone. These are typical values

used for a specified lateral boundary condition for a real-data case. In this figure, the

weight of the relaxation term would be identically zero for the fifth row or column in

from the boundary edge. [12]

inverse map factor. The other three-dimensional fields are coupled only with µd. The

µ′
d lateral boundary field is not coupled.

Each lateral boundary field is defined along the four sides of the rectangular grid

(referred to as the north, south, east, and west sides). Boundary values and tendencies

for vertical velocity and the non-vapor moisture species are included in the external

lateral boundary file, but act as place-holders for the nested boundary data for the

fine grids. The width of the lateral boundary zone along each of the four sides is

user-selectable at run-time as shown in figure 3.2

The coarse grid specified lateral boundary is comprised of both a specified and

a relaxation zone. For the coarse grid, the specified zone is determined entirely by
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temporal interpolation from an external forecast or analysis (supplied by WPS). The

width of the specified zone is run-time configurable, but is typically set to 1. That

is, the last row and column along the outer edge of the outer-most grid is entirely

specified by temporal interpolation, using data from an external model. The second

region of the lateral boundary for the coarse grid is the relaxation zone, which is

where the model is nudged or relaxed towards the large-scale forecast (rows 2-5 in

figure 3.2). The size of the relaxation zone is a run-time option.

3.4.6 Model Discretization

The ARW solver has two different types of discretizations to approximate the so-

lutions of (3.13) and (3.18) - (3.25) developed in subsection 3.3.3. The first is a tem-

poral discretization that uses a time-split integration scheme. Slow or low-frequency

meteorologically significant modes are integrated using a third-order Runge-Kutta

time integration scheme, while the high-frequency acoustic modes are integrated over

smaller time steps to maintain numerical stability. The horizontally propagating

acoustic modes (which includes the external mode present in the mass-coordinate

equations using a constant pressure upper boundary condition) and gravity waves are

integrated using a forward-backward time integration scheme, and vertically prop-

agating acoustic modes and buoyancy oscillations are integrated using a vertically

implicit scheme that use the acoustic time step.

The second is a spatial discretization in which the ARW uses a C grid staggering

for the variables as shown in figure 3.3. That is, normal velocities are staggered

one-half grid length from the thermodynamic variables. The variable indices, (i, j, k)

indicate variable locations with (x, y, η) = (i∆x, j∆y, k∆η). We will denote the points

where θ is located as being mass points, and locations where u, v, and w are defined as

u points, v points, and w points, respectively. Not shown are the moisture variable qi,
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Figure 3.3: Horizontal and vertical grids of the ARW [12]

and the coordinate metric µ, defined at the mass points on the discrete grid, and the

geopotential ϕ that is defined at the w points. The diagnostic variables used in the

model, the pressure p, and inverse density α, are computed at mass points. The grid

lengths ∆x and ∆y are constants in the model formulation; changes in the physical

grid lengths associated with the various projections to the sphere are accounted for

using the map factors from subsection 3.3.2. The vertical grid length ∆η is not a

fixed constant; it is specified in the initialization. The user is free to specify the η

values of the model levels subject to the constraint that η = 1 at the surface, η = 0

at the model top, and η decreases monotonically between the surface and model top.

For a detailed description of this process, please see Chapter 3 of the WRF Version

4 Technical Manual [12].
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4 FORECAST VERIFICATION

4.1 Introduction

After a forecast, the approximated solutions to the governing equations, is gener-

ated from a weather model, the accuracy and usefulness need to be tested. This can

help see where errors start to form and give ideas on how to improve the model. This

is done using a technique called verification, the assessment and quantification of the

relationship between a matched set of forecasts and observations [14]. Verification is

done using various statistical methods, and while many techniques are in use today,

for the purposes of this paper, we will use the basic methods introduced in 1989 by

Stanski, Wilson, and Burrows.

4.2 Verification Framework

4.2.1 Question Types and Stratification

Stanski, Wilson, and Burrows introduced a general model to follow when stepping

through the verification process and a general outline can be found in Figure 4.1. The

authors emphasized that the verification goal be set before the process is started and

stated the two types of these goals – administrative or scientific. Administrative goals

usually include justification on purchasing new equipment, introducing new forecast

products, monitor the overall quality of a forecast model and to track the change in

quality over time. They can also answer questions such as “Is the accuracy of the

forecasts improving?” and “Are objective temperature forecasts better than subjective

ones?” Scientific goals are usually for identifying strengths and weaknesses of forecast
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products that can be useful to provide the necessary information needed for further

research and development of the forecast models and products. They can also answer

questions such as “What does a temperature forecast of −10◦ Celsius really mean?”

or “How accurately can I forecast extreme rainfalls?”

Once the goal is set, the sample data set may need to be stratified by separating

the events of the sample into two or more groups according to a selection rule and

then carrying out the verification for each group separately, to help meet the intended

purpose and can be done in multiple ways.

One type of stratification is known as external stratification and is done by se-

lecting rules that are independent of the element being verified. A popular choice

for this type is selecting by time of day or by season. It can be done at any time

during the verification process before computation and may be done for either ad-

ministrative or scientific purposes. However, from the example scientific questions

mentioned earlier, additional stratification may need to be done on the sample data.

As an an example, suppose that the question that is trying to be answered regards

whether or not a model can accurately forecast extreme events. In this case, the data

must be stratified between extreme and non-extreme events. This process is called

internal stratification since the rules are determined according to the purpose of the

verification, using the element that is being verified.

Internal Stratification can be done in one of two ways. The first is stratification

according to the observation. This process defines categories according to the observed

values of the weather element. Then, verification measures can be calculated for each

category of the observations, and the statistics are said to be conditioned on the

observation. An example of this is a conditional distribution of forecasts given a

specific value or range of values of the observation. The second way is to stratify

according to the forecast. This is like the previous, but the categories are defined

using the forecasted values instead and are said to be conditioned on the forecast.
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Figure 4.1: A general model for verification introduced by Stanski, Wilson, and Bur-

rows (1989) [14].
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The type of stratification to choose depends on the question that is to be answered

and many will require both types for a complete answer. Furthermore, as suggested by

the diagram in Figure 4.1, different verification measures (denoted by the oval boxes

at the bottom) imply one or the other type of stratification and different information

about the product at hand.

When answering an administrative question, stratifying internally is rarely done.

Because of its nature, most of the time just having a simple summary statistic is

all that is needed. This is done to represent the quality of the data in few numbers

as possible or to facilitate comparisons or identify trends within the model and is

associated with summary scoring rules shown in Figure 4.1. However, using summary

statistic scores only gives a general idea of how a model forecast worked. When used

in a scientific setting, it will often create more questions than answering the original

one. For example, the summary statistic can only state how well a model performed

compared to another and cannot state under which conditions that model might favor

the other.

4.2.2 Predictand Types

The next step in the verification process is to decide the appropriate measure to

answer the question at hand. The rectangular boxes in Figure 4.1 show that the choice

depends on the nature of the forecasts to be verified. For this purpose, there are two

distinct types used: continuous and categorical. Continuous predictands are those

elements where a specific value or range of values is forecasted. This includes weather

elements like temperature and wind speed and both are nearly forecasted this way.

Categorical predictands are those elements for which the forecast is of the occurrence

of the event in one of two or more mutually exclusive and exhaustive categories of

the element. This includes elements like occurrence of measurable precipitation and
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precipitation type.

4.2.3 Adjusting for NWP Models

Verification for NWP models start with a data set consisting of forecast and ob-

servation data matched spatially and temporally. When matching the data spatially,

observations must either be analyzed to the grid of the forecast data, or the forecast

data must be interpolated in space to observation points. The former is the option

most often used, but can draw some criticism as the interpolated observations aren’t

as representative of the truth as they were before interpolation and will have the

potential to show bias towards the model in the statistical results.

As mentioned previously, the process requires decisions be made about the purpose

of the verification before designing a system. Administrative verification answers

questions about trends in model accuracy and skill and can be used to compare

the accuracy of different models. Scientific verification involves answering questions

about spatial and/or temporal variations in the performance of a model that can be

used as feedback to improve the model being tested on. The verification data set

must be carefully stratified according to the characteristics of the features that are to

be examined. Spatial stratification can be done for both Administrative or Scientific

verification. When done for administrative purposes, the stratification is usually done

over different portions of the model domain that correspond to administrative regions

of the country, whereas for scientific purposes, the areas are often chosen to reflect

different climatological regimes such as mountainous areas.

When stratifying externally, the dataset is divided according to season, model

run time, or another selection rule that is independent of the parameter being veri-

fied. In most cases, stratification by season is chosen the most showing differences in

performance characteristics between seasons.
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4.2.4 Forecast Quality

The Stanski, Wilson, and Burrows note that no single verification measure pro-

vides complete information about the quality of a forecast model. All give information

about one or more aspects of the quality, also known as attributes, of a forecast model

and a verification system will often describe the attributes that are most pertinent to

fulfilling the goal of what is being verified. These attributes are briefly defined below:

1. Accuracy is a general term indicating the level of agreement between forecast

weather and true weather as represented by observations. The difference be-

tween an observed value and the forecast value is the error. The smaller the

error is, the higher the accuracy.

2. Skill, or relative accuracy is defined as the accuracy of a forecast relative to the

accuracy of forecasts produced by some standard procedure. Common stan-

dards, which are considered to have no skill (such as forecasting from obser-

vations alone) are climatology, persistence, and chance. Skill scores provide a

means of accounting for variations in accuracy which have nothing to do with

the forecaster’s ability to forecast.

3. Reliability is equivalent to bias; and is simply the average agreement between

the stated forecast value of an element and the observed value. Often, reliability

can be improved by giving the bias feedback to the forecaster and affording the

opportunity to remove it from future forecasts.

4. Resolution is the ability of the forecast to sort or resolve the set of sample events

into subsets with different frequency distributions. Resolution is related to the

standard deviation or variance of the observations stratified by the forecast.

5. Sharpness, an attribute of forecasts alone, refers to the tendency to forecast

the extreme values. For probability forecasts, there is the tendency toward
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forecasting 0% and 100% probability. It represents the tendency to ”go out on

a limb” and is directly related to the variance of the distribution of forecasts.

6. Uncertainty is the variance of the observations in the verification sample and

does not depend on the forecasts in anyway. It is considered to be the ”difficulty”

of the forecast set. Greater variance implies larger or more frequent changes

in the weather element being verified, and when viewed as a time series, these

elements are harder to forecast than more persistent weather situations. It

is variations in the uncertainty between datasets that make it hazardous to

compare verification statistics that are sensitive to uncertainty.

4.3 Verification Methods

The most common verification methods that Stanski, Wilson, and Burrows men-

tion are listed at the bottom ovals in Figure 4.1. The methods that will be used for

this paper are explained in the following subsections.

4.3.1 Bias

The Bias, or the Mean (Algebraic) Error, indicates the average direction of the

deviation from observed values, but may not reflect the magnitude of the error. How-

ever, the bias does give a measure of overall reliability. The bias is given by:

BIAS =
1

N

[
N∑
i=1

(Fi −Oi)

]
, (4.1)

where N is the total number of forecasts, Fi is the ith forecast value and Oi is the

corresponding observation value. A positive bias indicates that the forecast value

exceeds the observed value on average, whereas a negative bias value indicates the

opposite.
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4.3.2 Mean Absolute Error

The Mean Absolute Error (MAE) is similar to the calculation in 4.1 in Section

4.3.1, however now the only change is that the absolute value is now being taken of

the difference inside of the summation:

MAE =
1

N

[
N∑
i=1

|(Fi −Oi)|

]
, (4.2)

where the definitions of N , Fi, and Oi are the same as 4.1. The MAE is a linear

score which gives the ”average” magnitude of the errors, but not the direction of the

deviation but does give a measure of overall accuracy.

4.3.3 Time-Mean Absolute Error

When verifying models, the Bias and MAE are normally used to compare the

accuracy and reliability of each forecast hour. However, it is also good to know the

overall accuracy for the entire simulation run. To do this, the time-averaged mean

absolute error (TMAE) is determined and is done by averaging the calculated MAEs

for each hour of the entire simulation run as defined in 4.3 below:

TMAE =
1

M

[
M∑
t=1

MAEt

]
(4.3)

Where the definitions of N , Fi, and Oi are the same as 4.1, and M denotes the number

of time steps in the simulation run, and MAEt denotes the MAE at the tth time step

[16].
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5 ANALYSIS

5.1 Experimental Setup

The purpose of the experiment was to test the differences in the output of the

WRF when different real-case inputs are used. For this experiment, each simulation

consisted of two different runs of the model, one run used inputs from the NAM

and the second run used inputs from the GFS. The software used to run the model

is the Unified Environmental Modeling System (UEMS) [10] created by Robert A.

Rozumalski, the NWS National Science Operations Officer and Science and Training

Resource Coordinator at UCAR. The UEMS is a complete, full-physics, NWP package

that contains the WRF system into a single user-friendly, forecasting system. Due to

the scalability of the WRF, a desktop workstation with a multi-core processor was

used running in a virtual machine. See Table 5.1 for detailed information about the

system1.

Ten different simulations were run during a time period of December 31, 2020 to

February 14, 2021 using either the NAM and GFS files from 00z and 12z2.

5.2 Steps of the UEMS

The UEMS is comprised of multiple script files that are used at various steps of

the WRF process. The first is the WRF Domain Wizard (dwiz), a graphical interface

to help create a custom domain over the area of interest. As shown in figure 5.1, the
1Due to software issues during the time period, UEMS and WRF were reinstalled to the versions

listed as (x.x.x). This did not affect previous data as the version changes only fixed minor bug fixes

unrelated to the settings used.
2XXz refers to the hour in Zulu time and is the same as the Coordinated Universal Time (UTC).
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Processor AMD Ryzen 5 1600 Six-Core CPU

RAM Capacity 32 GB

Operating System Proxmox Virtual Environment

Number of Virtual Machine CPUs 12 threads

Virtual Machine RAM 32 GB

Virtual Machine Operating System Linux Mint 20

UEMS Version 19.8.1 (21.3.1)

WPS & WRF Version 4.1.2 (4.2.2)

Table 5.1: System Information

Figure 5.1: Screenshot of the WRF Domain Wizard from the UEMS

domain created for this experiment, was centered over Nacogdoches, Texas with a

grid size of 100 km by 210 km, using a grid point size of 2.5 km. After all the settings
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have been set, the wizard will then create the required files needed for the WPS.

The next step in the process is to download and process the input files. By default

the UEMS will download the latest outputs from the model of choice and run them

through the WPS. For example, if the current time that the script is executed is at

02z and the latest model run was at 00z, the UEMS will download all the files from

the 00z run. Execution of this script is also when the forecast timing is selected, by

default, it will use a 24 hour forecast period.

After the UEMS create the necessary files from the WPS, the main WRF simula-

tion is ready to run. The third script will run the WRF simulation, and scale across

the set number of processing threads. For this experiment, the WRF used 10 out of

the 12 available processing threads.

Finally, after the UEMS completes the WRF simulation, the final script will then

post process the output files (one for each forecast hour) into the GRIB format for

reading and analysis.

5.3 Methodology

As mentioned in the previously, the domain used was a 100 km by 210 km grid

with a grid point every 2.5 km. For the input files, the GFS contained a file for

every 3 hours up to 24 whereas the NAM files contained a file for each hour, up to

24 hours. The default WRF settings for the UEMS were used as shown in Table

5.2. Information about the settings can be found in the WRF Technical manual

[12]. The simulation ran the default 24 hour forecast period, and the outputs were

analyzed. Maps were created using the Python package MetPy [9], and data points

were obtained using the external wgrib2 tool included with the UEMS package.

For the purpose of this paper, the temperature, and the relative humidity (both

using the 2 meter above ground level variant) were analyzed. The data were stratified
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Number of Domains 1

Horizontal Grid Spacing (km) 2.5

Microphysics Scheme Purdue Lin

Planetary Boundary Layer Yonsei University Scheme

Cumulus Scheme Kain-Fritsch

Land-Surface Scheme NOAH Land Surface Model

Long Wave Radiation RRTM Scheme

Short wave Radiation Dudhia Scheme

Table 5.2: WRF Configuration (Default Settings in UEMS)

by each model run, each collecting data from 34 NOAA observation stations located

in 34 counties in Eastern Texas. A list of the stations and counties can be found in

Table 5.3 with a corresponding map in Figure 5.2.

5.4 WRF Verification

In this section we will cover the verification analysis of the WRF runs, and compare

the GFS inputs with the NAM inputs for each variable forecasted. Each analysis will

contain the bias and mean absolute error (MAE) for all 34 counties. While the

TMAEs and cumulative biases for each run are listed in Table 5.4, we will discuss

each forecast run individually.

5.4.1 2 Meter Temperature

The first simulation analyzed was the 12z run on December 31, 2020. On average,

the GFS input run trended higher than what was observed where as the NAM run was

just above the observed temperatures, and towards the end of its run, was matching

the observed with negligible error as shown in Figure 5.3. This also caused the bias of
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Map Number County StationID Station Type Station Name Latitude Longitude

1 Lamar KPRX NWS/FAA Paris Cox Field 33.63 -95.45

2 Red River CKST2 RAWS Clarksville 33.63 -95.09

3 Bowie TEXT2 RAWS Texarkana 33.37 -94.05

4 Delta E4423 ARPS Yantis 32.9 -95.7

5 Hopkins KSLR NWS/FAA Sulphur Springs Municipal Airport 33.16 -95.62

6 Titus KOSA NWS/FAA Mt. Pleasant Regional Airport 33.1 -94.96

7 Cass DENT2 RAWS Linden 33.01 -94.36

8 Wood KJDD NWS/FAA Wood County Airport 32.74 -95.5

9 Upshur KJXI NWS/FAA Gilmer Municipal Airport 32.7 -94.95

10 Harrison KASL NWS/FAA Marshall 32.52 -94.31

11 Van Zandt TWB71 TWDB Vaca Moo Airport 32.43 -95.71

12 Smith KTYR NWS/FAA Tyler Pounds Airport 32.36 -95.4

13 Gregg KGGG NWS/FAA East Texas Regional Airport 32.39 -94.71

14 Henderson KF44 NWS/FAA Athens Municipal Airport 32.16 -95.83

15 Rusk KRFI NWS/FAA Rusk County Airport 32.14 -94.85

16 Panola K4F2 NWS/FAA Panola County Airport 32.18 -94.3

17 Anderson KPSN NWS/FAA Palestine Municipal Airport 31.78 -95.71

18 Cherokee KJSO NWS/FAA Cherokee County Airport 31.87 -95.22

19 Nacogdoches KOCH NWS/FAA Nacogdoches Regional Airport 31.58 -94.72

20 Shelby KF17 NWS/FAA Center Municipal Airport 31.83 -94.16

21 Houston RTCT2 RAWS Ratcliff 31.39 -95.14

22 Angelina KLFK NWS/FAA Angelina County Airport 31.23 -94.75

23 Sabine SSRT2 RAWS Sabine South 31.28 -93.84

24 Walker KUTS NWS/FAA Huntsville Municipal Airport 30.74 -95.59

25 San Jacinto CPGT2 RAWS Coldsprings 30.52 -95.09

26 Tyler WVLT2 RAWS Woodville 30.74 -94.43

27 Jasper KJAS NWS/FAA Jasper County Airport 30.89 -94.03

28 Newton KRBT2 RAWS Kirbyville 30.63 -93.83

29 Montgomery KCXO NWS/FAA Montgomery County Airport 30.36 -95.41

30 Liberty K6R3 NWS/FAA Cleveland 30.36 -95.01

31 Hardin F3104 APRS Kountze 30.34 -94.28

32 Harris KIAH NWS/FAA Houston Untercontinential Airport 29.98 -95.36

33 Chambers HILT2 RAWS Anahuac 29.67 -94.44

34 Jefferson KBPT NWS/FAA Southeast Texas Regional Airport 29.95 -94.03

Table 5.3: Station List Used for Verification
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Figure 5.2: Map of counties used for verification. The number in each county repre-

sents the number in Table 5.3

the NAM to be minimal reaching a maximum of just over 2.1◦F towards the model’s

favor, but reaching a bias as low as −0.6◦F towards the observation’s favor. The bias

of the GFS favored the model the entire run and reached a maximum of 5.9◦F and a

minimum, which occurred at the initial start of the run, of 1.3◦F. Likewise, the error

rates of the run are close together. However, after the third forecast hour (the fourth

data point on the graph), the error trend of the GFS rises significantly up to 5.3◦F

and slowly climbing to the maximum of 6.3◦F before slowly falling as the simulation

progresses. The MAE of the NAM reached a maximum of 3.0◦F and falls close to
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12/31/20 12z 1/6/21 12z 1/7/21 12z 1/10/21 00z 1/25/21 12z

GFS NAM GFS NAM GFS NAM GFS NAM GFS NAM

Temperature Bias (◦F) 3.9815 0.7262 0.3435 0.3618 -1.3195 -1.3592 0.7931 0.7203 -0.0766 -0.1156

Temperature MAE (◦F) 4.3817 1.9948 1.9776 2.8986 2.9088 2.5984 2.1107 1.8035 3.2957 3.1080

Relative Humidity Bias (%) -1.5783 -0.4053 -0.0211 -0.8076 0.4160 0.6817 -5.7183 -4.2312 -7.1771 -2.7820

Relative Humidity MAE (%) 5.4132 4.3942 6.0136 8.1383 7.1233 6.8040 9.4203 8.3186 14.2649 12.4408

2/8/21 12z 2/9/21 12z 2/10/21 12z 2/11/21 12z 2/14/21 00z

GFS NAM GFS NAM GFS NAM GFS NAM GFS NAM

Temperature Bias (◦F) -0.0261 -0.5705 0.9162 -0.4719 2.3003 1.3533 4.3871 3.4004 1.0607 0.8510

Temperature MAE (◦F) 3.2489 2.4949 5.6106 2.7930 3.3781 2.1797 4.6625 3.5468 2.3692 1.6095

Relative Humidity Bias (%) 1.0427 1.3767 -10.1897 -8.3817 -9.0276 -6.4272 -13.7592 -15.3634 -14.2454 -11.4004

Relative Humidity MAE (%) 6.5315 6.3682 13.3682 11.0527 10.5734 7.9272 14.9991 16.9327 15.4214 12.6115

Table 5.4: TMAE and Cumulative Bias Values for all forecast runs.

0◦F by the end of the simulation.

On the 12z run for January 6, 2021, here the roles have swapped in that the bias

and error of the GFS are minimal and compared to the NAM as the GFS followed

very close to what was observed as shown in Figure 5.4. The bias (MAE) of the

NAM reached a maximum of 3.2◦F (5.1◦F) while the GFS reached a maximum of

2.6◦F (1.5◦F).

The 12z run on January 7, 2021 as shown in Figure 5.5 is an interesting model

run. Both the GFS and the NAM were in agreement with each other for this day,

but after the 12th forecast hour, the models both under perform as they indicated a

significant cool down after dark, but the rate that the observed temperatures fell was

not as fast, only reaching a minimum of around 40◦F. The bias and MAE indicate the

closeness of the two models, but both reach a maximum error rate of around 5.3◦F.

The 00z run on January 10, 2021 includes the major snow event that occurred

in East Texas. The snow started falling during the afternoon period, which would

have been towards the end of the run, around 18z. The 2 meter temperatures reflect

the difference of snow versus no snow. For instance, shown in Figure 5.6 The models

were in agreement at the start of the run, however they start to overestimate the
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Figure 5.3: Averaged Forecasted Temperatures (First row), Bias (Second row), and

Mean Algebraic Error (Third row) from the 12-31 12z run of the WRF.
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Figure 5.4: Averaged Forecasted Temperatures (First row), Bias (Second row), and

Mean Algebraic Error (Third row) from the 1-6 12z run of the WRF.
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Figure 5.5: Averaged Forecasted Temperatures (First row), Bias (Second row), and

Mean Algebraic Error (Third row) from the 1-7 12z run of the WRF.
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temperatures as the snow started to fall during the last 6 hours of the run. The over-

estimation was in the NAM’s favor by only reaching a maximum bias of 2.9◦F while

the GFS reached a higher bias of 3.9◦F. The MAE of the GFS reached a maximum

of 4.0◦F, while the NAM only reached a maximum of 2.6◦F.

The first simulation that the GFS and NAM were in agreement of the observed

was the 12z run on January 25, 2021. The bias for the runs stayed within 2◦F above

and below zero, and the MAE of both reached a maximum of 4.4 − 4.6◦F shown in

Figure 5.7.

Next is the 12z run on February 8, 2021. Like the previous simulation, the GFS

and NAM were mostly in agreement with each other, and at times, switch between

above the observed and below. The NAM stayed mostly below up until the end where

it had a period of time that it was above the observed, but the GFS stayed just on

par with the observed for most of the run, both shown in Figure 5.8. This trend is

shown in the bias and MAE with the bias of both staying 3◦F above and below zero,

and the MAE of both reaching a maximum of around 5◦F.

The 12z run the next day on February 9, 2021 has the runs not in agreement

with each other no longer. At the beginning of the run, the GFS was well below

the observed, and stayed that way until the sixth forecast hour, where as the NAM

stayed below the observed until the very end. Both the GFS and the NAM did not

account the rate at which the temperatures fell after sunset as, similar to the the run

on January 7th, but the NAM was still close to the observed throughout the entire

run as indicated by the bias of the NAM only staying within 2◦F above and below

zero and only reaching a maximum error rate of around 4.8◦F, while the GFS reached

a maximum error of 7.2◦F.

The 12z run on February 10, 2021 saw a repeat of February 8th, that the models

were in close agreement with each other, however as shown in Figure 5.10 the models

overestimated again of what was observed and always had a bias greater than zero
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Figure 5.6: Averaged Forecasted Temperatures (First row), Bias (Second row), and

Mean Algebraic Error (Third row) from the 1-10 00z run of the WRF.
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Figure 5.7: Averaged Forecasted Temperatures (First row), Bias (Second row), and

Mean Algebraic Error (Third row) from the 1-25 12z run of the WRF.
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Figure 5.8: Averaged Forecasted Temperatures (First row), Bias (Second row), and

Mean Algebraic Error (Third row) from the 2-8 12z run of the WRF.
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Figure 5.9: Averaged Forecasted Temperatures (First row), Bias (Second row), and

Mean Algebraic Error (Third row) from the 2-9 12z run of the WRF.
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and saw maximum MAEs of 5.0◦ in the GFS and 3.0◦F in the NAM.

The same happens again for the 12z run on February 11, 2021 where both GFS and

NAM were in agreement, but after the first three forecast hours, the runs estimated

that the temperatures would rise during the day, however, due to clouds, rain, and

freezing precipitation, the temps only fell during the day and into the night. This is

shown in Figure 5.11. The bias and MAE of both reached a maximum of 7◦F, one of

the largest departures from the observed in the set of model runs.

The final simulation for this paper was the 00z run on February 14, 2021. This

run included the start of a multi day snow and ice event for the area. Both the GFS

and the NAM were in agreement with each other again and were also in agreement

of what was observed shown in Figure 5.12. The bias of the NAM was tighter as it

stayed mostly around 1◦F with a couple of points around 2◦F, while the spread of

the bias for the GFS was higher, but only reaching a maximum of around 4◦F and a

minimum of around −1◦F. Likewise the MAE for both tell the same story, with the

GFS seeing the maximum value between the two, and the NAM values staying below

the GFS values.

5.4.2 2 Meter Relative Humidity

In the ten simulations mentioned in the previous subsection, the temperature is

one of the values that directly come from the approximations set of the equations

mentioned previously in Chapter 3. While this paper does not talk about the runs

individually, it can be seen in Figures 5.13 - 5.22 that the WRF did not forecast

the relative humidity very accurately regardless if the input was from the NAM or

from the GFS. As noted by Coaouch et al., relative humidity is not an output of the

WRF, but is inferred, or calculated, from the water vapor mixing ratio, temperature,

and surface pressure [3]. Here it can be said that most of the time, the WRF will
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Figure 5.10: Averaged Forecasted Temperatures (First row), Bias (Second row), and

Mean Algebraic Error (Third row) from the 2-10 12z run of the WRF.
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Figure 5.11: Averaged Forecasted Temperatures (First row), Bias (Second row), and

Mean Algebraic Error (Third row) from the 2-11 12z run of the WRF.
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Figure 5.12: Averaged Forecasted Temperatures (First row), Bias (Second row), and

Mean Algebraic Error (Third row) from the 2-14 00z run of the WRF.
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bias towards a lower relative humidity as there are multiple runs where the forcasted

values from both GFS and NAM are significantly below what was observed and can

see MAEs over 20%.

52



Figure 5.13: Averaged Forecasted Relative Humidity (First row), Bias (Second row),

and Mean Algebraic Error (Third row) from the 12-31 12z run of the WRF.
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Figure 5.14: Averaged Forecasted Relative Humidity (First row), Bias (Second row),

and Mean Algebraic Error (Third row) from the 1-6 12z run of the WRF.
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Figure 5.15: Averaged Forecasted Relative Humidity (First row), Bias (Second row),

and Mean Algebraic Error (Third row) from the 1-7 12z run of the WRF.
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Figure 5.16: Averaged Forecasted Relative Humidity (First row), Bias (Second row),

and Mean Algebraic Error (Third row) from the 1-10 00z run of the WRF.
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Figure 5.17: Averaged Forecasted Relative Humidity (First row), Bias (Second row),

and Mean Algebraic Error (Third row) from the 1-25 12z run of the WRF.
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Figure 5.18: Averaged Forecasted Relative Humidity (First row), Bias (Second row),

and Mean Algebraic Error (Third row) from the 2-8 12z run of the WRF.
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Figure 5.19: Averaged Forecasted Relative Humidity (First row), Bias (Second row),

and Mean Algebraic Error (Third row) from the 2-9 12z run of the WRF.
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Figure 5.20: Averaged Forecasted Relative Humidity (First row), Bias (Second row),

and Mean Algebraic Error (Third row) from the 2-10 12z run of the WRF.
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Figure 5.21: Averaged Forecasted Relative Humidity (First row), Bias (Second row),

and Mean Algebraic Error (Third row) from the 2-11 12z run of the WRF.
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Figure 5.22: Averaged Forecasted Relative Humidity (First row), Bias (Second row),

and Mean Algebraic Error (Third row) from the 2-14 00z run of the WRF.
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6 CONCLUSION

The purpose of this project was to evaluate how the WRF model behaved when

given different inputs. Through the ten model runs, we were able to see the differences

in output when using inputs from the NAM model and the GFS model within a

forecast run of 24 hours. In each run, the GFS and NAM inputs were fairly accurate

in the runs for the 2 meter temperature, with one being slightly more accurate than

the other, and often saw both models either under or over perform of what was

actually observed. When it came to overall performance, the inputs from the NAM

model had lower error compared to the GFS model for eight of the ten runs, with the

GFS input being lower in a single run, and both tied in another instance as well.

However, when it came to forecasting the 2 meter relative humidity, we noticed

that since this was not a product from the direct output of the system of equations

like the temperature, the accuracy of the WRF was not good at all. Some runs were

able to have errors less than 6%, but there were also several runs that saw errors over

20%.

For future work, since we now understand how the model works for a forecast of

24 hours, is to observe how the WRF behaves when given a longer forecast period

such as 48 or even 72 hours. Another angle to research is other variables that are a

direct product of the output, such as wind speed and direction, and other upper-air

variables. This will help to better decide on which model input may be more accurate

in determining forecasts over the given area.
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