
Stephen F. Austin State University Stephen F. Austin State University 

SFA ScholarWorks SFA ScholarWorks 

Faculty Publications Forestry 

2006 

Spatial Autocorrelation and Pseudoreplication in Fire Ecology Spatial Autocorrelation and Pseudoreplication in Fire Ecology 

Amanda L. Bataineh 
Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, 
Texas 75962 

Brian P. Oswald 
Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, boswald@sfasu.edu 

Mohammad M. Bataineh 
Department of Natural Resources and Environment, Faculty of Jordan University of Science and 
Technology 

Daniel Unger 
Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, unger@sfasu.edu 

I-Kuai Hung 
Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, hungi@sfasu.edu 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.sfasu.edu/forestry 

 Part of the Forest Sciences Commons 

Tell us how this article helped you. 

Repository Citation Repository Citation 
Bataineh, Amanda L.; Oswald, Brian P.; Bataineh, Mohammad M.; Unger, Daniel; Hung, I-Kuai; and 
Scognamillo, Daniel, "Spatial Autocorrelation and Pseudoreplication in Fire Ecology" (2006). Faculty 
Publications. 378. 
https://scholarworks.sfasu.edu/forestry/378 

This Article is brought to you for free and open access by the Forestry at SFA ScholarWorks. It has been accepted 
for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, 
please contact cdsscholarworks@sfasu.edu. 

https://scholarworks.sfasu.edu/
https://scholarworks.sfasu.edu/forestry
https://scholarworks.sfasu.edu/forestry_department
https://scholarworks.sfasu.edu/forestry?utm_source=scholarworks.sfasu.edu%2Fforestry%2F378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/90?utm_source=scholarworks.sfasu.edu%2Fforestry%2F378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://sfasu.qualtrics.com/SE/?SID=SV_0qS6tdXftDLradv
https://scholarworks.sfasu.edu/forestry/378?utm_source=scholarworks.sfasu.edu%2Fforestry%2F378&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cdsscholarworks@sfasu.edu


Authors Authors 
Amanda L. Bataineh, Brian P. Oswald, Mohammad M. Bataineh, Daniel Unger, I-Kuai Hung, and Daniel 
Scognamillo 

This article is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/forestry/378 

https://scholarworks.sfasu.edu/forestry/378


December 2006 Spatial Autocorrelation and Pseudoreplication 107 

 
Practices and Applications in Fire Ecology 

 
 
 
 
 

SPATIAL AUTOCORRELATION AND PSEUDOREPLICATION IN 
FIRE ECOLOGY   
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Unger1, I-Kuai Hung1, Daniel Scognamillo1 

 
   

1Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University  
2Department of Natural Resources and Environment, Faculty of Agriculture 

Jordan University of Science and Technology 
  
  

ABSTRACT 
  

 Fire ecologists face many challenges regarding the statistical analyses of their studies.  
Hurlbert (1984) brought the problem of pseudoreplication to the scientific community’s 
attention in the mid 1980’s.  Now, there is a new issue in the form of spatial 
autocorrelation.  Spatial autocorrelation, if present, violates the traditional statistical 
assumption of observational independence.  What, if anything, can the fire ecology 
community do about this new problem? An understanding of spatial autocorrelation, and 
knowledge of available methods used to reduce the effect of spatial autocorrelation and 
pseudoreplication will greatly assist fire ecology researchers. 

   
Key Words:  nearness, experimental design, ecology, landscape-level 
   

 
INTRODUCTION 

  
Experimental designs and analyses in 

fire ecology are based on statistical 
assumptions that are often violated in 
experimental ecology.  Violation of 
statistical assumptions may result in 
rejecting or failing to reject null 
hypotheses at criterion levels greater or 

smaller than those intended for the 
analysis, which may lead to conclusions 
that are not consistent with the natural 
phenomena under study (Cliff and Ord 
1975, Hurlbert 1984, Day and Quinn 
1989, Dale and Fortin 2002).   

In 1984, Hurlbert attracted the 
scientific community’s attention with his 
paper in which he defined 



108 Bataineh et al. Fire Ecology 
  Vol.2 No.2 

pseudoreplication as “the use of 
inferential statistics to test for treatment 
effects with data from experiments 
where either treatments are not 
replicated (though samples may be) or 
replicates are not statistically 
independent.”  Hurlbert pointed out that 
the problem with a replication-less study 
is that it will lack the estimate of error 
needed to judge the significance of a 
comparison.  More recently, criticisms 
involve the underlying statistical 
assumption of independence (Robertson 
1987, Legendre 1993, Lennon 2000, 
Legendre et al. 2002).  The assumption 
of independence states that an 
observation of one sample is not 
influenced by the observation of another 
sample (Helberg 1996).  Hurlbert (1984) 
stated that a lack of independence causes 
the alpha level to be unknown which in 
turn causes the interpretation of 
statistical analyses to be subjective.  
According to many authors, including 
but not limited to Cliff and Ord (1973), 
Sokal and Oden (1978b), and Legendre 
(1993), the assumption of independence 
is often violated because of spatial 
autocorrelation. 

Techniques to determine if spatial 
autocorrelation exists have been used to 
determine the effect of these gradients 
on measurable parameters in the field, 
but also may reduce the number of 
experimental units (N’s) that are useful 
for statistical analysis. 

Spatial autocorrelation is the 
similarity between two observations of a 
measured variable based upon their 
spatial location (Griffith 1992, Legendre 
1993, Lennon 2000, Fortin et al. 2002).  
Positive spatial autocorrelation occurs 
when the similarity is greatest for close 
objects and least for objects spaced 
farther apart (Sokal and Oden 1978a, 
Robertson 1987, Diniz-Filho et al. 

2003).  Positive spatial autocorrelation is 
important for two reasons (Cliff and Ord 
1973).  The first reason concerns surface 
interpolation, which uses the values of 
variables at known locations to estimate 
the value of a variable nearby based on 
the assumption that objects closer 
together are more similar than objects 
farther away (O’Sullivan and Unwin 
2003).  The other reason is a concern to 
researchers because the assumption of 
independence of observations for 
traditional statistical tests does not hold 
true (Cliff and Ord 1973, Dale and 
Fortin 2002, Legendre et al. 2002).  
Non-independence of observations 
negatively affects statistical tests by 
underestimating standard errors and 
inflating Type I errors (incorrectly 
rejecting a true H0) (Cliff and Ord 1975, 
Dale and Fortin 2002, Diniz-Filho et. al. 
2003). 

The purpose of this paper is to 
explore the concept of spatial 
autocorrelation and how it may affect the 
statistical analyses, due to the 
assumption of independence, for fire 
ecology studies.   

 
Spatial Autocorrelation: A History and 
How It Applies to Ecological Studies 

 
Spatial autocorrelation was first 

recognized as a problem in 1914 by 
Student (Cliff and Ord 1975, Griffith 
1992), who acknowledged that observed 
correlation for geo-referenced data series 
is only attributable to the geographic 
location of the data.  Student suggested 
‘trend surface analysis’ (the removal of 
trends by regression methods) as a 
technique to account for spatial 
autocorrelation.  Stephan (1934) warned 
social researchers gathering census tract 
data that data of geographic units are not 
independent “like balls in an urn”, but 
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dependent “like bunches of grapes”.   
Stephan also stated that contiguity in 
time and/or space does not itself indicate 
non-independence, but characteristics of 
social data are by virtue interrelated.  
Stephan’s cluster of grapes conception 
led to sampling designs that neutralized 
spatial autocorrelation (Griffith 1992).  
Moran (1948) and Geary (1954) both 
developed indices (Moran’s I and 
Geary’s G, respectively) to measure 
spatial autocorrelation.  Matheron (1963) 
discovered that the value for a variable 
at an unsampled location could be 
estimated using the observed values of 
the neighboring variables based on their 
spatial dependence structure.  Tobler 
(1970) created the first law of 
geography, which states “everything is 
related to everything else, but near 
things are more related than distant 
things.”  According to Griffith (1992), in 
1970, Gould, a geographer, stated that 
spatial data series fail to meet the 
assumption of independent observations 
of traditional statistical tests. 

Legendre (1993) stated that 
ecological data (such as obtained in fire 
studies) are inherently spatially 
autocorrelated; for example, the species 
composition at one location is influenced 
by the species assemblage of the 
surrounding locations due to contagious 
biotic processes.  Fortin and Jacquez 
(2000) attribute spatial autocorrelation in 
ecological studies to ecological 
processes that have a geographic 
element; for example, dispersal, 
allelopathy, and spatial competition for 
resources.  According to Ver Hoef and 
Cressie (2001), all field experiments 
have a spatial component, in which the 
experimental units are positioned in one, 
two, or three-dimensional space.  This 
spatial environment is generally 
heterogeneous (i.e. a mosaic of patches 

that exhibit varying degrees of spatial 
autocorrelation, both within and among 
the patches), which impedes the 
researchers’ ability to find homogeneous 
areas to serve as experimental units.  In 
addition, the problem of spatial 
heterogeneity can cause unequal plant 
responses to the experimental treatments 
(Fortin and Gurevitch 2001).  However, 
these effects can be minimized through 
the use of proper experimental designs 
or improved statistical analyses, such as 
blocking, nearest neighbor analysis, or 
trend surface analysis (van Es and van 
Es 1993).  In fact, a common way to try 
to account for the effects of spatial 
heterogeneity is to use a randomized 
block design.  The random assignment 
of experimental units to treatments alone 
assures that the observations are 
independent, but does not ensure that 
neighboring units are spatially 
independent; thus the need for blocking 
(Fortin and Gurevitch 2001).  If pre-fire 
measurements are possible for a fire 
study, then blocking using spatial 
autocorrelation technigues may aid in 
plot placement. Spatial autocorrelation 
techniques can be used to block, without 
identifying the specific cause of the 
autocorrelation.  This use of spatial 
analysis may save time and money in 
determining plot placement for a field 
study.  However, if the size of the block 
does not match the size of the spatial 
pattern of the plants or the plants spatial 
responses to the treatments, then the 
effects of spatial heterogeneity may still 
be a problem (Fortin and Gurevitch 
2001).  

In addition, it is suggested that 
researchers use at least 30 localities 
(plots) to measure for the presence of 
autocorrelation in their data (Cliff and 
Ord 1975; Fortin et al. 1989); however, 
due to the varied nature of fire on the 



110 Bataineh et al. Fire Ecology 
  Vol.2 No.2 

landscape, it is often difficult to position 
a minimum of 30 plots within an area 
that is perceived to be uniform in fire 
severity.  The spacing of plots is often 
determined based on the size of the 
vegetation being evaluated (e.g. large 
plots for trees, smaller plots for 
herbaceous vegetation) and small plots 
are often nested within larger plots in 
order to evaluate relationships between 
overstory parameters and understory 
parameters as affected by a single fire 
event.  As a result, plots may exhibit 
spatial autocorrelation for precisely the 
reason they were laid out;  to capture fire 
effects within a relatively small 
homogeneous area of the landscape.  So, 
even though it may be possible to 
observe, and therefore quantify, the 
spatial limits on the landscape for some 
preconceived condition (or as Mueller-
Dombois and Ellenberg (1974) stated, 
“subjectively but without preconceived 
bias”) for which we wish to block for, 
such as slope, aspect, soil type or 
vegetative community, we may end up 
incorporating the spatial autocorrelation 
condition that is suggested we avoid. 

The rapid growth of GIS-based 
software and applications has brought 
the disciplines of fire ecology, 
geography, and spatial sciences together 
in an effort to explain landscape-level 
heterogeneity associated with wildland 
fire.  Work by a variety of authors, 
including but not limited to Chou, Getis, 
and Anselin (Anselin, Chou 1992, Chou 
et al. 1993a., Chou et al. 1993b., Getis 
and Franklin 1987 ), has shown the value 
of this collaborative effort.  If one was to 
compare the presentations made at the 
three International Fire Ecology and 
Management Congresses (2000, 2003, 
2006), the growth of this type of analysis 
is readily apparent. 

Because wildland fires are not 
replicated, it is important that the 
number of N’s are maximized and 
blocking is applied within a designated 
treatment level (i.e. burn severity) so that 
statistical analysis can provide valuable 
data without the influence of 
pseudoreplication or of spatial 
autocorrelation.  The challenge is 
compounded by heterogeneity on the 
landscape.  As Getis and Franklin (1987) 
point out, this heterogeneity is a function 
of the scale of analysis.  Therefore, it is 
important that the fire researcher utilizes 
the largest number of N’s possible to 
account for the variability recorded in 
the smallest plots (to measure smaller 
vegetation) within a treatment type to 
compensate for the lack of real 
replication (i.e. avoid pseudoreplication 
effects) without increasing the spatial 
autocorrelation potential at the larger 
plots. 
 
Detecting Spatial Autocorrelation 
 

The first step to detect 
autocorrelation of a dataset is to plot a 
variogram cloud and a variogram.  
When each observation has both spatial 
(e.g. coordinates) and attribute (e.g. 
biomass) components measured, a 
variogram cloud can be built by plotting 
positional distance (x-coordinate) 
against absolute difference of attribute 
(y-coordinate) between a pair of 
observations.  To summarize the 
relationship, pairs of observation within 
a distance range are binned to calculate 
semivariance, and the variogram plotted.  
Equation 1 shows the calculation of 
semivariance, where Z(x) is the attribute 
value at x location and h is the lag 
distance, while N is the total number of 
pairs within the distance range. 
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Equation 1:  
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Figure 1 shows an example of 

variogram constructed from a loblolly 
pine plantation dataset without 
considering directional effect.  The 
semivariance is in the unit of centimeter 
for dbh measurement, whereas the lag 
distance (distance between individual 
trees) is measured in meters.  A 
spherical model was fit to depict the 
relationship with 2.3 m as nugget (the 
variance at zero distance), 30.4 m as 
range (beyond which the semivariance is 
constant) and 4.6 meter as sill (the 
constant semivariance value beyond the 
range).  It implies that trees within 30.4 
m apart inherit autocorrelation, where 
difference in dbh increases as distance 
increases.  If sample trees were selected 

within this range, the resulting statistics 
might be biased due to the violation of 
random sampling.  On the other hand, if 
spatial interpolation is to apply based on 
autocorrelation being in existence, 
observed points surrounding an 
estimated location should not go beyond  
the distance of range.  Plotting a 
variogram is computationally intensive.  
VARIOWIN (Pannatier 1996) is free 
software allowing for modeling 
variograms with limited number of 
observations. GS+, a shareware 
program, (www.γammadesign.com) 
provides the same tools. The 
Geostatistical Analyst, an extension to 
ArcGIS ESRI, offers a complete suite 
for data exploration, variography, and 
spatial interpolation (ESRI 2003). 

 

 

 
Figure 1. Experimental variogram of loblolly pine dbh in a plantation. 
 

Variograms aid in visualizing the 
magnitude of autocorrelation.  However, 
choosing a model to fit the data is 
controversial since the calculated 

semivariances varies with the number of 
point pairs used and choosing a 
functional form could be subjective 
(Webster and Oliver 2001).  A 
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quantitative approach to measure 
autocorrelation is Moran’s I, which is 
applied where numeric data are 
available.  Its’ calculation is a translation 
of a nonspatial correlation measure to a 
spatial context (Equation 2).  The wij 
term is the weight between two 
observations (xi and xj) and can be 
calculated based on the distance (inverse 
distance) or a fixed bandwidth. 

 
Equation 2: 
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The interpretation of Moran’s I is similar 
to the nonspatial correlation coefficient, 
a positive autocorrelation for a positive 
value and a negative autocorrelation for 
a negative value.  Most GIS packages 
offer the tool for calculating Moran’s I 
with a variety of options in determining 
the weight. 

Another measurement of 
autocorrelation is Geary’s C.  It is 
similar to Moran’s I with the calculation 
as Equation 3.  The difference is that the 
calculated value is always positive and 
becomes greater when there are large 
differences between near observations.  
Hence, values greater than 1 indicate 
negative autocorrelation, whereas values 
less than 1 indicate positive 
autocorrelation. 
 
Equation 3:  
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Both Moran’s I and Geary’s C 

measure the vector of spatial 
autocorrelation for the entire dataset, but 
they tell nothing about each individual 

observation.  In other words, they do not 
tell where the unusual interactions are.  
There is another group of measures 
known as local indicators of spatial 
association (LISA).  They have been 
developed to describe the extent to 
which particular observations are similar 
to, or different from, their neighbors 
(O’Sullivan and Unwin 2003).  Getis 
and Ord (1996) developed two versions 
of G-statistics, Gi and Gi*, which are 
indicators for the extent to which each 
observation is surrounded by similarly 
high or low values.  Both versions come 
with the form as shown in Equation 4.  
For each observation, it divides the 
weighted sum within the neighborhood 
(defined by d: distance) by the global 
sum. 

 
 

Equation 4: 
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The Gi does not include the target 

feature itself in calculation, whereas the 
Gi* does. In GIS packages such as 
ArcGIS, Gi* is available as a spatial 
statistics tool for mapping clusters.  
Including the target feature enhances in 
finding hot spots, since the observed 
value itself contributes to the occurrence 
of the cluster.  A group of observations 
with high Gi* values indicate a cluster of 
features with high attribute values, and 
vice versa.  Both versions of G-statistics 
require an arbitrarily defined 
neighborhood. 

Anselin (1995) developed another 
disaggregate measure of autocorrelation 
by decomposing Moran’s I into local 
values.  Calculating Local Moran’s I 
starts with standardizing each observed 
attribute value.  Then, for each feature, 
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the weighted sum in the neighborhood is 
multiplied by the standardized value 
itself (Equation 5).  A large positive 
value of Ii indicates that the feature is 
surrounded by features with similar 
values, either high or low; while 
negative value indicates the surrounding 
features have dissimilar values (Mitchell 
2005).   

 
Equation 5: 

∑
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=
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The Rattle Burn:  A case study for 
pseudoreplication and spatial 
autocorrelation 

 
The Rattle Burn wildfire of 1972 

burned 286 ha within the Coconino  
 
National Forest southwest of Flagstaff,  
Arizona.  A series of publications have 
documented the fire effects and fire 
ecology associated with this fire over a 
thirty year period (Beaulieu 1975, 
Oswald, 1981, Oswald and Covington 
1983, Oswald and Covington 1984, 
Rountree 2004, Bataineh et al. 2006).  
The fire itself and the initial publications 
occurred prior to Hurlbert’s 1984 
publication, and before spatial 
autocorrelation techniques were 
considered in field studies.  Only the 
Rountree (2004) and the Bataineh et al. 
(2006) publications dealt with both 
issues. 

The original study was established in 
1972, post-fire on 3 sites (high severity, 
low severity, unburned): a second 
unburned site established in 1974, and 
the initial unburned site was prescribed 
burned in 1977.  Beaulieu (1977) used a 
T-test to compare the two unburned sites 
and found no significant differences.  As 
a result, the pre-2004 publications used 

the unburned sites as comparisons to the 
burned sites. 

Within each site, 30 center points 
were located along transects running 
perpendicular to the long axis of each 
site.  Four circular sampling plots (0.89 
m2 each) were established at 90o angles 
7.1 meters around each center point, two 
along each transect and the other two 
perpendicular to the transects.  For each 
sampling year (1972, 1974, 1980, 2003, 
2004), two sampling plots were 
randomly selected for sampling.  Mid-
summer of each sampling year, the 
herbaceous stems within the selected 
sampling plots were identified to 
species, counted, clipped and dried to 
determine biomass production.  The 
mean of the two sampling plots was used 
in the analyses.  In the earlier published 
manuscripts (Oswald and Covington 
1983, Oswald and Covington 1984), 
Analysis of Variance (p= 0.05) was used 
to test the effect of passage of time 
(1972 to 1980) and severity of burn on 
biomass production.  The Student-
Newman-Kuels Multiple Range test was 
used to test differences.  The relatively 
large number of N’s within each site 
allowed for statistical analysis even 
though treatments (burn severities) were 
not replicated. 

In Bataineh et al. (2006), PROC 
Mixed was used for repeated measures, 
with Akaike’s Information and Schwarz’ 
Bayesian as the model fit criteria.  One-
way ANOVA’s was used when a 
significant treatment by year was found 
and Tukey’s multiple comparison 
procedure used to separate significant 
treatment means.  To incorporate species 
composition, multi-response permutation 
procedures (MRPP) was utilized after a 
Bonferrroni adjusted was made.  
Indicator Species Analysis was 
conducted to determine which species 
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were driving the differences between 
sites.  If significant differences among 
sites were found in 1972 or 2003 using 
MRPP, the Mantel test was used to 
determine if there was a relationship 
between overstory attributes and 
understory attributes.  Detrended 
Correspondence Analysis (DCA) was 
used to summarized understory species 
composition and production data, with 
non-metric multi-dimensional scaling 
(NMDS) chosen as a complimentary 
technique. 

To explore the possibility of whether 
any of the plots within a site for a given 
year studied may have been spatially 
autocorrelated, semivariograms were 
produced using PROC VARIOGRAM.   
The lag distance was set at 0.0002 with a 
maximum lag of 20 (SAS Institute Inc. 
1999).  Lags are the subdivisions of the 
distance axis into intervals.  Lag 
distances are plotted against the 
semivariances to produce the 
semivariograms.  Semivariance is half 
the variance of the differences between 
all possible points at a constant distance 
apart (O’Sullivan and Unwin 2003).  
The semivariogram graphs were visually 
compared to spatial covariance models 
to determine if the response variable, 
production, was spatially correlated 
among plots within each site for a given 
year studied.  None of the exploratory 
semivariogram graphs were similar to 
any of the covariance models.  
Therefore, it was assumed that the 
inference of the study’s results would 
not be compromised by spatial 
autocorrelation. 

This assumption was verified 
through the use of repeated measures 
procedure in PROC MIXED.  This 
procedure required selection of a 
covariance structure.  Based on the 
Akaike’s and Bayesian’s fit criteria of 

the study’s data, the compound 
symmetric covariance structure, which 
assumes homogeneous variances, was 
selected as the most suitable.  If spatial 
autocorrelation existed in the data, then a 
different covariance structure would 
have been found most suitable to use in 
the analysis (Little et al. 1996).       

In reference to the title of Legendre’s 
paper about spatial autocorrelation 
(Legendre 1993), Fortin and Dale (2005) 
sustain that spatial autocorrelation 
represents both trouble and a new 
paradigm in ecology. Our current 
knowledge of natural systems indicates 
that spatial autocorrelation is a common 
issue in ecological studies and 
something that researchers will have to 
start addressing. 

What can be done if spatial 
autocorrelation was found? One 
approach to the problems caused by 
spatial autocorrelation during statistical 
testing could be to adjust the Type I 
error to a more conservative value (Dale 
and Zbigniewicz 1997), for instance 
a=0.01 instead of a= 0.05. However, 
without the appropriate knowledge of 
the true autocorrelation structure, there is 
a risk for being too conservative (Fortin 
and Dale 2005).  

Considering that spatial 
autocorrelation modifies the effective 
sample size n’ (n’<n), the relation n’= n 
[(1-?)/(1+?)] could be used to estimate 
the effective sample size if the matrix of 
covariance among locations can be 
described by a first-order autoregressive 
correlation structure (Cressie 1991, 
Fortin and Dale 2005). Fortin and Dale 
(2005) indicate that this approach can be 
used for one- and two-sample t-tests and 
for ANOVA comparisons among means. 
The same correction could be applied to 
paired sample t-tests (Dale and Fortin 
2002). 
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Fortin and Dale (2005) advocate the 
use of a simple model of the spatial 
autocorrelation structure and Monte 
Carlo simulations. In this approach, a 
parametric model for the spatial 
autocorrelation of the form: 

            
Equation 6: 

∑
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− +=
h

j
ijiji xx
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where h is the lag, and iε  is N(o,s 2), is 
used to generate artificial data sets in a 
Monte Carlo simulation and to estimate  
confidence intervals for the test statistic 
(Manly 1997) (see Fortin and Dale 2005 
for an example). 
 

 
 

CONCLUSION 
 

 Based on Hurlbert’s 
pseudoreplication paper, to use 
traditional statistical tests to analyze data 
from any study, there must be 
replications of the treatments.  The 
problem for fire ecologists is that this is 
a proven difficulty in wildfire studies.  
The few ways around this dilemma are 
tricky.  One way is to employ a repeated 
measures design for the study in which 
time serves as the replication.  Another 
way is to use non-traditional statistics 
such as ordination, cluster analysis, 
MANOVAs, Mantel Tests, etc. 

Based on the new appreciation of 
spatial autocorrelation, spatial 
autocorrelation should be tested for, or 
accounted for, either before the study is 
implemented or before the analysis of 
any study with a spatial component.  The 
problem for fire ecologists is that the 
limited statistical analyses they have to 

choose from due to pseudoreplication 
have been further narrowed down to a 
few statistical analyses that deal with 
spatial autocorrelation as well. 

The issues of pseudoreplication and 
spatial autocorrelation are real and valid 
concerns.  They deal with statistical 
assumptions that if violated make 
inferences untrustworthy.  Therefore, we 
have reached a crossroads.  Either, there 
needs to be greater research invested into 
creating statistical analyses that are more 
valid for wildfire studies or there needs 
to be greater research invested into 
figuring out how to design and 
implement wildfire studies that will meet 
the assumptions of the pre-existing 
statistical analyses.   

In summary, conducting a pilot study 
is advised to find out characteristics of 
the spatial autocorrelation such as 
behavior according to distance and 
whether it is anisotropic. Furthermore, 
based on the findings from two recent 
studies on the effects of spatial structure 
on the design and analysis of field 
experiments (Legendre et al. 2002, 
2004), Fortin and Dale (2005) suggest 
the following lessons to be learned: 

a. if spatial autocorrelation is 
present, the use of blocks is 
recommended; 

b. in the presence of spatial 
autocorrelation, and given a 
certain number of experimental 
units, smaller blocks spread 
across the study area provides 
greater statistical power; 

c. short-range spatial 
autocorrelation, when compared 
to the size of experimental units 
and blocks, has a stronger effect 
on ANOVA tests than long-range 
spatial autocorrelation 
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