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Abstract 

In September 2008, Hurricane Ike swept through the Gulf of Mexico 

striking the Gulf Coast, claiming hundreds of lives and causing billions of dollars 

in damage.  The hurricane left behind elevated sea salt concentrations in the soil 

and groundwater, preventing the unaided return of live oaks and other species to 

the island.  To determine effective ways to ameliorate the elevated Na+ 

concentrations in the soil, eight treatments were applied to the soil and 

combinations of three species of plants, live oak (Quercus virginiana), hybrid bald 

cypress (Taxodium ‘T406’), and yellow hibiscus (Hibiscus hamabo) were planted 

in the plots.  These plants were measured for growth in height and diameter over 

three growing seasons to evaluate the effectiveness of the applied treatments. 

The Taxodium ‘T406’ specimens were then sampled in order to determine 

elemental concentrations in the foliage across applied treatments.  In addition, 

foliage samples were taken from a series of Taxodium genotypes in order to 

compare Na+ tolerance among the genotypes.  In order to evaluate the 

groundwater characteristics of the study area a three by three grid of 

piezometers, spaced 25 m apart north by south and 60 m apart east by west, 

was established and groundwater samples were collected from September 2018 

to September 2019.  Three Solinst Leveloggers were used in the easternmost 

piezometers in order to provide a continuous stream of data for each piezometer.  
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Groundwater Na+ concentrations were compared with precipitation data to 

determine if precipitation has a significant impact on elemental concentrations. 

Plant diameter growth was not significant for diameter among species or 

treatments, and height growth was also not significant among treatments.  

Taxodium distichum displayed significantly greater height growth than the other 

species, possibly due to damage to the other species early in the study.  Na+ 

concentrations did not differ significantly among treatments, although among the 

genotypes there was a significantly higher concentration of Na+ in the Taxodium 

‘T406’ compared to Taxodium distichum.  A significant relationship could not be 

determined between groundwater Na+ concentrations and precipitation.  
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1. Introduction

In September 2008, Hurricane Ike swept through the Gulf of Mexico and 

into the Gulf Coast, claiming nearly 200 lives and causing billions of dollars in 

damage.  In addition to the direct impacts on humans, the 15 foot storm surge 

rose over Galveston Island and salt water inundated much of the island. This 

resulted in the devastation of much of the vegetation, including many of the 

Southern live oaks (Quercus virginiana), one of the historic staples of 

Galveston’s flora.  The deposition of salt into the soil and the duration of the 

storm surge led to the death of trees that had grown for over 100 years.  During 

the recovery period following the hurricane, the Texas Forest Service conducted 

a study on the mortality rates among planted trees along Galveston roads, 

revealing that 61.7 percent of live oak trees, roughly 55,000 trees, were killed as 

a result of the storm, with over 24 million dollars in damages to live oaks alone 

(Texas Forest Service, 2009).  The hurricane left behind elevated concentrations 

of sea salt, including Na+, in the soil and groundwater, preventing the unaided 

return of live oaks and other species to the island.  In 2017, Hurricane Harvey 

struck the Gulf Coast of Texas with much less wind and more precipitation 

compared to Ike, resulting in dangerous flooding in many areas.  Although 

Hurricane Harvey did not cause the storm surge of Hurricane Ike, it served as a 

reminder that the changing climate may lead to more frequent and disastrous 

weather events. 
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Galveston Island is an approximate 1400 km2 island located 70 km from 

central Houston, Texas.  The island is 48 km long and is 27 km wide at its widest 

point.  Based on data from the Scholes Field weather station, Galveston Island 

receives approximately 114 cm of precipitation a year near the project site.  

Although it was previously noted that southern live oak trees were historically 

significant trees on Galveston Island, the island was actually considered treeless 

until the introduction of several species of woody vegetation by Native 

Americans.  One of these species to survive and flourish was the southern live 

oak. 

Following the environmental damages caused by Hurricane Ike, steps 

were taken in order to develop an understanding of how local vegetation 

tolerates the sea salt affected soils and groundwater, and how salt moves 

through the system.  Projects funded by the Moody Foundation were put into 

place that aimed to develop methods to treat the salt affected soils, and to 

evaluate the soil microbiology.  One goal of the projects was to determine the 

fate of sea salt that was introduced in the environment.  Does the salt infiltrate 

into the groundwater and accumulate, and do the roots of plants encounter those 

salts as their roots grow downward?  The answers to these questions may prove 

useful in future attempts of site assessment and remediation not only on 

Galveston Island, but in other coastal and island locations that may be exposed 

to substantial increases in sea level.  The information obtained from this study 
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may be useful for additional areas as they are exposed to more coastal 

inundations. 

 Understanding where the deposited sea salts (dominantly Na+) moves and 

where it ultimately accumulates is important for evaluating the environmental 

risks of future weather events and changes in the climate and sea level.  Excess 

Na+ can be devastating to many plant species, and over time there are few 

species that could withstand the conditions that Galveston Island faced in 2008.  

The Moody Foundation provided funding for this project in order to evaluate the 

factors that affect sodium concentrations, so as to possibly develop methods and 

treatments to prevent environmental damage and to develop an understanding of 

the problem that might be useful for more rapid remediation of Na+ contaminated 

soils and groundwater.  
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2. Objectives 

 The purpose of this study was to develop an understanding of where 

sodium salts accumulate in the Galveston coastal system of groundwater, soil, 

and plants, what factors affect the rate of accumulation of salts, and to observe 

how a series of native and nonnative plants tolerate the salt intake through 

ground and aerial deposition.  To help complete these goals, the following 

objectives were established. 

1. Observe the growth and health of the 296 trees of three species 

(Taxodium X ‘T406’, Quercus virginiana, and Hibiscus hamabo) planted in 

the study area, and collect data on the elemental concentrations present 

in the foliage of each species. 

2. Characterize the depth and quality of the groundwater by testing for 

sodium, chloride, pH, electrical conductivity, and temperature over a one-

year period. 

3. Relate the groundwater conditions with weather data and aerosol 

deposition data to help characterize the movement of sea salt in the 

environment. 
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In addition to meeting the goals of this study, completing these objectives 

will expand on the results of previous studies conducted at the site, which 

evaluated soil salinity, soil amelioration, plant survivorship, and aerial sodium 

deposition.  
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3. Literature Review

3.1 Salinity in Galveston, Texas 

3.1.1 Accumulation of Salts 

In coastal areas, the deposition and accumulation of salts is unavoidable. 

Plants that dominate these areas should ideally be more salt-tolerant than those 

further inland.  However, even these species will struggle with prolonged or 

excessive exposure to elevated salt, as they did following Hurricane Ike.  

Southern Live Oak (Quercus virginiana), a historically significant plant to 

Galveston Island, is known to be moderately tolerant of salinity and flooding, but 

during the course of Hurricane Ike the species lost nearly 62 percent of the 

population due to the storm surge (Natural Resources Conservation Service, 

2017; Texas Forest Service, 2009).  

In a study where clean, offsite bank sand was used to build planting beds 

and ameliorate soil sodium concentrations in Galveston, Texas, soil in these 

bedded plots was initially shown to have significantly reduced Na+ concentration.  

However, after a period of seven months, soil samples collected from the study 

plots had Na+ concentrations equal to concentrations of those that did not receive 

clean sand (Harris, 2019).  The increase in soil sodium may be attributable to 

aerial sodium deposition, capillary action of high sodium groundwater, or a 

combination of the two.  This indicates that over time in coastal areas, soil 
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sodium concentrations in areas where outside soil has been brought in will not 

likely serve as a long term solution to soil sodium amelioration.  

3.1.2 Groundwater Saltwater Intrusion 

 Saltwater intrusion occurs when outside forces, such as the pumping of 

groundwater for use, allow for the encroachment of saltwater into freshwater 

aquifers.  In the Atlantic and Pacific coastal regions of the United States in 2000, 

groundwater was pumped at a rate of 618 m3/s for agriculture, industry, and 

public use, with groundwater serving as the primary or sole source of drinking 

water for coastal communities (Barlow & Reichard, 2010).  Galveston Island, 

Texas has a history of issues with saltwater intrusion, stemming from the heavy 

pumping occurring on the island and in Texas City.  To combat this, groundwater 

pumping operations were moved further inland to remove the strain on the 

aquifer below Galveston.  This did not eliminate saltwater intrusion entirely (Kerr, 

1977).  Galveston, as well as many of the nearby cities in Galveston and Harris 

counties, are affected by the withdrawal of groundwater from the Gulf Coast 

aquifer system.  In addition to the infiltration of saltwater further inland, the 

potentiometric surface of the groundwater continues to drop, while land-surface 

subsidence is occurring in the Houston area due to depressurization and 

compaction of soil layers found in the aquifer sediments (Kasmarek, 2012).  

The rate of saltwater intrusion depends on several factors, including the 

rate of groundwater extraction versus freshwater recharge, the distance between 
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a site of groundwater withdrawal and saltwater, the geologic structure of the 

aquifer, and the presence of barriers that may prevent saltwater from moving into 

the aquifer (Barlow & Reichard, 2010).  It has been observed that increases in 

precipitation will increase the groundwater level while lowering the salinity in the 

groundwater, and that seasonal temperature and precipitation changes are likely 

to be a large factor in groundwater salinity (Yan, et al., 2014).   

3.1.3 Soil Salinity 

 High salinity in soils is detrimental for plant growth, as salts can impact 

plants through the plant roots, disrupting normal cellular function as well as 

causing the wilting of leaves, which reduces a plant’s ability to photosynthesize.  

With the exception of halophytes, plants that receive excess sodium over time 

will die.  The accumulation of salts in soils can occur when minerals in the soil 

are broken down due to weathering, and there is insufficient precipitation to leach 

the salt ions from soil profiles (Shrivastava, 2014).  The increase of soil salinity 

can be caused both naturally and anthropogenically.  Natural increases in salinity 

of soils are generally attributed to changes in groundwater.  In a saturated flow 

system, the groundwater rises until lateral groundwater flow occurs, which 

causes soluble salts to dissolve and ultimately arrive in a discharge area, where 

they accumulate over time due to the evaporation of the water (Wannakomol, 

2005).  In the Galveston study area, the water table lies between 1.5 and 0.3 m 

below the ground surface under normal conditions, with surface ponding 

occurring following periods of rain.  Given these conditions, it is possible that 
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during periods of heavy rainfall when the groundwater level rises above the 

ground surface salt ions can be brought to the surface, where they may remain 

after evaporation of the accumulated surface water. 

3.1.4 Hurricanes and Flooding Events in Coastal Areas 

 While normal rates of depositions of salt can be tolerated for many 

species, even hardy species are put at risk by extended inundation of soils by 

seawater.  Hurricanes, although destructive, serve an important environmental 

role for coastal wetlands, as the episodic disturbance and regeneration events 

can potentially increase the diversity of herbaceous species in an area 

(Middleton, 2016).  During Hurricane Ike, Galveston was covered by the storm 

surge in many areas for 15 days, which was a sufficient amount of time to harm 

and kill many species on the island.  Following Hurricane Hugo in September 

1989, low lying coastal forests in South Carolina were inundated with 3 to 4 m of 

storm surge saltwater.  Analyses of groundwater two weeks following the 

hurricane revealed sodium levels ranging from 100 mg*L-1 to over 1000 mg*L-1 in 

some areas.  This can be compared to a pre-hurricane range of 4 to 30 mg*L-1, 

which were reached in the eastern well points by January 1990 (Gardner, et al., 

1989).  In addition to the increase in sodium levels in groundwater, sodium levels 

in soils were also elevated following the storm surge as the water above the 

surface moved into soils.  In the study, soil salinity was 58 to 142 times higher 

than pre-storm levels as long as two months after the hurricane (Gardner, et al., 

1989). 
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 Following the hurricanes and other events that introduce high amounts of 

salinity into ecosystems, various plant species compete for reestablishment of an 

area (Middleton, 2016).  Revegetation of a site depends on existing plant species 

as well as their propagation methods, as in one study it was observed that 

flooding reduced regeneration potential in baldcypress (Taxodium distichum) 

swamps, while not in freshwater or saltwater marshes (Middleton, 2016).  

 In addition to damages caused by flooding and sodium deposition, 

hurricanes can cause damage to plants via high wind speeds, even altering the 

species variation in areas where trees are not adapted to wind stress.  Middleton 

(2009) observed that the sustained 69 to 94 mph wind speeds affecting Gulf 

Coast swamps destroyed a larger number of non-dominant species as compared 

to the dominant species, which were better acclimated for the sites and were 

more resistant to mechanical stress. 

 In a study evaluating seedling salt tolerance among species that 

experienced varying rates of storm surges, it was determined that storm surge 

water can vary in salt concentration from 3.5 to 19.3 g*L-1, and that rainfall can 

lower these concentrations if the precipitation occurs during or before the event, 

due to dilution of the saltwater (Williams, Meads, & Sauerbrey, 1998). 

3.1.5 Aerial Sodium Deposition 

 Aerial deposition of salts, also known as salt spray, is a constant source of 

sodium, chloride, and other ions into coastal plants and soils.  As droplets of 
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water from the sea are mobilized by wind, these droplets travel inland, where 

they are eventually deposited onto the surface of plants and the soil surface, 

eventually infiltrating and percolating into the soil and groundwater during 

precipitation events.  The quantity of salt that is deposited is affected by several 

factors, including wind speed, precipitation, and weather.  Harris (2019) observed 

that in Galveston, there was significantly greater deposition of salt into the 

environment during periods of high precipitation, specifically for Na+, Cl-, and 

Mg+2 ions.  In the same study, it was observed that the most heavily 

concentrated ion in aerial deposition was Cl- followed by Na+, likely due to the 

common occurrence of Cl- as a constituent for sea salts.  While there is 

increased deposition of aerial salinity during periods of increased precipitation, 

precipitation rinses off salts accumulated on foliage.  This sodium that is rinsed 

off of the foliage is then transferred to soils and groundwater, and may be cycled 

back into plants through root uptake. 

 In order to reduce the effects of salt spray on coastal plants, there are 

several approaches that can be taken.  Some of these approaches include using 

halophytic or salt tolerant plants as wind breaks or barriers, frequent rinsing of 

the plants and soils with freshwater, and avoiding salt sensitive plants altogether 

(Appleton, et al., 2015).  



12 
 

3.2 Tree Species 

3.2.1 Taxodium ‘T406’ 

In order to evaluate the effectiveness of baldcypress reestablishment on 

salt affected soils, the T406 hybrid of baldcypress (Taxodium distichum) and 

Montezuma cypress (Taxodium mucronatum) was used for a previous study at 

this site.  Taxodium X ‘T406’ is a superior clone from the Taxodium Improvement 

Program of the Nanjing Botanical Garden (Creech, 2017).  It is a selection made 

by Professor Yin Yunlong of the Nanjing Botanical Garden from a crop of 

seedlings that were the result of a controlled cross of bald cypress and 

Montezuma cypress.  In cooperation with Nanjing Botanical Garden and Stephen 

F. Austin State University, this clone was named ‘LaNana’ and is commercially 

available through a limited number of nurseries across the Gulf South.  Key 

attributes include no knees, strong salt and alkalinity tolerance, good form, 

tendency to being evergreen and excellent resistance to needle blight.  

Cercospora needle blight, caused by the fungus Passalora sequoia (formerly 

Cercospora sequoia) is a problem on Taxodium, Arizona cypress, arborvitae and 

other other members of the Cupressaceae.     

 Taxodium distichum, commonly known as baldcypress, is a deciduous 

conifer that primarily grows in soils that remain wet or with access to moisture 

year round.  Fully grown T. distichum specimens range from 30 to 37 m in height, 

with a 900 cm to 1.5 m diameter, and have double rows of needles ranging from 

10 to 19 mm in length (Little, 1984).  T. distichum is distributed along streams 
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and lakes throughout the Gulf Coastal plain and southeastern United States, and 

can be found along rivers as far north as Illinois (United States Department of 

Agriculture, 2010).  T. distichum have a known tolerance to flooding due to their 

acclimation to wetland habitats, but perform poorly in highly alkaline soils 

(Creech, et al., 2011).  However, central Texas and more western T. distichum 

specimens are often alkaline tolerant.  Taxodium mucronatum, commonly known 

as Montezuma cypress, is native to Mexico, Guatemala, and southern Texas, 

and grows along rivers, creeks, and lakes.  T. mucronatum is known to have a 

higher salt tolerance than T. distichum as well as a higher tolerance for high 

alkalinity in soils, but struggles with prolonged inundation (Creech, et al., 2011). 

 The hybrid combination of T. distichum and T. mucronatum provides a 

plant that has been shown to display an increased tolerance to both increased 

salt and prolonged inundation (Zhou L. , 2007).  The hybrid selected for this site 

is a hybrid of these plants, and has the designation Taxodium T406, also known 

as Taxodium X ‘LaNana’.  Taxodium T406 displays increased salt and alkalinity 

tolerance, fast growth rate, no knees, and grows at a rate of five to six feet per 

year (Creech, 2015).  Taxodium T302, the first introduced hybrid of T. distichum 

and T. mucronatum, was evaluated for salt tolerance, and was treated with salt 

rates ranging from 0 ppt to 12 ppt.  With no salt treatment, the Na+ concentration 

in the foliage was 0.13 percent, while the greatest salt treatment led to a Na+ 

concentration of 0.35 percent (Zhou, 2007).  These values may be useful in 
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evaluating salt concentrations in the similar hybrid Taxodium T406 located at the 

Moody Gardens site. 

 There is some debate regarding the nomenclature of Taxodium species.  

Previous literature often refers to three separate species of Taxodium: Taxodium 

distichum (baldcypress); T. ascendens (pond cypress); and, T. mucronatum 

(Montezuma cypress).  While the taxonomic relationships among these three 

species, or varieties, of Taxodium remain a source of debate (Tsumura et al., 

1999), the ranges of baldcypress and pond cypress overlap and these two have 

been recognized as possibly being two varieties of T. distichum (Integrated 

Taxonomic Information System, 2009).  At least one source combines all 

Taxodium associates into one species with three, in lieu of just two, botanical 

varieties (Arnold and Denny, 2007), as follows:   

     Taxodium distichum var. distichum (L.) Rich (Baldcypress - BC) 

     Taxodium distichum var. imbricarium (Nutt.) Croom (Pondcypress - PC) 

     Taxodium distichum var. mexicanum  Gordon (Montezuma cypress - MC)   

3.2.2 Quercus virginiana 

 Southern Live Oak (Quercus virginiana) is a popular ornamental tree 

found in the southeastern coastal plains of the United States, and was well 

known as a historically significant but non-native tree on Galveston Island.  Q. 

virginiana is moderately salt-tolerant, and specimens that are found in coastal 
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areas frequently display increased leaf succulence as a result of exposure to salt 

spray (NCRS, 2017).  A study analyzing the salt tolerances of various ornamental 

plants found Q. virginiana to be moderately sensitive to salinity, observing that Q. 

virginiana could survive at soil electrical conductivity levels of 4.4 dS*L-1, while 

not being able to survive at an electrical conductivity levels of 9.4 dS*L-1 

(Miyamoto, 2008). 

Q. virginiana is tolerant of both significant drought and short periods of 

flooding, and has a wide range of tolerance for soil conditions such as pH, soil 

moisture, and compaction. (NCRS, 2017).  Structurally, Q. virginiana displays a 

resistance to hurricane conditions, possibly due to the strength of the wood 

(NCRS, 2017).  Given these traits of Q. virginiana, it is likely that the storm surge 

of Hurricane Ike caused the mortality of the Q. virginiana in Galveston, due to the 

combination of prolonged flooding and high salinity water in areas. 

 In a seedling saltwater tolerance study, it was determined that Q. 

virginiana experienced shoot mortality after exposure to elevated sodium 

concentrations, but that after being flushed with freshwater resprouted (Williams, 

et al., 1998). 

3.2.3 Hibiscus hamabo 

 Hibiscus hamabo is a deciduous halophyte with a known salt tolerance 

that is often found naturally on islands and in coastal sands near sea level in 
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China, Japan, and the Koreas, and is cultivated in India and the Pacific Islands 

(Li, et. al, 2012).  

 Due to their halophytic properties, H. hamabo can tolerate elevated salt 

concentrations, and may even thrive under low-saline conditions.  Li and others 

found the ideal concentration for H. hamabo germination to be 25 mM NaCl, 

while the optimal survival concentration ranged from 5 to 10 mM NaCl.  H. 

hamabo began to display adverse effects on germination at NaCl concentrations 

of 100 mM and a complete cease of germination at 500 mM of NaCl, while at a 

concentration of 100 mM NaCl plant survival was completely inhibited (Li, et al., 

2012).  

3.3 Coastal Factors Inhibiting Plant Growth 

3.3.1 Salinity Stress 

 Damage to plants through exposure to salt in a coastal system is often the 

result of growing in salt affected soils and the impact of salt spray from the 

nearby bodies of salt water.  Salt tolerance levels are typically described as soil 

salinity levels that cause a 25 to 50 percent reduction in plant growth (Miyamoto, 

2008).  For saline soils, damage can occur when the membrane of plant root 

cells, which allows the passing of water but not salts, struggles to bring sufficient 

water into the roots when overwhelmed by salt ions.  In addition, the abundance 

of salt in soils with expanding clays can cause severe compaction as the salt ions 

bind with the clay (Appleton, et al., 2015).  Plant development in most plants is 
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heavily altered by the infiltration of salt ions into soils, with processes such as 

plant germination, growth, and reproduction being reduced.  High salinity can 

cause ion toxicity as well as nutrient deficiency of ions that can no longer be 

taken into the plant due to the excess accumulation of Na+ on the cell walls of the 

plant roots (Shrivastava, 2014). 

 Salts that reach plants through aerial transport can have detrimental 

effects on the establishment and growth of plant species on the coast.  In coastal 

areas, salt is transported through the air as a spray on the wind, where this salt 

spray serves as a natural abiotic selector.  The salt spray deposits the salts on 

the leaves and bodies of plants, immediately damaging species with a very low 

tolerance for salt, while damaging the growth of other species over time as the 

salts accumulate (Griffiths, 2003).  

 Studies have revealed that short term pulses of high salinity are not 

enough to cause significant changes in growth or health of some species, such 

as Taxodium distichum (Zhou & Creech, 2010).  Some studies have shown T. 

distichum seedlings to be moderately salt tolerant, with no reduction in plant 

growth with an addition of 3 g*L-1 saltwater solution over a period of 60 days, 

while showing a decrease in height of 17 percent in plants receiving 10 g*L-1 

saltwater solution over the same period (Pezeshki, 1990).  Some plants exposed 

to elevated sodium concentrations over a short period of time may experience 

some necrosis, but will reflush following a precipitation event that flushes the 
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plants with freshwater (Williams, at al., 1998).  Over time, the effects of chronic 

exposure to high salinity become more pronounced.  In a study performed on 

one year-old T. distichum saplings, it was observed that during the first three 

months of plant growth, plants that were not being exposed to elevated salinity 

were growing at twice the rate of those exposed to 100 mM of sodium solution, 

with the growth rate of the salt-affected plants dropping to 20 percent of control 

plant growth rates after six months of exposure (Stiller, 2009).  The impacts of 

soil salinity on plant growth were notably more severe than the impact of drought.  

 Plants have varying degrees of salt tolerance based on several factors, 

but the ranges for plants are sometimes divided into categories based on 

tolerance for soil electrical conductivity: sensitive (0 to 3 dS/m), moderately 

sensitive (3 to 6 dS/m), moderately tolerant (6 to 8 dS/m), tolerant (8 to 10 dS/m), 

and highly tolerant (more than 10 dS/m) (Miyamoto, 2008).  Halophytes, which 

are plants which grow in elevated salinity conditions and are regularly exposed to 

saltwater intrusion via roots and aerial sodium deposition, are stimulated at low 

salinity concentrations, but display completely inhibited growth at high 

concentrations (Li, et al., 2012).  Salt-tolerant plants exhibit one or several of the 

characteristics that enable them to withstand elevated salt concentrations in the 

soil, air, and groundwater.  Some of these salt-tolerant traits include greater root 

growth, higher efficiency in water uptake, lower Na+ permeability, better root 

osmotic adjustment, and higher root pressure (An, et al., 2003).  Root growth in 
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halophytic plants exposed to salt will vary depending on the species, with either 

stimulation, inhibition, or no change in growth (An, et al., 2003).   

3.3.2 Flooding Stress 

 As climate change leads to global shifts in temperature and sea level, low 

lying islands and coastal wetlands will be at risk of more frequent and destructive 

storm surges (Nicholls, 2004).  Coastal vegetation that is unique to these 

ecosystems is particularly at risk.  While many coastal plants are resistant to 

damage caused by flooding, they are still susceptible to sustained and more 

frequent floods.  T. distichum is a plant that is highly tolerant of flooding and 

waterlogging, but increases in flood depth and duration threaten the existence of 

the plant in some areas, in addition to the risk posed by salinity (Allen, et al., 

1995).  T. distichum seeds do not germinate underwater, and as such cannot 

regenerate in permanent flooded conditions.  In addition, T. distichum growth is 

hindered in water deeper than 1 m, as swamps where permanent flooding is 

present cannot maintain T. distichum populations as compared to swamps where 

intermittent flooding occurs.  T. distichum seedlings that do grow in shallow 

flooding conditions exhibit an initial period of stress as compared to seedlings not 

subject to flooding, with 30 percent reduction in height, 56 percent reduction in 

leaf area, and 51 percent reduction in dry weight (Allen, et al., 1995). 
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3.3.3 Wind Stress 

 In coastal areas, the continuous impact of wind on plants can cause 

detrimental effects on plant growth, as well as the physical appearance of plants.  

In these areas where wind impacts plants, saplings will often grow with a distinct 

bend and branch orientation away from the source of wind, which is known as 

flagging.  This is due to the branches forming an increased surface area for wind 

to catch.  Over time, the trees will bend, as can be seen in the planted trees at 

the Moody Gardens project site.  A strategy for remediating this on Taxodium sp., 

as noted by David Creech at the Texas Forestry Association 104th Annual 

Meeting in 2018, is the removal of all branches on each tree during late winter, 

only leaving a small amount of leaf material on the top of the tree (Creech, 2018).  

A common strategy in China, the surface area that catches wind and allows the 

trees to bend is removed, and the trees can grow vertically with much less 

resistance.  

 In response to high wind speeds, some trees will undergo adaptations for 

certain conditions.  A study on Picea sithchensis revealed that in a case where 

specimens had rooting depth restricted by a water table the trees developed 

structurally altered roots in order to prevent mechanical uprooting.  Some of 

these adaptations included roots developing I-beam shaped cross sections on 

the windward side of the plant, and roots becoming ovoid in shape as distance 

from the tree increased (Nicoll & Ray, 1996).  These adaptations allowed the 

trees to prevent uprooting by increasing the surface area below the ground, 
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securing their position.  It has yet to be determined if changes in root structure 

due to wind stress lead to any changes in sodium uptake through plant roots, 

although an increase in root surface area will increase the potential uptake of 

water and nutrient into the root system.  
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4. Justification 

 The impacts of hurricanes outlast the initial landfall of the storm, with 

frequent lasting damage due to flooding, high wind speeds, and the deposition of 

salt via these vectors.  Although hurricanes contribute the most acute inputs of 

salt in environments, chronic salt also accumulates in coastal environments due 

to aerial deposition.  The infiltration of salt into the soil and groundwater in the 

coastal environments of Galveston Island is not something that is avoidable, but 

a greater understanding of the long-term effects and accumulation of salinity can 

allow for the development of strategies to protect plants from future weather 

events.  The results of this study serve as the base for future projects in the 

Galveston area that aim to protect and maintain native Galveston species.  In 

addition, planted trees that grow successfully during the course of this project 

can be replanted in areas of Galveston where trees were lost during Hurricane 

Ike. 
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5. Methods and Materials 

5.1 Project Site 

The project site was located at the northwest corner of the Moody 

Gardens parking lots, directly south of Offat’s Bayou.  The property is owned by 

Moody Gardens, while funding for the project was provided by the Moody 

Foundation.  The center of the site is located at 29°16'31.8" North, 94°51'32.4" 

West (WGS84).  Immediately south of the study area is Scholes International 

Airport.  Moody Gardens owns the property.  Before the inception of Stephen F 

Austin State University’s joint research projects with Moody Gardens, the site 

was a grassy field, with sparse woody growth.  The soils at the site consist of 

Mustang fine sand covering the southern third of the study area and Madre fine 

sand covering the northern section of the study area (Web Soil Survey, 2018).  

Mustang fine sand (Siliceous, hyperthermic Typic Psammaquents) are poorly 

drained sandy soils with an A horizon (a mineral horizon with an accumulation of 

humified organic material; has a soil absorption ratio (SAR) of approximately 6) 

from 0 to 10 cm and a Cg horizon (a horizon with little to no alteration by 

pedogenic processes and with the presence of strong gleying; has a SAR of 

approximately 6) past 10 cm.  Madre fine sand (Siliceous, hyperthermic Sodic 

Psammaquents) are poorly drained sandy soils with an An horizon (an A horizon 

with an accumulation of exchangeable sodium; has a SAR of approximately 40) 

to 20 cm and a Cng horizon (a C horizon with strong gleying and an 
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accumulation of exchangeable sodium; has a SAR of approximately 16) 

past 20 cm (Buol, 2011).  Given the proximity of the site to the Scholes 

International Airport, it is likely that some of the soils in the study area may have 

been graded or filled in order to create a level surface for the nearby airport. 

5.2 Project Species and Planting Method 

The species used for this study were Taxodium T406 (Taxodium 

distichum-Taxodium mucronatum hybrid), Quercus virginiana (Southern Live 

Oak), and Hibiscus hamabo (Yellow Hibiscus).  For the purpose of a previous 

research study, the trees were planted with different bedding, incorporated 

mulch, and gypsum treatments in order to determine if there were significant 

differences in survival and growth using these treatments.  There were eight 

treatment types, with six replications of each treatment.  The treatments were the 

following: Control Flat, Control Bedded, Mulch Flat, Mulch Bedded, Gypsum Flat, 

Gypsum Bedded, Mulched Gypsum Flat, and Mulched Gypsum Bedded.  The 

plots were placed in random order in two rows roughly 100 m from Offat’s Bayou.  

Each plot contained two trees of each species, placed in a random order.  Soil 

samples were collected during the study to monitor changes in soil chemical 

properties, including soil electrical conductivity and sodium absorption ratio 

(SAR). 
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5.3 Piezometer Construction and Placement 

 Piezometers were placed in a three by three grid covering the study area, 

spaced 25 m apart north by south and 60 m apart east by west.  The 

southernmost row of piezometers was located in-between the plots for this study 

and irrigated plots used for other research.  These irrigated plots utilize raised 

beds, which likely alter the natural flow of surface water runoff.  The WGS84 

coordinates and lengths for each piezometer are displayed in Table 1. 

 

Table 1. World Geodetic System 1984 (WGS84) coordinates and total length for each 
piezometer within the project area on Galveston Island, Texas. 

 

Piezometers were constructed offsite and transported to the Moody 

Gardens study area for installation.  Preliminary data on the depth to the water 

table in the proposed piezometer locations, collected by Elaine Harris in May 

2015, were used to construct the piezometers to the appropriate depth.  In order 

Piezometer ID  Latitude Longitude Piezometer Depth (m) 

1 29.275741 -94.859689 1.03 

2 29.275556 -94.859685 1.25 

3 29.275300 -94.859608 1.36 

4 29.275883 -94.858992 1.30 

5 29.275663 -94.858959 1.40 

6 29.275454 -94.858848 1.51 

7 29.276013 -94.858322 1.47 

8 29.275766 -94.858265 1.22 

9 29.275584 -94.858245 1.40 
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to ensure the collection of sufficient water samples, the piezometers were 

constructed to be 50 cm longer than the known depth to the water table.  Three 

of the piezometers were equipped with Solinst Leveloggers, water level 

dataloggers that can also detect electrical conductivity and water temperature at 

a predetermined interval. The layout of the piezometers, site topography, and a 

general overview of the project site can be seen in Figures 1 through 4. 

Figure 1. Locations of piezometers at the project site. The taxiway of Scholes Field can 
be seen to the south, while Offat’s Bayou can be seen to the north. A channel is visible on 
the eastern boundary of the site.  



27 
 

 

Figure 2. Locations of piezometers at the project site. 2018 Aerial photography was 
provided by the National Agriculture Imagery Program (NAIP).  

 

Figure 3. Locations of piezometers at the project site.  The site map is overlaid on 2017 
Houston-Galveston Area Council Light Detection and Ranging (LiDAR) data, accessed 
through the Texas Natural Resources Information System (TNRIS). 
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Figure 4. General vicinity map showing the project site in relation to Galveston Island, the 
Galveston Bay, the Gulf of Mexico, and other geographic features.  

Each piezometer was constructed out of 3.175 cm Schedule 40 PVC pipe.  

At the bottom of each piezometer, a 25 cm section of 0.25 mm-slotted PVC pipe 

was attached to the main body of the piezometer.  The piezometers that did not 

contain Leveloggers were capped at the top with PVC pipe caps.  The piezometers 

equipped with Leveloggers used a 3.175 cm to 5.08 cm coupling attached to a 15 

cm 5.08 cm diameter PVC pipe, to allow the installation of the Levelogger well cap.  

The Leveloggers were attached to the well cap using a nylon cord. 

 The borehole for each piezometer was dug with a 7.62 cm soil bucket 

auger, until the desired depth was reached.  Pre-washed pea gravel was placed 

into the borehole until a height of 15 cm was filled.  The constructed piezometer 

was placed into the borehole, and the pea gravel was placed into the hole until 
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the slotted section of PVC was covered.  The displaced soil was placed back into 

the borehole, and at the surface excess soil was used to form a compacted soil 

layer to prevent the rundown of precipitation from the perimeter of the 

piezometer.  Normally for piezometer installation, a layer of sodium bentonite is 

placed just below the surface in order to serve as a swelling clay barrier to 

precipitation, but due to the importance of accurate sodium measurements of the 

groundwater, the method using tightly compacted native soil was implemented 

instead.  Surface soil was compacted after each data collection in order to 

prevent the intrusion of precipitation via gaps around the piezometer.  The design 

for the piezometers and the pits are shown in Figure 5.  
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Figure 5. Diagram displaying the design of the piezometers used for collection of 
groundwater data, as well as the design for the piezometer pits.  The dimensions of the 
piezometers and the pits vary based on the location of each point.  Part A displays the 
design of a standard piezometer at the site, used for groundwater sampling and 
measurements.  Part B displays the design for a piezometer to be used in conjunction 
with a Solinst Levelogger. 
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5.4  Leveloggers 

 The Solinst Leveloggers are dataloggers that collect data on water level, 

electrical conductivity and water temperature.  They can be left onsite to collect 

continuous data readings to supplement periodic measurements from the water 

samples.  The Leveloggers were set to collect data at an interval of 30 minutes, 

and ran continuously for the duration of the study.  Data was collected from the 

loggers during the biweekly sample collections in order to ensure the integrity of 

the data, as well as to check for abnormalities.  The three Leveloggers were 

placed in the easternmost piezometers in order to provide continuous 

groundwater data at varying distances from Offat’s Bayou.  

 In order to ensure the collection of accurate conductivity readings, the 

Leveloggers were calibrated using known conductivity solutions before being 

installed.  In order to allow for the greatest detectable range of electrical 

conductivity, the data loggers were calibrated to the 1,413 μS*cm-1 and the 

12,880 μS*cm-1 solutions.  After each data collection, the Leveloggers were 

removed from the piezometers and cleaned with deionized water to prevent the 

accumulation of biological material on the sensors.  

5.5 Groundwater Sampling 

 Groundwater was collected from each of the piezometers every two weeks 

for a period of one year.  Each piezometer was purged before each sample was 

collected in order to obtain a representative sample, and avoid the collection of 
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stagnant groundwater.  Purged groundwater was collected in pails and disposed 

of properly off-site.  Following the purging of each piezometer, a volume of 300 

mL was pumped from the piezometer into sample bottles and brought to the Soil, 

Plant, and Water Analysis Laboratory at Stephen F Austin State University.  The 

groundwater underwent the Standard Water Analysis testing schedule, which 

measures pH, electrical conductivity, carbonate, bicarbonate, sodium, calcium, 

magnesium, potassium, iron, sulfate, chloride, phosphate, and nitrate.  This data 

was used in order to evaluate water chemistry over the entire study. 

 The depth to the water table at each piezometer was determined before 

the sample extraction in order to avoid altering the depth to water table.  The 

depth to the water table was determined to the nearest cm using a Solinst water 

level meter.   

5.6 Weather Data 

 Weather data was collected from the weather station located at Scholes 

Field (KGLS) to determine the occurrence of precipitation events, as well as high, 

low, and average temperatures.  On days with precipitation events, hourly data 

was accessed in order to compare to readings found with the water level meter 

and with the Leveloggers.   

5.7 Measurement of Plant Growth 

 Prior to this project, measurements were taken of the height of each tree, 

as well as the diameter at ground level.  These measurements were collected 
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three times during the course of this study; once during the growing season, in 

July 2017 and 2018, once following the end of the growing season, in November 

2017 and 2018, and final measurements taken in March 2019.  The diameter at 

ground level was collected using two perpendicular measurements determined 

with digital calipers, and averaging these values.  Due to the young age of the 

trees and growing conditions of the project site, the tree height was such that 

using measuring tape was sufficient.  The values found in each season were 

compared to data collected by Elaine Harris during the 2016 to 2017 season.  

With this data, the potential relationships between groundwater conductivity 

levels or amelioration techniques with tree growth were quantified. 

5.8 Analysis of Foliage 

 To determine the presence of salts in the Taxodium hybrid, foliage 

samples were collected from the Taxodium T406 close to the end of the growing 

season to determine Na+ accumulation in the leaves.  

 In order to collect adequate samples, one paper soil sample bag was filled 

with live leaves from a Taxodium specimen.  Leaves were collected from the top 

third of the crown, on the southern facing direction of the tree.  No woody matter 

was collected.  

 Upon collection of the samples, the filled bags were opened and placed in 

a drying oven set to 60˚C to dry.  A sample of four bags was removed every 

three days to be weighed until the bags reached a constant weight.  Upon 
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reaching a constant weight, the samples were ground into a fine powder using a 

Lab Wiley Mill and sent to the Soil, Plant, and Water Analysis Laboratory at 

Stephen F Austin State University and tested for plant nutrient and Na+ 

concentrations.  Data was evaluated for sodium concentrations by sodium 

amelioration technique. 

5.9 Hydraulic Conductivity of Soil 

 Upon completion of groundwater collection, the piezometers were used to 

determine soil hydraulic conductivity in the study area.  The Leveloggers were 

removed and recalibrated for the slug tests, with the sample interval being 

changed from 30 minutes to 2 seconds, the fastest possible sample interval.  

This allowed for a constant stream of data, in order to produce the most accurate 

hydraulic conductivity data.  The Leveloggers were placed into the piezometer, 

and a 0.5 liter slug of deionized water was quickly poured into the piezometer.  

The water table was given time to equilibrate, and the Leveloggers were 

removed for data collection.  This test was conducted on each piezometer and 

gave a complete overview of the hydraulic conductivity of the soil surrounding 

each piezometer.  These tests provided the time that it took for the water level to 

return to 37 percent of the change in water level, which could be used in 

combination with piezometer dimensions to calculate hydraulic conductivity. 



35 
 

5.10 Laboratory Analyses 

All samples were processed by the Soil, Plant, and Water Analysis 

Laboratory at Stephen F Austin State University.  Groundwater samples were 

tested with the laboratory’s regular analysis testing process, which tests for pH, 

conductivity, Na, Ca, Mg, B, K, Fe, carbonate, bicarbonate, sulfate, chloride, 

flouride, phosphate, nitrite, and nitrate.  The lab performed these tests through 

use of an Inductively Coupled Plasma Analyzer and an Ion Chromatograph.  

Foliage samples collected from the Taxodium T406 underwent the plant tissue 

mineral analysis testing schedule, which tests for N, P, K, Ca, Mg, Na, S, Fe, Mn, 

Zn, Cu, B, and C/N analysis.  The analysis of the foliage samples was conducted 

using the Inductively Coupled Plasma Analyzer.  The primary target elements for 

these analyses were sodium for both foliage and groundwater, and pH, electrical 

conductivity, and chloride for groundwater samples.  

5.11 Statistical Analysis 

 Scatterplots were employed to identify potential associations between the 

variables involved in this study.  Following the evaluation of scatterplots, linear 

regression analysis was used to identify correlations and analyze relationships 

between precipitation, groundwater level, and Na+ concentrations.  To evaluate 

the relationships between plant growth and the applied treatments, a Two Way 

ANOVA with Replication was utilized with a significance level, or alpha, of 0.05.  
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6. Results 
 

6.1 Plant Growth 

 A summary of plant growth by species and planting method is shown in 

Table 2 and Figures 6-7.  Measurements for height and mean diameter at 

groundline growth can be found in Appendix B. 

Table 2. Summary of mean diameter at groundline growth for the species of concern (Q. 
virginiana, H. hamabo, and T. T406) over a period of three years, from initial planting in 
April, 2016 to final measurement in March, 2019.  It should be noted that comparisons 
among species may not be notable, due to differences in plant habit. 

Treatment 
Quercus virginiana 

(mm) 
Taxodium 'T406'  

(mm) 
Hibiscus hamabo  

(mm) 
Control Bedded (CB) 39.8 92.9 101.1 
Control Flat (CF) 44.9 82.6 104.8 
Gypsum Bedded (GB) 42.7 89.7 98.3 
Gypsum Flat (GF) 52.7 82.4 102.1 
Mulch Bedded (MB) 45.4 90.5 102.8 
Mulch Flat (MF) 53.6 92.2 101.9 
Mulch + Gypsum Bedded 
(MGB) 44.0 83.9 108.9 
Mulch + Gypsum Flat  
(MGF) 45.8 83.7 97.2 

 

  



37 
 

Table 3. Summary of mean height (or crown diameter for H. hamabo) growth for the 
species of concern (Q. virginiana, H. hamabo, and T. T406) over a period of three years, 
from initial planting in April, 2016 to final measurement in March, 2019.  

Treatment 
Quercus virginiana 

(cm) 
Taxodium 'T406'  

(cm) 
Hibiscus hamabo  

(cm) 
Control Bedded (CB) 114.6 217.4 174.5 

Control Flat (CF) 158.3 209.9 167.5 

Gypsum Bedded (GB) 160.2 237.9 174.5 

Gypsum Flat (GF) 160.3 202.6 177.5 

Mulch Bedded (MB) 129.0 207.8 177.6 

Mulch Flat (MF) 153.8 227.1 172.4 
Mulch + Gypsum Bedded 
(MGB) 

157.9 224.1 177.2 

Mulch + Gypsum Flat  
(MGF) 

171.9 219.5 183.2 

 

 

Figure 6. Mean growth of diameter at groundline for each species over the three year 
duration of the study.  Trees were planted in April of 2016, and final measurements were 
taken in March of 2019.  It should be noted that comparisons among species may not be 
notable, due to differences in plant habit. 
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Figure 7. Average height growth for each species for the three year duration of the study.  
Trees were planted in April of 2016, and final measurements were taken in March of 2019. 

 Differences in average height growth or average diameter at groundline 

growth were negligible between treatment methods.  T. T406 displayed the 

greatest average height growth among all treatment methods, with average 

growth by treatment ranging from 202.63 cm to 237.98 cm. H. hamabo displayed 

the greatest mean groundline diameter growth among all treatment methods, 

with average growth by treatment ranging from 97.21 mm to 108.98 mm. The 

lack of significant differences in growth among the treatments for the 2017 to 

2018 growing season is consistent with results from the previous two growing 

seasons as reported by Harris, 2018. In addition, 291 of the original 296 trees 

survived until the final measurement date of March 4, 2019, leading to a mortality 

of only 1.69 percent.  Plant species in the study area did not have any apparent 
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mortality or growth problems, although many of the plants had a chlorotic 

coloration. 

To evaluate the relationships between plant growth, species, and the 

applied treatments, a Two Way ANOVA with Replication was utilized with a 

significance level, or alpha, of 0.05.  The results of this analysis for plant growth 

in height and diameter are shown in Table 4 and 5. 

Table 4. Analysis of Variance for total plant diameter growth for the three year duration 
of the study with a significance level of 0.05. 

 

 

Table 5. Analysis of Variance for total plant height growth for the three year duration of 
the study with a significance level of 0.05. 

 

There were no significant differences in plant diameter growth among 

species or treatment.  However, a P-value of 1.09E-17 was found for variance for 

height growth for each species.  Therefore, Tukey’s Test was performed to 

 DF SS MS F P-Value F-Crit 

Species 2 783.3 391.7 0.99 0.37 3.03 

Treatment 7 2462.0 351.7 0.89 0.51 2.04 

Residuals 278 108434.5 722.1    

 DF SS MS F P-Value F-Crit 

Species 2 235715.4 117857.7 5.45 1.09E-17 3.03 

Treatment 7 19537.6 2791.1 1.08 0.38 2.04 

Residuals 278 706670.1 4175.6    



40 
 

determine if the difference in mean plant height growth among each species was 

significant.  The results of the Tukey Test is in Table 6. 

Table 6.  Tukey’s Test analysis for total plant height growth among species for the 3 
year duration of the study. 

 

Based on the data in Table 6, it was confirmed that total plant height 

growth was significantly different among the species tested.  However, there 

were no significant differences in plant height or plant diameter growth among 

treatments, and plant diameter growth was not significant different among 

species.  Possible causes for the low mortality and similar growth among 

treatments may be due to freshwater irrigation from nearby research plots, which 

allowed for the plants in this study to receive more water than anticipated.   

6.2 Sodium Concentration in Taxodium T406 

Foliage samples were collected from Taxodium T406 specimens in the 

study plots, as well as from a variety of Taxodium hybrids south of the soil 

amelioration plots.  Elemental concentrations for the T. T406 specimens located 

on the soil amelioration plots are shown in Table 7. The other genotypes, as well 

 Difference Lower Upper P-Adjusted 

H. hamabo – T. 
T406 

-44.29 -69.43 -27.14 <0.0001 

Q. virginiana – 
T. T406 

-69.18 -86.32 -52.03 <0.0001 

Q. virginiana – 
H. hamabo 

-24.89 -42.04 -7.74 0.0021 
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as their nutrient concentrations, are shown in Table 8. The primary element of 

concern for this study was Na+. Na+ concentrations among the amelioration plots 

and genotypes are also shown in Figures 8-9.  

Table 7. Mean foliage elemental concentrations, displayed in mg kg-1, for the Taxodium 
T406 specimens separated by soil amelioration treatment. Foliage samples were collected 
in July, 2018. Samples were analyzed by the Soil, Plant, and Water Analysis Laboratory 
at Stephen F Austin State University. 

Genotype Na+ (mg kg-1) K (mg kg-1) Ca (mg kg-1) Mg (mg kg-1) S (mg kg-1) 

Control Bedded (CB) 8386 10757 11398 3280 1382 

Control Flat (CF) 8690 10653 11065 3383 1305 

Gypsum Bedded (GB) 8530 9778 10118 3235 1259 

Gypsum Flat (GF) 8251 10843 10094 3280 1265 

Mulch Bedded (MB) 9152 11073 10305 3466 1355 

Mulch Flat (MF) 8597 11107 11151 3418 1373 

Mulch + Gypsum Bedded 
(MGB) 

8894 11454 10691 3436 1420 

Mulch + Gypsum Flat  
(MGF) 

8803 11854 10275 3561 1528 

 

 

Table 8. Mean foliage elemental concentrations, displayed in mg kg-1, for the Taxodium 
genotypes within the study area. Foliage samples were collected in July, 2018. Samples 
were analyzed by the Soil, Plant, and Water Analysis Laboratory at Stephen F Austin 
State University. 

Genotype Na (mg kg-1) K (mg kg-1) Ca (mg kg-1) Mg (mg kg-1) S (mg kg-1) 

T. distichum 6413 9270 12295 2958 1882 

T. 'Oaxaca child’ 7237 16744 7703 3023 1814 

T407 9374 9860 12256 3691 1821 

T406 11060 12279 8791 3401 1990 

T405 10579 10852 9454 3210 1853 

T27 8701 11665 9092 3058 1949 
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Genotype Na (mg kg-1) K (mg kg-1) Ca (mg kg-1) Mg (mg kg-1) S (mg kg-1) 

T502 9063 9570 8766 3170 1753 

T406-North 
Plots 

8662 10940 10637 3382 1361 

 

 

 
Figure 8.  Foliage Na+ concentrations among soil amelioration treatments, collected from 
Taxodium T406 foliage samples at the end of the 2018 growing season.  
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Figure 9. Na+ concentrations among genotypes found at the Moody Gardens research 
plots, collected from foliage samples at the end of the 2018 growing season.  

Among the amelioration treatments, the Mulch Flat plots contained T. 

T406 specimens with the highest Na+ concentrations, while the Gypsum Bedded 

plots contained specimens with the lowest Na+ concentrations. Among the 

Taxodium genotypes, the highest Na+ concentrations were found in the T406 

specimens located in the southern research plots, while the lowest Na+ 

concentrations were found in the T. distichum specimens.  Due to sample size, 

these data could not be analyzed statistically. 

To evaluate the relationships between foliage Na+ concentrations and the 

applied soil amelioration treatments, a One Way ANOVA was utilized with a 

significance level, or alpha, of 0.05.  The results of this analysis are shown in 

Table 9.   

0.6413
0.7237

0.9374

1.1060
1.0579

0.8701 0.9063 0.8662

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T. distichum T. 'Oaxaca
child"

T407 T406 T405 T27 T502 T406-North
Plots

N
a 

CO
nc

en
tr

at
io

n 
(%

)

Genotype



44 
 

Table 9. Analysis of Variance for foliage Na+ concentrations in the T. T406 by treatment 
for the three year duration of the study, with a significance level of 0.05. 

 

There was no significant difference in Na+ concentrations among applied 

treatments.  This is consistent with growth data, which also revealed no 

significant differences between the applied treatments. 

To evaluate the relationships between foliage Na+ concentrations among 

genotypes of Taxodium located in the southern research plots of the study area, 

a One Way ANOVA was utilized with a significance level, or alpha, of 0.05.  Due 

to the overwhelming number of T. T406 samples that were available and 

collected from the site, this ANOVA was only performed using the samples 

collected from the genotypes growing south of the applied treatment plots.  

These genotypes were grown in more uniform conditions, and results are likely to 

be more representative in order to compare Na+ concentrations.  The results of 

this analysis are shown in Table 10. 

Table 10. Analysis of Variance for foliage Na+ concentrations in the Taxodium 
genotypes within the study area, with a significance level of 0.05. 

 

 DF SS MS F P-Value F-Crit 

Among Groups 7 6982650.6 997521.5 0.31 0.95 2.11 

Within Groups 88 279003724.2 3170497    

 DF SS MS F P-Value F-Crit 

Among Groups 6 83636096.4 13939349 5.89 0.00045 2.45 

Within Groups 28 66300324.2 2367869    
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As seen in Table 10, there was a statistically significant difference in Na+ 

concentrations of among the genotypes located in the southern research plots.  

Therefore, Tukey’s Test was performed in order to determine which genotypes 

were significantly different.  The results of the Tukey’s Test is shown in Table 11. 

Table 11.  Tukey’s Test analysis for foliage Na+ concentrations among genotypes of 
Taxodium in the study area. 

 

 

 Difference Lower Upper P-Adjusted 

T. distichum –  T. 'Oaxaca child’ 823.99 -2263.17 3911.16 0.977 

T. distichum – T27 2287.89 -799.27 5375.06 0.256 

T. distichum – T405 4166.74 1079.58 7253.91 0.003 
T. distichum – T406 4647.21 1560.04 7734.37 0.009 
T. distichum – T407 2960.89 -126.27 6048.06 0.067 

T. distichum – T502 2649.92 -437.24 5737.09 0.129 

T. ‘Oaxaca child’ – T27  1463.89 -1623.27 4551.06 0.740 

T. ‘Oaxaca child’ – T405  3342.75 255.59 6429.92 0.027 
T. ‘Oaxaca child’ – T406  3823.21 736.05 6910.38 0.008 
1T. ‘Oaxaca child’ – T407  2136.89 -950.27 5224.06 0.329 

T. ‘Oaxaca child’ – T502  1825.93 -1261.24 4913.09 0.511 

T27 – T405 1878.85 -1208.31 4966.02 0.478 

T27 – T406 2359.31 -727.85 5446.48 0.226 

T27 – T407 673.00 -2414.16 3760.17 0.992 

T27 – T502 362.03 -2725.13 3449.19 0.999 

T405 – T406 480.46 -2606.70 3567.63 0.999 

T405- T407 -1205.85 -4293.02 1881.31 0.873 

T405 – T502 -1516.82 - 4603.99 1570.34 0.708 

T406 – T407 -1686.31 -4773.48 1400.85 0.601 

T406 – T502 -1997.28 -5084.45 1089.88 0.407 

T407 – T502 -310.97 -3398.13 2776.19 0.999 
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Data from Table 11 reveals that samples collected from both T. distichum 

and T. “Oaxaca child” contained significantly lower Na+ concentrations than 

samples collected from T405 and T406.  The T406 genotype located in the 

southern research plots was the genotype that was utilized in the northern plots 

that received the applied soil amelioration treatments.  As noted earlier, the T406 

was expected to have increased flooding and salt tolerance due to its 

hybridization between T. distichum and T. mucronatum.  Therefore, it was 

anticipated that foliage samples from T406 would contain lower concentrations of 

Na+, which was not the case in these results.  Nutrient analysis data for the 

foliage samples can be found in Appendix C. 

6.3 Groundwater and Soil 

6.3.1 Hydraulic Conductivity of Soils 

 The hydraulic conductivity of the soil at each piezometer was calculated 

through the use of a 0.5 L slug of water and a Solinst Levelogger. Data capture 

for the Levelogger was set to the fastest possible interval of two seconds. Three 

runs were performed for each piezometer, and the Hvorslev Slug-Test Method 

was employed to determine the hydraulic conductivity at each piezometer 

location.  The formula for the Hvorslev Slug-Test Method can be seen below in 

Equation 1. 
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Equation 1.   The Hvorslev Slug-Test Method. 

𝐾𝐾 =
𝑟𝑟2 ln(𝐿𝐿𝑒𝑒 𝑅𝑅⁄ )

2𝐿𝐿𝑒𝑒𝑡𝑡37
 

Where:  K = hydraulic conductivity 
 r = radius of well casing 
R = radius of filter pack 
Le = length of well screen 
t37 = time for the water level to return to 37 percent   

   of the initial change 

The results of the slug tests are shown in Table 12. The hydraulic 

conductivity of the soil ranged from 0.000169 cm/s to 0.003647 cm/s. Hydraulic 

conductivity varied throughout the study area, although it was less variable as the 

distance to Offat’s Bayou increased.  The hydraulic conductivity of the soil at 

each piezometer may also have been affected by the piezometer construction 

method, which included a filter sleeve to prevent sediment buildup on the slots of 

the piezometer. In addition, the pea gravel aggregate that was used to fill the 

auger hole may have allowed water to filter more quickly from the piezometer. 

Table 12. Hydraulic conductivity of the soil at each piezometer. Data was collected 
through use of 0.5 L slugs of deionized water and a Solinst Levelogger set to record water 
level at a two-second interval. Slug tests were performed in January 2019.  The data was 
analyzed using the Hvorslev Slug-Test Method. 

Piezometer Average Change in 
Depth to Water Table  

(cm) 

Average Time for 37 
Percent Change to Water 

Table, t37  

(s) 

Hydraulic 
Conductivity  

(cm/s) 

1 44.34 35.3 0.003046 

2 43.77 96.7 0.002386 

3 44.72 129.3 0.001061 

4 34.67 35.0 0.003647 
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Table 12 continued. 

Piezometer Average Change in 
Depth to Water Table 

(cm) 

Average Time for 37 
Percent Change to Water 

Table, t37 

(s) 

Hydraulic 
Conductivity 

(cm/s) 

5 31.95 294.7 0.000551 

6 50.17 443.3 0.000215 

7 32.93 954.0 0.000189 

8 27.87 1356.0 0.000169 

9 38.11 27.3 0.003136 

 

6.3.2 Water Quality 
 Groundwater sampling means for the duration of the study are shown in 

Table 13.  A groundwater contour map for the study area is shown in Figure 10.  

The data for individual piezometers are shown in Appendix D. 

Table 13. Means of groundwater sampling data for the Moody Gardens study area, for the duration 
of the study. Water quality parameters are pH, electrical conductivity (EC), Na+, Cl-, and depth to 
water table (DTWT). 

 

Piezometer pH EC (mS/cm) Na+ (mg/L) Cl- (mg/L) DTWT (cm) 

1 7.94 2.54 360.55 728.47 68.8 

2 8.02 2.04 264.92 465.75 72.03 

3 7.89 0.91 114.73 86.43 98.17 

4 7.87 6.33 845.46 2035.14 63.07 

5 8.12 3.02 395.31 775.22 78.39 

6 7.99 1.18 299.93 170.11 95.81 

7 7.78 4.52 688.18 1460.79 60.46 

8 7.78 7.24 962.44 2268.02 84.53 

9 8.10 1.45 324.47 167.47 86.43 



49 
 

 

Figure 10.  Groundwater contour map for the March 16, 2018 to March 30, 2018  
sampling period displaying the groundwater elevation throughout the site in centimeters.  
Note that groundwater elevation is higher towards Offat’s Bayou, indicating that high 
salinity water may be infiltrating into the groundwater in the study area.   

Initial statistical analysis of groundwater samples involved determining the 

strength of correlations between tested parameters.  The strongest positive 

correlations were generally observed between Cl- concentrations and electrical 

conductivity, followed by Na+ concentration and electrical conductivity.   The 

correlation between groundwater Na+ concentrations and depth to water table 

ranged from relatively strong (0.63) and a negligible (0.04).  Table 14 shows the 

mean correlations between each parameter for all piezometers.  Individual 

correlation tables for each piezometer are shown in Appendix D. 
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Table 14.  Correlation statistics summary for the combined nine piezometers. 

 pH 
EC 

(mS/cm) Na+ (mg/L) Cl- (mg/L) 
DTWT 
(cm) 

Precipitation 
(cm) 

pH 1.00      
EC -0.19 1.00     
Na+ 0.08 0.61 1.00    
Cl- -0.28 0.81 0.49 1.00   
DTWT 0.48 0.17 0.37 -0.01 1.00  
Precipitation -0.54 -0.03 -0.09 0.03 -0.49 1.00 

 

Figure 11 shows the average Na+ concentration over the year of study in 

each piezometer through the use of an Inverse Distance Weighted (IDW) model 

to produce Na+ heat maps.  Na+ heat maps with groundwater contours for the 

piezometers during each sampling period can be found in Appendix A.  

 

 
Figure 11.  Heat map displaying average concentrations of Na+ in groundwater in mg/L 
for the duration of the study.  Piezometer 1 was located in the northernmost portion of 
the grid, while Piezometer 9 was located in the southernmost portion of the grid.   
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6.3.3 Solinst Levelogger Data 

 Three Solinst Leveloggers were installed in the eastern piezometers in the 

study area.  The Leveloggers recorded data continuously at a 30 minute interval, 

and produced data for water level, temperature, and electrical conductivity. Water 

level data from each piezometer was adjusted using manual measurements, due 

to limitations of the Levelogger system in a shallow system without barometric 

correction.  Tables 15-17 display summary statistics for the temperature, water 

level, and electrical conductivity data collected from the Leveloggers for the 

duration of the study.  The Levelogger data for water levels and electrical 

conductivity are shown in Appendix E. 

Table 15. Summary statistics for Levelogger temperature measurements collected for 
the duration of the study. 

Piezometer Mean Temperature (˚C) Maximum High 
Temperature (˚C) 

Minimum Low 
Temperature (˚C) 

7 22.03 27.98 13.48 

8 23.01 28.90 14.90 

9 22.64 29.29 15.41 

 

Table 16. Summary statistics for Levelogger water level measurements collected for the 
duration of the study. 

Piezometer Mean Water Level (m) Maximum Water Level (m) Minimum Water Level (m) 

7 11.23 11.81 10.51 

8 10.87 11.67 10.31 

9 10.68 11.52 10.25 
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Table 17. Summary statistics for Levelogger electrical conductivity measurements 
collected for the duration of the study. 

Piezometer Mean Electrical 
Conductivity (µS/cm) 

Maximum Electrical 
Conductivity (µS/cm) 

Minimum Electrical 
Conductivity (µS/cm) 

7 5013.3 20581.0 1267.5 

8 8072.9 10006.0 3387.8 

9 1559.5 2115.2 39.6 

 

There were discrepancies between Levelogger water level calculations 

and manual water level measurements, likely due to the lack of barometric 

correction in the shallow piezometers.  This was determined by calculating the 

difference between the Levelogger reading and the manual measurement, and 

comparing these differences at each sample point.  The difference in depth to 

water level and the Levelogger water level varied between each collection date, 

therefore the Levelogger water level readings were unable to be adjusted for 

accurate data values following the study.  However, the Levelogger water level 

measurements appear to represent changes in tide and major precipitation 

events, and may be useful to indicate trends in associated with these events.  

Levelogger readings for electrical conductivity were closer to laboratory 

determinations, with minor deviations observed throughout the course of the 

study.  These variations are likely due to groundwater fluctuation during 

sampling.  A comparison of tested groundwater electrical conductivity and 

Levelogger measurements for the three piezometers are shown Tables 18-20, 

and graphs displaying these relationships can be seen in Figures 12-14.  Raw 



53 
 

data from the Leveloggers, which displays the fluctuations in electrical 

conductivity, can be found in Appendix E. 

Table 18. Comparison of the mean values of laboratory-tested groundwater electrical 
conductivity and Levelogger measurements of electrical conductivity at the study area 
for Piezometer 7. 

Sampling Period 
Electrical 

Conductivity from 
Levelogger (µS/cm) 

Electrical Conductivity 
from Groundwater 
Samples (µS/cm) 

Difference 

9/29/2017 - 10/13/2017 15527 15950 -423 
10/14/2017 - 10/27/2017 13053 9480 3573 
10/28/2017 -11/10/2017 8727 7140 1587 
11/11/2019 -11/24/2017 6675 5300 1375 
11/25/2017 - 12/8/2017 4624 3640 984 
12/9/2017 - 12/22/2017 3593 3740 -147 
12/23/2017 -1/5/2018 3305 3270 35 
1/6/2018 -1/19/2018 2851 2760 91 
1/20/2018 -2/2/2018 4808 6620 -1812 
2/3/2018 -2/17/2018 4976 5540 -564 
2/18/2018 - 3/2/2018 4322 4030 292 
3/3/2018 - 3/16/2018 3998 3490 508 

3/17/2019 - 3/30/2018 3577 3130 447 
3/31/2018 - 4/13/2018 3502 3010 492 
4/14/2018 - 4/27/2018 3100 2740 360 
4/28/2018 - 5/11/2018 2888 2650 238 
5/12/2018 - 5/25/2018 2890 2510 380 
5/26/2018 - 6/8/2018 2880 2450 430 
6/9/2018 -6/22/2018 3001 2820 181 
6/23/2018 - 7/6/2018 3479 3120 359 
7/7/2018 - 7/20/2018 6701 4190 2511 
7/21/2018 - 8/3/2018 4039 3540 499 
8/4/2018 - 8/17/2018 3466 2940 526 

Averages 5043 4524 518 
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Table 19. Comparison of the mean values of laboratory-tested groundwater electrical 
conductivity and Levelogger measurements of electrical conductivity at the study area 
for Piezometer 8. 

Sampling Period 
Electrical 

Conductivity from 
Levelogger (µS/cm) 

Electrical Conductivity 
from Groundwater 
Samples (µS/cm) 

Difference 

9/29/2017 - 10/13/2017 15527 7700 7827 
10/14/2017 - 10/27/2017 13053 7180 5873 
10/28/2017 -11/10/2017 8727 7220 1507 
11/11/2019 -11/24/2017 6675 6820 -145 
11/25/2017 - 12/8/2017 4624 5920 -1296 
12/9/2017 - 12/22/2017 3593 6750 -3157 
12/23/2017 -1/5/2018 3305 7050 -3745 
1/6/2018 -1/19/2018 2851 6820 -3969 
1/20/2018 -2/2/2018 4808 6340 -1532 
2/3/2018 -2/17/2018 4976 7150 -2174 
2/18/2018 - 3/2/2018 4322 7140 -2818 
3/3/2018 - 3/16/2018 3998 7580 -3582 

3/17/2019 - 3/30/2018 3577 7400 -3823 
3/31/2018 - 4/13/2018 3502 7330 -3828 
4/14/2018 - 4/27/2018 3100 7080 -3980 
4/28/2018 - 5/11/2018 2888 7320 -4432 
5/12/2018 - 5/25/2018 2890 7390 -4500 
5/26/2018 - 6/8/2018 2880 7400 -4520 
6/9/2018 -6/22/2018 3001 6830 -3829 
6/23/2018 - 7/6/2018 3479 7120 -3641 
7/7/2018 - 7/20/2018 6701 8410 -1709 
7/21/2018 - 8/3/2018 4039 8310 -4271 
8/4/2018 - 8/17/2018 3466 8290 -4824 

Averages 5043 7241 -2199 
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Table 20. Comparison of the mean values of laboratory-tested groundwater electrical 
conductivity and Levelogger measurements of electrical conductivity at the study area for 
Piezometer 9. 

Sampling Period 
Electrical 

Conductivity from 
Levelogger (µS/cm) 

Electrical Conductivity 
from Groundwater 
Samples (µS/cm) 

Difference 

9/29/2017 - 10/13/2017 1759 1640 119 
10/14/2017 - 10/27/2017 1896 1699 197 
10/28/2017 -11/10/2017 2070 1771 299 
11/11/2019 -11/24/2017 2044 1796 248 
11/25/2017 - 12/8/2017 1954 1705 249 
12/9/2017 - 12/22/2017 1672 1513 159 
12/23/2017 -1/5/2018 1495 1458 37 
1/6/2018 -1/19/2018 1424 1426 -2 
1/20/2018 -2/2/2018 1402 1448 -46 
2/3/2018 -2/17/2018 1413 1369 44 
2/18/2018 - 3/2/2018 1360 1323 37 
3/3/2018 - 3/16/2018 1336 1332 4 

3/17/2019 - 3/30/2018 1335 1344 -9 
3/31/2018 - 4/13/2018 1389 1349 40 
4/14/2018 - 4/27/2018 1420 1375 45 
4/28/2018 - 5/11/2018 1432 1492 -60 
5/12/2018 - 5/25/2018 362 1342 -980 
5/26/2018 - 6/8/2018 6 1293 -1287 
6/9/2018 -6/22/2018 381 1252 -871 
6/23/2018 - 7/6/2018 1446 1225 221 
7/7/2018 - 7/20/2018 1467 1396 71 
7/21/2018 - 8/3/2018 653 1408 -755 
8/4/2018 - 8/17/2018 962 1430 -468 

Averages 1334 1452 -118 
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Figure 12. Graph displaying the relationship between mean values of laboratory-tested 
groundwater electrical conductivity and Levelogger measurements for electrical 
conductivity for the duration of the study at Piezometer 7. 

 

Figure 13. Graph displaying the relationship between mean values of laboratory-tested 
groundwater electrical conductivity and Levelogger measurements for electrical 
conductivity for the duration of the study at Piezometer 8. 
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Figure 14. Graph displaying the relationship between mean values of laboratory-tested 
groundwater electrical conductivity and Levelogger measurements for electrical 
conductivity for the duration of the study at Piezometer 9.  During the 5/26/2018 to 
6/8/2018 sampling period, water levels in Piezometer 9 dropped below the sensor of the 
Levelogger, and therefore were unable to be determined.  

 

As seen in Tables 18-20 and Figures 12-14, electrical conductivity 

measurements appear to be relatively consistent between the laboratory-tested 

groundwater samples and the Levelogger readings in Piezometers 7 and 9.  

Electrical conductivity measurements were not as similar across methods in 

Piezometer 8, where laboratory-tested groundwater samples had consistently 

higher electrical conductivity after the initial measurements.  
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6.3.4 Weather Data 

 Data was collected from the Scholes Field Weather Station for the 

duration of the study, and summary statistics of the data collected are shown in 

Table 21.  Historical weather data was accessed through AgACIS (Agricultural 

Applied Climate Information System) in order to compare site conditions during 

the study to historical weather data for the site, from 1971 to 2019.  Analysis of 

historical weather data determined that site conditions were generally typical 

during the course of the study.  Average high and low temperatures were within 

1˚ C of average high and low values.  Total precipitation for the year was 134.54 

cm, which is above the average yearly precipitation of 114.48 cm.  However, 

although there was a higher than average amount of precipitation for the duration 

of the study, there were only 41 days in which there was greater than 0.25 cm of 

precipitation, compared to the average 57 days.  This may be due to precipitation 

occurring primarily in fewer, but larger precipitation events.  The comparison of 

weather data for the study duration and historical data can be seen in Tables 22-

23.  
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Table 21. Comparison of temperature data determined during the duration of the study to 
historical weather data.  Data was collected from the weather station located at Scholes Field 
(KGLS) in Galveston Texas.  Historical data referenced includes data from 1971 to 2019. 

Month Average 
High 

Temperature 
(˚C) 

Average High 
Temperatures 
During Study 

(˚C) 

Difference Average Low 
Temperature 

(˚C) 

Average Low 
Temperatures 
During Study 

(˚C) 

Difference 

January 16.61 14.53 2.08 7.49 9.39 -1.90 

February 18.28 21.71 -3.43 15.42 11.33 4.08 

March 21.50 24.16 -2.66 17.56 14.83 2.73 

April 24.89 24.35 0.54 16.87 18.39 -1.52 

May 28.28 29.80 -1.53 23.96 22.50 1.46 

June 31.28 31.81 -0.54 26.78 25.67 1.11 

July 32.11 31.79 0.32 26.40 26.56 -0.16 

August 32.67 32.80 -0.13 27.01 26.72 0.28 

September 30.83 30.04 0.80 25.17 24.67 0.50 

October 27.06 28.48 -1.42 21.43 20.39 1.04 

November 22.11 23.50 -1.39 17.74 15.00 2.74 

December 17.83 17.47 0.36 10.32 10.61 -0.29 

Totals 25.29 25.87 -0.58 19.68 18.84 0.84 
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Table 22. Comparison of precipitation data determined during the duration of the study to 
historical weather data.  Data was collected from the weather station located at Scholes Field 
(KGLS) in Galveston Texas.  Historical data referenced includes data from 1971 to 2019. 

Month Total Monthly 
Precipitation 
During Study 

(cm) 

Average Monthly 
Precipitation 

(cm) 

30% Chance 
Precipitation Less 
Than This Value 

(cm) 

30% Chance 
Precipitation More 
Than This Value 

(cm) 

January 8.43 9.45 5.21 11.51 

February 1.65 5.08 2.31 6.22 

March 3.40 8.28 4.50 10.11 

April 2.43 5.66 2.36 6.91 

May 1.78 7.24 2.26 8.61 

June 12.70 11.43 5.41 13.97 

July 13.36 8.28 3.40 10.06 

August 3.28 11.71 3.74 13.97 

September 62.56 16.56 9.09 20.19 

October 5.79 11.86 5.69 14.48 

November 1.09 9.12 4.72 11.15 

December 18.06 9.80 6.25 11.81 

Totals 134.54 114.48 54.94 138.99 

  



61 
 

Table 23. Weather data for the project area for the 12-month duration of the study, separated into 
the 2-week sampling periods. Data was collected from the weather station located at Scholes 
Field (KGLS) in Galveston Texas.  

Sampling Period Precipitation 
Events (≥0.25 

cm) 

Total 
Precipitation 

(cm) 

Average High 
Temperature 

(˚C) 

Average Low 
Temperature 

(˚C) 

9/29/2017 - 10/13/2017 3 2.42 31.22 25.07 

10/14/2017 - 10/27/2017 2 2.39 27.95 20.38 

10/28/2017 -11/10/2017 1 2.62 25.12 18.85 

11/11/2019 -11/24/2017 0 0.25 22.34 16.43 

11/25/2017 - 12/8/2017 4 13.18 20.83 14.09 

12/9/2017 - 12/22/2017 2 2.39 17.66 10.63 

12/23/2017 -1/5/2018 1 2.49 12.98 5.99 

1/6/2018 -1/19/2018 1 1.75 13.77 6.39 

1/20/2018 -2/2/2018 1 6.68 18.41 11.23 

2/3/2018 -2/17/2018 0 1.09 19.15 12.56 

2/18/2018 - 3/2/2018 0 0.56 24.87 19.10 

3/3/2018 - 3/16/2018 0 0.66 22.50 15.91 

3/17/2019 - 3/30/2018 1 2.74 25.36 19.05 

3/31/2018 - 4/13/2018 0 0.69 23.93 16.55 

4/14/2018 - 4/27/2018 2 1.74 24.48 16.98 

4/28/2018 - 5/11/2018 0 0.61 27.18 20.95 

5/12/2018 - 5/25/2018 0 1.04 29.92 24.25 

5/26/2018 - 6/8/2018 0 0.13 31.59 26.23 

6/9/2018 -6/22/2018 2 12.67 31.87 26.51 

6/23/2018 - 7/6/2018 2 8.99 31.31 26.63 

7/7/2018 - 7/20/2018 1 0.86 31.39 26.63 

7/21/2018 - 8/3/2018 1 3.53 32.66 26.35 

8/4/2018 - 8/17/2018 1 1.45 32.54 26.98 

8/18/2018 -8/31/2018 1 1.83 33.17 27.38 

9/1/2018 - 9/14/2018 9 41.83 30.00 25.16 

9/15/2018 - 9/30/2018 6 19.94 30.39 25.26 

Total 41 134.54   
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 Precipitation data was compared to groundwater Na+ concentrations 

determined during the study revealed no statistically significant correlations 

between groundwater Na+ concentrations and precipitation during the sampling 

period. A summary of the statistical analysis of the relationship between 

groundwater Na+ concentrations and precipitation data can be seen in Table 24, 

and the line fit plots displaying the relationship between groundwater Na+ 

concentrations and precipitation can be seen in Figures 15-23.  The compiled 

linear regression statistics can be found in Appendix F. 

Table 24. Linear regression statistical analysis of the relationship between groundwater 
Na+ concentrations and sampling period sum of precipitation. 

Piezometer Multiple R R2 Standard Error 

1 0.106 0.011 353.17 

2 0.173 0.030 119.59 

3 0.161 0.026 90.34 

4 0.267 0.071 348.71 

5 0.078 0.006 165.34 

6 0.201 0.041 366.06 

7 0.058 0.003 485.99 

8 0.012 0.0001 432.70 

9 0.157 0.025 189.30 
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Figure 15. Line fit plot created from linear regression analysis of the relationship between 
groundwater Na+ concentrations and sampling period sum of precipitation at Piezometer 
1 for the 12-month duration of the study. 

 

Figure 16. Line fit plot created from linear regression analysis of the relationship between 
groundwater Na+ concentrations and sampling period sum of precipitation at Piezometer 
2 for the 12-month duration of the study. 
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Figure 17. Line fit plot created from linear regression analysis of the relationship between 
groundwater Na+ concentrations and sampling period sum of precipitation at Piezometer 
3 for the 12-month duration of the study. 

 

 

Figure 18. Line fit plot created from linear regression analysis of the relationship between 
groundwater Na+ concentrations and sampling period sum of precipitation at Piezometer 
4 for the 12-month duration of the study. 
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Figure 19. Line fit plot created from linear regression analysis of the relationship between 
groundwater Na+ concentrations and sampling period sum of precipitation at Piezometer 
5 for the 12-month duration of the study. 

 

 

Figure 20. Line fit plot created from linear regression analysis of the relationship between 
groundwater Na+ concentrations and sampling period sum of precipitation at Piezometer 
6 for the 12-month duration of the study. 
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Figure 21. Line fit plot created from linear regression analysis of the relationship between 
groundwater Na+ concentrations and sampling period sum of precipitation at Piezometer 
7 for the 12-month duration of the study. 

 

 

Figure 22. Line fit plot created from linear regression analysis of the relationship between 
groundwater Na+ concentrations and sampling period sum of precipitation at Piezometer 
8 for the 12-month duration of the study. 
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Figure 23. Line fit plot created from linear regression analysis of the relationship between 
groundwater Na+ concentrations and sampling period sum of precipitation at Piezometer 
9 for the 12-month duration of the study. 
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7. Discussion 

7.1 Survival and Growth of Taxodium T406 and the Impacts of Sodium  

 Although the previous study for the project was focused on mortality and 

growth of the plant species due to an elevated intake of Na+, there has been 

minimal mortality over the three years among the species planted at the site.  A 

total of five trees, including four Q. virginiana and one H. hamabo, had died 

during the course of the study, despite a lack of freshwater irrigation since the 

beginning of the second growing season. The species analyzed for Na+ 

concentrations in this study, T. T406, had the largest height growth among the 

species, and had no mortality over the course of observation. All three species 

observed displayed minor responses to coastal stressors such as salt intake and 

wind stress, which included noticeable chlorosis and the loss of foliage, and a 

northern sweep away from the Gulf of Mexico. Comparatively, Taxodium 

genotypes immediately south of the project area, which received regular irrigation 

and fertilizer treatments, displayed more typical green coloration, fuller foliage, 

and an apparent increase in resistance to wind stress.   

 ANOVA analysis was performed to evaluate the effects of the applied 

treatments on plant growth among species after the third growing season, where 

it was determined that there were no significant differences in plant height (crown 

diameter for H. hamabo) or diameter growth among soil amelioration treatments, 
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and no significant difference in plant diameter growth among species.  It was 

determined that there had been significant differences in plant height (crown 

diameter for H. hamabo) growth among species.  The T. T406 had significantly 

more height growth over the course of the study than either Q. virginiana or H. 

hamabo.  Possible reasons for T. T406 growing more successfully may be due to 

the robust characteristics of the hybrid allowing it to tolerate the accumulation of 

Na+.  Other possible reasons for the difference in height growth are likely due to 

human error throughout the course of study, which includes separate instances 

of unrequested pruning of the Q. virginiana and H. hamabo by Moody Gardens 

personnel.   

 Comparison of foliage elemental concentrations, groundwater ionic 

concentrations, and previously recorded aerial deposition data allowed for 

evaluation of the uptake of Na+ in T. T406.  The T406 foliage samples revealed 

Na+ percentages ranging from 8251 mg kg-1 to 9151 mg kg-1. However, the 

highest average concentration of Na+ in groundwater throughout the study area 

was approximately 962 mg/L, in Piezometer 8, with average concentrations in the 

piezometers bordering the T. T406 plots ranging from 114 mg/L to 324 mg/L. In a 

study of the effects of salinity on Taxodium genotype growth, Zhou utilized salt 

rates up to 1200 mg/L over the course of her study, and maximum Na+ 

concentrations in the Taxodium specimens were found to be 3500 mg kg-1 (Zhou, 

2007).  It should also be noted that a previous study determined aerial Na+ 

deposition near the Taxodium plots, with accumulated Na+ deposition over a 12-
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month period amounting to 0.35 kg km-1 (Harris, 2019).  Assuming that the 

conditions in this study were representative of natural conditions, this may 

indicate that a major vector of Na+ into the T. T406 is aerial deposition, with 

minimal influence by groundwater.  Alternatively, the T.T406 specimens may 

have higher Na+ concentrations due to accumulation of salts over a longer period 

of time.  The study performed by Zhou was conducted over a period of only 10 

months, while the foliage samples for this study were collected after a period of 

approximately 30 months.  Over this extended period, it is possible that the 

transpiration of water resulted in some Na+ being left in plant tissues, which could 

have resulted in the elevated Na+ concentrations observed in this study. 

 In addition, the Na+ concentrations determined in the foliage samples of 

Taxodium genotypes in the southern research plots revealed varying 

concentrations of Na+.  The northern amelioration plots received pop-up sprinkler 

irrigation for the first year of growth, and the Taxodium were not pruned over the 

course of study.  The southern plots employed several different techniques as 

compared to the northern amelioration plots, including the use of drip irrigation 

and heavy annual pruning.  Foliage elemental concentrations for these 

specimens are shown in Table 8, where Taxodium hybrids and species in these 

southern research plots were sampled and compared to the T. T406 in the 

northern amelioration plots.  One of the specimens sampled was Taxodium 

distichum, which was used to produce the T. T406.  The Na+ concentration 

averages in the T. distichum samples were approximately 6413 mg kg-1, which 
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was less than the Na+ concentration averages in the T. T406 samples from either 

the research plots or amelioration plots (11,060 mg kg-1 and 8662 mg kg-1, 

respectively). It was anticipated that the T. distichum samples would contain 

higher Na+ concentrations, due to T. distichum possessing a lower salt tolerance. 

In this case only the T. T406 samples from the soil amelioration plots had higher 

Na+ concentrations.  One possible explanation for the elevated Na+ 

concentrations in the T. T406 samples is possible adaptation to the saline 

conditions of the site.  The T. T406 specimens are hybrids of T. distichum and T. 

mucronatum, which was intended to produce a hybrid with increased tolerances 

for flooding and saline conditions. As these hybrids are more resistant to saline 

conditions, it is possible they possess a higher tolerance of Na+.  This will be 

discussed again in further detail below. 

7.2 Precipitation and Groundwater Characteristics 

Prior to the installation of piezometers and the collection of groundwater 

data, Galveston Island and the surrounding areas received approximately 58 cm 

of precipitation during the landfall of Hurricane Harvey. This may have altered 

initial groundwater Na+ concentrations due to the irregular conditions.  It was 

expected that with increases in precipitation, a decrease in groundwater Na+ 

would follow, due to the influx of fresh water into the groundwater system.  

However, linear regression analysis comparing groundwater concentrations of 

Na+ and precipitation during the study revealed no direct correlation between the 

two variables.  A possible factor affecting groundwater Na+ concentrations is the 
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intrusion of lateral saltwater into the groundwater.  As seen in Table 24 and 

Figures 15-23, there was not a strong correlation between groundwater Na+ 

concentrations and precipitation.  The maximum R2 value was 0.041, indicating 

that only 4 percent of the variation in Na+ is due to variation in precipitation.  

Therefore, it does not appear that there is a direct relationship between 

groundwater Na+ concentrations and precipitation.  In Table 13, it can be seen 

that the piezometers that were closer in proximity to Offat’s Bayou and the West 

Bay (Piezometers 1, 4, and 7) generally contained higher concentrations of Na+, 

while the piezometers further inland contained lower concentrations of Na+.  It is 

highly likely that these concentrations are due to saltwater infiltrating the 

groundwater from the bay and Gulf of Mexico. 

In a previous study at the site, it was determined that in Galveston, aerial 

deposition of salts is a significant contributor to Na+ accumulation, with a 

significantly larger volume of salts being deposited during precipitation events 

(Harris, 2019).  However, the total amount of Na+ deposited by annual aerial 

input was relatively small, compared to that already in the soils.  As this 

groundwater evaluation study was performed in close proximity to the aerial 

deposition study, it can be assumed that aerial deposition during precipitation 

events may be introducing at least small amounts of Na+ into the groundwater 

that may partially offset the dilution of Na+ from the introduction of freshwater to 

the groundwater.  Due to the variability of the Levelogger water levels, the 

amount of precipitation that reached groundwater following each precipitation 
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event was not able to be determined.  Therefore, the dilution effect caused by the 

introduction of freshwater precipitation to the groundwater could not be 

quantified.   

The groundwater samples collected were generally slightly stained with a 

slight brown hue, with the exception of Piezometer 8.  Throughout the course of 

the study, groundwater from Piezometer 8 displayed unique characteristics, 

including nearly opaque black water and a slow recharge rate.  In addition, the 

groundwater collected from Piezometer 8 produced a strong odor throughout 

most of the year.  Most of the piezometers became habitat for fire ants at some 

point over the course of the study, with Piezometer 8 having the most consistent 

presence throughout the year.  The soil surrounding Piezometer 9 became home 

to a large colony of ants, which may have been responsible for altering the 

quality of the groundwater in the area immediately surrounding the piezometer.  It 

is possible that their tunnels altered the groundwater flow and hydraulic 

conductivity, and that their waste may have resulted in the unusual color of the 

groundwater.  Chemical analyses of the groundwater samples of this piezometer 

revealed higher electrical conductivity, Na+ and Cl+ concentrations, and lower pH 

when compared to the other piezometers. 

The hydraulic conductivity of the soil at each piezometer was determined 

through the use of a slug test, which involved the rapid placement of a 0.5 L 

volume of water into each piezometer, and the measurement of the duration for 
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the water level to equilibrate. Using the Hvorslev Slug-Test Method, the hydraulic 

conductivities for the piezometers were determined to range from 0.000169 cm/s 

to 0.003647 cm/s, which is typical for sandy clay and sandy clay loam soils.  The 

hydraulic conductivity of the soil is such that water can move quickly through the 

soil, notably more so in piezometers 1, 4, and 9. Piezometers 1 and 4 were on 

the northern border of the piezometer grid, and were closest to Offat’s Bayou. 

Both Piezometers 1 and 4 were ponded due to heavy precipitation on multiple 

occasions throughout the course of the study. Piezometer 9, which had the 

highest hydraulic conductivity rating, was located in the southeast corner of the 

piezometer grid, close to the irrigated research plots and the channel bordering 

the project area.  Piezometer 8 had a hydraulic conductivity of 0.000169 cm/s, 

which was the lowest of all determined values.   

The use of the three Solinst Leveloggers provided reliable and accurate 

data for the electrical conductivity and temperature parameters during the course 

of this study.  However, while electrical conductivity measurements were within 

1000 µS/cm for each piezometer, groundwater depth measurements from the 

Levellogger appeared to differ from the manual measurements taken throughout 

the study, with inconsistent differences between manual recorded depth to the 

water table and Levelogger measurements.  This is likely due to the shallowness 

of the study piezometers, which were less than 2 m in depth, as well as the 

absence of barometric correction.  It is possible that the use of deeper 

piezometers would have alleviated the irregularities in water level measurements, 
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due to the mechanism of determining water level depth being better suited for 

piezometers greater than 2 m in depth.  In addition, the Leveloggers would have 

been able to provide more accurate water level measurements through use of a 

Barologger.  The Barologger would have been able to correct any error in water 

level calculation that was observed in the shallow piezometers.  Although the 

data provided by the Leveloggers may not have been providing accurate depth, 

daily fluctuations due to various factors such as precipitation and tidal forces 

were apparent.   

7.3 Variation in Sodium Tolerance among Taxodium Genotypes 

As a part of this study, foliage samples were collected from each of the T. 

T406 specimens in the soil amelioration treatment plots and tested for 

concentrations of Na+ and other elements.  As with plant growth, there were no 

significant differences in Na+ concentrations among the applied treatments.  This 

may be due to the irrigation of the plots for an extended period of time during the 

initial stages of the study, which may have leached out some of the accumulated 

salts.  In addition to comparing the Na+ concentrations among the soil 

treatments, samples were also taken from seven Taxodium species and hybrids, 

including another series of T. T406 specimens, which were tested for 

concentrations of Na+ and other elements.  The Taxodium hybrids were not 

originally within the scope of this study, and received regular irrigation and 

maintenance.  The individuals from these groups displayed notably healthier 

characteristics, including more typical green coloration and fuller foliage.  Each 
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tree on the site was sampled, resulting in five samples from each group total.  

The Taxodium species and hybrids, as well as their elemental concentrations, 

are shown in Table 8. 

 Given that the T. T406 is a hybrid that was selected due to its expected 

higher tolerance to Na+ and flooding, it was expected that T. T406 samples would 

have lower Na+ concentrations compared to the other groups on the southern 

plots.  Shown in Table 8 and Figure 9, the T. T406 was determined to contain 

the highest concentrations of Na+ among the groups.  Most notably, the T. T406 

contained higher Na+ concentrations than the T. distichum, which is a species 

known to struggle in saline conditions and was expected to have higher Na+ 

concentrations (Creech, et al., 2011).  In addition, the T. T406 on the northern 

plots contained lower Na+ concentrations, by more than 0.24 percent, than the T. 

T406 on the southern plots.  The T. T406 on the southern plots, despite 

containing significantly higher concentrations of Na+, did not appear to exhibit 

any characteristics indicating saline stress.  A possible explanation for the 

comparatively elevated Na+ concentrations is that the increased Na+ tolerance of 

the T. T406 allows for the plant to accumulate and store higher concentrations of 

Na+, as opposed to removing Na+ at a higher rate or preventing Na+ from 

entering plant tissue.  This increased Na+ tolerance may explain why the T. T406 

specimens on the northern plots did not possess the same visual health as the T. 

T406 on the southern plots, but did not seem to display inhibited growth.    
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It is possible that these results may be unrepresentative due to small 

sample size.  There were only five specimens of each of the Taxodium in the 

southern plots, therefore any outliers may have skewed the mean 

concentrations.  A follow up study on the mechanism of Na+ tolerance in 

Taxodium hybrids may be able to provide a more detailed explanation of how 

these hybrids tolerate the accumulation of Na+.   
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8. Conclusions  

 Among the three species studied for mortality in saline conditions, 

survivorship was high, and these plant species have continued to grow through 

their third growing season while displaying faint signs of salt stress. Soil 

amelioration treatments with combinations of gypsum, mulching, or bedding did 

not create a significant change in growth, but there was a significant difference in 

plant height growth among species.  This variation may be due in part to 

inadvertent trimming of the specimens early in the establishment stage. 

Na+ concentrations among the T. T406 specimens was not significantly 

different among the applied soil amelioration treatments.  A direct correlation 

between groundwater Na+ concentrations and precipitation could not be 

established.  It was expected that increased precipitation would bring an influx of 

freshwater into the system and dilute the Na+ concentration of the groundwater.  

However, the amount of precipitation that actually reached groundwater was 

unable to be determined, and past research of the study area has revealed that 

precipitation events deposit a small amount of Na+ into the soil and groundwater, 

with annual Na+ deposition occurring during a typical year being equivalent to 

0.39 percent of the total Na+ quantified in the 10 cm of soil immediately above the 

groundwater (Harris, 2019).  Therefore, it is unlikely that Na+ concentrations in 

the groundwater are affected by precipitation. 
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A series of genotypes of Taxodium were compared to evaluate the 

difference in Na+ concentrations among species.  It was expected that T. T406 

would contain comparatively low Na+ concentrations due to being a hybrid 

designed to tolerate saline conditions.  It was determined that the T. distichum 

group contained lower Na+ concentrations than the T. T406 group, which 

suggests that the Na+ tolerance of the T. T406 may have mechanisms other than 

removing Na+ efficiently or blocking Na+ entry into plant tissue.  Due to the scale 

of this portion of the study, a follow up study on the mechanism of Na+ tolerance 

in Taxodium hybrids may provide a more complete understanding of Na+ 

tolerance in the species. 

  



80 
 

9. Literature Cited 
Allen, J. A., Pezeshki, S. R., & Chambers, J. L. (1995). Interaction of flooding and 

salinity stress on baldcypress (Taxodium distichum). Tree Physiology, 
307-313. 

An, P., Inanaga, S., Li, X., Shimizu, H., & Tanimoto, E. (2003). Root 
characteristics in salt tolerance. Root Research, 125-132. 

Appleton, B., Greene, V., Smith, A., French, S., Kane, B., Fox, L., . . . Gilland, T. 
(2015). Trees and Shrubs that Tolerate Saline Soil and Salt Spray Drift. 
Virginia Cooperative Extension. 

Arnold, M. A., & Denny, G. C. (2007). Taxonomy and Nomenclature of 
Baldcypress, Pondcypress, and Montezuma Cypress; One, Two or Three 
Species? HortTechnology 17, 125-127. 

Barlow, P. M., & Reichard, E. G. (2010). Saltwater intrusion in coastal regions of 
North America. Hydrogeology Journal, 247-260. 

Buol, S. (2011). Soil Genesis and Classification. Ames: Wiley-Blackwell. 

Creech, D. (2015). SFA Gardens - Taxodium X LaNana. Retrieved October 
2018, from Stephen F Austin Department of Forestry and Agriculture: 
http://sfagardens.sfasu.edu/images/files/Documents/Taxodium%20X%204
06.pdf 

Creech, D. (2017). Taxodium X 'LaNana' - Born in America and Mexico, 
Improved in China. Retrieved from 
https://dcreechsite.com/2017/01/03/taxodium-x-lanana-born-in-america-
and-mexico-improved-in-china/ 

Creech, D. (2018, October 17). Texas Forestry Association Presentation. 
Galveston, Texas, USA. 

Creech, D., Zhou, L., Yunlong, Y., & Eguiluz-Piedra, T. (2011). Can Taxodium Be 
Improved? Arnoldia, 12-20. 

Gardner, L. R., Michener, W. K., Blood, E. R., Williams, T. M., Lipscomb, D. J., & 
Jefferson, W. H. (1989). Ecological Impact of Hurricane Hugo—
Salinization of a Coastal Forest. Journal of Coastal Research, 301-317. 



81 
 

Griffiths, M. (2003). Salt spray differentially affects water status, necrosis, and 
growth in coastal sandplain heathland species. American Journal of 
Botany, 1188-1196. 

Harris, E. (2019). Soil Amelioration and Plant Establishment on Sodium Affected 
Soils on Galveston Island, Texas. Nacogdoches, Texas: Stephen F. 
Austin State University, Department of Environmental Science. 

Integrated Taxonomic Information System. (2009). Retrieved from 
http:www.itis.gov/index.html 

Kasmarek, M. (2012). Hydrogeology and simulation of groundwater flow and 
land-surface subsidence in the northern part of the Gulf Coast aquifer 
system, Texas, 1891-2009. US Geological Survey Scientific Investigations 
Report 2012. 

Kerr, R. (1977). Saltwater Intrusion in the United States. Ada, Oklahoma: United 
States Environmental Protection Agency. 

Li, J., Liao, J., Guan, M., Wang, E., & Zhang, J. (2012). Salt Tolerance of 
Hibiscus hamabo seed;omhs: a candidate halophyte for reclamation 
areas. Acta Physiologiae Plantarum, 1747-1755. 

Little, E. (1984). The Audobon Society Field Guide to North American Trees. 
New York, New York: Alfred A. Knopf, Inc. 

Middleton, B. (2009). Effects of Hurricane Katrina on the Forest Structure of 
Taxodium Distichum Swamps of the Gulf Coast, USA. WETLANDS, 80-
87. 

Middleton, B. (2016). Effects of salinity and flooding on post-hurricane 
regeneration potential in coastal wetland vegetation. American Journal of 
Botany, 1420-1435. 

Miyamoto, S. (2008). Salt tolerance of landscape plants common to the 
southwest. Texas Water Resources Institute. 

Natural Resources Conservation Service. (2017, November). Plant Guide: Live 
Oak, Quercus virginiana. Retrieved from United States Departmemt of 
Agriculture: https://plants.usda.gov/plantguide/pdf/pg_quvi.pdf. 



82 
 

Nicholls, R. (2004). Coastal flooding and wetland loss in the 21st century: 
changes under the SRES climate and socio-economic scenarios. Global 
Environmental Change, 69-86. 

Nicoll, B. C., & Ray, D. (1996). Adaptive growth of tree root systems in response 
to wind action and site conditions. Tree Physiology, 891-898. 

Pezeshki, S. (1990). A comparative study of the response of Taxodium distichum 
and Nyssa aquatica seedlings to soil anaerobiosis and salinity. Forest 
Ecology and Management, 531-541. 

Shrivastava, P. a. (2014). Soil salinity: A serious environmental issue and plant 
growth promoting bacteria as one of the tools for its alleviation. Saudi 
Journal of Biological Sciences, 123-131. 

Soil Survey Staff. (n.d.). Web Soil Survey. Retrieved from Natural Resources 
Conservation Service, United States Department of Agriculture: 
https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx 

Stiller, V. (2009). Soil salinity and drought alter wood density and vulnerability to 
xylem cavitation of baldcypress (Taxodium distichum (L.) Rich.) seedlings. 
Environmental and Experimental Botany, 164-171. 

Texas Forest Service. (2009). Hurricane Ike Street Tree Survey Report and 
Recommendations. Galveston, TX: Texas Forest Service. 

Tsumura, Y. N., Tomaru, Y., Suyama, & S., B. (1999). Genetic diversity and 
differentiation of Taxodium in the south-eastern United States using 
cleaved amplified polymorphic sequences. Heredity 83, 229-238. 

United States Department of Agriculture. (2010, January 2). Taxodium distichum: 
Bald Cypress. Retrieved from USDA Plant Guide: 
https://plants.usda.gov/plantguide/pdf/pg_tadi2.pdf 

Wannakomol, A. (2005). Soil and groundwater salinization problems in the 
Khorta Plateau, NE Thailand (Dissertation). Berlin, Freie Universiẗat, 55-
80. 

Williams, K., Meads, M. V., & Sauerbrey, D. A. (1998). The Roles of Seedling 
Salt Tolerance and Resprouting in Forest Zonation on the West Coast of 
Florida, USA. American Journal of Botany, 1745-1752. 



83 
 

Yan, S., Yu, S., Yu-bai, W., De-feng, P., She, D., & Ji, J. (2014). Seasonal 
Variations in Groundwater Level and Salinity in Coastal Plain of Eastern 
China Influenced by Climate. Journal of Chemistry. 

Zhou, L. (2007, May). Salt tolerance, propogation and provenance evaluation of 
Taxodium as a landscape and coastal wetland tree. Nacogdoches, Texas, 
United States of America: Stephen F Austin State University. 

Zhou, L., & Creech, D. (2010). Can We Improve the Salinity Tolerance of 
Genotypes of Taxodium by Using Varietal and Hybrid Crosses? Hort 
Science. 

 

 

 

  



84 
 

10. Appendices 
 

 

 

 

 

 

 

 

 

 

 

 

Appendix A – Groundwater Contour and Heat Maps 
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Figure A-1.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for the 
sampling period of September 30, 2017 through October 13, 2017. 
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Figure A-2.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for the 
sampling period of October 13, 2017 through October 27, 2017. 
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Figure A-3.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for the 
sampling period of October 27, 2017 through November 10, 2017. 
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Figure A-4.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for the 
sampling period of November 10, 2017 through November 24, 2017. 
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Figure A-5.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for the 
sampling period of November 24, 2017 through December 8, 2017. 
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Figure A-6.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for the 
sampling period of December 8, 2017 through December 22, 2017. 
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Figure A-7.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for the 
sampling period of December 22, 2017 through January 5, 2018. 
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Figure A-8.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for the 
sampling period of January 5, 2018 through January 19, 2018. 
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Figure A-9.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for the 
sampling period of January 19, 2018 through February 2, 2018. 
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Figure A-10.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for 
the sampling period of February 2, 2018 through February 17, 2018. 
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Figure A-11.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for 
the sampling period of February 17, 2018 through March 2, 2018. 
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Figure A-12.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for 
the sampling period of March 2, 2018 through March 16, 2018. 
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Figure A-13.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for 
the sampling period of March 16, 2018 through March 30, 2018. 
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Figure A-14.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for 
the sampling period of March 30, 2018 through April 13. 2018. 
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Figure A-15.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for 
the sampling period of April 13, 2017 through April 27, 2018. 
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Figure A-16.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for 
the sampling period of April 27, 2018 through May 11, 2018. 
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Figure A-17.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for 
the sampling period of May 11, 2018 through May 25, 2018. 
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Figure A-18.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for 
the sampling period of May 28, 2018 through June 8, 2018. 
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Figure A-19.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for 
the sampling period of June 8, 2018 through June 22, 2018. 
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Figure A-20.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for 
the sampling period of June 22, 2018 through July 6, 2018. 
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Figure A-21.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for 
the sampling period of July 6, 2018 through July 20, 2018. 
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Figure A-22.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for 
the sampling period of July 20, 2018 through August 3, 2018. 
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Figure A-23.  Heat map displaying concentrations of Na+ in groundwater in mg/L compared to groundwater contour map for 
the sampling period of August 3, 2018 through August 17, 2018. 
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Appendix B – Additional Plant Growth Data 
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Table B-1.  Initial and final groundline diameter measurements for each plant at 
the project site, in addition to total growth for each plant.  Initial measurements 
were taken March 15, 2016, and final measurements were taken March 4, 2019.  
Data is organized by applied treatment. 

Treatment Species Initial Groundline 
Diameter 

Measurement (mm) 

Final Groundline 
Diameter 

Measurement (mm) 

Total Growth 

(cm) 

CF BC 54.24 83.95 29.71 

CF LO 18.75 36.6 17.85 

CF HH 52.29 129.5 77.21 

CF BC 44.78 64.55 19.77 

CF LO 19.43 34.2 14.77 

CF HH 41.34 91.85 50.51 

CF HH 47.46 109.55 62.09 

CF HH 40.91 140.55 99.64 

CF LO 27.68 56.8 29.12 

CF BC 66.23 123.15 56.92 

CF BC 45.81 66 20.19 

CF LO 25.61 49.6 23.99 

CF LO 22.07 49.9 27.83 

CF HH 57.49 101 43.51 

CF HH 63.28 111.6 48.32 

CF BC 54.9 72.8 17.9 

CF BC 49.97 95.05 45.08 

CF LO 22.7 70.1 47.4 

CF LO 21.99 44.25 22.26 

CF HH 56.43 112.055 55.625 

CF BC 47.74 106.985 59.245 

CF LO 16.83 63.145 46.315 
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Treatment Species Initial Groundline 
Diameter 

Measurement (mm) 

Final Groundline 
Diameter 

Measurement (mm) 

Total Growth 

(cm) 

CF BC 52.02 121.785 69.765 

CF HH 48.26 86.62 38.36 

CF LO 32.9 78.755 45.855 

CF BC 61.35 113.495 52.145 

CF HH 48.48 117.515 69.035 

CF LO 19.55 0 -19.55 

CF BC 46.39 96.015 49.625 

CF HH 56.85 107.005 50.155 

CF LO 21.14 50.23 29.09 

CF BC 52.55 108.25 55.7 

CF LO 26.54 109.745 83.205 

CF HH 47.84 85.76 37.92 

CF HH 52.74 117.25 64.51 

CF BC 42.42 85.76 43.34 

CB BC 47.98 84.95 36.97 

CB HH 54.72 116.75 62.03 

CB BC 42.88 81.4 38.52 

CB HH 48.29 108.8 60.51 

CB LO 16.26 0 -16.26 

CB LO 19.87 37.5 17.63 

CB LO 24.03 43 18.97 

CB BC 50.95 81.4 30.45 

CB BC 47.92 105.6 57.68 

CB HH 51.72 104.8 53.08 

CB LO 22.52 45.5 22.98 

CB HH 56.85 107.95 51.1 

Table B-1 continued. 
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Treatment Species Initial Groundline 
Diameter 

Measurement (mm) 

Final Groundline 
Diameter 

Measurement (mm) 

Total Growth 

(cm) 

CB LO 17.22 0 -17.22 

CB HH 42.16 105 62.84 

CB BC 63 103.35 40.35 

CB LO 25.28 55.6 30.32 

CB BC 62.51 144.5 81.99 

CB HH 67.1 88.5 21.4 

CB LO 24.79 58.165 33.375 

CB BC 52.21 115.585 63.375 

CB HH 46.52 109.59 63.07 

CB LO 31.57 99.545 67.975 

CB BC 59.9 106.52 46.62 

CB HH 52.1 98.635 46.535 

CB HH 62.72 120.175 57.455 

CB LO 22.14 36.23 14.09 

CB HH 50.21 113.505 63.295 

CB LO 24.91 53.585 28.675 

CB BC 50.38 105.745 55.365 

CB BC 62.92 110.255 47.335 

CB BC 53.47 127.785 74.315 

CB LO 25.81 77.485 51.675 

CB HH 55.78 94.27 38.49 

CB LO 60.42 83.255 22.835 

CB BC 50.75 108.23 57.48 

CB HH 56.98 109.495 52.515 

GF HH 48.95 110.25 61.3 

GF LO 21.83 52.1 30.27 

Table B-1 continued. 
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Treatment Species Initial Groundline 
Diameter 

Measurement (mm) 

Final Groundline 
Diameter 

Measurement (mm) 

Total Growth 

(cm) 

GF HH 44.49 125.45 80.96 

GF LO 23.33 69.1 45.77 

GF BC 48.98 102.5 53.52 

GF BC 36.04 99.4 63.36 

GF LO 23.08 49.45 26.37 

GF HH 58.03 120.5 62.47 

GF BC 45.09 75.5 30.41 

GF BC 59.42 96.85 37.43 

GF LO 27.98 63.5 35.52 

GF HH 37.11 79.95 42.84 

GF LO 22.43 74.3 51.87 

GF HH 51.6 114 62.4 

GF HH 58 93.5 35.5 

GF BC 56.94 90 33.06 

GF LO 26.33 81.605 55.275 

GF BC 51.6 72.065 20.465 

GF HH 66.17 105.575 39.405 

GF LO 20.51 64.495 43.985 

GF HH 54.5 101.37 46.87 

GF BC 58.69 106.51 47.82 

GF LO 22.02 64.995 42.975 

GF BC 49.57 79.37 29.8 

GF HH 54.54 113.495 58.955 

GF LO 15.76 32.875 17.115 

GF BC 55.15 114.895 59.745 

GF LO 19.6 57.02 37.42 

Table B-1 continued. 
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Treatment Species Initial Groundline 
Diameter 

Measurement (mm) 

Final Groundline 
Diameter 

Measurement (mm) 

Total Growth 

(cm) 

GF BC 50.55 110.525 59.975 

GF HH 50.16 135.01 84.85 

GF LO 29.72 74.9 45.18 

GF HH 52.53 97.505 44.975 

GF BC 44.81 83.16 38.35 

GF LO 23.58 56.075 32.495 

GF BC 69.66 115.865 46.205 

GF HH 30.89 85.555 54.665 

GB HH 43.94 121.9 77.96 

GB BC 58.62 107.5 48.88 

GB BC 57.13 99.9 42.77 

GB HH 57.09 118 60.91 

GB LO 19.27 68.75 49.48 

GB LO 19.87 65.25 45.38 

GB LO 13.99 74.75 60.76 

GB LO 23.43 44.75 21.32 

GB HH 45.81 134.5 88.69 

GB BC 50.42 81.7 31.28 

GB HH 60.13 100.05 39.92 

GB BC 41.95 63.5 21.55 

GB HH 48.02 111.05 63.03 

GB BC 63.17 104 40.83 

GB LO 24.3 37.5 13.2 

GB HH 34.8 96 61.2 

GB LO 18.95 58.75 39.8 

GB BC 66.41 107.3 40.89 

Table B-1 continued. 
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Treatment Species Initial Groundline 
Diameter 

Measurement (mm) 

Final Groundline 
Diameter 

Measurement (mm) 

Total Growth 

(cm) 

GB LO 26.25 39.24 12.99 

GB HH 43.29 89.515 46.225 

GB HH 50.27 87.47 37.2 

GB LO 21.91 29.42 7.51 

GB BC 39.86 124.665 84.805 

GB BC 61.2 100.445 39.245 

GB LO 21.88 40.755 18.875 

GB LO 21.14 47.8 26.66 

GB HH 45.47 108.115 62.645 

GB HH 53.38 94.79 41.41 

GB BC 48.15 95.64 47.49 

GB BC 54.3 101.29 46.99 

GB LO 22.3 53.755 31.455 

GB LO 28.96 56.05 27.09 

GB HH 43.94 97.9 53.96 

GB BC 62 132.17 70.17 

GB HH 46.48 90.05 43.57 

GB BC 49 106 57 

MF LO 19.08 62.65 43.57 

MF HH 56.09 139.485 83.395 

MF LO 21.7 58.35 36.65 

MF BC 51.11 111.515 60.405 

MF HH 55.14 130.055 74.915 

MF BC 45.89 93.575 47.685 

MF HH 48.67 110.8 62.13 

MF HH 38.46 97.35 58.89 

Table B-1 continued. 
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Treatment Species Initial Groundline 
Diameter 

Measurement (mm) 

Final Groundline 
Diameter 

Measurement (mm) 

Total Growth 

(cm) 

MF LO 11.26 46.5 35.24 

MF BC 45.3 105.6 60.3 

MF BC 44.18 99.5 55.32 

MF LO 20.76 78 57.24 

MF HH 48.7 95.115 46.415 

MF BC 47.91 95.405 47.495 

MF BC 48.43 96.35 47.92 

MF LO 17.23 64.545 47.315 

MF LO 22.74 52.145 29.405 

MF HH 57.9 105.34 47.44 

MF HH 48.75 95.905 47.155 

MF BC 39.09 101.51 62.42 

MF HH 45.21 100.19 54.98 

MF LO 15.1 95.155 80.055 

MF LO 21.17 108.565 87.395 

MF BC 39.64 118.48 78.84 

MF LO 22.01 39.29 17.28 

MF HH 47.33 89.505 42.175 

MF BC 47.28 98.74 51.46 

MF BC 51.27 116.435 65.165 

MF LO 20.72 36.15 15.43 

MF HH 46.51 100.44 53.93 

MF BC 41.35 97.265 55.915 

MF BC 43.66 119.99 76.33 

MF HH 44.45 115.455 71.005 

MF HH 52.96 107.465 54.505 

Table B-1 continued. 
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Treatment Species Initial Groundline 
Diameter 

Measurement (mm) 

Final Groundline 
Diameter 

Measurement (mm) 

Total Growth 

(cm) 

MF LO 7.97 0 -7.97 

MF LO 31.69 90.255 58.565 

MB LO 16.53 28.95 12.42 

MB BC 57.83 81.9 24.07 

MB HH 56.43 102 45.57 

MB HH 72.07 111.5 39.43 

MB BC 50.26 78.95 28.69 

MB LO 24.67 42.7 18.03 

MB LO 24.37 61 36.63 

MB HH 60.68 114.5 53.82 

MB BC 51.71 109.5 57.79 

MB HH 64.15 142 77.85 

MB BC 35.46 109.05 73.59 

MB LO 18.94 49.6 30.66 

MB LO 22.57 43.92 21.35 

MB LO 22.45 71.065 48.615 

MB HH 67.48 128.56 61.08 

MB BC 59.24 79.095 19.855 

MB BC 53.34 92.605 39.265 

MB HH 51.93 83.88 31.95 

MB LO 28.95 86.3 57.35 

MB BC 54.27 97.455 43.185 

MB LO 21.87 52.28 30.41 

MB HH 51.41 92.705 41.295 

MB HH 40.25 85.975 45.725 

MB BC 65.98 140.87 74.89 

Table B-1 continued. 
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Treatment Species Initial Groundline 
Diameter 

Measurement (mm) 

Final Groundline 
Diameter 

Measurement (mm) 

Total Growth 

(cm) 

MB BC 53.03 111.255 58.225 

MB LO 23.97 57.525 33.555 

MB LO 15.76 24.6 8.84 

MB BC 52.19 117.765 65.575 

MB HH 40.65 102.535 61.885 

MB HH 43.74 118.495 74.755 

MB HH 44.3 103.94 59.64 

MB BC 55.84 109.97 54.13 

MB HH 42.74 110.05 67.31 

MB LO 25.69 61.55 35.86 

MB LO 29.1 74.545 45.445 

MB BC 58.62 114.75 56.13 

MGF LO 23.94 47.3 23.36 

MGF HH 48.88 100 51.12 

MGF BC 49.23 86.95 37.72 

MGF HH 47.5 96.55 49.05 

MGF BC 29.29 91.5 62.21 

MGF LO 23.54 64.25 40.71 

MGF HH 45.49 99.9 54.41 

MGF BC 35.84 72.55 36.71 

MGF LO 21.18 42 20.82 

MGF HH 52.9 103.45 50.55 

MGF BC 50.52 130 79.48 

MGF LO 29.79 72.05 42.26 

MGF HH 60.16 114.135 53.975 

MGF LO 18.7 31.045 12.345 

Table B-1 continued. 
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Treatment Species Initial Groundline 
Diameter 

Measurement (mm) 

Final Groundline 
Diameter 

Measurement (mm) 

Total Growth 

(cm) 

MGF LO 19.97 37.05 17.08 

MGF BC 50.01 85.785 35.775 

MGF BC 54.68 100.75 46.07 

MGF HH 59.88 119.405 59.525 

MGF HH 64.43 97.01 32.58 

MGF LO 21.17 36.56 15.39 

MGF BC 52.75 82.605 29.855 

MGF LO 23.83 62.785 38.955 

MGF BC 49.71 90.7 40.99 

MGF HH 48.23 84.55 36.32 

MGF BC 51 110.05 59.05 

MGF HH 71.8 128.455 56.655 

MGF BC 30.75 109.445 78.695 

MGF HH 0 82.31 82.31 

MGF LO 24.16 55.25 31.09 

MGF LO 19.31 67.805 48.495 

MGF LO 22.52 66.895 44.375 

MGF HH 55.24 94.255 39.015 

MGF HH 50.49 108.01 57.52 

MGF BC 51.66 93.55 41.89 

MGF BC 52.42 97.005 44.585 

MGF LO 27.55 66.515 38.965 

MGB LO 15.39 18.85 3.46 

MGB HH 71.82 139.15 67.33 

MGB LO 22.31 57.205 34.895 

MGB BC 47.43 54.615 7.185 

Table B-1 continued. 
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Treatment Species Initial Groundline 
Diameter 

Measurement (mm) 

Final Groundline 
Diameter 

Measurement (mm) 

Total Growth 

(cm) 

MGB HH 42.58 98.75 56.17 

MGB BC 58.03 83 24.97 

MGB LO 25.99 80.45 54.46 

MGB BC 34.7 102.75 68.05 

MGB HH 59.64 94.7 35.06 

MGB LO 24.93 54.25 29.32 

MGB HH 53.27 138.5 85.23 

MGB BC 57.31 85.5 28.19 

MGB LO 21.5 70 48.5 

MGB BC 53.97 88.15 34.18 

MGB LO 22.41 49.5 27.09 

MGB HH 46.14 118.5 72.36 

MGB HH 31.12 92.2 61.08 

MGB BC 44.76 95.05 50.29 

MGB LO 25.28 62.4 37.12 

MGB HH 43.9 115.1 71.2 

MGB BC 59.6 108.005 48.405 

MGB HH 52.65 100.25 47.6 

MGB LO 23.39 30.99 7.6 

MGB BC 58.21 130.82 72.61 

MGB LO 26.15 54.025 27.875 

MGB HH 57.49 137.675 80.185 

MGB BC 39.65 100.515 60.865 

MGB BC 54.21 118.055 63.845 

MGB HH 39.65 113.75 74.1 

MGB LO 15.91 30.74 14.83 

Table B-1 continued. 



120 

Treatment Species Initial Groundline 
Diameter 

Measurement (mm) 

Final Groundline 
Diameter 

Measurement (mm) 

Total Growth 

(cm) 

MGB LO 24.83 52.745 27.915 

MGB HH 45.04 118.95 73.91 

MGB HH 53.4 96.485 43.085 

MGB LO 26.07 73.04 46.97 

MGB BC 62.21 103.05 40.84 

MGB BC 72.64 99.275 26.635 

Table B-2.  Initial and final height (and crown diameter for H. hamabo) 
measurements for each plant at the project site, in addition to total growth for 
each plant.  Initial measurements were taken March 15, 2016, and final 
measurements were taken March 4, 2019.  Data is organized by applied 
treatment. 

Treatment Species Initial Height 
Measurement (cm) 

Final Height 
Measurement (cm) 

Total Growth 

(cm) 

CF BC 204 236 32 

CF LO 103 214 111 

CF HH 110 194 84 

CF BC 173 284 111 

CF LO 85 248 163 

CF HH 94 160.5 66.5 

CF HH 88 171 83 

CF HH 82 174.5 92.5 

CF LO 148 216 68 

CF BC 219 324 105 

CF BC 161 248 87 

CF LO 149 234 85 

Table B-1 continued. 
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Treatment Species Initial Height 
Measurement (cm) 

Final Height 
Measurement (cm) 

Total Growth 

(cm) 

CF LO 125 260 135 

CF HH 113 239 126 

CF HH 155 207 52 

CF BC 225 312 87 

CF BC 154 272 118 

CF LO 121 264 143 

CF LO 85 220 135 

CF HH 128 190.5 62.5 

CF BC 190 323 133 

CF LO 79 219 140 

CF BC 210 216 6 

CF HH 116 0 -116 

CF LO 158 324 166 

CF BC 210 320 110 

CF HH 126 246 120 

CF LO 102 0 -102 

CF BC 166 336 170 

CF HH 110 147.5 37.5 

CF LO 123 270 147 

CF BC 140 300 160 

CF LO 129 260 131 

CF HH 85 177 92 

CF HH 113 243.5 130.5 

CF BC 188 298 110 

CB BC 185 300 115 

CB HH 127 171 44 

Table B-2 continued. 
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Treatment Species Initial Height 
Measurement (cm) 

Final Height 
Measurement (cm) 

Total Growth 

(cm) 

CB BC 180 260 80 

CB HH 87 180 93 

CB LO 66 0 -66 

CB LO 144 230 86 

CB LO 127 228 101 

CB BC 188 280 92 

CB BC 182 294 112 

CB HH 104 185.5 81.5 

CB LO 118 200 82 

CB HH 121 165 44 

CB LO 83 0 -83 

CB HH 114 235 121 

CB BC 204 270 66 

CB LO 153 256 103 

CB BC 206 372 166 

CB HH 132 158.5 26.5 

CB LO 178 232 54 

CB BC 178 232 54 

CB HH 120 207.5 87.5 

CB LO 170 250 80 

CB BC 190 270 80 

CB HH 124 184.5 60.5 

CB HH 100 235 135 

CB LO 96 225 129 

CB HH 78 190.5 112.5 

CB LO 114 212 98 

Table B-2 continued. 
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Treatment Species Initial Height 
Measurement (cm) 

Final Height 
Measurement (cm) 

Total Growth 

(cm) 

CB BC 178 314 136 

CB BC 156 295 139 

CB BC 205 340 135 

CB LO 90 168 78 

CB HH 131 173 42 

CB LO 156 258 102 

CB BC 199 300 101 

CB HH 127 148 21 

GF HH 0 172.5 172.5 

GF LO 172 220 48 

GF HH 125 202.5 77.5 

GF LO 132 260 128 

GF BC 195 340 145 

GF BC 160 260 100 

GF LO 156 208 52 

GF HH 116 202 86 

GF BC 210 248 38 

GF BC 217 310 93 

GF LO 139 288 149 

GF HH 90 187 97 

GF LO 134 254 120 

GF HH 129 200.5 71.5 

GF HH 126 198 72 

GF BC 191 284 93 

GF LO 170 290 120 

GF BC 181 212 31 

Table B-2 continued. 
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Treatment Species Initial Height 
Measurement (cm) 

Final Height 
Measurement (cm) 

Total Growth 

(cm) 

GF HH 123 227 104 

GF LO 96 306 210 

GF HH 135 183 48 

GF BC 200 312 112 

GF LO 120 180 60 

GF BC 198 256 58 

GF HH 140 179.5 39.5 

GF LO 102 208 106 

GF BC 195 330 135 

GF LO 76 181 105 

GF BC 191 336 145 

GF HH 140 170 30 

GF LO 164 290 126 

GF HH 155 166.5 11.5 

GF BC 170 260 90 

GF LO 145 304 159 

GF BC 205 302 97 

GF HH 100 190 90 

GB HH 103 199 96 

GB BC 180 384 204 

GB BC 210 302 92 

GB HH 124 217.5 93.5 

GB LO 98 258 160 

GB LO 105 210 105 

GB LO 65 242 177 

GB LO 120 240 120 

Table B-2 continued. 
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Treatment Species Initial Height 
Measurement (cm) 

Final Height 
Measurement (cm) 

Total Growth 

(cm) 

GB HH 108 151 43 

GB BC 177 306 129 

GB HH 128 157.5 29.5 

GB BC 163 242 79 

GB HH 131 212.5 81.5 

GB BC 223 384 161 

GB LO 154 226 72 

GB HH 110 167 57 

GB LO 103 272 169 

GB BC 196 362 166 

GB LO 107 248 141 

GB HH 80 196.5 116.5 

GB HH 80 164 84 

GB LO 150 132 -18 

GB BC 145 248 103 

GB BC 174 322 148 

GB LO 83 230 147 

GB LO 113 240 127 

GB HH 68 213 145 

GB HH 97 214 117 

GB BC 160 268 108 

GB BC 167 310 143 

GB LO 132 208 76 

GB LO 153 238 85 

GB HH 117 189.5 72.5 

GB BC 196 310 114 

Table B-2 continued. 
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Treatment Species Initial Height 
Measurement (cm) 

Final Height 
Measurement (cm) 

Total Growth 

(cm) 

GB HH 75 175 100 

GB BC 196 290 94 

MF LO 105 275 170 

MF HH 115 139.5 24.5 

MF LO 128 240 112 

MF BC 205 360 155 

MF HH 117 130 13 

MF BC 227 310 83 

MF HH 130 205.5 75.5 

MF HH 100 145 45 

MF LO 66 216 150 

MF BC 181 324 143 

MF BC 170 304 134 

MF LO 120 260 140 

MF HH 130 202.5 72.5 

MF BC 226 318 92 

MF BC 180 298 118 

MF LO 109 200 91 

MF LO 97 220 123 

MF HH 118 169.5 51.5 

MF HH 114 194 80 

MF BC 148 310 162 

MF HH 115 187.5 72.5 

MF LO 112 153 41 

MF LO 186 228 42 

MF BC 167 180 13 

Table B-2 continued. 
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Treatment Species Initial Height 
Measurement (cm) 

Final Height 
Measurement (cm) 

Total Growth 

(cm) 

MF LO 63 172 109 

MF HH 107 253.5 146.5 

MF BC 183 350 167 

MF BC 193 295 102 

MF LO 97 160 63 

MF HH 80 168.5 88.5 

MF BC 143 318 175 

MF BC 210 328 118 

MF HH 96 215 119 

MF HH 127 197.5 70.5 

MF LO 68 0 -68 

MF LO 160 300 140 

MB LO 69 172 103 

MB BC 180 252 72 

MB HH 116 169 53 

MB HH 136 197.5 61.5 

MB BC 176 276 100 

MB LO 102 154 52 

MB LO 106 280 174 

MB HH 94 186.5 92.5 

MB BC 198 279 81 

MB HH 148 198.5 50.5 

MB BC 142 314 172 

MB LO 90 139 49 

MB LO 147 152 5 

MB LO 115 168 53 

Table B-2 continued. 
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Treatment Species Initial Height 
Measurement (cm) 

Final Height 
Measurement (cm) 

Total Growth 

(cm) 

MB HH 125 211 86 

MB BC 231 228 -3 

MB BC 282 284 2 

MB HH 114 171 57 

MB LO 106 262 156 

MB BC 188 248 60 

MB LO 95 248 153 

MB HH 120 182 62 

MB HH 67 164.5 97.5 

MB BC 216 342 126 

MB BC 214 340 126 

MB LO 80 226 146 

MB LO 83 140 57 

MB BC 208 330 122 

MB HH 90 175 85 

MB HH 90 167.5 77.5 

MB HH 88 230 142 

MB BC 183 298 115 

MB HH 72 226 154 

MB LO 143 250 107 

MB LO 148 240 92 

MB BC 200 310 110 

MGF LO 115 208 93 

MGF HH 105 195 90 

MGF BC 190 278 88 

MGF HH 112 189.5 77.5 

Table B-2 continued. 
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Treatment Species Initial Height 
Measurement (cm) 

Final Height 
Measurement (cm) 

Total Growth 

(cm) 

MGF BC 125 298 173 

MGF LO 121 274 153 

MGF HH 105 155 50 

MGF BC 192 260 68 

MGF LO 193 222 29 

MGF HH 140 230 90 

MGF BC 203 312 109 

MGF LO 141 274 133 

MGF HH 110 222 112 

MGF LO 114 228 114 

MGF LO 153 200 47 

MGF BC 202 290 88 

MGF BC 176 318 142 

MGF HH 150 184 34 

MGF HH 122 241.5 119.5 

MGF LO 136 248 112 

MGF BC 156 288 132 

MGF LO 109 286 177 

MGF BC 147 272 125 

MGF HH 120 171 51 

MGF BC 187 340 153 

MGF HH 112 246.5 134.5 

MGF BC 160 270 110 

MGF HH 0 155.5 155.5 

MGF LO 130 252 122 

MGF LO 108 298 190 

Table B-2 continued. 
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Treatment Species Initial Height 
Measurement (cm) 

Final Height 
Measurement (cm) 

Total Growth 

(cm) 

MGF LO 157 262 105 

MGF HH 100 175 75 

MGF HH 113 169.5 56.5 

MGF BC 203 300 97 

MGF BC 180 300 120 

MGF LO 123 252 129 

MGB LO 82 83 1 

MGB HH 137 215.5 78.5 

MGB LO 131 260 129 

MGB BC 170 242 72 

MGB HH 125 199 74 

MGB BC 197 306 109 

MGB LO 129 270 141 

MGB BC 182 230 48 

MGB HH 140 154 14 

MGB LO 126 280 154 

MGB HH 122 201 79 

MGB BC 198 306 108 

MGB LO 128 248 120 

MGB BC 200 300 100 

MGB LO 101 284 183 

MGB HH 117 209 92 

MGB HH 82 172.5 90.5 

MGB BC 232 376 144 

MGB LO 128 242 114 

MGB HH 118 167 49 

Table B-2 continued. 



131 

Treatment Species Initial Height 
Measurement (cm) 

Final Height 
Measurement (cm) 

Total Growth 

(cm) 

MGB BC 244 332 88 

MGB HH 125 185.5 60.5 

MGB LO 140 172 32 

MGB BC 208 364 156 

MGB LO 155 280 125 

MGB HH 126 237.5 111.5 

MGB BC 169 300 131 

MGB BC 204 304 100 

MGB HH 100 183.5 83.5 

MGB LO 99 140 41 

MGB LO 137 294 157 

MGB HH 103 176 73 

MGB HH 89 171.5 82.5 

MGB LO 141 210 69 

MGB BC 215 356 141 

MGB BC 219 356 137 

Table B-2 continued. 
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Appendix C – Additional Foliage Testing Data 
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Table C-1. Table displaying results of foliage elemental testing, displayed in mg kg-1, for 
the Taxodium genotypes. Foliage samples were collected in July, 2018. Samples were 
analyzed by the Soil, Plant, and Water Analysis Laboratory at Stephen F Austin State 
University. 

Test Parameter (mg kg-1) 

Sample P K Ca Mg S Na 

TAX DC-1 1969 8403 10614 3166 1904 6289 

TAX DC-2 1996 8743 13020 3207 1803 5801 

TAX DC-3 2117 8376 12893 2837 1899 4793 

TAX DC-4 2051 10896 11429 2168 1648 6121 

TAX DC-5 2994 9931 13521 3409 2155 9059 

TAX OC-1 3612 16923 7968 3408 1992 10043 

TAX OC-2 2589 15907 8456 2602 1679 4720 

TAX OC-3 2655 16048 7376 3033 1815 6988 

TAX OC-4 2847 17649 6287 3310 1886 9711 

TAX OC-5 2880 17192 8428 2762 1697 4721 

TAX 407-1 2403 9716 11161 3778 1770 10912 

TAX 407-2 2314 9506 12252 3594 1721 8977 

TAX 407-3 2419 9613 12576 3545 1854 7875 

TAX 407-4 2913 10124 14430 3889 1882 9275 

TAX 407-5 2758 10343 10862 3648 1878 9829 

TAX 406-1 3202 12212 7651 3124 2051 10983 

TAX 406-2 3209 10530 10252 3907 2029 10390 

TAX 406-3 3032 13462 9133 3186 1833 10282 

TAX 406-4 2936 13614 7472 3344 2030 12267 

TAX 406-5 3245 11575 9447 3446 2008 11376 

TAX 405-1 2321 10226 8990 3208 1958 11253 

TAX 405-2 2366 11587 8806 2982 1963 11431 

TAX 405-3 2012 9618 10562 3484 1833 10985 

TAX 405-4 3038 12306 8417 3056 1703 10294 

TAX 405-5 2387 10524 10493 3317 1809 8934 

TAX 27-1 2605 12972 7634 2726 2037 9805 
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Test Parameter (mg kg-1) 

Sample P K Ca Mg S Na 

TAX 27-2 2064 12356 9481 3147 1982 7809 

TAX 27-3 2418 9355 10121 3445 1792 10864 

TAX 27-4 2172 10950 9347 3003 2009 7458 

TAX 27-5 2286 12690 8878 2969 1923 7567 

TAX 502-1 2712 10508 8698 3114 1973 7812 

TAX 502-2 2569 10280 7992 3188 1820 10804 

TAX 502-3 2878 9561 8863 3163 1806 7391 

TAX 502-4 2389 9012 9379 3373 1653 9402 

TAX 502-5 2159 8487 8897 3011 1516 9904 

Table C-1 continued.
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Table D-1. Groundwater sampling data for piezometer 1. Water quality parameters highlighted 
include pH, electrical conductivity (EC), Na+, Cl-, and depth to water table (DTWT).  

 

  

Date pH EC (mS/cm) Na+ (mg/L) Cl- (mg/L) DTWT (cm) 

10/13/2017 7.96 1.74 149.51 520.19 61.5 

10/27/2017 7.86 1.86 614.06 2122.19 64.0 

11/10/2017 7.60 6.11 292.06 1008.33 61.8 

11/24/2017 - - - - 100.0 

12/8/2017 7.62 3.14 239.65 784.09 57.1 

12/22/2017 7.81 2.73 282.81 961.95 52.0 

1/5/2018 7.92 3.05 249.49 790.44 62.8 

1/19/2018 7.95 2.56 285.25 831.92 58.0 

2/2/2018 8.02 2.82 405.02 1200.82 58.6 

2/17/2018 7.96 3.60 309.31 913.09 59.5 

3/2/2018 7.88 2.91 233.64 677.24 68.4 

3/16/2018 8.18 2.30 164.78 556.22 72.0 

3/30/2018 8.06 1.99 176.43 541.03 42.4 

4/13/2018 8.10 1.93 281.63 460.98 68.9 

4/27/2018 - - - - 103.0 

5/11/2018 8.45 2.18 247.51 402.08 91.0 

5/25/2018 8.48 1.67 149.51 520.19 83.6 

6/8/2018 - - - - 101.4 

6/22/2018 7.58 2.01 166.77 487.22 49.4 

7/6/2018 7.69 2.26 211.95 589.72 49.6 

7/20/2018 7.83 1.93 145.97 399.19 73.9 

8/3/2018 7.84 2.13 1284.65 529.71 66.3 

8/17/2018 7.95 1.87 1354.09 370.86 77.2 
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Table D-2. Groundwater sampling data for piezometer 2. Water quality parameters highlighted 
include pH, electrical conductivity (EC), Na+, Cl-, and depth to water table (DTWT).  

 
  

Date pH* EC (mS/cm) Na+* (mg/L) Cl-* (mg/L) DTWT (cm) 

10/13/2017 7.78 2.95 304.35 724.89 70.0 

10/27/2017 7.72 3.04 362.55 912.46 72.9 

11/10/2017 7.80 3.08 314.95 922.20 67.3 

11/24/2017 7.91 3.15 302.09 970.15 81.1 

12/8/2017 7.74 2.93 305.32 818.14 58.2 

12/22/2017 7.93 2.28 282.34 559.09 56.0 

1/5/2018 8.14 1.43 212.56 219.92 65.4 

1/19/2018 8.01 0.89 151.95 108.93 66.0 

2/2/2018 8.18 0.88 124.06 107.57 58.9 

2/17/2018 8.07 1.01 116.55 146.24 62.2 

3/2/2018 8.08 1.21 129.35 163.22 69.6 

3/16/2018 8.37 1.18 197.25 161.74 75.8 

3/30/2018 8.28 1.35 236.55 236.85 54.3 

4/13/2018 8.26 1.34 223.53 147.84 71.5 

4/27/2018 8.03 1.24 237.13 220.96 82.7 

5/11/2018 8.45 2.18 542.25 506.68 91.0 

5/25/2018 8.21 2.35 586.29 575.52 87.6 

6/8/2018 7.83 2.75 356.42 674.94 106.0 

6/22/2018 7.86 1.54 212.77 324.21 54.0 

7/6/2018 7.82 1.52 205.99 268.18 50.2 

7/20/2018 8.03 2.27 313.90 437.77 84.2 

8/3/2018 8.01 3.00 188.94 743.14 79.4 

8/17/2018 8.00 3.38 186.04 761.51 92.3 



138 
 

Table D-3. Groundwater sampling data for piezometer 3. Water quality parameters highlighted 
include pH, electrical conductivity (EC), Na+, Cl-, and depth to water table (DTWT).  

 

Date pH* EC (mS/cm) Na+* (mg/L) Cl-* (mg/L) DTWT (cm) 

10/13/2017 - - - - 113.0 

10/27/2017 - - - - 101.2 

11/10/2017 7.85 2.38 373.82 536.51 113.0 

11/24/2017 - - - - 113.0 

12/8/2017 7.57 0.85 84.03 49.98 73.5 

12/22/2017 7.85 0.75 76.69 34.74 70.0 

1/5/2018 7.75 0.78 72.53 60.52 76.3 

1/19/2018 - - - - 89.1 

2/2/2018 7.77 0.82 62.99 116.33 69.0 

2/17/2018 7.75 0.77 57.87 82.57 82.0 

3/2/2018 7.72 0.78 57.19 75.45 93.3 

3/16/2018 8.17 0.82 65.04 64.96 105.2 

3/30/2018 8.10 0.79 66.83 70.54 105.3 

4/13/2018 7.99 0.83 72.79 80.47 104.7 

4/27/2018 7.87 0.90 117.47 56.08 98.1 

5/11/2018 8.20 0.71 149.57 55.48 118.7 

5/25/2018 7.64 0.59 333.01 61.13 124.2 

6/8/2018 7.91 0.92 91.99 58.56 132.1 

6/22/2018 7.83 0.88 80.65 52.45 76.0 

7/6/2018 7.88 0.88 71.33 39.07 69.9 

7/20/2018 7.86 0.91 72.14 42.21 107.0 

8/3/2018 7.91 0.91 145.39 48.08 103.8 

8/17/2018 8.20 1.04 128.49 57.09 119.4 
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Table D-4. Groundwater sampling data for piezometer 4. Water quality parameters highlighted 
include pH, electrical conductivity (EC), Na+, Cl-, and depth to water table (DTWT).  

Date pH EC (mS/cm) Na+ (mg/L) Cl- (mg/L) DTWT (cm) 

10/13/2017 7.71 5.38 678.31 1519.27 91.0 

10/27/2017 7.64 5.43 851.77 1700.84 67.5 

11/10/2017 7.83 5.86 758.65 1898.32 65.2 

11/24/2017 7.94 5.84 337.42 2027.05 83.6 

12/8/2017 7.44 5.60 738.32 1859.91 32.1 

12/22/2017 7.81 5.59 621.46 1773.69 30.0 

1/5/2018 7.85 5.73 624.57 1889.16 46.4 

1/19/2018 7.93 1.43 646.53 2072.59 47.0 

2/2/2018 7.88 6.74 987.68 2074.45 54.5 

2/17/2018 7.90 6.64 999.29 2202.42 48.4 

3/2/2018 7.89 6.38 970.16 2295.09 63.6 

3/16/2018 8.14 6.28 1068.07 2072.74 72.0 

3/30/2018 8.03 6.43 1082.06 2194.17 46.3 

4/13/2018 7.96 7.50 1235.84 2571.91 70.1 

4/27/2018 7.86 7.65 1181.95 2314.26 66.9 

5/11/2018 8.15 6.45 1084.57 1914.75 85.3 

5/25/2018 8.12 6.83 1199.07 2081.28 89.2 

6/8/2018 - - - - 108.9 

6/22/2018 7.55 7.59 1269.61 2094.81 19.1 

7/6/2018 7.68 8.11 1435.32 2353.46 9.0 

7/20/2018 7.92 7.33 71.93 1868.85 73.4 

8/3/2018 7.93 7.02 365.98 1972.75 81.1 

8/17/2018 7.96 7.56 391.46 2021.26 100.0 
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Table D-5. Groundwater sampling data for piezometer 5. Water quality parameters highlighted 
include pH, electrical conductivity (EC), Na+, Cl-, and depth to water table (DTWT).  

 

Date pH EC (mS/cm) Na+ (mg/L) Cl- (mg/L) DTWT (cm) 

10/13/2017 8.09 4.51 505.69 1258.46 95.0 

10/27/2017 7.85 4.38 608.22 1278.17 93.0 

11/10/2017 8.02 4.44 543.43 1372.59 55.3 

11/24/2017 8.15 4.27 491.01 1337.12 94.2 

12/8/2017 7.59 2.96 386.31 792.54 45.9 

12/22/2017 8.02 2.92 362.48 767.18 47.0 

1/5/2018 7.98 2.86 361.78 766.54 63.3 

1/19/2018 8.17 2.25 308.57 526.03 62.0 

2/2/2018 8.10 1.89 303.93 379.02 56.2 

2/17/2018 8.15 1.76 274.45 357.69 63.3 

3/2/2018 8.22 1.83 282.06 388.24 75.2 

3/16/2018 8.41 1.91 314.07 406.15 86.9 

3/30/2018 8.33 2.28 395.87 567.03 78.3 

4/13/2018 8.29 2.60 439.29 670.66 78.2 

4/27/2018 8.21 2.54 594.40 579.94 78.3 

5/11/2018 8.74 2.15 633.22 502.57 100.0 

5/25/2018 8.60 3.19 526.23 857.37 112.4 

6/8/2018 7.80 3.31 507.02 864.25 121.2 

6/22/2018 7.90 3.68 518.66 1019.49 63.3 

7/6/2018 7.86 3.06 477.29 773.24 37.0 

7/20/2018 8.03 2.71 89.13 562.69 93.1 

8/3/2018 8.08 3.96 75.55 915.29 92.7 

8/17/2018 8.09 4.06 93.51 887.75 111.2 
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Table D-6. Groundwater sampling data for piezometer 6. Water quality parameters highlighted 
include pH, electrical conductivity (EC), Na+, Cl-, and depth to water table (DTWT).  

 

Date pH EC (mS/cm) Na+ (mg/L) Cl- (mg/L) DTWT (cm) 

10/13/2017 8.21 0.99 169.00 65.93 101.0 

10/27/2017 8.18 1.01 231.61 - 107.8 

11/10/2017 8.34 1.05 533.48 69.87 98.6 

11/24/2017 7.74 2.46 357.28 622.47 111.4 

12/8/2017 7.56 1.12 91.65 176.33 70.0 

12/22/2017 7.98 0.99 84.93 153.07 72.0 

1/5/2018 7.98 1.05 89.94 165.16 83.0 

1/19/2018 7.78 0.94 92.15 159.84 63.0 

2/2/2018 7.79 0.93 89.67 125.91 75.1 

2/17/2018 7.63 1.00 75.13 136.66 81.6 

3/2/2018 8.18 1.07 74.23 127.39 91.7 

3/16/2018 8.14 1.10 109.56 137.39 101.7 

3/30/2018 8.11 1.14 113.88 143.65 99.0 

4/13/2018 8.25 1.15 120.46 152.35 101.2 

4/27/2018 8.01 1.21 214.94 120.77 97.4 

5/11/2018 8.36 1.24 216.76 175.86 113.3 

5/25/2018 8.21 1.18 225.77 173.47 116.3 

6/8/2018 - - - - 133.3 

6/22/2018 7.76 0.99 116.73 79.19 88.7 

7/6/2018 7.71 1.16 123.31 169.24 67.5 

7/20/2018 7.99 1.32 1133.94 187.18 108.1 

8/3/2018 7.99 1.42 1121.65 221.39 105.9 

8/17/2018 8.02 1.43 1212.45 209.08 116.0 
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Table D-7. Groundwater sampling data for piezometer 7. Water quality parameters highlighted 
include pH, electrical conductivity (EC), Na+, Cl-, and depth to water table (DTWT).  

 
  

Date pH EC (mS/cm) Na+ (mg/L) Cl- (mg/L) DTWT (cm) 

10/13/2017 7.70 15.95 2324.59 5820.96 50.0 

10/27/2017 7.45 9.48 1572.77 3488.19 57.0 

11/10/2017 7.46 7.14 208.69 2538.03 48.4 

11/24/2017 7.67 5.30 685.29 1765.20 67.4 

12/8/2017 7.11 3.64 540.48 1300.73 57.6 

12/22/2017 7.66 3.74 456.61 1227.25 49.0 

1/5/2018 7.93 3.27 406.98 1067.41 66.0 

1/19/2018 7.94 2.76 342.41 943.18 52.0 

2/2/2018 8.00 6.62 1086.19 2169.42 61.9 

2/17/2018 7.77 5.54 900.28 1830.60 57.3 

3/2/2018 7.98 4.03 619.18 1299.30 62.3 

3/16/2018 8.10 3.49 564.78 1063.05 67.3 

3/30/2018 8.10 3.13 498.37 955.70 35.0 

4/13/2018 8.07 3.01 458.17 912.05 53.8 

4/27/2018 7.70 2.74 747.71 767.76 74.0 

5/11/2018 8.48 2.65 395.35 736.09 78.4 

5/25/2018 7.84 2.51 579.25 660.42 74.2 

6/8/2018 7.74 2.45 322.25 610.12 86.1 

6/22/2018 7.41 2.82 409.12 780.95 36.2 

7/6/2018 7.38 3.12 491.06 924.79 39.5 

7/20/2018 7.86 4.19 423.12 1057.99 75.7 

8/3/2018 7.71 3.54 589.30 923.07 72.5 

8/17/2018 7.90 2.94 1206.24 755.86 69.0 
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Table D-8. Groundwater sampling data for piezometer 8. Water quality parameters highlighted 
include pH, electrical conductivity (EC), Na+, Cl-, and depth to water table (DTWT).  

Date pH EC (mS/cm) Na+ (mg/L) Cl- (mg/L) DTWT (cm) 

10/13/2017 8.01 7.70 918.96 2388.74 86.0 

10/27/2017 7.56 7.18 1116.90 2422.83 87.0 

11/10/2017 7.58 7.22 998.18 2577.17 87.1 

11/24/2017 7.60 6.82 938.93 2510.89 96.2 

12/8/2017 7.42 5.92 827.39 2148.17 66.7 

12/22/2017 7.68 6.75 720.63 2349.68 63.0 

1/5/2018 7.57 7.05 763.18 2481.73 72.6 

1/19/2018 7.57 6.82 738.99 2476.95 76.0 

2/2/2018 7.77 6.34 989.29 2137.27 69.3 

2/17/2018 7.67 7.15 1102.49 2508.07 74.5 

3/2/2018 7.74 7.14 1085.32 2715.23 87.4 

3/16/2018 8.01 7.58 1227.57 2489.88 92.5 

3/30/2018 8.05 7.40 1239.44 2460.73 77.5 

4/13/2018 8.06 7.33 1212.30 2447.38 91.1 

4/27/2018 7.86 7.08 447.05 1995.78 90.5 

5/11/2018 8.30 7.32 1212.17 2138.89 108.1 

5/25/2018 7.82 7.39 2189.90 1240.15 109.4 

6/8/2018 7.78 7.40 1207.30 1942.59 122.6 

6/22/2018 7.59 6.83 1161.57 1782.76 48.6 

7/6/2018 7.65 7.12 1190.72 1946.59 48.5 

7/20/2018 7.87 8.41 135.79 2276.94 94.7 

8/3/2018 7.91 8.31 145.89 2428.27 98.1 

8/17/2018 7.87 8.29 566.04 2297.81 96.7 
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Table D-9. Groundwater sampling data for piezometer 9. Water quality parameters highlighted 
include pH, electrical conductivity (EC), Na+, Cl-, and depth to water table (DTWT).  

 

  

Date pH EC (mS/cm) Na+ (mg/L) Cl- (mg/L) DTWT (cm) 

10/13/2017 7.88 1.64 238.43 191.92 107.0 

10/27/2017 7.90 1.69 338.97 245.42 94.0 

11/10/2017 8.11 1.77 981.21 260.61 93.5 

11/24/2017 8.18 1.79 284.79 259.58 101.3 

12/8/2017 7.72 1.71 302.57 237.71 54.6 

12/22/2017 8.12 1.51 248.42 192.83 59.0 

1/5/2018 8.07 1.46 239.09 186.98 68.2 

1/19/2018 8.07 1.43 229.76 183.43 69.0 

2/2/2018 8.11 1.45 264.88 172.76 57.0 

2/17/2018 8.06 1.37 226.45 153.63 70.2 

3/2/2018 8.06 1.32 218.74 144.76 84.4 

3/16/2018 8.36 1.33 229.67 138.36 89.8 

3/30/2018 8.25 1.34 247.26 142.49 88.2 

4/13/2018 8.35 1.35 253.16 148.03 95.2 

4/27/2018 8.15 1.38 447.05 127.76 84.5 

5/11/2018 8.69 1.49 457.79 176.79 104.0 

5/25/2018 8.14 1.34 390.77 138.54 110.3 

6/8/2018 7.98 1.29 202.51 126.59 120.4 

6/22/2018 7.98 1.25 175.74 126.35 64.1 

7/6/2018 7.79 1.23 167.92 125.63 55.4 

7/20/2018 8.12 1.39 633.81 124.94 95.6 

8/3/2018 8.09 1.41 527.86 109.91 106.9 

8/17/2018 8.14 1.43 155.99 136.67 115.3 
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Table D-10.  Correlation statistics for piezometer 1. 

 pH 
EC 

(mS/cm) 
Na+ 

(mg/L) Cl- (mg/L) 
DTWT 
(cm) 

Precipitation 
(cm) 

pH 1.00      
EC -0.62 1.00     
Na+ -0.37 0.95 1.00    
Cl- -0.66 0.99 0.93 1.00   
DTWT 0.68 -0.20 0.04 -0.26 1.00  
Precipitation -0.50 0.17 0.06 0.18 -0.38 1.00 

 

Table D-11.  Correlation statistics for piezometer 2. 

 pH 
EC 

(mS/cm) 
Na+ 

(mg/L) Cl- (mg/L) 
DTWT 
(cm) 

Precipitation 
(cm) 

pH 1.00      
EC -0.64 1.00     
Na+ 0.05 0.62 1.00    
Cl- -0.67 0.99 0.58 1.00   
DTWT 0.29 0.20 0.63 0.18 1.00  
Precipitation -0.39 0.20 -0.07 0.21 -0.50 1.00 

 

Table D-12.  Correlation statistics for piezometer 3. 

 pH 
EC 

(mS/cm) Na+ (mg/L) Cl- (mg/L) 
DTWT 
(cm) 

Precipitation 
(cm) 

pH 1.00      
EC 0.00 1.00     
Na+ -0.15 0.61 1.00    
Cl- -0.03 0.98 0.68 1.00   
DTWT 0.46 0.21 0.62 0.27 1.00  
Precipitation -0.49 0.04 -0.13 -0.01 -0.54 1.00 

 

Table D-13.  Correlation statistics for piezometer 4. 

 pH 
EC 

(mS/cm) Na+ (mg/L) Cl- (mg/L) 
DTWT 
(cm) 

Precipitation 
(cm) 

pH 1.00      
EC 0.20 1.00     
Na+ 0.45 0.59 1.00    
Cl- 0.45 0.39 0.59 1.00   
DTWT 0.43 0.27 0.21 -0.03 1.00  
Precipitation -0.70 -0.08 -0.16 -0.27 -0.53 1.00 
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Table D-14.  Correlation statistics for piezometer 5. 

 pH 
EC 

(mS/cm) Na+ (mg/L) Cl- (mg/L) 
DTWT 
(cm) 

Precipitation 
(cm) 

pH 1.00      
EC -0.37 1.00     
Na+ 0.20 0.60 1.00    
Cl- -0.37 0.99 0.59 1.00   
DTWT 0.65 0.23 0.56 0.21 1.00  
Precipitati
on -0.66 0.02 -0.17 0.01 -0.55 1.00 

 

Table D-15.  Correlation statistics for piezometer 6. 

 pH 
EC 

(mS/cm) Na+ (mg/L) Cl- (mg/L) 
DTWT 
(cm) 

Precipitation 
(cm) 

pH 1.00      
EC -0.18 1.00     
Na+ 0.37 0.43 1.00    
Cl- -0.36 0.95 0.27 1.00   
DTWT 0.67 0.44 0.53 0.26 1.00  
Precipitati
on -0.52 -0.22 -0.19 -0.15 -0.52 1.00 

 

Table D-16.  Correlation statistics for piezometer 7. 

 pH 
EC 

(mS/cm) Na+ (mg/L) Cl- (mg/L) 
DTWT 
(cm) 

Precipitation 
(cm) 

pH 1.00      
EC -0.33 1.00     
Na+ -0.22 0.89 1.00    
Cl- -0.36 1.00 0.88 1.00   
DTWT 0.24 -0.30 -0.11 -0.32 1.00  
Precipitati
on -0.56 0.05 0.04 0.07 -0.18 1.00 
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Table D-17.  Correlation statistics for piezometer 8. 

 pH 
EC 

(mS/cm) Na+ (mg/L) Cl- (mg/L) 
DTWT 
(cm) 

Precipitation 
(cm) 

pH 1.00      
EC 0.63 1.00     
Na+ 0.31 0.40 1.00    
Cl- -0.15 0.06 -0.54 1.00   
DTWT 0.53 0.60 0.58 -0.38 1.00  
Precipitati
on -0.43 -0.78 -0.24 -0.15 -0.56 1.00 

 

Table D-18.  Correlation statistics for piezometer 9. 

 pH 
EC 

(mS/cm) Na+ (mg/L) Cl- (mg/L) 
DTWT 
(cm) 

Precipitation 
(cm) 

pH 1.00      
EC -0.40 1.00     
Na+ 0.11 0.43 1.00    
Cl- -0.40 0.96 0.40 1.00   
DTWT 0.39 0.08 0.28 -0.04 1.00  
Precipitati
on -0.57 0.34 -0.01 0.33 -0.60 1.00 
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Appendix E – Additional Levelogger Data 
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Figure E-1.  Water level data for Piezometer 7, collected using Solinst Levelogger.  

 

Figure E-2.  Electrical conductivity data for Piezometer 7, collected using Solinst 
Levelogger. 
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Figure E-3.  Water level data for Piezometer 8, collected using Solinst Levelogger. 

 

 

Figure E-4.  Electrical conductivity data for Piezometer 8, collected using Solinst 
Levelogger. 
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Figure E-4.  Water level data for Piezometer 9, collected using Solinst Levelogger. 

 

Figure E-5.  Electrical conductivity data for Piezometer 9, collected using Solinst 
Levelogger. 
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Appendix F – Linear Regression Analysis Statistics 
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Table F-1. Summary statistic table for linear regression analysis of the relationship of groundwater Na+ 
concentrations and precipitation at Piezometer 1.  

SUMMARY 
OUTPUT         
         

Regression Statistics        
Multiple R 0.105811474        
R Square 0.011196068        
Adjusted R Square -0.043737484        
Standard Error 353.1658165        
Observations 20        
         
ANOVA         

  df SS MS F 
Significance 

F    
Regression 1 25420.56 25420.56 0.203811 0.657054    
Residual 18 2245070 124726.1      
Total 19 2270490          

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 393.1470022 107.0056 3.67408 0.001736 168.3366 617.9574 168.3366 617.9574 
Precipitation (cm) -9.474361522 20.98631 -0.45145 0.657054 -53.565 34.61623 -53.565 34.61623 
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Table F-2. Summary statistic table for linear regression analysis of the relationship of groundwater Na+ 
concentrations and precipitation at Piezometer 2. 

SUMMARY OUTPUT        
         

Regression Statistics        
Multiple R 0.172972        
R Square 0.029919        
Adjusted R 
Square -0.01627        
Standard 
Error 119.5999        
Observations 23        
         
ANOVA         

  df SS MS F 
Significance 

F    
Regression 1 9264.608 9264.608 0.647687 0.429959    
Residual 21 300387.1 14304.15      
Total 22 309651.7          

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 281.9356 32.69697 8.622683 2.43E-08 213.9386 349.9327 213.9386 349.9327 
Precipitation 
(cm) -5.51785 6.85626 -0.80479 0.429959 -19.7762 8.740524 -19.7762 8.740524 
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Table F-3. Summary statistic table for linear regression analysis of the relationship of groundwater Na+ 
concentrations and precipitation at Piezometer 3. 

SUMMARY OUTPUT 

Regression Statistics 
Multiple R 0.16063 
R Square 0.025802 
Adjusted R 
Square -0.0315 
Standard 
Error 90.33909 
Observations 19 

ANOVA 

df SS MS F 
Significance 

F 
Regression 1 3674.546 3674.546 0.450248 0.511232 
Residual 17 138739.6 8161.151 
Total 18 142414.1 

Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 126.7008 27.34832 4.632855 0.000238 69.00089 184.4007 69.00089 184.4007 
Precipitation 
(cm) -3.54758 5.286962 -0.67101 0.511232 -14.7021 7.606934 -14.7021 7.606934 
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Table F-4. Summary statistic table for linear regression analysis of the relationship of groundwater Na+ 
concentrations and precipitation at Piezometer 4. 

SUMMARY OUTPUT        
         

Regression Statistics        
Multiple R 0.26701        
R Square 0.071294        
Adjusted R 
Square 0.024859        
Standard 
Error 348.7099        
Observations 22        
         
ANOVA         

  df SS MS F 
Significance 

F    
Regression 1 186695.5 186695.5 1.535343 0.229657    
Residual 20 2431972 121598.6      
Total 21 2618667          

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 764.5038 98.97177 7.724463 1.99E-07 558.0523 970.9553 558.0523 970.9553 
Precipitation 
(cm) 25.15057 20.29762 1.23909 0.229657 -17.1895 67.49067 -17.1895 67.49067 
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Table F-5. Summary statistic table for linear regression analysis of the relationship of groundwater Na+ 
concentrations and precipitation at Piezometer 5. 

SUMMARY OUTPUT        
         

Regression Statistics        
Multiple R 0.078419        
R Square 0.00615        
Adjusted R 
Square -0.04118        
Standard 
Error 165.3376        
Observations 23        
         
ANOVA         

  df SS MS F 
Significance 

F    
Regression 1 3552.072 3552.072 0.129939 0.722096    
Residual 21 574067 27336.52      
Total 22 577619.1          

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 384.7745 45.20102 8.512517 3E-08 290.7738 478.7751 290.7738 478.7751 
Precipitation 
(cm) 3.416624 9.478246 0.36047 0.722096 -16.2945 23.12772 -16.2945 23.12772 
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Table F-6. Summary statistic table for linear regression analysis of the relationship of groundwater Na+ 
concentrations and precipitation at Piezometer 6. 

SUMMARY OUTPUT        
         

Regression Statistics        
Multiple R 0.201279        
R Square 0.040513        
Adjusted R 
Square -0.00746        
Standard 
Error 366.0605        
Observations 22        
         
ANOVA         

  df SS MS F 
Significance 

F    
Regression 1 113160.4 113160.4 0.844479 0.36907    
Residual 20 2680006 134000.3      
Total 21 2793166          

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 362.9566 103.8963 3.493453 0.00229 146.2328 579.6804 146.2328 579.6804 
Precipitation 
(cm) -19.5807 21.30756 -0.91896 0.36907 -64.0275 24.8661 -64.0275 24.8661 
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Table F-7. Summary statistic table for linear regression analysis of the relationship of groundwater Na+ 
concentrations and precipitation at Piezometer 7. 

SUMMARY OUTPUT        
         

Regression Statistics        
Multiple R 0.058391        
R Square 0.003409        
Adjusted R 
Square -0.04405        
Standard 
Error 485.9899        
Observations 23        
         
ANOVA         

  df SS MS F 
Significance 

F    
Regression 1 16968.51 16968.51 0.071844 0.791286    
Residual 21 4959910 236186.2      
Total 22 4976878          

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 711.2144 132.8629 5.352993 2.62E-05 434.9108 987.518 434.9108 987.518 
Precipitation 
(cm) -7.46755 27.86016 -0.26804 0.791286 -65.4059 50.47082 -65.4059 50.47082 
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Table F-8. Summary statistic table for linear regression analysis of the relationship of groundwater Na+ 
concentrations and precipitation at Piezometer 8. 

SUMMARY OUTPUT        
         

Regression Statistics        
Multiple R 0.012066        
R Square 0.000146        
Adjusted R 
Square -0.04747        
Standard 
Error 432.7015        
Observations 23        
         
ANOVA         

  df SS MS F 
Significance 

F    
Regression 1 572.5224 572.5224 0.003058 0.956424    
Residual 21 3931843 187230.6      
Total 22 3932415          

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 966.6659 118.2946 8.17168 5.85E-08 720.6587 1212.673 720.6587 1212.673 
Precipitation 
(cm) -1.37168 24.80532 -0.0553 0.956424 -52.9572 50.2138 -52.9572 50.2138 
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Table F-9. Summary statistic table for linear regression analysis of the relationship of groundwater Na+ 
concentrations and precipitation at Piezometer 9. 

SUMMARY OUTPUT        
         

Regression Statistics        
Multiple R 0.156938        
R Square 0.02463        
Adjusted R 
Square -0.02182        
Standard 
Error 189.2992        
Observations 23        
         
ANOVA         

  df SS MS F 
Significance 

F    
Regression 1 19002.3 19002.3 0.530284 0.47453    
Residual 21 752517.8 35834.18      
Total 22 771520.1          

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 348.8446 51.75179 6.740726 1.14E-06 241.2209 456.4683 241.2209 456.4683 
Precipitation 
(cm) -7.90241 10.85188 -0.72821 0.47453 -30.4701 14.66532 -30.4701 14.66532 
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