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ABSTRACT 

 Due to the negative impact on the environment of conventional electric 

power generation methods, especially coal and oil-fired generating plants, wind 

power as an alternative for sustainable energy has received more attention in 

recent years. The purpose of this project was to apply Geographic Information 

System (GIS), integrated with Multi Criteria Decision Making (MCDM), for 

identifying suitable areas for wind turbine applications in Texas. Factors taken 

into consideration included socioeconomic criteria such as distance to highways, 

proximity to airports and urban areas, localized environmental criteria such as 

terrain slope and distance to rivers, affected waterbodies, and wildlife 

management areas. Also included is the most critical criterion, the wind power 

density defined by the National Renewable Energy Laboratory that integrated the 

abundance and quality of wind, the complexity of the terrain, and the 

geographical variability of the resources. GIS analysis models were built by 

applying different map overlay techniques, including Weighted Sum, Weighted 

Overlay and Fuzzy Overlay.  For Weighted Sum and Weighted Overlay, each 

input factor was classified and weighted through an Analytical Hierarchy Process 

(AHP). The weights for each criterion were assigned using a pair-wise 

comparison, where the Wind Class received the greatest weight of 0.377 
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followed by slope with 0.2509. As to Fuzzy Overlay, different methods, including 

Large, Small, MSLarge, and MSSmall, were used to assign fuzzy membership on 

each participating criterion, followed by using the overlay methods of SUM, 

PRODUCT, AND, and OR. Each model output was rescaled to having a range of 

1 to 5, where 5 represents a location that is highly suitable for windmill 

development. Each GIS model output was validated by existing wind turbine 

locations. The suitability index value for each existing wind turbine location was 

identified for each model output. The Fuzzy Overlay Three model resulted in the 

highest mean index value of 3.86, followed by the Weighted Overlay of 3.77, and 

the Weighted Sum of 3.71. It was found that the model outputs were statistically 

different in terms of accuracy. A general trend was observed that the western 

and northwestern portions of Texas are the most feasible areas for wind turbine 

installation. 
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INTRODUCTION 

Energy supply is one of the most urgent challenges in the 21st century that 

human beings are facing (Zhang 2015). Due to excessive carbon emissions from 

conventional fossil fuel power generating plants, wind energy has developed 

rapidly in the last decade. Wind energy is a source of renewable energy that can 

be utilized if the land is suitable. The demand for renewable energy has 

increased and has triggered development in many countries (Zhang 2015). 2017 

marked the third largest gain in wind power capacity within a year. Within one 

year, 60GW of wind power was added worldwide. In 2018, the total generated 

electricity reached 26,700 TWh worldwide, with the leading source being coal 

fired generation a 10,146 TWh (38%), followed by natural gas with 6,141 TWh 

(23%). Wind energy accounts for 5%, part of the 26% of total electricity, 

generated by renewable sources. 

Windfarms are areas where many large wind turbines have been grouped 

together to harvest the power of wind. These windfarms may consist of hundreds 

of wind turbines spreading out over hundreds of miles if the land is suitable. 

Studies have shown that Geographic Information Systems (GIS) are a versatile 

and powerful tool in performing a wind suitability analysis. However, selecting 

sites for wind turbine positions is a complex process involving technical, physical, 
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socioeconomic, environmental, and political requirements (Bennui et al. 2007). 

Thus, the demand for decision support tools for such projects is critical and 

typically involves GIS integrated with Multi Criteria Decision Making (MCDM) and 

Analytical Hierarchy Process (AHP).  

Generally, MCDM in a GIS environment is used to combine various layers 

of spatial data in a form of criteria while AHP has been developed to assign 

weight to each criterion within GIS. The criteria, or in other words factors, include 

socioeconomic criteria such as distance to highways, airports and urban areas, 

environmental criteria such as slope and distance to rivers, waterbodies, and 

wildlife management areas, as well as the most critical criterion, the wind power 

density. 

 The purpose of this study was to apply GIS, integrated with MCDM for 

identifying suitable areas for wind turbine applications in Texas. Each factor was 

classified and weighted through an Analytical Hierarchy Process (AHP). 

Developing a land use suitability assessment has become more available for 

land managers in the last decades due to advancements in GIS. Performing a 

suitability analysis using GIS with spatial data from public domain reduces time 

and cost in the decision making process. However, to make effective use of any 

GIS, it is important to understand the potential inaccuracy that is associated with 

any spatial information. Errors can be resulted from different sources such as 

user error, data error and processing error. Data error can be reduced by 
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acquiring accurate spatial data from reliable sources. Providing reliable results 

through models built to conduct a suitability analysis can be challenging. This 

study involved building models by applying different map overlay techniques 

including Weighted Overlay, Weighted Sum, and Fuzzy Overlay. It is crucial to 

have alternative models so that model outcomes can be compared for accuracy 

where different overlay methods are applied. The results from each overlay 

technique were validated with existing wind turbine locations from the U.S Wind 

Turbine Database. The model validation assessed the reliability of the model 

outcome that eventually will help land managers to make informed decisions. 
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OBJECTIVES 

 This focus of this study was to find the best possible locations for 

windfarm development in the state of Texas. The software package that was 

used was ArcGIS Desktop 10.7.1 Advanced Edition, with the Spatial Analyst 

extension. By enabling the aforementioned extension, various geoprocessing 

tools was accessed including Weighted Overlay, Weighted Sum, Fuzzy 

Membership, and Fuzzy Overlay. The objectives of this study are listed below: 

 

1. Build a geodatabase including multiple factors considered for windfarm 

development in Texas. 

2. Build models, each with multiple criteria including distance to rivers, 

highways, airports, waterbodies, urban areas, wildlife management areas, 

wind energy potential, and slope for finding suitable locations for windfarms. 

3. Run the models and compare the outputs from each model for suitable 

locations. 

4. Validate each model output by using existing wind turbine locations. 
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LITERATURE REVIEW 

Wind Energy 

Wind energy has been used by man for centuries. Vertical-axis windmills 

were used primarily for grain grinding in Persia in the tenth century and in China 

in the thirteenth century (Nelson 2009). The very first wind turbine designs were 

relatively simple, as the wind velocity increased the turbine rotated at a 

proportional rate (Carlin et al. 2001). These simple turbines were primarily used 

to pump water, cut lumber, and for numberless other tasks (Carlin et al. 2001). In 

human history, civilizations used wind as a major source of energy for 

transportation (sailboats), grinding grain, and pumping water (Nelson 2009). 

Although, wind as a renewable energy source has been utilized for different 

purposes, the main long-term use of wind has been for pumping water (Nelson 

2009, Gipe 2004). Around the twelfth century, horizontal-axis windmills were 

introduced that was based on the principles of aerodynamic lift instead of drag 

(Carlin et al. 2001). The main difference between vertical and horizontal-axis 

wind turbines lies within the rotational speed. The former was designed to have a 

constant rotational speed while the horizontal-axis turbine was allowed to run at 

varying speeds. This was proved to be more efficient of extracting significantly 
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greater energy from the wind (Carlin et al. 2001). This development made the 

settlement on America’s Great Plains viable for European migrants to build 

windmills across the land (Nelson 2009, Gipe 2004). Countries in the nineteenth 

century began building windfarms where tens of thousands of windmills were 

manufactured (Nelson 2009). These areas where many windmills were grouped 

together to harvest the power of the wind, are commonly called windfarms. In the 

early twentieth century when electricity became more available to households, 

manufacturers built stand-alone windmills to create electricity (Nelson 2009). 

After the two World Wars, countries, especially in Europe showed that large 

scale wind turbine applications to generate electricity could work (Kaldellis and 

Zafirakis 2011). While Europe during 80s and 90s continued building windfarms 

to supply electricity for the increasing demand, the first use in United States was 

in California, where over 16,000 machines were installed between 1981 and 

1990 (Kaldellis and Zafirakis 2011).  

Wind power has been receiving considerable attention in the 21st century, 

as it contributes no pollution to the environment that can contribute to climate 

change, ground-level pollution or public health problems (Musial and Ram 2010). 

Energy companies continue to install wind turbines to supply electricity for the 

increasing demand. In 2018, the total generated electricity reached 26,672 TWh, 

where 1,217 TWh was generated solely by wind energy. 
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This number is significant and accounts for near 6% of the global electricity 

demand (WWEA 2018). 

Suitability Analysis 

 Land Suitability Analysis (LSA) is a tool that has been used to identify the 

most suitable locations or lands for specific land uses (Collins et al. 2001, Jafari 

and Zaredar 2010). Land suitability analysis can be used for different purposes 

including ecological analysis, suitability of land for agricultural activities, 

landscape evaluation, environmental impact assessment, regional planning and 

selecting the best site for the public and private sector facilities (Malczewski 

2004). Suitability assessment is the core of land-use planning that generally 

requires scientific approach and appropriate techniques to allow the decision 

makers for an efficient, long term utilization of land resources (Bagheri et al. 

2012). The complexity of land suitability analysis depends on various factors 

such as the defined use of the land, consideration of different requirements or 

criteria (Duc 2006). Figure 1 shows the general process of land suitability 

analysis based on Bagheri et al. 2012.  
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Figure 1. General process of land-use suitability analysis (Bagheri et al. 2012).  
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Map-based approaches can be traced back to the late 19th and early 20th century 

where simple hand-drawn overlay techniques were used by American landscape 

architects (Malczewski 2004). In 1950, the Town and Country Planning Textbook 

was published that included an article by Jacqueline Tyrwhitt that dealt with 

overlay techniques (Collins et al. 2001). The evolution of land suitability analysis 

continued with Tyrwhitt who specifically dealt with overlay techniques and 

proposed an example of four maps (relief, hydrology, rock types and soil 

drainage) that each was drawn on a transparent sheet using the same scale with 

a common control features (Collins et al. 2001). Combining four maps into one 

that shows land characteristics was a widely accepted overlay technique that 

was incorporated into planning in Great Britain and North America after the 

Second World War (Collins et al. 2001, Malczewski 2004). During the late 60s 

and 70s the application of suitability analysis became more popular as more 

diverse disciplines were involved and also the growth of computing technologies 

that helped to increase the amount of mapped data (Collins et al. 2001). One of 

the most significant improvements in computer-based application took place at 

Harvard University. Howard Fisher in 1963, developed a program called SYMAP 

(Synagraphic Mapping System) that was able to overprint multiple results to 

create suitable gray scales. The program was widely used at the Laboratory for 

Computer Graphics at the Harvard University (Collins et al. 2001). Progress in 
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computer science immensely contributed to the formal development of GIS 

(Joerin et al. 2001).  

 After the development of GIS, it rapidly became an important tool for 

monitoring land change on both small and large scale (Bagheri et al. 2012). As of 

today, modern computers and advanced GIS software make land suitability 

analysis even more feasible and commonly used for land use planning. However, 

in almost every situation, assigning relative weight for each defined criterion is 

particularly difficult, especially when it comes making a decision for a proposed 

land-use, based only the suitability map (Duc 2006). Thus, adopting Analytical 

Hierarchy Process (AHP) for such analysis to help decision makers and 

environmental managers is indispensable.  

Multi-Criteria Decision Making (MCDM) 

Decision making problems are important in all aspect of life. Multi-Criteria 

Decision Making (MCDM) or also known as Multi-Criteria Decision Analysis 

(MCDA) became widely used in the last decades. The technique Multi-Criteria 

Decision Making (MCDM) is a branch of decision making which basically deals 

with the process of making decisions in the presence of multiple objectives 

(Pohekar and Ramachandran 2003). MCDM is the major class of operation 

research model that is divided into multi-objective decision making (MODM) and 

multi-attribute decision making (MADM), where each of the two subclasses have 
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multiple methods including priority based, outranking, distance based and mixed 

methods (Pohekar and Ramachandran 2003). Often used MCDM methods are 

Multi-Attribute Utility Theory (MAUT), Analytic Hierarchy Process (AHP), Fuzzy 

Set Theory, Case-based Reasoning (CBR), Data Envelopment Analysis (DEA), 

Simple Multi-Attribute Rating Technique, PROMETHEE, and ELECTRE, etc. 

(Velasquez and Hester 2013, Sagbansua and Balo 2017). These approaches 

were developed to provide solutions for problems occurring in conflict of multi-

objectives (Sagbansua and Balo 2017). Fuzzy set theory for instance, in a GIS 

environment where uncertainty appears in spatial analysis, is known to be more 

than useful in land-use plan and land suitability analysis (Murgante and Casas 

2004). This is called fuzzy logic, a form of multi-valued logic which was derived 

from fuzzy set theory. It is an approach that transforms a spatial entity to a 

common suitability scale based on the possibility of being in a membership [1] or 

not [0] (Abbaspour et al. 2011). Lack of information, uncertainty, and complexity 

are the essential factors that led the adoption of fuzziness in many fields. In 

recent decades, multi-criteria analysis has been applied to a variety of areas by 

decision makers that include but not limited to water and agriculture 

management, evaluation of technology investment, integrated manufacturing 

systems, and energy planning (Pohekar and Ramachandran 2003).  
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Analytical Hierarchy Process (AHP) 

Analytical Hierarchy Process (AHP) was developed by Thomas L. Saaty 

(Saaty 2008). The principle of this process is to break down a complex problem 

into a hierarchy with goal (objective) at the top of the hierarchy followed by 

criteria and sub-criteria at sub-level and decision alternatives at the bottom of the 

hierarchy (Pohekar and Ramachandran 2003, Bagdanaviciute and Valiunas 

2012). The method is considered one of the most popular MCDM methods 

(Messaoudi et al. 2019). As any method, AHP has its advantages and 

disadvantages. Advantages begin with the ease of use, followed by its major 

characteristic, the pair-wised comparison (Bagdanaviciute and Valiunas 2012). 

Pair-wise comparison allows decision makers to assign weights and compare 

alternatives with respect to the various criteria (Velasquez and Hester 2013, Al-

shabeeb 2016). AHP requires data to successfully perform a pair-wise 

comparison, although it is not as data intensive as the similar popularity of Multi-

Attribute Utility Theory (MAUT). Additionally, AHP is scalable and due to its 

hierarchical structure, it can effortlessly adjust in size to suit different decision 

problems (Velasquez and Hester 2013). The fundamental scale was created by 

Thomas L. Saaty (Table 1), that consists of numbers that indicate the relative 

preferences between two elements. The scale ranges from 1 to 9 where the 

value of 1 indicates equal importance, 3 moderately more, 5 strongly more, 7 
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very strongly and 9 is extremely more importance (Saaty 2008 and Bagheri et al. 

2012). The values 2, 4, 6 and 8 between the odd numbers are allotted to indicate 

compromise values of importance (Pohekar and Ramachandran 2003, 

Messaoudi et al. 2019)). The method involves calculation and aggregation of the 

eigenvector until the complex final vector of weight coefficients for alternatives is 

obtained. Although the simplicity and the ease of use account for advantages, 

there are some disadvantages of this MCDM method. Since AHP is a pair-wise 

comparison, it can experience inconsistencies in judgement and ranking the 

criteria. The inconsistency value should be lower than 0.10. If the value is higher 

than that, it requires re-evaluation for pair-wise comparisons (Lee 2010). The 

method has also been exposed to problems with interdependence between 

criteria and alternatives (Velasquez and Hester 2013).  
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Table 1. The fundamental scale for pairwise comparison for the analytical 
hierarchy process (AHP) developed by Thomas L. Saaty (2008). 

Intensity of 
Importance 

Definition Explanation 

1 Equal importance Two activities contribute equally 
to the objective 

2 Weak or slight  

3 Moderate importance Experience and judgement 
slightly favor one activity over 

another 

4 Moderate plus  

5 Strong importance Experience and judgement 
strongly favor one activity over 

another 

6 Strong plus  

7 Very strong or demonstrated 
importance 

An activity is favored very 
strongly over another; its 

dominance demonstrated in 
practice 

8 Very, very strong  

9 Extreme importance The evidence favoring one 
activity over another is of the 

highest possible order of 
affirmation 

Reciprocals of 
above 

if activity i has one of the above 
non-zero numbers assigned to 
it when compared with activity 

j, then j has the reciprocal 
value when compared with i 

A reasonable assumption 

1.1-1.9 If the activities are very close May be difficult to assign the 
best value but when compared 
with other contrasting activities 
the size of the small numbers 

would not be too noticeable, yet 
they can still indicate the 
relative importance of the 

activities 
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METHODOLOGY 

Study Area 

The study area covered the entire state of Texas (Figure 2). Texas is the 

second largest state with roughly 268,600 square miles and joined the United 

States in 1845 as the 28th state. Texas has diverse climate types that range from 

arid and semi-arid in the west to humid and subtropical in the east. For the 

western part of the state, the average annual precipitation ranges from 8” (203 

mm) to 20” (508 mm) where the climate exhibits arid or semi-arid conditions. The 

climate in the eastern part of the state is humid subtropical that results from 

higher annual average precipitation around 60” (1,524 mm). Generally, there are 

seven different wind classes (Figure 3), each determined by the wind speed or 

wind power density. Wind Class I is generally not suitable for utility scale wind 

turbine application, nor is wind Class II. The first wind class that provides enough 

wind speed for wind turbines is Class III. Wind speed in Texas varies across the 

state from the lowest wind Class I at the eastern part, while stronger wind Class 

VI can be found in the western part of the state. In terms of elevation, the lowest 

elevation in Texas is 0 ft (0m) along the coast of Gulf of Mexico and the highest 

at the Guadalupe Peak at 8,751 ft (2,667 m). The state is ranked as the 17th 
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highest state in The United States in elevation with a mean elevation of 1,706 ft 

(520 m). Due to rapid wind energy development, Texas is the leading state in the 

country in terms of installed wind capacity (Parker 2008). As of 2019, the total 

installed wind capacity in Texas has reached 27,036 MW followed by Iowa with 

8,957 MW.  

 

Figure 2. Location map of the study area – Texas. 
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Figure 3. Wind class map of Texas based on National Renewable Energy 
Laboratory. 
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Data Acquisition 

The analysis consists of eight different datasets where each one of them 

represents a criterion in considering windfarm development (Table 2). These 

datasets were obtained from multiple data sources.  

Table 2. Source of the eight GIS datasets used for suitability model development. 

GIS Data Criterion Data Source 

Layer 1 Urban Texas Department of Transportation (TxDOT) 

Layer 2 Wildlife Texas Parks & Wildlife (TPWD) 

Layer 3 Airport 

Texas Natural Resources Information System 
(TNRIS) 

Layer 4 Highway 

Layer 5 River 

Layer 6 Waterbody 

Layer 7 Wind National Renewable Energy Laboratory (NREL) 

Layer 8 Slope Derived from digital elevation model 

The first six datasets (Figure 4) including urban area, wildlife management 

area, airport, highway, river, and waterbody were used to measure the distance 

from each object of interest. The urban area dataset was obtained from the 

Texas Department of Transportation (TxDOT) and must take it into consideration 

the noise pollution generated by the wind turbines. The Texas Parks & Wildlife 

(TPWD) website was visited for downloading the wildlife management area 
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dataset. Airport, highway, river, and waterbody datasets were obtained from the 

Texas Natural Resources Information System (TNRIS). Each dataset was taken 

into consideration for different reasons. The airport dataset is a crucial criterion 

that was used to calculate the distance from each existing airport. As a location is 

farther away from the airports the land becomes more suitable due to safety 

reasons and also the fact that wind turbines can interfere with signals of aviation 

radars (Azizi et al. 2014). However, on the other hand, highways were taken into 

consideration as the high transportation costs for wind turbine establishment 

increases significantly when it is farther away from existing highways (Azizi et al. 

2014). As the distance increasing from the roads, the land became less and less 

suitable. River, waterbody, and wildlife management area datasets were used as 

the object of interest to calculate the distance that later in the analysis was used 

to create exclusion zone, primarily to minimize environmental impact as well as 

the risk of collision with birds that could have a negative effect on the population. 

Wind energy potential dataset was obtained from the National Renewable 

Energy Laboratory (NREL), which contains the different wind classes and 

potential energy. There are seven wind power classes based on the mean 

measured speed. Wind class one ranges from 0 to 5.6 m/s (12.5 mph), wind 

class two is from 5.6 m/s to 6.4 m/s (14.3 mph), the third wind class is from 6.4 

m/s to 7.0 m/s (15.7 mph), wind class four is from 7.0 m/s to 7.5 m/s (16.8 mph), 

five is from 7.5 m/s to 8.0 m/s (17.9 mph), wind power class six is from 8.0 m/s to 
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8.8 m/s (19.7), and the wind class seven is from 8.8 m/s to 11.9 m/s (26.6 mph). 

This dataset is one of the most important criteria in this study, thus the most 

recently available dataset was acquired to provide an updated information 

regarding wind speed. The digital elevation model (DEM) was obtained from the 

Texas Natural Resources Information System (TNRIS) using the National 

Elevation Dataset of 2013. The elevation surface was then used to derive slope. 

Slope is also a critical factor that was taken into consideration when it comes to 

building windfarms. Besides the accessibility issues, abrupt changes in slope can 

cause turbulence that may affect the wind turbines. Therefore, lands with lower 

slope is more preferable when it comes to large scale wind turbine application.  
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Figure 4. Map of the five criteria, airport, river, highway, wildlife, waterbody, and 
urban for distance measurement from each object of interest. 

Data Preparation 

The data preparation was done in ArcCatalog and ArcMap 10.7.1 using 

several tools in ArcToolbox with enabled extensions of 3D Analyst and Spatial 

Analyst. Each of the obtained datasets was projected from the default coordinate 

system to NAD 1983 Texas Statewide Mapping System (Meters) using the 

Project tool in ArcToolbox. The possibility of encountering problems due to 



 

22 
 

inconsistent coordinate system during the analysis was reduced when all 

participating datasets were referenced to the same coordinate system. Each GIS 

dataset was then imported into a file geodatabase to maintain a clean, organized 

layer for the suitability models. The suitability models were raster based overlay 

analysis that requires each layer to be a raster dataset. Most of the criteria or 

layers were originally obtained as a vector dataset (Table 3) that was converted 

to raster using different tools. Urban areas, wildlife management areas, airports, 

highways, rivers, waterbodies, and wind classes were originally in a vector 

format. These dataset besides the wind classes were then used to calculate each 

cells distance to the closest source or the boundary of Texas using the Euclidian 

Distance tool. The processing extent was set to the state of Texas boundary 

shapefile. Each dataset was then set to have the same output cell size, which 

was 150 by 150 meter (492.13 by 492.13 feet) indicating a general level of detail 

for the entire state of Texas. The purpose of using this resolution for the raster 

analysis was to optimize the suitability on a statewide scale. Wind classes vector 

dataset was handled differently. The Feature to Raster tool was used (Table 3) to 

convert the dataset to raster. The field used to assign values to the output raster 

dataset was the wind classes in the attribute table and the output cell size was 

150 by 150 meter as well. 

 



 

23 
 

 

Table 3. Data type and the process for each of the eight criteria for suitability 
model development. 

GIS Data Description Default Data Type Tool used to 
convert to Raster 

Layer 1 Urban 

Vector 
Euclidian Distance 

Layer 2 Wildlife 

Layer 3 Airport 

Layer 4 Highway 

Layer 5 River 

Layer 6 Waterbody 

Layer 7 Wind Feature to Raster 

Layer 8 Slope Raster None 

 

The slope raster surface was derived from a Digital Elevation Model (DEM) which 

was obtained from TNRIS. The cell size of the original DEM raster dataset was 

60 by 60 meter (196.85 feet) and it was resampled to cell size of 150 by 150 

meter (492.13 feet) to match with the rest of the participating raster datasets 

representing different criteria. The output measurement for the slope was set to 

percent. 
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Weighting 

The weighting scores for each criterion was attained through Analytical 

Hierarchy Process (AHP), by performing a pair-wise comparison. The scores 

were defined by the intensity of importance developed by Thomas L. Saaty 

(Saaty 2008). Table 4 shows the pair-wise comparison matrix where each 

criterion in the rows was compared to each criterion in the column. The score 

was equal to 1 when criteria in row have equal importance with criteria in column. 

A score was assigned 3 when criteria in row have moderate, 5 when strong, 7 

when very strong and 9 when extreme importance compared to criteria in 

column. Intermediate values 2, 4, 6, and 8 was used when compromise is 

needed. 

Reciprocal values were assigned if a criterion in row had one of the 

numbers assigned to it when compared with a criterion in column, then criteria in 

the column will have the reciprocal value when compared with criterion in the row 

(Messaoudi et al. 2019). Figure 5 shows the distribution of the relative weights for 

each criterion. Wind class criteria received the greatest weight with a 0.3770 as 

its importance exceeded all other factors which takes up 38%. The greatest value 

8 (Very strong importance) was given to the wind speed when compared to 

waterbodies and rivers. The second greatest weight was assigned to the slope 

layer with a calculated 0.2509 that takes up 25% of the overall weights. This is 
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due to the fact that slope plays an important role in wind farm development. 

Slope affects the wind velocity, can cause accessibility issues when it comes to 

wind turbine establishment or maintenance, and can cause turbulence that has a 

negative effect on the turbines. Comparison of highways to other criteria resulted 

a 0.0672 calculated weigh, which is equal to 7% of the total weights. Urban areas 

and airports received the same weight, as both criteria are equally important in 

this study. Both criteria were assigned with a 0.1014 weight, which is the third 

greatest weights in the matrix. This weight takes up 10% of the overall weights. 

Comparing wildlife management areas to rivers and waterbodies resulted in a 

greater importance over those criteria. The goal was to lower the risk of collision 

with birds that could reduce the population by assigning greater values to result a 

slightly higher weight. The calculated weights for the wildlife management area 

factor was 0.0443 which is equal to 4% of the total weights. Rivers and 

waterbodies were determined to be equally important considering wind farm 

development. Both criteria have received the lowest weights in the matrix with a 

0.0288 value. This number is equal to 3% of the total weights. Summing the 

weights together resulted precisely 1.000 (100%), which means during a series 

of calculation there was not a single decimal dropped by rounding error.  
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Table 4. Process of weighting and scores assignment to each criterion for 
suitability model development. 

Decision 
Parameters 
(Criterion) 
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1. Urban  1 1 2 4 4 3 1/4 1/5 0.1014  

2. Airport 1 1 2 4 4 3 1/4 1/5 0.1014  

3. Highway 1/2 1/2 1 3 3 2 1/5 1/6 0.0672  

4. Waterbody 1/4 1/4 1/3 1 1 1/2 1/7 1/8 0.0288  

5. River 1/4 1/4 1/3 1 1 1/2 1/7 1/8 0.0288  

6. Wildlife 1/3 1/3 1/2 2 2 1 1/6 1/7 0.0443  

7. Slope 4 4 5 7 7 6 1 1/3 0.2509  

8. Wind 5 5 6 8 8 7 3 1 0.3770  

Total   1.0000  

 

  

Figure 5. Weight assigned to each criterion for suitability model development 
derived from analytical hierarchy process (AHP). 
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The development of the comparison matrix (Table 4) was followed by assessing 

the Consistency Ratio (CR). AHP strongly depends on the consistency ratio and 

it should be less than 0.1. Thus, CR was calculated to check whether the weights 

are experiencing inconsistency (Saaty 1987). If the CR value is greater than 0.1, 

the final weights cannot be established and must be reassigned (Saaty 1987, 

Boroushaki and Malczewski 2007). 

The equation for the consistency ratio (CR) is defined as follows:  

𝐶𝑅 =
CI

𝑅𝐼
  , where CI is the consistency index which is calculated by the 

equation of:  𝐶𝐼 =
𝛾𝑚𝑎𝑥−n

n−1
, and RI is a random consistency index value and it 

was created by Saaty. 𝛾𝑚𝑎𝑥  is the maximum eigenvalue of the matrix and the n 

is the number of elements. Table 5 shows a summary of each calculated value 

from the equation above. The study conducted by Saaty and Tran (2007) 

includes the complete calculation of CR and the random index which was 

demonstrated in a form of a table. In Table 6, the random index value was 

determined to be 1.40 based on the number of criteria, which has a total of eight. 

Lambda max was calculated to be 8.32, by averaging the ratio values of total 

score divided by the weight for each criterion. This was followed by the 

calculation of consistency index which resulted a 0.046. Given the CI and RI, the 

calculated consistency ratio was 0.0329 which is less than 0.1. The pair-wise 
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comparison matrix was not experiencing inconsistency throughout the weighing 

process; thus, reevaluation of the weights was not necessary. 

Table 5. The calculation of consistency ration (CR) based on consistency index 
(CI) and random index (RI) for the participating criteria for suitability model 
development ratio. 

Decision Parameter 
(Criterion) 
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1. Urban 0.839 0.1014 8.271  

2. Airport 0.839 0.1014 8.271  

3. Highway 0.543 0.0672 8.082  

4. Waterbody 0.236 0.0288 8.184  

5. River 0.236 0.0288 8.184  

6. Wildlife 0.357 0.0443 8.043  

7. Slope 2.194 0.2509 8.745  

8. Wind Class 3.319 0.3770 8.802  

Lambda max: 8.3229  

Consistency Index (CI): 0.0461  

Random Index (RI): 1.4000  

Consistency Ratio (CR): 0.0329  

 

Table 6. Random index (RI) values by total number of criteria used for suitability 
model development based on Saaty and Tran 2007. 

Order 1 2 3 4 5 6 7 8 9 10 

RI 0.00 0.00 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 

First Order 
Differences 

  0.00 0.52 0.37 0.22 0.14 0.10 0.05 0.05 0.04 
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Classification 

 Classification is an important part of a raster based land suitability 

analysis. Each layer was reclassified through the Reclassify tool in ArcToolbox. 

As suggested in the study conducted by Bagheri et al. (2012), Al-Shalabi et al. 

(2006), and Bennui et al. (2007), criteria must be on a standardized scale in 

order to apply them in an overlay analysis. The scale ranges from 0 to 5, where 0 

is the exclusion zone which was done by applying buffer zone around the 

features before the reclassification process. Score 1 represents Not Suitable (S1) 

areas, score 2 is Marginally Suitable (S2), score 3 is Somewhat Suitable (S3), 

score 4 is Moderately Suitable (S4), and score 5 is Highly Suitable (S5). Each 

class was reclassified based on its importance and also proximity to the source. 

Source defines the location of the object of interest for instance airports, rivers, 

highways, urban areas, waterbodies, and wildlife management areas. Table 7 

shows that a 2.5km buffer zone was applied for the urban area features 

representing the exclusion zone. Due to high noise level that these wind turbines 

generate and controversy about the aesthetics, it is a common practice to install 

them in rural areas. As the distance increases from a feature, it becomes more 

suitable. Table 8 demonstrates the applied buffer zone for the airport locations in 

Texas, as well as the different categories based on the distance. Table 9 shows 

the correspondent categories with the associated distance values for the highway 
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criterion. This layer was reclassified the other way around. Considering 

economics and transportation cost, it is crucial to have a highway or road nearby 

a wind farm. Thus, the closer the wind turbines to the highway, the more suitable 

the land is. Table 10 and 11 shows the different categories for rivers and water 

bodies, respectively. Both layers were classified the same way, considering 

environmental factors such as preserving the natural habitats for various species. 

Wildlife management areas received a 2.5 km buffer zone that serves as the 

exclusion zone (Table 12). These areas consist higher diversity when it comes to 

species, thus increasing the exclusion zone is logical. Table 13 Shows the 

classification for the slope criterion. As the highway feature class, slope was 

classified based on the same logic. The less percentage the slope is, the more 

favorable the land becomes. Slope is an important factor regarding wind turbines, 

as it can affect the wind direction and velocity. Wind speed or wind power density 

was the last criterion reclassified. The original seven wind classes from the 

National Renewable Energy Laboratory were reclassified into only five 

categories. Extremely high wind speed (Class 6 and 7) received score five, Class 

5 received score 4, and Class 4 and 3 were assigned to have a score of 3. The 

last two original wind classes were not reclassified (Table 14).  
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Table 7. Suitability classification on urban area data for model development.  

Urban 

Category Distance (km) Score Class 

1 0.0 - 2.5 0 Exclusion Zone 

2 2.5 - 3.5 1 Not Suitable (S1) 

3 3.5 - 4.5 2 Marginally Suitable (S2) 

4 4.5 - 5.5 3 Somewhat Suitable (S3) 

5 5.5 - 6.5 4 Moderately Suitable (S4) 

6 > 6.5 5 Highly Suitable (S5) 

 

Table 8. Suitability classification on airport data for model development. 

Airport 

Category Distance (km) Score Class 

1 0.0 - 3.0 0 Exclusion Zone 

2 3.0 - 6.0 1 Not Suitable (S1) 

3 6.0 - 9.0 2 Marginally Suitable (S2) 

4 9.0 - 12.0 3 Somewhat Suitable (S3) 

5 12.0 - 15.0 4 Moderately Suitable (S4) 

6 > 15.0 5 Highly Suitable (S5) 

 

Table 9. Suitability classification on highway data for model development. 

Highway 

Category Distance (km) Score Class 

1 1.0 - 2.0 5 Highly Suitable (S5) 

2 2.0 - 3.0 4 Moderately Suitable (S4) 

3 3.0 - 4.0 3 Somewhat Suitable (S3) 

4 4.0 - 5.0 2 Marginally Suitable (S2) 

5 5.0 - 6.0 1 Not Suitable (S1) 

6 > 6.0 0 Exclusion Zone 
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Table 10. Suitability classification on river data for model development. 

River 

Category Distance (km) Score Class 

1 0.0 - 0.4 0 Exclusion Zone 

2 0.4 - 0.8 1 Not Suitable (S1) 

3 0.8 - 1.2 2 Marginally Suitable (S2) 

4 1.2 - 1.6 3 Somewhat Suitable (S3) 

5 1.6 - 2.0 4 Moderately Suitable (S4) 

6 > 2.0 5 Highly Suitable (S5) 

 

Table 11. Suitability classification on waterbody data for model development. 

Waterbody 

Category Distance (km) Score Class 

1 0.0 - 0.4 0 Exclusion Zone 

2 0.4 - 0.8 1 Not Suitable (S1) 

3 0.8 - 1.2 2 Marginally Suitable (S2) 

4 1.2 - 1.6 3 Somewhat Suitable (S3) 

5 1.6 - 2.0 4 Moderately Suitable (S4) 

6 > 2.0 5 Highly Suitable (S5) 

 

Table 12. Suitability classification on wildlife management area data for model 
development. 

Wildlife 

Category Distance (km) Score Class 

1 0.0 - 2.5 0 Exclusion Zone 

2 2.5 - 3.5 1 Not Suitable (S1) 

3 3.5 - 4.5 2 Marginally Suitable (S2) 

4 4.5 - 5.5 3 Somewhat Suitable (S3) 

5 5.5 - 6.5 4 Moderately Suitable (S4) 

6 > 6.5 5 Highly Suitable (S5) 
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Table 13. Suitability classification on slope data for model development. 

Slope 

Category % Score Class 

1 > 15 0 Exclusion Zone 

2 15 - 9 1 Not Suitable (S1) 

3 9 - 7.5 2 Marginally Suitable (S2) 

4 7.5 - 5.0 3 Somewhat Suitable (S3) 

5 5.0 - 2.5 4 Moderately Suitable (S4) 

6 < 2.5 5 Highly Suitable (S5) 

 

Table 14. Suitability classification on wind data for model development. 

Wind 

Category Power (W/m2) Score Class 

1 0 - 250 1 Not Suitable (S1) 

2 250 - 350 2 Marginally Suitable (S2) 

3 350 - 450 3 Somewhat Suitable (S3) 

4 450 - 550  4 Moderately Suitable (S4) 

5 > 550 5 Highly Suitable (S5) 
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Suitability Models 

Weighted Overlay 

 The Weighted Overlay model used six datasets, urban, airport, highway, 

river, waterbody, and wildlife to calculate the distance from the object of interest. 

Each dataset served as input for the Euclidean Distance tool that describes each 

cell’s relationship to a source that identifies the location of the object of interest. 

The processing extent in the tool was limited to the state of Texas (Figure 6), 

thus only calculating the distance within the state boundaries to the nearest 

feature. The output was a raster dataset (Figure 7) with a cell size of 150 by 150 

meter that served as the input for the Reclassify tool. This tool had eight input 

datasets including the aforementioned six datasets, plus slope and wind. Figure 

8 and 9 show the reclassified images derived from Table 7 to 13. This step is 

crucial in order to create a common scale that serves as the new classes for the 

Weighted Overlay tool. The scale range was set to one to five where one is the 

least preferable value and 5 is the most suitable value. Once the new classes 

were established, the eight raster datasets with common measurement scale 

were used as the inputs for the Weighted Overlay tool. Weights derived from 

AHP were assigned to each criterion for this model. The advantage of this tool is 

the user can define the scaling range with or without the  input raster been 

reclassified already or not. For this Weighted Overlay tool, the evaluation scale 



 

35 
 

may range from 1 to 5 or 1 to 10, or even a custom scale defined by the user, for 

instance 1 to 7. This option provides a wide range of evolution based on a 

proposed scenario. For this study, the final suitability raster dataset consisted five 

index values, where the lowest cell value represented the least suitable areas 

and the highest cell value the most suitable locations for windfarm development 

in Texas. This Weighted Overlay process was summarized in Figure 10. 

Figure 6. Map showing Euclidean distance from urban areas. 
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Figure 7. Maps showing Euclidean distance from each feature type:  1. Wildlife, 
2. Waterbody, 3. Airport, 4. River, 5. Highway, and 6. Urban. 
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Figure 8. Suitability classification maps derived from Euclidean distance based 
on each feature type: 1. Wildlife, 2. Waterbody, 3. Airport, 4. River, 5. Highway, 
and 6. Urban. 
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Figure 9. Suitability classification map for the criteria of Wind and Slope. 



 

39 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Flow chart of the Weighted Overlay model. 
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Weighted Sum 

 The Weighted Sum model (Figure 11) was constructed the same way as 

the Weighted Overlay in terms of the inputs and process steps involved. 

However, unlike Weighted Overlay, the Weighted Sum simply adds the pixel 

values from all of the input raster without any rescaling. First, the six vector 

datasets were used as input to calculate the distance from the object of interest 

and converted to raster. Every single input was set to have the same parameters 

such as output cell size and processing extent as the Weighted Overlay model. 

The output from the Euclidean Distance tool resulted 6 raster datasets (Figure 7), 

each representing range of distance to its closest features within the processing 

extent. Then each output raster dataset was used to reclassify to create a 

common scale ranging from one to five, where one represents the least favorable 

and five is most preferable. The same classification was applied based on the 

Table 7 to 13. These reclassified raster datasets served as the inputs for the 

Weighted Sum model, which weighs each input raster based on the same 

Analytical Hierarchy Process (AHP). This Weighted Sum tool executed a pixel by 

pixel map algebra by summing the weighted pixel values together. The output 

suitability map was reclassified to maintain the five suitability categories for 

windfarm development.  
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Data classification methods are playing a significant role on the output suitability 

map. Each methods are based on different approach in terms of classifying 

numerical fields for graduated symbology which is considered to be the core of a 

suitability map. Manual interval, defined interval, equal interval, quantile, natural 

breaks (Jenks), geometrical interval, and standard deviations are the available 

classification methods in ArcGIS. To match the five suitability class resulted by 

the Weighted Overlay, natural breaks (Jenks) was used to reclassify the output 

suitability map generated by Weighted Sum. This classification method is based 

on natural groupings inherent in the data. Thus, breaks are selected to 

differentiate between values where large changes in value occur. The natural 

breaks method seeks to reduce the variance within classes and maximize the 

variance between classes. Each output from the suitability models were based 

on this classification method to eliminate inconsistencies between the suitability 

maps.   
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Figure 11. Flow chart of the Weighted Sum model. 
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Fuzzy Overlay 

 The third model was the Fuzzy Overlay (Figure 12). The data preparation 

of the six vector criteria was the same as the Weighted Overlay and Weighted 

Sum models. Euclidian distance tool was used to calculate each layer’s cell 

values representing the distance to the nearest feature of a certain type. 

However, this model did not require classification on the distance raster datasets. 

Instead, each pixel is assigned a fuzzy membership value through fuzzy logic 

based on the possibility of a pattern or phenomenon belonging to multiple sets in 

a multicriteria overlay analysis. Thus, Fuzzy Membership tool replaced the 

Reclassify tool. This tool converted the input raster into a 0 to 1 scale, indicating 

the strength of the membership in a set (Figures 13 and 14). Value 0 indicates 

that the member is not part of the fuzzy set, and value 1 indicates full 

membership in the fuzzy set. The membership types were manipulated in 

different ways to observe different outcomes from the analysis. Each output 

raster from the Fuzzy Membership process was then used to serve as the input 

for the Fuzzy Overlay tool. This tool combines multiple fuzzy membership raster 

data together based on the selected overlay type, determined by the user. The 

available fuzzy types are And, Or, Product, Sum, and Gamma. 

The first fuzzy model (Method One) was based on a forward approach, 

which means where the distance was increasing in some layer, the cell values 

become more favorable. Six datasets including river, airport, urban, wildlife, and 
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wind were set to Large membership type as shown in Table 15. Highway and 

slope on the other hand, were assigned with a Small membership type. This was 

crucial because the aforementioned layers must be classified the other way 

around as the lower distance is more favorable in highways as well as lower 

slope percentage. The midpoints were set to the layer’s maximum distance 

divided by two. This means, when the set midpoint was reached, a 0.5 

membership value was assigned. The spread was set to default value of five. 

The overlay analysis was divided into three part. The first part was concerned 

about five datasets (urban, wildlife, waterbody, river, and airport). These layers 

were calculated using the SUM function in the Fuzzy Overlay tool. This is an 

increasive function as the combination of the inputs was more important than 

each of them alone. This was followed by another Fuzzy Overlay process on the 

two-dataset assigned with small fuzzy membership, highway and slope. The 

PRODUCT function was used as it is a decreasive function. Finally, a third Fuzzy 

Overlay was applied to the precious two outputs and the last criterion, wind. The 

SUM function was used preferring higher cell values to emphasize the 

importance of the wind. The output suitability map was then reclassified as fuzzy 

overlay converts the inputs into a 0 to 1. Thus, natural breaks (Jenks) 

classification was used to reclassify the output into five categories to match the 

output of the Weighted Overlay and Weighted Sum, where value one represents 

Not Suitable (S1) and five is Highly Suitable (S5).  
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Table 15. Parameters of the fuzzification process for Method One of the Fuzzy 
Overlay. 

Fuzzy Membership 

Criteria Membership type Midpoint Spread 

Urban (m) Large 77668.0 5 

Wildlife (m) Large 131008.5 5 

Airport (m) Large 34412.7 5 

Highway (m) Small 24993.0 5 

River (m) Large 25877.2 5 

Waterbody (m) Large 67125.0 5 

Wind Large 3.5 5 

Slope (%) Small 107.2 5 

 

 The second method of Fuzzy Overlay (Method Two) introduced a reverse 

approach. Table 16 shows the input values for fuzzification. The six datasets that 

were used to assign Large membership type in the Method One, now received a 

Small membership. Highway and slope criteria received a Large membership. 

Each layer used the same midpoint values as in the previous method. The 

maximum distance values were divided by two, in order to calculate the midpoint. 

The spread parameter was set to value two, which represents the shape and the 

transition zone of a fuzzy membership. The lower the spread value, the slower 

the transition will be from 0 to 1. This overlay analysis was also divided into three 

parts. The first part was concerned about the first six datasets assigned with the 

same membership type. Urban, wildlife, waterbody, wind, river, and airport were 

added to the Fuzzy Overlay by using AND function to calculate the minimum 

values of the input memberships. This was supported by the input values as they 
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were utilizing Small membership types. The second part dealt with the two 

datasets using Large membership types, highway, and slope. The OR function 

was used in order to receive the maximum value from both inputs. Finally, the 

SUM function was used on the last Fuzzy Overlay having two inputs from the first 

two parts. 

 

Table 16. Parameters of the fuzzification process for Method Two of the Fuzzy 
Overlay. 

Fuzzy Membership 

Criteria Membership type Midpoint Spread 

Urban (m) Small 77668.0 2 

Wildlife (m) Small 131008.5 2 

Airport (m) Small 34412.7 2 

Highway (m) Large 24993.0 2 

River (m) Small 25877.2 2 

Waterbody (m) Small 67125.0 2 

Wind Small 3.5 2 

Slope (%) Large 107.2 2 

 

 The third fuzzy model (Method Three) was based on the same approach 

as Method One. However, instead of using Small and Large membership types, 

each layer was assigned with MSLarge or MSSmall depending whether large or 

small pixel values were preferable. Table 17 shows the parameter values of the 

third approach. Where higher pixel values were favorable, MSLarge membership 
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type was assigned. Mean multiplier and standard deviation multiplier were set to 

one. This was the default value. As the previous approaches, this one was 

divided into three parts as well. The first was focusing on assigning MSLarge 

membership type for the six datasets where larger values were favorable. SUM 

function was used in the Fuzzy Overlay process because the combination of all 

layers was more important than each of them alone. Highway and slope were 

assigned with MSSmall membership type as smaller the pixel values, more 

preferable the location is. These two criteria were input to a second Fuzzy 

Overlay process by using the PRODUCT function. Finally, a third Fuzzy Overlay 

process was applied to the outputs from the first two parts using the SUM 

function, to emphasize the increasive approach for this analysis. The output 

suitability map was then reclassified based on natural breaks (Jenks) from one to 

five. 

Table 17. Parameters of the fuzzification process for Method Three of the Fuzzy 
Overlay. 

Fuzzy Membership 

Criteria Membership type Mean multiplier 
Standard deviation 

multiplier 

Urban MSLarge 1 1 

Wildlife MSLarge 1 1 

Airport MSLarge 1 1 

Highway MSSmall 1 1 

River MSLarge 1 1 

Waterbody MSLarge 1 1 

Wind MSLarge 1 1 

Slope MSSmall 1 1 
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Figure 12. Flowchart of the Fuzzy Overlay model. 
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Figure 13. Maps of assigned fuzzy membership using Small membership type for 
each feature type: 1. Wildlife, 2. Waterbody, 3. Airport, 4. River, 5. Wind, and 6. 
Urban. 
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Figure 14. Maps of assigned fuzzy membership using Large membership type for 
the criteria of Highway and Slope.  
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Accuracy Assessment 

The validation was done by using a point shapefile obtained from the U.S 

Wind Turbine Database, which shows the existing wind turbine locations across 

the United States. The point features were clipped to the state of Texas that 

resulted in a total of 15,230 existing wind turbine locations (Figure 15). This step 

was followed by overlaying each raster suitability map with the validation dataset. 

The output rater dataset consisted different index values that ranged from 1 to 5. 

If existing windmill locations show high index values on the suitability map, the 

analysis is considered accurate. The closer the windmill locations to a high index 

value pixel, the more accurate the analysis outcome. Each point feature was then 

populated with the correspondent index value based on the actual location of the 

existing wind turbine. Extract Multi Values to Points is the tool used to extract the 

index values from the raster suitability maps overlaid with the validation dataset. 

The values derived from the tool were exported into Microsoft Excel, where 

further statistical analysis was conducted. Summary statistics of suitability index 

from the five overlay model outputs were compared against each other. When an 

existing wind turbine location received a high index value such as 5 or 4, it 

indicates that the suitability model output is successful. Since each overlay 

output was classified to five categories, the number of existing wind turbines fell 

into each category was tallied. A two-way table, suitability category by overlay 
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model, of the count values was built. This count dataset was further normalized 

by the land area of each suitability category to depict the number of existing wind 

turbines per unit area, where a higher value indicates a more successful model 

output. 

In order to assess if there is a significant difference between the five 

overlay methods, a Chi-square test was conducted on existing wind turbine 

counts. The following equation was used for the test: 

𝑥2 = ∑ ∑ [
(𝑜𝑖𝑗 − 𝑒𝑖𝑗)

2

𝑒𝑖𝑗

]

𝑐

𝑗=1

𝑟

𝑖=1

 

oij represents the observed count of the ith model and jth suitability class; eij is 

expected count of the ith model and jth suitability class. The level of significance 

(alpha value) was set for 0.05. The degree of freedom (df) was calculated by the 

following equation: 𝑑𝑓 = (𝑟 − 1)(𝑘 − 1) where r is the number of rows and k is 

the number of columns. Degree of freedom was calculated to be 16.  

• The null hypothesis was H0: There is no association between the method 

and the suitability class.  

• The alternative hypothesis was Ha: There is a significant association 

between the method and suitability class. 

If the p-value was less than 0.05, then the null hypothesis was rejected.  
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Figure 15. Existing wind turbine locations in Texas. 
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RESULTS AND DISCUSSION 

Weighted Overlay 

Figure 16 shows the suitability map of the weighted overlay analysis 

overlaid with the existing wind turbine locations. The best locations for large 

scale wind turbine application is in the northern part of Texas. Rolling plains and 

the high plains possess the greatest amount of S4 and S5 areas that represent 

moderate and high suitability. Some areas along the coastline shows possible 

locations for successful wind turbine application due to sufficient windspeed. The 

analysis also resulted unsuitable areas across east Texas and some part of the 

western region as well. This is due to the weight distribution of the criteria where 

wind is the most critical factor that received the greatest weight. The most 

dominant wind class in the eastern region is wind class one, which is generally 

unsuitable for windmills. Figure 17 shows the land area for each suitability class 

in Texas. This Weighted Overlay method resulted in 44,706 km2 (17,261 mi2) of 

highly suitable (S5) area that equals to 6.6% of the entire state. The next 

suitability class is the moderately suitable (S4), one below the highest suitability 

class which resulted in126,203 km2 (48,727.3 mi2). This takes up 18.6% land of 

Texas. It was found that as suitability decreases, the land area of the class  
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increases due to the model input criteria, in particular the wind factor. The 

somewhat suitable (S3) class resulted in 180,858 km2 (69,829.6 mi2) that equals 

to 26.7% land of Texas. After merging S3, S4, and S5 classes (Figure 18), it was 

found that 351,767 km2 (135,818 mi2) of land is suitable, which equals to 52% of 

Texas. In other words, about half of the entire state is indeed suitable for wind 

farm development.  A marginally suitable (S2) location is generally not preferable 

when it comes to wind farm development. However, it might be a viable option in 

some remote areas where adequate wind velocity can be found. This class 

resulted in 205,948 km2 (79,517 mi2) that equals to .45% of the total area. Areas 

with colored red in Figure 16 represent locations that are not suitable (S1) for 

wind turbine application. This is primarily caused by the lack of sufficient wind 

and some areas across east Texas. These not suitable areas were found to be 

118,690 km2 (45,826 mi2) that covers east, west, and some part of south Texas. 

This number takes up 17.55% land of the entire state. Combining the not suitable 

(S1) and marginally suitable (S2) classes (Figure 17), as these classes are 

generally not preferable for wind farm development, resulted in 324,638 km2 of 

land area that accounts for 48% of the entire state. The suitability map using the 

Weighted Overlay analysis showed that more than 50% of the entire state is 

either somewhat (S3), moderately (S4), or highly (S5) suitable for wind turbine 

application and precisely 48% of the state are not suitable for a proposed wind 

farm development.  
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Figure 16. Suitability map for windfarm development based on the Weighted 
Overlay model output. 
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Figure 17. Land area distribution by suitability class resulted from the Weighted 
Overlay model.  

 

Figure 18. Land area comparison between suitable and not suitable for windfarm 
development based on the Weighted Overlay model output. 
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Weighted Sum 

The output suitability map resulted from the Weighted Sum model is 

shown in Figure 19. The map shows that most suitable region in Texas was 

found in the north. High plains and rolling plans are the best locations for wind 

farm development, as these regions have a higher elevation providing higher 

windspeed. Some areas in Trans-Pecos ecoregion were also found suitable, 

showing higher pixel values in the raster model output. South Texas Plains and 

Gulf Prairies and Marshes provide large area of suitability class S3 and S4, 

representing somewhat and moderately suitable locations. The coastline 

provides adequate wind velocity to be harvested by wind turbines, that was found  

suitable in the model output as well. Figure 20 demonstrates the area for each 

suitable class. Starting with highest possible category, it resulted in 37,920.2 km2 

(14,641.1 mi2) land of highly suitable (S5) areas that is responsible for 5.6% land 

of Texas. These small areas were found to meet all criteria, including wind speed 

as the most important requirements for a successful wind farm development. The 

moderately suitable (S4) class resulted in a much larger area with 146,958 km2 

(56,740.8 mi2) that takes up 21.7% land of the state. The greatest area was 

found to be covered by the somewhat suitable (S3) class represented by pixel 

value 3. This was equal to 202,127 km2 (78,041.7 mi2) of land and is responsible 

for 29.83% land of Texas. This class covers 1/3rd of the state. Combining S3, S4, 
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and S5 classes (Figure 21), as each class provides suitable locations for wind 

farm development, resulted in 387,005 km2 (149,423.5 mi2). Thus, 57.12% of the 

total area of Texas is suitable based on the Weighted Sum model output. The 

marginally suitable (S2) class resulted in 143,859 km2 (55,544.3 mi2) of land, 

which takes up 21.23% of Texas. These areas are usually found in east Texas, 

and also some part of western Texas, mainly due to the lack of windspeed and 

urbanization in the eastern region. The not suitable (S1) areas equal to 146,679 

km2 (56,633.1 mi2) which was found primarily across east Texas and some 

western regions as well. It takes up 21.65% of the total area. Furthermore, 

merging S1 and S2 suitability classes (Figure 20) of the Weighted Sum model 

output resulted in 290,538 km2 (112,177.3 mi2) that equals to 42.88% of the 

entire state. Generally, the first two lowest classes are not suitable for large scale 

wind turbine application as none or only a few criteria were found met in the 

analysis. Ultimately, based on this Weighted Sum analysis, more than half of the 

entire state was found somewhat (S3), moderately (S4), or highly (S5) suitable 

and less than 45% area was found to be not suitable for successful wind farm 

development (Figure 21).  
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Figure 19. Suitability map for windfarm development based on the Weighted Sum 
model output. 
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Figure 20.  Land area distribution by suitability class resulted from the Weighted 
Sum model. 

 

Figure 21.  Land area comparison between suitable and not suitable for windfarm 
development based on the Weighted Sum model output. 
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Fuzzy Overlay 

Model One 

Figure 22 shows the suitability map resulted from the Fuzzy Overlay – 

Method One. This method consisted of six datasets (urban, wildlife, waterbody, 

river, airport, and wind) that were used to assign Large membership type and two 

datasets (slope and highway) with Small membership type as the greater or 

smaller pixel values were more favorable, respectively. Similar spatial pattern 

was found in this model output as in the Weighted Overlay and Weighted Sum. 

The Fuzzy Overlay analysis was done by manipulating the membership type 

based on favorable pixel values, because the weights and classification in 

fuzziness were not assigned by the user. Figure 23 demonstrates the area for 

each suitability class resulted from this Fuzzy Overlay analysis. The highest 

suitability class (S5) was responsible of 60,570 km2 (23,386 mi2) of land. These 

are the most suitable locations and were found in the high and rolling plains of 

Texas. The area takes up 11% of the total aera of Texas. Moderately suitable 

(S4) locations were found in the same regions and it accounts for 94,607 km2 

(36,528 mi2) that equals to 17.7% of the entire state. Somewhat suitable (S3) 

class accounts for 67,565 km2 (26,087 mi2) and generally it can be found in the 

Edwards Plateau and south Texas plains. Some areas with pixel value three can 

also be found along the coastline, due to adequate wind velocity. Summing the 
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suitable locations (Figure 24) resulted in 222,742 km2 (86,001 mi2) of land which 

only accounts for 42% of the entire area of Texas. The marginally suitable (S2) 

locations resulted in an area of 71,494 km2 (27.603 mi2) that equals to only 

13.4% of the entire state. This category is considered to be marginal for wind 

farm development. The least favorable locations (S1) resulted in a much larger 

area, 240,926 km2 (93,022 mi2) that is 45% land of the entire Texas. Combining 

the two unsuitable categories (Figure 24), it returned a 312,420 km2 (120,625 

mi2) which equals to 58.38% land of Texas. In Figure 22, there are areas colored 

white that represent the actual features of each criterion that were not included in 

the analysis, as wind farm development cannot be done on those locations. They 

were assigned with a pixel value of no data during the process. The total area of 

Texas was acquired by using the state boundaries that equals to 677,543 km2 

(261,601 mi2). Thus, the area of no data was calculated to be 142,381 km2 

(54,974 mi2) by subtracting the sum of the suitability categories from the total 

area of Texas. 
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Figure 22.  Suitability map for windfarm development based on the Model One of 
Fuzzy Overlay output. 
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Figure 23.  Land area distribution by suitability class resulted from the Model One 
of Fuzzy Overlay. 

 

Figure 24.  Land area comparison between suitable and not suitable for windfarm 
development based on the Model One of Fuzzy Overlay. 
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Model Two 

Figure 25 shows the suitability map resulted from the second method of  

Fuzzy Overlay, Model Two. This method was based on a reverse approach for 

fuzzification. The highest suitability class in this analysis was found in the high 

plains and Edwards Plateau. The highest suitability (S5) class resulted in a 

relatively small area, 60,834 km2 (23,488 mi2) that equals 10% of the entire state 

(Figure 26). However, the moderately suitable (S4) class resulted in a much 

greater area across Texas. It is responsible for 140,265 km2 (54,156 mi2) area 

that takes up 23% of the state. These areas were found in the rolling plain and 

the high plains as well as in the Edwards Plateau. Somewhat suitable (S3) class 

takes up 111,021 km2 (42,865 mi2) of Texas. Merging S3, S4, and S5 classes 

into one category (Figure 27), it resulted in 312,120 km2 (120,510 mi2) which is  

51% of the entire state. Marginally suitable (S2) locations were found in the 

southern and the eastern part of Texas around areas. Marginally suitable (S2) 

locations equal to 142,519 km2 (55,026 mi2) and it takes up 23.3% of the entire 

state. Lastly, the largest area was received by the least favorable locations which 

is represented by pixel value one. Not suitable (S1) areas were found to show 

similar pattern to the previous model outputs. East and some southern part of 

Texas possess these not suitable locations mainly due to heavy urbanization and  

the lack of windspeed. Pixel value one resulted in 155,894 km2 (60,191 mi2) that 

equals to 25.5% of the total area where wind farm development is not suitable. 
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Summing the two least suitable classed resulted in 298,413 km2 (115,217 mi2), 

which equals to 48.9% of the state. In this Fuzzy Overlay process, areas of 

highway was assigned no data, which applied Large type for fuzzy membership. 

It accounts for a total of 67,009 km2 (25,873 mi2). 
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Figure 25.  Suitability map for windfarm development based on the Model Two of 

Fuzzy Overlay output. 
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Figure 26.  Land area distribution by suitability class resulted from the Model Two 
of Fuzzy Overlay. 

 

Figure 27.  Land area comparison between suitable and not suitable for windfarm 
development based on the Model Two of Fuzzy Overlay. 
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Model Three 

The last suitability map resulted from the third Fuzzy Overlay method, 

Model Three, which was based a specified mean and standard deviation. This 

model consisted of six datasets (urban, wildlife, waterbody, river, airport, and 

wind) where the MSLarge membership type was assigned, as well as two 

datasets (slope and highway) where the MSSmall membership type was 

assigned. A similar spatial pattern was observed when compared to the previous 

model outcomes (Figure 28). Figure 29 shows the distribution of area between 

the suitability classes in Texas. This analysis resulted in an area of 78,192 km2 

(30,190 mi2) for the highly suitable (S5) class. It accounts for 11.5% land of 

Texas and is the smallest among the five suitability classes in terms of land area. 

Rolling plains and the high plains possess these high suitability areas due to less 

urbanization and increasing wind velocity. Moderately suitable (S4) areas were 

equal to 151,539 km2 (58,509 mi2). This takes up 22.4% land of the state 

providing twice the size of S5. The somewhat suitable (S3) class resulted in 

127,141 km2 (49,089 mi2) area, generally located in central and southern part of 

the state. This was equal to 18.8% land of Texas. Merging S3, S4, and S5 

suitability classes into one, it resulted in a total of 53% (Figure 30) with 358,872 

km2 (137,789 mi2). Marginally suitable (S2) areas resulted in 22% coverage in 

Texas, that equals to 149,290 km2 (59,938 mi2). The location of this class was 

found to spread across in east Texas, due to high urbanization and lack of wind 
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velocity. The not suitable (S1) class resulted in the largest total area of 171,391 

km2 (66,174 mi2), which takes up 25.3% of the entire state. Combining the 

marginally (S2) and not suitable (S1) locations, it has an area of 320,681 km2 

(123,815 mi2), which takes up 47% land of Texas. The distribution between 

suitable and not suitable classes was found to be similar to the previous model 

outcomes. 
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Figure 28.  Suitability map for windfarm development based on the Model Three 
of Fuzzy Overlay output. 
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Figure 29.  Land area distribution by suitability class resulted from the Model 
Three of Fuzzy Overlay. 

 

Figure 30.  Land area comparison between suitable and not suitable for windfarm 
development based on the Model Three of Fuzzy Overlay.  
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Comparison of Overlay Models 

 Figure 31 shows the land area comparison of different suitability classes 

between the overlay models. The lowest area was found in the highly suitable 

class (S5) across the five model outputs. This is primarily due to the input criteria 

and the landscape of Texas, where urbanization and low wind velocity is found in 

the eastern part and steep slope terrains occur in the western region. The 

greatest area in the highly suitable class was achieved by the third Fuzzy 

Overlay model with 78,189 km2 (30,189 mi2) land featuring MSSmall and 

MSLarge membership types. Method One and Method Two of the Fuzzy Overlay 

models resulted similar high suitability (S5) areas, followed by Weighted Overlay 

and Weighted Sum. For the moderately suitable class (S4), Method Three of the 

Fuzzy Overlay had the greatest area of 151,539 km2 (58,509 mi2), followed by 

the Weighted Sum with 146,958 km2 (56,740 mi2). Method One of Fuzzy Overlay, 

which was based on a forward approach utilizing either Small or Large 

membership types, resulted in the lowest area in the moderately suitable (S4) 

class. This value, 94,607 km2 (36,527 mi2) is 37% lower than the largest area of 

this suitability class. A general trend was observed across the five overlay 

models, where the land area decreases when the suitability increases. The first 

forward approach of fuzzy overlay (Method One) resulted in the lowest area in 

the somewhat suitable (S3) class with 67,565 km2 (26,086 mi2) of land. This is a 
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66% reduction compared to the Weighted Sum model, which was equal to 

202,127 km2 (78,041 mi2). Weighted Overlay generated similar values when 

compared to Weighted Sum. A total of 180,858 km2 (69,829 mi2) was classified 

as somewhat suitable (S3) and it is the second largest class of the Weighted 

Overlay model output. For the marginally suitable (S2) class, the Weighted 

Overlay model resulted in a total of 205,948 km2 (79,516 mi2), which is much 

higher than any other models. The models of Weighted Sum, Fuzzy Overlay Two 

and Three resulted in similar areas of the S2 class, which is generally not 

suitable for large scale wind turbine application. However, it can exist in some 

rural areas where wind speed is adequate. The lowest area, 71,494 km2 (27,603 

mi2) classified by Method One of Fuzzy Overlay is much lower than other model 

outputs, precisely a 50% reduction when compared to the Fuzzy Overlay Two 

with 142,519 km2 (55,026 mi2). As Fuzzy Overlay One resulted in the least 

amount of area across almost every suitability class, it was expected to observe 

a peak in the not suitable class (S1). The total of 240,926 km2 (93,022 mi2) in 

the S1 class demonstrated a 40% increase compared to the second largest area 

resulted from Fuzzy Overlay Three. Weighted Sum, Fuzzy Overlay Two and 

Three resulted in similar areas for this not suitable class. The lowest not suitable 

area was received by Weighted Overlay with 118,690 km2 (45,826 mi2). 
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Figure 31. Land area distribution across five suitability classes by each overlay 
model output. 
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Validation with Existing Wind Turbines 

Each suitability map was overlaid with the validation dataset to derive the 

cell value of each existing wind turbine locations. A model output is considered 

more accurate when more exiting wind turbines land on a higher suitability class 

such as moderately suitable (S4) or highly suitable (S5). Figure 32 shows the 

frequency distribution of wind turbines in each suitability class across different 

model outputs. Excluding Fuzzy Overlay One, a general trend was observed 

where the number of existing wind turbines increased when the land class is 

more suitable until the highly suitable class (S5). The greatest numbers of 

existing wind turbines were found to be in the moderately suitable (S4) class, 

indicating that all models performed well in suitability analysis. In this S4 class, 

the Weighted Sum model received the greatest number of 7,559 turbines, 

followed by Fuzzy Overlay Two (6,943) and Weighted Overlay (5,751). The total 

number of wind turbines from the validation dataset is 15,230, thus 49% of them 

were found in the moderately suitable (S4) class based on the Weighted Sum. 

On the other hand, Fuzzy Overlay One resulted in only 5,499 existing wind 

turbines in the S4 class. This is reflects the fact that a much larger total area was 

classified as not suitable by the Fuzzy Overlay One model. The highly suitable 

(S5) class did not receive the largest numbers of existing wind turbines as would 

be expected. The Fuzzy Overlay Three model resulted in the greatest number of 
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wind turbines (4,667) in this highly suitable (S5) class. In comparison, the 

Weighted Sum model observed a 66% reduction from the moderately suitable 

(S4) class to the highly suitable (S5) class, whereas the Fuzzy Overlay Two class 

observed 56%. On average, the reduction from S4 to S5 is 49.5%. For the 

somewhat suitable (S3) class, the Weighted Sum and Weighted Overlay resulted 

in very similar, almost identical numbers of existing wind turbines with 3,746 and 

3,833, respectively. It is reasonable since they were based on the same 

classification and weighting. The same was found among the Fuzzy Overlay 

models. Fuzzy Overlay One and Two resulted in 2,421 and 2,250 wind turbines, 

respectively, indicating a 7% difference. The Fuzzy Overlay Three model resulted 

in the least amount of wind turbines in the somewhat suitable (S3) class, only 

1,718. For the marginally suitable (S2) class, the overserved number of existing 

wind turbines are lower, ranging from 999 to 2,107. The greatest number was 

found in the Fuzzy Overlay Two model, which is much larger than other overlay 

models in this suitability class. Fuzzy Overlay Three resulted in the second 

largest with a total of 1,507 wind turbines, which is 28% less than Fuzzy Overlay 

Two in this class. Weighted Sum, Weighted Overlay, and Fuzzy Overlay One 

resulted in very similar numbers. The last category, the not suitable (S1) class 

received low numbers varying from 190 to 2,158. The Fuzzy Overlay One 

resulted in an unexpected number that is much higher than other models. This 

echoed what was found in Figure 31, where the Fuzzy Overlay One model 
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resulted in a much larger total area in the S1 class than others. When the land 

area increases, the possibility of a location be in that area increases. The 2,158 

wind turbines of Fuzzy Overlay One is 3.15 times greater than that of Fuzzy 

Overlay Three, the second largest in this S1 class with 684 wind turbines. This 

was followed by the Weighted Sum model, which observed  exactly 400 turbines. 

Lastly, Weighted Overlay and Fuzzy Overlay Two resulted in very similar 

numbers, 190 and 232, respectively. Worth to mention is that the Fuzzy Overlay 

One and Two have areas assigned with NO DATA in the modeling process.  That 

lead to areas on the final output that were not classified into any suitability for 

windfarm development. When validating the model outputs with existing wind 

turbine locations, some of them happened to be in these areas as shown in 

Figure 32. The Fuzzy Overlay One model contributed 645 wind turbines into this 

No Data category, while Fuzzy Overlay Two contributed 657. It is about 4% of all 

the exiting wind turbines that were excluded in the analysis.  
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Figure 32. Number of existing windmills in each suitability class by different 
overlay model. 
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Statistical Analysis 

When the total numbers of existing wind turbines within each suitability 

class was normalized by the land area of that class, it gives a picture that better 

represents how the models performed (Figure 33). A higher number of wind 

turbines per area unit indicates a more suitable area for windfarm development. 

The pattern in Figure 33 confirmed that all models did well as higher values were 

found in the more suitable classes. Linear increase was observed in most models 

among the suitability classes. The highly suitable (S5) class resulted in an 

average of 6.1 wind turbines per unit area, where the highest value of 7.27 wind 

turbines per 100 km2  was observed from the Weighted Overlay model output. 

This was followed by Weighted Sum, producing 6.6 wind turbines per 100 km2. 

For the three Fuzzy Overlay methods, Model Three outperformed the other fuzzy 

models, resulting in almost precisely 6.0 wind turbines per unit area. Fuzzy 

Overlay Two generated 5.6, and Fuzzy Overlay One generated 5.0 wind turbines 

per 100 km2. The average number of wind turbines per area unit for the 

moderately suitable (S4) class was 5.13. The greatest number was achieved by 

Fuzzy Overlay One with 5.81. Weighted Overlay, Weighted Sum and Fuzzy 

Overlay Two did not show much differences in terms of number of wind turbines 

per unit area,, with 5.31, 5.14 and 4.95 wind turbines per 100 km2 received by the 

three models, respectively. The least amount of wind turbines was generated by 
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the Fuzzy Overlay Three model. The difference among the five models for the 

somewhat suitable (S3) class was more dramatic. The average for this S3 class 

was 2.19 windmills per 100km2. The greatest value was achieved by the Fuzzy 

Overlay One model with 3.58. Weighted Overlay and Fuzzy Overlay Two 

generated 2.12 and 2.03 per 100km2, respectively, outperforming the Weighted 

Sum and Fuzzy Overlay Three models. In this class, Fuzzy Overlay Three had 

the least amount of wind turbines per area unit with 1.35 per 100km2. Fuzzy 

Overlay One remained the highest for number of wind turbines per unit area in all 

suitability classes, except the highly suitable (S5). Its high numbers in the less 

suitable classes is an indication of low accuracy.  
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Figure 33. Number of existing wind turbines per unit area in different suitability 
class by overlay models. 
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Table 18 furthered the analysis by calculating the average of pixel values 

where the existing wind turbine are located for each overlay model. A higher 

average value indicated a more accurate model output since a windmill is 

expected to be built on a more suitable location with a higher index value. The 

highest mean pixel value was found to be from the Fuzzy Overlay Three model, 

which as 3.86. This is due to its highest total number of existing wind turbines 

located in the highly suitable (S5) areas (Figure 32), although its number per unit 

area is less than those of Weighted Sum and Weighted Overlay (Figure 33). The 

mean pixel value of Weighted Sum’s 3.71 and Weighted Overlay’s 3.77 

reconfirmed their good performance in finding suitable locations for windfarm 

development. The least accurate was found to be Fuzzy Overlay One, which has 

the lowest mean pixel of 3.32. Its high numbers of wind turbines found in the less 

suitable classes (Figures 32 and 33) contributed to the results      

Table 18. Average pixel values of existing wind turbines for each suitability 
model. 

Suitability 
Models 

Weighted 
Sum 

Weighted 
Overlay 

Fuzzy 
Overlay 1 

 Fuzzy 
Overlay 2 

Fuzzy 
Overlay 3 

Average 
pixel value 

3.71 3.77 3.32 
 

3.56 3.86 

   

In order to test if there is association between the overserved numbers of 

existing windmills along the five suitability classes in relation to the five overlay 

models, the observed and expected count values were organized in Tables 19 
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and 20, respectively. Expected values were derived by the observed values by 

the following method. The subtotal of each column was multiplied by the subtotal 

of the rows divided by the total number which was 74,840. A chi square test was 

conducted. Using the software R, the p-value was calculated to be 2.2 x 10-16, 

which is much less than the alpha level that was set to 0.05. The null hypothesis 

(Ho) was rejected and the alternative hypothesis (Ha) was accepted, indicating 

that there is association between the overlay method and the distribution of each 

suitability class count. It suggests that the models generated different suitability 

outcomes significantly. Based on the average pixel values in Table 18, it is 

concluded that Fuzzy Overlay Three is the most accurate model, while Fuzzy 

Overlay One is the least.   
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Table 19. Number of existing windmills observed in each suitability class by 
different model outcomes. 

OBSERVED 
 

  
Weighted 

Sum 
Weighted 
Overlay 

Fuzzy 
Overlay 1 

Fuzzy 
Overlay 2 

Fuzzy 
Overlay 3 

SUM  

1. Not 
Suitable 

400 190 2158 232 684 3664  

2. Less 
Suitable 

999 1199 1113 2107 1507 6925  

3. Suitable 3746 3833 2421 2250 1718 13968  

4. Moderate 
Suitable 

7559 6751 5499 6943 6654 33406  

5. High 
Suitable 

2526 3249 3394 3041 4667 16877  

SUM 15230 15222 14585 14573 15230 74840  

 

Table 20. Numbering of existing windmills expected in each suitability class by 
different model outcomes. 

EXPECTED 
 

 Weighted 
Sum 

Weighted 
Overlay 

Fuzzy 
Overlay 1 

Fuzzy 
Overlay 2 

Fuzzy 
Overlay 3 

SUM  

1. Not 
Suitable 

745.63 745.24 714.05 713.46 745.63 3664.00  

2. Less 
Suitable 

1409.24 1408.50 1349.56 1348.45 1409.24 6925.00  

3. Suitable 2842.50 2841.01 2722.12 2719.88 2842.50 13968.00  

4. Moderate 
Suitable 

6798.15 6794.58 6510.24 6504.89 6798.15 33406.00  

5. High 
Suitable 

3434.48 3432.68 3289.03 3286.32 3434.48 16877.00  

SUM 15230.00 15222.00 14585.00 14573.00 15230.00 74840.00  
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CONCLUSION 

 The northern region of Texas was found to be the most suitable locations 

for wind farm development because it provides sufficient wind speed that can be 

harvested by the turbines. Although in remote areas, they met most of input 

criterion requirement. This conclusion was based on the output suitability maps  

and validated on each overlay model output with existing wind turbine locations. 

Although not the best based on the classification scheme, the moderately 

suitable (S4) class observed the highest numbers of existing wind turbines. On 

the other hand, not suitable locations are mainly found in the eastern and 

southern parts of Texas, except some small areas where the criteria were met. In 

fact, some existing wind turbines are indeed located in these areas as found on 

the model output maps. All of the five suitability analysis models revealed the 

same spatial pattern on windfarm development suitability across the state of 

Texas. 

There are many factors that affect the outcome of a land suitability 

analysis. For this study, the commonly referred criteria including urban, wildlife, 

airport, highway, river, waterbody, slope, and the most critical factor, wind were 

used in finding the best locations for wind turbines. There is limitation in a GIS 

based analysis when data sources rely solely on those available in public 

domain.  
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The most critical criterion, the wind dataset used for this study was 

recorded in 2015 by the National Renewable Energy Laboratory and it measured 

at 50-meter height above ground. If long-term observed wind data were 

available, the model outcomes would be more reliable when predicting into the 

future. Another important factor that could affect the output suitability map is the 

classification methods. For this study, natural breaks (Jenks) was used to 

reclassify the index values into the final five classed of suitability for four of the 

five models. However, using a different classification method, such as standard 

deviation or geometrical interval, the distribution of suitability classes for each 

model could be different. 

The use of existing wind turbine data for accuracy assessment was based 

on the assumption that each wind turbine was built on a more suitable location. It 

does not tell how much electricity actually generated at each wind turbine. To 

further assess the accuracy, power generated at each turbine should be 

monitored and incorporated in the assessment in order to increase the reliability 

of each model output. 

Although the five models resulted in similar outputs where more existing 

wind turbines were found in more suitable areas, there is difference on their 

accuracy performance that is verified by the chi-square test. Fuzzy Overlay 

Three model is the most accurate as it had most existing windmills in higher 

suitability class locations. The total number of wind turbines in the validation 
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dataset is 15,230 and 74.3% of them are located within either moderately 

suitable (S4) or highly suitable (S5) locations based on the Fuzzy Overlay Three 

model output. This high accuracy is also supported by the highest index value of 

3.86 from its model output, when validated with existing wind turbine locations. 

It is clear that Texas is very capable of providing lands for successful 

windfarm development. The state is currently ranked as having the highest 

number of  installed wind turbines. This study provides a roadmap for finding the 

next suitable locations for installing wind turbines. However, when it comes down 

to deciding on a location, the land ownership should be taken into consideration.   
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