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ABSTRACT 

Rising atmospheric carbon dioxide (CO2) may affect plant/pathogen 

interactions. This study focused on the effects of elevated CO2 on Root-Knot 

Nematode (Meloidogyne arenaria) and Tobacco Mosaic Virus (TMV) infection in 

genetically resistant versus susceptible tomatoes (Solanum lycopersicum). Both 

resistant and susceptible tomatoes were grown in chambers with either ambient 

CO2 or CO2 elevated to 750 ppm and infected with M. arenaria or TMV. 

Measurements were taken at regular intervals to determine the effects of the 

pathogens on the plants. Resistant plants infected with M. arenaria maintained 

resistance while susceptible plants remained susceptible at both CO2 levels. 

Resistant plants inoculated with TMV maintained their resistance in both CO2 

levels. Susceptible plants inoculated with TMV took longer to demonstrate 

infection in elevated CO2.  
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INTRODUCTION AND LITERATURE REVIEW 

 According to the United States National Oceanic and Atmospheric 

Administration, the global average of measured carbon dioxide (CO2) levels are 

rising. In 2014 the global mean was 396ppm, and by the end of 2019 that 

average had risen in steady growth to 411.76ppm (NOAA, 2020). These levels 

are expected to exceed 450 ppm by 2030 and are predicted to continue to 

increase to levels between 750 ppm and over 1300 ppm by 2100 (IPCC, 2014). 

With this increase of CO2 levels across the globe, it is important to understand 

how these changes will affect food supply by studying the effects of elevated CO2 

on plants and their pathogens.  

Studies have been done to measure the effects of elevated CO2 levels on 

plants, and changes to multiple aspects of plant functions have been discovered. 

While there are many factors, both environmental and within the plant, that 

influence stomatal aperture, there is evidence that elevated levels of CO2 

consistently reduce stomatal aperture (Ainsworth & Rogers, 2007). 

Photosynthesis changes under high levels of CO2 are also well documented.  

Plants that undergo C3 photosynthesis show increased photosynthetic activity 

with increased atmospheric CO2 concentrations, but how much it increases is 

dependent on the growth form of the plant and the environment in which it is 



1 

 

grown (Ainsworth & Rogers, 2007). C4 photosynthesis levels also increase at 

elevated CO2 levels, but evidence is increasing to support the hypothesis that 

this “is an indirect effect resulting from the interaction of water stress with 

reduced stomatal aperture at elevated CO2” (Ainsworth & Rogers, 2007, p.263). 

In addition to increased photosynthesis, both C3 and C4 plants undergo changes 

to their leaf protein content, thickness, and carbohydrate content. This reduces 

their nutritional quality for the herbivores and omnivores that depend on them for 

food.  Ehleringer, Cerling, & Dearing (2002) found that non-structural 

carbohydrate content increased, and nitrogen content decreased in leaves grown 

at elevated CO2 levels. Mammals and insects that feed on these plants have 

demonstrated slower growth rates when consuming them (Ehleringer et al., 

2002). 

Studies on the effects of elevated CO2 on plants have found that it has 

limitations on how much it affects photosynthesis and, if levels rise too high, can 

cause detrimental effects on the plants. Granados & Korner (2002) found that in 

tropical climbing plants the elevated CO2 growth effects level off at 700ppm. The 

availability of nutrients such as nitrogen can down-regulate a plant’s 

photosynthesis rate regardless of the concentration of CO2 that the plant is 

exposed to (Zheng et al., 2018). Leaf biochemical composition can also affect 

photosynthesis in plants in elevated CO2, associated with reductions in activity or 

amounts of Rubisco (Zheng et al., 2018). Adverse effects on some plants were 
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found when CO2 levels reached 1,000ppm or higher. A study on tomato plants 

found that at 1,000ppm CO2, the chloroplasts and leaves became deformed and 

eventually withered (Kramer, 1981). Different species of plants have different 

optimal CO2 concentration levels and different levels at which it becomes 

dangerous to the plant (Zheng et al., 2018). 

  Studies conducted on plant-pathogen systems in differing levels of CO2 

have produced independent results. In some studies, elevated CO2 levels have 

reduced the ability of the pathogen to affect the plant, in others, parasitic activity 

increased, and in yet other studies of plant-pathogen systems, no effect was 

seen with increased CO2 (Zhang et al., 2015). Trebicki et al. (2015) found that the 

virus titre of BYDV-PAV increased by 36.8% in wheat exposed to elevated CO2 

environmental levels when compared to wheat grown in ambient CO2. Chitarra, 

Siciliano, Ferrocino, Gullino, & Garibaldi (2015) found in their study that both 

increased CO2 and higher temperatures caused an increase in fungal infection of 

rocket plants. The lower nitrogen content in the leaves of plants grown in 

elevated CO2 environments causes insect herbivores, such as Spodoptera litura, 

a tobacco cutworm, to eat more leaves to compensate. Kumari and Verma 

(2017) demonstrated higher levels of leaf damage on bell pepper plants grown in 

elevated CO2 levels compared to those grown in ambient CO2 levels. In another 

study Kumari and Verma (2017) suggested that aphids, herbivores that feeds on 

the phloem of plants, benefit from plants being grown in elevated CO2 and 
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temperature conditions, and the numbers of them found on bell pepper plants is 

significantly higher in elevated CO2 conditions compared to ambient conditions.  

However, Dáder, Fereres, Moreno, & Trebicki (2016) found that elevated CO2 

negatively impacts aphid life history and reduces the damage to the plants. 

This study examined elevated CO2 levels on the two plant-pathogen 

systems of tomatoes and root-knot nematodes and tomatoes and Tobacco 

Mosaic Virus. By growing genetically resistant and genetically susceptible tomato 

plants under ambient and artificially elevated CO2 concentrations and infecting 

them with the pathogens, we attempted to ascertain if the elevated CO2 causes 

the plant to lose resistance to these pathogens or if resistance is enhanced or not 

affected.  

Root-knot nematodes (Meloidogyne spp.) are parasitic worms that can 

cause extensive changes to a plant’s roots (Taylor and Sasser, 1978). During the 

second stage of life, the nematode penetrates a root just above the root cap and 

works its way up the root to the zone of cell elongation. It pierces cell walls 

nearby and injects secretions that induce the infected cells to hypertrophy into 

giant cells as well as causing nearby cells to undergo hyperplasia and form galls 

(Taylor & Sasser, 1978). A set of 3,373 genes have been identified that show 

significant changes in expression during the formation of giant cells and galls, 

demonstrating the complexity of the influence of the nematode on the plant 

(Jammes et al., 2005). The cytoskeletons of the giant cells are rearranged, and 
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metabolism increases so the nematodes can feed from them (Jammes et al., 

2005). The giant cells are multinucleated from undergoing repeated nuclear 

divisions without cytokinesis. Many of the nuclei are aneuploid with highly 

variable chromosome counts (Wiggers, Starr, & Price, 1990). These changes in 

the roots affect the ability of the plant to take up water and partition nutrients 

(Milligan et al., 1998).    

 Tobacco Mosaic Virus (TMV) is a single-strand RNA virus that is part of a 

larger genus of viruses called tobamoviruses (Knapp & Lewandowski, 2001). 

TMV infects solanaceous plants that include tobacco, tomato, and green 

peppers, all of which are economically important crops. The virus particle makes 

its way into the plant through lesions and begins to reproduce and infect one cell 

at a time moving through plasmodesmata, then more widely infects the plant 

through the phloem. TMV causes mottling and curling of the leaves in addition to 

necrotic lesions. Flowers and fruits can also become mottled and distorted, and 

growth of the entire plant may be stunted (Agrios, 2005). The distinctive yellow 

and green mottling of the leaves is caused by chlorosis induced by TMV, possibly 

by the reduction of Ferrodoxin I in the chlorotic portions of the leaves (Banerjee, 

Wang, & Zaitlin, 1995; Ma et al., 2008). In addition to the chlorosis, reduction in 

photosynthetic activity is seen in infected plants due to reduced number and size 

of chloroplasts and lower CO2 fixation efficiency (Wilhelmová, Procházková, 

Sindelarova, & Sindelar, 2005). 
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TMV is extremely stable and remains potent after many years in cigars 

and cigarettes made with contaminated tobacco plants. It is recommended that 

once a field has been infected, plants that are susceptible to TMV should not be 

planted there for at least 2 years. Transmission in commercial supplies of 

tomatoes is often caused by workers handling contaminated plants with their 

hands or tools, then touching noncontaminated plants. Washing hands and tools 

with soap is recommended to help control the virus, and soaking hands and tools 

in milk has been found to inhibit infection (Agrios, 2005). 

  In both soil and air, a higher level of CO2 affects root-knot nematode 

interactions with plants. It changes the interactions of the parasites with tomato 

plants of different genotypes (Sun, Cao, Yin, Kang, & Ge, 2010). Tomato plants 

with genotypes that are defense-dominant reduced their defenses when exposed 

to higher levels of CO2. Tomato plants without defense-dominant alleles had no 

change in their defenses. All tomato plant types, however, had increased 

biomass and size under elevated CO2 conditions, which allowed the plants to 

better withstand the infection of species of Meloidogyne. The plants showed very 

little damage from the nematodes despite high numbers of galls in the roots (Sun 

et al., 2010). 

 In a long-term study on the nematode populations in soil treated with 

elevated CO2, Yeates and Newton found that overall numbers of parasitic 

nematodes were significantly higher in the soil treated with elevated CO2 than in 
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soil at ambient CO2 levels (2009). For numbers of the Meloidogyne species 

specifically, there were significantly more after 4 years in elevated CO2 soil than 

in ambient soil (Yeates & Newton, 2009). 

 King (2003) found that elevated levels of CO2 affected Meloidogyne 

arenaria grown on the host plant Vicia faba. Nematode-induced giant cells 

accumulated DNA faster than in the plants grown at ambient CO2. Additionally, 

the number of eggs produced by the nematodes at higher CO2 levels was 

significantly higher than the number of eggs from those at ambient CO2 (King, 

2003). 

  Several studies have been conducted to determine the effects of elevated 

CO2 on the tobamovirus family. Zhang et al. (2015) found that at CO2 levels of 

800ppm, the effect of TMV on tomato plants decreased compared to an ambient 

CO2 level of 380ppm. They discovered an increase in a plants’ use of the 

salicylic acid signaling pathway that is an integral part of plant stress response to 

TMV (Zhang et al., 2015). Another study done on this family of viruses found that 

aphids feeding on plants grown under elevated CO2 levels had decreased 

transmission rates of Cucumber Mosaic Virus (CMV). More research needs to be 

done to determine if this result was caused by the negative effects of elevated 

CO2 on the aphids or on the virus itself (Dáder et al, 2016). Del Toro et al. (2015) 

studied CMV in Nicotiana benthamiana, a close relative of tobacco, at elevated 

CO2 levels and found infection symptoms to be comparable to ambient CO2 
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levels, however, the ratio of virus to plant protein was increased because as the 

plants grew larger under elevated CO2 their protein content per leaf unit 

decreased. 

Defense-dominant resistance responses in plants, also called R-protein-

mediated responses, are coded by a class of genes known as R-genes (Knepper 

& Day, 2010). The largest class of R-genes contains a nucleotide-binding site 

(NB) at the amino-terminus and a leucine rich region (LRR) at the C-terminus 

(Knepper & Day, 2010). The NB is necessary for ATP or GTP binding, and the 

LRR is for protein-protein interactions and peptide/ligand binding (Knepper & 

Day, 2010). In addition to the specific structures necessary for R-genes to 

function, many have also been found to require additional protein interactions 

(Knepper & Day, 2010). Milligan, et al. (1998) found that R-genes are only 

effective if the parasite they are resisting has an avirulence gene because R-

genes function in gene to gene interactions. There is no clear evidence, however, 

that R-genes recognize the avirulence factor of the pathogen. Indirect evidence 

points to the R-gene being expressed in plant immune response when the 

changes caused by the pathogen begin (Nimchuk, Eulgem, Holt, & Dangl, 2003). 

When expressed, R-genes cause a hypersensitive response (HR) in a plant that 

is a form of programmed cell death which is triggered, along with other defenses, 

by production of reactive oxygen species, nitric oxide, and salicylic acid 

messengers (Nimchuk et al, 2003). The resistance genes that have been 
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discovered that prevent tomato plants from becoming host to either root-knot 

nematodes or TMV are R-genes in the NB-LRR class. 

Resistance to Meloidogyne spp is conferred by the gene Mi-1/Meu-1 

which was previously thought to be two separate genes. However, Vos et al. 

(1998) found that these two genes are the same. This gene has been 

introgressed from Lycopersicon peruvianum, also called Solanum peruvianum 

and commonly named the Peruvian tomato, into modern cultivars of tomatoes 

(Vos et al., 1998). Mi-1 is in a subclass of NB-LRR R-genes that has a leucine 

zipper motif (Milligan et al., 1998). In addition to resistance to root-knot 

nematodes, Mi-1 also confers resistance to whiteflies, aphids, psyllids and other 

sap-sucking insects (Guo et al., 2016). When a genetically resistant tomato plant 

is infected with nematodes, it undergoes a HR instead of creating the giant cells 

and galls. This Mi-1 associated response occurs approximately 12 hours after 

inoculation of the plant with juvenile nematodes, when the nematode would be 

injecting secretions into the cell (Milligan et al., 1998). The nematodes still move 

through the root to the feeding site, but the feeding site doesn’t develop. The 

nematode will then either die or leave the root (Milligan et al., 1998). Similarly to 

other R-genes, Mi-1 requires other protein interactions to function. Without the 

heat shock protein Hsp90, nematodes can successfully parasitize tomato roots 

even if the Mi-1 gene is intact and functioning (Bhattarai et al., 2007). 
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Because Mi-1 confers resistance and not immunity, studies have been 

done to determine possible variables that could affect the effectiveness of the Mi-

1 gene. Many studies have focused on the effects of temperature changes.  In 

temperatures consistently held higher than 30° C for multiple days, resistance to 

root knot nematodes from the Mi-1 gene is less effective (Cooper, Gia, & Goggin, 

2005; Haroon, Baki, & Huettel, 1993). de Carvalho et al. (2015) found that a 3-

hour single heat spike of 35° C, which is comparable to rising temperatures that 

occur during the hottest part of the day, reduced the effectiveness of Mi-1, as 

evidenced by the increased number of galls formed in tomato plant roots.  

However, continuing to expose the plants to these temperature spikes each day 

caused the plant to adjust, and resistance increased, demonstrated by there 

being fewer galls that formed on these plants compared to the tomatoes treated 

with only one day of increased temperature (de Carvalho et al., 2015). There are 

also virulent species of Meloidogyne upon which Mi-1 has no effect (Cooper et 

al., 2005). In 1995 farmers in California found that tomato fields with the Mi-1 

gene were heavily infested with galls and giant cells indicative of a species of 

root-knot nematode. Studies of the parasites determined these galls were formed 

by M. incognita. The response there has been to rotate crops between tomato 

plants and other plants that are not hosts for M. incognita (Kaloshian, Williamson, 

Miyao, Lawn, & Westerdahl, 1996). 
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Guo et al. (2016) studied the effects of elevated CO2 levels on the 

effectiveness of Mi-1 resistance on Tomato Yellow Leaf Curl Virus which is 

transmitted by the sap-sucking whitefly Bemisia tabaci, another parasite Mi-1 

codes for resistance against. They found that disease incidence in plants without 

the Mi-1 resistance gene decreased when grown in higher levels of CO2. In 

plants with the Mi-1 resistance gene, the increased levels of CO2 actually 

increased the disease incidence regardless of whether the plants were 

inoculated with the virus by B. tabaci or were agroinoculated (Guo et al., 2016). 

Four different genes have been identified that can confer resistance to 

TMV and other viruses in the tobamovirus family. Cultivated tomato plants have 

Tm-1, Tm-2, and Tm-22 genes that control viruses in this family (El-Aziz, Guirgis, 

Roshdy, & Kheder, 2016). These genes are all R-genes that induce localized cell 

death as part of the resistance response. Tm-22 has been found to mediate the 

most effective resistance to TMV, and, like the Mi-1 gene, is a NB-LRR gene and 

requires Hsp90 to function (Qian et al., 2018).    

The fourth resistance gene is the N gene from Nicotiana glutinosa, a 

species of tobacco (Knapp & Lewandowski, 2001). The N gene induces a more 

effective HR against more strains of tobamoviruses than any other resistance 

genes (Whitham, McCormick, & Baker, 1996). The N gene has a NB-LRR with a 

Toll/Il-1 receptor domain. The N gene induces a HR within 48 hours to restrict the 

spread of the virus, and after an initial exposure, the plant becomes more 
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resistant to subsequent exposure through systemic acquired resistance 

(Marathe, Anandalakshmi, Liu, & Kumar, 2002). As with the other resistance 

genes already discussed, the N gene requires other proteins to function properly 

(Marathe et al., 2002). Because this gene is from a tobacco plant, tomato plants 

must be transformed to benefit from this gene. When a tomato was transformed 

with N from tobacco, the tomato plant produced the same level of HR when 

exposed to TMV as the tobacco plant (Whitham et al., 1996). 

 The Tm genes can lose their effectiveness at providing TMV resistance to 

tomato plants. Tm-1 and Tm-2 can be overcome by naturally occurring strains of 

TMV (Weber, Schultze, & Pfitzner, 1993). Two base substitutions in TMV can 

overcome resistance in tomatoes with Tm-1, a C → G substitution causing a Gln-

979 → Glu amino acid change, and a C→ U that causes a His-984→ Tyr amino 

acid change. These substitutions happen in the same protein of TMV. (Meshi et 

al., 1988). Two different substitutions in TMV remove resistance in plants with 

Tm-2. These cause the changes Cys-68→Phe and Glu-133→Lys in the TMV 30-

kD movement protein (Meshi et al., 1989). Tm-22 resistance has been overcome 

by amino acid substitutions Ser-238→Arg and Lys-244→Glu, also in the 30-kD 

movement protein (Weber et al., 1993). 

 Inactivation of the N gene is less common than inactivation of the Tm 

genes. It can be inactivated by high temperatures (Marathe et al., 2002) of 28°C 

and above, but HR is restored when the temperature is brought back below 28°C 
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(Whitham et al., 1996). The Ob strain of tobamovirus has also been found to 

overcome N gene-mediated resistance (Padgett & Beachy, 1993). Additionally, N 

gene function requires the gene Rar1, which interacts with SGT1 and then 

associates with COP9 signalsome. Suppressing COP9 and SGT1 compromises 

resistance conferred by N (Marathe et al., 2002). 

Both TMV and Meloidogyne spp. can have detrimental effects on 

economically important crops grown for human consumption. Plants that are 

genetically resistant to parasites are critical in the efforts of the agricultural 

industry to ensure a sufficient food supply for people and livestock. It is important 

that we understand how the changes in the earth’s atmosphere will affect plant-

pathogen systems so that food production can continue to meet global demands. 

To address this concern, this study was designed to investigate how elevated 

CO2 affects genetically resistant tomatoes infected with either TMV or M. 

arenaria. The alternative hypothesis for this experiment is elevated CO2 will affect 

a tomato plant’s resistance or susceptibility to M. arenaria or TMV. If the plant’s 

susceptibility or resistance is not affected, however, the null hypothesis that 

elevated CO2 will not affect the plant’s resistance or susceptibility to these 

diseases will be accepted. 

Two growth chambers were used, one with ambient CO2 concentrations 

and one with elevated CO2 concentrations. Genetically resistant and genetically 

susceptible ragdolls infected with the nematodes were placed in each chamber, 
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and samples were taken every 9 days to count the number of feeding sites per 

plant and the number of nuclei from the large cells in these feeding sites. For the 

TMV experiment, pots of genetically susceptible tomatoes and pots of genetically 

resistant tomatoes were grown in each chamber and then infected with the virus. 

They were sampled every 10 days beginning with the day of inoculation. 

Measurements taken included plant height, visual scale of plant healthiness, 

TMV presence in the leaves, and chlorophyll content of the leaves. Comparisons 

were made between the susceptible and resistant plants infected with M. 

arenaria grown at both ambient and elevated CO2 levels, and between the 

susceptible and resistant plants infected with TMV grown at both CO2 levels. 
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MATERIALS AND METHODS 

Growth Chambers 

Two 705-liter growth chambers located in a greenhouse were used. Each 

chamber had a vent and a fan to allow air exchange throughout the chamber 

twice per minute (King, 2003). One chamber circulated outside air, allowing for 

ambient CO2 levels of approximately 410ppm. To elevate the CO2 level of the 

other chamber to 750ppm (±25ppm), a compressed CO2 gas cylinder with a flow 

meter was attached. Other than the level of CO2, conditions in the chambers 

were almost identical (King, 2003). Temperatures in the chambers ranged from 

approximately 16° C at night up to 35°C during the day. The temperature rose 

above 35° C on four nonconsecutive days of the study, however, this 

temperature did not last more than a few hours at a time. 

Tomato Plants 

Two varieties of tomatoes were used for this study. Druzba is an heirloom 

variety that has no known genetic resistance to pathogens, and Bush Early Girl 

Hybrid is genetically resistant to both TMV and Meloidogyne spp. For each of the 

pathogens studied, a set of Druzba and a set of Bush Early Girl Hybrid tomato 

plants were grown from seed in both the ambient CO2 and elevated CO2 growth 

chambers. They were infected with pathogens after the second set of leaves 
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grew in for those in pots, approximately four weeks after being planted, and after 

roots had grown to 10mm long in the ragdolls, approximately two weeks after 

sprouting. 

Pathogens 

Roots infected with M. arenaria were provided by Terry Wheeler, Texas 

A&M University. To maintain a continuous supply of nematodes, Druzba variety 

tomatoes were grown from seed on the greenhouse bench and were periodically 

inoculated with nematodes to allow them to reproduce. Eggs of M. arenaria were 

taken from the roots of these supply plants and used for inoculating test plants. 

Roots were agitated in 20% bleach solution for 5 minutes then filtered to remove 

debris and hatchlings and isolate the eggs. 

To obtain TMV sap, Druzba variety plants were grown on the greenhouse 

bench and inoculated with a small amount of TMV obtained from a sample in 

storage at Stephen F. Austin State University. These plants were allowed to grow 

so the virus could replicate and spread within them. TMV was extracted from 

these infected plants by grinding the plants and mixing the resulting sap in a 

phosphate buffer. This created a liquid sap of TMV that could be applied to 

leaves of plants. One leaf of each plant to be inoculated was heavily abraded 

with diatomaceous earth, and the TMV extract was applied to the abrasion with a 

small brush. 
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Ragdolls and Nematode Feeding Sites 

 Seeds of Druzba and Bush Early Girl Hybrid tomatoes were placed in four 

separate ragdolls (Carter, Nieto, & Veech, 1977). One ragdoll of each tomato 

variety was grown in each CO2 growth chamber until roots were approximately 

10mm long. Nematode eggs were isolated from roots of infected tomato plants 

and placed in water. 3mL of this egg solution was then pipetted onto the 

miracloth of the ragdolls where the eggs would hatch and infect the roots of the 

seedlings growing in the ragdolls. 

 Samples of seedlings from each of the four ragdolls were taken every nine 

days after inoculation. These samples were placed in a 3:1 fixative of 95% 

ethanol to acetic acid and stored at 4°C for 1-3 days. The 3:1 fixative was then 

poured off the samples and replaced with a 70% ethanol solution for storage at 

4°C (Wiggers, Starr, & Price, 1990). These root samples were then Feulgen 

stained (Wiggers, Starr, & Price, 1990) and the average number of feeding sites 

per plant was calculated. Feeding sites were dissected out of the roots and the 

number of nuclei per feeding site was counted. 

Tobacco Mosaic Virus  

 36 tomato plants were grown to test the tomato-TMV plant-parasite 

system. In each growth chamber, nine resistant and nine susceptible plants were 

grown in pots and staked to cause them to grow up straight and prevent them 

contacting other plants nearby as much as possible within the confined space of 
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the chamber. One susceptible plant and one resistant plant in each chamber 

were left uninoculated to serve as controls. The remaining eight plants of each 

variety in each chamber were inoculated with TMV. On the day of inoculation and 

every 10 days after, samples were taken from each of these plants to measure 

height, TMV presence, chlorophyll content, and visually score the plants for signs 

of TMV infection. The final samples were taken 50 days after inoculation, for a 

total of 6 samples for each plant.  

Height was measured in millimeters by following the stem growth from the 

top of the soil to the youngest branch bud nearest the end of the tallest piece of 

the stem. TMV presence was detected by testing a single leaf randomly taken 

from each plant, freezing it for storage, then using the Agdia ImmunoStrip® for 

TMV that gives a clear response if TMV is present. Chlorophyll amounts were 

measured to determine the extent of the chlorosis caused by TMV because 

chlorosis “is always accompanied by a reduction in chlorophyll content” 

(Goodman, Király, & Wood, 1986, p. 53). This was accomplished by placing a 

small, standardized piece of leaf material in a jar with a N,N-Dimethylformamide 

(DMF) extraction buffer. These jars were placed in the dark at 4°C for 1-3 weeks 

while the chlorophyll dissolved out from the leaf piece (Inskeep & Bloom, 1985). 

The chlorophyll absorbency of the DMF in the sample jars was then measured 

using a spectrophotometer at 657nm, 665nm, and 750nm to measure 
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chlorophylls a and b and the total chlorophyll amount of each sample, which was 

reported as chlorophyll per unit leaf area (mg/cm2). 

 The visual scale used to determine the extent of visible signs of TMV was 

modified from a scale developed to score potato plants infected with various 

viruses (Islam et al., 2015). Each plant was given a score of 0-5 each time 

samples were taken. 

 

Table 1: Visual Disease Rating for Plants Infected with TMV 

Score Visual Symptoms 

0 No visible sign of TMV 

1 Some leaves are lightly mottled yellow 

2 All leaves are lightly mottled 

3 All leaves affected with some leaves curling or 

completely yellow 

4 All leaves completely yellow and curling 

5 All leaves completely yellow and curling and plant in 

state of distress, dying 

 

Statistical Analysis 

 To analyze the numbers of feeding sites per plant and the number of 

nuclei per feeding site for each tomato variety and CO2 treatment in ragdolls 

infected with root-knot nematodes, one-way ANOVAs were used. 
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 When analyzing the results of the TMV experiment, one-way ANOVAs and 

Tukey HSD tests were used to interpret height, chlorophyll content, and visual 

scale data to determine what differences existed between the susceptible and 

resistant plants at each CO2 level. TMV presence was analyzed with Chi-squared 

tests. Infected plants were compared to uninfected control plants of the same 

tomato variety and in the same CO2 treatment for samples taken every 10 days. 

Infected plant groups given different treatments were also compared to each 

other for samples taken every 10 days. 

  



20 

 

RESULTS 

Root-Knot Nematodes 

 The number of feeding sites per plant was significantly lower for both CO2 

treatments of resistant Bush Early Girl Hybrid plants than both CO2 treatments of 

the susceptible Druzba tomatoes (F=3.9497, p<0.0358). There was no significant 

difference in the number of feeding sites per plant between the two groups of 

resistant plants (F=0.0765, p<0.7913) or between the two groups of susceptible 

plants (F=0.4342, p<0.5344). (Figure 1). 

 There was also a significant difference in the number of nuclei per feeding 

site between the resistant groups and the susceptible groups. The susceptible 

plants from each treatment had many more nuclei than the resistant from each 

treatment (F=4.4488, p<0.0254). There was no difference seen in the number of 

nuclei per feeding site between the two groups of resistant plants (F=0.1520 

p<0.7101) or between the two groups of susceptible tomatoes (F=0.0344, 

p<0.8589). (Figure 2). 
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Figure 1: Number of Feeding Sites per Plant by Treatment Each Week 
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Figure 2: Average Number of Nuclei per Plant by Treatment Each Week 
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Tobacco Mosaic Virus 

 Resistant tomatoes grown in the chamber kept at ambient CO2 

concentration and infected with TMV did not show any significant difference in 

height or TMV presence in their leaves during the 50 days of testing compared to 

the noninfected plant with the same treatment. When the chlorophyll content of 

the infected tomatoes was compared with that of the noninfected control plant, 

the data was inconclusive. 30 days after inoculation, the infected plants had 

significantly more chlorophyll than the control plant (F=6.4309, p<0.0389), and 10 

days later, the control had higher levels of chlorophyll than the infected plants, 

but not enough to be significant. There was also no significant difference in their 

chlorophyll levels by day 50 (F=1.5809, p<0.2490). It took until 50 days after 

inoculation for the infected plants to show significantly more visual signs of TMV 

than the uninfected plants (F=1.87x1016, p<0.0001). 

 Resistant tomatoes grown in elevated CO2 showed no differences 

between the control and the infected plants until 50 days after inoculation. At 50 

days the only difference was that infected plants showed more visual signs of 

TMV infection (F=7.000, p<0.0331). 

 Susceptible tomatoes grown at ambient CO2 began showing significant 

differences between the control and the infected plants by 10 days after 

inoculation. TMV presence was detected in 7 of the 8 inoculated plants 

demonstrating a difference between infected and controls (Χ2=3.938, p<0.0472). 
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By 20 days after inoculation and throughout the remainder of the sampling time 

period, all inoculated plants in this group tested positive for TMV giving a clear 

difference between the control and the infected plants (Χ2=9.000, p<0.0027). 

Visually the infected plants also showed significantly more symptoms than the 

non-infected control by 20 days after inoculation (F=32.11, p<0.0008) and 

throughout the rest of the experiment. No difference was measured between 

height and chlorophyll content for the infected susceptible tomatoes grown at 

atmospheric CO2 and the control. 

 Susceptible tomatoes grown in elevated CO2 only showed visual symptom 

differences between infected and the non-infected control. At 20, 30, 40, and 50 

days after inoculation, the infected plants showed more visual symptoms of TMV 

than the control (F=1.87x1016, p<0.0001, F=9.000, p<0.0199, F=12.7034, 

p<0.0092, F=18.7185, p<0.0035). 

 On the day of inoculation, four weeks after planting the seeds and placing 

them in the growth chambers, both the resistant and susceptible plants growing 

in elevated CO2 were significantly taller than all the plants growing at ambient 

CO2 (F=9.5921, p<0.0002). This trend continued throughout the sampling period. 

(Figure 3). 
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Figure 3: Height of Each Treatment by Date 
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Significant differences in visual symptoms between the four inoculated 

groups of tomatoes were seen from 10 days post inoculation through 50 days 

post inoculation. (10 days F=3.7207, p<0.0228; 20 & 30 days F=35.6667, 

p<0.0001; 40 days F=8.400, p<0.0004; 50 days F= 18.1754, p<0.0001) The 

susceptible plants grown in both the ambient and elevated CO2 consistently 

showed more visual signs of TMV than the resistant plants grown in each 

treatment. (Figure 4). 

Seven of the susceptible tomato plants grown in the ambient CO2 

chamber began testing positive for TMV 10 days after inoculation, which was 

different than all other test groups in which no plants tested positive for TMV 

(Χ2=26.880, p<0.0001). At 20 and 30 days post inoculation, all susceptible 

tomatoes in ambient CO2 tested positive, and one resistant in the atmospheric 

chamber did. 40 days after inoculation 25% of the susceptible plants in the 

elevated CO2 chamber tested positive for TMV and by day 50, five of the eight 

tested positive for TMV infection, which, when analyzed with the susceptible in 

the ambient growth chamber, was significantly different than the resistant plants 

in both chambers (Χ2=20.825, p<0.0001). 

Significant differences were seen in chlorophyll amounts between the 

infected test groups each time samples were taken. On the day of inoculation, 

both plant groups in the elevated CO2 had significantly more chlorophyll than 

both groups in the ambient CO2 (F=28.7605. p<0.0001). 
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Figure 4: Visual Scale of Each Treatment by Date 
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10 days after inoculation the resistant plants in ambient CO2 had more 

chlorophyll than both susceptible groups, and the resistant plants in elevated 

CO2 had chlorophyll concentrations between these groups (F=9.0959, 

p<0.0002). At 20 and 30 days, both elevated CO2 test groups once again had 

more chlorophyll than both groups in the ambient CO2 chamber (F=11.6163, 

p<0.0001). By the end of the experiment at day 50, the resistant plants grown in 

ambient CO2 had significantly more chlorophyll than the susceptible grown in 

elevated CO2, and the other test groups’ chlorophyll concentrations were 

between these two (F=4.9808, p<0.0068). 

 

Table 2: Chlorophyll Concentrations Day 50 

Tomato Variety CO2 Treatment 
Chlorophyll a & b 

(mg/cm2) 

Bush Early Girl Hybrid Elevated 5.30 

Bush Early Girl Hybrid Ambient 6.23 

Druzba Elevated 3.00 

Druzba Ambient 4.75 
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DISCUSSION 

Root-Knot Nematodes 

 When the resistant plants grown at elevated CO2 and inoculated with M. 

arenaria were compared to the resistant plants inoculated with M. arenaria and 

grown at ambient CO2, no significant difference was seen in the level of infection. 

Elevated CO2 did not change the resistance of the tomatoes to this parasite in a 

manner detectable by this experiment. It was also found that elevated CO2 did 

not affect the susceptibility of the tomatoes to M. arenaria. The resistant 

tomatoes remained resistant to root-knot nematodes and the susceptible 

tomatoes remained susceptible to these infections in both levels of CO2. For this 

pathogen, the null hypothesis that elevated CO2 would not affect genetic 

resistance or susceptibility to M. arenaria is supported. 

Tobacco Mosaic Virus 

The Druzba tomatoes grown in ambient CO2 showed signs of TMV 

infection earlier and more consistently throughout the sample period. By 10 days 

post inoculation, 7 of the 8 infected plants tested positive for TMV, and 10 days 

later all 8 plants in this group tested positive for TMV and continued to test 

positive through the remainder of the experiment. These plants were also shorter 

than all other plant groups by the 50th day after inoculation. The chlorophyll 
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concentrations in the leaves of the Druzba at ambient CO2 were also lower than 

chlorophyll concentrations in the leaves of the other groups. These results were 

expected because this variety does not have any known genetic resistance to 

TMV. The data from this study supports the understanding that when exposed to 

TMV under current ambient CO2 conditions, the Druzba tomatoes will continue to 

become infected and show symptoms typical of TMV. 

The Druzba tomatoes grown in elevated CO2 had different results than the 

Druzba in ambient CO2. These plants were also expected to test positive for TMV 

early in the experiment and develop the characteristic symptoms of TMV. 

However, this is not what occurred. Because of the elevated CO2 exposure, 

these plants grew taller than both varieties of tomatoes grown in ambient CO2 

and held off the symptoms of TMV longer than anticipated. It took 40 days after 

inoculation for any of these plants to test positive for TMV, and even then, only 2 

tested positive. 10 days later 5 total plants in this group had tested positive for 

TMV. Rating these plants visually overall, they showed fewer symptoms of TMV 

than the Druzba grown at ambient CO2. The chlorophyll concentration in the 

leaves of these plants also remained higher than the concentration in the Druzba 

variety at ambient CO2. While the elevated CO2 did not confer resistance to these 

plants, it did give them an advantage compared to the same variety grown at the 

ambient CO2 level. They were able to delay expression of TMV symptoms and 

slow down the spread of the virus through the plant for over 5 weeks. Testing at 
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the molecular level would explain if this is because the plant’s immune system 

was strengthened by the extra CO2, or if these results are due to increased 

growth from the additional CO2. 

The resistant variety of tomatoes, the Bush Early Girl Hybrid, maintained 

its resistance to TMV in both CO2 treatments. The resistant tomatoes were less 

visibly stressed by TMV exposure throughout the growth period. 20 days after 

inoculation only one resistant tomato plant at ambient CO2 tested positive for 

TMV, and by 30 days it was no longer testing positive for TMV. Another plant 

tested positive at 30 and 40 days but did not test positive for TMV by day 50. A 

third resistant plant tested positive for TMV only at the data collection on day 50. 

Because it was not the same plant each time that tested positive and because 2 

of the 3 that did give a positive TMV test did not test positive at a later date, it 

indicates that these plants were able to continue resisting the disease even after 

the virus had spread within the plant.  

By the end of the data collection period, the resistant tomatoes under 

ambient CO2 also demonstrated their ability to resist the chlorosis typically 

caused by TMV, and their visual symptoms were less than both groups of 

susceptible tomatoes. At day 50 of data collection, these plants had the highest 

level of chlorophyll in their leaves compared to all three other inoculated groups 

and had the fewest visual symptoms, which was significantly less than the 

Druzba groups, but comparable to the resistant tomato plants in elevated CO2. 



32 

 

These tomatoes grew taller than the Druzba in the same level of CO2 but did not 

grow as tall as either variety in the elevated CO2. This result was expected 

because it is well documented that elevated CO2 causes an increase of mass, 

including increased height, in plants grown in CO2 levels of 560ppm to at least 

970ppm (Del Toro et al., 2015; Granados & Korner, 2002; Trebicki et al., 2015).   

The resistant variety of tomatoes grown in elevated CO2 were the least 

affected by TMV inoculation. These tomatoes were the tallest on the day of 

inoculation and at days 10, 40, and 50 post-inoculation. On days 20 and 30, they 

were only shorter than the susceptible tomatoes in elevated CO2, but even this 

was not a significant difference. Measuring these plants with a visual scale, they 

had few to no symptoms of TMV comparable to the resistant plants at ambient 

CO2. Only one resistant plant at elevated CO2 tested positive for TMV throughout 

the study. It occurred at the 40-day data collection and no longer tested positive 

by day 50. These plants had either the highest levels of chlorophyll at each 

measurement from 20 days onward or were not significantly different from 

whichever other group had a higher chlorophyll content. At 10 days their 

chlorophyll level was not significantly different from the resistant tomatoes at 

ambient CO2 which was the only group with a higher chlorophyll level. 

For the plant-pathogen system of TMV and tomatoes, the data shows that 

genetically resistant plants will remain resistant as the CO2 level in the 

atmosphere increases, supporting the null hypothesis that resistance would not 
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be affected by elevated CO2. Higher atmospheric CO2 is a benefit to genetically 

susceptible plants because the increased CO2 gives them an advantage over the 

plants grown in current atmospheric CO2 levels. Corroborating a previous study 

(Zhang et al., 2015), susceptible tomato plants infected with TMV showed a 

decrease in infection under elevated CO2 levels compared to current levels of 

CO2. For this cultivar of tomatoes, the data supports the alternative hypothesis 

because its susceptibility to TMV was decreased under elevated CO2. 

The results of these experiments add to the growing evidence that the 

rising levels of CO2 in our atmosphere are going to affect plants that are 

necessary for human consumption. The results also continue to demonstrate that 

each plant and each pathogen within plant-pathogen systems may respond 

differently to these changes. While both varieties of plants infected with 

nematodes showed no difference in withstanding or succumbing to these 

parasites in elevated CO2, the susceptible tomatoes inoculated with TMV were 

able to better withstand the disease caused by that virus. The agricultural 

industry can continue to grow tomatoes in the predicted elevated CO2 

atmospheric conditions as long as genetically resistant plants are cultivated or 

susceptible plants are grown in a way that keeps them away from root-knot 

nematodes and TMV.  
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