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ABSTRACT

Invasive species are a prevalent problem all over the world. Controlling and erad-

icating an invasive species is an even more difficult problem. The Trojan Y Chro-

mosome (TYC) eradication strategy is one control method. This method alters

the female to male sex ratio by introducing sex reversed males called supermales.

These sex reversed males can only produce male progeny. Mathematical models

of this strategy have shown that a population can be driven to extinction with a

continuous supply of these sex reversed males. There are many different math-

ematical models of this strategy, but most have serious flaws, such as negative

solutions or finite time blow up. In this paper, a new model for the TYC strategy

is introduced and an optimal control is established for the introduction rate of

the supermales for this new model.
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1 INTRODUCTION TO TROJAN Y CHROMOSOME MODEL AND
INVASIVE SPECIES CONTROL

1.1 Motivation

The United States Department of the Interior defines an invasive species as “an alien
species whose introduction does or is likely to cause economic or environmental harm
to human health [13].” The Invasive Species Advisory Committee further defines an
invasive species as “a species that is non-native to the ecosystem under consideration
and whose introduction causes or is likely to cause economic or environmental harm
or harm to human health [1].” In other words, an invasive species is a foreign species
that has tremendous impact on the ecosystem that it is invading. Invasive species
can be difficult to manage and even more difficult to eradicate. For these reasons,
modeling the spread of invasive species is an important problem and much has been
devoted to this issue. Here, we analyze a strategy to control an invasive species.

1.2 Trojan Y-Chromosome Strategy

The Trojan Y Chromosome (TYC) model is an eradication technique developed by
Guiterrez and Teem [6]. This was further developed and analyzed by Gutierrez, Juan
B., et al in ”Analysis of the Trojan Y chromosome model for eradication of invasive
species in a dendritic riverine system” [5]. The optimal control of the classical and
certain modifications to the model was developed by Beauregard et al in “Optimal
control and analysis of a modified trojan Y-Chromosome strategy” [2]. It uses the
idea of supermales to alter the sex ratio of the species to be predominately male
and thus drive the species towards extinction. A supermale is a male with two Y
chromosomes and thus when it mates with a wild female, the offspring will be male.
A traditional Punnett square is given in Fig. 1.1 for a normal male and female species
would be, where, for a large enough population, the sex ratio for the species is 50%
male and 50% female.

1



X Y

X XX XY

X XX XY

Figure 1.1: Punnet Squares of Normal Male and Female Reproduction

The Punnett squares when we add the supermale component are given in Fig. 1.2.

Y Y

X XY XY

X XY XY

Figure 1.2: Punnet Squares of Supermale and Female Reproduction

As the population becomes predominantly male, new females are no longer produced.
As older females die, reproduction becomes increasingly rare. This in turn will lead
to the extinction of the invasive species.

In addition, certain environmental pressures, such as resource availability, affect
the long term dynamics of this system relative to no environmental pressures. A
preliminary study conducted by the United States Geological Survey (USGS) in
Florida has shown that the females of this species are more likely to stress their
young, resulting in death of the young, regardless of the amount of food available
to them. Mesocosm experiments were conducted by placing juvenile fish into tanks
with either adult female or adult male fish with varying food supplies. Effectively,
they had a tank with males and juveniles with low food, males with juveniles with
high food, females and juveniles with low food, females and juveniles with high food,
and a control tank of just juveniles. [12] This study demonstrated that the presence

2



of adult fish, regardless of the available food supply, applied detrimental pressure
to the juvenile population. This effect is predominant in the female/juvenile tanks,
especially if the available food supply is low.

This study motivates the idea to specifically look at the effects of environmental
pressures of wild females on supermales.

3



2 VARIOUS MODELS OF THE TROJAN Y-CHROMOSOME
STRATEGY

2.1 Modified TYC Model

The traditional mating model for a species may be modeled by

ḟ =
1

2
βfmL− δf,

ṁ =
1

2
βfmL− δm,

where L = 1− f +m

K
and K, β, and δ are non-negative parameters. Specifically K is

the carrying capacity, β is the birth rate, and δ is the death rate for the species. The
derivatives ḟ and ṁ document the change in the female and male population in time,
where f is the number of females and m is the number of males. The traditional
TYC model has these same elements, and adds an equation for the supermales. The
traditional TYC model with supermales was first given by Gutierrez and Teem [6]:

ḟ =
1

2
βfmL− δf,

ṁ =
1

2
βfmL+ βfsL− δm,

ṡ = µ− δs,

where L = 1 − f +m+ s

K
and K, β, δ, and µ are non-negative parameters. The

derivative ṡ is the change in the supermale population over a certain time interval, s
is the number of supermales at that time, and µ is the time dependent introduction
rate for the supermales. A modification of this model was proposed in [2], which
included a factor for intraspecies competition for mates:

ḟ =
1

2
βfmL

(
m

m+ s

)
− δf, (2.1)

ṁ =
1

2
βfmL

(
m

m+ s

)
+ βfsL

(
s

m+ s

)
− δm, (2.2)

ṡ = µ− δs, (2.3)
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where L = 1 − f +m+ s

K
and K, β, δ, and µ are non-negative parameters. The

intraspecies competition factors,
m

m+ s
and

s

m+ s
, are really a nonnegative satura-

tion term that would provide the percentage of the male population that comes from
either the normal male population or the supermale population. Let us now look at
the equilibrium of the modified TYC model.

2.1.1 Equilibria of Modified TYC Model

We now solve Equations (2.1), (2.2), and (2.3) to find the equilibrium solutions to
this nonlinear system of equations. Since µ is a continuous rate of introduction
for supermales, which does not seem physically possible, we set µ = 0. Hence at
equilibrium s = 0.
Substituting s = 0 into (2.1) we have

0 =
1

2
βfmL− δf. (2.4)

Similarly, substituting s = 0 into (2.2) we have

0 =
1

2
βfmL− δm. (2.5)

Solving (2.4) and (2.5), we have

0 = f

(
1

2
βmL− δ

)
0 = m

(
1

2
βfL− δ

)
.

Then f = 0 or m = 2δ
βL

. Similarly, m = 0 or 2δ
βL

= f . This shows us that f = m.
This also gives us an equilibrium solution when s = m = f = 0. The equilibrium
solution of the form (f,m, s) ≡ (0, 0, 0) is called the extinction state.

Assume f 6= 0, then 1
2
βmL− δ = 0, and L = 1− f +m+ s

K
combine to

2δK

β(K − f −m)
= m.

Since m = f , then

5



2δK

β
= m(K −m−m)

2m2 −Km+
2δK

β
= 0.

Solving this using the quadratic formula we have

m =
K

4
± K

4

√
1− 16δ

βK
.

Let K+ = K
4

+ K
4

√
1− 16δ

βK
and K− = K

4
− K

4

√
1− 16δ

βK
. Looking at the discrim-

inant, if 1− 16δ
βK

= 0, then we have two equilibrium solution at (K
4
, K

4
, 0) and (0, 0, 0).

If 1− 16δ
βK

< 1 then we have no real solutions. If 1− 16δ
βK

> 1, then we have three equi-

librium solutions, (K+, K+, 0), (K−, K−, 0), and (0, 0, 0). We determine the stability
of these equilibrium solutions in the next section.

2.1.2 Linear Stability Analysis of Modified TYC Model

Since this is a nonlinear system, evaluating the stability of this system can be difficult.
A reliable approach would be to linearize the system. Let

g1(f,m, s) = ḟ ,

g2(f,m, s) = ṁ,

g3(f,m, s) = ṡ.

Let f ∗, m∗, s∗ be the equilibrium solutions to g1, g2, g3. In other words,

g1(f
∗,m∗, s∗) = 0,

g2(f
∗,m∗, s∗) = 0,

g3(f
∗,m∗, s∗) = 0.

Let u = f−f ∗, v = m−m∗, and w = s−s∗ denote the small perturbations about the
equilibrium points. Note that f ∗ ,m∗ , s∗ are all constants. Substituting f = f ∗+u,

6



g = g∗+ v, and s = s∗+w into the the equations above and Taylor expanding on u,
we have

u̇ =g1(u+ f ∗, v +m∗, w + s∗)

=g1(f
∗,m∗, s∗) + u

∂g1
∂f

(f ∗,m∗, s∗) + v
∂g1
∂m

(f ∗,m∗, s∗)

+ w
∂g1
∂s

(f ∗,m∗, s∗) + H.O.T

where H.O.T are the Higher Order Terms, that is, u2, v2, w2, uv, uw, vw, . . .. Since
our perturbations are small, these H.O.T. are negligible. A similar argument can be
made for v and w. Since we have neglected the H.O.T., this system is now linearized
about (f ∗,m∗, s∗). Now we can rewrite this system as



u̇

v̇

ẇ


=



∂g1
∂f

(f ∗,m∗, s∗) ∂g1
∂m

(f ∗,m∗, s∗) ∂g1
∂s

(f ∗,m∗, s∗)

∂g2
∂f

(f ∗,m∗, s∗) ∂g2
∂m

(f ∗,m∗, s∗) ∂g2
∂s

(f ∗,m∗, s∗)

∂g3
∂f

(f ∗,m∗, s∗) ∂g3
∂m

(f ∗,m∗, s∗) ∂g3
∂s

(f ∗,m∗, s∗)





u

v

w


where the matrix

J =



∂g1
∂f

(f ∗,m∗, s∗) ∂g1
∂m

(f ∗,m∗, s∗) ∂g1
∂s

(f ∗,m∗, s∗)

∂g2
∂f

(f ∗,m∗, s∗) ∂g2
∂m

(f ∗,m∗, s∗) ∂g2
∂s

(f ∗,m∗, s∗)

∂g3
∂f

(f ∗,m∗, s∗) ∂g3
∂m

(f ∗,m∗, s∗) ∂g3
∂s

(f ∗,m∗, s∗)


is the Jacobian matrix evaluated at (f ∗,m∗, s∗). Now we can evaluate the eigenval-
ues of the Jacobian to determine whether the equilibria are stable or not. If the real

7



components of eigenvalues are all negative, then this is a stable equilibrium. If one
or more of the real components are positive, then we have an unstable equilibrium.

Evaluating Jacobian at the extinction state yields,

J(0, 0, 0) =

(
−δ 0 0

0 −δ 0
0 0 −δ

)
.

The eigenvalues for this matrix are −δ with a multiplicity of 3. Since the death
term, δ, is nonnegative then all the eigenvalues are negative. Therefore the extinc-
tion state is a stable equilibrium. This means that the extinction state is stable,
which indicates that if we can get the population arbitrarily close to the extinction
state, extinction will occur. For eradication of an invasive species, this is ideal.

The eigenvalues for the Jacobian evaluated at (K−, K−, 0) are

βK
√

1− 16δ
βK

8
− βK

8
+ 2δ, − δ, − δ

It is clear that we have two negative eigenvalues. We are interested in 16δ
βK

< 1. In [2]

it was shown that utilizing available population data that 16δ
βK

< 1 is reasonable and

biologically feasible. Since 16δ
βK

< 1, then
βK

√
1− 16δ

βK

8
> βK

8
, this leads us to the fact

that this eigenvalue is positive. Thus (K−, K−, 0) is an unstable equilibrium. In
particular, it is a saddle point equilibrium in the female/male phase space.

The eigenvalues for the Jacobian evaluated at (K+, K+, 0) are

−βK
√

1− 16δ
βK

8
− βK

8
+ 2δ, − δ, and − δ.

Factoring out δ, the first eigenvalue becomes

δ

(
2− βK

8δ
− βK

8δ

√
1− 16δ

βK

)
.

Let r = βK
8δ

. Then this eigenvalue is

δ

(
2− r − r

√
1− 2

r

)
.

8



Let

φ(r) = 2− r − r
√

1− 2

r
= ... = −

√
r − 2(

√
r − 2 +

√
r).

Since these eigenvalues correspond to the equilibrium solution when 16δ
βK

< 1, then
2
r

= 16δ
βK

< 1 implies that 2
r
< 1. Hence, this the eigenvalue is only real valued when

r > 2. Note that φ(r) has negative values for r > 2. Thus we have only negative
eigenvalues and this is therefore a stable equilibrium.

Figure 2.1: φ(r) along the domain r ∈ [2, 15]

From this analysis, there are two stable equilibria at (K+, K+, 0) and (0, 0, 0) and
an unstable equilibrium at (K−, K−, 0) for the modified TYC model. The long term
dynamics indicate that either the species heads toward (0, 0, 0), the extinction state,
or the species heads toward (K+, K+, 0), the recovery state. Figure 2.1 illustrates
that we can get to either the extinction state or the recovery state depending on both
the percentage of males and females and the percentage of initial supermales. For
clarity, the females and males in Figure 2.1 are both at 25% of the carrying capacity
and the graph illustrates the trajectories for the female and male population together
over time. Figure 2.2 illustrates that we can get to the extinction state with a large
enough initial super male population, no matter the percentage of females and males.
Now let us look at the modified TYC model with cannibalism effects.

9



Figure 2.2: Simulation with Initial Supermales at 10% of Carrying capacity. r = 18

Figure 2.3: Simulation with Initial Supermales at 65% Carrying capacity. r = 18

2.2 Modified TYC Model with Cannibalism

Cannibalism is found in many ecological systems. If food is scarce, fish and other
animals may eat their young or put pressure on the young so that the overall survival

10



for the young is low. Fish especially will eat smaller fish of the same species to survive.
The TYC eradication strategy develops a supermale, but the name is a misnomer.
The supermales are much smaller than their wild male counterparts and are at risk
of being eaten or stressed when introduced to the ecosystem when the food supply
is much too low. Preliminary results from the USGS, studying resource pressures
in guppies have shown that the females will place added pressures on the young,
regardless of the amount of food available to them. Keeping this in mind, we add an
effect due to environmental pressures/cannibalism to (2.1)-(2.3).

ḟ =
1

2
βfmL

(
m

m+ s

)
+ (−δ + εs)f, (2.6)

ṁ =
1

2
βfmL

(
m

m+ s

)
+ βfsL

(
s

m+ s

)
− δm, (2.7)

ṡ = µ+ (−δ − ε1f)s, (2.8)

where L = 1 − f +m+ s

K
and K, β, δ, µ, ε, and ε1 are non-negative parame-

ters. The parameter ε is the benefit of the environmental pressure/cannibalism for
the female population and ε1 is the detrimental effect that the environmental pres-
sures/cannibalism has on the supermale population. We have added the term ε into
the death rate for the females to mimic the beneficial aspect and we added ε1 to the
death rate for the supermales to mimic the added removal from the ecosystem due
to environmental pressures/cannibalism along with the natural death rate δ. If the
female population cannibalizes the supermales or if the environmental pressures aid
the females, then the death rate of the females should decrease, hence an additive
effect on the death rate term. If the supermales are eaten or if the environmental
pressures harm the supermales, then the death rate for the supermale population
should increase, hence the subtraction. Note that ε ≤ ε1 � δ. We made this dis-
tinction since the added benefit for the cannibalism/environmental pressures placed
on the supermales should be minuscule in comparison to the detrimental effect that
cannibalism/environmental pressures would place on the supermales, along with the
fact that the benefit of cannibalism/environmental pressures should not lead to no
death in the female population.

2.2.1 Scaling the Modified TYC with Cannibalism Effects

There are six parameters: carrying capacity (K), birth rate (β), death rate (δ), su-
permale introduction rate (µ), effect of cannibalism for the females (ε), effects of
cannibalism on the supermales (ε1). There are four variables: time (t, which is em-
bedded in the equations), females (f), males (m), supermales (s) Hence, scaling can

11



help us reduce the number of parameters and simplify the equations we are working

with. Let τ = δt, f̂ = f
K

, m̂ = m
K

, and ŝ = s
K

. Using the chain rule, then df
dt

= df̂K
dτ

dτ
dt

.

Note that dτ
dt

= δ. Then df
dt

= Kδ df̂
dτ

. This is similar for ṁ and ṡ.

Rewriting (2.6) we get

df̂

dτ
=
βK

2δ
f̂m̂(1− f̂ − m̂− ŝ)

(
m̂

m̂+ ŝ

)
− f̂ +

εK

δ
ŝf̂ .

Rewriting (2.7) we get

dm̂

dτ
=
βK

2δ
f̂m̂(1− f̂ − m̂− ŝ)

(
m̂

m̂+ ŝ

)
+
βK

δ
f̂ ŝ

(
1− f̂ − m̂− ŝ)

(
ŝ

m̂+ ŝ

)
− m̂.

Finally, rewriting (2.8) and setting µ = 0 we get

dŝ

dτ
= −ŝ− ε1K

δ
ŝf̂ .

Let r = βK
2δ

, ε 7→ εK
δ

, ε1 7→ ε1K
δ

, f̂ 7→ f , m̂ 7→ m, and ŝ 7→ s. Our dimensionless
equations are

ḟ = rfm(1− f −m− s)
(

m

m+ s

)
− f + εsf, (2.9)

ṁ = rfm(1− f −m− s)
(

m

m+ s

)
+ 2rfs(1− f −m− s)

(
s

m+ s

)
−m, (2.10)

ṡ = −s− ε1sf. (2.11)

Now our equations are simplified and the only parameters we have to adjust are r, ε,
and ε1. These parameters are the most important according to our scaling method.
Also of note, all of our results will be in percentages of carrying capacity and our
time will be measured in generations, instead of actual days, months, or years.

2.2.2 Equilibrium for the Modified TYC with Cannibalism Effects

Once again, since µ is a continuous rate of introduction for the supermales, we set
µ = 0. The goal of setting µ = 0 is to ultimately stop the introduction of the
supermales at some point and then want the population to go to the extinction
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state. Solving for ṡ = 0, we have

ṡ = −s− ε1sf

0 = s(−1− ε1f).

Then s = 0 or − 1

ε1
. Since − 1

ε1
does not have a physical representation, we have not

included this in our further calculations.
Substituting s = 0 into (2.9) we have

0 = f(rm(1− f −m)− 1).

Similarly, substituting s = 0 into (2.10) we have

0 = m(rf(1− f −m)− 1).

Solving (2.12) we have that f = 0 or f = 1
r(1−f−m)

. Solving (2.13) we have m = 0

or m = 1
r(1−f−m)

. This implies that m = f when s = 0. This is the same as the
Modified TYC model as seen in Section 2.1. Since m = f , then

2rm2 − rm+ 1 = 0.

Solving this quadratic, we have

m =
1

4
± 1

4

√
1− 8

r
.

Let f+ = 1
4

+ 1
4

√
1− 8

r
and let f− = 1

4
− 1

4

√
1− 8

r
. If 1 − 8

r
< 0, then we have

no real solutions and only one equilibrium at (0, 0, 0). If 1 − 8
r

= 0 then we have
two equilibrium solutions at (0, 0, 0) and

(
1
4
, 1
4
, 0
)
. Finally, if 1 − 8

r
> 0, then we

have equilibrium solutions at (0, 0, 0), (f+, f+, 0), and (f−, f−, 0). This is the same
equilibria as the modified TYC without cannibalism as seen in Section 2.1.

2.2.3 Linear Stability Analysis of the Modified TYC Model with Canni-

balism Effects

The modified TYC model is a nonlinear system of equations. Looking at the stability
of the equilibrium is important. Only looking at the cases when 1− 8

r
> 0 and using

the same linearization techniques as described in Section 2.1.2, the eigenvalues of
the linearized system at J(0, 0, 0) are −1 with a multiplicity of three. Since the
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eigenvalues are all negative, this is a stable equilibrium. Analysis shows us that
(f+, f+, 0) is stable (all eigenvalues are negative) and (f−, f−, 0) is unstable (one
eigenvalue is always positive). This also shows us that our modified TYC model
with cannibalism effects have the same equilibria and stability as the Modified TYC
without cannibalism effects.

2.3 Unrealistic Behavior in Current TYC Models

The problems with the current models of TYC is that they can end up having a
negative male population when we add a significant number of supermales initially,
which is not biologically possible. In fact, the TYC model with cannibalism effects,
if we introduce the critical number of supermales into the system that can guaran-
tee extinction, then if any cannibalism occurs, for any given cannibalism rate, the
population of the invasive species can rebound into the recovery state. Figure 2.3
illustrates one case of rebounding to the recovery state when we vary the cannibalism
rate.
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Figure 2.4: Varying Cannibalism Rates from 0 to 0.1, Critical Number of Supermales

This indicates that even if we can introduce the critical number of supermales, if
there are any sort of environmental pressures/cannibalism in the system, we might
still not eradicate the invasive species. With these issues in mind, a new model is
proposed in the forthcoming section.
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3 A PROPOSED CORRECTION TO CLASSICAL TYC MODEL

Building off of models proposed by Kendall [7] & Keyfitz [8] and Dietz & Hadeler [4]
and Chavez & Huang [3], a proposed mating model that uses a pairing function for
mating is given below.

dP

dt
= φ(f,m)− σP − δmP − δfP,

dm

dt
= −φ(f,m) + βmP + σP + δfP − δmm,

df

dt
= −φ(f,m) + βfP + σP + δmP − δff,

where P is the number of female-male pairings, f is the number of females, and m

is the number of males,
dP

dt
is the change in female-male pairing population over

time,
dm

dt
is the change in the male population who are not in the pairing population

over time,
df

dt
is the change in the female population who are not in the pairing

population over time, φ is a function representing how the females and males leave
their respective populations and enter the pairing population, σ is the proportion of
the of the pairing population returning to their male and female counterparts, δm is
the death rate for the males, δf is the death rate for the females, βm is the birth rate
for the males, and βf is the birth rate for the females . One should note that some
of the key components of φ are that it is differentiable and satisfies the following
properties:

1) φ(f,m) ≥ 0

2) φ(f + c,m+ d) ≥ φ(f,m) where c, d ≥ 0

3) φ(af, am) = aφ(f,m)

4) φ(f, 0) = φ(0,m) = 0

5) φ(f,m) = φ(m, f)

Using this model and adding supermale introduction leads us to a new system of

16



equations

dP

dt
= φ(f,m)− σP − δmP − δfP,

dm

dt
= −φ(f,m) + βmP + βsPs + σP + δfP − δmm,

df

dt
= −φ(f,m)− φ(f, s) + βfP + σP + σPs + δmP + δsPs − δff,

dPs
dt

= φ(f, s)− σPs − δfPs − δsPs,

ds

dt
= −φ(f, s) + µ+ σPs + δfPs − δss,

where
dP

dt
,
dm

dt
,
df

dt
, φ(f,m), σ, δm, δf , βm, βf , P, f, m are the same as above,

dPs

dt
is the change in the female-supermale pairing population over time,

ds

dt
is the

change in the supermale population over time, φ(f, s) is a function representing how
the females and supermales leave their respective populations and enter the pairing
population, δs is the death rate for the supermales, and µ is the introduction rate
for the supermales.
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4 OPTIMAL CONTROL

4.1 Preliminaries

Optimal control is a branch of applied mathematics that tries to find a control for
a dynamical system in which some objective function is optimized. Before we start
the discussion of optimal control and its uses, we need to establish various theorems
and definitions of optimal control theory. For a thorough development consider the
book Optimal Control Applied to Biological Models by Lenhart and Workman [9].

Definition 4.1. Let I ⊆ R be an interval, which can be finite or infinite. The
function u : I → R is continuous at x = c if f(c) is defined and

lim
x→c

u(x) = f(c)

A function is said to be continuous if the limit exists at every point along the
domain, I.

Definition 4.2. Let I ⊆ R be an interval. We say that a finite-valued function
u : I ⊆ R is piece-wise continuous if it is continuous at each x ∈ I, with the
possible exception of a finite number of x and u is equal to either the left limit or the
right limit at every x ∈ I.

Definition 4.3. A function, u, is Lipschitz continuous if there exists a constant,
c, such that |u(x1)− u(x2)| ≤ c|x1 − x2| for all points in the domain of k. Here c is
called the Lipschitz constant of the function k.

Below are examples of a function that is Lipschitz continuous and a function that
is not Lipschitz continuous. One should note that if a function is Lipschitz contin-
uous, then it is continuous in the traditional sense, and if a function is continuous,
then it is piece-wise continuous. However, if a function is piece-wise continous, this
does not mean that is continuous nor Lipschitz continous.
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(a) sin(x) is Lipschitz (b) 3
√
x is not Lipschitz

Figure 4.1: Examples illustrating Lipschitz continous and not Lipschitz continuous functions

Definition 4.4. A function u(x) is said to be convex on [a, b] if

αu(x1) + (1− α)u(x2) ≥ u(αx1 + (1− α)x2)

for all 0 ≤ α ≤ 1 and for any a ≤ x1, x2 ≤ b.

4.2 Basic Optimal Control Problems and Necessary Condi-

tions

In the basic optimal control schemes, we usually have some controlling function that
acts on some state function. For our purposes, let u(t) denote the control function
and let x(t) be the state function. The state variable satisfies a differential equation
which depends on the control, u(t). Define the given state variable as

x′(t) = g(t, x(t), u(t)).

We define a mapping of the control, u(t), to the state function, x(t), as u(t) 7→ x =
x(u(t)), which we will write as x(u). We are trying to find a piece-wise continuous
control function, u(t), and the associated state variable, x(t) to maximize or minimize
a given objective function typically given as some integral, such as:

J(u) = max
u

∫ t1

t0

f(t, x(t), u(t))dt

subject to x′(t) = g(t, x(t), u(t))

x(t0) = x0 and x(t1) free. (4.1)

19



The meaning of ”x(t1) free” is that x(t1) is unrestrained. Now, assume an optimal
control exists. Let u∗ be that optimal control. Then we also have an optimal state,
x∗. Since we are looking for a maximum u, then J(u) ≤ J(u∗) < ∞. Now let us
perturb u∗, denoted as

uε(t) = u∗(t) + εh(t) (4.2)

where h(t) is a variation function and ε ∈ R. Then uε(t) is another control function.
Also xε(t) is the state function corresponding to the control. Notice xε(t) satisfies

d

dt
[xε(t)] = g(t, xε(t), uε(t)). (4.3)

Since all trajectories start at the same position, then xε(t0) = x0. As ε → 0, then
uε(t)→ u∗(t). Also, for all t,

∂uε(t)

∂ε

∣∣∣∣
ε=0

= h(t).

We have that xε(t) → x∗(t). Since we know that
d

dt
xε(t) exists and it is equivalent

to g(t, xε(t), uε(t)), then
∂

∂ε
xε(t) must also exists. Now our new objective function,

after the perturbations is

J(uε) =

∫ t1

t0

f(t, xε(t), uε(t))dt. (4.4)

Now, let λ be a piecewise differentiable function on the interval [t0, t1] to be deter-
mined. We call λ the adjoint function and it serves as a kind of Lagrange multiplier.
By the Fundamental Theorem of Calculus,

∫ t1

t0

d

dt
[λ(t)xε(t)]dt = λ(t1)x

ε(t1)− λ(t0)x
ε(t0), which implies∫ t1

t0

d

dt
[λ(t)xε(t)]dt− λ(t1)x

ε(t1) + λ(t0)x
ε(t0) = 0. (4.5)

Adding (4.4) to (4.5), we have
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J(uε) =

∫ t1

t0

f(t, xε(t), uε(t))dt+

∫ t1

t0

d

dt
[λ(t)xε(t)]dt− λ(t1)x

ε(t1) + λ(t0)x
ε(t0)

=

∫ t1

t0

(
f(t, xε(t), uε(t)) +

d

dt
[λ(t)xε(t)]

)
dt− λ(t1)x

ε(t1) + λ(t0)x
ε(t0)

=

∫ t1

t0

[
[f(t, xε(t), uε(t)) + λ′(t)xε(t) + λ(t)

d

dt
[xε(t)]

]
dt− λ(t1)x

ε(t1) + λ(t0)x
ε(t0).

(4.6)

Using the fact that x(t0) = x0 and
d

dt
[xε(t)] = g(t, xε(t), uε(t), (4.6) becomes

J(uε) =

∫ t1

t0

[f(t, xε(t), uε(t)) + λ′(t)xε(t) + λ(t)g(t, xε(t), uε(t))] dt− λ(t1)x
ε(t1) + λ(t0)x0.

Since u∗ is where the maximum occurs by definition, then

0 =
d

dε
J(uε)

∣∣∣∣
ε=0

= lim
ε7→0

J(uε)− J(u∗)

ε
.

Using a version of the Lebesgue Dominated Convergence Theorem as stated in Opti-
mal Control Applied to Biological Models (pg. 10) [9] and the fact that the integrand
is differentiable, we have

0 =
d

dε
J(uε)

∣∣∣
ε=0

0 =

∫ t1

t0

∂

∂ε
[f(t, xε(t), uε(t)) + λ′(t)xε(t) + λ(t)g(t, xε(t), uε(t))]

∣∣∣
ε=0
dt

− ∂

∂ε
λ(t1)x

ε(t1)
∣∣∣
ε=0

+
∂

∂ε
λ(t0)x0

∣∣
ε=0

0 =

∫ t1

t0

∂

∂ε
[f(t, xε(t), uε(t)) + λ′(t)xε(t) + λ(t)g(t, xε(t), uε(t))]

∣∣∣
ε=0
dt

− ∂

∂ε
λ(t1)x

ε(t1)
∣∣∣
ε=0
.

Applying the chain rule to f and g, we have
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0 =

∫ t1

t0

[
fx
∂xε

∂ε
+ fu

∂uε

∂ε
+ λ′(t)

∂xε

∂ε
+ λ(t)

(
gx
∂xε

∂ε
+ gu

∂uε

∂ε

)]∣∣∣∣∣
ε=0

dt

− λ(t1)
∂xε

∂ε

∣∣∣∣∣
ε=0

. (4.7)

Note that as ε → 0, uε(t) → u∗(t) and xε(t) → x∗(t), then the partials fx, fu, gx, gu
have inputs (t, x∗(t), u∗(t)). Rearranging the terms in (4.7), we now have

0 =

∫ t1

t0

[(
fx(t, x

∗(t), u∗(t)) + λ(t)gx(t, x
∗(t), u∗(t)) + λ′(t)

)
∂xε

∂ε

∣∣∣∣∣
ε=0

+

(
fu(t, x

∗(t), u∗(t)) + λ(t)gu(t, x
∗(t), u∗(t))

)
∂uε

∂ε

∣∣∣∣∣
ε=0

]
dt (4.8)

− λ(t1)
∂xε

∂ε

∣∣∣∣∣
ε=0

.

Note that
∂uε

∂ε
= h(t) from (4.2). Substituting this back into (4.8) we have

0 =

∫ t1

t0

[(
fx(t, x

∗(t), u∗(t)) + λ(t)gx(t, x
∗(t), u∗(t)) + λ′(t)

)
∂xε

∂ε

∣∣∣∣∣
ε=0

+

(
fu(t, x

∗(t), u∗(t)) + λ(t)gu(t, x
∗(t), u∗(t))

)
h(t)

]
dt (4.9)

− λ(t1)
∂xε

∂ε

∣∣∣∣∣
ε=0

.

Now, we choose the adjoint function, λ(t), that minimizes the coefficients of fx(t, x
∗(t), u∗(t))+

λ(t)gx(t, x
∗(t), u∗(t)) + λ′(t). Let us choose λ(t) to satisfy

λ′(t) = fx(t, x
∗(t), u∗(t))− λ(t)gx(t, x

∗(t), u∗(t)) (4.10)

and the boundary condition

λ(t1) = 0. (4.11)
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We denote (4.10) as the adjoint equation and (4.11) as the transversality con-
dition. Substituting (4.10) and (4.11) back into (4.9) we have

0 =

∫ t1

t0

(
fu(t, x

∗(t), u∗(t)) + λ(t)gu(t, x
∗(t), u∗(t))h(t)

)
dt.

Since this holds for any piece-wise function, then let

h(t) = fu(t, x
∗(t), u∗(t)) + λ(t)gu(t, x

∗(t), u∗(t)).

Then

0 =

∫ t1

t0

(
fu(t, x

∗(t), u∗(t)) + λ(t)gu(t, x
∗(t), u∗(t))

)2
dt.

This implies that the optimal condition holds when

fu(t, x
∗(t), u∗(t)) + λ(t)gu(t, x

∗(t), u∗(t) = 0 ∀ t0 ≤ t ≤ t1.

Thankfully, we do not have to derive this equation for every problem. We can
generate the necessary conditions for the Hamiltonian, H, which is defined as

H(t, x, u, λ) = f(t, x, u) + λ(t)g(t, x, u)

= integrand + adjoint ∗ RHS of DE.

We are maximizing H with respect to u at the critical value u∗ and the conditions
above can be written in terms of the Hamiltonian as follows:

∂H

∂u
= 0 at u∗ =⇒ fu + λgu = 0 (optimality condition)

λ′ = −∂H
∂x

=⇒ λ′ = −fx − λgx (adjoint equation)

λ(t1) = 0 (transversality condition)

Note that we are given the dynamics of the state equation:

x′ = g(t, x, u) =
∂H

∂λ
, x(t0) = x0.

We have converted the problem of finding a control that maximizes or minimizes the
objective function subject to the differential equation and given initial condition to
one of maximizing the Hamiltonian point-wise with respect to the control parameter.
We can view our optimal control problem as having two unknowns, u∗ and x∗. We
add in the adjoint variable, λ, which essentially attaches the differential equation
information onto the maximization of the objective function. Generally, to solve
optimization problems, we use the following steps:
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1. Form the Hamiltonian for the given problem.

2. Write the adjoint, the transversality condition and the optimality conditions.
Doing so gives you three unknowns, u∗, x∗, and λ.

3. Solve u∗ in terms of x∗ and λ.

4. Solve the two differential equations for x∗ and λ with two boundary conditions,
substituting u∗ in the differential equations with the expression for the optimal
control from step 3.

5. Once the optimal state and adjoint are found, solve for the optimal control.

4.3 Optimal Control Examples

Below is a simple example of how to calculate the Hamiltonian and solve the Hamil-
tonian for the optimal control and optimal state.

4.3.1 Example

Solve

min
u

∫ 2

1

tu(t)2 + t2x(t) dt

subject to x′(t) = −u(t); x(1) = 1

Step One: Form the Hamiltonian.

H = f(t, x∗, u∗) + λg(t, x∗, u∗)

H = tu∗2 + t2x∗ + λ(−u∗)

H = tu∗2 + t2x∗ − λu∗.

Step Two: Write the adjoint, transversality condition, and the optimality condition.

∂H

∂u
= 2tu∗ − λ (4.12)

λ′ = −∂H
∂x

= −2t (4.13)

λ(2) = 0 (4.14)
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As we can see, (4.12) is the optimality condition for this example, (4.13) is the adjoint
equation for this example, and (4.14) is the transversality condition for this example.
Step Three: Solve u∗ in terms of x∗ and λ.

2tu∗ − λ = 0 =⇒ u∗ =
λ

2t
.

Step Four: Solve the differential equations.

λ′ = −2t

λ = −t2 + C.

Using the transversality condition, we have

λ(2) = 0 =⇒ C = 4.

Thus we have that our adjoint equation at the optimal control is λ(t) = −t2 + 4.
Substituting this value back into the u∗ equation from step three, we have

u∗ =
λ

2t
=
−t2 + 4

2t
=
−t
2
− 2

t
.

Step Five: Solve for the optimal state.

x′(t) = −u(t) =
t

2
+

2

t
.

Integrating, ∫
x′(t) dt =

∫ (
t

2
+

2

t

)
dt

x(t) =
1

2

t2

2
+ 2 ln(t) + C.

Solving x(t) at the given initial value condition, we have

x(t) =
t2

4
+ 2 ln(t) + C

x(1) = 1 =
1

4
+ 2 ln(1) + C =⇒ C =

3

4
.

Thus, for our objective function, we have an optimal control

u∗(t) = − t
2
− 2

t

25



with a corresponding optimal state at

x∗(t) =
t2

4
+ 2 ln(t) +

3

4
.

This example shows the steps to solve an optimal control problem, but the steps
don’t necessarily have to follow the general guidelines as stated above. Our objective
function happened to work out that the optimal control was only in terms of the
adjoint and the adjoint equation had a relatively simple solution.

4.3.2 Example

Solve

max
u

∫ 1

0

x(t) + u(t) dt

subject to x′(t) = 1− u(t)2; x(0) = 1

Step One: Form the Hamiltonian.

H = f(t, x∗, u∗) + λg(t, x∗, u∗)

H = x∗ + u∗ + λ(1− u∗2)

H = x∗ + u∗ + λ+ λu∗2.

Step Two: Write the adjoint, transversality condition, and the optimality condition.

∂H

∂u
= 1− 2λu∗

λ′ = −∂H
∂x

= −1

λ(1) = 0

Step Three: Solve u∗ in terms of x∗ and λ.

1− 2λu∗ = 0

u∗ =
1

2λ
.
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Step Four: Solve the differential equations.

λ′ = −1∫
λ′ dt =

∫
−1 dt

λ = −t+ C.

Using the transversality condition, we have

λ(1) = 0 =⇒ C = 1.

Thus we have our adjoint equation at the optimal control to be λ(t) = −t + 1.
Substituting this value into the optimal control, u∗, we have

u∗ =
1

2λ
=

1

2(1− t)
.

Step Five: Solve for the optimal state.

x′(t) = 1− u(t)2 = 1− 1

4(1− t)2
.

Integrating, ∫
x′(t) dt =

∫
1− 1

4(1− t)2
dt

x(t) = t− 1

4(1− t)
+ C.

Solving x(t) at the given initial value condition leads to

x(0) = 1 = 0− 1

4(1− 0)
+ C =⇒ C =

5

4
.

Thus for our objective function, we have an optimal control when

u∗(t) =
1

2(1− t)
with a corresponding optimal state at

x∗(t) = t− 1

4(1− t)
+

5

4
.
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4.4 Existence of Optimal Control and the Principal of Op-

timality

Looking at Example 4.3.2 in section 4.3, when we evaluate the objective function at
the optimal state and the optimal control we have

∫ 1

0

x∗(t) + u∗(t) dt =

∫ 1

0

t− 1

4(1− t)
+

5

4
+

1

2(1− t)
dt

=

∫ 1

0

t+
5

4
+

3

4(1− t)
dt

=
t2

2
+

5

4
t− 3

4
ln(|1− t|)

∣∣∣∣∣
1

0

.

Notice at t = 1, we have ln(0) which does not exist. Evaluating the limit as t→ 1−

lim
t→1−

(
t2

2
+

5

4
t− 3

4
ln(|1− t|)

)
→∞.

In other words, the objective function becomes unbounded at t = 1. One explanation
for the unbounded nature of the objective function is the nonlinearity of the optimal
control, so one way to guarantee existence of an optimal control that is bounded is to
place some restrictions on f and/or g. This is problem dependent and difficult and
is an open area of research. One way to guarantee existence is given in the following
theorem [9].

Theorem 4.5. Let the set of controls for problem (4.1) be Lebesgue integrable [11]
functions on [t0, t1] with values in R. Suppose that f(t, x, u) is convex in u, and
there exists constants C4 and C1, C2, C3 > 0 and β > 1 such that

g(t, x, u) = α(t, x) + β(t, x) ∗ 0u

|g(t, x, u)| ≤ C1(1 + |x|+ |u|)

|g(t, x1, u)− g(t, x, u)| ≤ C2|x1 − x|(1 + |u|)

f(t, x, u) ≥ C3|u|β − C4

for all t with t0 ≤ t ≤ t1, and all x, x1, u ∈ R. Then there exists an optimal control
u∗ maximizing J(u), with J(u∗) finite.

28



4.5 Forward and Backward Sweep

Most optimal control problems do not have an analytical solution, so our only re-
course is to numerically approximate these solutions. One way to approximate a
solution to an optimal control problem is the Forward-Backward Sweep Method pro-
posed in [9]. Let u be the vector solution to the optimal control problem, x be the
vector approximation to the state function, and λ be the vector approximation to the
adjoint equation. The general outline for the Forward-Backward Sweep algorithm is
as follows:

1. Make an intial guess for u over the given interval. (Generally, we let u be a
vector of zeros).

2. Use the initial condition and the values for u, solve x forward in time according
to its differential equations in the optimality system.

3. Using the transversality condition and the values for u and x from step 2, solve
λ backward in time according to its differential equations in the optimality
system.

4. Update u with our newly found x and λ.

5. Check convergence. If the values found are marginally close, output the results,
if not marginally close, return to step 2.

If problems arise with convergence, adjusting the initial guess for u can solve this
problem. Using this method, we now look at the optimal control for both the modified
TYC model and the proposed correction to the TYC model.
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5 OPTIMAL CONTROL ANALYSIS FOR VARIOUS TYC MODELS

In their paper, Lyu et al have analyzed the optimal control for the classic TYC
model, including the calculations of the Hamiltonian and the various adjoint equa-
tions [10].
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Figure 5.1: Optimal Control for Classic TYC [10]

Let us now look at the Modified TYC model and investigate an optimal µ, the
introduction rate of the supermales, that will drive the female and male population
to zero. Assuming that the introduction rate is not known a priori, consider the
following objective function:

Jm(µ) =

∫ T

0

−(f +m)− 1

2
µ2dt.

We want to find an optimal µ, µ∗, such that

Jm(µ∗) = max
u

∫ T

0

−(f +m)− 1

2
µ2dt.

The Hamiltonian for Jm is given by

Hm = −(f +m)− 1

2
µ2 + λ1ḟ + λ2ṁ+ λ3ṡ.

We use the Hamiltonian to derive differential equations for the adjoint equations.
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These are

λ′1(t) =1− λ1
{

βm2

2K(m+ s)
[K − 2f −m− s]− δ

}
− λ2

{
βm2

2K(m+ s)
[K − 2f −m− s] +

βs2

K(m+ s)
[sK − 2fs−m− s]

}
λ′2(t) =1− λ1

{
βfm

m+ s

[
1− 1

2K(m+ s)
(mK + 2f + fmK + 3(m+ s) +m2K + 2s+msK)

]}
− λ2

{
βfm

m+ s

[
1− m

2(m+ s)
− f

K
+

fm

2K(m+ s)
− 3m

K
+

m2

2K(m+ s)
− s

K
+

ms

2K(m+ s)

]
+

βfs2

m+ s

[
− s

(m+ s)
+

fs

(m+ s)
− 1

K
+

m

K(m+ s)
+

s

K(m+ s)

]
− δ
}

λ′3(t) =− λ1
{

βfm2

2(m+ s)

[
− 1

m+ s
+

f

K(m+ s)
+

m

K(m+ s)
− 1

K
+

s

K(m+ s)

]}
− λ2

{
βfm2

2(m+ s)

[
− 1

m+ s
+

f

K(m+ s)
+

1

K(m+ s)
− m

K
+

s

K

]
+

βfs

m+ s

[
3s− s2

m+ s
− 3fs

K
+

fs2

K(m+ s)
− 2m

K
+

ms

K(m+ s)
− 3s

K
+

s2

K(m+ s)

]}
+ λ3δ.

Now, looking at the Modified TYC model with cannibalism and investigating an
optimal µ, let us consider the following objective function:

Jc(µ) =

∫ T

0

−(f +m)− 1

2
µ2dt.

We want to find an optimal µ, µ∗, such that

Jc(µ
∗) = max

u

∫ T

0

−(f +m)− 1

2
µ2dt.

The Hamiltonian for Jc is given by

Hc = −(f +m)− 1

2
µ2 + λ1ḟ + λ2ṁ+ λ3ṡ.

We use the Hamiltonian to derive differential equations for the adjoint equations.
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These are

λ′1(t) =1− λ1
{

βm2

2K(m+ s)
[K − 2f −m− s]− δ + εs

}
− λ2

{
βm2

2K(m+ s)
[K − 2f −m− s] +

βs2

K(m+ s)
[sK − 2fs−m− s]

}
+ λ3{ε1s}

λ′2(t) =1− λ1
{
βfm

m+ s

[
1− 1

2K(m+ s)
(mK + 2f + fmK + 3(m+ s) +m2K + 2s+msK)

]}
− λ2

{
βfm

m+ s

[
1− m

2(m+ s)
− f

K
+

fm

2K(m+ s)
− 3m

K
+

m2

2K(m+ s)
− s

K
+

ms

2K(m+ s)

]
+

βfs2

m+ s

[
− s

(m+ s)
+

fs

(m+ s)
− 1

K
+

m

K(m+ s)
+

s

K(m+ s)

]
− δ
}

λ′3(t) =− λ1
{

βfm2

2(m+ s)

[
− 1

m+ s
+

f

K(m+ s)
+

m

K(m+ s)
− 1

K
+

s

K(m+ s)

]
+ εf

}
− λ2

{
βfm2

2(m+ s)

[
− 1

m+ s
+

f

K(m+ s)
+

1

K(m+ s)
− m

K
+

s

K

]
+

βfs

m+ s

[
3s− s2

m+ s
− 3fs

K
+

fs2

K(m+ s)
− 2m

K
+

ms

K(m+ s)
− 3s

K
+

s2

K(m+ s)

]}
+ λ3{δ + ε1f}.

The optimal control for the modified TYC and the modified TYC with cannibalism
are being investigated using the forward-backward sweep method at the time of
publication.

32



6 SUMMARY AND FUTURE WORK

In summary, the Trojan Y Chromosome eradication strategy can lead to a species
extinction, but the mathematical model can lead to finite time blow up as well as hav-
ing negative solutions. Modifying the TYC strategy can help alleviate some of these
issues, although they are still there. Adding environmental pressures/cannibalism
can lead to a population thought to head towards extinction to bounce back into re-
covery. The proposed pairing model seems to alleviate the problem with finite time
blow up and negative solutions, but further linear stability analysis must be done.
Finally, we should further investigate the proposed pairing model and the optimal
µ. With the latter in mind, let us consider the following objective function:

Jp(µ) =

∫ T

0

−(f +m)− 1

2
µ2dt.

We want to find an optimal µ, µ∗, such that

Jp(µ
∗) = max

u

∫ T

0

−(f +m)− 1

2
µ2dt.

The Hamiltonian for Jp is given by

Hp = −(f +m)− 1

2
µ2 + λ1Ṗ + λ2ṁ+ λ3ḟ + λ4Ṗs + λ5ṡ.

We use the Hamiltonian to derive differential equations for the adjoint equations.
These are

λ′1(t) =− λ1(−σ − δm − δf )− λ2(βm + σ + δf )− λ3(βf + σ + δm)

λ′2(t) =1− λ1(φm(f,m))− λ2(−φm(f,m)− δm)− λ3(−φm(f,m))

λ′3(t) =1− λ1(φf (f,m))− λ2(−φf (f.m))− λ3(−φf (f,m)− φf (f, s)− δf )

− λ4(φf (f, s))− λ5(−φf (f, s))

λ′4(t) =− λ2(βs)− λ3(σ + δs)− λ4(−σ − δf − δs)− λ5(σ − δf )

λ′5(t) =− λ3(−φs(f, s))− λ4(φs(f, s))− λ5(−φs(f, s)− δs).

Using the forward and backward sweep method, attempt to find an optimal intro-
duction rate for the modified TYC, the modified TYC with cannibalism, and the
pairing model.
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