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ABSTRACT 

 

     Novel designed metal ligand complexes as prodrugs are useful in the effort to find more 

effective and selective anti-cancer treatments. Carbon monoxide, CO, is known to induce 

mitochondrial collapse in cancer cells. Herein is described the synthesis of seven novel 

bipyridine flavonolate palladium(II) and platinum(II) complexes with the property of 

releasing carbon monoxide, and their characterization with FTIR, UV-Vis, fluorescence, 

NMR, and ESI mass spectra. Their ability to release carbon monoxide was investigated 

through oxygenation reaction under various conditions of temperature and light irradiation. 

The nitroxygenation reaction of the palladium complexes was also studied with nitrosyl 

hydride, HNO, generated in situ from Angeli’s salt. Deoxymyoglobin was used to trap CO 

released from the complexes, and the reaction was monitored spectroscopically. The 

spectra showed that oxygenation reaction did not produce CO in the palladium complexes 

but did in the platinum complexes with irradiation, whereas nitroxygenation reaction did 

in the palladium complexes. 
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CHAPTER 1 - INTRODUCTION 

     Cancer is a disease characterized by frequent cell division, lack of regulated cell death, 

angiogenesis and increased glycolysis.1 Direct medical expenses of cancer cost Americans 

an estimated $80.2 billion in 2015 according to the Agency for Healthcare Research and 

Quality (AHRQ).2 Current anticancer drugs face limitations such as development of drug 

resistance, lack of selectivity, and low efficacy.3 The medical community needs new cancer 

treatments. 

     Effectively fighting cancer requires a multi-faceted approach, perhaps combining 

treatments like radiotherapy, hormone therapy, chemotherapy and immunotherapy. Rather 

than targeting the cancer cells directly, immunotherapy attempts to activate and boost 

natural anti-cancer immune responses with therapies such as cancer vaccines3 and targeting 

immune system checkpoint inhibitors.4 Although immunotherapy is very promising, even 

the most successful immunotherapies induce adverse side effects in 60-75% of the 

patients.3–5 Immune checkpoint inhibitors can cause widespread inflammation, resulting in 

diseases like diabetes, hepatitis, or tuberculosis depending on which organ becomes 

inflamed.6 More research is needed to better understand the effective combinations and 

durations of therapies3 and to predict which patients are likely to have a serious reaction.7 
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     Chemotherapy drugs can work through various means, such as inducing apoptosis 

(programmed cell death), interfering with cell proliferation, inhibiting angiogenesis 

(creation of new blood vessels that would encourage tumor growth), and interrupting 

metastasis (the spread of cancer to other parts of the body).8 Ideally a chemotherapy drug 

recognizes the target cancer cell and interacts with it in multiple ways,3,9 even in the 

hypoxic (low-oxygen) environment typically found in cancer cells.10 It must have adequate 

aqueous solubility but not undesired side reactions.11  

     A prodrug (substance that undergoes a reaction during uptake and transport inside the 

body11) that releases carbon monoxide could be an effective new chemotherapy. Despite 

its reputation as a noxious gas, carbon monoxide (CO) is a gaseous signaling molecule in 

the body, naturally regulating inflammatory mediators. As an anti-inflammatory agent, it 

gives cytoprotection to healthy cells.12,13 CO is beneficial in slowing the proliferation of 

some cancers by limiting angiogenesis activated by reactive oxygen species (ROS). 

Tumors characteristically overproduce ROS.14–16 CO targets the cancer cell’s mitochondria 

by accelerating oxidative metabolism and inducing mitochondrial collapse.12,14 It can even 

amplify the effectiveness of other chemotherapy drugs used in combination with it.14 One 

study showed that murine prostate cancer treated with low concentrations of carbon 

monoxide followed by the chemotherapy agent camptothecin amplified the effect of the 

drug 1000-fold.14 This drug sensitization of only cancer cells but not normal cells means 

lower doses could be used, resulting in fewer adverse side effects and less chance of 

developing drug resistance. 
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     The objectives pursued in this thesis are to synthesize novel bipyridine platinum and 

palladium flavonolate complexes and to determine their photo-induced carbon monoxide 

release as potential anticancer agents. The research includes characterizing these novel 

complexes by FTIR spectroscopy, UV-Vis spectroscopy, fluorescence spectroscopy, ESI 

high resolution mass spectrometry, 1H and 13C NMR spectroscopy and elemental analysis. 

1.1 Flavonols 

1.1a Structure of Flavonols 

     Flavonols, a subclass of flavonoids, can produce carbon monoxide molecules. About 

200 flavonols have been identified in vegetables and fruits such as kale, broccoli, 

cranberries, blueberries and citrus fruit.17,18 As seen in Figure 1, flavonols are made of two 

benzene rings connected by a pyrone ring, an unsaturated O-heterocyclic ring with a ketone 

functional group.17,19,20  

 

Figure 1. Basic structure of a 3-hydroxyflavonol. 

 

Flavonols are amphipathic in that the phenolic hydroxyl substituents are hydrophilic, and 

the benzene rings are hydrophobic. This amphipathic nature can be advantageous to 
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increase aqueous solubility and promote interaction between the flavonol as a therapeutic 

agent and its biological target.21,22 

1.1b Function of Flavonols 

     Free flavonols have anti-inflammatory, antiviral, antifungal, antibacterial, anti-allergy, 

anti-diabetic, antiatherosclerotic, antithrombotic, hypolipidemic, anti-mutagenic, and 

anticancer properties.3,15,17,21–23 Their healthful benefits are tied to their ability to act as free 

radical scavengers.24 3-Hydroxyflavones (which have a hydroxyl group at C-3 of ring C) 

have particularly shown promise as anticancer agents.3,23,25–27 The most widely studied22 

flavonol, quercetin, found in tea, apple, and onion,28 exemplifies flavonols’ 

antiproliferative properties toward meningioma cells and colon cancer cells at 10 μM 

concentrations.26 One study reports a 292-fold increase in potency against in vitro prostate 

cancer when the 3-hydroxy group on the C-ring was replaced by a dibutylamino group 

through a 3- to 5-carbon linker and the B ring included a catechol group. (Figure 2A).27 

Figure 2. Structure of (A) a synthetic 3-O-aminoalkyl-3’,4’-O-dimethoxyflavonol,       

(B) myricetin (C) TMFol, 
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Naturally-occurring myricetin, a 3’,4’,5’-hydroxyflavonol, (Figure 2B) inhibits prostate 

cancer cell growth with IC50 ≤ 15 μM.1,28 Additional hydroxy groups on the phenolic ring 

of the flavonol can increase the complex’s antiproliferative ability due to the hydroxylated 

aromatic structure.17 However, the hydroxy groups can also promote pro-oxidant activity 

by reducing CuII to CuI or FeIII to FeII or by auto-oxidizing in alkaline media to generate 

ROS like superoxide anions.22 This occurs particularly when the B ring has three or more 

hydroxyl substituents.17 This paradox of being simultaneously pro-oxidant and anti-oxidant 

is consistent with the observation that many anticancer agents also have carcinogenic 

potential.1 Likewise, the generation of ROS can have a positive effect on cancer therapy 

but a negative effect on chemoprevention.  

     Flavonols additionally inhibit signal transduction pathways and other growth regulatory 

pathways in the cell.1,22 For example, they inhibit topoisomerase IIα, an enzyme 

overexpressed in many types of cancer9,19 and whose inhibition interferes with DNA 

replication.1,3,9,25,29,30 Flavonols also inhibit kinases which are involved in cell 

metabolism.1,3,9,25,26,29,30 Having a catechol group at 3’- and 4’-positions on the B ring 

confers maximum inhibition of kinases.26 Several flavonol analogues inhibit cell growth 

and expression of androgen receptor and/or prostate specific antigen (PSA) in prostate 

cancer.28  

     Flavonols work synergistically with other treatments.1 For example, the flavonol 

isorhamnetin protects against cardiotoxicity induced by the platinum-based drug 
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doxorubicin in vivo.1 A quercetin derivative inhibits multiple drug resistance in breast 

cancer.1 

     A synthetic 3’,4’,5’-trimethoxyflavonol complex analogous to myricetin, TMFol, 

(Figure 2C) inhibits growth at even lower IC50 values. This may be because its methoxy 

(OMe) groups’ antioxidant activity is not reduced by hydrogen bonding between ligand 

and solvent molecules as seen with myricetin’s hydroxyl ligands.17 Additionally, methoxyl 

groups make the complex less polar than hydroxyl groups, so the molecule is more 

permeable to biological membranes.26  

1.1c CO-Release in Flavonols 

     In addition to their other anti-cancer properties, flavonols could treat cancer by releasing 

carbon monoxide upon photo-irradiation in the presence of dioxygen.12,18,29,31–34 These 

visible-light-activated carbon-monoxide-releasing molecules (photoCORMS) provide a 

newer method to control the release of CO. They use visible light to trigger the release of 

a small amount of carbon monoxide to a very specific target with less harm to healthy cells. 

Visible light activation is preferred over UV-light activation since the latter has poorer 

penetration and can possibly harm healthy tissue.13 Berreau et al. developed a prodrug 

photoCORM in which the carbon monoxide molecule is released from a flavone.31 Since 

the flavone photoCORMs have a high affinity for serum albumin, they are less likely to 

released CO until the albumin has carried the oxidized form of a photoCORM to the cancer 

cell. There it is reduced by biological thiols which are present in higher concentrations in 
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cancer cells (Scheme 1).35 This mechanism means the CO is less likely to be released before 

reaching the target. In addition to the anticancer benefits, the Berreau study noted anti-

inflammatory benefits of the photoCORM at nanomolar concentrations.31  

Scheme 1. Reaction of photoCORM, serum albumin and thiols to release CO. 

     A 2017 study proposes a delivery system to release the carbon monoxide only after it 

reaches the target cancer cell.32 It employs a “sense-of-logic carbon monoxide-releasing 

molecule” (SL-photo-CORM) that requires two triggers to release CO. A flavonol reacts 

with acryloyl chloride to produce an SL-photo-CORM. The first trigger is thiol sensing. 

When the photoCORM senses biological thiols, the reverse reaction occurs creating an 

activated flavonol molecule. The second trigger is visible light. When the activated 

flavonol senses visible light in the presence of dioxygen, it releases a carbon monoxide 

molecule and produces a non-fluorescing, nontoxic product. The reaction will occur even 

in the reduced-oxygen environment typically found in cancer cells.  

     Several studies have focused on how carbon monoxide is released from the 

flavonol.33,36,37 Natural enzymes like quercetin dioxygenase cleave the C ring of the 

flavonol in a 1,3-endo-peroxide pathway to release CO.33,36 A DFT study36 proposes that 

the CuII metal center of the enzyme binds to the flavonol, then the copper is reduced in a 



   

8 
 
 

single electron transfer (SET) as dioxygen attacks the flavonol to form a flavonol radical 

with a bridging peroxide structure, as shown in Figure 3. After this, the O-O bond and a C-

C bond cleave concertedly to release the carbon monoxide molecule.  

 

Figure 3. One proposed mechanism of CO release.36 
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1.2 Metalloflavonolato Complexes 

1.2a Structure of Metalloflavonolato Complexes 

     Many researchers are taking advantage of the multiple coordination sites on transition 

metals to design drugs with ligands that have anticancer properties,11 particularly 

flavonols.22 Hydroxyflavones form stable coordination complexes with bidentate binding 

at the hydroxyl and carbonyl groups of ring C.17,22 Flavonols may also bind to the metal 

between the 5-hydroxy (ring A) and 4-carbonyl (ring C) groups or between 3’- and 4’-

hydroxy groups in ring B, although both of these chelations are significantly less favorable 

thermodynamically than 3-hydroxy/4-carbonyl coordination.17,20,21 Due to its proximity to 

the carbonyl group, the 3-hydroxyl proton on ring C is more acidic than the hydroxyl 

protons on rings A and B. In the coordinate bond the 3-hydroxyl oxygen electrons are 

delocalized which consequently increases delocalization of the π electrons.17 Thus the 3-

hydroxyl chelation is more stable than the other hydroxyl chelation sites. Metal-

flavonolates typically bind in a 1:1 metal:ligand (M:L) ratio but can bind in a 1:2 (M:L) 

ratio with additional chelation involving ortho hydroxy groups on the B ring.17,22 The ideal 

pH for complexation for most metals is pH 9.5 because this facilitates deprotonation of the 

hydroxy groups to activate the flavonol.17 

     Steric effects of substituents on the flavonol are very influential on the anticancer 

efficacy. Bulky flavonols cause steric hindrance to the metal-flavonol chelation.22 The 

electronic effects of substituents on the flavonolate ligand have also been studied. For 

example, the hydroxy groups have been substituted with electron withdrawing groups and 
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electron donating groups such as methoxyl, thionyl, and acetamide groups.19 The electronic 

effects of these substituents appear to have only a minor effect on the cytotoxicity of the 

complexes.  

1.2b Function of Metalloflavonolato Complexes 

     Flavonol’s biological properties usually improve when the flavonol coordinates with a 

metal. For example, the natural flavonol quercetin coordinated with zinc or manganese 

exhibits greater anti-inflammatory properties than quercetin alone.22 Lanthanide-quercetin 

complexes exhibit greater antitumor properties than free quercetin.22 The enhanced anti-

cancer properties come from the metal binding to the cancer cell’s DNA to induce 

apoptosis,10,29,30,38 combined with the anti-cancer activity of the flavonol. Also, flavonols’ 

solubility is improved four-fold19 or ten-fold39 when coordinated to a metal complex rather 

than in unbound form. Bioavailability increases as solubility increases. Coordination also 

decreases the possibility of the flavonol being metabolized to an inactive form.1,27 The 

superior anticancer properties of flavonolate complexes compared to free flavonols are also 

due to a reduction in the metal’s redox potential so it is less likely to form radicals.22 In 

addition to this aspect of flavonolate complexes acting as antioxidants, flavonols also 

directly neutralize reactive oxygen species and inhibit enzymes that catalyze processes 

which generate ROS.17 

     Another explanation for chelated flavonols’ stronger anticancer activity compared to 

free flavonols is that coordination complexes such as ruthenium-(3-hydroxyflavone) 
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generally are more lipophilic than the free flavonols. This permits higher accumulation in 

the cancer cell. Nevertheless, there is not a clear relationship between lipophilicity and 

cytotoxicity. For example, 3’,5’-dimethoxyflavone is more cytotoxic than 3’,4’-

dimethoxyflavone, but the more lipophilic 3’,4’,5’-trimethoxyflavone is less cytotoxic.19 

The position of substitutions on the phenyl ring seems to be more influential on cytotoxicity 

than lipophilicity, perhaps due to varying amounts of twisting the ring out of plane and 

therefore changing interaction with the biological target.9,19,20 Ortho substituents on the B 

ring showed the lowest cytotoxicity, with a torsion angle of 60.22° seen in an o-difluoro-

substituted phenyl ring.19,39 RuII(η6-p-cymene) complexes with para-chloro substituents 

formed the strongest anticancer complexes.9 

     One significant benefit of releasing carbon monoxide from a metal-flavonolate complex 

is controlled release of the CO. Controlled release is an important consideration when using 

carbon monoxide as an anticancer agent. It is easier to control the release of CO from the 

flavonolate ligand in a dioxygenase-type reaction than from the carbonyl in a dissociative 

reaction from the metal.13,31 Metal carbonyl photoCORMs sometimes leak, that is, 

spontaneously release CO before arriving at their target.31 The chance of premature release 

of CO means higher concentrations of the photoCORM are needed to deliver a toxic dose 

to the cancer cells with consequently increased risk to healthy cells. CO release from the 

complexes can be controlled through choice of ancillary ligands.13 By selecting π-donor 

ancillary ligands that increase the hyperconjugation of the complex, the HOMO-LUMO 

energy gap between the metal’s d-orbitals and the CO’s π* molecular orbitals can be 
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reduced to the range of visible light. The putative first visible-light-activated photoCORM 

was a dicarbonylbis(cysteamine)iron(II) complex (Figure 4) that released CO at 470nm 

light irradiation.13  

 

 

Figure 4. CORM-S1, a visible-light-activated photoCORM. 

 

Well-chosen ancillary ligands can also improve solubility/bioavailability of the complex. 

Ancillary ligands can ensure that the byproducts of CO release are non-toxic and easily 

eliminated from the body.13  

     Carbon monoxide release in metal-flavonolate complexes can follow two different 

pathways. One photooxygenation pathway involves a diradical intermediate that reacts 

with triplet dioxygen (a diradical in the ground state). A second pathway involves a single 

electron transfer from the O-heterocycle to dioxygen resulting in a tautomer of the diradical 

and a superoxide ion.33 In either case, a bridging peroxide forms, followed by a concerted 

C-C bond cleavage and O-O peroxide bond cleavage to release CO. The reaction without 

an enzyme typically requires either UV light or visible light with high temperatures (70°C 

- 80°C).33 The wavelength of light used in the photoinduced oxygenation gives different 

products: UV light (300 nm) yields a 1,3 addition product, but visible light (400nm) yields 
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a 1,2 addition product.29,33 One study found that UV light yielded 0.7 equivalents of free 

CO whereas visible light yielded only 0.4 equivalents.29  

     Many different flavonolate coordination complexes have been created, including ones 

with ruthenium(II), iron(II), zinc(II), copper(II), lead(II), aluminum(III), tin(II), 

cadmium(II), cobalt(II), osmium(II), and rhodium(II).17,19 Nevertheless, despite variations 

in properties of these metal complexes, the anticancer effects are mainly due to bioactivity 

of the O,O-chelating flavonolates ligands, rather than the choice of metal.25,39  

     Flavonols are promising ligands in a coordination complex because they work in 

multiple ways to fight a diversity of cancer types such as bladder, breast, colon and thyroid 

cancers.1,11 Bipyridine metal flavonolate complexes could provide a novel way for an 

anticancer agent to deliver small amounts of carbon monoxide selectively to the cancer 

cells. If the carbon monoxide efficiently targets the cancer cell, then a lower dose of the 

drug would be possible, with fewer side effects and less chance of developing drug 

resistance. The flavonolate complexes may contribute additional anticancer effects, such 

as attacking cancer DNA, scavenging reactive oxygen species, and inhibiting enzymes to 

stop cancer cell proliferation. 
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CHAPTER 2 - MATERIALS AND METHODS 

     All reagents and solvents were obtained from commercial sources and were used as 

received. The (2,2’-bipyridine)dichloropalladium(II) (Pd(Bpy)Cl2), (2,2’-

bipyridine)dichloroplatinum(II) (Pt(Bpy)Cl2), silver tetrafluoroborate (AgBF4), 3-

hydroxyflavone (Fla), 3-hydroxy-4’-methoxyflavone (Fla-OMe), Angeli’s salt, and 

solvents were purchased from Sigma. The 3-hydroxy-4’-methylflavone (Fla-Me) and 3-

hydroxy-4’-chloroflavone (Fla-Cl) were obtained from Otave. FTIR data was collected on 

a Perkin Elmer Spectrum 100 FTIR spectrometer. UV-Vis spectra were recorded at 

ambient temperature using an Agilent HP8453 diode array spectrophotometer in a standard 

UV-Vis quartz cuvette. Fluorescence data was collected on a Perkin Elmer FL6500 

Fluorescence Spectrometer. High resolution mass spectra (HRMS) were obtained in the 

Baylor University Mass Spectrometry Center on a Thermo Scientific LTQ Orbitrap 

Discovery spectrometer using +ESI.40 1H, 13C, and 2D NMR spectra were obtained at 

ambient temperature in CD3CN solution for the palladium complexes and in (CD3)2SO for 

the platinum complexes, both on a Jeol ECS 400 MHz NMR spectrometer. J values are 

given in Hz. A Rayonet Photochemical Reactor, RPR-100, equipped with RPR-5750A 

lamps was used for all photochemical reactions. CO was detected using myoglobin assay 

according to literature procedures.
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2.1 General procedure for preparation of 1-4 

     Silver tetrafluoroborate (AgBF4) (0.6 mmol) was dissolved in methanol (7 mL); (2,2’-

bipyridine)dichloropalladium(II) (Pd(Bpy)Cl2) (0.3 mmol) was dissolved in DMSO (1 

mL), and then the solutions were stirred together at ambient temperature 0.5 h. Following 

gravity filtration, solid 3-hydroxyflavone derivative (0.3 mmol) and triethylamine (0.7 mL) 

were added to the filtrate. The reaction mixture was stirred for 0.25 h (2 h for the Fla-OMe) 

at ambient temperature. The corresponding bipyridine palladium(II) flavonolato salt was 

then recovered using vacuum filtration and recrystallized in CH3OH/CH3CN solvent; 

remaining solvent was removed in a vacuum desiccator overnight. 

2.2 General Procedure for Preparation of 5-7 

     Silver tetrafluoroborate (AgBF4) (0.4 mmol) was dissolved in methanol (4 mL); (2,2’-

bipyridine)dichloroplatinum(II) (PtII(Bpy)Cl2) (0.2 mmol) was dissolved in DMSO (4 mL), 

and then the solutions were stirred together at ambient temperature 1 h. Following gravity 

filtration, solid 3-hydroxyflavone derivative (0.2 mmol) and triethylamine (1 mL) were 

added to the filtrate. The reaction mixture was stirred for 6 h at ambient temperature. The 

corresponding bipyridine platinum(II) flavonolato salt was then recovered using vacuum 

filtration and recrystallized in CH3OH/CH3CN solvent; remaining solvent was removed in 

a vacuum desiccator overnight. 

[(Pd(Bpy)(3-Hydroxy-4’-methoxyfla)][PF6] ] Complex 1. Yield: 70% (orange crystals) 

UV-Vis λmax (CH3CN/nm)(ε/M-1 cm-1) (444 (25 200); 1H NMR (CD3CN, 400 MHz): δ 7.92 
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(d, J = 6.5 Hz, 2H), 7.85 (m, J = 21.9 Hz, 4H), 7.65 (t, J = 18.7, 2H), 7.47 (d, J = 7.3 Hz, 

2H), 7.28 (t, J = 11.4 Hz, 1 H), 7.19 (d, J = 6.5 Hz, 2 H), 7.13 (t, J = 13.9 Hz, 1 H), 6.66 

(d, J = 8.1 Hz, 2 H); 13CNMR (CD3CN, 400 MHz): δ = 181.44, 161.13, 153.96, 153.65, 

152.62, 151.82, 150.65, 148.54, 148.20, 140.94, 140.67, 138.01, 133.05, 129.37, 129.14, 

127.34, 127.27, 125.04, 124.44, 124.03, 123.10, 123.01, 121.96, 121.73, 117.45, 115.53, 

54.91 ppm. +ESI-MS m/z (100%) calc. 529.04; found: 529.04. Elemental analysis calc. for 

C26H19BF4N2O4Pd: C 50.64%, H 3.11%, N 4.54%; found: C 50.51%, H 3.01%, N 4.52%. 

[(Pd(Bpy)(3-Hydroxy-4’-methylfla)][PF6] ] Complex 2. Yield: 75% (light orange 

crystals) UV-Vis λmax (CH3CN/nm)(ε/M-1 cm-1) 439 (22 200); 1H NMR (CD3CN, 400 

MHz): δ 8.08 (d, J = 5.5 Hz, 1H), 8.03 (m. J = 5.5 Hz, 5H), 7.82 (t, J = 15.7 Hz, 2H), 7.70 

(d, J = 7.1 Hz, 1H), 7.61 (t, J = 14.9 Hz, 1H), 7.43 (t, J = 12.6 Hz, 1H), 7.36 (m, J = 19.6 

Hz, 2H), 7.27 (t, J = 14.1 Hz, 1H), 7.07 (d, J = 7.1 Hz, 2H); 13C NMR (CD3CN, 400 MHz): 

δ = 183.3, 155.2, 154.8, 154.0, 153.1. 151.3, 149.4, 142.2, 141.9, 134.5, 129.7, 128.5, 

128.1, 127.6, 126.2, 124.3, 122.8, 119.3, 118.3, 40.93 ppm. +ESI-MS m/z (100%) calc. 

513.04; found: 513.04. Elemental analysis calc. for C26H19BF4N2O3Pd: C 51.99%, H 

3.19%, N 4.66%; found: C 51.51%, H 3.11%, N 4.62%. 

[(Pd(Bpy)(3-Hydroxyfla)][PF6] Complex 3. Yield: 80% (light orange crystals) UV-Vis 

λmax (CH3CN/nm)(ε/M-1 cm-1) 434 (21 000); 1H NMR (CD3CN, 400 MHz): δ8.06 (d, J = 

7.9 Hz, 2H), 8.01 (d, J = 5.5 Hz, 1H), 7.91 (m, J = 20.6 Hz, 3H), 7.72 (t, J = 10.3 Hz, 2H), 

7.64 (d, J = 7.9 Hz, 1 H), 7.59 (t, J = 15.8 Hz, 1 H), 7.35 (m, J = 20.1 Hz, 3 H), 7.29 (t, J = 
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15.2 Hz, 2 H), 7.22 (t, J = 13.3 Hz, 2 H); 13C NMR (CD3CN, 400 MHz): δ = 188, 154.8, 

154.5, 153.0, 149.6, 149.0, 141.6, 141.0, 134.4, 131.4, 130.0, 128.8, 128.0, 127.8, 126.0, 

123.4, 122.6 ppm. +ESI-MS m/z (100%) calc. 499.03; found: 499.02. Elemental analysis 

calc. for C25H17BF4N2O3Pd: C 51.18%, H 2.92%, N 4.78%; found: C 51.11%, H 3.01%, N 

4.72%. 

[(Pd(Bpy)(3-Hydroxy-4’-chlorofla)][PF6] ] Complex 4. Yield: 84% (yellow crystals) 

UV-Vis λmax (CH3CN/nm)(ε/M-1 cm-1) 428 (20 400); 1H NMR (CD3CN, 400 MHz): δ 7.92 

(m, J = 28.1 Hz, 2H), 7.80 (d, J = 7.5 Hz, 2H), 7.76 (d, J = 5.0 Hz, 1H), 7.69 (t, J = 16.3 

Hz, 3H), 7.45 (t, J = 15.6 Hz, 1 H), 7.40 (d, J = 8.1 Hz, 1 H), 7.30 (t, J = 11.9 Hz, 1 H), 

7.21 (t, J = 12.5 Hz, 1 H), 7.11 (d, J = 8.1 Hz., 1 H), 7.03 (m, J = 30.0 Hz, 3 H); 13C NMR 

(CD3CN, 400 MHz): δ = 184.0, 154.5, 154.3, 153.0, 149.5, 149.1, 141.8, 141.6, 136.5, 

134.5, 129.1, 128.8, 128.1, 128.0, 125.9, 123.6, 122.5, 119.1 ppm. +ESI-MS m/z (100%) 

calc. 532.99; found: 532.99. Elemental analysis calc. for C25H16BClF4N2O3Pd: C 48.35%, 

H 2.60%, N 4.51%; found: C 48.31%, H 2.65%, N 4.52%. 

[(Pt(Bpy)(3-Hydroxy-4’-methoxyfla)][BF4] ] Complex 5. Yield: 70% (green crystals) 

UV-Vis λmax (CH3CN/nm)(ε/M-1 cm-1) (459 (33 000); 1H NMR (CD3CN, 400 MHz): δ 8.35 

(d, J = 4.5 Hz, 1H), 8.21 (d, J = 4.5 Hz, 1H), 8.06 (t, J = 16.6, 4H), 7.99 (d, J = 8.2 Hz, 2H), 

7.69 (d, J = 8.5 Hz, 1 H), 7.62 (t, J = 15.4 Hz, 1H), 7.48 (t, J = 12.6 Hz, 1 H), 7.36 (d, J = 

8.2 Hz, 2 H), 7.25 (t, J = 14.9 Hz, 1 H), 6.79 (d, J = 8.5 Hz, 2 H), 3.82 (s, 3H) ppm. +ESI-
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HRMS m/z (relative intensity) calc. 618.30; found: 618.10. Elemental analysis calc. for 

C26H19BF4N2O4Pt: C 44.28%, H 2.72%, N 3.97%; found: C 44.21%, H 2.75%, N 3.99%. 

[(Pt(Bpy)(3-Hydroxy-4’-methylfla)][BF4] ] Complex 6. Yield: 87% (green crystals) UV-

Vis λmax (CH3CN/nm)(ε/M-1 cm-1) (453 (25 000); 1H NMR (CD3CN, 400 MHz): δ 8.46 (d, 

J = 4.8 Hz, 1H), 8.28 (d?, J = 4.7 Hz, 1H), 8.16 (t, J = 5.1, 4H), 7.99 (d, J = 7.6 Hz, 2H), 

7.82 (d, J = 8.1 Hz, 1 H), 7.71 (t, J = 15.7 Hz, 1 H), 7.54 (m, J = 17.2 Hz, 1 H), 7.46 (d, J 

= 8.6 Hz, 1 H); 7.42 (t, J = 11.3 Hz, 1H), 7.34 (t, J = 14.5, 1H), 7.10 (d, J = 7.6 Hz, 2H), 

3.30 (s, 3H) ppm. +ESI-HRMS m/z (relative intensity) calc. 602.31; found: 602.10. 

Elemental analysis calc. for C26H19BF4N2O3Pt: C 45.30%, H 2.78%, N 4.06%; found: C 

45.33%, H 2.76%, N 4.05%. 

[(Pt(Bpy)(3-Hydroxyfla)][BF4] ] Complex 7. Yield: 82% (green crystals) UV-Vis λmax 

(CH3CN/nm)(ε/M-1 cm-1) (449 (11 000); 1H NMR (CD3CN, 400 MHz): δ 8.81 (d, J = 5.4 

Hz, 1H), 8.53 (d, J = 5.4 Hz, 1H), 8.34 (t, J = 6.8, 4H), 8.25 (m, J = 7.2 Hz, 2H), 8.11 (d, J 

= 4.1 Hz, 1 H), 7.84 (t, J = 7.8 Hz, 1 H), 7.73 (d, J = 4.5 Hz, 1 H), 7.67 (t, J = 6.5 Hz, 1 H), 

7.54 (m, J = 8.5 Hz, 5H); 13C{1H} NMR (CD3CN, 400 MHz): δ = 184.5, 156.5, 156.4, 

155.9, 155.2, 153.7, 152.5, 149.9, 141.8, 141.3, 135.1, 132.3, 130.3, 129.5, 129.0, 128.8, 

127.1, 127.0, 124.8, 123.3, 118.9, 40.9 ppm. +ESI-HRMS m/z (relative intensity) calc. 

588.29; found: 588.10. Elemental analysis calc. for C25H17BF4N2O3Pt: C 44.47%, H 

2.54%, N 4.15%; found: C 44.48%, H 2.50%, N 4.14%. 
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2.3 Reaction of 3 and O2  

     A stock solution (35 μL, 1.00 mM) of 3 in DMSO in an argon atmosphere was added 

to an inorganic phosphate (IP) buffer (2 mL, pH 7.1) in a screw-capped UV cuvette. 

Dioxygen was bubbled into it for 4 minutes. Carbon monoxide release was monitored by 

following the decrease of complex 3’s absorbance at 434 nm for 1 h. The experiment was 

repeated using complexes 1, 2 and 4 (100 μL, 1.00 mM) at their corresponding λmax. The 

experiment was also repeated at higher temperature (80 °C). 

2.4 Reaction with O2 under light 

     A stock solution (1.00 mM in DMSO) of 3 in an argon atmosphere was added to oxygen-

saturated acetonitrile (2 mL) in a screw-capped UV cuvette. The cuvette was irradiated 

with broadband light and then monitored by UV-Vis spectroscopy in 10 s intervals three 

times, then 30 s intervals three times, then 1 min. intervals three times, then 3 minutes 

intervals for a total of 30 min.  

     A stock solution (25 μM in DMSO) of 5 in an argon atmosphere was added to oxygen- 

saturated acetonitrile in a screw-capped UV cuvette. The cuvette was irradiated with 

broadband light then monitored by UV-Vis spectroscopy in 10 min. intervals for a total of 

80 min. The experiment was repeated with complexes 6 and 7. 

2.5 Reaction of 1-4 and HNO  

     Because HNO is an analogue of dioxygen, the experiment was repeated using HNO. A 

buffered stock solution of the HNO-precursor Angeli’s salt (AS) (10 mM, pH 12) was 



   

20 
 
 

prepared in an argon atmosphere according to literature procedures.41 AS (200 μL, 10.00 

mM) was added to an anaerobic flavonolato palladium stock solution (35 μL, 1.00 mM) in 

IP buffer (2 mL, pH 7.1) in a screw-capped UV cuvette. The reaction was initiated by 

gently shaking the cuvette; carbon monoxide release was monitored by following the 

decrease of the substrate absorbance at 434 nm for 1 h. The experiment was repeated using 

complexes 1, 2 and 4 (1.00 mM). Because NaOH is present in the IP buffer, a control 

reaction was run for NaOH (100 μL, 0.1 M) reacting with complex 3 (35 μL, 1.00 mM) in 

an argon atmosphere. Because sodium nitrite (NO2
-) anions are a product of the 

decomposition of Angeli’s salt, a control reaction was run for NO2
- (100 μL, 0.1 M) 

reacting with 3 (35 μL, 1.00 mM). Both control reactions were monitored by absorption 

spectroscopy. 

2.6 Detection of photo-induced CO release 

     Following literature procedures,16 argon was bubbled through complex 3 (4 μmol) 

dissolved in DMSO (0.7 mL) and IP buffer (15 mL, pH 7.1) in a sealed round-bottom flask 

protected from light. Angeli’s salt (10 mg ) in an argon atmosphere was added and allowed 

to react. After 2h a sample of atmosphere from the head space was injected into a screw-

capped UV cuvette containing an argon atmosphere with freshly prepared deoxymyoglobin 

(lyophilized horse skeletal muscle) (2 mL, 15 μM) prepared by dissolving the protein in IP 

buffer (2 mL, 0.01M, pH 7.1) and reduced with sodium dithionite (90:1 molar ratio with 

myoglobin). The reaction was monitored spectroscopically.
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CHAPTER 3 - RESULTS AND DISCUSSION 

3.1 Synthesis and characterization of Pd(II) and Pt(II) flavonolate complexes 

     The synthesis of metal(II) bipyridine flavonolate complexes [MIIBpyFlaR][BF4](M = Pd 

(1-4), R= p-OMe (1), p-Me (2), p-H (3), p-Cl(4)); (M = Pt (5-7), (R= p-OMe (5), p-Me (6), 

p-H (7)) follows a methodology that has not been previously published. The complexes 

were prepared by mixing 1 equivalent of MIIBpyCl2 with 2 equivalents of AgBF4 first to 

generate activated [MIIBpy(sol)2] moiety, followed by addition of 1.2 equivalents of 

deprotonated flavonol. The reaction was stirred under room temperature for 2 h (1-4) or 6 

h (5-7). The resulting complexes were isolated as yellow-orange (1-4) or green (5-7) BF4
- 

salts. The solid complexes 1-7 are stable in the air at room temperature for several months. 

The complexes have all been characterized by 1H-NMR, 13C-NMR, UV-Vis, infrared and 

fluorescence spectroscopies, and mass spectrometry, as well as elemental analysis.  

3.2 Spectroscopic properties of the complexes 

     PdII- and PtII bipyridine flavonolate complexes (1-7) have very similar IR and electronic 

spectra as seen in Table 1.



   

22 
 
 

Table 1. Summary of Infrared (IR) and Ultraviolet-Visible (UV-Vis) Data for Pd(II) and 

Pt(II) bipyridine flavonolate complexes. 

Complex λmax 

(nm) 

Absorbance 

(AU) 

Extinction 

Coefficient ϵ 

(cm-1M-1) 

νCO (cm-1) σa 

1 444 1.26 2.52x104 1530 -0.27 

2 439 1.11 2.22x104 1528 -0.17 

3 434 1.05 2.10x104 1524 0 

4 428 1.02 2.04x104 1520 0.23 

5 459 0.815 3.3 x 104 1440 -0.27  

6 453 0.628 2.5 x 104 1437 -0.17  

7 449 0.527 1.1 x 104 1498 0  

a Hammett constants σ for substituents (OCH3, CH3, H and Cl)42 

Coordination of the flavonol to the metal site is indicated by the characteristic νco band 

between 1450 and 1530 cm-1 (Figures 5-7). Compared to that of the νco vibration at 1602 

cm-1 of the free flavonol, the band of complexes 1-4 is shifted by 70-80 cm-1 to lower 

energies and that of complexes 5-7 by 102-152 cm-1, which can be explained by the 

formation of a stable five-membered chelate rings.18,43–51  
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Figure 5. FTIR spectrum of complex 5. 

 

 

Figure 6. FTIR spectrum of complex 6.  
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Neutral flavonol compounds exhibit an absorption feature in the range of 320-360 nm, 

which is assigned to the π-π* transition (Figures 8-14). When dissolved in CH3CN under 

anaerobic conditions, each complex 1-4 exhibits an intense absorption feature in the range 

of 400–450 nm (complex 1: 444 nm (ε = 2.5 × 104 M-1cm-1 ), complex 2: 439 nm (ε = 2.2 

× 104 M-1cm-1), complex 3: 434 nm (ε = 2.1 × 104 M-1cm-1), complex 4: 428 nm (ε = 2.0 × 

104 M-1cm-1). Likewise, each complex 5-7 (Figures 8-10) exhibits an electronic absorption 

maxima between 449 – 459 nm when dissolved in DMSO (complex 5: 459 nm (ε = 3.3 × 

104 M-1cm-1), complex 6: 453 nm (ε = 2.5 × 104 M-1cm-1), complex 7: 449nm (ε = 1.1 × 104 

M-1cm-1)). 
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Figure 7. FTIR spectrum of complex 7. 
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Figure 8. UV-Vis spectrum of complex 1 (50 μM in acetonitrile) 

 

 
Figure 9. UV-Vis spectrum of complex 2 (50 μM in acetonitrile). 
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Figure 10. UV-Vis spectrum of complex 3 (50 μM in acetonitrile) 

 

 
Figure 11. UV-Vis spectrum of complex 4 (50 μM in acetonitrile). 
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Figure 12. UV-Vis spectrum of complex 5 (25 μM in DMSO). 

 

 
Figure 13. UV-Vis spectrum of complex 6 (25 μM in DMSO). 
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Figure 14. UV-Vis spectrum of complex 7 (25 μM in DMSO). 
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of the coordinated flavonolate is also affected by the electronic nature of the substituent 

group in the ligands. 

 
Figure 15. (a) UV-Vis spectrum of complex 3 (50 μM in acetonitrile, solid line) and 

product after reacting with O2 in acetonitrile at 80°C (dashed line). (b) Plot of λmax of the 

complexes vs. Hammett constant σ for complexes 1-4. 

 

 
Figure 16. Plot of λmax of the complexes vs. Hammett constant σ for complexes 5-7. 
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Figure 17. Fluorescence spectrum of complex 5. 

 

 
Figure 18. Fluorescence spectrum of complex 6. 
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Figure 19. Fluorescence spectrum of complex 7. 
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Figure 20. (a) Zoomed blank mass spectrum before sample. (b) Zoomed isotope pattern 

on mass spectrum of complex 1. (c) Zoomed theoretical isotope distribution of complex 

1. 



   

33 
 
 

.  

Figure 21. (a) Zoomed blank mass spectrum before sample. (b) Zoomed isotope pattern 

on mass spectrum of complex 2. (c) Zoomed theoretical isotope distribution of complex 

2. 
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Figure 22. (a) Zoomed blank mass spectrum before sample. (b) Zoomed isotope pattern 

on mass spectrum of complex 3. (c) Zoomed theoretical isotope distribution of complex 

3. 
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Figure 23. (a) Zoomed blank mass spectrum before sample. (b) Zoomed isotope pattern 

on mass spectrum of complex 4. (c) Zoomed theoretical isotope distribution of complex 

4. 
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Figure 24. (a) Zoomed blank mass spectrum before sample. (b) Zoomed isotope pattern 

on mass spectrum of complex 5. (c) Zoomed theoretical isotope distribution of complex 

5. 
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Figure 25. (a) Zoomed blank mass spectrum before sample. (b) Zoomed isotope pattern 

on mass spectrum of complex 6. (c) Zoomed theoretical isotope distribution of complex 

6. 
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Figure 26. (a) Zoomed blank mass spectrum before sample. (b) Zoomed isotope pattern 

on mass spectrum of complex 7. (c) Zoomed theoretical isotope distribution of complex 

7. 

 

3.4 NMR spectroscopy 

     More conclusive structural information was obtained from NMR analysis of the 

complexes (Figures 27-38). 1H-NMR and 13C-NMR spectra of complex 3 are shown in 

Figure 27 and Figure 28, respectively. In the 1H-NMR spectrum, 17 protons are seen in 



   

39 
 
 

complex 3. Assignment of each proton peak was confirmed by 1H-1H COSY and 1H-13C 

HSQC (Figures 29-30). Complex 7 has a very similar 1H-NMR spectrum, shown in Figure 

37. The 1H-NMR spectra of complexes 1,2,4-6 (Figures 32-36) are similar but with a signal 

upfield for the more shielded protons on the methyl and methoxy substituents of the 

flavonolate. 

     In the 13C-NMR spectrum of complex 3 (Figure 28), there are 8 quaternary C atoms: 2 

(C20 and C21) from bipyridyl and 6 (C1, C2, C7, C8, C9, and C10) from the flavonolate. 

In addition, there are 17 tertiary C atoms, all of which were assigned by 1H-13C HSQC. 

The assignment of all C atoms and H atoms were doubly confirmed by C-H long-range 

couplings obtained from the 1H-13C HMBC spectrum (Figure 31). The analogous 13C-NMR 

spectrum of complex 7 (Figure 38) is very similar. 

 

Figure 27. 1H NMR spectrum of complex 3. 
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Figure 28. 13C NMR spectrum of complex 3. 

 

 
Figure 29. 2D 1H-1H COSY of complex 3. 
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Figure 30. 2D 13C-1H HSQC of complex 3. 

 
Figure 31. 2D 13C-1H HMBC of complex 3. 
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Figure 32. 1H NMR spectrum of complex 1. 

 

 
Figure 33. 1H NMR spectrum of complex 2. 
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Figure 34. 1H NMR spectrum of complex 4. 

 

 
Figure 35. 1H NMR spectrum of complex 5 in CD3CN. 
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Figure 36. 1H NMR spectrum of complex 6 in CD3CN. 

 

 
Figure 37. 1H NMR spectrum of complex 7 in CD3CN. 
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Figure 38. 13C NMR spectrum of complex 7 in (CD3)2SO. 

 

3.5 Oxygenation of Pd(II) bipyridine flavonolate complexes with O2 

     The oxygenation reaction of Pd(II) bipyridine flavonolate complexes was followed by 

monitoring the decrease of the absorbance of the coordinated flavonolate (π – π*) at the 

corresponding λmax. At room temperature, no oxygenation reaction between Pd(II) 

bipyridine flavonolate complexes and dioxygen occurred, as seen in Figures 39-42. 

However, if the reaction is carried out at elevated temperature (80 oC), the decay of 

coordinated flavonolate band was observed (Figure 15a). The similar reactivity was 

observed in the reaction of [CuIIBpyFla]ClO4 with dioxygen in acetonitrile, indicating a big 

energy barrier to overcome for metal bipyridine flavonolate complexes and ground state 

dioxygen (3O2)
52. A UV-Vis lamp with broad band light (300 nm–900 nm) was used to 

examine the effect of light on the reaction between [PdIIBpyFla]BF4 and dioxygen. 



   

46 
 
 

However, unlike the reaction of [RuII(Bpy)2Fla]PF6 with dioxygen in which light speeds 

up the reaction rate33, the oxygenation reaction of [PdIIBpyFlaR]BF4 was still very slow 

under light. There is no difference between oxygenation reaction of Pd(II) bipyridine 

flavonolate complexes with or without light, implying that light has no effect on reaction 

of [PdBpyFla]BF4 with dioxygen. 

 

 
Figure 39. UV-Vis absorption spectra of reaction between complex 1 and O2 with light 

irradiation under Ar in acetonitrile. 
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Figure 40. UV-Vis absorption spectra of reaction between complex 2 and O2 with light 

irradiation under Ar in acetonitrile. 

 

 
Figure 41. UV-Vis absorption spectra of reaction between complex 3 and O2 with light 

irradiation under Ar in acetonitrile. 
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Figure 42. UV-Vis absorption spectra of reaction between complex 4 and O2 with light 

irradiation under Ar in acetonitrile. 

 

3.6 Oxygenation of Pt(II) bipyridine flavonolate complexes with O2 

     The oxygenation reaction of Pt(II) bipyridine flavonolate complexes was investigated. 

Changes in the electronic absorbance at λmax as a function of irradiation time were 

monitored. There was no oxygenation reaction without irradiation. A decrease in the 

intensity of the MLCT peak (e.g. 459 nm for complex 5) as the complexes were exposed 

to broadband (300 nm–900 nm) excitation using the Rayonet photoreactor at room 

temperature indicates all three complexes reacted with dioxygen (Figures 43-45).  
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Figure 43. UV-Vis absorption spectra of reaction between complex 5 (25 μM) in DMSO 

and O2 with light irradiation at ambient temperature. 

 

 

Figure 44. UV-Vis absorption spectra of reaction between complex 6 (25 μM) in DMSO 

and O2 with light irradiation at ambient temperature. 
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Figure 45. UV-Vis absorption spectra of reaction between complex 7 (25 μM) in DMSO 

and O2 with light irradiation at ambient temperature. 

 

The solutions turned from yellow-green to colorless, indicating light catalyzes the 

[PtII(Bpy)Fla]BF4 oxygenation reaction. This is similar to a previously reported photo-

induced reaction of [(L)Zn(3-Hfl)ClO4 (L is a bidentate nitrogen donor ligand) reacting 

with oxygen.55 Since the platinum complexes underwent oxygenation reaction with 

irradiation at room temperature but the palladium complexes did not, the platinum 

complexes absorb the required activation energy, but the palladium complexes do not. This 

is reasonable because energy is inversely related to wavelength. The platinum complexes 

have a higher λmax than the palladium complexes, so the platinum complexes must be at a 

lower energy in their excited state compared to palladium in its excited state.  
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     The energy barrier was also lower in complexes with electron-donating groups in the 

para position of the flavonolato moiety, reflected in the larger λmax value of the 

methoxyflavonolate complexes 1 and 5. These results indicate that the increased electron 

density on the flavonolato ligand by para electron-donating substituents raises the energy 

of the metal’s HOMO and shifts the π-π* absorption to lower energies, effectively lowering 

the energy barrier for electron transfer to O2.
55,56 The proposed mechanism of CO release 

involves platinum serving as a conduit for a single electron transfer from the flavonolate 

ligand to the dioxygen ligand, creating two radicals. The superoxide radical would attack 

the flavonolate radical to form a bridging peroxo species, similar to the mechanism of CuII 

fungal quercetin dioxygenases.55 Following oxidative cleavage of this bridge, CO would 

be extruded and a depside formed. 

3.7 Nitroxygenation of Pd(II) bipyridine flavonolate complexes with HNO 

     The simple molecule nitrosyl hydride (HNO) is the singly reduced and protonated form 

of nitric oxide, NO. HNO has been reported to have similar reactivity with dioxygen 

because it can be trapped by various O2-binding globins and interact with O2-dependent 

oxygenases.41,57 Previous publication shows that HNO can substitute dioxygen in the 

reaction with free flavonol. Nitroxygenation reaction of free flavonol (quercetin) with 

HNO is much faster than that with dioxygen.58 The reaction of Pd(II) bipyridine flavonolate 

complexes with HNO was investigated to provide insights on reactivity of HNO. 

     Following the typical procedure in a nitroxygenation assay, solutions of complex 3 and 

Angeli’s salt were mixed in deaerated pH 7 phosphate buffer. The decrease in 
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concentration of complex 3 was followed by the decrease in its absorbance at 434 nm. 

Figures 46-49 shows the reaction spectra of [PdIIBpyFlaR]BF4 with Angeli’s salt (AS), 

HNO donor, in 50mM phosphate buffer. As opposed to oxygenation reaction of Pd(II) 

bipyridine flavonolate complexes with dioxygen at high temperature (80 oC), 

nitroxygenation reaction of [PdIIBpyFla]BF4 occurred at room temperature with a fast rate. 

Initial kinetic analysis was performed and analyzed using the sequential reactions depicted 

in equations 1-3. Rate analysis of nitroxygenation reactivity is complicated by the slow 

decomposition rate of the HNO-donor Angeli’s salt and the competitive dimerization of 

free HNO. The slow release of HNO from Angeli’s salt would be predicted as the rate-

limiting step, but at relatively low substrate concentrations, the initial rate of reaction is 

dependent on both [PdIIBpyFla]+ and [AS].  

 

To ascertain that the CO release was due to the complex rather than another substance in 

solution, a control reaction was performed with the nitrite ion (Figure 50). There was little 

decrease in absorbance at λmax; nitrite ions did not cause the release of CO. 
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Figure 46. UV-Vis absorption spectra of reaction between complex 1 with HNO donor 

Angeli’s salt in pH 7.1 phosphate buffer. 

 

Figure 47. UV-Vis absorption spectra of reaction between complex 2 with HNO donor 

Angeli’s salt in pH 7.1 phosphate buffer. 
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Figure 47. UV-Vis absorption spectra of reaction between complex 3 with HNO donor 

Angeli’s salt in pH 7.1 phosphate buffer. 

 

 
Figure 48. UV-Vis absorption spectra of reaction between complex 4 with HNO donor 

Angeli’s salt in pH 7.1 phosphate buffer. 
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Figure 49. UV-Vis absorption spectra of reaction between complex 3 and NaNO2 under 

Ar in acetonitrile. 

 

3.8 CO detection from nitroxygenation reaction of [PdBpyFla]BF4 with HNO 

     The product CO generated during the reaction of [PdBpyFla]BF4 with HNO was 

confirmed by the conversion of a solution of deoxymyoglobin to its ferrous CO adduct 

upon exposure to the head gas above the assay mixture. Figure 51 displays the UV-Vis 

spectra of deoxymyoglobin and CO-myoglobin. The progress of the reaction was 

monitored by the shift in Soret absorbance from 434 to 423 nm, confirming formation of 

CO-FeIIMb. 
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Figure 50. UV-Vis spectra of formation of CO-FeIIMb (dashed line) by deoxy-

myoglobin trapping of CO released in the reaction of complex 3 with Angeli’s salt. 

 

     Regarding the mechanism of nitroxygenation of metal flavonolate complex with HNO, 

it was reported that the metal ion acts as a conduit for an internal electron transfer between 

the metal-bound flavonol and HNO, also orienting the resultant organic radicals to facilitate 

coupling.57 Scheme 2 depicts possible reaction pathways for nitroxygenation activity of 

Pd(II) bipyridine flavonolate complexes. The reaction is proposed to go through an initial 

single electron transfer to form PdIII – aminoxyl radical adduct, A. Then, a second single 

electron transfer from substrate to metal generates the substrate radical, B. Radical coupling 

would form an alkylhydroxamate intermediate, C, and then nucleophilic attack would 

generate an isoxazolidine bridge, D, which then decomposes to parent carboximidic ester, 

E, and CO. The oxygenation reaction with the Pt(II) bipyridine flavonolate complexes is 

likely to be similar, as depicted in Scheme 3. 
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Scheme 2. Proposed mechanism to release CO upon nitroxygenation. 

 

 

Scheme 3. Proposed mechanism to release CO upon oxygenation. 



   

58 
 
 

CHAPTER 4 - CONCLUSIONS 

     In summary, we designed and synthesized a series of PdII flavonolate complexes 

[PdIIBpyFlaR] (R= p-OMe (1), p-Me (2), p-H (3) and p-Cl (4) and PtII flavonolate 

complexes [PtIIBpyFlaR] (R = p-OMe (5), p-Me (6), and p-H (7)) as CO-releasing agents. 

Their structures, spectroscopic features and reaction towards dioxygen and HNO were 

investigated. The reaction of palladium(II) bipyridine flavonolate complexes with O2 at 

room temperature with and without light irradiation doesn’t occur, while their reaction with 

HNO at room temperature happens at a fast rate. The product CO generated from the 

nitroxygenation reaction of [PdIIBpyFlaR] with HNO was detected by deoxymyoglobin 

with the shift in Soret absorbance from 434 to 423 nm. The platinum(II) bipyridine 

flavonolate complexes are stable in the dark but reacted with O2 at room temperature with 

light irradiation to produce putative CO and an O-benzoylsalicylate product. The 

mechanism of nitroxygenation reaction was proposed to proceed through initial electron 

transfer between metal PdII and HNO. The mechanism of the platinum complexes’ 

oxygenation reaction is probably similar with an electron transfer between PtII and O2. The 

complexes’ photoreactivity offers temporospatial control of CO release with potential 

anticancer applications. Because CO can be released at room temperature rather than 

requiring temperatures above body temperature, these complexes could be suitable for 

treatments in the human body. Since the CO release occurs only with photo-irradiation, the
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 CO release can be controlled, for example, to deliver small amounts of carbon monoxide 

selectively to cancer cells. Finally, the fact that visible light is the trigger for the CO release 

means the treatment would not expose a human to harmful UV light. Future work could 

include quantifying the CO release and testing the complexes for oxygenation reactivity in 

aqueous environments to mimic biologically relevant conditions. Additionally, the toxicity 

of the byproducts should be investigated to establish the therapeutic potential of these 

complexes. 

.
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