Procuring Household Robotic Prosthetics

Alexandra Knight | Ryan Button | Tyler Junior College

Problem / Question

Using met-analysis determine what is the best base material for robotic prosthesis?

Hypothesis

I believed because there would be machinery and moving parts it would be necessary to find a metal alloy to work as the base material.

Results

- Metal alloys were too heavy a material to be used as a body
- Metal alloys limited the reparability of the prosthetic
- Resin were first used for their light weight and easy of mold ability
- The high price materials are used primarily for Body work and not structure
- Most structural supports are a combination of materials
- Polyethylene/Polypropylene mixtures are the most used base material
- Depending on the prosthetist and their preferences the preferred base material changes

Material Average Acrylic **Composite Carbon Fibers** Ethyl-vinyl acetates (EVAs) Polyethylene Polypropylene Subortholen (HMW-HDPE)

Conclusion

Metal alloys are not appropriate for robotic prosthetics base materials

- Melting Point
- Weight
- Mixtures of Polyethylene/Polypropylene are the preferred base for most prosthetists
- Depending on the type of prosthetic the preferred base material changes
- Household robotic prosthetics are restricted due to the robotics aspect
- Making household robotic prosthetics will require more study into different types of base material

	Base Material Traits	S	
e price per pound	Rigidness	Durability	Flexibility
\$125-130	High	Low	Average
\$15*	Very High	High	Very Low
\$1.07*	Low	High	High
\$120-146	Low	High	High
\$72-118	Very High	Low	Low
\$62-85	Low	High	High

Works Cited

• Center for Devices and Radiological on-Metal Hip Implants - Concerns a	Hea bou
Retrieved April 09, 2018, from https://www.fda.gov/MedicalDevice mplantsandProsthetics/MetalonMeta	alHi
• Ethylene-Vinyl Acetate (EVA) Produ Retrieved April 09, 2018, from https intelligence/resin-prices/ethylene-vie	ıct, l ://w nyl-a
• Kennedy, S. (2008, February). Materi Retrieved April 09, 2018, from https://opedge.com/Articles/View/	ial C Artic
 Plastics News. (2018, April 09). Retri- http://www.plasticsnews.com/resin, pricing 	leved /eng
• 'Touchy-feely' bionic hands come clo Retrieved March 23, 2018, from http bionic-hands-come-closer-to-reality/	oser o://ł

alth. (2017, December 28). Metalit Metal-on-Metal Hip Implants.

ProductsandMedicalProcedures/I ipImplants/ucm241604.htm

Price and Market. (2017, October). www.plasticsinsight.com/resinacetate/

Choices in Foot Orthotic Design.

cle/2008-02_13

d April 09, 2018, from gineering-thermoplastics/current-

to reality. (2016, January 22). bme.umich.edu/touchy-feely-