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Spatial Distribution of Flying Southern Pine Beetle (Coleoptera:Scolytidae)
and the Predator ThanasUnus dubius (Coleoptera:Cleridae)l

REED J. REEVE2 , JACK E. COSTER3 , AND PAUL C. JOHNSON4

School of Forestry, Stephen F. Austin State Univ., Nacogdoches, TX 75962

ABSTRACT

Environ. Entomol. 9: 113-118 (1980)
Spatial dispersion patterns of flying southern pine beetles, Dendroctonus frontalis Zimm.,

and the clerid predator Thanasimus dubius (F.) were determined within 3 natural infestations
of southern pine beetle (SPB) in eastern Texas using grids of sticky traps. There was signif­
icant positive association of the 2 insects throughout the trapping grids, although aerial pop­
ulation densities of the clerid were inversely related to aerial densities of SPB.

Aggregation patterns were quantified using the index of patchiness (lP) and the regressions
*of mean crowding (m) on mean density (m). Both methods showed a highly clumped pattern

for both beetle species. SPB density in the infestations was positively associated with the
daily rate of tree attack by the beetles, but the degree of population aggregation in the infes­
tations was inversely related to the daily rate of tree attack. Although densities of the two
species did not follow the same trends among the 3 infestations, the degree of aggregation
did (Le., SPB was most highly aggregated in the location where T. dubius was most highly
aggregated) and Lloyd's index of interspecific patchiness indicated overlapping aggregate
distributions.

A kairomonal response mechanism for T. dubius, and SPB co-aggregation within infesta­
tions is hypothesized.

• The study was supported by U. S. Forest Service (Southern Forest Exp. Sta.)
Coop. Agteement SFES-19-145 and by the USDA program entitled "The Expanded
Southern Pine Beetle Research and Applications Program" through a grant (#704­
14-9) from the Coopentive State Research Service. The findings and opinions ex­
pressed h.",in are those of the authors and not necessarily those of the USDA.
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• Znecon Corp., Rt. I, Box 46, Weslaco, TX 78596.
• USDA Southern Pine Beetle Program, 2500 Shrevepon Highway, PineviDe,

LA 71360.
• Dept. of Entomology, Univ. of New Hampshire, Durham 03824.

Aggregation of southern pine beetles (SPB), Den­
droctonus frontalis Zimm., on host trees is largely the
result of olfactory responses of the beetles to attractants
generated by the host-selecting female beetles (Vite and
Renwick 1968). The pattern of arrival of beetles at trees
under mass attack and the vertical distribution of beetles
as they arrive at such trees have been described (Coster
et al. 1977a, b). Methods for characterizing dispersion
patterns of flying SPB within infestations were exam­
ined by Coster and Johnson (1979a).

Thanasimus dubius (F.) is a common predator of
southern pine beetle (Thatcher and Pickard 1966). Adults
of this clerid feed mostly upon adult bark beetles while
the larvae feed beneath the bark on immature SPB.
Adult T. dubius have been observed in large numbers on
trees undergoing attack by SPB (Vite et al. 1964) and
have been demonstrated to aggregate at these trees in
response to frontalin (Vite and Williamson 1970), a
component of the SPB aggregation pheromone. Thus,
with respect to the clerid, frontalin is a kairomone. The
diurnal pattern of response by adult T. dubius to attrac­
tant sources follows closely that of the bark beetle (Dix
and Franklin 1977, Dixon and Payne 1979) and peak
numbers of the adult clerids arrive soon after the trees
are attacked by SPB.

Most research on scolytid pheromones has centered
on behavioral responses of individual insects to discrete
sources ofnatural or artificial pheromones (Borden 1977).
Studies on kairomone responses of scolytid predators

© 1980 Entomoloe;ical Society of America

have been similarly oriented. The development of suit­
able techniques for using the behavioral chemicals in
pest management requires, in addition, understanding of
their effects on orientation of populations of the pest and
on major predators and parasites. For SPB, such studies
have recently been reported (Johnson and Coster 1978,
Coster and Johnson 1979a,b). In this study we report on
the concurrent spatial distributions of both SPB and T.
dubius as observed in active SPB infestations in east
Texas. We define the nature of the species association,
characterize the dispersion of each species separately,
and quantify the degree of overlap in their joint distri­
butions.

Materials and Methods

During the late spring and summer of 1974, 3 SPB
infestations in eastern Texas were studied. One was lo­
cated in Trinity Co., near Apple Springs, TX, and the
other 2 were located in Montgomery Co. near Richards,
TX. The stands primarily consisted of shortleaf pine
(Pinus echinata Miller) and loblolly pine (P. taeda. L.)
with oaks and sweetgum as the secondary hardwood
overstory component. Pine density of the infested stands,
as measured by basal area, ranged from 17-20 m2/ha.

Flying beetles were monitored using sticky wing traps
consisting of 4 wings or vanes supported by a 1.8-m
wooden standard. Each vane was 30.5x61 cm and con­
structed of fiberglass insect screen (7 mesh/cm) coated
with Stickem Special ® (Payne et al. 1978a). Traps were
erected so that the vane centers were 1.4 m above the
ground and were equipped with devices that eluted an
attractant mixture of frontalin and alpha-pinene (Ren­
wick and Vite 1969)'. These devices released about 2 mg
of frontalin and 5 mg of alpha-pinene/day/trap. Chemi­
cals were replenished every 1-2 days as needed. In these
studies the attractant mixture was used to increase the .
trapping efficiency of the wing traps. Preliminary field
tests had indicated that such low-level releases of attrac-
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tants provided short-range attraction to flying beetles but
were unable to induce attack on trees 2.5-3 m from the
release point. The release rates were well below those
used in other studies on behavioral chemicals (Payne et
al. 1978b).

Traps were placed on 15-m centers extending out
from the center of the infestation in 4 directions using a
5 x6 grid system. The long axis of the grid was oriented
more or less parallel with the anticipated direction of
spread of the infestation and so that its center was near
the most recently mass-attacked pine. Where necessary,
trap position was altered so that no trap would be closer
than 3 m to a pine tree. Thirty traps were placed in each
infestation. SPB and T. dubius were removed from the
traps each day and sexed; the presence of the transverse
pronotal ridge identified females in SPB (Osgood and
Clark 1963) and the configuration of the last abdominal
sternite separated the sexes in T. dubius (Struble and
Capelan 1941). Beetle response was monitored for 20
consecutive days in each infestation; from May 9 - 29 at
Apple Springs, from June 17 - July 7 at Richards I and
from July 26 - Aug. 15 in Richards II.

The association between trap catches of SPB and T.
dubius was examined using a 2x2 contingency table ar­
rayed for the presence or absence of each species on
each trap. The association tests were done for all traps
over all days (30 traps X 20 days x 3 infestations =
1800 observations) and separately for each infestation
(30 traps x 20 days = 600 observations/infestation).
The observed values were compared to expected values
by a chi-square test.

Dispersion patterns of the separate species within the
infestations were analyzed using 2 methods: the Index of
Patchiness (lP) (Lloyd 1967); and the regression of mean

*crowding (m) on mean density (m) (Iwao 1970, Iwao

*and Kuno 1971). The regression is of the form m = a

*+ 13 m where a is the intercept on m axis and 13 the
regression coefficient. The parameters were estimated
using covariance analysis (ANCOYA) through multiple
regression which permits an estimate of the factor x co­
variate interaction (see Nie et al. 1975 for a discussion
of this technique). In our analysis, individual spots were
the factor and mean trap density the covariate. The fac­
tor x covariate interaction term would therefore detect
changes in aggregation behavior between spots (i.e.,
changes in 13).

The a value is a measure of the basic population unit
for the species, while 13 measures the dispersion of these
units such that 13 > 1.0 indicates an aggregate distribu­
tion, 13 ~ 1.0 indicates a random distribution and 13 <
1.0 indicates a uniform distribution. If sampling occurs
within the smallest aggregation unit ( i.e., a = 0), the
individual is the basic unit of population dispersion and
13 = IP. For flying SPB, the basic population unit is the
individual; therefore, Coster and Johnson (1979a) have
suggested using IP as a measure of daily SPB aggrega-

*tion and the m - m regression for characterizing SPB
aggregation over a series of trapping days.

Quantification of the joint distribution of SPB and T.
dubius used Lloyd's (1967) measure of interspecific
patchiness, IPxy, as recommended by Hurlbert (1978)

for measurement of distributional overlap:

o

LXIYj

IPxy= 0
1
=1 0

LXILYj

1=1 1=1

where XI is the catch of species X on trap i, YI is the
catch of species Y on trap i and n is the total number of
traps. The value of IPxy will be 0 when there is no co­
occurrence of species X and Y within quadrats (traps);
1.0 when both species are uniformly or randomly dis­
tributed over the quadrats; and greater than 1.0 when the
distributions of both species are aggregated and tend to
coincide.

Prior to analysis, the daily trap catch data were
screened for statistical outliers using Dixon's test (Dunn
and Clark 1974). Total trap catch data from 3 days in
Richards I and 3 days in Richards II showed extremely
high catches due to natural mass-attack of trees near 1 or
2 of the traps. Since SPB attack behavior includes re­
peated landing/flight episodes (Bunt 1979) presumably
separated by flight in the vicinity of the tree, the proba­
bility of being caught on a trap in the immediate vicinity
of a newly attacked tree is increased, which results in a
false measure of population aggregation; therefore these
6 days were deleted from subsequent analyses. Species
association tests, since they depend only on presence or
absence of the species and not absolute numbers present,
were performed on the complete data set. Statistical tests
were judged to be significant at the 0.05 probability
level unless otherwise noted.

Results

Infestation Development and Insect Numbers
At the time trapping began in the Apple Springs infes­

tation, 20 trees were infested with SPB. Richards I had
only 17 infested trees while Richards II contained 58
attacked trees. In all 3 infestations the majority of the
trees contained callow adults, pupae and larvae. During
the 20-day trapping period 27 trees were successfully
attacked at Apple Springs, 7 trees at Richards I, and 40
were successfully attacked at Richards II. In no case did
the small amounts of synthetic pheromones appear to
induce attack on adjacent trees.

The number of SPB and T. dubius caught are shown
in Table 1. Mann-Whitney tests were used to contrast all
pairs of means since the distributions of both SPB trap
catch and trees attacked per day were non-normal. SPB
trap catches were all significantly different from one an­
other and flying beetle density in the infestations was
ranked as Richards II > Richards I > Apple Springs. T.
dubius numbers did not differ between Apple Springs
and Richards I. Both Apple Springs and Richards I,
however, had significantly greater T. dubius density
than Richards II. The rate of attack of new trees was less
in Richards I than in the other two infestations.

The overall sex ratio ofSPB was 1:0.83 (male:femaIe)
and ofT. dubius was 1:0.82. Both ratios differed signif­
icantly from unity <r test) and are similar to those re­
ported by Coster et aI. (1977a,b) and Dixon and Payne
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Species Association
All species association tests were significant indicat­

ing dependence of the 2 species. The strength of the as­
sociation between flying SPB and T. dubius was meas­
ured with Cole's coefficient of association Cia and found
to be +0.302. A C value of + 1.0 indicates maximum
possible co-occurrence of the species (both species al­
ways occur together), while a C value of -1.0 indi­
cates complete lack of association (both species never
occur together), and a C value of 0 occurs when the
species are distributed independently. The calculated
value for these data indicate that out of all the possible
combinations of occurrence of the 1800 trap observa­
tions for the 2 species, 30.2% of the traps had either
both species present or both species absent, i.e., co-oc-

Table I.-Numbers of SPB and T. dubius caught on sticky traps and the average number of trees attacked per day
(NTA) in 3 infestations.

SPB T. dubius

Trapping Mean no.ltrap/ Mean no.ltrapl
Infestation days NTAa Total no. daya Total no. daya

Apple Springs 20 1.35 a 1,570 2.62 a 465 0.78 a
Richards I 17 0.35 b 532 1.05 b 395 0.78 a
Richards II 17 2.06 a 4,058 7.96 c 149 0.29 b

a Means in a column followed by the same letter are not significantly different (p ..O.OS).

(1979) for in-flight populations of the 2 beetles in east currence occurred on 30.2% of the traps in the infesta-
Texas. tions.

The ratio T. dubius:SPB varied widely between the 3 Aggregation Indices
infestations; it was 1:3.4 at Apple Springs, 1:1.3 at IP was calculated for both species in each infestation
Richards I. and 1:27.2 at Richards II. The ratios between for each day. Prior to application of statistical analyses,
the two species varied significantly among infestations the frequency distributions of IP values were tested us­
(~ test). It was lowest in the smallest infestations (Ap- ing Kolmogorov-Smirnov tests for goodness-of-fit to a
pie Springs, Richards I) and highest in the large infes- normal distribution over all infestations (n = 54 days).
tations (Richards 11). Variations in the ratio may be due The distribution of IP values for SPB was normally dis­
to the general lack of synchrony between life cycles of tributed whereas the distribution of T. dubius values dif­
the 2 species (Thatcher and Pickard 1966) and seasonal fered significantly from normality.
differences in numbers of clerids (Stein and Coster IP values are shown in Table 2. The value of IP takes
1977). a value> 1 with an aggregated pattern, < 1 with a uni-
Trap Catch Distributions form pattern and equal to unity with a random pattern

The observed trap catch distribution ofSPB was com- (Lloyd 1967). Highly aggregated patterns are indicated
pared to 6 distributions, including the negative binomial, for both species in all infestations. IP values were con­
and found to differ significantly from all (Coster and trasted using Mann-Whitney tests.
Johnson 1979a). The closest fit, however, was to a neg- Within each infestation, T. dubius was less aggre­
ative binomial with k = 0.23 (X = 2.49, S2 = 23.64). gated than SPB, but the pattern of mean IP between in­
The T. dubius trap catch distribution did not differ from festations was the same for both species (Richards I >
a negative binomial with k = 0.32 (X = 0.60, S2 = Richards II, Apple Springs). Aggregation of both species
1.71). The small values of k indicate both species have was inversely related to both NTA and SPB density, but
aggregated dispersion patterns. unrelated to clerid density (Tables 1 and 2). SPB was

most highly aggregated in Richards I; this area also had
the lowest SPB density (Table 1). The greater degree of
aggregation in this low density area supports the predic­
tion of Knipling and McGuire (1966) that pheromones
will be relatively more effective in aggregating low den­
sity populations than high density populations. T. dubius
also had the highest aggregation in Richards I, but rela­
tive density of the clerid in this infestation was high (Ta­
ble 1). These results suggest that a predator such as T.
dubius, utilizing a kairomone response to locate prey,
may also become more aggregated when the prey's
pheromone level is low.

Aggregation in Apple Springs and Richards II did not
differ significantly for either species (Table 2), even
though mean densities of both beetles differed between
the areas (Table 1). The increased dispersion in these 2

Table 2.-Index of Patchiness (IP ± SE) and Interspecific Patchiness (IPxY ± SE) for SPB and T. dubius caught on
sticky traps in 3 infestations.

Ipa
Trapping

Infestation days SPB T. dubius IPu a

Apple Springs 20 5.97±0.61 a 3.50±0.82 a 2.64±0.32 a
Richards I 17 7.89±0.62 b 5.23±1.l0 b 3.42±0.66 ab
Richards II 17 5.91±0.69 a 2.33±0.55 a 3.52±0.41 b
Combined 54 3.1O±0.28

a Means in a column followed by the same letter are not significant1y differelll (p '" 0.05).
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areas is thought to result from the higher rate of attack
on trees (Table 1) which, in tum, produced more pher­
?mone sources. Extension of the pheromone odor plume
would stimulate both beetle landing and general flight
activity to occur over a larger area (Coster and Gara
1968).

*The m - m regression was performed for each infes-
tation and for the three infestations combined (Table 3).
An ANCOVA (Table 4) showed no significant factor x
covariate (infestation x m) interactions for either species
(i.e., slopes of the separate regressions were homoge­
nous). A significant covariate (m) effect was found for
both species, while only T. dubius showed a significant
infestation effect. This allows the use of a combined

*regression of m on m to characterize SPB aggregation
(Table 3):

*SPBm = 2.69 + 5.10 m (r2 = 0.73),

while the significant spot effect suggests caution in the
use of a combined regression to characterize aggregation
of T. dubius. Moreover, the low r2 values for the T.
dubius regressions suggest that clerid aggregation is less
dependent on clerid density than is the case for SPB.
Apparently, its degree of aggregation is determined not
only by population density but also by intrinsic site fac­
tors.

Standard error of the estimates, SE;, were used to
construct 95% CI about a for the combined regressions,
and we found no significant difference from 0 for either
T. dubius or SPB. An a = 0 implies that the basic ag­
gregation unit of SPB and T. dubius is the individual
insect (Iwao and Kuno 1971) and that, in the absence of
pheromones, both species are randomly distributed. An
a value >0, on the other hand, would be evidence of
"swarming" and the flying insects would occur in dis­
crete clumps, even though the clumps or swarms, them­
selves may be randomly distributed.

As with IP, the (3 values (Table 3) indicate a higher
degree of aggregation for SPB than for T. dubius and a
highly aggregated pattern for both species. The pattern
of {3 over the individual infestation regressions for SPB
is similar to that found for the mean IP values (Table 2),
although no significant differences between {3's were
found in the ANCOVA. For {3's in the T. dubius
regressions, however, there is no similarity in pattern
with the mean IP values (Table 2), further suggesting

*that the m - m relationship alone is insufficient to ac-
count for observed clerid aggregation.

* Table 4.-ANCOVA results for SPB and T. dubius daily
m in 3 infestations.

F-Values

Source df SPB T. dubius

Regression 5 25.88* 8.42*
Covariate:

Mean (M) 27.71 * 8.34*
Factor:

Infestation (I) 2 1.74 9.99*
Interaction:

m X I 2 0.08 0.41
Residual 48
Total 53

• p '" 0.005

Distributional Overlap
Lloyd's index of interspecific patchiness, IPxy , was

calculated for each day of trap catch and mean values
for each infestation compared using Mann-Whitney tests
(Table 2). All mean IPxy values indicated aggregate
distributions which tended to overlap. Over all infesta­
tions, the probability of an SPBIT. dubius encounter
(i.e. simultaneous occurrence on a trap) was 3.10 X
greater than would be expected if they were randomly
distributed over the quadrats'.

A significant difference was found between IPxy val­
ues for Apple Springs and Richards II, but the pattern
exhibited by IPxy was different than that shown by IP
over the infestations (Table 2).

Discussion

The results suggest interesting relationships between
population densities, aggregation tendencies, and attack
of host trees for the 2 beetle species. Not unexpectedly,
there was a general positive association between mean
SPB density and number of trees attacked per day (NTA).
Mean values for the 2 variables rank in the same se­
quence for the 3 infestations. The degree of SPB aggre­
gation as measured by both IP and {3, was inversely
associated with NTA; aggregation was greatest in the
infestation where the fewest pheromone sources (newly
attacked trees) occurred. This relationship between num­
ber of naturally occurring pheromone sources and disper­
sion pattern of SPB has also been described by Johnson
and Coster (1978). Ranking of population densities ofT.
dubius in the three locations was totally different than for
SPB; where SPB density was highest (Richards II) T.

:> It should be DOted that SPB and T. dubius do not interact in the air, but on
and under the bark surface of host trees. Distributional overlap would be most mean­
ingful when measured on the bark surface.

Table 3.-Parameters for regression of mean crowding on mean density for SPB and T. dubius in 3 infestations.

ex 13 ± SE r2 SEy
Trapping

days SPB T. dubius SPB T. dubius SPB T. dubius SPB T. dubius

Combined 54 2.69 0.57 5.1O±0.44 2.53±0.48 0.72 0.35 13.76 1.62
Apple Springs 20 3.04 0.47 4.17±0.29 2.12±0.56 0.92 0.44 3.14 1.34
Richards I 17 1.92 2.25 5.57±0.85 1.57± 1.53 0.74 0.07 1.66 2.18
Richards II 17 8.43 -0.08 4.72±1.25 3.30±0.76 0.49 0.56 24.85 0.73
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dubius was lowest, and vice versa. Degree of aggregation
of SPB and T. dubius, however, followed the same rel­
ative trends from one infestation to another. The mech­
anism of co-aggregation between the species is hypothe­
sized as follows.

When the density of flying SPB within an infestation
is high, the daily rate of attack of trees is increased.
Consequently, on any given day there are more active
pheromone sources within the infestation than when at­
tack rate, and SPB density, are low. Simultaneous oc­
currence of multiple pheromone sources within an infes­
tation causes flying SPB distribution to be more dispersed
than in an infestation where only 1 or 2 attractive trees
occur (Tables 1 and 2) (Johnson and Coster 1978). Be­
cause of the kairomone response of T. dubius to SPB
pheromone, the clerid's aggregation pattern tracks that
of SPB. Thus, the causal pathway for co-distribution of
the 2 beetles within an infestation is: SPB density
---+---+NTA--+--+SPB distribution ---+---+T. dubius distribu­
tion. T. dubius density in an infestation, while ultimately
dependent to some extent on SPB density, is also de­
pendent on general availability in the vicinity of the SPB
Jinfestation, and the age of the infestation. That is, in a
young infestation, T. dubius density is dependent on im­
migration, while lack of synchrony in brood develop­
ment may result in high T. dubius emergence during pe­
riods of low SPB emergence.

*The relationship is further supported by the m - m
regressions. For SPB, a reasonably good model (r =
0.73) was characteristic for the species over all 3 loca­
tions. For the clerid, the combined model (all sites) ac­
counts for much less of the variation in aggregation (r
= 0.35), indicating that aggregation was not as strongly
a species characteristic and must be considered on an
infestation-by-infestation basis. Its aggregation is also
conditioned, in large part, by environmental attributes
such as degree of aggregation of the prey.

Kairomone response of certain insect enemies of scol­
ytids is well documented (Borden 1977) and occurs for
T. dubius in response to SPB aggregation pheromones
(Vite and Williamson 1970). This study further demon­
strates that parameters such as lP and the intercept and

*slope coefficients of the m - m regression are useful in
quantifying SPB aggregation (Coster and Johnson 1979a)
and that they also are valuable in comparing aggregation
of 2 species that respond to a common stimulus. Quan­
tification of aggregation is also useful for understanding
insect population dynamics since aggregation incorpo­
rates a number of behavioral responses to environmental
stimuli that, when considered collectively, is an index of
behavior that is characteristic of a species (Taylor 1971).
Simultaneous monitoring of changes in aggregation of a
pest and its important insect enemies in response to be­
havioral chemicals would be useful in assessing survey
and control strategies utilizing such behavioral chemi­
cals.
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