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ABSTRACT 

The influence of biosolids upon the uptake of Mn and Cd by radish (Raphanus 

sativus L.) was investigated through the characterization of biosolids, sequential 

extraction of the biosolids, and the determination of the metal content in the root, shoot 

and leaves of radish (Raphanus sativus L.).The biosolid samples from Nacogdoches 

Wastewater Sludge (NWWS), Lufkin Wastewater Sludge (LWWS), Soil Therapy 

Compost (STC) had pHs between 5.33 – 6.74. The elemental compositions of the 

biosolid samples were determined using inductively coupled plasma optical emission 

spectroscopy (ICP-OES) and SEM/EDX. Major elements (K, Mg, Mn, P) needed for 

plant growth were found in the biosolid samples while toxic elements Cd, Cr, As, Pb 

were determined below the USEPA maximum ceiling limit. The functional groups in the 

biosolids were determined using Fourier Transform Infrared (FTIR) spectroscopy. The 

FTIR spectra showed peaks at 3386, 2921, 1640, 1375, 1000, 695, 563 cm -1 attributed to 

-OH, C-H, C=O, C-N, C-F, C-Cl, and C-Br groups. A scanning electron microscope was 

used to determine the particle size of the biosolid. The biosolids have particle diameter in 

the range ~ 25 – 120 µm. X-ray diffraction analysis showed the existence of vermiculite, 

alunogen, and quartz in the biosolids. By using a modified Tessier sequential extraction 

protocol Mn and Cd were found bioavailable in biosolid samples. The accumulation of 

Mn and Cd concentrations in radish were in the order [Mn]leaves > [Mn]shoot > [Mn]root, 

and [Cd]root > [Cd]shoot > [Cd]leaf, respectively.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 Biosolids are generated from wastewater treatment processes.1 They are rich in 

essential nutrients and organic matter which makes it useful to boost crop production in 

agriculture. Although biosolids contain essential nutrients, the presence of toxic metals 

can limit their use. The risk of biosolids contaminating the soil and transferring heavy 

metals into the food chain may also result in potential health disorders in humans. The 

determination of total metal concentrations and bioavailable metals in biosolids is 

important because it provides information on the kind of metals present in biosolids and 

the metals available for uptake by plants. In this Chapter, an overview of the generation 

of biosolids from wastewater treatment processes, the importance of biosolids, effects of 

biosolids on human health and selected metals of special interest (Mn and Cd) are 

provided. 

1.1 WASTEWATER TREATMENT PROCESSES 

The goal of wastewater treatment process involves the removal and 

decomposition of contaminants from wastewater generated from household, homes, 

institutions, factories and different industries. Wastewater can include but are not limited 

to liquid waste from showers, toilets, bathrooms, kitchens in residential homes or liquid 

wastes from manufacturing industries.2 Wastewater treatment, also referred to as sewage 



2 
 

treatment involves the conversion of "used water'' from domestic, industrial, agricultural 

and commercial activities into an outflowing water which goes into a natural body of 

water and therefore returning into the hydrological cycle with little impact on the 

environment.2 

 

1.1.1 Importance of wastewater treatment 

  Wastewater treatment is essential because it helps to get rid of contaminants and 

pollutants, thus safeguarding both the ecology and public health. 3,4 If untreated 

wastewater is disposed into the water bodies, it can harm the aquatic environment. 

Untreated wastewater in bodies of water cause reduced oxygen levels and increased 

levels of organic matter which can result in the death of aquatic life. In addition, the 

bodies of water develop an awful odor and can lead to the spread of waterborne diseases.3 

 The stages used in wastewater treatment are outlined in Figure 1.1.5 In general, 

wastewater treatment occurs in the following stages; namely, preliminary, primary, 

secondary, and tertiary treatment stages. 

 

1.1.1.1 Preliminary treatment  

Influent (incoming wastewater) from homes, factories, offices and industries flow 

into the wastewater treatment plants from sewers. The incoming wastewater goes through 

upright screen bars that are 3 inches apart.6 The upright screen bars get rid of solid trash 

such as sticks, newspaper, cans, cups and any other similar material, to protect the 
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sewage pumps. After passing through the screening bars, the influent wastewater is lifted 

by the sewage pump to the wastewater treatment plant’s surface level.7 

 

1.1.1.2 Primary treatment  

From the preliminary treatment stage, the wastewater moves into a sedimentation 

tank or primary settling tank for 60 – 120 minutes.8 The movement of water is reduced to 

allow large solids particles to settle below the tank and the lighter particles float on top of 

the tank. At the end of the primary treatment particles such as small plastics and grease 

are scooped from the surface of the liquid.7 

 The large solid particles at the bottom of the tank referred to as primary sludge is 

passed through cyclone degritters. A cyclone degritter utilizes centrifugal force to 

segregate heavy solids such as sand, grit, and gravel from the wastewater. After the 

primary sludge has been degritted, it is passed into the plant’s sludge facility for more 

processing. The wastewater that has been treated partially in the sedimentation tank 

moves to the secondary treatment.8 

 

1.1.1.3 Secondary treatment 

In the activation sludge process also called secondary treatment, air and "seed" 

sludge from the wastewater treatment processes are mixed with the wastewater to 

decompose the sludge further. Large aeration tanks are pumped with air, that combines 

with the wastewater and sludge. Combining the wastewater, sludge and air stimulates the 



4 
 

activity of aerobic microorganism present in sewage. The micro-organisms are used to 

decompose a large amount of the remaining organic matter, which generates heavier 

sediments. Wastewater moves through the bubbling tanks for 180 to 360 minutes.9 

  After aeration, the wastewater moves to a final settling tank as seen in Figure 1.1. 

Most of the secondary sludge goes back to the aeration tank as "seed" to enhance the 

activated sludge process. The recirculating sludge is made of millions of tiny organisms 

that aid in ensuring the right amount of air and bacteria in the tank and help to get rid of 

other pollutants. The secondary sludge left over in the settling tank is removed and 

combined with the primary sludge for additional processing. Wastewater moves through 

the settling tank in 120 to 180 minutes before it moves to the disinfection tank.10 

 

1.1.1.4 Tertiary treatment  

Tertiary treatment (Figure 1.1)5 includes the following processes: disinfection, 

sludge thickening, digestion, and sludge dewatering. 

 

1.1.1.4.1 Disinfection  

Disinfection is important in the wastewater treatment process because even after 

passing through primary and secondary treatment, pathogens are still present in the 

treated wastewater. To get rid of dangerous organisms and disinfect the treated 

wastewater, the wastewater spends about 20 minutes in a chlorine tank by combining 

with sodium hypochlorite.11 After disinfection, the effluent can be dispensed in 
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surrounding water bodies. Equation 1.1 shows the chemical reaction of the disinfection 

process in the wastewater treatment plant. 

Cl2(g) + H2O(l)         HOCl(aq) + HCl(aq)    (1.1)   

Disinfection is a very important process for wastewater treatment because, the water 

bodies in which the effluent is released are used by people for fishing and other 

recreational purposes, treating the effluent help prevent any health risks associated with 

using such water. 12 

 

1.1.1.4.2 Sludge thickening  

Sludge thickening is the process by which sludge generated during the primary 

and secondary wastewater treatment processes (which contains about 99% of water) is 

thickened or concentrated for additional processing. The sludge is collected in a tank 

where it separates out into a layer of solid and liquid for almost a day. The water obtained 

from this process is transferred back to the aeration tank for further treatment.6 Dry or 

emulsion polymers such as dry or emulsion polyacrylamides are usually used to thicken 

thin sludge. 

 

1.1.1.4.3 Digestion 

 After the sludge thickening process, the sludge undergoes additional treatment to 

make it less harmful to the environment. The sludge is collected inside an oxygen-free 

digester. Next, the digester is raised to a temperature of about 35 0C for about 21 - 28 
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days. This promotes the performance of anaerobes, which decompose the organic matter 

in the sludge. Unlike the aerobic bacteria in the aeration tanks, anaerobic bacteria 

perform well in an environment without oxygen. During the digestion process, almost all 

the organic matter in the thickened sludge is transformed into water, carbon dioxide and 

methane gas.7 After digestion, what is left is a black sludge (digested sludge) which is 

very thick with little odor. The black sludge is thereafter transferred to a dewatering 

facility from a sludge storage tank.12 

1.1.1.4.4 Sludge dewatering 

 Dewatering entails the removal of about 90% liquid content from sludge. In 

dewatering facilities, the black sludge (digested sludge) is passed through centrifuges that 

operate like the spin cycle of a washing machine. The centrifugal force from the 

centrifuges, removes most of the water content from the sludge, generating what is 

referred to as biosolids. The water removed from the centrifugation returns to the head of 

the plant for more processing. Addition of an organic polymer (polyacrylamide, 

(C3H5NO)n) enhances the thickness of the “cake”, which generates a sample which is 

firmer and easy to manage. Biosolid cake consists about 27% of the solid matter and 73% 

moisture.13 
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1.2 BIOSOLIDS AND THEIR USES 

Biosolids often referred to as treated wastewater sludge are dark organic matter 

rich in beneficial nutrients.14 They are the main by-products of the wastewater treatment 

process. The United States Environmental Protection Agency (USEPA Federal 

Regulations Code title 40, part 503) describes, the standards to be met by sewage sludge 

and biosolids products.15 Biosolids are required to comply with the USEPA contaminants 

and pathogen requisite for land use and disposal.15 

Biosolids have several uses. They are often used as soil conditioners or fertilizers, 

to improve soil nutrient and boost crop production.16 In addition, biosolids can help 

redeem top soils of strip mines by supplying essential nutrients and organic matter. They 

also promote forestland and serve as a source of compost for gardening and subsistence 

farming.16 

 Since the USEPA regulation for land application of biosolids in 1994, the amount 

of metals in biosolids has reduced because of improved wastewater treatment facilities. 

Biosolids generated from across the USA consist of a low amount of metals.17 Biosolids 

may consist of both macronutrients and micronutrients. Macronutrients, such as N, K and 

P, are needed in large amounts by plants. Micronutrients, such as Mn, Cu, Fe are needed 

by plants in trace amounts. It is noted that biosolids may contain heavy toxic metals 

including Cd, Cu, Pb, Hg, and As.1,18 
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1.2.1 Classes of Biosolids 

 The USEPA groups biosolids into Class A, Class A EQ, (Exceptional Quality) or 

Class B. In Class A biosolids, disease-causing micro-organisms must be lowered to a 

non-detectable limit and the material must also adhere to the strict regulations specified 

by the USEPA, in terms of the total metal content, odor and measure of attraction of 

disease vectors to biosolids, also referred to as vector attraction reduction (VAR).19 

Vectors might include houseflies, anopheles mosquitoes, rats and birds. For Class A 

biosolids to meet USEPA rules for land use, it must undergo processes such as oxygen-

free digestion, composting, lime stabilization and thermal hydrolysis. After undergoing 

these processes, Class A biosolids can be applied to land as fertilizers and can also be 

used for gardening.20 

Class A EQ (exceptional quality) biosolids, not only meet but also surpass, the 

regulations for Class A metal content reduction and vector attraction reduction. 19 

Although class B biosolids have undergone treatment, they still have a high 

number of disease-causing organisms. Class B biosolids can only be used on land, after 

the USEPA has given a permit with restrictions in terms of crop cultivation and access to 

the public. Class B biosolids have almost the same nutrient and organic material as Class 

A biosolids. Class B biosolids are not frequently used as compared to Class A and Class 

A EQ biosolids because of the increased number of disease-causing organisms, foul odor 

and the inability to achieve a great vector attraction reduction standard. 20 

 



9 
 

1.3 UTILIZATION OF BIOSOLIDS IN SOIL RESTORATION PROJECTS 

 Biosolids provide important nutrients that are lacking in chemical fertilizers.21 

The major aim of using biosolids by farmers is to limit the use of chemical fertilizers on 

land. The use of biosolids on lands and farms helps to promote, restore and encourage 

healthy soil by incorporating essential nutrients including P, K, Mn, Mg, and Ca into the 

soil. This makes the soil rich in nutrients and boosts crop yield. Also, biosolids contain a 

high amount of organic matter, which makes them function as soil conditioners to 

increase the activity of bacteria, aerate compacted soils and improve soil thickness in 

sandy soils.16 Soil texture enhancement helps to promote good root growth and the 

transport of nutrients to the plants.22 

Soil erosion can be limited by using biosolids.23 Biosolids contain organic 

material which helps to hold soil particles firmly together. This helps to improve the 

texture and the ability of soil to retain water, which enhances the root growth.21 Biosolids 

can also be used as good topsoil for recreational purposes. Biosolids can supply adequate 

nutrient necessary for use in sports fields, gardens and golf courses. Composted biosolids 

which usually release organic matter, nitrogen and phosphorus very slowly are often used 

for this purpose.21  

Heavy machinery used in quarries, construction sites and strip mines can strip the 

top layer of the soil away and cause soil compaction.24 This results in the exposure of the 

subsoil, causing the soil nutrients to be readily washed off by flood or heavy downpour. 

The soil becomes deprived of the organic matter and necessary nutrient which inhibits the 
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growth of plant on such land. Biosolids can restore the soil nutrient and fertility in such 

lands. Land reclamation with biosolids can provide a balanced fast and slow release of 

nutrients and organic matter content. Fast release of nutrients allows for the increased 

establishment of seedling while slow release allows for a fast growth of a plant which 

helps to establish a permanent community of plants. The role of the organic matter is to 

restore the moisture content of the soil, soil porosity and prevent soil compaction.25 

Furthermore, biosolids can also be used to boost forest production, as soil 

fertilizer to improve timber production, growth of hybrid poplars and Christmas trees.26,27 

In addition, biosolids can reduce the generation cycle of lumber and pulpwood, especially 

in very rich soils by promoting vegetative growth. Wildlife in turn benefits from the 

abundant vegetation.21 Biosolids have also been used for making brick and construction 

material, in glass manufacture (through vitrification), and as a biofuel substitute. 28 

 

1.4 EFFECTS OF USE OF BIOSOLIDS UPON THE ENVIRONMENT 

 While biosolids are important, there are potential hazards to the environment. 

Biosolids may contain inorganic heavy metals pollutants, organic pollutants (such as 

pharmaceuticals and polychlorinated biphenyls), bacteria, virus and other disease-causing 

organisms, 29,30 and radioactive pollutants.31 The continual land use of biosolids changes 

the chemistry of the soil. Depending on the amount and bioavailability of pollutants or 

contaminants present in the soil, biosolids can be harmful. Crops cultivated on biosolids 
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can uptake metals. The ingestion of such crops can lead to severe health conditions.32,33,34 

In addition, heavy metals can be leached into the water table through land use.35 

 

 1.5 SELECTED INORGANIC POLLUTANTS 

 This section describes the possible health hazards that can arise from the ingestion 

of selected heavy metals found in biosolids.   

 

1.5.1 Arsenic 

Arsenic is regarded as a non-toxic pollutant in its organic form, but its inorganic 

compounds can be of high toxicity. Inorganic arsenic in drinking water can cause skin 

cancer through ingestion. Studies have shown that arsenic can cause urinary bladder 

cancers.36 There are researches that have speciated As in the soil.37,38 Arsenic is present in 

domestic sources, its organic forms but can be converted into an inorganic form in 

biosolids. Examples of organic arsenic compounds include arsenobetaine 

(CH3)3AsCH2CO2), dimethylarsinic acid (CH3)2AsO2H), arsanilic acid 

(NH2C6H4AsO3H2), methylarsonic acid (CH3AsO3H2).
39 

Major public health concern in the USA, Taiwan, Mexico and Bangladesh has 

resulted from the exposure of arsenic through groundwater. Reports have shown that over 

100 million people are chronically exposed to arsenic through drinking water 

contaminated with high level of arsenic.40 A high number of people are exposed to 
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arsenic in Bangladesh. The maximum allowed level of arsenic in drinking water is 50 ppb 

but in Bangladesh, the level of arsenic is between 150 – 200 ppb in tube well water.40    

Over 80 million people in Bangladesh are exposed to arsenic. In 1993 arsenic 

pollution in groundwater was first detected in Bangladesh. The greatest risk of epidemic 

associated with arsenic poisoning was detected in Bangladesh.41 

 

1.5.2 Cadmium 

The major effect of cadmium, either through digestion or inhalation from aerosols 

is proteinuria, a condition that affects and may damage the kidneys.42,43 Compared to 

other metals, plants can readily take up Cd. Dietary cadmium might be a major exposure 

pathway from sewage sludge or biosolids. Deficiencies in calcium, iron, and zinc, which 

are dietary factors can affect the toxicity of cadmium.44 Organometallic forms of 

cadmium include dimethylcadmium (CH3CdCH3), cadmium acetate Cd(CH3COO)2, 

cadmium stearate Cd(C36H72O4). Other compounds of cadmium include cadmium 

chloride (CdCl2), cadmium hydroxide Cd(OH)2, cadmium sulfide (CdS), cadmium oxide 

(CdO), cadmium sulfate (CdSO4), cadmium nitrate Cd(NO3)2, and cadmium carbonate 

(CdCO3).
45   

 

1.5.3 Copper 

Copper is deemed an inorganic pollutant in biosolids by USEPA because of its 

effect on plants.20 Exposure to high concentration of Cu at > 0.1 ppm affects the structure 
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and root growth of plants. Copper is known to reduce seed germination and lower the 

availability of iron. In humans, the toxicity of copper is mostly reported in conjunction 

with dialysis. Thus, Cu is likely not to pose health risks from biosolids.36 

Copper occurs in various forms such as chalcopyrite (CuFeS2), chalcocite (Cu2S), 

digenite (Cu9S5), bornite (Cu5FeS4), covellite (CuS), tetrahedite-tennantite 

((Cu,Fe)12(As,Sb)4S13), enargite (Cu3AsS4), azurite Cu3(CO3)2(OH)2, malachite 

Cu2CO3(OH)2, cuprite (Cu2O), and tenorite (CuO).46   

 

1.5.4 Lead 

  Exposure to low concentrations of Pb might not be harmful but it can 

accumulate over time in the body system. Ingestion of Pb can affect the blood, 

gastrointestinal tract, nervous systems, kidney, and cardiovascular blood forming 

systems.47,48 Lead inhibits red blood cell enzyme systems, and in high concentration can 

cause anemia.49,50,51 Lead can occur in forms such as galena (PbS), anglesite (PbSO4), 

cerussite (PbCO3), linarite (PbCuSO4(OH)2), pyromorphite (Pb5(PO4)3Cl), mimetite 

Pb5(AsO4)3Cl, vanadinite (Pb5(VO4)3Cl and wulfenite (PbMoO4).
42 Examples of 

organically bonded lead include lead acetate (C4H6O4.Pb) and lead subacetate 

(C4H10O8Pb3).
52 
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1.5.5 Mercury  

Mercury exists in different forms. The known organic mercury compounds forms 

include methylmercury (CH3Hg)+, dimethylmercury (CH3HgCH3), ethylmercury 

(CH3CH2Hg)+ while inorganic forms are mercury (II) chloride (HgCl2), and mercury (I) 

chloride (Hg2Cl2). The form in which mercury occurs, explains the exposure route as well 

as the effects. Ingestion is the greatest exposure route for inorganic mercury.53 The 

exposure route for metallic mercury is through aerosol and it can cause harm to the 

respiratory, gastrointestinal systems, and the skin.  

Methylmercury is the major source of epidemics that have occurred from mercury 

poisoning. Methylmercury (CH3Hg)+ is formed from industrial pollution of water with 

elemental and inorganic mercury. One well known case of mercury poisoning was 

documented from Minamata Bay and Shiranui sea in Japan. The mercury poisoning 

occurred through consumption of fish and shellfish contaminated with methylmercury 

discharged in wastewater from a chemical plant (Chisso Co. Ltd.). Studies have detected 

methylmercury in biosolids.5 

 

1.5.6 Selenium  

Selenium is less toxic compared to arsenic, cadmium and lead when ingested. The 

gastrointestinal tract and lungs usually absorb selenium readily.38 Selenium occurs in 

inorganic forms such as selenide (Se2-) and selenate (SeO4
2-).55 Selenium can also be 

bonded to amino acids found in living systems. Seleno-amino compounds are 
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selenomethionine (C5H11NO2Se), selenocysteine (C3H7NO2Se) and methylselonocysteine 

(C4H9NO2Se)56, and selenium can also exist in an organic form such as dimethyl selenide 

(CH3SeCH3).
57 

 

1.5.7 Zinc 

 The earth’s crust contains about 0.0075% of zinc.58 Zn occurs in soils to 

concentration of 5 - 770 ppm with an average of 64 ppm. About 30 ppb of zinc is present 

in seawater while the atmosphere contains about 0.1 - 4µg/m3.59 Although zinc is an 

essential nutrient needed for good health, excess amounts can be toxic. Solutions of free 

ion (< 20 ppm) are very toxic to plants. 59 Zinc can damage the nerve receptors in the 

nose leading to a condition known as anosmia. Inhalation of zinc fumes can also lead to 

zinc chills.60 

 Besides the selected metals briefly reviewed, other microelements such as Fe, B, 

Si, Mo or macroelements such as N, P, K, and Ca are required for plant growth, and for 

good health for humans and animals. The selected elements were chosen as they are toxic 

and are not needed by plants. 

 

1.6 LITERATURE REVIEW 

Although biosolids contain essential nutrients (such as N and P) and organic 

matter needed to boost crop production and performance, they also contain heavy metals 

and pollutants which can pose serious health risks.14 
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This research is focused on determining the influence of biosolids upon the uptake 

of metals by radish (Raphanus sativus L.). Biosolid samples were collected from 

Nacogdoches Wastewater Treatment Plant (NWWTP), Lufkin Wastewater Treatment 

Plant (LWWTP), and the Angelina-Neches Compost Facility in Jacksonville (NCWF). 

This section reviews the bioavailability of metals and other pollutants found in biosolids-

amended soils.  

 

1.6.1 Investigations of Plant Uptake of Metals in Literature 

 In 1988 the United States banned the disposal of sewage sludge into the ocean. 

Thus, the bulk of the sewage sludge are deposited on land. Numerous investigations have 

been carried out to determine how biosolids affect the ecology, plants, and humans. 

These investigations have focused on the high amounts of pharmaceutical and personal 

care products, and other toxic contaminants present in biosolids.61 Some sample research 

studies carried out on biosolids by USEPA61,62,63,64 are herein reviewed. On analysis the 

biosolid specimens obtained by the USEPA were found to contain organic contaminants 

such as triclocarban, triclosan, ciprofloxacin, ofloxacin, and several tetracycline 

antibiotics.61,62 These studies provided information for future risks associated with the use 

of biosolids for agricultural purposes. These risks include the boost of antibiotic 

resistance in the surrounding, unfavorable effects on soil and plants, susceptibility of 

consumers to antibiotics, and the presence of pharmaceutical remains in crops cultivated 
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from biosolids-amended land.61 Other investigations have been carried out over the years 

to determine the effects of biosolids on plant uptake.63,64  

Cotching and Coad 65 investigated the metal uptake of plants by vegetables 

(silverbeet, potato) and wheat after the application of biosolids. During the investigation, 

the amount of metals in the edible parts of silverbeet, potato and wheat cultivated in a 

glasshouse after adding lime amended biosolids and digester sludge into the sludge to the 

soil were measured. There was no significant uptake of As, Hg and Se. The amount of As 

was determined below the maximum permitted limit (1 mg/kg in all crops). The 

maximum limit of Pb (0.1 mg/kg in vegetables)65 was exceeded in the silverbeet planted 

with lime amended biosolids. No significant amount of Cd was present in the different 

application rates of the lime amended biosolids and digester sludge in the potato or wheat 

grain. Silverbeet was found to have high amounts of Al, Fe, Zn, Cu, Ni, Cd and Co 

compared to the potato and wheat grain. The Cd concentration in silverbeet was also 

found above the maximum permitted limit (0.1 mg/kg) in all the treatments including the 

control.65 

Ghulam et al.66 studied the plant uptake and effects of aging biosolids with soils of 

different pH on subsequent concentrations of Cu and Zn in pore water.66 Examination of 

the application of biosolids to the soil after a short time showed lowering of the solubility 

and the phytotoxicity ability of biosolids-borne Zn and Cu. In the study,66 aging biosolids 

at 0, 60 and 120 days were applied with at four contrasting soil pH values (acidic (pH 4), 

neutral (pH 7), and alkaline (pH 8.4). The amount of Zn, Cu, and dissolved organic 
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carbon were examined in spinach over two months growing season utilizing rhizon pore 

water samplers. Rhizon pore water samplers are used to extract low amount of pore water 

from soil in a non-destructive way. It was observed that increase in the aging period in 

the acidic and neutral soils brought about a decrease in the amount of Cu and Zn with an 

increase in the solution pH. The alkaline soil showed little effect with an increase in its 

aging period. In both the alkaline and neutral soil, the amount of soluble Zn and Cu were 

positively related, and the amount of dissolved organic carbon was negatively related 

with the soil pH. However, the amount of dissolved organic carbon positively correlated 

with the pH in the acidic soil. It was also noticed that the yield of harvested spinach for 

the neutral and alkaline soil was very low and increased with increasing rates of biosolids 

in the acidic, alkaline and neutral soils. The concentration of tissue Zn and Cu were found 

very high in the shoots of the radish plants cultivated in the acidic soil. In addition, in all 

the amended soils, the amount of tissue Cu was found to be low in the radish plants 

cultivated after two months rather than no aging. From this study, it was concluded that 

aging biosolids were likely to reduce the solubility and phytotoxicity of biosolids-borne 

Zn and Cu especially in acidic and neutral soil.66 

Chenzi et al.29 studied the uptake of pharmaceutical and personal care products in 

soybeans grown in biosolids. Pharmaceutical and personal care products are present in 

biosolids and discharge from wastewater treatment plants.29 This study found that the use 

of such biosolids can result in the transfer of pharmaceutical and personal care products 

into the terrestrial and aquatic habitats leading to its build up in plants. Chenzi et al.’s 
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study29 carried out at a greenhouse, and investigated the uptake of three pharmaceuticals 

(carbamazepine, diphenhydramine, and fluoxetine) and two personal care products 

(triclosan and triclocarban) by soybeans. Soybean was cultivated 60 to 110 days, and 

analysis was carried out on the plant’s tissues and soil. In the root tissues, the 

carbamazepine, triclosan and triclocarban were present in high concentrations. The 

pharmaceuticals were also transported to the upper parts of the plant in beans while 

presence and transportation of diphenhydramine and fluoxetine was limited.29 Judy et 

al.67 investigated the outcome of mixing soil with biosolids obtained from a wastewater 

treatment plant consisting of metal-based engineered nanomaterials to boost production 

using Mendicago truncatula (barrel-clover) and its symbiotic association with 

Sinorhizobium meliloti (gram-negative bacterium). The study involved soils treated with 

biosolids produced with Ag, ZnO, TiO2 engineering nanomaterial (ENM biosolids), 

AgNO3, ZnSO4 and TiO2 (dissolved or bulk metal biosolids) and an influent without any 

metal (control). The soils were mixed with biosolids to replicate 20 years of metal 

loading of Zn, Ti and Ag in the dissolved/bulk or ENM treatments. It was discovered that 

the amount of tissue Zn in the plants cultivated with ENM treatment was higher than 

those cultivated with bulk or dissolved treatment. The result of this study shows the 

difference in bioavailability and toxicity between ENM and bulk/dissolved metals at 

amounts applicable to regulatory limits.67 

 Brown et al.30 studied the relative uptake of cadmium by garden vegetables and 

fruits grown on long-term biosolids amended soil. The pollution of soil with cadmium is 
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the most hazardous form of soil pollution. The major hazard caused by cadmium 

contamination is through the consumption of vegetables cultivated on a cadmium 

contaminated soil. The study was done with different vegetables (cabbage (Brassica 

oleracea), carrot (Daucus carota), potato (Solanum tuberosum), navy bean (Phaseolus 

vulgaris), tomato (Solanum lycopersicum), maize (Zea Mays)) selected from different 

classes or families cultivated on a long-term sludge. In addition, a reference plot at low 

and high pH levels was used to figure out the cadmium uptake patterns in relation to a 

reference crop, lettuce, used as the indicator crop.  This was carried out to investigate the 

potential of a relative uptake index. This relative uptake index can be used to determine 

the risk associated with transferring food cultivated with a cadmium-polluted soil to the 

food chain.30 

 Bon-Jun et al.68 studied the availability and plant uptake of biosolids-borne 

metals using corn plants. In this study, corn plants were cultivated on a sand medium 

with and without biosolids treatment, both rich in similar nutrients excluding 

microelements like Zn, Cu, Mn and Ni. After germination, metal analysis on the corn 

plants showed that the root contained higher concentration of metals compared to the 

shoot. The corn plants cultivated on the sand medium amended with biosolids had more 

prominent measure of metals than those cultivated without biosolids. In the tissue of corn 

plants cultivated in biosolid treatment, the concentration of cadmium in the shoot and 

root, and nickel in the root were high. Aside from the varying amount of cadmium and 
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nickel in the shoot and root in the two-soil media, the concentration of metals in the plant 

tissue diminished with the length of growth in the plants.68  

Marta and Raul69 carried out research to determine the heavy metal content in 

lettuce plants cultivated in biosolid compost.69 Varying amounts of compost biosolids (0 - 

100%) w/w, was used to cultivate lettuce plant in greenhouse conditions. Both the dry 

and fresh biomass of the plant were determined, including the leaf area and metal uptake 

of the plants. It was observed that the control treatment had lesser dry and fresh matter 

production of the plants. The biomass of the lettuce plants increased at 20% and 40% 

(w/w) of compost biosolids. In all treatments, the concentration of Cd and Pb were found 

below detection limit in the leaves. As compost composition decreases, the amount of Zn 

in the leaves increases. The use of the biosolid-amended soil caused the amount of Cu 

and Ni to increase in the lettuce plant. From the research69 it was concluded composted 

biosolids can be utilized as soil amendment on a short-term basis for the cultivation 

lettuce without any harmful effects on its chemical make-up. The results obtained showed 

that by varying amounts of the composted biosolids, the amount of metals taken up by the 

plants are present in less toxic concentrations.69  

Tapia et al.70 investigated the movement of metals in biosolid compost and 

pruning waste using shrubs Atriplex halimus (Mediterranean saltbush) and Rosmarinus 

officinalis (rosemary). The shrubs were transplanted in the biosolid compost and pruning 

waste and sprayed with citric acid and nutrients for 60 days. It was discovered that the 

citric acid raised the amount of soluble Fe and Mn present in the nutrient substrate 
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solution determined by suction probes. The concentrations of Cu and Zn differed little 

while Cd and Pb were found below detectable levels. From the research,70 the 

concentration of Cu and Mn was raised by citric acid in the leaves of Rosmarinus 

officinalis (rosemary) while only the concentration of Mn increased in Atriplex halimus 

(Mediterranean saltbush). The research results showed increase in the solubility of Fe and 

Mn on addition of citric acid. It was concluded that citric acid enhances the nutrition of 

plants by increasing the uptake of essential nutrients.70 

 Santibanez et al.71 examined the effect of metal uptake in Lolium perene 

(ryegrass) under greenhouse pot experiments to explain or determine how the use of 

biosolids affect metal uptake. In this research, biosolids were photostabilized with copper 

mine tailings at 0, 6 and 12% (w/w). After 6 months of cultivating Lolium perene, the 

total metal content in the roots and shoots of the plants was analyzed. Results from the 

research showed that biosolids increased the dry biomass of Lolium perene, and the 

amount of nitrogen and chlorophyll in the shoot. The biosolids also increased the amount 

of Cu and Zn in the plant tissues. There was no sign of phytotoxicity with the increased 

amount of Cu and Zn in the plant tissues, and the amount of metals was below the normal 

range for plants (0.05 ppm and 0.10 ppm for Cu and Zn respectively)71. In addition, it 

was observed that biosolids can lower the Mo uptake and shoot accumulation in plants. 

The plants took up metals in the order Cu > Zn > Mo > Cd. From the experiment, it was 

concluded that the metals are generally incorporated into the roots and only a minimal 

amount is transported to the shoots.71  
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 Sridhar et al.72 examined the consequences of biosolid-amended soil on the metal 

and nutrient uptake in five different vegetable plants; collard, radish, lettuce, tomato and 

pepper. After harvesting the vegetable plants, elemental concentration analysis was 

carried out on the soil, shoot, root and fruit samples. The chemical concentrations present 

in the soils and all the plant parts increased with increasing amount of biosolids. The 

observed increase in Cu and Zn concentrations in the shoot of the plant was in the order:  

collard < radish < lettuce < tomato < pepper. The amount of Cu and Zn accumulated 

largely in the tomato fruit compared to others. The shoot concentration factor of Zn was 

larger in the pepper plant than others. This implies a greater increase in the uptake of Zn. 

From this result, the increase in shoot relative uptake index for Cu and Zn was given as 

collard < radish < lettuce < tomato < pepper. The shoot dry weight and the spectral 

reflectance of the radish plants in the near-infrared region (800 – 1300 nm) lessened with 

increasing amount of biosolid compared to other plants.72 The purpose of the spectral 

reflectance was to monitor stress-sensitive plant species and their physiology, which 

indirectly affects the chemical concentrations in soils and plants. 

 Residual effects of biosolids and farm manure were investigated by Hamidpour et 

al.73 in a calcareous soil using the wheat. After three years of applying biosolids and farm 

manure to a calcareous soil in 0 (control), 25, 50 and 100 Mg ha-1, the chemical 

speciation and availability of Cu, Ni, Pb and Zn were investigated using wheat plants. It 

was observed that the amount of Pb and Ni in the wheat grains cultivated in the biosolid 

and farm manure treatment were significantly smaller than those grown in the control. On 
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the other hand, the amounts of Zn and Cu in the wheat grains cultivated in the biosolid 

and farm manure-amended soils was higher compared to those cultivated in the control 

soil. It was also observed that the amount of diethylenetriaminepentaacetic acid (DTPA)-

extractable Zn, Cu, Pb and Ni present in the biosolid-amended soils were more than in 

the control soil. Results obtained from series of extraction showed almost all of Cu, Zn 

and Ni were in residual fraction while Pb was majorly bound with Fe – Mn oxides. It was 

concluded that very little of the residual fraction of heavy metals is bioavailable in 

conditions usually found in calcareous soils. Based on the speciation of heavy metals 

upon the use of the soil amendments after three years, no difference was observed in the 

value of the mobility factor.73 

 From the different studies, it can be concluded that there is no complete removal 

of contaminants from biosolids during wastewater treatment. Biosolids still contain 

organic or inorganic contaminants even after treatment. Also, the continual use of 

biosolids to amend soil might lead to the incorporation of these contaminants into the soil 

and uptake of such contaminants by plants. 

 

 

 

 

 

 



25 
 

1.7 OBJECTIVES OF RESEARCH 

The objectives of this study are to: 

1. Determine the total metal content; micro-, and macroelements (including toxic 

metals) present in biosolids.  

2. Speciate and determine the bioavailable metals in the biosolids via Tessier 

sequential extraction procedures. 

3. Examine the effect of uptake of Mn (an essential metal) and Cd (a toxic metal) to 

radish (Raphanus sativus L.). 

4. Examine how changes in pH affects radish (Raphanus sativus L.) uptake of metals 

from biosolids. 

This data will be useful in providing information for assessing the risks, health and 

environmental impact of using biosolids to amend soils. In this study, pot experiments 

(experiments carried out with pot-grown plants) were performed. 

 

1.8 SIGNIFICANCE OF RESEARCH 

 The deposition and land use of biosolids in the environment poses threats to the 

environment.74,75,76 The investigation of the influence of biosolids upon the uptake of 

metals by plants will provide data important for:  

(i) environmental risk analysis, and  
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(ii)  assessing the environmental impact of using biosolids-soil amendments in 

crop production.  

This study focuses on the uptake of Mn and Cd by radish (Raphanus sativus L.). 

Radish (Raphanus sativus L.) plants were cultivated on biosolids collected from 

Nacogdoches Wastewater Treatment Plant (NWWTP), Lufkin Wastewater Treatment 

Plant (LWWTP) and Angelina-Neches Compost Facility.  

The influence of biosolids on uptake of Mn and Cd by radish (Raphanus sativus L.) 

was achieved through: 

 Determination of the total concentrations of macro- (N, P, Mg, K, S) and 

microelements (Fe, Mn, B, Zn, Cu, Mo, Ni) including toxic metals (Pb, As, Hg, 

Cd) from the three biosolids. 

 Analysis of physio-chemical parameters such as pH, conductivity of biosolids. 

 The use of Tessier sequential extraction procedures to provide information on the 

bioavailability of metals in the biosolids. 

 Examination of how pH changes affect Mn and Cd uptake by radish (Raphanus 

sativus L.). For this study pH values 6.74 (acidic) and 7.30 (alkaline) were 

considered. 
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1.8.1 Justification for use of Mn and Cd in this study 

1.8.1.1 Manganese 

The earth’s crust consists about 0.1 % of manganese. In the soil, manganese is 

found to be about 7 - 9000 ppm, with an average value of 440 ppm.77 Manganese exists 

majorly as pyrolusite (MnO2), braunite (Mn2+Mn3+
6[O8|SiO4]), psilomelane 

(Ba(Mn2+)(Mn4+)8O16(OH)4), and rhodochrosite (MnCO3).
78 

Manganese is an essential element for human health, needed for development, 

metabolism, growth and antioxidant system.79 Although Mn is an essential element, 

chronic exposure or ingestion can lead to manganism, a neurodegenerative disorder; a 

condition that causes dopaminergic neuronal death with symptoms associated with 

Parkinson’s disease.79   

 Biosolids are known to have high affinity for metals.80,81,82,83 Since Mn is an 

essential microelement needed for plant growth, this study will determine whether Mn is 

accumulated in the biosolids (depriving the radish (Raphanus sativus L.) of the essential 

nutrient) or taken up by the radish (Raphanus sativus L.). 

 

1.8.1.2 Cadmium  

The earth crust contains about 0.1 ppm of cadmium. Cadmium is chemically 

similar to Zn (a trace element needed by animals, plants and human). Significant amount 

of cadmium is not found in ores. Greenockite (CdS) is the major mineral of cadmium of 
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importance and is closely related to sphalerite (ZnS).84 It is also notable that Cd can 

complex with other organic compounds in soil.85,86 Cadmium has been implicated in 

atmospheric trace amounts (0.27 – 15.5 ng/m3).87,88 

 The major effect of cadmium, either through digestion or inhalation from 

aerosols is proteinuria, a condition that affects the kidney.36 Chronic exposure to 

cadmium can lead to renal failure, obstructive lung disease, or cancer.89 It can also lead to 

bone defects at minimal concentrations.90 Cadmium is a toxic metal known to be readily 

bioavailable.91,92,93 Cadmium can be taken up by plants if the soil is contaminated. This 

research investigates the amount of cadmium taken up by the radish (Raphanus sativus 

L.), whether above recommended USEPA Ceiling Concentration Limit. In addition, this 

study evaluated if land application of biosolids should be encouraged by determining the 

uptake of metals, Cd and Mn by radish (Raphanus sativus L.). This investigation also 

gives insight into the recommended ratios for amending soils with biosolids. 
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FIGURES 

 

 

Figure 1.1: Schematic diagram of a wastewater treatment process.5 
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CHAPTER 2 

SPECTROSCOPIC CHARACTERIZATION AND THERMOGRAVIMETRIC 

ANALYSIS OF BIOSOLIDS 

 

2.1 ABSTRACT 

 Physical-chemical (pH, conductivity), spectroscopic (Fourier-Transform Infrared 

spectroscopy (FT-IR), scanning electron microscopy (SEM), inductively coupled plasma-

optical emission spectroscopy (ICP-OES), X-ray diffraction (XRD)) characterization and 

thermogravimetric analysis was carried out on biosolids collected from three wastewater 

treatment plants; Nacogdoches Wastewater Treatment Plant (NWWTP), Lufkin 

Wastewater Treatment Plant (LWWTP) and the Angelina-Neches Compost Facility 

(NCF), to collect quantitative data, and generate information on the quality of the 

biosolids. The pH of the biosolid samples was determined between 5.33 - 6.74. The 

elemental concentrations of biosolid samples were measured using inductively coupled 

plasma optical emission spectroscopy (ICP-OES). In general, the concentration of 

macroelements was higher in Nacogdoches wastewater sludge. The biosolid samples 

were found similar in metal concentrations. Macroelements concentrations in the biosolid 

samples followed the order; Al: (NWWS (15591 ± 1692 ppm) > STC (12424 ± 824 ppm) 

> LWWS (12271 ± 1985 ppm)); Ca: (LWWS (21552 ± 3186 ppm) > NWWS (18738 ± 
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1644 ppm) > STC (11760 ± 1358 ppm)); Fe: (NWWS (32890 ± 2695 ppm) > LWWS 

(15163 ± 2212 ppm) > STC (13352 ± 2731 ppm)); K: (NWWS (6126 ± 229 ppm) > 

LWWS (3328 ± 548 ppm) > STC (2207 ± 82 ppm)); Mg: (NWWS (7293 ± 647 ppm) > 

LWWS (4116 ± 561 ppm) > STC (1362 ± 98 ppm)); P: (NWWS (26102 ± 1522 ppm) > 

LWWS (20855 ± 2594 ppm) > STC (8623 ± 426 ppm)) and S: (LWWS (12116 ± 1784 

ppm) > NWWS (8365 ± 331 ppm) > STC (2838 ± 89 ppm)). Heavy metals (As: (STC-

5.48 ± 0.62 ppm, LWWS-20 ± 3 ppm, NWWS-12 ± 1 ppm); Cd: (STC-0.2 ± 0.1 ppm, 

LWWS-0.20 ± 0.03 ppm, NWWS-Below detection); Cr: (STC-4.3 ± 0.2 ppm, LWWS-

0.9 ± 1.7 ppm, NWWS-17 ± 2 ppm); Cu: (STC-338 ± 14 ppm, LWWS-531 ± 78 ppm, 

NWWS-386 ± 35 ppm); Pb: (STC-17 ± 1 ppm, LWWS-29 ± 3 ppm, NWWS-27 ± 27 

ppm); Hg: (STC, LWWS, NWWS-Below detection) and Mo: (STC-4 ± 1 ppm, LWWS-8 

± 1 ppm, NWWS-7.3 ± 0.7 ppm)) were found below the USEPA Ceiling limit. The FT-

IR spectra showed peaks attributed to -OH, C-H, C=O, C-N, C-F, C-Cl and C-Br 

functional groups. SEM micrograph showed biosolids particle diameter sizes were in the 

range 25 – 120 µm. The XRD pattern showed that the soil therapy compost contains 

compounds such as vermiculite, alunogen and quartz at 2θ and d-spacing values (6.070°, 

14.55), (20.58°, 4.55) and (26.40°, 3.36), respectively.  
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2.2 INTRODUCTION 

 In the previous chapter, an overview of the generation of biosolids from 

wastewater treatment processes, the importance of biosolids and its effects on human 

health was discussed. This chapter outlines several spectroscopic techniques that were 

used to characterize biosolids collected from three wastewater treatment plants (LWWTP 

and NWWTP) and compost treatment facility (the Angelina-Neches Compost Facility, 

NCF). 

 

2.2.1 Analytical Spectroscopic Techniques used for Characterization of Biosolids 

The spectroscopic characterization of biosolids is an important analysis to assess 

the impact of the land application of biosolids to plants and human. Studies done for 

characterization of biosolids, have utilized analytical techniques including nuclear 

magnetic resonance spectroscopy (NMR), X-ray Absorption Near Edge Structure 

Spectroscopy (XANES), Transmission Electron Microscopy (TEM), Fourier-Transform 

Infrared spectroscopy (FTIR), Raman spectroscopy, ion chromatography (IC) and 

Scanning Electron Microscopy (SEM). 

 

2.2.1.1 Nuclear magnetic resonance spectroscopy (NMR) 

Solid-state 13C NMR spectroscopy is an analytical method used for determining 

the chemical composition of complex organic matter.1 Ronald et al.2 used a solid-state 

carbon-13 nuclear magnetic resonance spectroscopy to characterize biosolids’ organic 
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matter. Characterization of sewage sludge using solid-state 13C NMR spectroscopy was 

first carried out in 1984 by Piotrowski et al.3 Several other studies have used solid-state 

13C NMR spectroscopy to characterize sewage sludge.4,5,6 In one study2 six biosolid 

samples from five wastewater treatment plants in Australia were characterized using 

solid-state 13C NMR spectroscopy. Solid-state 13C NMR requires a pretreatment which 

involves the use of hydrofluoric acid to remove the organic mineral in biosolids.7,8 Two 

NMR techniques were applied in this study; the standard cross polarization (CP) 

technique and the Bloch decay (BD) technique. The Bloch decay is a less sensitive decay 

compared to cross polarization because of the longer recycle delay it requires which 

results in a lower signal to noise ratio. In addition to the NMR techniques used, a spin 

counting technique was utilized in this study.2 The Bloch decay spectrum obtained for 

each biosolid sample, before and after hydrofluoric acid treatment showed the biosolid 

samples contain notably more alkyl carbon. The difference between the CP and BD 

spectra was ascribed to the presence of alkyl carbon with high molecular mobility which 

affects the efficiency of cross-polarization. From the BD and CP NMR spectra, the 

distribution of signal intensity were between four chemical shift regions: 190 – 165 ppm 

(ascribed to carbonyl carbon in carboxylic acids, esters and amides), 165 – 110 ppm (aryl 

carbon), including (O-aryl) 165 – 145 ppm and 145 – 110 ppm (C- and H-substituted aryl 

carbon), 110 – 45 ppm (O-substituted alkyl carbon in carbohydrates, including methoxyl 

carbon and N-substituted alkyl carbon in protein), and 45 – 0 ppm (alkyl carbon).2 The 

spectral results obtained showed that the organic matter of biosolids is different in 
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chemistry to the soil organic matter and the land application of biosolids might have 

some implications.  

 Mao et al.9 characterized biosolids-derived organic matter using various solid-

state nuclear magnetic resonance spectroscopy techniques including 13C, 1H, and 15N. The 

NMR spectra obtained indicated five distinct peaks, namely, 174.5 ppm (attributed to 

COO/CON groups), 100 ppm (anomeric O-CH-O), 73 ppm (OCH), 55 – 65 ppm (OCH3 

or NCH) and 24 – 19 ppm (carbon-bonded CH3 groups). The peaks attributed to OCH 

and O-CH-O groups are indicative of large polysaccharide fractions in the biosolids.9 

 

2.2.1.2 X-ray absorption near edge structure spectroscopy (XANES) 

 XANES is a local bonding-sensitive and element specific spectroscopic technique 

that analyses spectra obtained in X-ray absorption spectroscopy experiments. It also 

determines the partial density of the empty states of a molecule. 

 Amy et al.10 characterized phosphorus species in biosolids using XANES (X-ray 

absorption near edge structure) spectroscopy. The aim of the study was to determine the 

phosphorus species in biosolids and other manures to provide explanations on how land 

application of biosolids or manures can lead to a long-term potential loss of phosphorus 

species in biosolids.10 Some studies have associated loss of phosphorus species to surface 

and ground water in agricultural runoff and leachate to soils extremely fertilized with 

biosolids or manures.11,12,13 The XANES spectroscopy was used to identify the dominant 

phosphorus species in the biosolids that will control phosphorus solubility. Based on the 
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XANES spectra, phytic acid was a main component of lime stabilized biosolids. Phytic 

acid (C6H18O24P6) accounted for 8 – 15% of total P in the lime stabilized biosolids. The 

Fe-treated or digested biosolids, however, had phytic acid as its minor component. The 

study concluded that the presence of phytate in the biosolids might be as a result of 

biosolids being generated from residential or industrial wastewater treatment.10 

 Hettiarachchi et al.14 investigated metal binding mechanisms in biosolids using µ-

XANES (micro XANES) and µ-XRF (micro X-ray fluorescence). Both µ-XANES and µ-

XRF was used to identify Fe and Mn phases and their association with two biosolid 

samples (lime composted and Nu-Earth). The µ-XANES and µ-XRF were used to also 

determine the elements distribution and speciation in the biosolid samples. Results 

obtained for the biosolid samples before and after treatment (elimination of organic 

carbon) with elemental mapping of the XRF images showed spatial correlations, which 

suggested strong correlations between Fe and Cd, Pb, Cr, or Zn (r2 = 0.65 – 0.92) before 

and after elimination of most of the organic carbon in the biosolids.14 Strong correlation 

was observed for Fe and Cu in the biosolid samples before the removal of organic carbon. 

The weak correlation between Fe and Cu after the organic carbon removal was due to the 

Cu associated with the organic carbon coatings that may have been present in the Fe 

compounds.14 With exceptions to Fe and Cr, the spatial correlations of other metals with 

Mn improved after removal of organic carbon suggesting that the treatment (to remove 

organic carbon) changed more than that. In addition, the Fe µ-XANES spectra of the 

biosolid samples showed that every point of the biosolids had different mixtures of (Fe2+ 
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and Fe3+) species and no two points were alike.14 From the results obtained from this 

study, it was concluded that, the variation in Fe species in the biosolid samples suggests 

the heterogeneity and complexity of biosolids.14 

 

2.2.1.3 Inductively coupled plasma-optical emission spectroscopy (ICP-OES) 

 ICP-OES is an analytical technique used to determine the elemental composition 

of samples. Biosolids from seven wastewater treatment plants in Swaziland were 

analyzed for a range of physical-chemical properties such as organic matter, nutrients, 

cation exchange capacity, pH and trace elements.15 The results showed that the organic 

matter and nutrient contents of biosolid samples were found in high concentrations.15 The 

organic matter of the biosolid samples was in the range 20 – 60%. The high cation 

exchange capacity (71 – 615 meq/100 gm) recorded for the biosolid samples is expected 

to increase the cation exchange capacity of soils especially sandy and loamy soils that 

have poor cation binding. The pH of the biosolid samples was in the range 5.90 – 7.00. 

The heavy metal concentrations for Cr (317 – 1396 mg/kg), Pb (12 – 96 mg/kg), Zn (478 

– 2311 mg/kg) and Ni (0 – 327 mg/kg) in the biosolid samples analyzed with ICP-OES 

were below the regulatory limits in Swaziland and other countries such as USA, South 

Africa, China and the European Union.15 From the results obtained from the study, it was 

concluded that all the biosolid samples showed high concentrations of organic matter, 

nutrients and trace elements necessary for plant growth despite undergoing different 

wastewater treatment.15  
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 Dede at al.16 analyzed the metal content of biosolids used for soil amendment in a 

kiwi fruit farm with ICP-OES. The analysis of metal concentrations, Cu (19 ppm), Zn 

(1435 ppm), Cr (243 ppm), Ni (79 ppm), Pb (34 ppm) and Cd (3 ppm) were found below 

the USEPA limit.16 

 

2.2.1.4 Transmission electron microscopy (TEM) 

 Transmission electron microscopy is a microscopy technique that is used to 

generate an image by passing beam of electrons through a specimen. TEM is an 

important tool for analysis of nanoscience in biological and materials fields. 

Yang et al.17 investigated metal and nanoparticle occurrence in biosolid-amended 

soils using transmission electron microscopy (TEM) coupled with energy dispersive X-

ray spectroscopy (EDX) analysis. The major objective of the study was to show the 

possibility of nanomaterials used in the society entering the wastewater treatment system 

and be deposited in biosolids. Application of the biosolids to agricultural field can result 

in the accumulation of nanomaterial into the soil over time. Transmission electron 

microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDX) was used 

to characterize and determine the chemical composition of nanoparticles in biosolid 

amended soils.17 Biosolid amended soil samples were collected from two biosolid land 

application sites in Texas. From the results obtained, Ti-containing particles were 

identified in the biosolid amended soils. The Ti-containing particles had a diameter of 50 

nm. The EDX spectrum showed an atomic ratio of 5.5 for O to Ti. The EDX spectrum 
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also showed the presence of elements such as Al, Fe, Ca and K in the biosolid amended 

soil samples.17 

Bojeong et al.18 analyzed biosolids product from the USEPA TNSSS (Targeted 

National Sewage Sludge Survey) to determine nano-, and larger TiO2 present in the 

biosolid samples. Titanium dioxide (TiO2) is the most widely used engineered 

nanoparticle. Land application of biosolids is a major entry route for TiO2. In this study, 

transmission electron microscopy and scanning electron microscopy was used to 

determine the nature of TiO2 nanoparticles in the biosolid samples. Results obtained from 

the study showed that TiO2 particle size was between 40 nm - 300 nm. In addition, the 

TiO2 nanoparticle was crystalline in structure with a faceted shape.18  

 

2.2.1.5 Fourier transform-infrared spectroscopy (FT-IR) studies of biosolids 

 Fourier-transform infrared spectroscopy (FT-IR) is an analytical technique that 

provides an infrared spectrum for the emission and absorption of any state of matter 

(solid, liquid and gas). 

 Zhou et al.19 characterized dissolved organic matter derived from biosolids and 

composted biosolids using FT-IR spectroscopy. Dissolved organic matter is a major 

factor that affects the availability of heavy metals in biosolid amended soils. The 

hydrophilic and hydrophobic acid fractions of the dissolved organic matter in the biosolid 

and composted biosolid were 78% and 73% of total dissolved organic matter 

respectively.19 Similar IR spectra obtained for both the biosolid and the compost biosolid 
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suggested that both samples had similar functional groups.19 The hydrophilic acid 

fraction for both samples showed a broad band near 3400 cm-1 (-OH stretching of the 

carboxyl groups or phenolic groups). Both samples also had an absorption near 1630 cm-1 

(C=O or C=C stretching vibration). An absorption peak at 1462 cm-1 was observed for 

both samples (O-H deformation vibration). The combination of the absorptions at 3400 

cm-1, 1630 cm-1 and 1462 cm-1 suggest the present of carboxyl group and polyhydroxyl 

phenol in both samples. The IR spectra established that the hydrophilic acid contained 

larger amount of polyhydroxyl phenols and carboxyl group compared to hydrophilic base 

because of a stronger absorption of C-O stretching vibration and a smaller number of H- 

bonded C-C in hydrophilic acid. 

 Comparison between the IR spectra showed that more carboxyl and polyhydroxyl 

phenols were present in the hydrophilic acid, more C-N group in hydrophilic base (1125 

and 1200 cm-1 peaks from C-N of amino acids, amino sugars, amines and pyridine) and 

more C-H and C=O in the hydrophilic neutral (a sharp peak at 1010 – 1085 cm-1  for C-O 

from carbohydrates and polysaccharides and a band at 836 cm-1 and 722 cm-1 for C-H of 

pyridine).20 On the other hand, the IR spectra of hydrophobic acid and base was different 

from that of the hydrophilic acid and base. In the hydrophobic acid of both biosolid and 

compost biosolid, a strong band at 1636 cm-1 (C=C stretching from aromatic ring) and 

(C=O of carboxylate) with bands at 843 cm-1 and 715 cm-1 (C-H deformation of aromatic 

ring), bands at 3400 – 3500 cm-1 (O-H stretching of hydroxyl) and 1462 cm-1 (O-H 

deformation). The IR spectra of the hydrophobic acid for both samples showed that larger 
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amounts of aromatic acids or phenols are present. The hydrophobic base had fewer peaks 

in both biosolids and biosolid compost dissolved organic matter. A broad band around 

3500 cm-1 (O-H stretching of hydroxyl) and band at 1642 cm-1 (C=O stretching of 

carboxylate) were observed. The study concluded that since the hydrophilic fraction of 

the biosolid was greater than that of the composted biosolid, land application of biosolid 

might have a greater possibility in lowering the trace metal adsorption capacity of soils 

compared to the composted biosolid.19 

 Ghezzi et al.21 characterized environmental nano- and macrocolloid particles 

extracted from biosolids using Fourier-transform infrared spectroscopy. The following 

peaks were observed in the IR spectra: 3700 – 3000 cm-1 (attributed to the presence of O-

H stretching vibrations), 950 – 650 cm-1 (O-H bending vibrations), 900 – 1200 cm-1 (Si-O 

stretching), a broad peak at 1404 – 1425 cm-1 (carboxyl group), 1634 cm-1 (might be a 

combination of 3 features (C=O stretching of amide functional groups, aromatic C=C 

stretching and asymmetric COO- stretching)) and a shoulder peak at 1720 cm-1 (C=O 

stretch of COOH groups).21 

 

2.2.1.6 Raman spectroscopy 

 Tatiane et al.22 used Raman spectroscopy to characterize biosolids-derived 

hydrochar (sewchar). Sewchar are hydrothermally converted biosolids. From the Raman 

spectra, the biosolids and sewchar showed D (1320 – 1350 cm-1), and G (1540 – 1590 
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cm-1) bands. These results indicate the presence of aromatic hydrocarbon and graphitic 

carbon structures in the biosolids.23,24.25  

 

2.2.1.7 Thermogravimetric analysis (TGA) 

 William et al.26 performed kinetic analysis on dried biosolid sample using a 

thermographic analyzer 550. The heating temperature range was from 373.15 K to 

1273.15 K at 4 heating rates (5, 10, 15, 20 K/min).26 From the TGA and DTGA data, five 

major reactions were predicted to occur with peaks near 473 K, 547 K, 596 K, 738 K and 

840 K. The peaks were attributed to reactions of low stability organic compounds, 

hemicellulose,27,28 cellulose, lignin – plastics and inorganic compounds respectively.29 

  Elsa et al.30 carried out thermogravimetric analysis on biosolids to better 

understand the thermal decomposition of the biosolids. The nitrogen atmosphere range at 

which the thermal analysis was carried out was 25 °C to 1000 °C with a heating rate of 

10 °C/min. From the TGA result, two major peaks were observed with maximum mass 

loss rates around 330 °C and 420 °C. The first peak was attributed to water and carbon 

dioxide release while the second peak was indicative of carbonization involving C-H 

stretching, methane and ammonia release.30  

 Onchoke et al.31 carried out thermogravimetric analysis on biosolid samples. In 

the study, the biosolids were decomposed at 10 °C/min and 20 °C/min from 34 °C to 

1000 °C. Five decomposition stages in the range 34 – 175 °C, 175 – 216 °C, 326 – 385 

°C, 388 – 521 °C and 522 – 800 °C were observed. The range at 35 – 100 °C and 85 – 
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120 °C were attributed to moisture loss. The stage at 210 – 310 °C was attributed to the 

breakdown of small volatile compounds with a weak hydroxyl bond. The final stages at 

388 – 521 °C and 522 – 805 °C were associated with inorganic species SiO2, CaO, MgO, 

Fe2O3 and Al2O3 in biosolid samples.31 

   

2.2.1.8 Ion Chromatography (IC) 

 Lomonte et al.32 used ion chromatography to determine the concentration of 

soluble anions (F-, Cl-, NO2
-, Br-, NO3

-, H2PO-
4

, SO4
2-) in biosolid water extracts. From 

the study, it was observed that Br- was found below detection limit. The concentrations of 

anions were present in the biosolids water extract in the order SO4
2⁻  (1119 ± 21 mg/kg) > 

NO3
⁻  (456 ± 5 mg/kg) > PO4

3- (181 ± 13 mg/kg) > Cl⁻  (111 ± 2 mg/kg) > NO2
⁻  (1.9 ± 

0.3 mg/kg) > F⁻  (1.4 ± 0.4 mg/kg).32 

 Using ion chromatography, Onchoke et al.31 determined the anion concentrations 

of biosolid samples. The observed order of concentration was PO4
3⁻  (22.60 ± 1.55 mg/L) 

> F⁻  (1.55 ± 0.09 mg/L) ≈ Cl⁻  (1.52 ± 0.02 mg/L) > SO4
2⁻  (1.32 ± 0.07 mg/L) > NO3

⁻  

(1.31 ± 0.03 mg/L) > Br⁻  (1.22 ± 0.01 mg/L) > NO2
⁻  (0.32 ± 0.01 mg/L. All anion 

concentrations in the biosolid samples were found below the USEPA guideline limit with 

the exception to PO4
3⁻ .31 

In the present research, inductively coupled plasma optical emission spectroscopy 

(ICP-OES) was employed to quantitate elements (Ag, Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, 

Fe, Hg, K, Mg, Mn, Mo, Ni, P, Pb, S, Se, Zn, V, Na) in the biosolid samples from 
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NWWTP, LWWTP, and NCF (Angelina-Neches Compost Facility). The morphology, 

particle size and crystalline nature of the biosolid samples were determined using 

scanning electron microscopy and X-ray diffraction (XRD). Information on the loss of 

mass (or decomposition) of biosolid samples was also provided using thermogravimetric 

analysis. Although some analysis has been reported for NWWTP and LWWTP,31 this 

study was done to provide supporting data that serves as a basis for comparison with 

other reported studies. On the other hand, no reports have been presented on the metal 

concentration, morphology and crystalline nature of biosolids obtained from Angelina-

Neches Compost Facility (NCF). 

 

2.3 MATERIALS AND METHODS 

2.3.1 Sampling site 

Biosolids samples were collected from three field sites: namely, Nacogdoches 

Wastewater Treatment Plant (NWWTP), Lufkin Wastewater Treatment Plant (LWWTP) 

and Angelina-Neches Compost Facility (NCF). Figures 2.1 and 2.2 show the sites 

NWWTP, LWWTP and NCF, respectively. The Nacogdoches Wastewater Treatment 

Plant (NWWTP) is located at 2977 Rayburn road, latitude 31°33’31.2444’’N, longitude 

94°38’52.1808’’W, Nacogdoches, Texas. It has a treatment capacity of 12.88 MGD.31 

Lufkin Wastewater Treatment Plant (LWWTP) is located at 300 E. Shepherd, latitude 

31°17’13.8804’’N, longitude 94°44’56.2416’’W, Lufkin, Texas. It has a treatment 
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capacity of 11.3 MGD. The Angelina-Neches Compost Facility (NCF) is located at 1805, 

Highway 79 W, 31°54’1.552’’N, longitude 95°24’16.451’’W, Jacksonville, Texas. 

2.3.2 Collection of biosolids 

The biosolid samples were collected in plastic containers, brought into the 

laboratory, air dried, and passed through a 2.36 mm diameter U.S.A. standard testing 

sieve (from A.S.T.M., Milwaukee, Wisconsin).  

2.3.3 Reagents 

 In all cases, nano-pure water (18.2 MΩ), HNO3 (Flinn Scientific Inc.), H2O2 

(Sigma Aldrich), and KBr (Sigma Aldrich Chemical Co.) was used. All reagents used 

were of high analytical purity. 

 

2.3.4 Instrumentation used for study 

 The instrumentation used in this study include Fourier-transform infrared 

spectroscopy (diffuse reflectance infrared-Fourier transform spectroscopy, Perkin Elmer, 

100 spectrometer) with a DTGS detector, inductively coupled plasma-optical emission 

spectroscopy (Agilent ICAP 7400 ICP-OES, dual view, Thermoscientific), scanning 

electron microscopy coupled with an energy dispersive X-ray analyzer (JEOL-JSM 6100 

SEM equipped with Horiba energy-dispersive X-ray (EDAX)), X-ray diffraction (Bruker 

AXS D8 Advance diffractometer equipped with an X-ray tube (Cu Kα radiation: λ = 

1.54060 Å, 40 kV and 40 mA) using a Ni filter and a LynxEye detector). A 
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thermogravimetric analyzer (Perkin Elmer, TGA thermogravimetric simultaneous 

thermal analyzer) was used. 

2.3.4.1 Inductively coupled plasma-optical emission spectroscopy (ICP-OES) 

 ICP-OES is an analytical technique used to determine the elemental composition 

of samples. Figure 2.3 shows a block diagram of ICP-OES. Analytes are converted to 

aerosol by conducting them with a peristaltic pump through a nebulizer into a spray 

chamber.33 The aerosol generated is led into an argon plasma. The end of a quartz touch 

in ICP-OES is used to generate plasma through a cooled induction coil where high 

frequency alternate current flows. Because of the current flow, an alternate magnetic field 

is generated which makes electrons to accelerate in a circular path. The argon atom and 

ionized electrons collide to form a stable plasma. The plasma is very hot, ranging from 

6000 – 7000 K.34 Atomization and ionizations of the analyte occurs in the torch 

desolvation. The electrons become highly excited due to the thermal energy taken up. As 

the electrons drop to the lowest energy level, energy is liberated as photons. Each element 

has different emission spectrum, which is measured by a spectrometer. The emission 

intensity on the wavelength is measured and the calibration is calculated into 

concentration.33  
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2.3.4.2 Fourier-transform infrared spectroscopy (FT-IR) 

 Fourier-transform infrared spectroscopy35 is an analytical technique that provides 

an infrared spectrum for the emission and absorption of any state of matter (solid, liquid 

and gas). Figure 2.4 shows a schematic diagram of Fourier-transform infrared 

spectroscopy. FT-IR operates by exposing the analyte to different wavelengths. It collects 

high-spectral resolution data over a wide spectral range. The wavelengths absorbed by 

the analytes is measured by FT-IR, the computer processes the data and produces a 

meaningful absorbance spectrum.35 

 The biosolids were analyzed using diffuse reflectance infrared-Fourier 

spectroscopy (DRIFTS) with Perkin Elmer Spectrum 100 spectrometer in the spectral 

region, 230 - 4000 cm-1 with a resolution of 4 cm-1.  

 

2.3.4.3 Scanning electron microscopy (SEM) 

 Scanning electron microscopy (SEM) is used to determine the morphology, 

structure and elemental composition of samples. Figure 2.5 shows the schematic diagram 

of a scanning electron microsope. SEM operates by focusing beams of electron over a 

sample to generate an image. In SEM, electrons are first generated with an electron gun.36 

The electron beam generated from the electron gun are confined. A condenser lens 

reduces the electron beam as they pass through it. The diameter of the beam of electrons 

can be adjusted with an aperture. After passing through the aperture, the objective lens 

focuses the electron beam on the sample. The electron beam moves to the next chamber, 
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sample chamber. In the sample chamber, the sample is held under high vacuum to get rid 

of hindrances from undesirable particles. The sample to be analyzed needs to be 

conductive to avoid charging in order generate an image of greater quality. The detector 

is the last part of the SEM. The detector observes or identifies different signals produced 

when the electron beam scanning the sample strikes it.36 

The procedure for SEM analysis is adopted from Onchoke et a.l31 report. The 

morphology and elemental composition of the biosolid samples were determined using a 

JEOL-JSM-6100 scanning microscope equipped with Horiba energy-dispersive X-ray 

spectroscopy (EDAX).  The electron microscope was operated at an accelerated voltage 

of 20 KV and filament current of 200A. An Automatic Platinum Sputter Coater System 

(Quorum Q150RS was used to coat biosolid samples to lower electron-charging.  

 

2.3.4.4 Powder X-ray diffraction (XRD) spectroscopy 

           The powder X-ray diffraction (XRD) spectroscopy determines the crystalline 

phases, morphology and elemental composition of a sample by using, neutron, X-ray or 

electron diffraction on powder.37 Figure 2.6 shows the schematic diagram of an X-ray 

diffractrometer. X-ray diffractometers consist of three major components37 a sample 

holder, an X-ray tube and an X-ray detector. Electrons are generated by heating a 

filament in the X-ray tube. Electrons are directed towards the sample material. Voltage is 

applied to the sample material. When the electrons acquire enough energy to remove 

electrons from the inner shell of the sample material, X-ray spectra are generated. The 
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detector measures the intensity of the reflected X-ray. The X-ray signal is recorded and 

transferred into a count rate by the detector.37 

            The procedure for XRD analysis is adopted from Onchoke et al. report.31 A 

Bruker AXS D8 Advance diffractometer equipped with an X-ray tube (Cu Kα radiation: 

λ = 1.54060 Å, 40 kV and 40 mA) was used with a Ni filter and one-dimensional 

LynxEye detector.   

 

2.3.4.5 Thermogravimetric analysis (TGA) 

              Thermogravimetric analysis is a thermal analysis that measures the amount of a 

sample over time at varying temperature. Figure 2.7 shows a schematic diagram of a 

thermogravimetric analysis block. In TGA, the increase or decrease of the mass of a 

sample is determined upon heating the sample.38 Thermogravimetric analysis is usually 

performed using a thermogravimetric analyzer.  

The procedure for thermogravimetric analysis is adopted from Onchoke et al 

report.31 About 20.0000 mg of biosolid samples was used for analysis with a Perkin 

Elmer TGA thermogravimetric simultaneous thermal analyzer (STA 6000) at 10 °C/min, 

20 °C/min and 30°C/min heating rates in a nitrogen atmosphere ranging from 30 °C - 

1000 °C.  
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2.3.5 Soil digestion 

The USEPA method 3050B39 was used for digestion of the biosolids samples and 

perlite (Nacogdoches wastewater treatment sludge (NWWS), Lufkin wastewater sludge 

(LWWS), Soil therapy compost (STC) and hydroponic sample (perlite) to determine their 

total metal content. The digestion procedure used in this study was adopted from 

Onchoke et al.31 Approximately 0.5000 g of the samples (STC, PER, NWWS, LWWS 

and CRM (Certified Reference Material) were weighed in quadruplicates (STC, PER, 

CRM) and triplicates (NWWS, LWWS) into digi-tubes. Digestion was done using 1:1 

nitric acid (70% v/v ACS reagent, Flinn Scientific Inc, Batavia, IL, USA) and hydrogen 

peroxide (35% w/w, Sigma Aldrich, St. Louis, MO). A digestion block (SCP Science, 

www.scpscience.com, Graham, NY) was used to reflux the biosolid samples.  After 

digestion, the biosolid samples were filtered using 0.45 µm filter. Standard solutions and 

dilutions of the filtered biosolid samples were prepared in 18.2 MΩ nanopure water.  

An Agilent ICAP 7400 inductively coupled plasma-optical emission spectrometry 

(ICP-OES, dual view, Thermoscientific) was used to analyze the metal content in the 

biosolid samples.  

2.3.6 Physical-chemical Characterization of Biosolids 

            The physical-chemical characterization (pH, electrical conductivity) of biosolids 

was determined using USEPA methods (9050D, 9050A).40,41  

 About 20.0000 g of the samples (Soil therapy compost (STC), Nacogdoches 

wastewater sludge (NWWS), Lufkin wastewater sludge (LWWS) and Perlite (PER)) was 
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mixed with 40 mL of 18.2 MΩ nanopure water. The USEPA method 9054D was used to 

determine the pH of the biosolids samples. The soil-water slurry was suspended for about 

1 hour. A pH 211 microprocessor pH meter (from HANNA instruments) was used to 

determine the pH of the samples. 

 Electrical conductivity determines the amount of soluble ions in the soil. The 

USEPA method 9054A was used to determine the electrical conductivity of the biosolid 

samples. Biosolid samples were weighed and a soil-water slurry was made with 50 mL of 

18.2 MΩ nanopure water. To dissolve the soluble salt in the biosolids, the soil-water 

suspension was shaken at 15 rpm for 60 minutes. The conductivity meter was calibrated 

using KCl as the reference and the conductivity of the soil-water suspension was 

measured using the conductivity meter.41 

 

2.3.7 Quality Control and Quality Assurance 

 Method validation was carried out by comparing the ICP-OES results obtained for 

the concentrations of elements in biosolid samples with the certified values for certified 

reference material (CRM, EnviroMAT SS-2) from SCP Science, Clark Graham, Canada. 

The results from 80-120% percent agreement with the certified reference material were 

regarded as useful analysis. Table 2.1 shows the percent agreement between the measured 

values and the certified reference material.  

The limit of detection was determined using the formula 3 x standard deviation / 

mean (n = 4). The limit of detection (ppm) for each element analyzed are given as 
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follows: Ag/0.001868, Al/0.002812, As/0.008147, B/0.025747, Ba/0.000469, 

Ca/0.502776, Cd/0.000407, Co/0.000473, Cr/0.001257, Cu/0.004264, Fe/0.002599, 

Hg/0.002549, K/0.235606, Mg/0.008697, Mn/0.0002, Mo/0.000408, Ni/0.001508, 

P/0.006847, Pb/0.00666, S/0.00829, Se/0.014936, Zn/0.000322, V/0.001627, 

Cd/0.000391, Na/0.843562. 

 

2.4 RESULTS 

2.4.1 Physical-chemical Characterization of Biosolids 

Table 2.2 shows the pH of the biosolid samples and perlite. The pH of the 

biosolid samples are given as: STC (6.74 ± 0.03), NWWS (5.33 ± 0.01), LWWS (5.78 ± 

0.01). Plants are known to thrive well in the soil pH range of 5.50 - 7.50.42 Since all 

biosolid samples and perlite, have pH values in this range, they are all suitable as soil 

media for plant growth. 

2.4.2 Analysis of Metal Concentration in Biosolids with ICP-OES 

The macro- and microelements present in the biosolids were determined using 

ICP-OES following protocol in 2.3.5 with USEPA 3050B. Table 2.3 shows the elemental 

composition of the biosolid samples and their corresponding USEPA maximum 

concentration limit (mg/L).  
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Macro elements 

 Figure 2.8a and 2.8b shows the concentration of macroelements present in the 

biosolids samples, STC, NWWS, LWWS and perlite (PER). From the figure, essential 

nutrients such as P and K necessary for plant growth are present in the biosolid samples. 

Except for Fe, LWWS and NWWS had relatively similar metal concentrations (LWWS 

(15163 ± 2212 ppm), NWWS (32890 ± 2695 ppm)). Perlite contained relatively low 

amount of the macroelements (Al (1176 ± 322 ppm), Ca (3632 ± 1035 ppm), Fe (1338 ± 

248 ppm), K (9337 ± 1281 ppm), Mg (654 ± 236 ppm), P (4649 ± 790 ppm), S (2097 ± 

227 ppm), Na (195 ± 1658 ppm)). The order of concentrations of macroelements in the 

biosolids and perlite is NWWS (Al (15591 ± 1692 ppm), Fe (32890 ± 2695 ppm), Mg 

(7293 ± 647 ppm), P (26102 ± 1522 ppm)) > LWWS (Al (12217 ± 1985 ppm), Fe (15163 

± 2212 ppm), Mg (4116 ± 561 ppm), P (20855 ± 2594)) > STC (Al (12424 ± 824 ppm), 

Fe (13352 ± 2731 ppm), Mg (1362 ± 98 ppm), P (8623 ± 426 ppm)) > PER (Al (1176 ± 

322 ppm), Fe (1338 ± 248 ppm), Mg (645 ± 236 ppm), P (4649 ± 790 ppm)) , for Ca: 

LWWS (21552 ± 3186 ppm) > NWWS (18738 ± 1644 ppm) > STC (11760 ± 1358 ppm) 

> PER (3632 ±1035 ppm), and K: PER (9337 ± 1281 ppm) > NWWS (6126 ± 229 ppm) 

> LWWS (3328 ± 548 ppm) > STC (2207 ± 82 ppm). 

Microelements 

 Figure 2.9a and 2.9b shows the concentration of microelements in biosolids 

samples, (STC, NWWS, LWWS) and hydroponic material PER (perlite). From figure 

2.9, toxic elements (As, Cd, Cr, Hg, Co, Pb) were detected in concentrations < 30 ppm. 
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The microelements Ba: (LWWS – 319 ± 44 ppm, NWWS – 563 ± 45 ppm, STC – 308 ± 

14 ppm), Cu (LWWS – 531 ± 78 ppm, NWWS – 386 ± 35 ppm, STC – 338 ± 14 ppm), 

Mn (LWWS – 1262 ± 192 ppm, NWWS – 1136 ± 102 ppm, STC – 794 ± 39 ppm)  and 

Zn (LWWS – 883 ± 127 ppm, NWWS – 810 ± 71 ppm, STC – 409 ± 14 ppm) were 

present in higher concentrations compared to other microelements. Microelements were 

in the order Ba: NWWS (563 ± 45 ppm) > LWWS (319 ± 44 ppm) > STC (308 ± 14 ppm 

) > PER (31 ± 7.2 ppm), Cu, Mn, Zn: LWWS (Cu (531 ± 78 ppm), Mn (1262 ± 192 

ppm), Zn (883 ± 127 ppm)) > NWWS (Cu (386 ± 35 ppm), Mn (1136 ± 102 ppm), Zn 

(810 ± 71 ppm)) > STC (Cu (338 ± 14 ppm ), Mn (794 ± 39 ppm), Zn (409 ± 14 ppm)) > 

PER (Cu (2 ± 0.6 ppm), Mn (27 ± 6 ppm), Zn (10 ± 2 ppm)). 

Microelements (As, Cd, Cr, Cu, Pb, Hg, Mo, Ni and Zn) in biosolid samples were 

found below the USEPA maximum concentration limits (75, 85, 3000, 4300, 840, 57, 75, 

420 and 7500 ppm respectively).  

2.4.3 Spectroscopic Analysis of Biosolids 

2.4.3.1 FT-IR spectroscopy of biosolids 

Figure 2.10 shows an FT-IR spectrum of Soil Therapy Compost (STC) in the 

spectral region 240 – 4000 cm-1.  The broad band in the range 3600 - 3200 cm⁻ ¹ 

indicates the presence of an O-H group. Bands at 3000 - 2900 cm⁻ ¹ are ascribed to sp3 C-

H stretching. The peak at 1640 cm⁻ ¹ might indicate a carbonyl group. The peaks 

between 1250 - 1000 cm⁻ ¹ indicate a C-N group. The peaks at 1375 cm⁻ ¹, 695 cm⁻ ¹, 

563 cm⁻ ¹ might be due to the presence of C-F, C-Cl and C-Br respectively.43  
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2.4.3.2 Elemental composition of biosolids with SEM/EDX 

Figures 2.11a and 2.11b show the SEM micrographs obtained for both soil 

therapy compost (STC) and Nacogdoches wastewater treatment sludge (NWWS) 

respectively. The particle diameter of the biosolids was 25 – 50 µm. Biosolids are known 

to have particle diameters in the range 20 µm to 500 µm.31,44   

Figures 2.12a, 2.12b and 2.12c show the elemental composition of elements in 

STC, NWWS and LWWS acquired with EDX. Tables 2.4, 2.5 and 2.6 show the 

percentage compositions of elements corresponding to the STC, NWWS and LWWS 

micrographs. The result for the elemental composition confirms the presence of 

macroelements (Al, Ca, Fe, Na, K, P, S) which were initially detected using ICP-OES. 

Toxic metals (Cd, Hg, As, Pb) were not detected in the biosolids with SEM-EDX because 

EDX does not have low detection limits. Other elements (C, O, Si) were detected with 

EDX. The order of concentration of elements in STC is: O (56.0 %wt/wt) > Si (24.3 

%wt/wt) > Al (7.4 %wt/wt) > Ca (3.4 %wt/wt) > P (2.9 %wt/wt) > Fe (2.4 %wt/wt) > S 

(2 %wt/wt) > K (1.2 %wt/wt) > Mg (0.6 %wt/wt). The order of concentration of elements 

in NWWS is: O (47.6 %wt/wt) > C (38.5 %wt/wt) > Si (6.0 %wt/wt) > P (2.3 %wt/wt) > 

Fe (2.0 %wt/wt) > Al (1.4 %wt/wt) > Mg (1.3 %wt/wt) > S (0.9 %wt/wt). The order of 

concentration of elements in LWWS is: O (41.2 %wt/wt) > C (40.6 %wt/wt) > Si (6.8 

%wt/wt) > P (3.0 %wt/wt) > Al (2.4 %wt/wt) > S (1.4 %wt/wt) ≈ Ca (1.4 %wt/wt) > Fe 

(1.3 %wt/wt) > Mg (0.9 %wt/wt) > Na (0.6 %wt/wt) > K (0.3 %wt/wt). 
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In addition, results obtained from EDX confirmed the presence of metals 

previously detected with ICP-OES. 

 

2.4.3.3 X-ray powder diffraction patterns (XRD) 

 Figure 2.13 shows the X-ray powder diffraction pattern of Soil Therapy 

Compost (STC). Figure 2,14 shows the XRD pattern from Nacogdoches and Lufkin 

wastewater sludge. From literature study,31 the 2θ and d-spacing values, (6.070°, 14.55), 

(20.58°, 4.55) and (26.40°, 3.36) can be attributed to the presence of vermiculite 

(CaSO4.2H2O), alunogen (Al2(SO4)17H2O), quartz (SiO2), respectively.  

 

2.4.4 Thermogravimetric analysis 

 Figure 2.15 shows the phase changes that occur upon decomposition of the 

biosolid sample. The biosolid sample was heated at 10 °C/min, 20 °C/min and 30 °C/min 

from 30 °C to 1000 °C. From the TGA curve, decomposition stages were observed over 

the ranges 33 – 110 °C, 110 – 220 °C, 220 – 400 °C, 400 – 800 °C. The initial stage at 33 

– 110 °C might be attributed to the loss of moisture content.45 The second stage at 220 – 

400 °C might indicate the breakdown of small volatile compounds with weak hydroxyl 

bonds.50 The final stage at 400 – 800 °C might be due to inorganic compounds (SiO2, 

Al2O3, MgO, Fe2O3, CaO).47 
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2.5 DISCUSSION 

 It is important to characterize biosolids before they are applied to agricultural 

fields. Characterization of biosolids helps to estimate the possible nutrients or factors that 

will contribute to plant growth and yield.15 This further provides information on the 

suitable application rates of biosolids to agricultural fields and means of investigating the 

possible pollutants in the biosolids.15 In the study, the biosolid samples were analyzed for 

physical-chemical properties such as pH and electrical conductivity. The pH of the 

biosolid samples varied between 5.33 – 6.74. pH can control the uptake of metals by 

plants especially those present in labile form.15 Ronald et al.1, and Joseph et al.15, have 

reported the pH of the biosolids analyzed to be between 5.00 – 7.00. Plants are known to 

thrive well at pH 5.50 – 7.00.42,48 As it is known that more plant nutrients are available at 

pH of around 6.48 Since the pH values of biosolid samples are within this range, the 

biosolids are suitable for land application. 

 Analysis of biosolids with ICP-OES provided information on the metal content 

(macro- and microelements) present in the biosolid samples. Metal analysis also provided 

information on possible toxic pollutants in the biosolid samples. Notable essential 

macroelements (P and K) needed for plant growth were present in the biosolid samples. 

Microelements (Mn, Zn, Fe, Cu, Mo, Ni) essential for plant growth were also found 

present in the biosolids. Heavy metals As (STC-5.48 ± 0.62 ppm, LWWS-20 ± 2.79 ppm, 

NWWS-12 ± 0.64 ppm), Cd (STC-0.19 ± 0.07 ppm, LWWS-0.20 ± 0.03 ppm, NWWS-

Below detection), Cr (STC-4.3 ± 0.18 ppm, LWWS-0.93 ±  1.67 ppm, NWWS-17 ± 1.71 
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ppm) and Pb (STC-17 ± 0.57 ppm, LWWS-29 ± 3.44 ppm, NWWS-27 ± 0.59 ppm) in 

the biosolid samples were determined below the USEPA ceiling limit (Table 2.3). This is 

in agreement with other studies which have found the metal concentrations in the 

biosolids to be lower compared to the USEPA regulatory limits.15,49,50 The results 

obtained from metal analysis of the biosolids in this study suggests a reasonable 

recommendation for the land application of the biosolid samples. However, with the 

continued use, the risk of accumulation of metals in soils may be envisioned. 

 The FT-IR spectra obtained for the biosolids showed absorption peaks 

indicative of functional groups (-OH, C-H, C=O and C-N).43 Zhou et al.19 and Onchoke et 

al.31 studies showed similar peaks indicative of these functional groups. In addition, 

peaks observed on the IR-spectra are indicative of the presence of groups such as C-F, C-

Cl and C-Br.43 The presence of organic compounds such as -COOH, -OH in the biosolids 

can result in complexation of heavy metals in the biosolids. The complexation of heavy 

metals can lead to the solubility and mobility of the heavy metals in the biosolids and 

thus result in the uptake of such metals by plants.51,52 

 The SEM/EDX was used in this study to determine the morphology, structure 

and metal concentration of the biosolid samples. The SEM micrograph obtained showed 

a particle diameter between 25 µm – 120 µm.31,44 This is in correlation with what has 

been observed in other studies.44,53 The elemental composition determined with EDX 

further confirms the presence of elements such as Al, Ca, K, P, Cu. Zn, Cd which were 

detected using ICP-OES. 
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 The XRD provided information on the crystalline phases of the biosolid. The 

presence of vermiculite (CaSO4·2H2O), alunogen (Al2(SO4)·17H2O) and quartz (SiO2) 

with d-spacing 14.55, 4.55 and 3.36, respectively, in the biosolid sample is also evident in 

other studies.54,55 Ling et al.54 showed a peak with similar 2Ɵ and d spacing for quartz at 

(26.641°, 3.346).54 Also, the peak observed for vermiculite and alunogen had similar 2Ɵ 

and d spacing with the study done from Onchoke’s lab (6.217°, 14.21) and (20.76°, 4.28) 

respectively.31 

 From the TGA curves, it can be deduced that small volatile organic 

compounds with weak hydroxyl bonds46 and inorganic species (SiO2, Al2O3, MgO, 

Fe2O3, CaO)47 are present in the biosolid samples. The presence of the nanoparticles in 

the biosolids can affect the release of essential nutrient for plant growth from the organic 

matter fraction and also disrupt the plant-microbe relationship that enhance soil fertility.56  

 

2.6 CONCLUSIONS 

 Spectroscopic methods (ICP-OES, FT-IR, SEM, EDX, XRD, TGA) were used to 

determine the metal content in the biosolids samples and provide information on the 

functional groups, morphology and crystalline nature of biosolids. From the metal 

content analysis, heavy metals concentrations (As, Cd, Cr, Pb, Hg) were found below the 

USEPA regulatory limit. The FT-IR data reports the presence of groups (-OH, C=O, C-

H) that can complex with heavy metals in the biosolids and enhance the uptake of such 

metals by plants. From the SEM micrograph, it was concluded that the particle diameter 
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is between 25 – 120 µm in the nanocrystalline regime. The EDX data supports the 

presence of elements previously detected in the biosolids using ICP-OES. The XRD 

pattern shows the presence of compounds (vermiculite, alunogen, quartz) in the biosolids. 

The presence of compounds containing elements (Ca, Al, S) shows the presence of 

elements that have been found in the biosolids with ICP-OES and SEM/EDX analysis. 
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TABLES AND FIGURES 

Table 2.1: ICP-OES Analysis of Certified Reference Material (CRM), (SCP Science, 

SS-2, EnvironMAT) the standard deviations, (mean ± concentration) and the 

approximate percent agreement. (Bd = Below detection) 

Element Number of 

reference 

samples (n) 

CRM SS-2 

(Reference) 

(Mean), ppm 

Measured (Mean ± 

SD), ppm 

Approximate 

percent 

agreement 

Al 4 13265 ± 1151 15102 ± 275 87.8 

As 4 75 ± 10 94 ± 4 80.2 

Ba 4 215 ± 13 244 ± 5 87.9 

Ca 4 112861 ± 4872 121381 ± 2658 92.9 

Cd (228.80) 4 2 4.0 ± 0.1 50.3 

Co 4 12 ± 1 16.0 ± 0.2 76.6 

Cr 4 34 ± 4 40 ± 0.8 86.1 

Cu 4 191 ± 9 213 ± 6 89.8 

Fe 4 21046 ± 1449 22524 ± 174 93.4 

K 4 3418 ± 352 5774 ± 142 59.2 

Mg 4 11065 ± 606 12208 ± 166 90.6 

Mn 4 457 ± 24 521 ± 8 87.6 

Mo 4 0.09 ± 0.01 2.0 ± 0.2 58.8 

Ni 4 54 ± 4 69 ± 1 78.7 

P 4 734 – 770 1022 ± 36 73.5 

Pb 4 126 ± 10 132 ± 1 95.8 

S 4 2193 ± n/a 5628 ± 51 38.9 

Zn 4 467 ± 23 577 ± 5 80.9 

V 4 34 ± 3 41 ± 1 82.8 

Cd (226.50) 4 2 4.00 ± 0.03 54.3 

Na 4 456 – 660  1078 ± 49 51.8 
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Table 2.2: pH of biosolid samples and perlite 

SAMPLE pH 

STC 6.74 ± 0.03 

NWWS 5.33 ± 0.01 

LWWS 5.78 ± 0.01 

PER 5.77 ± 0.03 

STC = Soil Therapy Compost (from Angelina-Neches Compost Facility), NWWS = 

Nacogdoches wastewater sludge, LWWS = Lufkin wastewater sludge, PER = Perlite. 
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Table 2.3: Mean ± standard deviation of metals in the biosolid samples analyzed 

with ICP-OES and their corresponding USEPA limit. (n = 4 for STC (Soil Therapy 

Compost), n = 3 for NWWS (Nacogdoches wastewater sludge), n = 3 for LWWS 

(Lufkin wastewater sludge), n = 4 for PER (Perlite), Bd = Below detection) 

Element Samples 

 STC (ppm) 

(n = 4) 

PER (ppm) 

(n = 4) 

LWWS (ppm) 

(n = 3) 

NWWS (ppm) 

(n = 3) 

USEPA 

Ceiling 

Limit 

(ppm) 

Ag 1.1 ± 0.3 Bd  Bd  0.6 ± 0.4 - 

Al 12424 ± 825 1176 ± 322 12217 ± 1985 15591 ± 1692 - 

As 6 ± 1 3 ± 1 20 ± 3 12 ± 1 75 

B Bd Bd  8 ± 0 107 ± 21 - 

Ba 308 ± 14 31 ± 7 319 ± 44 563 ± 45 - 

Ca 11760 ± 1358 3632 ± 1035 21552 ± 3186 18738 ± 1644 - 

Cd 0.2 ± 0.1 0.05 ± 0.03 0.20 ± 0.03 Bd 85 

Co 4.3 ± 0.2 0.9 ± 0.4 11 ± 2 17 ± 2 3000 

Cr 14.4 ± 0.4 5 ± 2 25 ± 4 26 ± 4 - 

Cu 338 ± 14 2 ± 1 531 ± 78 386 ± 35 4300 

Fe 13352 ± 2731 1338 ± 248 15163 ± 2212 32890 ± 2695  - 

K 2207 ± 82 9337 ± 1282 3328 ± 548 6126 ± 229 - 

Mg 1362 ± 98 654 ± 236 4116 ± 561 7293 ± 647 - 

Mn 794 ± 39 27 ± 6 1263 ± 192 1136 ± 102 - 

Mo 4 ± 1 Bd 8 ± 1 7 ± 1 75 

Ni 17.5 ± 0.4 9.1 ± 1.3 33.5 ± 1.2 44 ± 4 420 

P 8623 ± 426 4649 ± 790 20855 ± 2594 26102 ± 1522 - 

Pb 17 ± 1 Bd 29 ± 3 27 ± 1 840 

S 2838 ± 89 2097 ± 227 12116 ± 1784 8365 ± 331 - 

Zn 409 ± 14 10 ± 2 883 ± 127 810 ± 71 7500 

V 12 ± 2 5 ± 1 8 ± 1 33 ± 3 - 

Na 668 ± 92 2630 ± 0 524 ± 696 Bd - 
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Figure 2.1: Aerial view of Nacogdoches Wastewater Treatment Plant (NWWTP) 

and Lufkin Wastewater Treatment Plants (LWWTP). Figure adopted from Ref 57. 
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Figure 2.2: Aerial view of Angelina-Neches Compost Facility.  
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Figure 2.3: Block diagram of inductively coupled plasma-optical emission 

spectroscopy.58 

 

 

 

 

 

 

 

 

Sample 

introduction and 

aerosol 

formation 

ICP-Torch Wavelength 

Selector 

     Detector 

Signal 

processor 



87 
 

 

 

 

Figure 2.4: Schematic diagram of Fourier-transform infrared spectroscopy (FTIR)59  
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Figure 2.5: Schematic diagram of scanning electron microscope (SEM).60 
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Figure 2.6:  Schematic diagram of powder X-ray diffractometer.61 
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Figure 2.7: Schematic diagram of a thermogravimetric analysis block.62 
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a) 

 

b) 

 

Figure 2.8: Concentrations (ppm) of macroelements in STC (n = 4), LWWS, NWWS 

(a) (n =3) and perlite (b) (n = 4). Error bars depict standard deviations. 
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a) 

 

b) 

 

Figure 2.9: Concentrations (ppm) of microelements in STC (n = 4), LWWS, NWWS 

(a) (n = 3) and perlite (b) (n = 4). Error bars depict sstandard deviations. 
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Figure 2.10: FT-IR spectrum for soil therapy compost (STC) acquired at 4 cm-1    

             resolution. 
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a) 

 

b) 
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c) 

 

Figure 2.11: SEM micrograph for STC (a), NWWS (b), and LWWS (c) at a X300 

magnification, an accelerated voltage of 20 KV, and filament current of 200 A. The 

red boxes in the SEM micrographs indicates the elemental composition taken at the 

region. 
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a) 

 

 

b) 
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c) 

 

Figure 2.12: Elemental composition of Soil therapy compost (STC) (a), Nacogdoches 

Wastewater Sludge (NWWS) (b), and Lufkin wastewater sludge (LWWS) (c) at a 

magnification of X300, an accelerated voltage of 20 KV and filament current of 200 

A. 
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Table 2.4: Percentage composition (% wt/wt) of elements in Soil therapy compost 

corresponding to Figure 2.12a. 

Elt. Line Intensity 

(c/s) 

Error 

2-sig 

Atomic 

% 

Conc Units   

O Kα 110 2.7 70 56.0 wt.%   

Mg Kα 3.5 0.48 0.5 0.6 wt.%   

Al Kα 50 1.8 5.5 7.4 wt.%   

Si Kα 168 3.4 17 24.3 wt.%   

P Kα 16 1.0 1.9 2.9 wt.%   

S Kα 12 0.88 1.2 1.9 wt.%   

K Kα 7.2 0.69 0.6 1.2 wt.%   

Ca Kα 21 1.2 1.7 3.4 wt.%   

Fe Kα 8.0 0.73 0.9 2.4 wt.%   

    100.0 100.0 wt.% Total 

 

Table 2.5: Percentage composition (% wt/wt) of elements in Nacogdoches 

wastewater sludge (NWWS) corresponding to Figure 2.12b. 

Elt. Line Intensity 

(c/s) 

Error 

2-sig 

Atomic 

% 

Conc Units   

C Kα 135 3.0 48 38.5 wt.%   

O Kα 171 3.4 45 47.6 wt.%   

Mg Kα 19 1.1 0.8 1.3 wt.%   

Al Kα 25 1.3 0.8 1.4 wt.%   

Si Kα 121 2.8 3.2 6.0 wt.%   

P Kα 44 1.7 1.1 2.3 wt.%   

S Kα 18 1.1 0.4 0.9 wt.%   

Fe Kα 18 1.1 0.5 2.0 wt.%   

    100.0 100.0 wt.% Total 
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Table 2.6: Percentage composition (% wt/wt) of elements in Lufkin wastewater 

sludge (LWWS) corresponding to Figure 2.12c. 

Elt. Line Intensity 

(c/s) 

Error 

2-sig 

Atomic 

% 

Conc Units   

C Kα 2,262 12. 52 41 wt.%   

O Kα 2,299 12 39 41 wt.%   

Na Kα 110 2.7 0.4 0.6 wt.%   

Mg Kα 256 4.1 0.6 0.9 wt.%   

Al Kα 794 7.3 1.4 2.4 wt.%   

Si Kα 2,497 13 3.7 6.8 wt.%   

P Kα 995 8.1 1.5 3.0 wt.%   

S Kα 509 5.8 0.7 1.4 wt.%   

K Kα 104 2.6 0.1 0.3 wt.%   

Ca Kα 458 5.5 0.5 1.4 wt.%   

Fe Kα 213 3.8 0.4 1.3 wt.%   

    100.0 100.0 wt.% Total 
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Figure 2.13: XRD Pattern for Soil Therapy Compost (STC) (V = Vermiculite, A = 

Alunogen, Q = Quartz). 
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Figure 2.14: XRD Pattern for Nacogdoches wastewater sludge and Lufkin 

wastewater sludge.35 
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Figure 2.15: Thermogravimetric curve of Soil Therapy Compost (STC) (a = 30 

deg/min, b = 20 deg/min, c = 10 deg/min). 
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CHAPTER 3 

SPECIATION AND BIOAVAILABITY OF METALS IN THREE BIOSOLIDS 

FROM DIFFERENT WASTEWATER TREATMENT PLANTS 

 

3.1 ABSTRACT  

 Sequential extraction of biosolids is an essential process because it helps to 

determine the metals that are available for plant uptake. In this study, a modified Tessier 

protocol was used to speciate metals in the Soil Therapy Compost (STC), Nacogdoches 

Wastewater Sludge (NWWS), and Lufkin Wastewater Sludge (LWWS). The sequential 

extraction process entails five extraction steps or fractions; the exchangeable fraction, the 

adsorbed fraction, the organically bonded fraction, the carbonate fraction and the sulfide 

or residual fraction. The first two fractions provide information on the bioavailable 

metals. From results obtained, macroelements (Ca (STC-2168 ± 20 ppm, NWWS-1682 ± 

9 ppm, LWWS-7342 ± 11 ppm), Fe (STC-25.69 ± 0.34 ppm, NWWS-16.9 ± 0.1 ppm, 

LWWS-7.5 ± 0.1 ppm), K (STC-105140 ± 588 ppm, NWWS-117960 ± 205 ppm, 

LWWS-109980 ± 110 ppm), Mg (STC-417 ± 4 ppm, NWWS-1973 ± 12 ppm, LWWS-

2722 ± 3 ppm), P (STC-259 ± 2 ppm, NWWS-3332 ± 16 ppm, LWWS-2424 ± 5 ppm), 

S(STC-2690 ± 10 ppm, NWWS- 2979 ± 10 ppm, LWWS-9848 ± 15 ppm) and Na (STC-

643 ± 3 ppm, NWWS-2513 ± 5 ppm, LWWS-11750 ± 4 ppm)) were found in the 
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bioavailable fraction in all biosolids samples. Microelements (As (STC-0.190 ± 0.004 

ppm, NWWS-2.10 ± 0.01 ppm, LWWS-1.38 ± 0.01 ppm ) B (STC-5.34 ± 0.02 ppm, 

NWWS-6.82 ± 0.02 ppm, LWWS-15.42 ± 0.04 ppm), Mn (STC-14.53 ± 0.10 ppm, 

NWWS-6.34 ± 0.48 ppm, LWWS-60.07 ± 0.70 ppm), Mo (STC-1.59 ± 0.01 ppm, 

NWWS-1.54 ± 0.01 ppm, LWWS- 3.80 ± 0.03 ppm), Zn (STC-3.11 ± 0.11 ppm, 

NWWS-0.59 ± 0.05 ppm, LWWS-1.35 ± 0.03 ppm), Cu(STC-9.67 ± 0.08 ppm, NWWS-

28.82 ± 0.076 ppm, LWWS-27.69 ± 0.72 ppm) were found in the bioavailable fraction 

but in very low concentrations.  The highest bioavailable element in the biosolid samples 

was potassium. Heavy metals (Cr, Pb, Co and V) were not detected in the mobile 

fraction.  

In the previous chapter, spectroscopic characterization of biosolids was discussed. 

In this chapter, an overview of what speciation and bioavailability of metal entails and 

the different speciation methods that have been used was provided. In addition, the 

results obtained for the speciation and bioavailability of the biosolid samples in this study 

was also discussed. 

 

3.2 INTRODUCTION 

Biosolids are dark organic matter rich in beneficial nutrients.1,2 Although biosolids 

contain essential nutrients, the presence of toxic metals can limit their use, the risk of 

biosolids contaminating the soil and transferring heavy metals into the food chain may 

result in potential health disorders in humans.3 The determination of bioavailable metals 
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in biosolids is important because it provides information on the metals bioavailable for 

uptake by plants.  

Speciation is a chemical process that involves draining or leaching out of metals 

in biosolids and soils. The major function of speciation is to imitate the release of metals 

into solution under some environmental conditions.4 Heavy metal speciation in 

composted sludge and biosolids helps to determine the metals available for plant uptake 

following the use of composted sludge. The methods involved in the speciation of heavy 

metals in composted sludge include chemical extractions, centrifugation, decantation, 

filtration, and analysis can be done using atomic absorption emission, inductively 

coupled plasma optical emission spectrometry or inductively coupled plasma mass 

spectrometry.5 Different procedures used for the sequential extraction of metals in 

biosolids and soils are reviewed here below.  

Tessier sequential extraction procedure has often been utilized in special studies. 

Tessier sequential procedure apportions metal distribution in the different stages with 

different reagents. The steps with the reagents used are exchangeable (1 M MgCl2 / 1 M 

NaOAc), bound to carbonates (1 M NaOAc with CH3COOH), bound to Fe-Mn oxides 

(0.3 M Na2S2O4, 0.175 M Na-citrate, 0.025 M H-citrate / 0.04 M NH2OH-HCl in acetic 

acid), bound to organic matter (0.02 M HNO3, 30% H2O2) and residual (HF-HClO4).
6  

Shrivastava and Dipak7 investigated the bioavailability of Cu, Zn, Pb, Ni, Cr and 

Cd in biosolids and biosolids-amended soils by using a modified Tessier method. The 

sequential extraction was carried out to provide information on the metals associated with 
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soils and their uptake by plants. In Tessier sequential extraction protocol, MgCl2 was 

used to extract the exchangeable fractions. However, in this study, Mg(NO3)2 was used to 

replace this MgCl2.
6 Mg(NO3)2 was used because the chloride ions from the MgCl2 

readily form a complex with metals,8 hence the solubility of the metals in the biosolids to 

soils is increased.9 The five sequential steps and reagents used in this study are: 

1. The exchangeable phase (1 M Mg(NO3)2),  

2. The oxidizable phase (bound to organic matter, H2O2 + HNO3 + CH3COONH4),  

3. The acid soluble fraction (bound to carbonates, Na2EDTA),  

4. The reducible fraction (bound to Fe/Mn oxides and hydroxides, NH2OH.HCl + 

CH3COONH4),  

5. The residual fraction (bound to silicates and detrital materials, HCl-HNO3/HF).  

From the speciation of the biosolids,7 the concentrations of metals in various fractions 

were observed: 

Copper: residual > acid soluble > oxidizable > reducible > exchangeable 

            Zinc: residual > reducible > acid soluble > oxidizable > exchangeable  

Lead: residual > reducible > oxidizable > acid soluble > exchangeable 

Nickel: residual > oxidizable > reducible > acid soluble> exchangeable 

Chromium: residual > oxidizable > acid soluble > reducible> exchangeable 

Cadmium: residual > acid soluble > reducible > oxidizable > exchangeable 
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The elements Cu and Zn are highly concentrated in the ratio 1:1 in the non-

residual and residual fractions. The high concentration of Cu and Zn in the non-residual 

fraction shows they are likely bioavailable when used to amend soils. In the non-residual 

fraction, Cu (acid soluble fraction, 17.2%) and Zn (reducible fraction, 19.9%) had the 

highest concentration. In addition, elements Pb (72.8%), Ni (61.4%), Cr (79.1%), and Cd 

(65.7%) were found in greater abundance in the residual fraction suggesting they are less 

bioavailable.7 

 Sims and Kline10 carried out sequential extraction and investigated the uptake of 

heavy metals by plants cultivated in soils treated with co-composted sewage sludge 

(CCSS). The sequential extraction method utilized reagents, KNO3, H2O, NaOH, Na2-

EDTA, and HNO3, to fractionate Cd, Cr, Cat pH values in the range 5.3 –7.2. In this 

experiment, wheat (Triticum aestivum L.) and soybean (Glycine max L.) were cultivated 

in a greenhouse.10  

 The sequential extraction10 showed all metals aside from Cd, differed in soils 

amended with CCSS. Higher rates were found in the NaOH and EDTA fractions and 

lower rate in the HNO3 fraction in soils amended with CCSS in contrast with unamended 

soils. The bioavailable fractions (KNO3, H2O) for Cu, Ni, Pb, and Zn increased(<1 

mg/kg) in soil amended with CCSS while there was no increase for Cd and Cr. Liming 

resulted in (< 5%) changes in the distribution of Cd, Cr, Ni, and Pb in the various 

fractions. In soils amended in CCSS, the decrease in NaOH fraction in Cu, the 
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bioavailable fraction in Zn and the increase of Cu and Zn in the EDTA and HNO3 

fractions were as a result of liming.10 

 Shakunthala et al.1 performed speciation of heavy metals in biosolids obtained 

from Mysore Wastewater Treatment Plants in Karnataka, India to determine the 

properties of heavy metals in the biosolids. For this study, Tessier multi-step extraction 

procedure was used. This is a five step extraction procedure which involves the use of 

reagents; 1 M MgCl2, CH3COONa, (NH3OH)Cl + CH3COOH, HNO3 + H2O2 for the 

exchangeable, the carbonate bound, Fe-Mn oxide, organic and sulfide metal fractions 

respectively. The residual metal fraction is calculated as difference between total metal 

content and sum of extracted metals. From results obtained, maximum amount of heavy 

metals was found in the residual fraction and only small amounts of Fe, Cd and Zn were 

found in the exchangeable and carbonate fractions (soluble fractions).1   

 Urasa and Macha11 speciated heavy metals in soils, sediments and sludges using a 

modified Tessier sequential extraction procedure and a D.C plasma atomic emission 

spectrometry coupled with ion chromatography. The modified Tessier sequential 

extraction uses reagents KNO3, distilled deionized water (exchangeable and absorbed 

phase), NaOH (organically bound phase), EDTA (carbonate phase) and HNO3 

(sulfide/residual phase). Metals extracted by KNO3 and distilled deionized water are the 

mobile metals, readily bioavailable to plants.11 

 Onchoke et al.12 utilized a five-step modified Tessier sequential extraction 

protocol11 with use of reagents KNO3, H2O, NaOH, EDTA, and HNO3 to speciate heavy 
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metals in sewage sludge. From the study, elements Cu, Fe, Cr, Pb, Cd, Ni, Zn, and Mn 

were found bioavailable in the composted wastewater sludge. Compared to other metals, 

Cu had higher concentrations in the different metal fractions (exchangeable fraction 

(1.94%) adsorbed fraction (0.83%), organically bonded fraction (40.64%), carbonate 

fraction (26.89%) and sulfide/residual fraction (29.70%)).12 

Morere et al.13 Maiz et al.14 He et al.15 and Silveira et al.16 used Tessier multi-step 

extraction procedure to determine the properties of heavy metals in the biosolids.  

Morere et al.13 utilized the five steps Tessier sequential extraction protocol (with 

reagents MgCl2, NaOAc, NH2OH.HCl, H2O2 + HNO3, HF + HClO4) and sorption 

isotherms to determine the bioavailability and distribution of metals (Cd, Cu, Ni, Pb and 

Zn) in four soils with different physicochemical properties. From the study, it was found 

that most of the metals were found in the more mobile fractions (exchangeable and 

carbonate fractions). This contrasts with what is observed in soils, in which metals are 

mostly associated with the residual fraction.13 

Maiz et al.14 utilized a two-step extraction method with four steps Tessier 

sequential extraction protocol to determine the availability of heavy metals in polluted 

soils. The two-step extraction method used involved; the mobile fraction and the 

mobilizable fraction. Aqueous solutions were used to extract both fractions. The mobile 

fraction was extracted with CaCl2 solution while the mobilizable fraction was extracted 

with DTPA (diethylenetriamine pentaacetic acid) + CaCl2 + TEA (triethanolamine). The 

four step Tessier extraction protocol with the reagents used involved; exchangeable 



110 
 

(MgCl2), bound to carbonates (NaOAc/HOAc), bound to Fe-Mn oxides (NH2OH.HCl), 

bound to organic matter and sulfides (HNO3 + H2O2 + NH4OAc). From the study, it was 

concluded that there was possibility of Cd, Cu, Zn and Pb to be bioavailable in the soil on 

a short-medium term.14   

He et al.15 utilized four different sequential extraction procedures (Sposito, 

Community Bureau of Reference (BCR), Tessier and Silvera) to speciate soil metals. The 

Sposito protocol is a four-step procedure (exchangeable (KNO3), organic matter (NaOH), 

Fe-Mn oxides (Na2EDTA), and residual (HNO3)).
17 The BCR method is also a four-step 

method (exchangeable, water, and acid-soluble (CH3COOH), reducible (Fe and Mn 

oxides, NH2-OH-HCl), oxidizable (H2O2 + NH4OAc), residual (HNO3-HCl)).18 The 

Tessier procedure involves the following steps and reagents (exchangeable (MgCl2), 

carbonates (NaOAc), Fe and Mn oxides (NH2OH/HCl), organic matter (HNO3 + H2O2 + 

NH4OAc), residual (HNO3-HCl)).6 The Silveira procedure entails the following steps 

(soluble- exchangeable (CaCl2), surface adsorbed (NaOAc), organic matter (NaOCl), Mn 

oxides (NH2OH-HCl), poor crystalline Fe oxides (oxalic acid + oxalate), crystalline Fe 

oxides (HCl) and residual (HNO3-HCl)).16 From the results, Fe and Zn were mostly 

retained in the recalcitrant soil fractions while Cd was mostly found in the exchangeable 

fraction. Cu was highly retained in the organic matter fraction. It was concluded that 

there was variation in the extraction efficiency of the metals with the different sequential 

extraction procedure because of the different reagents and experimental conditions. 
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Community Bureau of Reference (BCR) procedure is another sequential 

extraction procedure.19 This has been utilized by Kazi et al20 and Jamali et al.21  

Kazi et al.20 utilized a four-step BCR sequential extraction method (exchangeable 

and acid-soluble (CH3COOH), reducible (NH2OH-HCl), oxidizable (H2O2 + 

CH3COONH4), residual (HCl/HNO3) to determine the mobility of toxic metals (Cr, Pb, 

Ni and Cd) in untreated industrial wastewater sludge. From the study, Cd was found 

mostly in the easily mobilized form (acid exchangeable). The toxic metals (Cr, Pb, Ni, 

Cd) were all present in the oxidizable fraction.20  

Jamali et al.21 utilized the four-step BCR sequential extraction method to speciate 

Cd, Cr, Cu, Ni, Pb and Zn in untreated domestic wastewater sludge. From the study, all 

the metals except Cd were present in the oxidizable fraction.  In addition, the 

concentration of Cd, Cr, Cu, Ni and Zn found in the acid-exchangeable fraction (mobile 

fraction) were 31.0%, 3.1%, 2.5%, 7.6%, 2.6% and 8.4%, respectively.21 

Some other procedures used for speciation of metals are the Galan (Galan et al.)22 

and modified Geological Society of Canada (Benitez and Dubois)23 procedures.   

Given the above overview, it was the objective of this research to quantify the 

amounts of heavy or trace elements in the compost that are readily bioavailable to the 

plants. This will help provide information on environmental threats that can result from 

mobilization of heavy metals in biosolids, and may in turn influence uptake of such 

metals by plants.24,25,26  
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3.3 MATERIALS AND METHODS 

3.3.1 Reagents 

 Nanopure water (18.2 MΩ), KNO3 (EM Science, Norwood, Ohio), (NaOH, 

EDTA, HNO3 from Flinn Scientific Inc., Batavia, Illinois) were used for all extractions. 

All reagents used were of high analytical purity. 

 

3.3.2 Sequential extraction procedure 

 Speciation of metals in the composted sludge (biosolids) was conducted using the 

modified Tessier protocol designed by Urasa and Macha (Table 3.1).11 Sequential 

extraction was performed on 2.0000 g dried samples of Soil Therapy Compost (STC), 

Nacogdoches Wastewater Sludge (NWWS), and Lufkin Wastewater Sludge (LWWS) in 

50 mL Beckman polypropylene centrifuge tubes with polyethylene caps. The fractions 

were fractionated into the exchangeable and adsorbed (KNO3 and distilled deionized 

water), organically bound fraction (NaOH), carbonate fraction (EDTA), and 

sulfide/residual fraction (HNO3). After carrying out all the chemical extractions, the 

samples were shaken at 200 rpm using a Thermo Scientific MaxQ 6000 

incubated/refrigerated stackable shaker at different temperature and hours as given by the 

modified Tessier protocol (Table 3.1). The samples were centrifuged using Beckman 

Coulter Centrifuge at 2,500g for 30 minutes at room temperature (25 °C) using 20-JA 

rotor. Thereafter, the samples were filtered using a digi-filter with a 0.45 µm hydrophilic 

teflon filter to get rid of large particles prior to analysis using ICP-OES. 
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Table 3.1: Summary of the Modified Tessier Successive Extraction Protocol.11 

     STEP/REAGENT STIRRING TIME 

(HRS) 

METAL EXTRACTION 

1. 0.5 M KNO3 16 Exchangeable 

2. 18.2 MΩ Nano-pure H2O 2 (done 3 times) Adsorbed 

3. 0.5 M NaOH 16 Organically bonded 

4. 0.05 M EDTA 6 Carbonate 

5. 4 M HNO3 16 (70-80 °C) Sulfide/residual 

 

 

3.4 RESULTS 

 For ease of discussion, the metals are divided into Group IA, IIA, IIIA, IVA, VA, 

VIA, and transition metals. Figures 3.1 – 3.13 show the sequential extraction of 26 metals 

(As, B, Ba, Ca, Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, P, Pb, Se, V, Zn, S, Ni, Al, Cr, 

Sr, Li, Cs). The metal speciation/fractions are divided into 5 steps, namely, the 

exchangeable fraction (EXH, step 1), the adsorbed fraction (ADS, step 2), the organically 

bonded fraction (OB, step 3), the carbonate fraction (CB, step 4), and the sulfide/residual 

fraction (SR, step 5). The sum of the exchangeable and adsorbed fraction provides 

information on the mobile fraction or bioavailable fraction. 

 

3.4.1 Group IA Elements 

Group IA elements (Li, Na, K, Cs) were extracted from the biosolids into the 5 

fractionation steps. Figures 3.1, 3.2 and 3.3 show the sequential extraction of group 1A 

elements in the biosolid samples. Although group 1A elements are known to be readily 

soluble, Li was found below detection in the first 4 fractionation steps (EXH, ADS, OB, 
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and CB). Most of Li was found in the sulfide/residual fraction in the biosolid samples 

(STC (1.92 ± 0.01 ppm, NWWS (1.22 ± 0.01 ppm), and LWWS (0.68 ± 0.01 ppm). Li 

can occur as lithium sulfate (Li2SO4). Ingestion of lithium sulfate can lead to chronic 

kidney failure and diarrhea.27 In all biosolid samples, K was the most bioavailable 

element with the following percents; STC (92%), NWWS (89%) and LWWS (89%). 

Thus, K is highly bioavailable for plants. Although K is an essential nutrient for both 

plant and animals, high intake of potassium in humans can result in hyperkalemia; a 

condition where the kidney lacks the ability to get rid of enough potassium from the 

body. 28 Na and Cs were more abundant in the organically bonded fraction compared to 

other fractions. The percentage composition of Na and Cs in the organically bonded 

fraction in all three biosolid samples are STC (47 - 63%), NWWS (39 - 47%), and 

LWWS (3.7 - 9.9%).  

Thus, Li occurs predominantly in the sulfide fraction, K occurs mostly in the 

mobile fraction, while Na and Cs are predominant in the organically bonded fraction. in 

biosolid samples. 

 

3.4.2 Group IIA Elements (Mg, Ca, Sr, Ba) 

 Figures 3.4, 3.5 and 3.6 show the sequential extraction of group IIA elements 

(Mg, Ca, Sr, Ba). Mg had the highest concentration in the mobile fraction in all biosolids; 

STC (31 ± 4%) > LWWS (59 ± 3%) > NWWS (47 ± 12%) while Ba had the lowest 

percentage, namely,  STC (1.10 ± 0.02%) > LWWS (0.34 ± 0.02%) > NWWS (0.10 ± 
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0.02%). Barium (Ba) has the highest composition in the sulfide/residual fraction in all 

biosolids, and was present in the sulfide fraction as follows; STC (82 ± 1 %), NWWS 

(91± 2%), and LWWS (85 ± 1%). Ba exists in various forms including barium sulfate 

(BaSO4), barium sulfite (BaSO3), and barium hydrogen sulfate Ba(HSO4)2. Barium 

sulfate (BaSO4) can persist for a long time if released into the environment. When Ba 

enters the body through ingestion, it is usually excreted. 29 Ca had the highest percentage 

in the carbonate fraction: STC (29 ± 14%), NWWS (28 ± 13%) and LWWS (36 ± 15%). 

The investigation of 80Sr and 83Sr isotopes in the biosolid samples showed similar 

concentrations in all chemical fractions. In general, most metals in group IIA are 

dominant in the sulfide fraction. 

 

3.4.3 Group IIIA Elements (Al, B) 

 Figure 3.7 shows the sequential extraction of B and Al in the biosolids. Boron was 

readily present in the mobile phase. This implies that it can be readily taken up by plants. 

Ingestion of boron can affect the stomach, liver, kidney, intestine or even lead to death 

over a short time. NWWS has a lower percentage of B in the mobile fraction (19 ± 0%) 

followed by STC (30 ± 0%) and LWWS (31 ± 0%). Except in STC (0.1 ± 1.0%) samples 

Al concentration was found below detection in the mobile phase in all biosolids. In STC, 

Al has a higher concentration in the sulfide/residual fraction (52 ± 15%). The boron 

concentration in NWWS and LWWS was higher in the sulfide fraction. In NWWS, B 

percent was higher (69.0 ± 0.2%) compared to Al (63 ± 39%). In LWWS B (59.0 ± 0.1 
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%) was greater than Al (47 ± 2%). Al can exist in forms including aluminum sulfate 

Al2(SO4)3, aluminum sulfite Al2(SO3)3, aluminum sulfide Al2S3, aluminum thiosulfate 

Al2(S2O3)3, and aluminum hydrogen sulfate Al(HSO4)3. High concentration of Al can 

result in brain and bone disease in children.30 In conclusion, B and Al were predominant 

in the sulfide/residual fraction. 

 

3.4.4 Group IVA Elements (Pb,) 

 Lead (Pb) was the only group IVA element that was fractionated in the biosolid 

samples. Figure 3.8 shows the sequential extraction of Pb in STC, NWWS and LWWS. 

Pb was not detected in the bioavailable fraction in all biosolid samples. Pb was found 

mostly in the sulfide fraction vis-a-vis all other fractions (STC (76 ± 0%), NWWS (86.0 

± 0.1%), LWWS (70.0 ± 0.1%). Pb can occur as lead (iv) sulfate Pb(SO4)2, lead (iv) 

sulfite Pb(SO3)2, lead (ii) sulfate, (PbSO4) and lead (ii) sulfite (PbSO3). Ingestion of Pb 

can affect the blood, gastrointestinal tract, nervous systems, kidney, cardiovascular blood 

forming systems. Lead also inhibits red blood cell enzyme systems, and in high 

concentration can cause anemia.31,32,33 The lowest concentrations of Pb was found in the 

organically bonded fraction (STC (1.3 ± 0.0%), NWWS (4 ± 0%), LWWS (4.0 ± 0.1%)). 

In general, Pb is most dominant in the sulfide fraction in the biosolid samples. Pb was not 

detected in the mobile fraction which implies that it is less readily bioavailable to plants. 
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3.4.5 Group VA Elements (P, As) 

 Phosphorus and arsenic were selectively extracted into different chemical 

fractions. Figure 3.9 shows the sequential extraction of P and As in STC, NWWS and 

LWWS. In Soil Therapy Compost (STC), As was in a higher percentage in the mobile 

fraction (6 ± 0%) compared to P (2.4 ± 1.6%). Similarly, in NWWS, As (33 ± 0%) was 

found present in the mobile phase compared to P (15 ± 1%). In LWWS, P (10 ± 5%) and 

As (9 ± 0%) were both present in the mobile fraction in very close concentrations. In Soil 

Therapy Compost, P was in a higher percentage (42 ± 17%) compared to As (35 ± 0%) in 

the sulfide/residual fraction. Phosphorus can exist in forms such as diphosphorus 

pentasulfide (P2S5), tetraphosphorus heptasulfide (P4S7), diphosphorus trisulfide (P2S3), 

phosphorus sesquisulfide (P4S3), tetraphosphorus hexasulfide (P4S6), tetraphosphorus 

pentasulfide (P4S5).
34 The NWWS (41 ± 0%) and LWWS (64 ± 0%) had As in the 

highest concentration in the sulfide fraction. As can occur in forms such as arsenic 

trisulfide (As2S3), tetraarsenic tetrasulfide (As4S4), tetraarsenic trisulfide (As4S3), arsenic 

hydrogen sulfate As(HSO4)3, arsenic (ii) sulfite (AsSO3) and arsenic tetrasulfide (As2S4). 

Arsenic is a known carcinogen in humans. Arsenic can cause urinary bladder cancers, 

lung cancer, skin and kidney cancer.35 It can also result in blood and cardiovascular 

diseases.35 NWWS had highest concentration of P in the organically bonded fraction (32 

± 10%) while LWWS had the highest concentrations of P in the carbonate fraction (33 ± 

2%). 
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 In general, P and As are dominant in the sulfide fraction with percentages of 

(42.1%, 35%), (40.9%, 30.3%) and (64%, 30%) in STC, NWWS and LWWS, 

respectively. It is noted that the P and As are less dominant in the mobile fractions with 

percentages of (2.4%, 5.6%), (15%, 33.3%) and (9.9%, 8.5%) in STC, NWWS and 

LWWS, respectively.  

 

3.4.6 Group VIA Elements (S and Se) 

 Figure 3.10 shows the sequential extraction of S and Se in the three biosolid 

samples. S has the highest concentration in the mobile fraction in STC (44 ± 10.28%) and 

LWWS (48 ± 14.6%). In NWWS S (29 ± 10%) and Se (28 ± 0.026%) were found in 

comparable concentration in the bioavailable fraction. STC. The majority of Se was 

found in the organically bonded fraction in both NWWS (56 ± 0%) and LWWS (95 ± 

0%). Selenium is less toxic compared to arsenic, cadmium, and lead when ingested. The 

gastrointestinal tract and lungs usually absorb selenium readily. 36 In NWWS, Se was 

determined below detection in the sulfide fraction. In LWWS Se were found below 

detection in the sulfide and carbonate fraction. This implies that both NWWS and LWWS 

although quite similar might have some variations. Comparatively, S and Se are dominant 

in the mobile fraction and organically bonded fractions, respectively. 
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3.4.7 Transition Elements 

 Figures 3.11, 3.12, and 3.13 show the sequential extraction of transition elements 

(Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, V, Zn, Ni) in STC, NWWS, and LWWS, respectively. 

Cd, Cr, Co and V were not detected in the bioavailable fraction in STC. Both NWWS and 

LWWS had Co, Cr and V below detection in the bioavailable fractions. In STC, Mo had 

the highest percentage in the bioavailable fraction; Mo > (71.36 ± 0.01%) > Hg (59 ± 

0%) > Cu (2.4 ± 0.1%) > Mn (1.9 ± 0.1%) > Ni (1.36 ± 0.04%) > Zn (0.58 ± 0.11%) > Fe 

(0.20 ± 0.34%). In NWWS, Hg had the highest concentration in the mobile phase. Hg > 

(56 ± 0%) > Mo (50 ± 0%) > Cu (12.0 ± 0.1%) > Ni (9 ± 0%) > Cd (3.0 ± 0.1%) > Mn 

(1.0 ± 0.5%) > Zn (0.13 ± 0.05) > Fe (0.08 ± 0.06%). Hg (81 ± 0%) and Mo (50 ± 0%) 

had the highest concentrations in the mobile phase in LWWS.  

Cd was detected in the carbonate fraction (1.97 ± 0.13 ppm) and sulfide fractions 

(1.53 ± 0.02 ppm) in STC. Cd can occur in forms such as cadmium hydrogen sulfate 

Cd(HSO4)2, cadmium carbonate (CdCO3), cadmium sulfide (CdS), cadmium sulfite 

(CdSO3) and cadmium sulfate (CdSO4). The major effect of cadmium, either through 

digestion or inhalation from aerosols is proteinuria, a condition that affects and may 

damage the kidneys.37,38 Compared to other transition metals, plants can readily take up 

Cd. In STC, Fe showed the highest percent in the sulfide fraction (82 ± 25%). Some 

compounds of Fe include iron(ii)sulfate heptahydrate (FeSO4.7H2O), iron (iii) sulfate 

Fe2(SO4)3, iron(ii)sulfate (FeSO4), iron(iii)sulfite (Fe2(SO3)3), iron(ii)sulfite (FeSO3) and 

iron(iii)sulfide (Fe2S3).
39 In NWWS, Mn (75 ± 2 %), Ni (61± 0%), Zn (73 ± 2 %), V 
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(68.0 ± 0.2%), Fe (96 ± 10%), Cu (63 ± 1%) and Cr (97.0 ± 0.2%) were predominant in 

the sulfide fraction. The element Cu (8.7 ± 0.1%), Hg (13 ± 0%), V (12 ± 0%) and Mo (8 

± 0%) have their lowest concentration in the carbonate fraction.  

In LWWS, Cd (7.0 ± 0.1%), Cu (6 ± 1%), Fe (0.1± 0.1%), Zn (0.10 ± 0.03%), and 

Ni (16 ± 0%) have the lowest concentrations in the mobile fraction compared to other 

chemical fractions. Cd (79 ± 0%), Co (97 ± 0%), Cr (84.0 ± 0.1%), Cu (68 ± 1%), Fe (88 

± 48%), Zn (53 ± 2%), Ni (45 ± 0%) and Mn (50 ± 2%) were found mostly present in the 

sulfide fraction. Whereas Cd and Co were determined below detection in the organically 

bonded fraction, Hg and V were not detected in the carbonate and sulfide fractions. V 

was below detection in all chemical fractions apart from the organically bonded fraction 

(4 ± 0 ppm). 

In conclusion, most of the transition metals were dominant in the sulfide fraction. 

While Mn predominant in the sulfide fractions, it was also present in micro-

concentrations in the mobile or bioavailable fraction in biosolid samples.  

 

3.5 DISCUSSION 

Macroelements 

 Macroelements (Ca (STC (2168 ± 20 ppm), NWWS (1682 ± 10 ppm), LWWS 

(7342 ± 11 ppm)), Fe ((STC (25.69 ± 0.34), NWWS (16.99 ± 0.10 ppm), LWWS (7.49 ± 

0.07 ppm), K (STC (105140 ± 588 ppm), NWWS (117960 ± 205 ppm), LWWS (109980 

± 110 ppm)),  Mg (STC (417 ± 4 ppm),  NWWS (1973 ± 12 ppm), LWWS (2722 ± 3 
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ppm)), P ((STC (259 ± 2), NWWS (3332 ± 16 ppm), LWWS (2424 ± 5 ppm)), S (STC 

(2690 ± 10 ppm), NWWS (2979 ± 10 ppm), LWWS (9848 ± 15 ppm)) and Na (STC (643 

± 3 ppm), NWWS (2513 ± 5 ppm), LWWS (11750 ± 4 ppm)) were found in the 

bioavailable fraction in all biosolids samples. Al was the only macroelement below 

detection in both NWWS and LWWS. 

Microelements 

Microelements (As (STC (0.19 ± 0.00 ppm), NWWS (2.10 ± 0.01 ppm), LWWS 

(1.38 ± 0.01 ppm)), B (STC (5.34 ± 0.02 ppm), NWWS (6.82 ± 0.02 ppm), LWWS 

(15.42 ± 0.04 ppm)), Ba (STC (4.40 ± 0.02 ppm), NWWS (0.34 ± 0.02 ppm), LWWS 

(1.22± 0.01 ppm)), Hg (STC (4.10 ± 0.00 ppm), NWWS (3.95 ± 0.00 ppm), LWWS 

(4.07 ± 0.01 ppm)), Mn (STC (14.53 ± 0.10 ppm), NWWS (6.34 ± 0.48 ppm), LWWS 

(60.1 ± 0.7 ppm)), Mo (STC (1.59 ± 0.01 ppm), NWWS (1.54 ± 0.01 ppm), LWWS (3.80 

± 0.03 ppm), Ni (STC (0.17 ± 0.04 ppm), NWWS (1.69 ± 0.03 ppm), LWWS (3.79 ± 

0.01 ppm)), Zn (STC (3.11 ± 0.11), NWWS (0.60 ± 0.05 ppm), LWWS (1.35 ± 0.03 

ppm)) and Cu (STC (9.67 ± 0.08), NWWS (28.82 ± 0.11 ppm), LWWS (27.69 ± 0.72 

ppm)) were found in the bioavailable or mobile fraction in the biosolid samples, although 

some were in low concentrations.  
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Toxic elements 

Toxic elements Cr, Pb, Co, and V were not detected in the mobile fraction of the 

biosolids. Selenium was only detected in the mobile fraction in NWWS and LWWS 

while Cd was present in the bioavailable fraction in the three biosolid samples.  

Comparisons to other studies 

A sequential extraction analysis found Pb below detection in the mobile fraction 

which is similar to what is observed in this study.36 The non-toxic elements Ca, K, Mg, 

Na were readily present in mobile fraction, with K being the most readily bioavailable 

(92% ± 10). Ni which is a contaminant was found present in the mobile fraction, although 

at a lower concentration.38 Another analysis recorded that elements Cu, Fe, Cr, Pb, Cd, 

Ni, Zn and Mn were bioavailable in the composted sludge.12  Except for Cr and Pb, these 

elements were found to be bioavailable in the biosolids. Only STC showed no detectable 

Cd in the bioavailable fraction. The elements Pb, Ni, Cr, and Cd were found at higher 

concentrations in the sulfide or residual fraction of biosolids in another study.7 This was 

also the case with the biosolid samples except for Cd in STC and NWWS. One analysis 

showed that Zn had low concentrations in the residual fraction of the biosolid, and was 

found below detection in the mobile fraction.39 Comparing this with Zn found in the STC, 

Zn had the highest concentration in its residual fraction (61%) and the lowest 

concentration in the mobile fraction (0.58%). Both NWWS (73%) and LWWS (53%) 

showed the highest Zn concentrations in the residual fraction, while the lowest fraction of 

Zn in NWWS (0.13 ± 0.04%) and LWWS (0.18 ± 0.03%) was found in the mobile 
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fraction. This present analysis showed Cd to be mainly bonded to the carbonates.37 This 

is in accordance with the Cd in the soil therapy compost and LWWS. 

 

3.6 IMPLICATION OF SEQUENTIAL EXTRACTION DATA 

3.6.1 Readily Soluble Elements 

 Plants can only absorb an element, if the element is in soluble form. Group 1 

elements K, Li, Cs and Na are known to be readily soluble. These readily soluble 

elements can easily be taken up by plants. From the sequential extraction data, K is most 

readily soluble element in the biosolid samples. K is an essential macro-nutrient which 

readily mobile in plants and can be easily leached from the soil. K also enhances the 

rigidity of stalks in plants.38 

3.6.2 Uptake of Elements by Plants 

 The root is an important organ of the plant that enables plants to take up elements 

from the soil. Elements are present in soils in varying concentrations. The average 

concentrations of some elements in the soil are given.: Al (72000 ppm), As (7.2 ppm), B 

(33 ppm), Ba (580 ppm), Ca (24000 ppm), Co (9.1 ppm), Cr (54 ppm), Cu (25 ppm), Fe 

(26000 ppm), Hg (0.09 ppm), K (15000 ppm), Li (24 ppm), Mg (9000 ppm), Mn (550 

ppm), Mo (0.97 ppm), Na (12000 ppm), Ni (19 ppm), P (430 ppm), Pb (19 ppm), S (1600 

ppm), Se (0.39 ppm), Sr (240 ppm) and Zn (60 ppm).39 Since the soil already contain 

some elements, amendment of the soil will lead to large concentration of the elements in 

the soil. Continual land use of the biosolids can lead to deposition of very large 
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concentration of toxic metals such as As, Pb and Hg into the soil. The plants can also take 

up some of these toxic metals. Consumption of such plants can lead several health 

disorders in humans. 

 

3.7 CONCLUSIONS 

In conclusion most of the elements were found predominantly in the sulfide 

fraction in biosolid samples. K was the most mobile element in the biosolid samples. K is 

an essential nutrient needed for plant growth, the high concentration of K in the biosolid 

samples supports their use as soil supplement to boost crop production. Other essential 

nutrients for plant growth were also present in the mobile fraction (Ca (STC (2168 ± 20 

ppm), NWWS (1682 ± 10 ppm), LWWS (7342 ± 11 ppm)), Mg (STC (417 ± 4 ppm),  

NWWS (1973 ± 12 ppm), LWWS (2722 ± 3 ppm)), P ((STC (259 ± 2), NWWS (3332 ± 

16 ppm), LWWS (2424 ± 5 ppm)) and Mn (STC (14.5 ± 0.1 ppm), NWWS (6.3 ± 0.5 

ppm), LWWS (60 ± 1 ppm)). The metals Co, Pb, and Cr were found below detection in 

all the biosolid samples. Toxic pollutants (As, Hg, and Cd) were determined present in 

the mobile fraction. Although these heavy metals are below the maximum concentration 

limit, continual land use of the biosolids can result in the accumulation of these toxic 

metals in the soil. The sequential extraction provides information on the mobility of 

metals, the determination of the total metal content in the root, shoot and leaves of plants 

will further help determine the percent of the metals the plant take up.  
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FIGURES 

a) Li      b) Na 

 

c) K      d) Cs 

 

Figure 3.1: Sequential fractionation of Group 1A metals, Li (a), Na (b), K (c), and Cs (d) 

in soil therapy compost (1 = exchangeable fraction, 2 = adsorbed fraction, 3 = organically 

bonded fraction, 4 = carbonate fraction, and 5 = sulfide/residual fraction).  
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a) Li        b) Na 

  

c) K        d) Cs 

 

Figure 3.2: Sequential fractionation of Group 1A metals, Li (a), Na (b), K (c), and Cs (d) 

in Nacogdoches wastewater sludge (1 = exchangeable fraction, 2 = adsorbed fraction, 3 = 

organically bonded fraction, 4 = carbonate fraction, and 5 = sulfide/residual fraction).  
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a) Li       b) Na 

 

c) K         d) Cs 

 

Figure 3.3: Sequential fractionation of Group 1A metals, Li (a), Na (b), K (c), and Cs (d) 

in Lufkin wastewater sludge (1 = exchangeable fraction, 2 = adsorbed fraction, 3 = 

organically bonded fraction, 4 = carbonate fraction, and 5 = sulfide/residual fraction).  
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a) Mg      b) Ca 

 

  

c) 83Sr       d) 80Sr  
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e) Ba 

 

Figure 3.4: Sequential fractionation of Group 2A metals, Mg (a), Ca (b), 83Sr  (c), 80Sr 

(d), and Ba (e) in soil therapy compost (1 = exchangeable fraction, 2 = adsorbed fraction, 

3 = organically bonded fraction, 4 = carbonate fraction, and 5 = sulfide/residual fraction).  
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a) Mg      b) Ca 

 

 

c) 83Sr       d) 80Sr  
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e) Ba 

 

Figure 3.5: Sequential fractionation of Group 2A metals, Mg (a), Ca (b), 83Sr (c), 80Sr (d), 

and Ba (e) in Nacogdoches wastewater sludge (1 = exchangeable fraction, 2 = adsorbed 

fraction, 3 = organically bonded fraction, 4 = carbonate fraction, and 5 = sulfide/residual 

fraction). 
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a) Mg       b) Ca 

 

 

c) 83Sr      d) 80Sr  
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e) Ba 

 

Figure 3.6: Sequential fractionation of Group 2A metals, Mg (a), Ca (b), 83Sr (c), 80Sr (d), 

and Ba (e) in Lufkin wastewater sludge (1 = exchangeable fraction, 2 = adsorbed 

fraction, 3 = organically bonded fraction, 4 = carbonate fraction, and 5 = sulfide/residual 

fraction). 
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I) 

a) B      b) Al 

 

 

 

II) 

a) B       b) Al 
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III) 

a) B      b) Al 

 

Figure 3.7: Sequential fractionation of B and Al in STC (panel I), NWWS (panel II), and 

LWWS (panel III). (1 = exchangeable fraction, 2 = adsorbed fraction, 3 = organically 

bonded fraction, 4 = carbonate fraction, and 5 = sulfide/residual fraction). 
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a) Pb 

 

b)  

 

c) Pb 
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Figure 3.8: Sequential fractionation of 

Pb in STC (a), Nacogdoches (b), and 

Lufkin (c) Lufkin wastewater sludge (1 

= exchangeable fraction, 2 = adsorbed 

fraction, 3 = organically bonded 

fraction, 4 = carbonate fraction, and 5 = 

sulfide/residual fraction). 
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I) 

a)      b) As 

 

 

II) 

a) P      b) As 
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III) 

a) P       b) As 

 

Figure 3.9: Sequential fractionation of (P, As) in STC (panel I), NWWS (panel II), and 

LWWS (panel III). (1 = exchangeable fraction, 2 = adsorbed fraction, 3 = organically 

bonded fraction, 4 = carbonate fraction, and 5 = sulfide/residual fraction). 
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I) 

a) S      b) Se 

 

II) 

a) S      b) Se 
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III) 

a) S      b) Se     

  

Figure 3.10: Sequential fractionation of S, Se in STC (panel I), NWWS (panel II), and 

LWWS (panel III). (1 = exchangeable fraction, 2 = adsorbed fraction, 3 = organically 

bonded fraction, 4 = carbonate fraction, and 5 = sulfide/residual fraction). 
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a) Cd   b) Co 

 

*The error bar on the carbonate fraction of Cd is as a result of the different amount recovered 

from the triplicate samples during extraction. 

c) Cu      d) 119Cr  
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e) 126Cr      f) Fe 

 

g) Hg       h) Mn 
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i) Mo       j) V 

k) 

k) Zn        l) Ni 

 

Figure 3.11: Sequential fractionation of Cd (a), Co (b), Cu (c), Cr (119) (d), Cr (126) (e), 

Fe (f), Hg (g), Mn (h), Mo (i), V (j), Zn (k), and Ni (l) in soil therapy compost  

(1 = exchangeable fraction, 2 = adsorbed fraction, 3 = organically bonded fraction, 4 = 

carbonate fraction, and 5 = sulfide/residual fraction). 
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a) Cd      b) Co    

 

c) Cu       d) 119Cr  
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e) 126Cr      f) Fe 

 

 

g) Hg       h) Mn 
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i) Mo       j) V 

 

k) Zn       l) Ni 

 

Figure 3.12: Sequential fractionation of Cd (a), Co (b), Cu (c), Cr (119) (d), Cr (126) (e), 

Fe (f), Hg (g), Mn (h), Mo (i), V (j), Zn (k), and Ni (l) in Nacogdoches wastewater sludge 

(1 = exchangeable fraction, 2 = adsorbed fraction, 3 = organically bonded fraction, 4 = 

carbonate fraction, and 5 = sulfide/residual fraction). 
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a) Cd      b) Co 

 

c) Cu        d) 119Cr  
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e) 126Cr      f) Fe 

 

 

g) Hg       h) Mn 
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i) Mo       j) V  

 

k) Zn       l) Ni 

 

Figure 3.13: Sequential fractionation of Cd (a), Co (b), Cu (c), Cr (119) (d), Cr (126) (e), 

Fe (f), Hg (g), Mn (h), Mo (i), V (j), Zn (k), and Ni (l) in Lufkin wastewater sludge (1 = 

exchangeable fraction, 2 = adsorbed fraction, 3 = organically bonded fraction, 4 = 

carbonate fraction, and 5 = sulfide/residual fraction). 
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Table 3.2: Concentration (ppm) of metals in different chemical fractions in Soil 

therapy compost (STC). (Bd = below detection) 
Elements Exchangeable 

Fraction (ppm) 

Adsorbed 

Fraction 

(ppm) 

Organically 

bonded 

Fraction 

(ppm) 

Carbonate 

Fraction (ppm) 

Sulfide/residual 

Fraction (ppm) 

As 0.11 ± 0.00 0.08 ± 0.00 0.07 ± 0.03 1.3 ± 0.0 1.2 ± 0.0 

B 2.70 ± 0.01 2.60 ± 0.01 4.2 ± 0.0 1.90 ± 0.01 6.20 ± 0.01 

Ba 4.40 ± 0.02 Bd 11 ± 0 78 ± 0 418 ± 1 

Cd Bd 0.14 ± 0.00 Bd 0.09 ± 0.01 0.08 ± 0.02 

Ca 1774 ± 11 394 ± 9 404 ± 1 4206 ± 14 7882 ± 21 

Cu 2 ± 0 8.0 ± 0.1 43.0 ± 0.1 56.0 ± 0.3 286 ± 1 

Fe 4.0 ± 0.1 22.0 ± 0.3 430 ± 1 1252 ± 4 11454 ± 25 

Hg 1.1 ± 0.0 3.0 ± 0.0 0.96 ± 0.00 0.92 ± 0.00 0.98 ± 0.00 

K 55000 ± 228 50140 ± 360 4888 ± 7 1760 ± 2 2238 ± 13 

Mg 344 ± 2 73 ± 2 10.2 ± 0.1 115 ± 1 826 ± 3 

Mn 11 ± 0 3.70 ± 0.04 31 ± 0 213 ± 2 507 ± 1 

Mo 0.95 ± 0.01 0.64 ± 0.01 0.51 ± 0.00 Bd 0.12 ± 0.00 

Na 536 ± 1 107 ± 2 51120 ± 123 17661 ± 67 12356 ± 55 

P 32 ± 0 227 ± 1 2718 ± 9 3174 ± 6 4468 ± 17 

Zn 2.5 ± 0.1 0.64 ± 0.01 74.0 ± 0.3 135 ± 1 334 ± 1 

S 1873 ± 5 817 ± 5 748 ± 1 620 ± 1 2046 ± 5 
83Sr  7 ± 0 1 ± 0 2.70 ± 0.01 23.0 ± 0.1 67.00 ± 0.05 
80Sr  6.80 ± 0.03 1.0 ± 0.0 2.70 ± 0.01 23.0 ± 0.1 67.5 ± 0.2 

Pb Bd Bd 0.28 ± 0.00 4.90 ± 0.03 16.73 ± 0.04 

Co Bd Bd Bd Bd 5.32 ± 0.02 

V Bd Bd 2.70 ± 0.01 1.700 ± 0.002 7.7 ± 0.03 

Se Bd Bd 0.034 ± 0.023 Bd Bd 

Ni 0.17 ± 0.04 Bd 1.500 ± 0.003 1.300 ± 0.004 10.00 ± 0.02 

Al Bd 4.0 ± 0.6 2278 ± 5 1522 ± 0 4124 ± 15 
119Cr  Bd Bd 0.630 ± 0.002 2.2 ± 0.0 17 ± 0 
126Cr  0.05 ± 0.02 Bd 0.45 ± 0.00 1.5 ± 0.0 11 ± 0 

Li Bd Bd Bd Bd 1.90 ± 0.01 

Cs 3.1 ± 0.1 Bd 163 ± 0 102 ± 0.2 78 ± 0 
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Table 3.3: Concentration (ppm) of elements in different chemical fractions in 

Nacogdoches wastewater sludge (NWWS). (Bd = below detection) 
Elements Exchangeable 

Fraction 

(ppm) 

Adsorbed 

Fraction (ppm) 

Organically 

Bonded 

Fraction 

(ppm) 

Carbonate 

Fraction 

(ppm) 

Sulfide/Residual 

Fraction (ppm) 

As 1.3 ± 0.0 0.80 ± 0.01 1.00 ± 0.01 0.6 ± 0.0 2.60 ± 0.04 

B 5.20 ± 0.01 1.70 ± 0.01 2.80 ± 0.01 1.80 ± 0.01 25 ± 0 

Cd Bd 0.085 ± 0.05 0.6 ± 0.0 0.1 ± 0.0 0.15 ± 0.22 

Ca 1363 ± 6 319 ± 3 53 ± 0 3160 ± 13 6398 ± 41 

Cu 22 ± 0 6.8 ± 0.040 38.0 ± 0.1 21.0 ± 0.1 150 ± 1 

Fe 1.90 ± 0.04 15 ± 0.059 237 ± 1 738 ± 9 21260 ± 157 

Hg 1.0 ± 0.0 2.9 ± 0.001 1 ± 0 0.940 ± 0.001 1.000 ± 0.002 

K 48500 ± 96 69460 ± 109 6838 ± 27 3538 ± 12 4774 ± 46 

Mg 1712 ± 8 261 ± 4 6.8 ± 0.1 205 ± 1 2048 ± 14 

Mn 5.7 ± 1 0.66 ± 0.031 13.0 ± 0.2 134 ± 1 455 ± 2 

Mo Bd 1.5 ± 0.01 0.91 ± 0.01 0.25 ± 0.00 0.32 ± 0.01 

Na 1769 ± 1 745 ± 4 45440 ± 55 24200 ± 18 25540 ± 103 

P 434 ± 9 2898 ± 7 7142 ± 36 5278 ± 19 6846 ± 65 

Se 0.47 ± 0.01 0.58 ± 0.010 2.00 ± 0.01 0.53 ± 0.01 Bd 

Zn 0.45 ± 0.03 0.15 ± 0.012 48 ± 0 72 ± 1 332 ± 2 

S 1678 ± 3 1301 ± 7 1692 ± 7 1194 ± 3 4486 ± 43 

Ni 1.70 ± 0.03 Bd 3.3 ± 0.0099 2.00 ± 0.01 11.0 ± 0.09 
83Sr  9 ± 0 0.67 ± 0.016 0.240 ± 0.001 14.0 ± 0.1 69 ± 1 
80Sr  9 ± 0 0.67 ± 0.016 0.240 ± 0.001 14.0 ± 0.1 69 ± 1 

Cs 11.0 ± 0.1 7 ± 0.11 159 ± 0 119 ± 0 114.0 ± 0.1 

Pb Bd Bd 0.55 ± 0.01 2.00 ± 0.01 13.0 ± 0.1 

Co Bd Bd Bd Bd 14 ± 0 

Ba 0.34 ± 0.02 Bd 0.370 ± 0.002 35,0 ± 0.1 374 ± 2 

V  Bd Bd 4.00 ± 0.03 2.200 ± 0.004 13 ± 0 

Al Bd Bd 1344 ± 8 733 ± 2 3525 ± 39 
119Cr  Bd Bd 0.066 ± 0.001 0.70 ± 0.01 22.0 ± 0.2 
126Cr  Bd Bd 0.088 ± 0.001 0.410 ± 0.002 12.0 ± 0.1 

Li Bd Bd Bd Bd 1.20 ± 0.01 

Co Bd Bd Bd Bd 14.0 ± 0.1 

Ba 0.34 ± 0.02 Bd 0.370 ± 0.002 35 ± 0 375 ± 2 
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Table 3.4: Concentration (ppm) of elements in different chemical fractions in Lufkin 

wastewater sludge (LWWS). (Bd = below detection) 

Elements Exchangeable 

Fraction 

(ppm) 

Adsorbed 

Fraction 

(ppm) 

Organically 

Bonded 

Fraction 

(ppm) 

Carbonate 

Fraction 

(ppm) 

Sulfide/Residual 

Fraction (ppm) 

As 0.970 ± 0.003 0.41 ± 0.00 1.100 ± 0.002 3.40 ± 0.02 10 ± 0 

B 8.30 ± 0.03 7.1 ± 0.0 3.6 ± 0.0 1.70 ± 0.01 29 ± 0 

Cd Bd 0.1 ± 0.0 Bd 0.024 ± 0.014 0.11 ± 0.01 

Ca 6310 ± 9 1032 ± 1 46.0 ± 0.2 8602 ± 15 7804 ± 39 

Cu 21 ± 1 7.0 ± 0.1 69 ± 0 57 ± 0.23 333 ± 1 

Fe 1.00 ± 0.01 6.2 ± 0.1 200 ± 1 1497 ± 16 13038 ± 48 

Hg 0.95 ± 0.00 3.1 ± 0.0 0.94 ± 0.00 Bd Bd 

K 46720 ± 43 63260 ± 67 6242 ± 5 3684 ± 18 3652 ± 9 

Mg 2210 ± 3 512 ± 1 Bd 388 ± 4 1524 ± 8 

Mn 48 ± 1 12 ± 0 17 ± 0 472 ± 2 541 ± 2 

Mo 0.85 ± 0.01 3 ± 0 2 ± 0 0.9 ± 0.0 0.78 ± 0.00 

Na 2638 ± 2 9112 ± 2 46040 ± 14 27240 ± 15 20140 ± 82 

P 637 ± 3 1787 ± 2 6648 ± 4 8130 ± 12 7338 ± 22 

Zn 1.00 ± 0.03 Bd 82.00 ± 0.05 273 ± 2 399 ± 2 

S 6770 ± 11 3078 ± 4 3174 ± 5 2438 ± 3 4930 ± 3 

Ni 4.00 ± 0.01 Bd 5 ± 0 4.5 ± 0.0 11 ± 0 
83Sr  26 ± 0 3.30 ± 0.01 0.39 ± 0.00 46 ± 0.24 148 ± 1 
80Sr  26 ± 0 3.30 ± 0.01 0.41 ± 0.00 47 ± 0.3 116 ± 0 

Cs 18 ± 0 6.7 ± 0.2 156 ± 0 69 ± 0 Bd 

Pb Bd Bd 1.00 ± 0.012 7.6 ± 0.1 20 ± 0. 

Co Bd Bd Bd 0.27 ± 0.03 9.5 ± 0 

Ba 1 ± 0 Bd 0.270 ± 0.003 53.0 ± 0.3 301 ± 1 

Se 0.3 ± 0.0 Bd 2 ± 0 Bd Bd 

V Bd Bd 3.9 ± 0.0 Bd Bd 

Al Bd Bd 2315 ± 1 1552 ± 4 3492 ± 2 
119Cr  Bd Bd 0.17 ± 0.00 4.4 ± 0.0 25 ± 0 
126Cr  Bd Bd 0.18 ± 0.00 2.8 ± 0.0 16 ± 0 

Li Bd Bd Bd Bd 0.68 ± 0.01 
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Table 3.5: Sum of concentrations (ppm) of metals in different chemical fractions 

and their total metal content in soil therapy compost (STC). (Bd = below detection) 

Elements Sum of fractions (ppm) Concentration of total metal 

digestion (ppm) 

As 3.4 5.5 ± 0.6 

B 18 Bd 

Ba 511 308 ± 14 

Cd 0.31 0.19 ± 0.07 

Ca 14660 11760 ± 1358 

Cu 395 338 ± 14 

Fe 13162 13352 ± 2731 

Hg 7.0 Bd  

K 114026 2207 ± 82 

Mg 1369 1362 ± 98 

Mn 765 794 ± 39 

Mo 2.2 3.9 ± 0.9 

Na 81780 668 ± 92 

P 10619 8623 ± 426 

Zn 547 409 ± 14 

S 6104 2838 ± 89 
83Sr  100 - 
80Sr  101 - 

Pb 22 17 ± 1 

Co 5.3 14 ± 0 

V 12 12 ± 2 

Se 0.034 Bd 

Ni 13 17 ± 0 

Al 7928 12424 ± 824 

119Cr  19 4.3 ± 0.2 
126Cr  13 - 

Li 1.9 - 

Cs 347 - 
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Table 3.6: Sum of concentrations (ppm) of metals in different chemical fractions 

and their total metal content in Nacogdoches Wastewater Sludge (NWWS). (Bd = 

below detection) 

Elements Sum of fractions (ppm) Concentration of total metal 

digestion (ppm) 

As 6.3 12 ± 1 

B 36 107 ± 21 

Cd 0.90 Bd 

Ca 11294 18738 ± 1644 

Cu 238 386 ± 35 

Fe 22252 32890 ± 2695  

Hg 7.0 Bd  

K 133110 6126 ± 229 

Mg 4234 7293 ± 647 

Mn 608 1136 ± 102 

Mo 3.0 7.3 ± 1 

Na 97693 Bd 

P 22598 26102 ± 1522 

Se 3.2 Bd 

Zn 452 810 ± 71 

S 10351 8365 ± 331 

Ni 18 44 ± 4 
83Sr  93 - 
80Sr  93 - 

Cs 410 - 

Pb 15 27 ± 1 

Co 14 26 ± 4 

Ba 411 563 ± 45 

V  19 33 ± 3 

Al 5603 15591 ± 1692 
119Cr  23 17 ± 2 
126Cr  13 - 

Li 1.2 - 
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Table 3.7: Sum of concentrations (ppm) of metals in different chemical fractions and 

their total metal content in Lufkin Wastewater Sludge (LWWS). (Bd = below 

detection) 

Elements Sum of fractions (ppm) Concentrations of total metal digestion 

(ppm) 

As 16.24 20 ± 3 

B 50.25 Bd  

Cd 0.22 0.20 ± 0.03 

Ca 23793 21552 ± 3186 

Cu 486 531 ± 78 

Fe 14743 15163 ± 2212 

Hg 5.0 Bd  

K 123558 3328 ± 548 

Mg 4633 4116 ± 561 

Mn 1090 12623 ± 192 

Mo 7.6 7.7 ± 1.3 

Na 105170 524 ± 696 

P 24540 20855 ± 2594 

Zn 755 883 ± 127 

S 20390 12116 ± 1784 

Ni 23 33 ± 1.2 
83Sr  223.39 - 
80Sr  193.32 - 

Cs 249.21 - 

Pb 28 29 ± 3 

Co 9.8 25 ± 4 

Ba 355 319 ± 44 

Se 1.9 Bd 

V 3.9 7.8 ± 1.3 

Al 7360 12217 ± 1985 
119Cr  29 11 ± 2 
126Cr  19 - 

Li 0.68 - 
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CHAPTER 4 

INFLUENCE OF BIOSOLIDS UPON THE UPTAKE OF Mn and Cd BY RADISH 

(Raphanus sativus L.)  

4.1 ABSTRACT 

The use of biosolids in agriculture provides an essential source of plant nutrients and 

organic matter necessary for plant growth. But it can also result in the incorporation of 

heavy metals into the soil and the uptake by plants. The uptake of metals by plants 

depends on the nature of metals present in the biosolids. In this study, the influence of 

biosolids upon uptake of metals by radish was determined by conducting pot experiments 

with radish (Raphanus sativus L.) cultivated in perlite amended with biosolids at different 

compositions (0, 25, 50, 75, 100% w/w) treated with  100 ppm Mn and 100 ppm Cd. The 

effect of pH changes upon uptake of metals by plants was determined by cultivating 

radish (Raphanus sativus L.) at pH 6.70 and 7.30. The radish plants were harvested after 

6 weeks and analyzed for Mn, Cd and other metals (See Appendix A). The radish 

cultivated at pH 6.70 showed an increase in plant biomass upon addition of biosolids. 

Similarly, radish plants cultivated in cadmium treatment at pH 7.30 showed an increase 

in plant’s biomass up to 25% (w/w) biosolid composition followed by a decrease in 

biomass through 100%. Analysis of metal concentration in the root, shoot, and leaves of 

radish showed that Mn is accumulated in the leaves. However, Cd was mostly 
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accumulated in greater amounts in the root of radish plants. Comparatively, the [Cd] and 

[Mn] were higher in the roots than in the shoots or leaves at pH 6.70 than 7.30. 

Examination of pH in all pot samples after harvesting radish plants showed a progressive 

slight decrease in pH in samples treated with from 0% to 100% w/w STC. 

 

4.2 INTRODUCTION 

In the previous chapters, the spectroscopic characterization and thermal analysis of 

biosolids were discussed. In addition, the speciation and bioavailability of some metals in 

the biosolid samples were investigated. Mn and Cd were found in the bioavailable 

fraction of the biosolid samples (Mn: STC (2 ± 0%), NWWS (1.1 ± 0.1%), LWWS (6 ± 1 

%), Cd: STC (47 ± 0%), NWWS (9.5 ± 0.1%), LWWS (40 ± 0%)).  

In this chapter, the influence of biosolids and the effect of pH changes on metal 

uptake by radish plants (Raphanus sativus L.) is examined and discussed. This analysis is 

important for the assessment of the impact of the land application of biosolids to plants 

and humans. The effect of biosolids upon uptake of Mn (an essential metal), and Cd (a 

non-essential toxic metal) was determined by cultivating radish (Raphanus sativus L.) in 

perlite-soil therapy compost mixtures.  
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4.2.1 Sample studies of Mn treatments and their effects on plant biomass 

Manganese is one of the essential nutrients necessary for plant growth.1 Processes 

such as photosynthesis, nitrogen metabolism and chloroplast formation in plants depend 

on manganese.2 This significant role of Mn in plants is very important. Soils with neutral 

to high pH usually are usually deficient in Mn. Deficiency of Mn in plants can lead to 

yellowing of leaves and internal and interveinal chlorosis.2 The low phloem mobility of 

Mn results in typical yellowing of leaves which is usually found in younger leaves. 

Manganese is an essential element for human health, and is needed for development, 

metabolism, growth, and antioxidant system.3 Although Mn is an essential element, 

chronic exposure or ingestion can lead to manganism, a condition that causes neuronal 

death with symptoms associated with Parkinson’s disease.3 Different studies have been 

carried out to determine the influence of biosolids or other organic wastes on the uptake 

of Mn by plants. Maftoun et al.4 determined the effect of two organic wastes in 

combination with phosphorus on growth and chemical composition of spinach and soil 

properties. The study used four levels of composted waste (0, 1, 2 and 4% v/v), five rates 

of poultry manure (0, 1, 2, 3 and 4% v/v) and three levels of phosphorus (0, 25, and 50 

mg kg-1) as KH2PO4. From the study, it was found that the concentration of Mn decreased 

upon increase in the applied soil phosphorus. Spinach plants cultivated in both organic 

wastes accumulated more Mn concentration than the control plants. Spinach plants 

cultivated in soil amended with composted waste had higher concentrations of 

manganese compared to those cultivated in poultry manure.4  
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Ramachandran and D’Souza5 investigated the uptake of Mn by maize in soils 

amended with sewage sludge and city compost. The results obtained showed that Mn 

concentrations in the maize reduced significantly with increasing amounts of sludge used 

to amend the soil. The decrease in Mn concentration was attributed to the formation of 

insoluble organic complexes of Mn (with the organic matter from the biosolids).5 

Hechman et al.6 investigated the residual effects of sewage sludge on soybean. In this 

study, soybean was cultivated in different sludge rate (0, 56, 112, 224, 336 and 448 Mg 

ha-1) and pH 5.1 – 7.4. The results obtained, showed that the sludges added more Mn to 

the soil. The Mn content in soybean was affected by the soil’s Mn content and the soil 

pH. The highest Mn concentration were found in control plots with low pH.6  

Jamil and Bayan7 investigated the uptake of nutrients and heavy metals in lettuce in 

response to sewage application rate to calcareous soils. It was found that the 

concentration of Mn in the shoot of the lettuce was the highest at the two highest sewage 

sludge application rates (80 and 160 Kg ha-1). No significant difference in Mn 

concentration were found at other sewage sludge application rates (0, 40, 60 Kg ha-1).7 

Garcia et al.10 investigated the translocation and accumulation of heavy metals in the 

tissues of corn plants grown on sludge-treated strip-mined soils. The study found the 

highest concentration of Mn in the leaves. In addition, soils at lower pH had more Mn 

available to the corn plant.8 
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Sample Cadmium Studies, and Uptake by Biosolids 

Cadmium is a trace element needed by animals, plants and humans. The 

concentration of Cd in ores is low. Greenockite (CdS) is the major mineral of cadmium of 

importance. It is almost related to sphalerite (ZnS).9 It is also notable that Cd can 

complex with other organic compounds in soil.10,11 Cadmium has also been found in 

atmospheric trace amounts (0.27 – 15.5 ng/m3).12,13 

The major effect of cadmium, either through digestion or inhalation from aerosols is 

proteinuria; a condition that affects the kidney.14 Chronic exposure to cadmium can lead 

to renal failure, obstructive lung disease or cancer15  and bone defects at minimal 

concentrations.16 Cadmium is a toxic metal known to be readily bioavailable. 17,18,19 Thus, 

cadmium can be taken up by plants if the soil is contaminated. 

Different studies have been carried out to study biosolids uptake of cadmium. Brown 

et al.19 conducted a study to determine the phytoavailability of cadmium in long term 

biosolids-amended soils managed at low and high pH. The study was started 13 – 15 

years before planting. The biosolids used in the study had Cd concentrations of 13.4 and 

210 mg kg-1. Included in the study was a Cd salt treatment in which Cd was added to the 

soil at the same rate with the biosolids with Cd concentration at 100 Mg ha-1. Lettuce 

(Lactuca sativa var. longifolia) were cultivated in all the treatments. It was found that 

less Cd was taken up by the lettuce cultivated in biosolids-amended soils than those 

cultivated in soils with treated Cd. It was observed that the concentration of Cd in lettuce 

cultivated in low Cd concentration biosolids was not quite different from the control.19 
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Chaney et al.20 studied the relative uptake of cadmium by garden vegetables and fruits 

grown on long-term biosolids amended soil. The different vegetables (cabbage (Brassica 

oleracea), carrot (Daucus carota), potato (Solanum tuberosum), navy bean (Phaseolus 

vulgaris), tomato (Solanum lycopersicum), maize (Zea mays)) were selected from 

different classes or families cultivated on a long-term amended sludge and reference plot. 

This study was conducted at low and high pH levels to figure out the cadmium uptake 

patterns in relation to a reference crop, lettuce (Lactuca sativa), which was used as the 

indicator crop. The potential of a relative uptake index was examined. This relative 

uptake index can be used to determine the risk associated with transferring food 

cultivated with a cadmium-polluted soil to the food chain. It was found that in all 

vegetables, except for navy bean (Phaseolus vulgaris), the uptake of Cd was very low.20 

Lavado et al.21 studied how treatment of biosolids could affect availability and uptake 

of toxic elements Cd, Cr, Cu, Ni, and Pb in the soil. In this study, a hypothesis was put 

forward that non-digested biosolids have more potential toxic elements compared to the 

digested ones. In order to confirm the hypothesis, field experiments using maize (Zea 

mays L.) was set up using the digested biosolids and non-digested biosolids as treatments 

and with controls. It was discovered that the concentration of Cd in the maize plants and 

grains increased in the non-digested biosolids.21 

Marta and Raúl 22 carried out research to determine the heavy metal content in lettuce 

plants cultivated in biosolid compost. Varying amounts of compost biosolids 0 - 100% 

w/w, was used to cultivate lettuce plant in greenhouse conditions. It was observed that the 
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use of composted biosolid resulted in a 20% and 40% increment in the biomass 

accumulation. It was also discovered that the Cd concentrations in the leaves of the 

lettuce plants were found below detection in all treatments.22 Garrido et al.23 determined 

the influence of sewage sludge in soils upon the uptake of heavy metals by broad bean 

seeds (Vicia faba L.). The Cd was not detectable in the broad bean seeds, and a 

conclusion was drawn that the use of biosolids in broad bean crop might not involve any 

health or environmental risk.23 

The objective of this study was to determine whether biosolids competitively uptake 

Mn vis-a-vis and therefore depriving the radish (Raphanus sativus L.) of the needed 

essential nutrient. In addition, the suitability and the risk of using composted wastewater 

sludge for land use was investigated via determining the concentration of Cd and Mn in 

the root, shoot, and leaves of radish (Raphanus sativus L.). Although the current research 

investigation was devoted to examining Mn and Cd uptake, other metals were also 

examined, and are presented in Appendix. 

 

4.3 Effect of pH Changes upon Uptake of Mn and Cd by Radish (Raphanus sativus 

L.)  

There are different factors that can affect the uptake of metals by plants, they include; 

plant species, the properties of medium, the root zone, pH, and addition of chelating 

agent or fertilizer.24,25 
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In terms of plant species, some plants can hyperaccumulate toxic metals26 and 

produce larger biomass.27 The root zone of plants is also of special interest because they 

can absorb pollutants and store or use the pollutants for metabolism in the plant’s tissue. 

Notably, pollutants in the soil can be degraded by plant enzymes in the root.28, 29 In 

addition, the use of synthetic chelating agents can result in the mobility of heavy metals 

or pollutants into the soil.30 In soils with pH above 5.5 – 6, the metal availability to plants 

decreases, the use of a chelating agent might be needed in such alkaline soils. The uptake 

of metals by plants is usually affected by the formation of metal-ligand complexes in the 

soil which results in the mobility of the metals below the root zone changes.31 

 The ability of a soil to retain and supply nutrient depends on the soil’s cation and 

anion exchange capacities and the number of packing spaces for nutrients on the soil 

particles.32 The charge of the soil particles and the soil’s organic matter determines the 

cation and anion exchange capacity of the soil. Soils that are rich in organic matter have 

higher cation exchange capacity.32 This means they have higher buffering capacity and 

can bind more to cations such as calcium or potassium. pH affects the uptake of metals 

by plants because hydrogen ions take up space on the negative charges along the soil 

surface displacing the metals.32 The effect of metal uptake depends upon the size and 

charge of the nutrient molecules and whether they can be displaced through leaching or 

not. When metals such as Cu, Mn, Fe, Zn are dissolved in water, they produce 2 to 3 

positive charges (high size to charge ratio). These metals usually bind strongly to the 

surface of the soil particles. At a high pH the metal ions are tightly bound to the surface 
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of soil particles and are not readily found in soil solution. The metals ions become less 

available for uptake by plants. At low pH, the metals can stick to the soil surface, which 

makes them more readily available for plant uptake. On the other hand, relatively large 

element such as S and base-forming cations like Ca2+, Mg2+, K+ and Na+ do not bind 

tightly to soil particles. At high pH, these metals easily come off the soil particles and 

enter the soil solution. At low pH, they may not be available for plant uptake probably 

because of leaching.32 

 It is found that N, K, Ca S are more available for plants within pH of 6.5 to 8 

while boron, copper, iron, manganese, nickel and zinc are readily available for plant 

uptake within pH of 5 to 7.33,34 

In this study, the effect of pH upon Mn and Cd uptake by radish (Raphanus sativus L.) 

was investigated at two pHs 6.70 and 7.30. Based on other studies, an increase in pH is 

expected to lower metal concentrations. 

 

4.4 MATERIALS AND METHODS 

4.4.1 Chemical and Reagents 

Concentrated nitric acid (HNO3 15.8 M, Flinn Scientific Inc., Canada) H2O2 

(Sigma Aldrich, St. Louis, MO), CdCl2 (Sigma Aldrich, St. Louis, MO), NaOH (Flinn 

Scientific Inc.), ICP standard solution (SCP Science, Clark Graham, Quebec, Canada) 

were used. Hoagland solution was prepared from KNO3 (EM Science), Ca(NO3)2·4H2O 

(Frey Scientific), NH4H2PO4, KCl (Mallinckrodt / Analytical Chemical Reagent), 
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MgSO4·7H2O, Fe-EDTA, H3BO3, MnSO4·H2O, ZnSO4·7H2O, CuSO4·5H2O, H2MoO4, 

EDTA (all from Flinn Scientific Inc.), H2O2 (Sigma Aldrich). All reagents used were of 

of high analytical purity. Hoagland solution, a hydroponic nutrient solution is used for 

crop cultivation. Table 4.1 shows the chemicals and amount used in preparation of the 

Hoagland solution used in this study.35 

Materials: Perlite (Miracle-Gro, CA), Nacogdoches wastewater sludge (NWWS), Lufkin 

wastewater sludge (LWWS), Soil Therapy Compost (STC) were used in this study. 

 

4.4.2 Instrumentation 

The instruments used in this study include atomic absorption spectroscopy (AAS) 

and inductively coupled plasma – mass spectroscopy (ICP – MS). 

Atomic Absorption Spectroscopy (AAS)  

Figure 4.1 shows the schematic diagram of atomic absorption spectroscopy. AAS 

is used to quantitatively determines chemical elements using the absorption of optical 

light by free atoms in gaseous state (A = εcl).36 Atomic absorption spectroscopy can 

determine over 70 different elements in solution.36 Flames or graphite tube atomizers are 

often used to atomize samples37 while a hollow cathode lamp irradiates the atoms. The 

radiation moves through a monochromator which differentiates the element-specific 

radiation from other radiation sources, after which it is detected.37  
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Inductively Coupled Plasma- Mass Spectrometry (ICP-MS) 

 The inductively coupled plasma – mass spectrometry was used to determine the 

metal content in the root, shoot and leaves of the radishes cultivated. ICP -MS follows 

similar principle as in ICP-OES. However, it uses the isotopes of elements. 

 

4.4.3 Plants and Growth Conditions 

Pot experiments were set up in the Soil Science greenhouse at Stephen. F. Austin 

State University in Fall 2018. A total of 150 g of perlite/biosolid was used with 

increasing amounts of composted biosolids from Angelina-Neches Compost Facility 

(NCF) at various compositions (0%, 25%, 50%, 75% and 100% w/w). The experiments 

were set up in triplicates. There were three different set ups; (i) a control experiment 

(with samples not treated with 100 ppm Mn or 100 ppm Cd) (ii) pot samples treated with 

100 ppm Mn at the beginning of experiments, and (iii) pot samples treated with 100 ppm 

Cd at the beginning of each experiment.  

Three seeds of radish (Raphanus sativus L.) (from Burpee Garden Products Co., 

Warminster, PA) were planted per pot. Plants were watered every 3 days with 100 mL 

Hoagland solution. After six weeks of growth, the radish plants were harvested. The 

plants were rinsed with 18.2 MΩ water and the fresh and dried biomass of the plants 

weighed, and masses recorded. The radish plants (Raphanus sativus L.) were oven dried 

at 60 °C for 48 hours. 
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4.4.4 Determination of Mn and Cd in Radish Plants Using Inductively Coupled 

Plasma-Mass Spectrometry (ICP-MS) and Atomic absorption spectroscopy 

The dried plants samples were separated into the root, shoot and leaves and the 

masses recorded, and ground with mortar and pestle. The USEPA method 3050B was 

used for plant digestion. The ground powder was digested with 4 mL of 15.8 M HNO3 

(Flinn Scientific Inc) and 1 mL H2O2 in aliquot drops (Sigma Aldrich). The digested 

samples were filtered with 0.45 μm digi-fiter, and standard dilutions were prepared with 

18.2 MΩ water. Inductively coupled plasma-mass spectrometry (ICP-MS) and atomic 

absorption spectroscopy were then used to determine the metal content in the different 

root, shoot or leaf parts of radish (Raphanus sativus L.).  

 

4.4.5 Quality Control and Assurance 

 The quality control of this analysis was assured by analyzing standard solutions 

(10 ppm, 25 ppm, 50 ppm, and 100 ppm) in-between samples runs. The limit of detection 

(LOD) was determined as LOD = 3Sbl/m. 
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4.5 RESULTS 

4.5.1 Effect of Biosolids Composition on Plant Biomass 

4.5.1.1 Plants cultivated in biosolids treated with 100 ppm Cd at pH 6.70 and 7.30 

   Figures 4.2a and 4.2b show the biomass of radish plants cultivated in perlite-

compost mixture treated with 100 ppm of Cd at pH 6.70 and 7.30. The best plant growth 

was observed at 75% (w/w) for radish plants cultivated at pH 6.70 vis-à-vis plants with 

no Cd treatment. In general, there was an increase in plant biomass upon addition of 

biosolid in the order 75% > 100% > 50% > 0% > 25% (w/w).  

   

4.5.1.2 Plants cultivated in biosolids treated with 100 ppm Mn at pH 6.70 and 7.30 

Figures 4.3a and 4.3b show the biomass of radish plants cultivated in perlite-

compost mixture treated with 100 ppm of Mn at pH 6.70 and 7.30. At pH 6.70, the best 

plant growth was observed at 100%. The pattern of biomass yield is in the order 100% > 

75% > 25% > 50% > 0% (w/w).  

   As observed, the best growth was at 0% (w/w) for pH 7.30. Continuous decrease 

in the biomass was observed from 25% to 75% (w/w) composition of compost sludge.  
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4.5.2 Influence of Biosolids composition, and Effect of pH on Cd and Mn uptake by 

Radish (Raphanus sativus L.) 

4.5.2.1 Mn Concentrations in plants cultivated in biosolids treated with 100 ppm Mn 

at pH 6.70 and 7.30 

Figure 4.4a shows the concentration of Mn in the root, shoot, and leaves of radish 

plants cultivated with Mn treatment at pH 6.70. It is notable that the Mn concentration in 

the root and shoot of radish increased from 0% to 25% w/w. The highest concentration of 

Mn in the root and shoot was found at 100% (w/w) and 75% (w/w), respectively. The 

highest Mn concentrations were found in the leaves at biosolid 75% (w/w).  

Figure 4.4b shows the concentration of Mn in the root, shoot and leaves of radish 

plants cultivated in manganese treatment at pH 7.30. The Mn concentration in the root, 

shoot and leaves of radish plants increased from 0% to 75% (w/w). An increase in the 

concentration of Mn in the root upon addition of biosolids is observed. The 

concentrations of the Mn in radish parts were found in the order [Mn]leaf > [Mn]shoot > 

[Mn]root. 

 

4.5.2.2 Cd Concentrations in plants cultivated in biosolids treated with 100 ppm Cd 

at pH 6.70 and 7.30 

Figure 4.5a shows the concentration of Cd in the root, shoot and leaves of radish 

cultivated in 100 ppm Cd treatment at pH 6.70. The Cd concentration in the root, shoot 

and leaves of radish plants decreases from 0% to 100% (w/w). The highest concentrations 
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of Cd were found in the root at 0% (w/w) biosolid composition. In general, there was a 

decrease in the concentration of Cd in the root upon addition of biosolids. Upon 

increasing the amount of the compost, the Cd concentration decreased in the order 

[Cd]root > [Cd]shoot > [Cd]leaf. 

Figure 4.5b shows the concentration of Cd in the root, shoot and leaves of radish 

plants cultivated in Cd treatment at pH 7.30. The Cd concentration in the roots was found 

less than 0.3 mg/kg. The concentration of Cd in plant parts decreased in the order [Cd]root 

> [Cd]shoot > [Cd]leaf with the highest concentration of Cd in the root and shoot at 0% 

(w/w) compost. The concentration of Cd in the leaves was found below 0.04 mg/kg.  

 

4.5.3 Interelemental Interactions between Mn and Cd 

 In order to understand the synergistic effect of Mn on the uptake of Cd by plants 

and vice versa, radishes were cultivated in perlite soil therapy compost mixtures treated 

with 100 ppm of Cd and 100 ppm Mn. 

 

4.5.3.1 Mn Concentrations in plants cultivated in biosolids treated with 100 ppm Cd 

at pH 6.70 and 7.30 

Figure 4.6a shows the concentration of Mn in the root, shoot and leaves of radish 

plants cultivated in cadmium treatment at pH 6.70. The Mn concentration in the root of 

radish plants increases from 0% to 75% (w/w). The highest concentration of Mn in the 
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shoot was found at 50% (w/w). The concentration of Mn in the leaves increased upon 

addition of biosolids.  

Figure 4.6b shows the concentration of Mn in the root, shoot and leaves of radish 

plants cultivated in Cd treatment at pH 7.30. The Mn concentration in the root decreased 

upon addition of biosolids up to 25% (w/w). The highest concentration of Mn in the root 

and shoot was found at 75% (w/w). Concentration of Mn was accumulated most in the 

leaves. Mn concentration in the leaves increased upon increment in the composition of 

the sludge from 25% to 100% (w/w). The highest concentration of Mn was found at 

100% (w/w). Relatively less amounts of Mn were uptaken by plants when treated with 

each metal. 

4.5.3.2 Cd Concentrations in plants cultivated in biosolids treated with 100 ppm Mn 

at pH 6.70 and 7.30 

Figure 4.7a shows the concentration of Cd in the root, shoot and leaves of radish 

plants cultivated with Mn treatment at pH 6.70. The Cd concentration in the root, shoot 

and leaves of radish plants increases notably from 0% to 25% w/w. The highest 

concentration of Cd in the root was found at 25% (w/w) while the Cd was mostly 

accumulated in the shoot and leaves at 50% (w/w).  

Figure 4.7b shows the concentration of Cd in the root of radish plants cultivated 

in Mn treatment at pH 7.30. Cd concentration was found at low concentrations in the 

varying compost composition. The highest concentration of Cd in the root and shoot was 

found at 50% and 75% (w/w) respectively. The concentration of Cd in the leaves was 
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lesser than the concentrations of Cd in the root and shoot. In general, there was a decrease 

in the concentration of Cd in the leaves upon addition of biosolids in the order [Cd]root > 

[Cd]shoot > [Cd]leaf.  

 

4.5.4 pH Determinations of Perlite and STC-Perlite mixture after harvesting Radish 

(Raphanus sativus L.) at pH 6.70 and 7.30 

4.5.4.1 pH of Perlite-STC mixture cultivated in 100 ppm Mn at pH 6.70 and 7.30 

 Figure 4.8a shows the pH of perlite and STC-perlite mixtures treated with 100 

ppm Mn at pH 6.70 after harvesting radish (Raphanus sativus L.). As observed, there was 

a decrease in the pH of both 0% (w/w) perlite and biosolids to 5.50 ± 0.06 and 4.85 ± 

0.03), respectively.  

 Figure 4.8b shows the pH of perlite and STC - perlite mixture with Mn treatment 

(pH 7.30) after harvesting radish (Raphanus sativus L.) plants. A similar trend to that 

observed at pH 6.30 was found here. There was a decrease in the pH of both perlite and 

biosolids to 5.53 ± 0.33 and 4.96 ± 0.10, respectively.  

 

4.5.4.2 pH of Perlite-STC mixtures cultivated in 100 ppm Cd at pH 6.70 and 7.30 

 Figure 4.9a shows the pH of perlite and STC – perlite mixture with Cd treatment 

at pH 6.70 after harvesting radish (Raphanus sativus L.). There was an observed decrease 

in the pH of perlite and biosolids to (5.61 ± 0.01) and (5.18 ± 0.10) respectively.  
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 Figure 4.9b shows the pH of perlite and STC-perlite mixture with 100 ppm Cd 

treatment at pH 7.30 after harvesting radish (Raphanus sativus L.). Similarly, the pH of 

the perlite and biosolids lowered to 5.09 ± 0.31, and (5.02 ± 0.12), respectively.  

The decrease in the pH of the biosolids and perlite observed in all treatments might be 

attributed to the presence of carboxylic acid in the root. 

 

4.6 DISCUSSION 

From literature studies, an increase in the biomass of the plants up to 25% (w/w) 

of composted sludge is shown.17 Usually a reduction is expected in the biomass of plants 

at compost-perlite mixtures (>75% (w/w)).17  

 In terms of the metal uptake by plants, a study done by Maftoun et. al.4 

determined the effect of organic wastes on Mn uptake by spinach. Result showed that 

spinach cultivated in organic wastes showed higher Mn concentrations than those 

cultivated in the control. This study showed radish plants cultivated in both Mn and Cd at 

pHs 7.30 and 6.60 with similar trends, namely, Mn concentration in the root, shoot and 

leaves increased upon the addition of the composted biosolid. In general, the control (0% 

perlite) had the lowest Mn concentration in all parts of the radish. In addition, Mn 

concentration of radish (Raphanus sativus L.) cultivated both in Mn and Cd treatment at 

pH 7.30 had lower metal concentrations compared to those cultivated in a lower pH 6.70. 

This research is in accord with published data that show the need for the uptake of Mn 

and its accumulation in the leaves of many plants. 
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 Some other investigations have shown that the uptake of Cd is relatively low in 

plants cultivated in biosolids-amended soils. Brown et al.19 observed that the 

phytoavailabilty of Cd in long term biosolids-amended soils. The Cd concentration was 

found lower in lettuce (Lactuca sativa) cultivated in the biosoilds-amended soils 

compared to those cultivated in soil. Similarly, Chaney et al.20 observed that the uptake of 

Cd was low in navy bean (Phaseolus vulgaris) cultivated in long-term biosolids amended 

soils. Our studies are in agreement with these studies, namely, the Cd concentration in the 

radish plants cultivated in both Mn and Cd treatment (pH 6.70 and 7.30) showed lower 

Cd concentration upon addition of biosolids, although increase in the biosolids increased 

the Cd concentration in the plants.  

Marta and Raul21 and Garrido et al.22 found Cd undetectable in lettuce and broad bean 

seeds (Vicia faba L.), respectively. This is in agreement with current studies in which Cd 

concentration in the leaves were relatively low for both 100 ppm Cd and 100 ppm Mn 

treatments. Koo et al.23 found that accumulation of Cd was mostly in the shoot and root 

of corn plants cultivated in biosolids-treated medium. This trend was observed in all 

studies in the current investigation. Thus, Cd was mostly accumulated in the root and 

shoot and not the leaves. In addition, the concentration of Cd in both Cd and Mn 

treatment at pH 7.3 was lower than those cultivated in a lower pH 6.70. 
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pH changes with increased biosolid compositions 

The pH changes in the area of the soil around the plant root (rhizosphere) are the 

most documented chemical reactions taking place at the soil-root interface.38,39 

Deherain,40 explained pH changes in the soil by cultivating root of beans on the surface 

of a marble polished plate.40 There was an acid secretion in the beans root which was 

strong enough to dissolve calcium carbonate leaving behind visible imprints on the 

rock.41 The acidic secretion of the beans root was attributed to carbonic and organic acids 

generated by the rhizosphere microflora and roots through root respiration and exudation. 

Changes in pH of rhizosphere has been attributed to the release of H+ or OH- ions.42 

Philippe et al.43 has shown that the release of charges caused by hydrogen ions (H+) and 

hydroxyl ions (OH) which counterbalances for the unbalanced cation-anion uptake at the 

soil – root interface is the major factor that causes root-induced pH changes in the 

rhizosphere (the region of soil around the plant roots).43 In addition, the ions passing the 

plasma membrane of the root cells such as the organic anions released by plants also play 

a role in root-induced pH changes.43 

 The different uptake of cations and anions by plant roots is the main source of the 

flow of H+ in the rhizosphere.44,45,46,47 The necessity to compensate for the electrical 

charges and regulation of cellular pH in the root cell is the major cause of the uptake of 

cations and anions in the root cell.46 The pH of the aqueous part of the cytoplasm is 

usually maintained with a range of values around 7.30 with an efficient pH-stat system.46 

The pH-stat system consists of both biochemical and biophysical (H+ exchange).44 The 
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biochemical components involve the generation and utilization of H+ as a result of 

carboxylation and decarboxylation of organic acids in the root cell.44,46 The pH of both 

the apoplasm or the cystol cannot be controlled by ATPs.48 The ATPs are considered to 

mainly act through energizing the transport of ions across the membrane which results in 

significant changes in pH.48 The uptake of cations is better understood with the 

mechanisms of ATPs.44 When cations are uptaken more than anions, hydrogen ion is 

released into the apoplasm to balance for the excess positive charges entering the cell. 

This results in an increase in the pH of the cytoplasm (cytosol).45,46 For instance, there is 

a larger uptake of K+ than SO2-
4 when a plant is supplied with a K2SO4 solution.45 But if 

more anions are uptaken than cations, hydroxyl ion, OH- will be released or hydrogen 

ion, H+ will be taken up from the apoplasm to balance for the excess negative charge 

entering the cell leading to a decrease in the pH of the cytosol.46 For instance, there is less 

uptake of Cd2+ than Cl- when a plant is supplied with a CaCl2 solution.45,46 This results in 

a strong relationship occurs between H+ release and cation-anion balance.49 

 Nitrogen plays a vital role in the cation-anion balance, because it taken up my 

most plant species at a higher rate46,50 Nitrogen can be taken up as a cation (NH4
+, 

ammonium), anion (NO3
-, nitrate) and as a neutral specie (N2), as in the case of nitrogen 

fixing plants such as legumes. A significant amount of nitrogen can be used as amino 

acids (positively, negatively or neutrally charged) directly by plants.51 Plants supplied 

with NO3
- will compensate for the corresponding excess negative charges by releasing 

equal amounts of OH- or HCO-
3 into the rhizosphere and thus leads to an increase in 
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rhizosphere pH.52,53,54,55 On the other hand, plants supplied with NH4
+ will compensate 

for the corresponding excess positive charges released by equal amounts of H+ in the 

rhizosphere leading to a decrease in rhizosphere pH. Plants such as legumes relying on 

atmospheric N2 will take up more cations than anions and thus leads to the release of 

excess positive charge as H+ and acidification of the rhizosphere.56,57,58 

 Apart from the ions taken up by plant roots, cation-anion balance also includes all 

ions that pass the root cell plasma membrane either through efflux or influx.59 The release 

of organic anions is a component of cation-anion balance and this can affect the net 

release of H+ and OH-. The possible origin of rhizosphere acidification is organic acids.60 

The level of root exudation by organic acids depends on the species and environmental 

constraints.61,62,63 For instance, studies carried out by Petersen and Bottger64 to determine 

the role of exuded organic acid in rhizosphere acidification using maize was minimal not 

exceeding 0.3%.64 In contrast, studies by Dinkelaker et al.59 using white lupin showed 

that cluster roots can release large amounts of organic anions that can precipitate and 

accumulate in the rhizosphere leading to rhizosphere acidification.59 The most commonly 

referred organic acids for their potential effect on rhizosphere acidification are citric acid, 

oxalic and malic acids.65 These organic acids are present in large amounts in the root cells 

where they contribute to buffering of cytosolic pH.46 Majority of plant species store these 

organic acids in the root cells vacuole while in some plant species, a significant amount 

may be exuded in the rhizosphere.61,22 The dissociation of these organic acids in the 

cytosol occurs because of low pK values compared to the neutral pH of the cytosol.44,45 
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Consequently, they are released as their conjugate base (organic anions) and not as 

acids.44,45 At pH around 7.30, citrate is present mostly as citrate3- (pK for citrate2-/citrate3- 

is 6.40 and pK for citrate−/citrate2− is 4.76), malate as malate2− (pK for malate−/malate2− 

is 5.11) and oxalate as oxalate2− (pK for oxalate−/oxalate2− is 4.19).65 

 Substantial amount of CO2 in the soil is provided by plant root. This arises from 

the root respiration and root exudation of organic carbon that are degraded by rhizosphere 

microorganisms. More than half of the carbohydrates translocated from the shoots to the 

roots are eventually respired and this generally represents 10 – 50% of photosynthates 

produced daily.66 It has been observed in some 14C labelling studies that cereals such as 

maize (Zea mays L.) or wheat (Triticum aestivum L) have a total of 30 – 50% allotted to 

the below-ground plants’ parts, 10 – 30% accumulated in the roots, 10 – 20% respired in 

the rhizosphere and 1 – 5% accumulated as organic material and microbial cells in the 

rhizosphere.67 According to Helal and Sauerbeck,68 about 20% of the photosynthates are 

absorbed by maize roots into the rhizosphere and about three quarters of these absorbed 

photosynthates are finally converted into CO2 by microbial respiration.68 

Some studies have reported fluxes of CO2 generated by the plant roots to be in the 

order of 50 – 200 nmolg-1 DWs-1 in plants such as Cucumis sativus, Lycopersicum 

esculentum and Holcus lanatus while some studies have shown a direct relationship 

between the values of CO2 fluxes obtained for some acidic root exudates and the 

rhizosphere acidification.66,69 Durand and Bellon70 reported that the fluxes of CO2 in 

maize was between 100 – 200 nmol plant-1 s-1 while another study with maize seedling of 
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similar age by Durand et al. showed H+ effluxes of about 5 – 10 nmol H+ plant-1 s-1 and 

measured O2 fluxes of 3 nmol and 0.2 nmol H+ g-1 FWs1.71,72 These values show that 

show that there is a release of CO2
 by the roots at fluxes of an order of magnitude larger 

than H+ given off to compensate for an excess of cations over anions.71 Also, rhizosphere 

microorganisms allow for an additional release of CO2
 as a result of their respiration 

being hoisted by the supply C-compounds from the plant roots.43 Root exudation and 

rhizosphere microbial respiration should promote substantial amount of changes in CO2 

concentration in the soil and thus in soil pH.43 

Chemical reactions associated with changes in oxidation state of Fe, Mn and N 

also imply the generation and utilization of H+, resulting in a coupling of redox potential 

and pH.43 This can be explained with iron transformation in most soils.73 Reduction of Fe 

occurs when electrons are supplied, the dissolution of Fe3+ bearing minerals such as 

goethite, FeOOH, and combined reduction of Fe3+ into Fe2+ is given by equation 4.1.74 

FeOOH + 3H3O
+ + e-    Fe2+ + 5H2O    (4.1) 

The oxidation of organic matter (both microbial and root respiration) often supply 

electrons. Sposito derived an example of an equation which can be used for organic 

compound but applies to formate (CHO2
-).75 

 CHO2
- + H2O    CO2 + H3O

+ + 2e-    (4.2)  

Combination of both redox half reactions gives the overall redox reaction that occurs in 

the soil.75 

 2FeOOH + CHO2
- + 5H3O

+   2Fe2+ + CO2
 + 9H2O  (4.3) 
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This equation illustrates that the reduction of Fe3+ contained in Fe oxides should be 

followed by the oxidation of organic matter and by H+ consumption which will 

eventually lead to an increase in soil pH.76 Contrarily, the oxidation of Fe2+ will result in 

a decrease in soil pH.76 

 Therefore, it can be concluded that the decrease in pH observed in the pot samples 

may be attributed to the release of charges carried by H+ and OH- to counterbalance the 

unbalanced uptake of cation-anion in the biosolids-root surface.43 In addition to this, the 

observed decrease in pH might result from the organic acids exuded by the radish roots.43 

The root exudation and respiration of radish plants could have also contributed to the 

decrease in pH due to the build-up of CO2 concentration. Redox coupled reactions in the 

biosolids could have also resulted in a decrease in pH.43  

 

Translocation factors of Mn and Cd 

 Translocation factor (TF) is the ratio of metal concentration in the shoot to the 

root. This ratio explains the ability of a plant to translocate heavy metals from the roots to 

the stem and leaves of the plant. Table 4.7 and 4.8 show the translocation factor for Mn 

and Cd in radish cultivated in control, and in Mn and Cd treatment experiments at pH 

6.70 and 7.30. The translocation factors for Mn in all treatments at both pH values were 

greater than 1 while Cd TFs were lesser than 1. The high TFs of Mn suggest that there is 

an efficient transport system of Mn in the radish plants. On the other hand, the low TFs of 
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Cd show ineffective Cd transfer which implies that Cd in the radish plants was 

accumulated mostly in the root than the shoots and leaves.  

 

4.7 CONCLUSIONS 

The uptake of metals by plants relies upon both edaphic and plant factors.77,78 

Edaphic factors such as amount of metals in the soil, interactions between the metals and 

the soil surfaces and the pH at the root-soil interface can affect the metal uptake by 

plants.79 Plant factors such as the plant species and its life cycle can also play a vital role 

in the uptake of metals by plants.80  From results obtained, it can be concluded that the 

uptake of metals by plants is  lower in plants cultivated in higher pH (7.30) compared to 

those cultivated in lower pH (6.70). In addition, the concentration of Mn in the radish 

parts increased upon addition of biosolids and Cd concentration reduced in the radish 

parts upon addition of biosolids (25% w/w) as compared with the control (0% perlite) but 

further increment in the biosolids increased the Cd concentration. Therefore, the use of 

biosolids in radish plants (Raphanus sativus L.) might not involve any environmental risk 

associated with cadmium. 
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FIGURES 

Table 4.1: Chemicals used for the preparation of the Hoagland solution 

 COMPOUND NUTRIENT MILLIGRAMS 

OF COMPOUND 

/L OF SOLUTION 

Macronutrients KNO3 K, N 60.00 

 Ca(NO3)2.4H2O Ca, N 94.00 

 NH4H2PO4 N, P 23.00 

 MgSO4.7H2O Mg, S 24.00 

 Fe-EDTA Fe 0.69 

Micronutrients KCl Cl O.37 

 H3BO3 B 0.15 

 MnSO4.H2O Mn 0.033 

 ZnSO4.7H2O Zn 0.57 

 CuSO4.5H2O Cu 0.012 

 H2MoO4 (85% 

MoO3) 

Mo 0.0081 
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Table 4.2: Average dry masses ± SD (g) of root, shoot and leaf of radish (Raphanus 

sativus L.) plants cultivated in control (without Mn or Cd treatment) pH 6.70 (n = 3) 

SAMPLE ID ROOT (g) SHOOT (g) LEAVES (g) 

0% 0.0042 ± 0.0018 0.010 ± 0.002 0.029 ± 0.014 

25% 0.0041 ± 0.0019 0.0185 ± 0.0078 0.035 ± 0.019 

50% 0.0038 ± 0.0011 0.014 ± 0.002 0.027 ± 0.009 

75% 0.0028 ± 0.0016 0.0077 ± 0.0048 0.019 ± 0.009 

100% 0.0021 ± 0.0007 0.0077 ± 0.0052 0.044 ± 0.048 

 

Table 4.3: Average dry mass ± SD (g) of root, shoot and leaf of radish (Raphanus 

sativus L.) plants cultivated in 100 ppm Mn treatment at pH 6.70 (n = 3) 

SAMPLE ID ROOT (g) SHOOT (g) LEAVES (g) 

0% 0.0020 ± 0.0015 0.0035 ± 0.0037 0.0126 ± 0.0091 

25% 0.0024 ± 0.0018 0.014 ± 0.003 0.016 ± 0.005 

50% 0.0033 ± 0.0003 0.0012 ± 0.0006 0.0079 ± 0.0035 

75% 0.0032 ± 0.0014 0.012 ± 0.011 0.029 ± 0.031 

100% 0.0076 ± 0.0031 0.028 ± 0.010 0.050 ± 0.024 
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Table 4.4: Average dry mass ± SD (g) of root, shoot and leaf of of radish (Raphanus 

sativus L.) plants cultivated in Cd treatment at pH 6.70 (n = 3) 

SAMPLE ID ROOT (g) SHOOT (g) LEAVES (g) 

0% 0.0041 ± 0.0007 0.0105 ± 0.0037 0.029 ± 0.015 

25% 0.0025 ± 0.0018 0.0073 ± 0.0028 0.018 ± 0.010 

50% 0.0075 ± 0.0010 0.027 ± 0.004 0.071 ± 0.009 

75% 0.0084 ± 0.0015 0.032 ± 0.005 0.051 ± 0.023 

100% 0.0052 ± 0.0011 0.023 ± 0.007 0.035 ± 0.012 

 

Table 4.5: Average dry masses ± SD (g) of root, shoot and leaf of radish (Raphanus 

sativus L.) plants cultivated in Mn treatment at pH 7.30 (n = 3) 

SAMPLE ID ROOT (g) SHOOT (g) LEAVES (g) 

0% 0.14 ± 0.19 0.057 ± 0.065 0.69 ± 0.74 

25% 0.034 ± 0.025 0.073 ± 0.015 0.36 ± 0.15 

50% 0.0042 ± 0.0009 0.019 ± 0.010 0.058 ± 0.036 

75% 0.0041 ± 0.0019 0.0073 ± 0.0067 0.036 ± 0.041 

100% 0.032 ± 0.009 0.10 ± 0.04 0.22 ± 0.10 
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Table 4.6: Average dry masses ± SD (g) of root, shoot and leaf of radish (Raphanus 

sativus L.) plants cultivated in Cd treatment at pH 7.30 (n = 3) 

SAMPLE ID ROOT (g) SHOOT (g) LEAVES (g) 

0% 0.010 ± 0.009 0.025 ± 0.028 0.15 ± 0.14 

25% 0.021 ± 0.014 0.047 ± 0.029 0.28 ± 0.17 

50% 0.0056 ± 0.0037 0.026 ± 0.017 0.11 ± 0.08 

75% 0.010 ± 0.000 0.0260 ± 0.0003 0.042 ± 0.009 

100% 0.031 ± 0.006 0.099 ± 0.007 0.22 ± 0.04 
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Figure 4.1: Schematic diagram of atomic absorption spectroscopy.37 
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a) 

 

b) 

  

Figure 4.2: Biomass of radish (Raphanus sativus L.) harvested from biosolids treated 

with 100 ppm Cd at pH 6.70 (a) and pH 7.30 (b) 

(The error bars at 75% (pH 6.70) and 25% (pH 7.30) were as a result of the 

differences in plant biomass in the triplicate pot samples). 
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a) 

 

b) 

 

Figure 4.3: Biomass of radish (Raphanus sativus L.) harvested from biosolids treated 

with 100 ppm Mn at pH 6.70 (a) and pH 7.30 (b).  

 

(The error bars at 100% (pH 6.70) and 0% (pH 7.30) were as a result of the 

differences in plant biomass in the triplicate pot samples). 
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a)                                                                       b) 

 

Figure 4.4: Manganese concentration (mg/kg) in radish (Raphanus sativus L.) 

cultivated with 100 ppm Mn treatment at pH 6.70 (a) and pH 7.30(b)  
        = root        = shoot         = leaf  

 

* The Mn concentrations were determined per the biomass of the radishes, since there 

was an observed difference in the plant biomass for the triplicate samples, it also had 

effect on the concentration which resulted in the error bars at 75% leaf (pH 6.70) and 

75% shoot (pH 7.30). 
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a)         b) 

 

Figure 4.5: Cadmium concentration (mg/kg) in radish (Raphanus sativus L.) 

cultivated with 100 ppm Cd treatment at pH 6.70 (a) and pH 7.30 (b)        
        = root        = shoot         = leaf 

 

*The Cd concentrations were determined per the biomass of the radishes, since there was 

an observed difference in the plant biomass for the triplicate samples, it also had effect on 

the concentration which resulted in the error bars at 25% root (pH 6.70) and 0% root (pH 

7.30). 
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a)                     b) 

 

Figure 4.6: Manganese concentration (mg/kg) in radish (Raphanus sativus L.) 

cultivated with 100 ppm Cd treatment at pH 6.70 (a) and pH 7.30 (b)    
       = root        = shoot         = leaf 
 

*The Mn concentrations were determined per the biomass of the radishes, since there was 

an observed difference in the plant biomass for the triplicate samples, it also had effect on 

the concentration which resulted in the error bars at 0% root (pH 6.70) and 50% shoot, 

leaf (pH 7.30). 
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a)       b) 

 

Figure 4.7: Cadmium concentration (mg/kg) in radish (Raphanus sativus L.) 

cultivated with 100 ppm Mn treatment pH 6.70 (a) and pH 7.30 (b)           
        = root        =shoot       = leaf 

 

*The Cd concentrations were determined per the biomass of the radishes, since there was 

an observed difference in the plant biomass for the triplicate samples, it also had effect on 

the concentration which resulted in the error bars at 25% root, 50% shoot and leaf (pH 

6.70). 
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a) 

 

b) 

 

Figure 4.8: pH of perlite and perlite-STC mixtures treated with 100 ppm Mn at pHs 

6.70 (a), and 7.30 (b) 
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a) 

 

b) 

 

Figure 4.9: pH of perlite and perlite-STC mixture treated with 100 ppm Cd at pHs 

6.70 (a), and 7.30 (b) 
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Table 4.7: Translocation factor of radish plants cultivated in Mn treatment and Cd 

treatment at pH 6.70 

SAMPLE 

ID 

Mn TREATMENT Cd TREATMENT 

 Mn TF Cd TF Mn TF Cd TF 

0% 4.44 0.95 0.21 0.53 

25% 1.63 0.14 1.39 0.48 

50% 3.02 3.47 3.69 0.63 

75% 4.59 0.49 1.79 0.48 

100% 0.19 0.62 1.27 0.49 
 

Table 4.8: Translocation factor of radish plants cultivated in Mn and Cd treatment 

at pH 7.30 

SAMPLE ID Mn TREATMENT Cd TREATMENT 

 Mn TF Cd TF Mn TF Cd TF 

0% 3.13 0.34 0.39 0.27 

25% 1.77 0.13 2.82 1.23 

50% 2.93 0.05 1.62 1.32 

75% 3.44 0.24 2.08 0.85 

100% 3.35 0.04 3.52 1.43 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 CONCLUSIONS 

This study was aimed at evaluating the risks that might be associated with land 

application of biosolids through the analysis of metal content in biosolids. The speciation 

and bioavailability of metals in biosolids and determination of the uptake of metals by 

radish (Raphanus sativus L.) cultivated in biosolids was investigated. The metal content 

of the biosolids was determined using inductively coupled plasma-optical emission 

spectroscopy (ICP–OES). The heavy metals analyzed in the biosolids had concentrations 

within the USEPA ceiling limit.  

The speciation and bioavailability of the of the biosolids using a modified Tessier 

sequential extraction protocol showed that most of the metals were predominant in 

sulfide/residual fractions. The metals Mn and Cd were present in the mobile fraction 

although at low concentrations (Mn (STC – 2%, NWWS – 1.1%, LWWS – 6%), Cd 

(STC – 46%, NWWS – 9.5%, LWWS – 40%)). This implies that Mn and Cd are 

bioavailable in the biosolid sample. 

The cultivation of radish (Raphanus sativus L.) plants at different percent 

compositions of biosolids showed that the best growth was observed at 25 – 50% (w/w) 
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of Soil Therapy Compost. The determination of the metal content of the radish 

(Raphanus sativus L.) showed that upon the addition of biosolids the concentration of 

manganese concentrations increased and accumulated in the leaves. On the other hand, 

upon increasing biosolids compositions cadmium concentration decreases and 

accumulated the most in the root of the radish plants. In addition, the lowering the pH on 

increased the uptake of metals by radish (Raphanus sativus L.). Comparatively, more Cd 

or Mn was uptaken by radish (Raphanus sativus L.) at pH 6.70 than 7.30.  

 The determination of the translocation factor (TF) showed that Mn TFs in all 

treatments at pH values 6.70 and 7.30 were greater than 1, while Cd TFs were lesser than 

1. The high TFs of Mn suggest that the existence of an efficient transport system of Mn in 

the radish. On the other hand, the low TFs of Cd show that Cd is not easily transported 

from the root to the shoot of the radish plants. 

 

5.2 RECOMMENDATIONS 

 I would like to suggest the following recommendations for future work. The study 

on plant growth in different biosolid compositions should be investigated using a 

different plant. A plant that grows well throughout the year should be used for 

comparisons.  

Bigger pot samples should be used to prevent pot samples from being 

waterlogged. Better still, field experiments can be investigated. Although anions 

concentrations are important, the determination of their effect upon radish plants was not 
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investigated due to instrument downtime. In future study, the anions concentrations 

should be determined.   
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APPENDIX A 

CONCENTRATION OF OTHER METALS IN PLANT PARTS 

 Although this research is devoted to analysis of Mn and Cd in plant parts, it was 

also necessary to determine the concentration of both essential and toxic elements that are 

uptaken by radish (Raphanus sativus L.). 

 

A.1 Plants cultivated in biosolids treated with 100 ppm Mn at pHs 6.70 and 7.30 

A.1.1 Analysis of macroelements in plant parts 

Figure A.1a shows the metal concentrations of the macroelements Ca, K, Mg, and 

Na in the root of radish (Raphanus sativus L.) cultivated in 100 ppm Mn treatment at 0%, 

25%, 50%, 75% and 100% (w/w) of perlite-STC mixtures. An increase in the 

concentration of the macroelements upon the addition of biosolids is evident. Elements 

Ca, K, and Na showed similar trends with the root concentration decreasing upon 

addition of 25% (w/w) biosolid. The highest root concentration for the Ca, K, and Na was 

observed at 75% (w/w) perlite-biosolid composition. For Mg, on the other hand showed 

an increase upon addition of compost from 25% to 50% (w/w) biosolid composition. The 

highest Mg, concentration was found at 100% (w/w) compost ratio. 

Figure A.1b shows the macroelements concentrations found in the shoot of radish 

cultivated (Raphanus sativus L.) in Mn treatment. Elements Ca, K, Na, and Mg showed 

similar trend to what was observed in the root. 
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Figure A.1c shows the concentrations of macroelements Ca, K, and Na 

concentrations in the leaves of radish (Raphanus sativus L.) cultivated in 100 ppm Mn 

treatments. The concentrations of Ca and K increases up onto 25%(w/w) compost while 

Mg concentrations constantly increased in concentration upon increased compost sludge 

ratios. On the other hand, Na concentrations decreased up to 25% (w/w) compost ratios. 

The highest concentrations of Ca, K, and Na were determined in the leaves with highest 

ratios at 75% (w/w) compost, while that of Mg occurred at 100% (w/w). 

 

A.1.2 Analysis of microelements in plant parts 

Figure A.2a shows the microelements concentration in the root of radish 

(Raphanus sativus L.) cultivated in the 100 ppm Mn treatment. Elements Ag, Ba, Be, Co, 

Cr, Cu, Ga, Li, Mo, Ni, Pb, Rb, Sr, Tl, and V were present in the root at concentrations < 

0.2 mg/kg. Upon increasing of biosolids ratios increase in concentrations of elements Al, 

Bi, Cs, Fe, In, and Zn was determined in the roots. 

Figure A.2b shows the microelements concentrations in the shoot of radish 

(Raphanus sativus L.) cultivated in 100 ppm Mn treatment. The microelement 

concentrations of Ag, Ba, Be, Cd, Co, Cr, Cs, Cu, Ga, Li, Mo, Ni, Pb, Rb, Sr, Tl, and V 

increased in the roots with increase in biosolids. However, a decrease in concentration of 

Al, Bi, Fe, and In upon the addition of biosolids was observed.  

Figure A.2c shows the concentrations of the microelements present in the leaves 

of radish (Raphanus sativus L.) cultivated in 100 ppm Mn treatment. The concentration 
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of elements Ag, Al, Ba, Be, Bi, Cd, Co, Cr, Cs, Cu, Ga, In, Li, Mo, Ni, Rb, Sr, Tl, V, and 

Zn was relatively lower in the leaves of radish plants at < 0.2 mg/kg. In general, elements 

Fe and Mn increased in plant parts with the addition of biosolids. The concentration of Pb 

in the leaves increases upon addition of biosolids up to 75% (w/w). 

 

A.2 Plants cultivated in biosolids treated with 100 ppm Cd at pH 6.70 and 7.30 

A.2.1 Analysis of macroelements in plant parts 

 Figure A.3a shows the concentrations of macroelements in the root of radish 

(Raphanus sativus L.) cultivated in 100 ppm Cd treatment. There was an observed 

increase in the concentration of Ca and Mg compared to K and Na upon the addition of 

biosolids. The highest concentrations of Ca, K and Na in the root was found at 50% 

(w/w) compost amounts, while Mg was found the highest at 100% (w/w) compost. 

 Figure A.3b shows the concentrations of the macroelements in the shoot of radish 

(Raphanus sativus L.) cultivated in Cd treatment. In general, the concentration of Ca and 

Mg increases upon addition of biosolids while the concentration of K and Na in the shoot 

decreased. The highest concentration of Ca, K, Mg, and Na in the shoot was observed at 

75%, 0%, 100%, 100% (w/w) respectively. 

Figure A.3c shows the concentrations of the macroelements in the leaves of radish 

(Raphanus sativus L.) cultivated in 100 ppm Cd treatments. Notably, an increase in the 

concentration of Ca, K, Mg upon addition of biosolids was observed while the 
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concentration of Na decreases. The highest concentration of K and Na in the leaves was 

found at 25% (w/w). 

 

A.2.2 Analysis of microelements in plant parts 

Figure A.4a shows the concentrations of the microelements in the radish 

(Raphanus sativus L.) roots cultivated in 100 ppm Cd treatments. The concentration of 

microelements Ag, Ba, Be, Cd, Co, Cr, Cu, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V, and Zn in 

the root were determined below 0.5 mg/kg. Upon increasing biosolid amounts, the 

concentrations of Al, Bi, Cs, Fe, In, and Mo decreased.  

 Figure A.4b shows the concentrations of the microelements in the shoot of radish 

(Raphanus sativus L.) cultivated in 100 ppm Cd treatments. Concentrations of Ag, Al, 

Ba, Be, Cd, Co, Cr, Cu, Ga, Li, Mn, Mo, Ni, Pb, Rb, Sr, Tl, V, and Zn was determined 

below 0.2 mg/kg in the shoot. An observed decrease in the concentration of Bi, Fe, and In 

showed upon addition of biosolids amounts. 

 Figure A.4c shows the concentrations of microelements in the leaves of radish 

(Raphanus sativus L.) leaves cultivated in 100 ppm Cd treatments. The concentration of 

Ag, Al, Ba, Be, Cd, Co, Cr, Cu, Ga, Li, Mo, Ni, Pb, Rb, Sr, Tl, V and Zn was very 

determined < 0.1 mg/kg in radish leaves. With increase in sludge amounts, the Bi 

concentrations decreased, while the concentration of Fe amounts in the leaves increased. 
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Appendix Figures 

a)  

 

b) 
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c) 

 

Figure A.1: Concentration of macroelements (mg/kg) in Radish (Raphanus sativus L.) 

cultivated with 100 ppm Mn treatment at root (a), shoot (b) and leaves (c)  

             = 0%            = 25%            = 50%            = 75%             = 100%       

 

*The metal concentrations were determined per the biomass of the radishes, since there 

was an observed difference in the plant biomass for the triplicate samples, it also had 

effect on the concentration which resulted in the error bars at K (0%, 75% root), Ca (0%, 

75% shoot), Ca (50% leaf) and K (50% leaf). 
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c) 

 

Figure A.2: Concentration of microelements (mg/kg) in Radish (Raphanus sativus L.) 

cultivated with 100 ppm Mn treatment at root (a), shoot (b), and leaves (c). 

             = 0%            = 25%            = 50%            = 75%           = 100% 

 

*The metal concentrations were determined per the biomass of the radishes, since there 

was an observed difference in the plant biomass for the triplicate samples, it also had 

effect on the concentration which resulted in the error bar at Pb (75% leaf). 
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c) 

 

Figure A.3: Concentration of macroelements (mg/kg) in Radish (Raphanus sativus L.) 

cultivated with 100 ppm Cd treatment at root (a), shoot (b), and leaves (c) 

 

 

*The metal concentrations were determined per the biomass of the radishes, since there 

was an observed difference in the plant biomass for the triplicate samples, it also had 

effect on the concentration which resulted in the error bars at K (50% root), Ca, Fe (0%, 

50% shoot), Ca, Fe, K, Mg, Na (50% leaf). 
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c) 

 

Figure A.4: Concentration of microelements (mg/kg) in Radish (Raphanus sativus L.) 

cultivated with 100 ppm Cd treatment at root (a), shoot (b), and leaves (c).  

 

 

*The metal concentrations were determined per the biomass of the radishes, since there 

was an observed difference in the plant biomass for the triplicate samples, it also had 

effect on the concentration which resulted in the error bars at Bi (0% root), Cs (50% 

root), Bi, Al, In (0%, 50% shoot), and Bi (0% leaf). 
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