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Abstract 

 Rotavirus (RV) can cause severe and deadly gastroenteritis in young 

children, infants, and immunocompromised individuals. Previous studies have 

shown that arachidin 3 (A3) inhibits RV replication, and that RV replication is 

dependent on the presence of lipids. This study investigated the alteration of lipid 

metabolism by A3 in RV infected HT29.f8 cells. A decrease in the RV regulation 

of lipid biosynthesis genes was observed with the addition of A3 using qRT-PCR. 

Also, immunofluorescent and histochemical staining for neutral fats, a major 

component of cellular lipid droplets, revealed an increased accumulation with 

both RV and RV+A3 when compared to no virus and A3 controls. Furthermore, a 

western blot time course study of perilipin 1 presented a cycling pattern of 

expression with slight variations between RV, RV+A3, and A3. This data implies 

an association between A3 inhibition of RV replication and lipid metabolism that 

could be developed into a RV therapeutic treatment.  
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INTRODUCTION 

Rotavirus 

Rotavirus (RV) is classified as a member of the Reoviridae family of 

viruses that causes gastroenteritis in children under the age of 5 years and has 

been documented to cause severe diseases in immunocompromised individuals 

of all ages such as SCID, patients on chemotherapy, or transplantation patients 

(Annis et al., 2009; Desselberger, 2014; Lee and Ison, 2014; Liakopoulou et al., 

2005; Stelzmueller et al., 2007; Sugata et al., 2012; Yin et al., 2015). According 

to the World Health Organization (WHO) and the Centers for Disease Control 

and Prevention (CDC), RV caused 577,508 deaths globally in the year 2013. 

(Clark et al., 2017). RV has been found to be one of the most significant 

pathogens associated with diarrhea cases (Alkali et al., 2015). RV infection is 

associated with symptoms that include watery diarrhea, severe dehydration, and 

fever; however, the RV infection is self-limiting, lasting only 4 – 8 days (Alkali et 

al., 2015). RV transmission is through the fecal-to-oral route with a 1 to 3-day 

incubation period which leads to the patient being asymptomatic or exhibiting 

acute gastroenteritis (AGE), severe diarrhea and vomiting (Bishop et al., 1973; 

Desselberger, 2014; Khalid et al., 2017). AGE leads to extreme dehydration 

which is treated with fluid balance recovery by oral hydration (Crawford et al., 

2017; Khalid et al., 2017). Since the 2006 initial recommendation by the WHO to 
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introduce two live attenuated vaccines [RotaTeq® (Merck) and Rotarix® 

(GlaxoSmithKline)] in the Americas and Europe, RV cases have dramatically 

decreased (Abou-nader et al., 2018). However, due to the different strains of RV 

that infect specific regions of the world, other vaccines have been produced and 

used in many underdeveloped countries with additional vaccines in the pipeline 

of production (Bhandari et al., 2014; Crawford et al., 2017; Yen et al., 2014). 

Vaccines that were prequalified by the WHO in 2018, including Rotavac (Bharat 

Biotech International) and Rotasiil (Serum Institute of India), have also been used 

in clinical trial in various low-income countries (Abou-nader et al., 2018; 

Changotra, 2017; Deen et al., 2018; Mwila-kazimbaya et al., 2018; Plikaytis et 

al., 2017). China and Vietnam have locally licensed vaccines for implementation 

that include, respectively, LLR (Lanzhou Institute of Biological Products) and 

Rotavin-M1 (Center for Research and Production of Vaccines), although their 

clinical studies have not been performed as required by the WHO (Deen et al., 

2018).  

 Despite the geographical strain differences in the world, RotaTeq® and 

Rotarix® have effectively decreased the number of RV cases and lethality of RV 

infections in over one hundred countries (Jiang et al., 2010). RotaTeq® includes 

five bovine-human reassortant strains containing the four most common VP7 

serotypes and the most common VP4 serotype (Jiang et al., 2010; Vesikari et al., 

2006). The Rotarix® vaccine includes a human-attenuated parental strain of RV 

obtained from a newborn child who experienced natural RV infection and malady 
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amid the 1988 – 1989 RV season (Caillot et al., 2006; Jiang et al., 2010). 

Vaccines are crucial to the decrease of RV infection as well as proper and timely 

treatment; however, the vaccines are designed for protection against common 

RV strains in specific areas of the world (Jiang et al., 2010; Patton, 2009). The 

live virus vaccines are dependent on their genetic stability; however, it is well 

known that RV reassortments are common.  This can result in new infectious RV 

strains that could ultimately affect the efficacies of the current vaccines (Patton, 

2009; Weinberg et al., 2013).  

The RV genome is composed of 11 segments of dsRNA that code for 6 

structural (VP1, VP2, VP3, VP4, VP6, and VP7) and 6 non-structural proteins 

(NSP1, NSP2, NSP3, NSP4, NSP5, NSP6) (Mcclain et al., 2010). 

A RV virion is characterized as a triple-layer particle (TLP) which is made up of a 

VP2 core shell, a middle VP6 layer and an outer 

VP7 layer which is implanted with VP4 spike 

attachment proteins as depicted in Figure 1 (Li et 

al., 2009; Settembre et al., 2011). Enclosed in the 

VP2 core shell is the dsRNA viral genome with the 

RNA dependent RNA polymerase and a complex 

made up of VP1 polymerase and VP3 RNA 

capping enzyme (Desselberger, 2014; Prasad et al., 1996). VP1 polymerase is 

required to be bound by VP2 to initiate genome replication (Lu et al., 2009). The 

intermediate capsid layer is composed of the viral protein, VP6, which binds to 

 

Figure 1. RV particle structure (Sue E. 
Crawford et al. 2017) 
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VP2 and stabilizes the very fragile core of the capsid (Trask et al., 2012). VP6 is 

also crucial for attachment and entry into a host cell due to its service as an 

adaptor for the RV outer capsid proteins, VP4 and VP7 (Trask et al., 2012). The 

most abundant viral protein, VP7, is located on the outer smooth layer of the 

capsid (Khodabandehloo et al., 2012). VP7 is dependent on two calcium ions 

being bound at each subunit interface for stability as it forms a continuous, 

perforated shell on top of VP6 (Aoki et al., 2010; Trask et al., 2012). Embedded 

into the VP7 layer are 60 trimeric spikes that are formed by the viral attachment 

protein, VP4 (Trask et al., 2012). Viral attachment is dependent on VP4; 

however, before the virion can bind to the host and enter the cell, VP4 must be 

cleaved by trypsin-like proteases into VP5 and VP8 (Crawford et al., 2017, 2001; 

Trask et al., 2012). After the uptake of the virus by the cell, low calcium levels 

within the endosome induce the removal of VP7 and VP4, releasing the 

transcriptionally active 

double-layered particle 

(DLP) into the cytoplasm 

as shown in Figure 2 

(Trask et al., 2012).                 

The understanding 

of RV entry and vesicular 

traffic has been a slow 

and challenging process due to the inability to manipulate the genome of the 

Figure 2. RV replication cycle (Sue E. Crawford et al. 2017) 
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virus (Arias et al., 2015). Located on the inner surface of the VP2 layer, the RV 

particle possesses its own transcription complex (TC) (Desselberger, 2014; 

Jayaram et al., 2004). The TC consists of VP1, the viral RNA-dependent RNA 

polymerase, VP3 and a dedicated viral RNA segment (Desselberger, 2014; 

Jayaram et al., 2004). Within the DLP, VP1 initiates the negative strand of 

genomic RNA to produce capped, non-polyadenylated, (+) ssRNA transcripts 

(Desselberger, 2014; Ruiz et al., 2009). Upon the release of the transcripts from 

the DLP, they can serve either for translation into viral proteins or as templates 

for replication to create the dsRNA genomes of RV progeny as outlined in figure 

2 (Desselberger, 2014; Silvestri et al., 2004). Within the cellular cytoplasm, RV 

DLPs are transcriptionally active and produce large amounts of mRNAs provided 

there is a sufficient supply of energy (ATP) (Cohen et al., 1979; Desselberger, 

2014; Lawton et al., 1997; Lu et al., 2008; Spencer and Arias, 1981). Before 

replication of the templates can begin, a viroplasm must form and this is 

achieved with the use of a ubiquitous cellular kinase, CK1α (Criglar et al., 2018). 

In addition to the viral properties of NSP2, it also has several enzymatic activities 

which include nucleoside-triphosphatase (NTPase), which allowing NSP2 to 

autophosphorylate at multiple sites (dNSP2). This leads to the association of 

NSP5 that has been hypophosphorylated by CK1α (Criglar et al., 2018). The 

dNSP2-NSP5 complex is then phosphorylated again by CK1α which triggers the 

relocation for viroplasm formation (Criglar et al., 2018). The trafficking of the 

complex to the location of viroplasm formation converts dNSP2 to vNSP2, 
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representing the form of NSP2 exclusively located on the viroplasm resulting in 

the necessary curvature for viroplasm assembly (Criglar et al., 2018). Next, 

repeated rapid hyperphosphorylation of NSP5 by CK1α leads to the growth and 

maturation of the viroplasm (Criglar et al., 2018). At this time the viroplasm is 

formed around the transcriptionally active DLPs (Trask et al., 2012). Within the 

viroplasms, early virion assembly occurs by selected (+)ssRNAs being 

assembled into VP2 cores and replicated by VP1 into the dsRNA genome (Trask 

et al., 2012). The particle therefore expands and the VP6 layer is acquired 

forming a 100 nm sized particle; however, prior to the completion of DLP 

assembly NSP2 must be removed (Li et al., 2009; Long and McDonald, 2017; 

Ruiz et al., 2009). The addition of VP4 and VP7 occurs in the endoplasmic 

reticulum (ER) once the developing DLPs egress from the viroplasms to convert 

the DLPs to TLPs, restoring the RV particles’ full infectivity (Lopez et al., 2005). 

NSP4 participates in this process as an intercellular receptor by interacting with 

VP6 (Desselberger, 2014). RV TLPs are then released in a budding process that 

is not immediately fatal for the cell or well understood (Desselberger, 2014). 
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Arachidin 3 

 Peanuts (Arachis hypogaea) produce a defense against infections around 

sites of wounding by upregulating the production of stilbene derivatives (Sobolev, 

2013). In the peanut plant, prenylated stilbenoids are naturally produced as 

phytoalexins, which include an isopentenyl moiety (3-methyl-1-butenyl) such as 

A3 (Figure 3) (Bennett and 

Wallsgrove, 1994; Roupe et al., 

2006; Yang et al., 2016).  

Stilbenoids are phenolic 

compounds derived from the 

phenylpropanoid/acetate 

pathway (Huang et al., 2010; Moss et al., 2013). Among the stilbenoid 

compounds, resveratrol has become the most studied stilbenoid due to its anti-

inflammatory and antioxidant properties along with antitumor, antibacterial and 

antiviral effects (Aggarwal et al., 2004; Athar et al., 2009; Ball et al., 2015; Roupe 

et al., 2006).  However, due to limited oral bioavailability and rapid absorption 

and metabolism, the potential human usage is restricted. (Gambini et al., 2015; 

Tomé-Carneiro et al., 2013; Yang et al., 2016).  

 It has been shown that prenylated resveratrol analogs, such as A3, have 

increased lipophilicity allowing for easier interaction with cell membranes, 

enhancing access and association with potential membrane-bound molecular 

targets responsible for beneficial biological activity (Brents et al., 2012; Huang et 

Figure 3. Arachadin 3 chemical structure (Yang et al., 2016) 
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al., 2010). Furthermore, A3 has been demonstrated to bind to both cannabinoid 

receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R) while acting as a 

competitive antagonist of CBR1 and agonist of CB2R (Brents et al., 2012).  Due 

to the increased bioavailability and potential cell signaling, the use of A3 could 

initiate a protective effect against RV infections. 

Cannabinoid Receptors 

 The endocannabinoid system (ECS) is an important lipid signaling and 

immunomodulator system that is highly conserved dating back to at least 600 

million years (Acharya et al., 2017; McPartland et al., 2006; Sharma et al., 2015) 

The ECS is found throughout the body in the central nervous system as well as 

in peripheral tissues and the gastrointestinal (GI) tract (Pacher and George, 

2013; Wright et al., 2005). Within the GI tract, the ECS is an important regulatory 

system, working in control of food intake, nausea, and intestinal inflammation 

(Izzo and Camilleri, 2008). The ECS is composed of cannabinoid receptors 

(CBRs), endocannabinoids, and enzymes, with the two main receptors being 

cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB1R) (Troy-

Fioramonti et al., 2015).  

 In 1988, a g-couple protein receptor that bound to cannabinoids was 

discovered in rat brain tissue; subsequently, in 1990 this receptor was cloned 

and renamed CB1R (Devane et al., 1988; Matsuda et al., 1990). In 1993, CB2R 

was identified in macrophages (Munro et al., 1993; Rodriguez De Fonseca and 
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Schneider, 2008). CB1R is mainly expressed in the central and peripheral 

nervous system, including the enteric nervous system; however, CB2R is found 

in immune cells (Trautmann and Sharkey, 2015). CB2R serves an important role 

in immune function and inflammation but it also serves a role in reducing visceral 

sensitivity and regulating abnormal accelerated motility (Di Marzo and Izzo, 2006; 

Sharkey and Wiley, 2016). The receptors have also been found in the 

gastrointestinal (GI) tract and have shown to be important in the regulation of 

immune homeostasis, GI motility and secretion (Acharya et al., 2017; Hasenoehrl 

et al., 2016). CB1R has been determined to be involved in the function of 

relaxation of the lower esophageal sphincter and inhibition of gastric acid 

secretion (Wright et al., 2008).  

 In the presence of pathologically increased intestinal motility elicited by an 

inflammatory stimulus, CB1R and CB2R are both activated in the gut (Pacher et 

al., 2006). It has been shown that A3 is a competitive CB1R antagonist as well as 

having significant affinity binding to CB2R suggesting that A3 acts as a novel 

ligand at CBRs (Brents et al., 2012).  

Lipid Metabolism 

Viruses depend on host metabolism to supply the high amounts of energy 

required for viral replication (Plaza et al., 2016). The sequestering of energy from 

the host cell is performed by altering metabolic processes that are critical for the 

survival of the cell to the benefit of virus replication but detrimental for the host 
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(Plaza et al., 2016; Sanchez and Lagunoff, 2015). One of the metabolic 

processes altered is lipid biosynthesis which affect lipid signalling pathways, 

stored cellular lipid, and influences lipid trafficking (Mazzon and Mercer, 2014). 

Of the many mechanisms exploited during viral infections, cholesterol synthesis 

and the storage of esterified sterols and neutral fats are the most commonly 

affected (Fernández De Castro et al., 2016).  

Cholesterol Metabolism 

Cholesterol serves multiple functions in the human body as it is a critical 

part of cell membranes and functions as a precursor for bile acids, steroid 

hormones, and vitamin D (Reeskamp et al., 2018). Cholesterol metabolism is 

tightly regulated, with a major role for the liver and intestines (Kriaa et al., 2019; 

Reeskamp et al., 2018). Enterocytes in the intestinal tract are unique from other 

cells in the human body as they have three sources of cholesterol while other cell 

types have only two sources (Engelking et al., 2012). Similar to other cells, 

enterocytes source cholesterol by endogenous synthesis of sterol de novo and 

the uptake of LDL (low density lipoproteins)-derived cholesterol from the plasma; 

however, enterocytes are distinct from other cells in that they also absorb free 

cholesterol from the gut lumen (Degirolamo et al., 2015; Engelking et al., 2012; 

Silva Afonso et al., 2018). Intracellular cholesterol levels are modulated by a 

negative feedback loop in which de novo cholesterol synthesis and LDL 

cholesterol uptake are tightly regulated by an endoplasmic reticulum (ER) 

membrane bound transcription factor, sterol regulatory element-binding protein 
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(SREBP), which prevents cholesterol overload in the cell (Alphonse and Jones, 

2016; Asano et al., 2017; Degirolamo et al., 2015; Goldstein and Brown, 2009).  

 The cholesterol biosynthetic pathway is a complex biochemical process 

that  occurs in the ER and requires more than 30 chemical reactions (Alphonse 

and Jones, 2016; Silva Afonso et al., 2018). The rate limiting step of de novo 

cholesterol synthesis is the reaction of membrane-bound enzyme 3-hydroxy-3-

methylglutaryl-coenzyme A reductase (HMGCR) converting 3-hydroxy-3-

methylglutaryl-coenzyme A (HMG-CoA) to mevalonate (Voet and Voet, 2011).  

HMG-CoA    HMGCR        mevalonate 

In cholesterol depleted cells, SREBPs are transported to the Golgi complex to be 

processed by two proteases that release a soluble fragment of SREBP. This 

fragment enters the nucleus where it activates the transcription of genes 

encoding HMGCR and all other enzymes involved in cholesterol biosynthesis. A 

previous study’s analysis of the effects of lovastatin, a HMGCR inhibitor, on 

SA11 (Simian RV) infected MA104 (African green monkey kidney cell line) cells 

revealed that when HMGCR is inhibited, both cholesterol levels and RV titers are 

reduced (Mohan et al., 2008). Also the effects on shows defective, “empty-

looking” virus particles inside the cell (Mohan et al., 2008). This study indicates 

the importance of de novo cholesterol biosynthesis in the infection and assembly 

of RV particles; however, this study was performed using SA11 and MA104 cells 
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rather than the human RV strain (Wa) and a human intestinal cell line (Mohan et 

al., 2008). 

 At the same time that the genes encoding HMGCR and all other enzymes 

involved in cholesterol biosynthesis are activated, the gene encoding LDL 

receptor is also activated (Goldstein and Brown, 2009). As LDL-derived 

cholesterol begins entering the cell, it blocks the transport of SREBPs to the 

Golgi complex, thereby transcription of all the target genes decline and the cell 

produces less cholesterol (Goldstein and Brown, 2009). LDL receptors (LDLR) 

are found on the cell surface where they bind to LDL particles with high affinity. 

Once a LDL particle binds to the LDLR forming a LDLR-LDL particle complex it is 

endocytosed into coated vesicles (Silva Afonso et al., 2018). The vesicles will 

then fuse to form endosomes with a low internal pH causing the LDLR to release 

the LDL particle and return to the cell surface (Silva Afonso et al., 2018). The 

LDL particle is then incorporated into lysosomes where it is degraded resulting in 

cholesteryl esters (Silva Afonso et al., 2018). The cholesteryl esters are 

hydrolyzed and remain in the cell, whereas free cholesterol can be re-esterified 

by acyl-coenzyme A:cholesterol acyltransferase (ACAT) in the ER and either 

stored in lipids droplets in the cytoplasm or chylomicrons for export out of the cell 

(Degirolamo et al., 2015; Silva Afonso et al., 2018) (Figure 4). 
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Neutral Fat Vesicles 

 The lipids synthesized in the ER can either become part of a cytosolic lipid 

droplet or a chylomicron for secretion. Fatty acids that have been endocytosed 

by enterocytes are metabolized by the monoacylglycerol pathway. 

Monoacyglycerol: acylCoA transferase (MGAT) converts fatty acids into 

Figure 4. Cholesterol metabolism (© 2009 QIAGEN, all rights reserved) 
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diacylglycerol, which is then converted to triglycerides (TG) by diacylglycerol: 

acylCoA transferase (DGAT). The newly synthesized TGs accumulate between 

the two leaflets of the ER phospholipid membrane (Beilstein et al., 2016). The 

nascent lipid droplet will then either bud into the ER lumen or into the cytosol; 

however the mechanism that controls the budding of the nascent lipid droplet is 

still unclear (Beilstein et al., 2016) (Figure 5).  

 

Figure 5. Neutral fat vesicle formation (© 2009 QIAGEN, all rights reserved) 
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In most cells the nascent lipid droplet will bud towards the cytoplasm, 

however in cells that assemble lipoproteins such as enterocytes, they may 

partition towards the ER lumen to form a chylomicron (CM) (Hussain, 2009). As 

TGs are accumulating in the ER membrane, apoliproprotein B-48 (ApoB-48) is 

being assembled to form a complex with the nascent lipid droplet (Auclair et al., 

2017). ApoB-48 is a structural protein that facilitates the formation of the CM 

within the ER with the assistance of a microsomal triglyceride transfer protein 

(MTTP) (Auclair et al., 2017). The pre-CM vesicle is then transported to the Golgi 

complex with the assistance of Sar1B GTPase (Auclair et al., 2017; Demignot et 

al., 2013). This initiates the vesicular coat protein complex II-dependent transport 

for trafficking through the ER-Golgi secretory compartments where it ultimately 

buds out of the cell, entering the blood stream (Auclair et al., 2017; Demignot et 

al., 2013). The function of the CM is for transportation of lipids to other organs 

(Demignot et al., 2013). 

If the nascent lipid droplet buds into the cytosol, perilipins, a multi-protein 

family (5 members), targets the surface of a lipid droplet and regulates lipid 

storage and hydrolysis (Beilstein et al., 2016). Cytosolic lipid droplets (CLD) are 

composed of a hydrophobic TG and cholesteryl ester core (neutral fats) 

surrounded by a phospholipid monolayer with very few cholesterols and proteins 

(Auclair et al., 2017). The function of the CLD is for mobilization and storage of 

neutral fats that are utilized in various ways including nutrient storage, 

cytoplasmic chaperones for toxic proteins and lipids, and as signaling platforms 
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for immune response pathways (Henne et al., 2018). Interestingly, a study by 

Heller and colleagues suggests an immunoregulation within the inflammatory 

pathway that affects lipogenesis, with the accumulation of fats in lipid droplets 

occurring in intestinal cell lines, HT29 and NCM460 (Auclair et al., 2017; Heller et 

al., 2016). RV infection is known to cause inflammation in the intestines 

(Holloway and Coulson, 2013). Because the viral phosphoprotein, NSP5, is 

inserted on the surface of the viroplasm in a similar pattern as the 

phosphoprotein, perilipin A, on CLDs, their potential relationship was examined 

(Cheung et al., 2010). Confocal microscopy and fluorescence resonance energy 

transfer (FRET) experiments were employed to show RV-induced viroplasms 

physically interacts with CLD-associated proteins (perilipin A and ADRP) and 

lipids (Cheung et al., 2010). Also, the treatment of RV-infected cells with either 

triacsin C compound, which blocks CLD formation, or the combined treatment of 

isoproterenol and IBMX, which induces fragmentation of CLDs into smaller 

microdroplets, produces a 4-fold decrease in viral RNA replication with a 100-fold 

significant decrease of infectious viral progeny (Cheung et al., 2010).  This 

suggests viral replication and the production of infectious virus particles is 

dependent of the production of CLD vesicles and is sensitive to the fragmentation 

of CLDs into microdroplets.  Additionally, RV-infected cells with both treatments 

exhibited a higher viability compared to untreated control cells at 21 hpi and 16 

hpi, respectively (Cheung et al., 2010). However, the triacsin C treatment 

resulted in a distinct decrease in the number of cells containing viroplasms and 



17 
 

the number of viroplasms/cell (Cheung et al., 2010). This alteration in the 

viroplasms of infected cells is not found with the combined treatment of 

isoproterenol and IBMX; which indicates an association of lipids with functional 

viroplasms where new immature virus particles are assembled (Cheung et al., 

2010).  To further investigate the role of lipids in RV infections, de novo 

cholesterol biosynthesis and fatty acid synthesis were inhibited with the addition 

of lovastatin and the combination of TOFA (5- (tetradecyloxy)-2-furoic acid) and 

the compound C75 (tetrahydro-4-methylene-2R-octyl-5-oxo-3S-furancarboxylic 

acid), respectively (Gaunt et al., 2013; Mohan et al., 2008). The RV RNA and 

protein production remains unchanged; however, the RV progeny displays a 

decrease in infectivity (Gaunt et al., 2013; Mohan et al., 2008). Additionally, 

transmission electron microscopy (TEM) shows that lovastatin treated RV-

infected cells, results in the accumulation of defective, “empty-looking” virus 

particles (Mohan et al., 2008). These results infer that lipids are essential for the 

efficient production and assembly of infectious virus particles. However, the 

underlying mechanism of action remains to be fully understood (Lever and 

Desselberger, 2016).  
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The Parr laboratory used transmission electron microscopy (TEM) to show 

RV infected HT29.f8 cells treated with A3 exhibited a two-hour delay in lipid 

vesicle formation compared to RV only, from 14 hours post infection (hpi) to 16 

hpi (Figure 6 1B and 2C). Correspondingly, microarray analysis results revealed 

regulation of 4 genes (AGPAT4, ETNK1, MSMO1, and PRKAB2) in lipid 

biosynthesis, indicating that lipid metabolism appears to be a significant factor in 

RV infections (Lockwood, 2017). Therefore, this research project studied the 

regulation of lipid metabolism in RV infected cells and in RV infected cells treated 

with A3. 

 Our hypothesis is that the up-regulation of lipid metabolism by RV in 

HT29.f8 cells is moderated with the addition of A3 to restore lipid homeostasis. 

The hypothesis is supported by the TEM images showing lipid vesicle formation 

being affected within RV-infected cells as well as a decrease in the production of 

Figure 6. TEM images of RV infected HT29.f8 cells compared to treatment with A3. Panels 1A-1D are 
RV only infected HT29.f8 cells. Panels 2A – 2D are RV+A3. Panel 1E is NV control and panel 2E is A3 
only control (Witcher 2017) 
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infectious RV particles with the addition of A3 (Lockwood, 2017; Witcher, 2017). 

This suggests that A3 could be used as a potential therapeutic agent for RV 

infection. This hypothesis was tested by comparing RV infected HT29.f8 cells to 

RV infected cells treated with A3 using the following 4 techniques: (1) qRT-PCR 

was used to compare mRNA levels of the 4 previously reported genes (AGPAT4, 

ETNK1, MSMO1, and PRKAB2) and an addition 5 genes (FASN, HMGCR, 

PPARD, LDLR, and Perilipin 4) that were shown in the literature to encode for 

regulatory enzymes in lipid metabolic pathways (Voet and Voet, 2011); (2) 

Visualized the distribution and accumulation of neutral fats using 

immunohistochemical and immunofluorescent assays; (3) Illustrated the effects 

of RV infections and A3 treatments on PLIN1 protein using western blot analysis; 

and (4) Compared metabolic profiles for lipoprotein and cholesterol metabolism 

between RV infected and A3 treated cells using a RT2 Profiler PCR array. 
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Materials and Methods 

Cell line and virus 

 The human colon adenocarcinoma cell line HT29.f8, a clonal cell line 

derived from the parent cell line (HT29) were grown in Dulbecco’s Modified 

Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 2 

mM L-glutamine, and 20 U/mL Penicillin/Streptomycin at 37°C with 5.0% CO2. 

The human RV strain, Wa, was acquired from Dr. Judith M. Ball, Texas A&M 

University. HT29.f8 cells were grown to 80% confluency and then infected with 

Wa RV strain at a multiplicity of infection (MOI) of 2 as previously described (Ball 

et al., 2015) . Briefly, the medium was replaced at 12 hours prior to an infection 

with DMEM without FBS to synchronize the cell cycle to G0 for an efficient RV-

infection as shown in previous experiments (Arnold et al., 2012; Ball et al., 2015). 

Cells were infected with virus in the presence of 10µg/ml of Worthington trypsin 

(Biochemical Corporation, Lakewood, NJ) for one hour at 37°C in 5% CO2 with 

rocking. Media was changed and incubated in DMEM without FBS with trypsin at 

0.1 µg/ml for 8 hours at 37°C in 5% CO2 as described previously (Ball et al., 

2015).  
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RNA extraction 

 At 8 hpi the Zymo Research Quick-RNA MiniPrep kit (Zymo Research 

Irvine, CA) was used for total RNA extraction and purification. The media was 

removed from the cells and lysis buffer was added to the sample. The amount of 

lysis buffer used was 300 µL for 1 x 106 cells. The lysed cells were transferred to 

labeled 1.5 mL RNase-free microfuge tubes and passed through a clean RNase-

free 26G3/8 syringe 5 – 10 times each to shear the DNA making the solution less 

viscous and easier to isolate RNA. The samples were then centrifuged at 12,000 

x g for 1 minute to clear lysate. The supernatant was transferred into a labeled 

spin-away filter (yellow) in a collection tube and centrifuged at 12,000 x g for 1 

minute to remove gDNA. The flow-through was saved for RNA purification.  

 Ethanol (95-100%) was added in 1 volume (300 µL: 300 µL) to the sample 

in RNA lysis buffer and mixed well. A volume of 600 µL of the mixture was 

transferred to a Zymo-Spin™ IIICG column (green) in a collection tube and 

centrifuged for 30 seconds. The column was then washed with the addition of 

400 µL of RNA wash buffer and centrifuged for 30 seconds discarding the flow-

through. For each sample, DNase I reaction mix was prepared by combining 5 µL 

of DNase I and 75 µL of DNA digestion buffer in a RNase-free tube and mixed 

well by gentle inversion. The 80 µL of DNase I reaction mix was then added 

directly to the column matrix and incubated at room temperature for 15 minutes 

then centrifuged for 30 seconds. The RNA Prep Buffer (400 µL) was added to 

each column and centrifuged for 30 seconds. The column was then washed with 
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the addition of 700 µL of RNA wash buffer and centrifuged for 30 seconds. The 

column was washed a final time with 400 µL of RNA wash buffer and centrifuged 

for 2 minutes to ensure the removal of the wash buffer. The column will then be 

transferred into an RNase-free tube and 50 µL of DNase/RNase-free water was 

added directly to the column matrix and centrifuged at top speed for 30 seconds 

to elute all RNA. The eluted RNA was put back in the same column and 

centrifuged at top speed for 30 seconds to increase the quantity of RNA 

recovered. The total RNA was measured and analyzed for purity using a full 

spectrum analysis at 400nm – 800nm using the Cary 50 spectrophotometer 

(Agilent, Corp.). The overall quality of an RNA preparation was assessed by 

electrophoresis on a 1.5% native agarose gel. The presence of a 28S and 18S 

ribosomal RNA bands indicated intact RNA. The A260 value was multiplied by the 

conversion factor of 40 µg/mL and the value of 10 (to correct for the path length 

of 0.1 mm) to determine the concentration of RNA as described in the following 

formula: 

Concentration of RNA = A260 X 40 µg/mL X 10 X Dilution factor 
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cDNA synthesis for qRT-PCR 

 The cDNA was synthesized using the Quantabio qScript cDNA synthesis 

kit (Quanta Bioscience, Inc Beverly, MA) from each experimental set using 800 

ng of purified total RNA. A reaction mix was prepared containing qScript reaction 

(5X), qScript reverse transcriptase and nuclease-free water as shown in the 

Table 1. 

Table 1. cDNA Mix 

 Volume Final concentration 

5X qScript reaction mix 2 µL 1X 

qScript reverse 

transcriptase 

0.5 µL 1X 

Nuclease-free Water 5 µL  

Template RNA 2.5 µL 800 ng 

TOTAL VOLUME 10 µL  

 

The samples were then placed into the BioRad MyCyclerTM Thermal Cycler 

(Hercules, CA) for 5 minutes at 22°C, 30 minutes at 42°C followed by a cycle of 

85°C for 5 minutes. 
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Optimization of cDNA for qRT-PCR assays 

Previous qRT-PCR experiments were used to analyze purified cDNA 

products; however, the recovery percentage was low and most experts in the 

field suggested not to clean up and purify the cDNA products. Upon receiving this 

advice, the efficiencies of three cDNA clean up kits (Zymo One Step PCR 

Inhibitor Removal, Zymo Research DNA Clean & Concentrator - 5, Monarch® 

PCR & DNA Cleanup Kit) were analyzed and compared to cDNA that had not 

been separated from the reverse transcription reaction mix. 

 Zymo One Step PCR Inhibitor Removal 

Zymo One Step PCR Inhibitor Removal Catolog # D6030 (Zymo Research 

Irvine, CA) was used to clean cDNA to remove any PCR inhibitors for more 

efficient qRT-PCR results. The Zymo-Spin III-HRC column was prepared prior 

to use by inserting into a collection tube, then adding 600 µL of Prep-Solution 

and centrifuging for three minutes at 8,000 x g. The column was then transferred 

to a nuclease free 1.5 mL microcentrifuge tube. At least 1 µg of DNA was needed 

in a volume ranging from 50 – 200 µL; therefore, to ensure a high yield of cDNA, 

2 µg of cDNA (1:50 ratio of cDNA to nuclease free water), 10.5 µg of cDNA (1:10 

ratio of cDNA to nuclease free water), and 11.4 µg of cDNA (1:5 ratio of cDNA to 

nuclease free water) in a total volume of 100 µL were used. The 100 µL of each 

respective cDNA concentration was added to separately prepared Zymo-Spin 

III-HRC columns and centrifuged for three minutes at 16,000 x g. The filtered 
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cDNA concentration was then quantified using the Cary 50 spectrophotometer. 

The A260 value was multiplied by the conversion factor of 33 µg/mL and the value 

of 10 (to correct for the path length of 0.1 mm) to determine the concentration of 

RNA as described in the following formula: 

Concentration of cDNA = A260 X 33 µg/mL X 10 

Zymo Research DNA Clean & Concentrator - 5 

The Zymo Research DNA Clean & Concentrator - 5 catalog # D4003S 

(Zymo Research Irvine, CA) was used to purify the cDNA. For DNA hydrolysis 

3.6 µL of 0.5 M EDTA and 3.6 µL of 1N NaOH was added to 18 µL of cDNA and 

incubated at 65°C for 15 minutes. Following incubation, 176.4 µL (7 volumes) of 

DNA binding buffer was added to the reaction and mixed well. The mixture was 

then transferred to a Zymo-Spin column in a collection tube and centrifuged for 

30 seconds at 16,000 x g. The flow through was discarded and 200 µL of DNA 

wash buffer was added to the column then centrifuged for 30 seconds at 10,000 

x g. This step was repeated and 10 µL of DNA elution was then added directly to 

the column matrix and incubated at room temperature for 1 minute. The column 

was then transferred to a nuclease free 1.5 mL microcentrifuge tube and 

centrifuged for 30 seconds at 10,000 x g. The purified cDNA was quantified as 

described above. 
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Monarch® PCR & DNA Cleanup Kit 

The Monarch® PCR & DNA Cleanup Kit catalog # T1030L (New England 

BioLabs® Inc. Ipswich, MA) was used to purify the cDNA. The cDNA was diluted 

using 300 µL of DNA binding buffer then 300 µL of cold 100% Ethanol was 

added and mixed well by pipetting up and down. The column was placed into the 

collection tube and 450 µL (2 columns per treatment) of the sample mixture was 

loaded onto the column and centrifuged for one minute at 16,000 x g. The 

column was then removed and placed into a new collection tube where 500 µL of 

DNA wash buffer was added. It was then centrifuged for 1 minute at 16,000 x g 

and the flow through was discarded. The previous step was repeated but 

centrifuged for 2 minutes. The column was transferred to a nuclease free 1.5 mL 

microcentrifuge tube then 10 µL of elution buffer was added to the center of the 

matrix and incubated for 1 minute at room temperature. The column was 

centrifuged for 1 minute at 16,000 x g. The flow through was then added to the 

same matrix and centrifuged again for 1 minute at 16,000 x g. The purified cDNA 

was quantified as described above. 

PCR 

The tubes were quickly tap-spun and 5 μL of the resulting products were 

run on a 1.5% agarose gel (0.75g Molecular Biology Certified agarose (IBI 

Scientific, Peosta, CA), 50 mL 1X TAE (Apex BioResearch Products, Genesee 

Scientific, San Diego, CA), 5 μL SYBR® Green I nucleic acid gel stain (Molecular 
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Probes, Eugene, OR) alongside the Apex 100 bp-Mid DNA marker (Genesee 

Scientific, San Diego, CA) for 1 hour at 100 volts using the BioRad PowerPac 

and Mini-Sub Cell GT (BioRad Laboratories, Hercules, CA). The gel was 

visualized on the Typhoon FLA 9000 (GE Healthcare Life Sciences, Uppsala, 

Sweden) using the following settings: Fluorescence, EtBr, 100 μM. 

Efficiency Assays 

A BioRad CFX96 Real-Time System C1000 Thermal Cycler Instrument 

(Hercules, CA) and the 2X Forget-Me-Not Universal Probe qPCR Master Mix 

(Biotium, Fremont, CA) that contained all necessary components were used to 

perform DNA-binding dye based real-time DNA amplification experiments. 

Primers were designed using IDT PrimerQuest Tool or IDT Predesigned qPCR 

Assays (Integrated DNA Technologies, Coralville, IA) and purchased from IDT.  

The respective forward and reverse primer pairs were used in the qRT-PCR 

(Table 2). The efficiency assays were performed in duplicate with cDNA dilutions 

that were plated in concentrations of 200 ng, 100 ng, 50 ng, 25 ng, 12.5 ng, and 

6.25 ng/well with the appropriate 0.25 μL forward and reverse primers, 5 μL 2X 

Forget-Me-Not Universal Probe qPCR Master Mix and 2.5 μL RNase and 

DNase free water. The primers used were purchased from Integrated DNA 

Technologies (Coralville, IA); Table 2 shows the primers used with the 

sequences, reference numbers, and base pairs sizes of the products.  
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Table 2. Primer sets for qRT-PCR 
Genes Primer 

name 
Primer sequence 5’-3’ Size 

(bp) 
Ref Number 

GAPDH* 
GAPDH 
For GAGTCCACTGGCGTCTTCA 190 

NM_001289746.1 GAPDH 
Rev GGGGTGCTAAGCAGTTGGT  

FASN FASN For TGTCCTGGGAGGAGTGTAAA 119 NM_004104 FASN Rev CTGCTCCACGAACTCAAACA  

HMGCR 
HMGCR 
For TGAAGGGTTCGCAGTGATAAA 115 

NM_000859 HMGCR 
Rev CCTGGACTGGAAACGGATATAAA  

PPARD 
PPARD 
For CCGCAAACCCTTCAGTGATA 110 

NM_006238.4 PPARD 
Rev GAATGATGGCCGCAATGAATAG  

LDLR LDLR For GGATCCTGTTCATGGCTTCA 102 NM_000527 LDLR Rev TCAGTCACCAGCGAGTAGAT  

AGPAT4 
AGPAT4 
For CCCTTGGTTGCCAGAGATAAA 103 

NM_020133.2 AGPAT4 
Rev CACCACAGATGACCCAGAAA  

Perilipin 
4 

PLIN4 For GAGTCACTGGTGCCGTAAAT 100 
NM_001080400.1 PLIN4 

Rev CCAGTAGTCACTGCATCCTTAG  

PRKAB2 
PRKAB2 
For GGATTTGGAGGACTCCGTAAAG 100 

NM_005399.3 PRKAB2 
Rev GTTGAAGGACCCAGAGATGAAG  

ETNK1 
ETNK1 
For CACTGAGCCATTGCTGATAGA 131 

NM_18638.4 ETNK1 
Rev CTGCATAGTCCCAGAGCTAAAG  

MSMO1 
MSMO1 
For GGCAAGATGCTTTGGTTGTG 125 

NM_006745.3 MSMO1 
Rev CAAATGGAGCCTGAAACTCATG  

B2M (1) B2M For GGACTGGTCTTTCTATCTCTTGT 143 NM_004048 B2M Rev ACCTCCATGATGCTGCCTAC  

LRP12 (1) 
LRP12 
For CGTTGCTCTTGCTTTTCCTC 129 

NM_013437 LRP12 
Rev CACTTGGTGCTCGTATTTGC  

IL4 (1) Il4 For CAGTTCTACAGCCACCATGAG 94 NM_172348 IL4 Rev GTTTCAGGAATCGGATCAGC  

COLEC12 
(1) 

COLEC12 
For GCATGGTCAGCTCATCAAGA 123 

NM_130386 COLEC12 
Rev TCTCCTTTCTGTCCCTTGTTG  
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Table 2. Primer Sets for qRT-PCR (continued) 
CETP (1) CETP For GAAGGCCATGATGCTCCT 145 NM_000078 CETP Rev CTTGAAGACCACAGACACGTT  

ANGPTL3 
(1) 

ANGPTL3 
For ACGTGGGAGAACTACAAATATGG 98 

NM_014495 ANGPTL3 
Rev ACATAATTAGATTGCTTCACTATGGAG  

B2M (2) B2M For CCAGCATACTCCAAAGATTCA 94 NM_004048 B2M Rev TGGATGAAACCCAGACACATAG  

LRP12 (2) 
LRP12 
For GGAGAGACTCCAGAGCAAATAC 104 

NM_013437 LRP12 
Rev GCCCTTATGAACCAGCTACA  

IL4 (2) IL4 For CCTCACATTGTCACTGCAAATC 122 NM_172348 IL4 Rev AGGTGATATCGCACTTGTGTC  

COLEC12 
(2) 

COLEC12 
For GGATACGCTGGAGAAGTTACAG 101 

NM_130386 COLEC12 
Rev CAGTGGTGATGAGGAAAGAGTTA  

CETP (2) CETP For ACTGCTACCTGTCTTTCCATAAG 104 NM_000078 CETP Rev CTTCAGGGTGAAGGAGATGAAA  

ANGPTL3 
(2) 

ANGPTL3 
For GCCAAGAGCACCAAGAACTA 117 

NM_014495 ANGPTL3 
Rev CCACTTGTATGTTCACCTCTGT  

* Efficiency assay was previously performed using this primer set with cDNA from HT29.f8 cells 

The following thermal cycling conditions were used: 

Table 3. Thermal cycling parameters for efficiency assays 

 

Cycle Step Temperature Time Cycles 

Initial 

Denaturation 
95°C 60 seconds 1 

Denaturation 95°C 15 seconds 45 

Extension 60°C 30 seconds 
(+plate read) 

 

Melt Curve 60 - 90°C 
Increments of 

0.5°C for 5 
seconds 

(+plate read) 

1 
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The Ct values obtained were exported into Microsoft Excel and the logarithm of 

the initial cDNA template concentration was plotted on the x axis and the Ct is 

plotted on the y axis per primer set (GOI). A standard curve was created and the 

equation and R2 inserted. The slope from the generated equation was inserted 

into the following equation in order to determine the efficiencies. 

E=10(-1/slope)-1x100 to determine % efficiency 

Real-time Quantitative Reverse Transcription PCR Assays (qRT-PCR) 

 To determine if A3 treatment of RV-infected cells affected lipid 

metabolism, qRT-PCR assays were performed on genes noted as important in 

lipid metabolism using a BioRad CFX96 Real-Time System C1000 Thermal 

Cycler Instrument as described above for the efficiency assays. Briefly, at 8 hpi, 

total RNA was extracted from HT29.f8 cells using the Zymo Research Quick-

RNA MiniPrep kit and complementary DNA (cDNA) was synthesized using the 

Quantabio qScript cDNA synthesis kit. The experiment was performed in 

triplicate with the use of 2X Forget-Me-Not Universal Probe qPCR Master Mix. 

Each reaction mixture contained 5 µL 2X Forget-Me-Not Universal Probe qPCR 

Master Mix, 0.25 µL of 10 µM forward and reverse primers, 50 ng of template 

DNA and nuclease-free water to a final volume of 10 µL. The housekeeping 

genes used for relative gene expression analyses were GAPDH and B2M. The 

qRT-PCR analysis was performed using the BioRad CFX96 Real-Time System 
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C1000 Thermal Cycler Instrument. The qRT-PCR cycle conditions that were 

used are described in Table 4. 

Table 4. PCR cycle conditions 

  

The obtained threshold values (Ct) from the qRT-PCR experiment were exported 

to excel for data analyses. The fold change in signal of expression of the genes 

analyzed was determined using the Livak method (2-ΔΔCt) relative to GAPDH and 

B2M (Livak and Schmittgen, 2001). The results for each treatment were 

averaged and were statistically evaluated by analysis of variance (ANOVA) and 

Student’s t two tailed tests using Microsoft Excel 2016 software (significance 

level, p ≤ 0.05). The results were expressed as the mean ± standard deviation 

(SD). 

 

 

Cycle Step Temperature Time Cycles 

Initial 

Denaturation 
95°C 60 seconds 1 

Denaturation 95°C 15 seconds 45 

Extension 60°C 30 seconds 
(+plate read) 

 

Melt Curve 60 - 90°C 
Increments of 

0.5°C for 5 
seconds 

(+plate read) 

1 



32 
 

Whole Cell Histochemical and Immunofluorescent Assays 

Histochemical Staining 

The neutral fats and nuclei of HT29.f8 cells were histochemically stained 

to analyze the distribution and accumulation of neutral fats within the cells. 

Briefly, cells were grown to 80% confluence in 8-well slides (Lab-Tek Chamber 

Slide System, Nunc, Inc. Naperville, IL) and RV-infected and treated with 

arachidin-3 as described above, RV alone, RV with 20 μM A3, 20 μM A3 alone, 

and cells without treatments (NV-no virus). At 18 hpi, the cells were washed with 

PBS 1X one time at 25°C, and then fixed with 1% Glutaraldehyde (Electron 

Microscopy Science, Hatfield, PA) for one hour at 25°C in a fume hood. 

Following fixation, the cells were washed twice with PBS 1X at 25°C and 300 μLs 

of filtered 0.12% Oil Red O stain was added to each well. The chambered slides 

were then rotated to ensure even coverage of the stain on the cells. The Oil Red 

O incubated for 5 minutes then was removed and rinsed with ddH2O until the 

solution removed became clear (~ 5 washes). Following the removal of the last 

ddH2O wash, 300 μLs of 0.12% of hematoxylin stain was added to each well and 

slowly rotated to ensure even coverage of the stain on the cells. The hematoxylin 

stain incubated for 1 minute then was removed and rinsed with warm ddH2O until 

the solution removed became clear (~5 washes). The last wash of ddH2O was 

removed and the slide was mounted in 1X PBS. The cells were then viewed 

using the Olympus BX50 with DP Manager System compound light microscope 

with the DP71 camera (Olympus Corporation, Shinjuku, Tokyo, Japan) equipped 



33 
 

with a X10 objective. The images were digitized using the DP Controller software 

(Olympus Corporation). 

Immunofluorescent Assays 

The nucleus, plasma membrane, and lipid droplets of HT29.f8 cells were 

fluorescently labelled to analyze the distribution and accumulation of neutral fats 

within lipids droplets. Briefly, cells were grown to 80% confluence in 8-well slides 

and RV-infected and treated with A3 as described above (NV, RV, RV+A3, and 

A3). At 8 hpi, the cells were washed with PBS 1X one time at 25°C, and then 

fixed with 1% Glutaraldehyde for one hour at 25°C in a fume hood. Following 

fixation, the cells were washed twice with PBS 1X at 25°C. The LipidSpot 

(Biotium) was used to label the lipid droplets by adding 200 μLs of 1:500 dilution 

of 1000X stock solution in DMSO made with 1X PBS to each well and incubated 

for 10 minutes in the dark. The wells were then washed twice with 1X PBS. The 

Image-IT™ LIVE Plasma Membrane and Nuclear Labeling Kit (I34406) 

(Molecular Probes, Invitrogen detection Technologies, Eugene, OR) was then 

used to label the cells. Briefly, one solution for the single step staining for both 

stains was prepared by adding 5.0 μg/mL Alexa Flour® 594-labeled wheat germ 

agglutinin and 1 μM Hoechst 33342 stain into 1X PBS. Two hundred μLs of the 

labelling solution was added to each well in 8-well chambered slides, incubated 

for ten minutes at 25ºC, removed and the cells were washed twice with PBS 1X, 

and mounted in PBS 1X. The microscopic analysis was carried out using the 

Olympus BX50 with DP Manager System compound light microscope with 
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epifluorescent illumination for Alexa Flour® 594-labeled wheat germ agglutinin 

(Excitation 25 480-550 nm, dichroic mirror DM 570 nm, barrier filter 590 nm), 

Hoechst 33342 (Excitation 330-385 nm, dichroic mirror DM 400 nm, barrier filter 

BA420nm), and LipidSpot 488 (Excitation 420-480 nm, dichromic mirror DM 

500 nm, barrier filter 515 nm) with the DP71 camera equipped with X40 and 

X100 objectives.  

The nuclei and NSP4 in RV-infected HT29.f8 cells were fluorescently 

labelled to confirm infection. Briefly, cells were grown to 80% confluence in 8-well 

slides and RV-infected and treated with A3 as described above (NV, RV, RV+A3, 

and A3). At 8 hpi and 18 hpi the cells were washed with cold 1X PBS then cold 

acetone/methanol (1:1) was added and incubated until the solution came to room 

temperature (~ 5 minutes). The acetone/methanol (1:1) was removed and wells 

were washed once with 1X PBS. Following the removal of the 1X PBS, 200 µL of 

filtered blocking buffer (1X PBS + 0.25% BSA) was added to each well and 

incubated overnight with rocking at 4°C. After incubation the blocking buffer was 

removed and 200 µL of polyclonal rabbit sera anti-NSP4150-175 diluted in blocking 

buffer at 1:250 dilution was added to each well and incubated at room 

temperature with rocking for one hour. The primary antibodies were then 

removed, and cells were washed four times with 1X PBS. Then the secondary 

antibody, 8µg/mL Goat Anti-Rabbit IgG H&L (Alexa Fluor 488) catalog # 

ab150081(Abcam, Cambridge, UK) was added and incubated at room 

temperature for 30 minutes. The cells were then washed four times with 1X PBS. 
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The Image-IT™ LIVE Plasma Membrane and Nuclear Labeling Kit was then 

used to label the nucleus. Briefly the nuclear stain was prepared with 1 μM 

Hoechst 33342 stain in 1X PBS. After removing the last wash of 1X PBS, 200 

μLs of the Hoechst 33342 stain was added to each well in 8-well chambered 

slides, incubated for ten minutes at 25ºC, removed and the cells were washed 

twice with PBS 1X, and mounted in PBS 1X. The microscopic analysis was 

carried out using the Olympus BX50 with DP Manager System compound light 

microscope with epifluorescence illumination for Hoechst 33342 (Excitation 330-

385nm, dichroic mirror DM 400 nm, barrier filter BA420 nm) and Goat Anti-Rabbit 

IgG H&L (Alexa Fluor 488) (Excitation 420-480 nm, dichromic mirror DM 500 nm, 

barrier filter 515 nm)  with the DP71 camera  equipped with X40 and X100 

objectives.  

Western Blot Analyses 

 To determine the expression and regulation of critical proteins in lipid 

metabolism, HT29.f8 cell lysates with treatments and controls (NV, RV, RV+A3, 

and A3) were probed with protein specific primary and fluorescently labeled 

secondary antibodies. The primary antibodies were to bind the specific proteins 

followed by the addition of goat anti-rabbit IgG Alexa Fluor® 546-labeled 

antibody (Life Technologies, Carlsbad, CA) to detect the cellular and viral 

proteins encoded by regulated genes of interest. The concentrations of protein 

and antibodies used is shown in Table 5. 
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Table 5. Antibodies used in western blot analysis 

 

 The HT29.f8 cell lysate proteins was separated by 12% Mini-PROTEAN® 

TGX Stain-Free™ gels (Bio Rad) in 25 mM Tris/192 mM glycine/0.1% SDS buffer 

(Bio Rad) at 150 V for approximately 50 minutes in the Mini-PROTEAN® Tetra 

System (Bio Rad). After electrophoresis, proteins were transferred to a 

nitrocellulose membrane. Briefly, a transfer sandwich was constructed of 1 filter 

Concentration of 
Cell lysates 

Primary Antibody 
(1°) 

(concentration) 

Catolog # 1° concentration: 
2° concentration 

(2 mg/mL) 

30 µg 
Rabbit anti- 

Perilipin 1 (1.1 
mg/mL) 

Novus Biologicals 
(Centennial, CO) 

NB110-40760 
1:550 : 1:500 

40 µg Rabbit anti – 
TIP47 (sera) 

Novus Biologicals 
NB110-40765 1:2500 : 1:5000 

40 µg Rabbit anti- ACAT 
GeneTex 

(Irvine, CA) 
GTX102637 

1:1000 : 1:5000 
1:1000 : 1:2500 
1:1000 : 1:1000 
  1:750 : 1:1000 
1:750 : 1:500 
1:500 : 1:500 
1:250 : 1:500 

40 µg 
Rabbit anti- 
DGAT1 (0.5 

mg/mL) 

BioVision 
(Milpitas, CA) 

3845-30T 

1:1000 : 1:1000 
  1:750 : 1:1000 
  1:500 : 1:1000 
1:500 : 1:500 
1:250 : 1:500 

20 µg Mouse (Mab) 
anti-DGAT 

Santa Cruz 
Biotechnologies 

(Dallas, TX) 
sc-271934 

  1:200 : 1:5000 
  1:500 : 1:5000 

20 µg Mouse (Mab) 
anti-adrp 

Santa Cruz 
Biotechnologies 

(Dallas, TX) 
sc-377429 

  1:500 : 1:5000 
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pad, a blot absorbent filter paper (Thermo Scientific), a 0.45 µm nitrocellulose 

membrane (GE Amersham™ Protran™), the SDS-PAGE, blot absorbent filter 

paper, and a filter pad within a cassette. The cassette was placed in a Mini-

PROTEAN® Tetra System (Bio Rad) with a stir bar at the bottom containing and 

completely being covered with electroblotting buffer (25 mM Tris/192 mM 

glycine/20% (w/v) methanol). The system was placed in a large container and 

covered in ice to prevent overheating on a magnetic stirrer while running for 1 

hour at 500 mA. Upon removal of the nitrocellulose membrane, nonspecific 

binding of antibodies was blocked with incubation in 5% nonfat dry milk in TBS + 

0.05% Tween 20 overnight at 4°C with rocking. The nitrocellulose membrane 

was incubated with protein specific primary antibodies overnight at 4°C with 

rocking. The nitrocellulose membrane was washed with TBS + 0.05% Tween 20 

(four times) for 10 minutes each while rocking. The fluorescently labeled 

secondary antibody was then added to the membrane to incubate for 45 minutes 

at room temperature with rocking. Following another series of washes as 

described above, the membranes were visualized using the 556 nm excitation 

laser and 573 nm emission filter on the typhoon 9500 plus laser scanner (GE Life 

Sciences Marlborough, MA).  
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RT2 Profiler PCR Array  

 The human lipoprotein and cholesterol metabolism RT2 Profiler PCR Array 

was used to analyze the expression of 84 key genes involved in signaling 

pathways. HT29.f8 cells infected with no virus, RV only, RV with A3, and A3 only 

were used for total RNA extraction using Zymo Research Quick-RNA MiniPrep 

kit (Zymo Research Irving, CA) and quantification using the Cary 50 

spectrophotometer. The total RNA was reverse transcribed using RT2 First 

Strand kit (Qiagen, Valencia, CA). The resulting cDNA mixture (20 µL per 

sample) was diluted in 91 µL of nuclease-free water (Qiagen). The diluted cDNA 

(102 µL) was mixed with the PCR components mix composed of 1,248 µL of 

water plus 1,350 of 2X RT2 SYBR green RT2 master mix. The mixture was 

dispensed at 25 µL per well into a 96-well RT2 Profiler PCR array plate. DNA 

amplification was carried out with a BioRad CFX96 Real-Time System C1000 

Thermal Cycler Instrument (Hercules, CA) using the cycling conditions shown in 

Table 6. 

Table 6. PCR cycling conditions for RT2 Profiler PCR Array 

  

Cycle Step Temperature Duration Cycles 

Activation 95°C 10 minutes 1 

Fluorescence 

data collection 

95°C 15 seconds 
40 

60°C 1 minute 
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 The specificity of the primer sets was determined by melting curve 

analyses of the amplicons. The resulting CT values for the plate were exported to 

an Excel worksheet. The fold changes of gene expression were calculated based 

on the ΔΔCT method with normalization of the raw data to GAPDH and B2M. 
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RESULTS 

Optimization of cDNA for qRT-PCR assays 

Before the qRT-PCR assays were performed, the annealing temperatures 

were optimized for the primer sets (HGMCR, FASN, LDLR, and PPARD) using a 

gradient PCR experiment at the following temperatures: 62°C, 59.1°C, 55.5°C, 

and 52.9°C. cDNA was purified using the Monarch® PCR & DNA Cleanup Kit 

from New England BioLabs® Inc. as previously described in the Parr laboratory 

(Napier-Jameson, 2018). The HMGCR and LDLR PCR products were visualized 

on a 1.5% agarose gel; however, for FASN and PPARD no banding pattern was 

observed (Figure 7). After determining the recovery rate of the cDNA from the 

Monarch® PCR & DNA Cleanup Kit was only 7.9%, concerns were raised that 

genes transcribed at low levels would not be represented using this purified 

cDNA. Therefore, three different methods of purifying cDNA were used and 

compared to unprocessed cDNA following reverse transcription to optimize the 

quantity and quality of cDNA for further use in qRT-PCR assays. The Monarch® 

PCR & DNA Cleanup Kit from New England BioLabs® Inc. showed a 7.9% cDNA 

recovery; the Zymo One Step PCR Inhibitor Removal Kit from Zymo Research 

showed a 7.2% recovery, and the Zymo Research DNA Clean & Concentrator - 

5 Kit showed a 0% recovery (appendix Table 10). Next the recovered cDNA from 

the Monarch® PCR & DNA Cleanup Kit, Zymo One Step PCR Inhibitor Removal 
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Kit, and unprocessed cDNA were used with GAPDH primer set to perform PCR 

experiments and the amplicons were visualized on a 1.5% agarose gel. Using 

the Monarch® PCR & DNA Cleanup Kit a non-specific banding pattern alongside 

the gene specific band (98 bp) was observed; however, only one gene specific 

band was observed using both Zymo One Step PCR Inhibitor Removal Kit and 

unprocessed cDNA (Figure 8). Although the banding pattern of the Zymo One 

Step PCR Inhibitor Removal Kit and unprocessed cDNA were similar, the 

recovery rate for the Zymo kit was only 7.2% (appendix Table 10). Then the 

unprocessed cDNA for both NV and RV treatments were used with the primer 

sets (HMGCR, FASN, LDLR, and PPARD) to perform PCR at 58°C. The 

amplicons were visualized for HMGCR, FASN, LDLR, and PPARD at bp sizes 

115, 119, 102, 110, respectively (Figure 9) and compared to the gradient PCR 

experiment (Figure 7). 

 

 

 

 

 

 

 

 

Figure 7. Gradient PCR assay products at 62°C, 59.1°C, 55.5°C, and 52.9°C with 
cDNA from Monarch® PCR & DNA Cleanup Kit from New England BioLabs® Inc. 
Lanes 1 – 4 HMGCR PCR products at ~115 bp. Lanes 5 – 8 FASN PCR products not 
visible. Lanes 9 – 12 LDLR PCR products at ~102 bp. Lanes 13 – 16 PPARD PCR 
products at ~110 bp. 

1       2       3       4        5       6      7        8       9      10     11      12     13              14         15        16 

100 bp 



42 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                            

Figure 8. GAPDH PCR products (98 bp) using 1) 
unprocessed cDNA; 2) cDNA purified using Zymo 
One Step PCR Inhibitor Removal Kit; and 3) cDNA 
purified using Monarch® PCR & DNA Cleanup Kit. A 
98 bp product was present in all 3 lanes. Lane 3 has 
non-specific banding patterns below 98 bp. 

100 bp 

     1                2               3 

                           

100 bp 

1      2       3     4      5      6     7      8      9    

Figure 9. LDLR, HMGCR, PPARD, and FASN PCR assay 
products using unprocessed cDNA from NV and RV 
treatments. All reactions were performed at a 58°C 
annealing temperature. Lanes 1 (NV) and 2 (RV) LDLR 
PCR products at ~102 bp. Lanes 3 (NV) and 5 (RV) 
HMGCR PCR products at ~115 bp. Lanes 6 (NV) and 7 
(RV) PPARD PCR products at ~110 bp. Lanes 8 (NV) and 
9 (RV) FASN PCR products at ~119 bp. 
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Efficiency Assays 

 The first efficiency assays were performed with the primer sets of specific 

genes found in the literature to be involved in the rate-limiting steps of lipid 

metabolism pathways (Davidson, 2018; Goldstein and Brown, 2009; Hussain, 

2009; Radhakrishnan et al., 2007). The efficiencies of each gene are as follows: 

FASN 107.73%, HMGCR 95.68%, LDLR 97.52%, Perilipin 4 97.52%, PRKAB2 

98.71%, ETNK1 93.10%, and MSMO1 110.64% (Table 7). The efficiencies of 

PPARD and AGPAT4 could not be calculated and therefore were dropped from 

the study. 

 After the RT2 Profiler PCR Array data was analyzed (see below), pre-

designed primers were obtained from IDT to confirm the changes of select genes 

[Table 2: B2M (1), LRP12 (1), IL4 (1), COLEC12 (1), CETP (1), ANGPTL3 (1)]. 

However, gradient PCR assays on each primer set were negative for PCR 

products. Even the positive control for B2M and ANGPTL3 were negative (data 

not shown) and with technical support from multiple IDT representatives, it was 

determined the primer sets were not functioning properly. Therefore, the 

efficiencies were unobtainable for these primer sets. 

Following the negative results of the pre-designed primers from the 

second set, new primers were designed in house for each gene [Table 2: B2M 

(2), LRP12 (2), IL4 (2), COLEC12 (2), CETP (2), ANGPTL3 (2)]. Nonetheless, 

gradient PCR assays on each primer set were negative for PCR products except 
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B2M (2) (data not shown); therefore, the efficiencies were unobtainable for the 

remaining primer sets. The efficiency for B2M (2) was calculated to be 93.16% 

(Table 7). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer Efficiencies  
GAPDH* 92.55 
FASN 107.43 
HMGCR 95.68 
PPARD  
LDLR 97.52 
AGPAT4  
Perilipin 4 101.35 
PRKAB2 98.71 
ETNK1 93.10 
MSMO1 110.64 
B2M (1)  
LRP12 (1)  
IL4 (1)  
COLEC12 (1)  
CETP (1)  
ANGPTL3 (1)  
B2M (2) 93.16 
LRP12 (2)  
IL4 (2)  
COLEC12 (2)  
CETP (2)  
ANGPTL3 (2)  

Table 7. Primer efficiencies 
calculated for lipid metabolism 
genes and a housekeeping 
gene (B2M). 

* Efficiency assay was previously 
performed using this primer set with 
cDNA from HT29.f8 cells 
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Quantitative Real-time PCR Assays 

 To determine the effects on lipid metabolism in HT29.f8 cells treated with 

1) RV; 2) RV+A3; and 3) A3, qRT-PCR experiments were performed on each 

treatment using total RNA collected 8 hpi (Figures 10 – 13). 

 ETNK1 showed little to no regulation across all treatments (RV 0.936 ± 

0.03, RV+A3 0.718 ± 0.09, and A3 0.869 ± 0.06) (Figure 10). There were no 

statistical differences between all treatments except RV+A3 was statistically 

different from A3 (P = 0.0397).  

  HMGCR demonstrated an up-regulation with all treatments (RV 2.055 ± 

0.16, RV+A3 1.647 ± 0.14, and A3 1.172 ± 0.081) (Figure 11). RV was 

statistically different from RV+A3 (P = 0.029) and A3 (P = .003); and RV+A3 was 

statistically different from A3 (P = 0.014). 

  Perilipin 4 demonstrated a down-regulation with all treatments (RV 0.530 

± 0.019, RV+A3 0.368 ± 0.094, and A3 0.671 ± 0.054) (Figure 12). A3 was 

statistically different from RV (P = 0.034) and RV+A3 (P = 0.015). 

  LDLR demonstrated an up-regulation with RV (2.587 ± 0.14) and RV+A3 

(2.047 ± 0.10); however, A3 (1.294 ± 0.022) showed little to no regulation (Figure 

13). RV was statistically different from RV+A3 (P = 0.008) and A3 (P = 0.003); 

and RV+A3 was statistically different from A3 (P = 0.009). 
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 FASN, PRKAB2, and MSMO1 demonstrated Ct values above 35 for all 

treatments; therefore, the transcripts could not be detected using 50 ng of cDNA. 
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Figure 10. ETNK1 Expression in HT29.f8 cells at 8 hpi. HT29.f8 cells were 
infected with RV – Wa (MOI = 2) or mock-infected and treated with A3 for 
1 h at 37°C. Total RNA was isolated from the cells treated with RV, RV + 
20 µM A3, or 20 µM A3, and ETNK1 mRNA levels were measured by 
quantitative real-time RT-PCR assay. The levels of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and beta-3-microglobulin (B2M) were 
used to normalize the quantities of target mRNA. Fold changes in signals 
of expression of the gene of interest relative to GAPDH and B2M were 
calculated using the Livak method (2-ΔΔCt). Each column represents the 
mean ± standard deviation (SD) from three separate experiments 
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Figure 11. HMGCR Expression in HT29.f8 cells at 8 hpi. HT29.f8 cells 
were infected with RV – Wa (MOI = 2) or mock-infected and treated with 
A3 for 1 h at 37°C. Total RNA was isolated from the cells treated with RV, 
RV + 20 µM A3, or 20 µM A3, and HMGCR mRNA levels were measured 
by quantitative real-time RT-PCR assay. The levels of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and beta-3-microglobulin (B2M) 
were used to normalize the quantities of target mRNA. Fold changes in 
signals of expression of the gene of interest relative to GAPDH and B2M 
were calculated using the Livak method (2-ΔΔCt). Each column represents 
the mean ± standard deviation (SD) from three separate experiments 
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Figure 12. Perilipin 4 Expression in HT29.f8 cells at 8 hpi. HT29.f8 cells 
were infected with RV – Wa (MOI = 2) or mock-infected and treated with 
A3 for 1 h at 37°C. Total RNA was isolated from the cells treated with RV, 
RV + 20 µM A3, or 20 µM A3, and Perilipin 4 mRNA levels were measured 
by quantitative real-time RT-PCR assay. The levels of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and beta-3-microglobulin (B2M) 
were used to normalize the quantities of target mRNA. Fold changes in 
signals of expression of the gene of interest relative to GAPDH and B2M 
were calculated using the Livak method (2-ΔΔCt). Each column represents 
the mean ± standard deviation (SD) from three separate experiments 
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Figure 13. LDLR Expression in HT29.f8 cells at 8 hpi. HT29.f8 cells 
were infected with RV – Wa (MOI = 2) or mock-infected and treated with 
A3 for 1 h at 37°C. Total RNA was isolated from the cells treated with 
RV, RV + 20 µM A3, or 20 µM A3, and LDLR mRNA levels were 
measured by quantitative real-time RT-PCR assay. The levels of 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-3-
microglobulin (B2M) were used to normalize the quantities of target 
mRNA. Fold changes in signals of expression of the gene of interest 
relative to GAPDH and B2M were calculated using the Livak method (2-
ΔΔCt). Each column represents the mean ± standard deviation (SD) from 
three separate experiments. 
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Histochemical staining 

 To determine the distribution and accumulation of neutral fats in HT29.f8 

cells treated with 1) NV; 2) RV; 3) RV+A3; and 4) A3, histochemical staining was 

performed with each treatment fixed at 18 hpi. Following cell fixation with 1% 

glutaraldehyde, Oil Red O was used to stain the neutral fats (red) while 

hematoxylin was used to counterstain the nucleus (blue).  

 Cells treated with NV exhibited a prominent staining of the nuclei (blue) 

and very little neutral fats (red) (Figure 14A). In comparison, A3 treated cells 

display prominent nuclei with an increase in neutral fat accumulation that 

appeared evenly distributed throughout the cells (Figure 14B). 

 In comparison to NV and A3 treated cells, those treated with RV, 

presented an elevated accumulation of neutral fats (red) as well as defined nuclei 

(Figure 14C). Interestingly, cells treated with RV+A3 displayed an increase in 

neutral fat accumulation compared to A3 treated cells (Figure 14D). 
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Figure 14. Differential histochemical staining of fixed HT29.f8 cells 18 hpi using Oil 
Red O (red) and Hematoxylin (blue). HT29.f8 cells were infected with RV at a MOI = 
2 and treated with A3. At 18 hpi, the cells were fixed with 1% glutaraldehyde then 
stained using 0.12% oil red o stain and hematoxylin. The cells were then viewed 
and analyzed using the Olympus BX50 with DP Manager System compound light 
microscope with the DP71 camera. A: NV treatment demonstrated very little neutral 
fats (NF) and very prominent nuclei; B: Cells with 20µM A3 showed a slight increase 
in neutral fat accumulation; C: RV alone exhibited a dramatic increase in neutral fat 
accumulation giving the cells a more red appearance; D: Cells treated with RV and 
20µM A3 show a similar appearance to RV alone. (X100) 
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Immunofluorescent Assays 

Lipid Droplet Staining 

To determine the distribution and accumulation of neutral fats that rapidly 

accumulate in lipid droplets, HT29.f8 cells treated with 1) NV; 2) RV; 3) RV+A3; 

and 4) A3, were immunofluorescently stained with LipidSpot 488. At 8 hpi, cells 

were fixed with 1% glutaraldehyde, stained as follows: LipidSpot 488 to 

visualize lipid droplets, Alexa Flour-594 labeled wheat germ agglutinin (WGA) to 

visualize plasma membranes, Hoechst 33342 dye to visualize the nucleus.  

In cells treated with NV, demonstrated very distinct plasma membranes 

with neutral fats evenly distributed within the cell (Figure 15A). However, cells 

treated with A3 exhibited a disruptive pattern of the plasma membrane with an 

increase in neutral fats within the cytoplasm (Figure 15B). At the same time point, 

cells RV treated showed less distinct plasma membranes with an increase in 

neutral fats in comparison to NV and A3 (Figure 15C). The neutral fats appeared 

perinuclear and more distinct with RV treatment. 

Additionally, cells treated with RV+A3 had distinct plasma membranes 

similar to the observations with NV and displayed an increased accumulation of 

neutral fats in comparison to A3 alone (Figure 15D). When compared to RV 

alone, RV+A3 had a more evenly distributed pattern of neutral fats.  
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Figure 15. Qualitative comparison of lipid droplets in RV infected and A3 
treated HT29.f8 cells. HT29.f8 cells were infected with RV at a MOI = 2 and 
treated with 20µM A3. At 8 hpi, the cells were fixed with 1% glutaraldehyde 
then labeled with Alexa Fluor® 594-labeled wheat germ agglutinin (WGA) 
which binds to the N-acetylglucosamine and N-acetylneuraminic (sialic) acid 
residues in membranes (red), Hoechst 33342 dye which is selective for DNA 
(blue), and a LipidSpot™ 488 stain which is selective for the neutral lipids that 
rapidly accumulate in lipid droplets (green). A: NV cells showed prominent 
nuclei (N) and distinct plasma membranes (PM) with a small amount of lipid 
(L) in the cytoplasm; B: A3 treated cells displayed prominent nuclei with 
disrupted PM and large amounts of lipids in the cytoplasm; C: RV treated cells 
exhibited prominent nuclei, disrupted PM, and large amounts of lipids in the 
cytoplasm; D: RV+A3 treated cells demonstrated prominent nuclei and PM 
with an increase in lipids in the cytoplasm. (X400) 
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NSP4 Immunofluorescent Assays  

To confirm the expression of NSP4 in RV infected cells at 8 and 18 hpi, 

HT29.f8 cells were treated with 1) NV; 2) RV; 3) RV+A3; and 4) A3, then the 

nuclei and NSP4 were fluorescently labeled. Following cell fixation with 1% 

glutaraldehyde, the nuclei were labeled with Hoechst 33342 dye (blue) and 

sequentially probed with polyclonal rabbit sera anti-NSP4150-175 and Goat Anti-

Rabbit IgG H&L (Alexa Fluor 488) to show the presence of NSP4 (green). 

 At 8 hpi, the control treatments of NV or A3 alone (Figure 16A and 16B, 

respectively) showed no fluorescently labeled NSP4 and very distinct nuclei. In 

comparison, cells treated with RV or RV+A3 (Figure 16C and 16D, respectively) 

showed NSP4 located within the cytoplasm; however, there was a slight 

decrease in NSP4 fluorescence with RV+A3 treatment. 

 At 18 hpi, the control treatments of NV or A3 alone (Figure 17A and 17B, 

respectively) showed no NSP4 fluorescently labeled and very distinct nuclei. In 

comparison, cells treated with RV or RV+A3 (Figure 17C and 17D, respectively) 

showed NSP4 located within the cytoplasm; however, there was a slight 

decrease in fluorescence with RV+A3 treatment. 
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 Figure 16. Detection of NSP4 in RV infected cells at 8 hpi. HT29.f8 cells were 
infected with RV at a MOI = 2 and treated with 20µM A3. At 8 hpi, the cells were 
fixed with 1% glutaraldehyde then fluorescently labeled with Hoechst 33342 dye 
which is selective for DNA (blue), and sequentially probed with polyclonal rabbit 
sera anti-NSP4150-175 and Goat Anti-Rabbit IgG H&L (Alexa Fluor 488) to show 
the presence of NSP4 (green) A: NV treatment showed nuclei and no NSP4; B: 
NV treatment for NSP4 fluorescence only shows no NSP4; C: A3 treatment 
showed nuclei and no NSP4; D: A3 treatment for NSP4 fluorescence only shows 
no NSP4; E: RV treatment displayed nuclei with NSP4 (arrow) located within the 
cytoplasm; F: RV treatment for NSP4 fluorescence only shows NSP4 G: RV+A3 
treatment displayed nuclei with NSP4 (arrow) within the cytoplasm; H: RV+A3 
treatment for NSP4 fluorescence only shows NSP4. (X400) 
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Figure 17. Detection of NSP4 in RV infected cells at 18 hpi. HT29.f8 cells were 
infected with RV at a MOI = 2 and treated with 20µM A3. At 18 hpi, the cells were 
fixed with 1% glutaraldehyde then fluorescently labeled with Hoechst 33342 dye 
which is selective for DNA (blue), and sequentially probed with polyclonal rabbit 
sera anti-NSP4150-175 and Goat Anti-Rabbit IgG H&L (Alexa Fluor 488) to show the 
presence of NSP4 (green) A: NV treatment showed nuclei (N) and no NSP4; B: 
NV treatment for NSP4 fluorescence only shows no NSP4; C: A3 treatment 
showed nuclei and no NSP4; D: A3 treatment for NSP4 fluorescence only shows 
no NSP4; E: RV treatment displayed nuclei with NSP4 (arrow) located within the 
cytoplasm; F: RV treatment for NSP4 fluorescence only shows NSP4; G: RV+A3 
treatment displayed nuclei with NSP4 (arrow) within the cytoplasm; H: RV+A3 
treatment for NSP4 fluorescence only shows NSP4. (X400) 
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Western Blot Analyses 

 To determine the expression and regulation of cellular proteins critical in 

lipid metabolism, cell lysates of HT29.f8 cells treated with NV, RV, RV+A3, and 

A3 collected at 12, 14, 16, and 18 hpi were probed with protein specific primary 

and goat anti-rabbit IgG Alexa Fluor® 546-labeled secondary antibodies.  

 To visualize the presence of perilipin 1 (PLIN1), rabbit anti-perilipin 1 and 

rabbit anti-GAPDH were used with 30 µg of cell lysate protein. The results 

showed a band at ~ 36 kDa for GAPDH and ~ 60 kDa for PLIN1 (Figure 18). The 

pixel densities for each band were quantified using ImagQuant software, then 

ratios of PLIN1 to GAPDH were calculated for normalization and graphed to 

quantify differences in protein expression (Figure 19).  

 The following antibodies were used in western blot assays to probe for 

their respective proteins, but no bands were bands were observed (Table 5: 

Rabbit anti-TIP47, rabbit anti-ACAT, rabbit anti-DGAT1, mouse anti-DGAT, and 

mouse anti-ADRP). 
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Figure 18. Time course study of the expression of Perilipin 1 (PLIN1) 
in RV infected HT29.f8 cells treated with A3. Western blot analysis 
on cell lysates (30 µg) were separated on a 12% SDS/PAGE gel, 
electroblotted onto a nitrocellulose membrane and probed 
sequentially with 2 µg/mL of rabbit anti-perilipin 1 and 40 µg/mL goat 
anti-rabbit IgG Alexa Fluor® 546-labeled antibodies. Then GAPDH 
was visualized using 0.2 µg/mL rabbit anti-GAPDH and 0.4 µg/mL 40 
µg/mL goat anti-rabbit IgG Alexa Fluor® 546-labeled antibodies. The 
blots were visualized using the 556 nm excitation laser and 573 nm 
emission filter on the Typhoon 9500 plus laser scanner. A: 12 hpi; B: 
14 hpi; C: 16 hpi; D: 18 hpi. Results showed a band at ~ 36 kDa for 
GAPDH and ~60 kDa for PLIN1. 
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Figure 19. A time course study of the expression of perilipin 1 normalized to 
GAPDH. RV infected cells were treated with A3 and the control cells (NV and 
A3 alone) were collected at 12, 14, 16, 18 hpi. Western blot analysis was 
performed in duplicate experiments on cell lysates (30 µg) separated on a 12% 
SDS/PAGE gel, electroblotted onto a nitrocellulose membrane and probed 
sequentially with 2 µg/mL of rabbit anti-perilipin 1 and 40 µg/mL goat anti-rabbit 
IgG Alexa Fluor® 546-labeled antibodies. Then GAPDH was visualized using 
0.2 µg/mL rabbit anti-GAPDH and 0.4 µg/mL 40 µg/mL goat anti-rabbit IgG 
Alexa Fluor® 546-labeled antibodies. The blots were visualized using the 556 
nm excitation laser and 573 nm emission filter on the Typhoon 9500 plus laser 
scanner. Using ImagQuant, the pixel densities for each band were obtained. 
The pixel density ratios for perilipin 1 to GAPDH were calculated and averaged 
for each treatment at each time point and graphed using Excel 2016.The ratio of 
perilipin/GAPDH at 12, 14, 16, and 18 hpi in NV treated cells (blue) was 
measured as 0.2816, 0.17, 0.1865 and 0.1954, respectively. The ratio of 
perilipin/GAPDH at 12, 14, 16, and 18 hpi in RV infected cells (green) 
demonstrated values of 0.4315, 0.167, 0.2105 and 0.3055, respectively. The 
ratio of perilipin/GAPDH at 12, 14, 16, and 18 hpi in RV+A3 treated cells (pink) 
showed values of 0.37, 0.1755, 0.2185 and 0.356, respectively. The ratio of 
perilipin/GAPDH at 12, 14, 16, and 18 hpi in A3 treated cells (purple) was 
measured as 0.3495, 0.1205, 0.215 and 0.308, respectively. 
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RT2 Profiler PCR Array 

 To determine the effects on cellular lipid metabolism when A3 is added to 

a RV infected human cells, the Human Lipoprotein Signaling and Cholesterol 

Metabolism RT2 Profiler PCR Array was used to profile the expression of 84 key 

genes involved in lipoprotein transport and cholesterol metabolism. The 

experiments were performed using RNA extracted from HT29.f8 cells with NV, 

RV, RV+A3, and A3 treatments at 8 hpi. To verify that each experiment was 

performed properly, the RT2 Profiler PCR Array also contained 5 housekeeping 

genes, a genomic DNA control, reverse transcription controls, and positive PCR 

controls. The housekeeping genes used were beta-actin (ACTB), beta-2-

microglobulin (B2M), GAPDH, hypoxanthine phosphoribosyltransferase 1 

(HPRT1), and ribosomal protein large P0 (RPLP0).  However, a recent review 

has suggested that a minimum of two different housekeeping genes should be 

used for normalization of the data, and the Ct values should be similar between 

the genes as well as between all treatments (Kozera and Rapacz, 2013).  Table 

8 shows that the Ct values for ACTB, HPRT1 and RPLP0 were NV: 19.3318, 

26.801, and 18.053; RV: 21.0134, 27.6561, and 19.1568; RV+A3: 20.8755, 

26.7172, and 18.2995; A3: 20.0768, 26.2385, and 17.7653, respectively. The Ct 

values for B2M (NV 22.4365, RV 23.3247, RV+A3 22.3989, and A3 21.9764) and 

GAPDH (NV 21.0012, RV 22.6052, RV+A3 22.1545, and A3 21.3463) were 

similar to each other as well as between the treatments, therefore the data 

analysis was performed using these two housekeeping genes (Table 8).           
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To ensure there was no genomic DNA contamination in the RNA sample prior to 

reverse transcription, a genomic DNA control was used in each sample during 

each run. The Ct value for the genomic DNA control should be greater than 35 to 

show no genomic DNA contamination; moreover, the Ct value for NV, RV, 

RV+A3, and A3 were 38.3939, 40.3818, 38.3315, and 39.0001, respectively. The 

reverse transcription control (RTC) was performed in triplicate for each sample 

during each run to check for RNA quality. The Ct value for the reverse 

transcription control is expected to be 20 ± 2; likewise, the Ct value for all 

treatments among the plates were as follows: NV 21.8052, 21.7841, and 

21.5926; RV 21.2644, 21.216, and 21.592; RV+A3 21.177, 21.2524, and 

21.5495; A3 21.0988, 21.1118, and 21.4397 (Table 8). The positive PCR controls 

(PPC) were performed in triplicate for each sample during each run to test the 

efficiency of the PCR reaction itself. The Ct value for the positive PCR control is 

expected to be 20 ± 2; likewise, the Ct value for all treatments among the plates 

were as follows: NV 19.799, 19.6583, and 19.8622 ; RV 19.8231, 19.7214, and 

19.8572; RV+A3 19.906, 19.7779, and 19.9912; A3 19.6843, 19.6357, and 

19.6077 (Table 8). To detect for the presence of reverse transcription inhibitors, 

the ΔCt RTC was calculated using the following equation: 

ΔCt = AVG CtRTC – AVG CtPPC 

If no inhibition of the reverse transcription reaction was apparent, the ΔCt RTC 

should be less than five; furthermore, the ΔCt RTC for NV, RV, RV+A3, and A3 

were 1.95417, 1.55693, 1.4342, and 1.57356, respectively (Table 8). 
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  Genes NV RV RV+A3 A3 

Housekeeping 
genesa 

ACTB 19.3318 21.0134 20.8755 20.0768 
B2M 22.4365 23.3247 22.3989 21.9764 
GAPDH 21.0012 22.6052 22.1545 21.3463 
HPRT 26.801 27.6561 26.7172 26.2385 
RPLP0 18.053 19.1568 18.2995 17.7653 

Genomic DNA 
Controlb HGDC 38.3939 40.3818 38.3315 39.0001 

Reverse 
Transcription 

Controlsc 

RTC 21.8052 21.2644 21.177 21.0988 
RTC 21.7841 21.216 21.2524 21.1118 
RTC 21.5926 21.592 21.5495 21.4379 

Positive PCR 
Controlsd 

PPC 19.799 19.8231 19.906 19.6843 
PPC 19.6583 19.7214 19.779 19.6357 
PPC 19.8622 19.8572 19.9912 19.6077 

ΔCt RTCe   1.95417 1.55693 1.4342 1.57356 
  
 a – Data normalization 
 b - To detect genomic DNA contamination 
 c – Reverse Transcription control is to check for RNA sample quality 
 d – Positive PCR control is to test for the PCR reaction itself 
 e – To detect inhibitors for reverse transcription 

Table 8. RT2 Profiler PCR Array controls. 
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The fold-changes (FC) for each of the 84 genes were calculated and 15 

genes showed a >1.5 fold change (up or down regulation) with at least one 

treatment (appendix) (Table 9). Interestingly, the only gene found to be 

significantly down-regulated in RV infected HT29.f8 cells was CELA3B (0.4155). 

The genes found to be up-regulated in RV infected cells were ANGPLT3, 

APOA1, APOB, CYP39A1, LCAT, and LRP12 (1.9973,1.6756, 2.791, 1.7701, 

1.5557, and 1.8157, respectively). The only gene found to be up-regulated in 

RV+A3 treated cells was APOF (1.719). The genes found to be down-regulated 

in RV+A3 treated cells were ANGPLT3, APOA1, APOA4, CELA3B, SCARF1, 

and STAB2 (0.2505, 0.313, 0.3719, 0.4843, 0.4115, and 0.389, respectively). No 

genes were found to be significantly down-regulated by A3 treated cells; 

however, APOF, CELA3A, CETP, COLEC12, and IL4 were calculated to be up-

regulated (1.6273, 1.6769, 13.858, 5466.1, and 2.7431, respectively)  

Intriguingly, five genes (ANGPLT3, APOA1, CYP39A1, LRP12, and 

OSBPL1A) showed similar expression patterns among the treatments: RV, 

RV+A3, and A3. These five genes showed an up-regulation with RV treatment, 

down-regulation with RV+A3, and a slight down-regulation with A3 (Figure 20). 
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Gene RV RV+A3 A3
ANGPLT3 1.9973 0.2505 0.8406
APOA1 1.6756 0.313 0.805
APOA4 1.4271 0.3719 0.7728
APOB 2.791
APOF 1.2642 1.719 1.6273
CELA3A 1.2962 1.1895 1.6769
CELA3B 0.4155 0.4843
CETP 13.858
COLEC12 5466.1
CYP39A1 1.7701 0.9603 1.1096
IL4 2.7431
LCAT 1.5557 0.8406 0.7566
LRP12 1.8157 0.9526 0.9653
SCARF1 0.8137 0.4115 0.8192
STAB2 0.389 1.0157

Table 9. Genes that showed a >1.5 
fold in up or down regulation from the 
RT2 Profiler PCR Array  

Pink highlight >1.5 fold up-regulation 
Green highlight >1.5 fold down-regulation 
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Figure 20.  Differential expression of key genes in lipoprotein signaling and 
cholesterol metabolism pathways. HT29.f8 cells were infected with RV – Wa (MOI 
= 2) or mock-infected and treated with A3 for 1 h at 37°C. Total RNA was isolated 
from the cells treated with NV, RV, RV + 20 µM A3, or 20 µM A3 at 8 hpi. mRNA 
levels were measured by quantitative real-time RT-PCR assay using the RT2 
Profiler PCR Array. The levels of glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) and beta-3-microglobulin (B2M) were used to normalize the quantities 
of target mRNA. Fold changes in signals of expression of the gene of interest 
relative to GAPDH and B2M were calculated using the Livak method (2-ΔΔCt). RV 
infections alone (blue) showed an upregulation in the following genes: ANGPLT3, 
APOA1, CYP39A1, LRP12 and OSBPL1A with fold changes of 1.997, 1.676, 
1.77, 1.816, and 1.269, respectively.  RV+A3 treatments (orange) displayed 
downregulations in the following genes: ANGPLT3, APOA1, CYP39A1, and 
LRP12 with fold changes of 0.25, 0.313, 0.96, and 0.963, respectively; however, a 
slight up-regulation was observed in OSBPL1A with the fold change of 1.041. A3 
treatments (gray) exhibited downregulations in the following genes: ANGPLT3, 
APOA1, LRP12 and OSBPL1A with fold changes of 0.841, 0.805, 0.965, and 
0.989, respectively; however; a slight up-regulation was observed in CYP39A1 
with the fold change of 1.11.   
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DISCUSSION 

RV infections alter many cellular metabolic pathways including lipid 

metabolism (Gaunt et al., 2013; Lever and Desselberger, 2016; Mohan et al., 

2008).  Correspondingly, several other studies show  RV replication and 

assembly is dependent on cholesterol and CLD (Gaunt et al., 2013; Lever and 

Desselberger, 2016; Mohan et al., 2008). The hypothesis of this study was that 

the regulation of lipid metabolism in RV infected HT29.f8 cells would be affected 

by A3 treatment. Experiments were designed using qRT-PCR, western blots, 

histochemical and fluorescence microscopy to examine changes in cellular 

transcripts, proteins, and neutral fats found in CLDs in RV infected HT29.f8 cells 

with/without A3.  

 The optimization of cDNA for qRT-PCR assays demonstrated that the loss 

of cDNA using the two purification kits, as outlined above, resulted in a significant 

difference in the production of primer specific amplicons. This implies that a loss 

of cDNA that represents the transcripts of low abundance may cause a 

misrepresentation of gene expression. Therefore, t unprocessed cDNA was used 

for a more authentic representation of the gene expression profile.  

 There is no published data on the transcriptional regulation of lipid 

metabolism genes in RV infected cells treated with A3. Therefore, the data from 

this study is very important in defining specific genes that are involved in the 
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control of lipids in the cell as well as suggesting mechanisms of action of A3.  

The fact that the expression of ETKN1 showed little to no regulation across all 

treatments suggests that an alteration in the lipid pathway is downstream of this 

gene. ETKN1 is the first dedicated step in the conversion of ethanolamine to 

phosphotidylethanolamine (PE), but it is not the rate-limiting step (Gibellini and 

Smith, 2010; Lykidis et al., 2001).  Once PE is made there are several known 

pathways in which PE has a major role in lipid trafficking and membrane integrity 

(Gibellini and Smith, 2010; Lykidis et al., 2001). Further experiments should be 

performed to see if these other pathways are affected.  

The expression of HMGCR is the rate-limiting step in the production of de 

novo cholesterol (Goldstein and Brown, 2009). The up-regulation of HMGCR in 

RV infected cells implies that RV manipulates cholesterol metabolism through the 

HMGCR pathway, which would increase cholesterol production. Interestingly, a 

decrease in HMGCR was observed with the addition of A3, which implies that the 

expression of HMGCR transcripts was targeted by an unknown mechanism of 

action.  

Unexpectedly, LDLR expression was also significantly increased in RV 

infected cells. Usually, LDLR and HMGCR are activated simultaneously, which 

results in a negative feedback loop that regulates the uptake and synthesis of 

cholesterol. This results in the increase in one of the two genes (HMGCR and 

LDLR) while the other is down-regulated. This data indicates that RV alters the 

normal cellular negative feedback loop that controls the amount of cholesterol in 



68 
 

the cell. The significant decrease in LDLR expression observed with A3 

treatment indicates the importance in the regulation of LDLR for cellular 

homeostasis.  

Another key gene, Perilipin 4, is important for protecting the CLDs from 

breakdown by hormone-sensitive lipases; therefore, the decrease in expression 

induced by RV infection implies that the neutral fats within the CLD were 

metabolized for energy (Sun et al., 2013). The additional treatment with A3 did 

not significantly change the expression pattern observed with RV alone, and the 

addition of A3 treatment by itself caused a less significant change in expression. 

Further experiments need to be designed to elucidate the mechanism of actions 

of A3 on Perilipin 4 expression. 

Another member of the perilipin family of proteins, PLIN1, which protects 

CLDs from breaking down by hormone-sensitive lipases and promotes lipid 

droplet enlargement, was examined using a western blot time course analysis. 

The increase in PLIN1 protein expression observed at 12 and 18 hpi indicates 

that CLDs are being produced by the cell for further energy use; however, at 14 

and 16 hpi PLIN1 protein expression decreased, suggesting the CLDs are being 

broken down for energy use. (Grahn et al., 2013). Overall, this implies a cycling 

pattern for the production and break down of CLDs. However, this study needs to 

be performed in triplicate and future studies are needed to determine time 

dependent regulation. 
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 The differential histochemical staining for neutral fats revealed that A3 is 

modulating lipid metabolism. In support of this observation, using a fluorescently 

labeled stain for CLDs, PM, and nuclei, showed the modulation of lipid 

metabolism and PM integrity by the addition of A3 to RV infected cells.   

 The RT2 Profiler PCR array assays demonstrated that of the 84 genes 

tested, only 15 showed >1.5 fold change. This illustrated that lipid metabolism is 

regulated with at least one of three treatments tested (RV, RV+A3, or A3). 

However, validation of the results for LRP12, IL4, COLEC12, CETP, and 

ANGPLT3 using in-house designed gene specific primer sets failed to produce 

visible amplicons. The RT2 Profiler PCR array was optimized for high sensitivity 

for transcripts in low expression, but the specificity may have decreased. 

Therefore, further studies will need to be performed to optimize the qRT-PCR 

experimental set up for high sensitivity while keeping high specificity.  

 Altogether, this study showed that the treatment of RV+A3 caused a 

modification of the gene regulation and alter the accumulation and distribution of 

neutral fats. Additionally, RV+A3 treatment showed an improvement in PM 

integrity when compared to RV alone.  The transcripts involved in lipoprotein 

signaling and cholesterol metabolism appeared to occur in low frequency at 8 

hpi; therefore, the highly sensitive assay, RT2 Profiler PCR Array, was able to 

detect the changes, whereas the designed primer sets with high specificity could 

not. This infers that an earlier time point of ~1 – 2 hpi would be appropriate to 

repeat the RT2 Profiler PCR Array experiments. This time point might be crucial 
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due to the importance of cholesterol and CLDs in the production of the viroplasm 

which is shown to form as early as ~1 – 2 hpi (Carrẽo-Torres et al., 2010; 

Eichwald et al., 2012). This study has presented data that will help discern the 

mechanism of action of A3 on RV infected cells and has the potential to develop 

a universal therapeutic treatment for RV infections. 
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APPENDIX 

 

cDNA 
processing 

kit 

Unprocessed 
cDNA 

concentration 
(ng/µL) 

Post-processed 
cDNA 

concentration 
(ng/µL) 

Percent 
recovery 

Monarch® 
PCR & DNA 
Cleanup Kit 

825 65.69 7.9% 

Zymo One 
Step PCR 
Inhibitor 
Removal 

635 45.87 7.2% 

Zymo 
Research DNA 

Clean & 
Concentrator 

- 5 

605.2 0 0% 

 

Table 10. cDNA optimization calculations 
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Table 11. RT2 Profiler PCR Array data and calculations (continued) 
GENE NV ΔCt RV ΔCt ΔΔCt FC RV+A3 ΔCt ΔΔCt FC A3 ΔCt ΔΔCt FC
ABCA1 29.420 7.701 30.281 7.316 -0.385 1.306 30.611 8.334 0.634 0.645 30.107 8.446 0.745 0.597

ABCG1 29.590 7.871 32.097 9.133 1.261 0.417 30.990 8.714 0.843 0.558 31.080 9.419 1.548 0.342

ACAA2 24.661 2.942 25.736 2.771 -0.171 1.126 25.272 2.995 0.054 0.964 24.940 3.279 0.337 0.792

AKR1D1 37.412 N/A 0.000 39.817 N/A 38.356

ANGPLT3 32.638 10.919 32.886 9.921 -0.998 1.997 31.714 9.437 -1.481 2.792 32.208 10.547 -0.372 1.294

ANKRA2 28.530 6.811 29.455 6.490 -0.321 1.250 28.228 5.951 -0.860 1.816 28.060 6.398 -0.413 1.331

APOA1 31.487 9.768 31.988 9.023 -0.745 1.676 31.651 9.375 -0.393 1.313 31.207 9.546 -0.222 1.166

APOA2 32.324 10.605 34.701 11.736 1.131 0.457 33.329 11.053 0.447 0.733 33.408 11.746 1.141 0.453

APOA4 31.682 9.963 32.415 9.450 -0.513 1.427 32.838 10.561 0.598 0.660 29.807 8.146 -1.817 3.524

APOB 35.258 13.539 35.023 12.058 -1.481 2.791 37.193 N/A 37.569

APOC3 36.800 15.081 38.142 38.425 N/A 38.026

APOD 32.407 10.688 33.101 10.136 -0.552 1.466 33.442 11.165 0.477 0.718 33.290 11.629 0.941 0.521

APOE 29.813 8.094 30.752 7.787 -0.307 1.237 30.161 7.884 -0.210 1.156 29.414 7.753 -0.341 1.267

APOF 34.090 12.371 34.998 12.033 -0.338 1.264 33.866 11.589 -0.782 1.719 33.330 11.668 -0.702 1.627

APOL1 27.224 5.505 28.609 5.644 0.139 0.908 28.285 6.009 0.503 0.705 27.157 5.496 -0.009 1.006

APOL2 28.975 7.256 29.983 7.019 -0.238 1.179 29.429 7.152 -0.105 1.075 29.277 7.616 0.359 0.780

APOL5 33.336 11.618 35.277 33.900 11.623 0.005 0.996 33.114 11.453 -0.165 1.121

CDH13 35.682 13.963 40.008 39.739 N/A 39.172

CEL 31.126 9.407 32.813 9.848 0.441 0.737 32.092 9.816 0.408 0.753 31.219 9.558 0.151 0.901

CELA3A 29.068 7.350 29.940 6.975 -0.374 1.296 29.376 7.099 -0.250 1.189 28.265 6.604 -0.746 1.677

CELA3B 31.874 10.155 34.387 11.422 1.267 0.415 33.478 11.201 1.046 0.484 0.000

CETP 36.757 15.038 39.237 0.000 N/A 32.906 11.245 -3.793 13.858

CNBP 23.225 1.506 24.713 1.748 0.242 0.845 24.283 2.006 0.500 0.707 38.941

COLEC12 36.192 14.473 39.031 0.000 N/A 23.718 2.057 -12.416 5466.108

CXCL16 28.530 6.811 30.158 7.193 0.382 0.767 29.416 7.139 0.328 0.797 29.135 7.474 0.663 0.631

CYBR3 25.328 3.609 26.983 4.018 0.409 0.753 26.358 4.082 0.473 0.721 25.500 3.839 0.230 0.853

CYP11A1 35.370 13.651 36.115 35.489 N/A 35.871

CYP39A1 31.281 9.562 31.703 8.738 -0.824 1.770 31.897 9.621 0.058 0.960 31.073 9.412 -0.150 1.110

CYP46A1 31.625 9.907 34.265 11.300 1.393 0.381 33.837 11.560 1.654 0.318 32.951 11.289 1.383 0.383

CYP51A1 23.036 1.317 24.144 1.179 -0.138 1.101 23.404 1.127 -0.190 1.141 23.017 1.356 0.039 0.974

CYP7A1 34.907 13.189 35.292 38.218 N/A 37.639

CYP7B1 34.535 12.816 0.000 39.907 N/A 37.255

DHCR24 23.812 2.093 25.692 2.727 0.634 0.644 25.201 2.925 0.832 0.562 24.726 3.065 0.972 0.510

DHCR7 23.975 2.256 25.785 2.821 0.565 0.676 24.971 2.694 0.439 0.738 24.394 2.732 0.476 0.719

FDFT1 23.893 2.174 25.537 2.572 0.398 0.759 24.933 2.656 0.482 0.716 24.256 2.595 0.421 0.747

FDPS 23.840 2.121 25.340 2.375 0.254 0.839 24.613 2.336 0.214 0.862 24.325 2.663 0.542 0.687

HDLBP 24.741 3.022 26.407 3.442 0.420 0.747 26.224 3.947 0.925 0.527 25.585 3.924 0.902 0.535

HMGCR 24.908 3.189 26.062 3.097 -0.091 1.065 25.456 3.180 -0.009 1.006 24.955 3.294 0.105 0.930
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GENE NV ΔCt RV ΔCt ΔΔCt FC RV+A3 ΔCt ΔΔCt FC A3 ΔCt ΔΔCt FC
HMGCS1 23.447 1.728 24.535 1.570 -0.158 1.116 24.076 1.799 0.071 0.952 23.634 1.972 0.244 0.844

HMGCS2 24.006 2.287 25.365 2.400 0.114 0.924 25.080 2.803 0.516 0.699 24.572 2.910 0.624 0.649

IDI1 24.317 2.598 25.005 2.040 -0.558 1.472 24.087 1.810 -0.788 1.726 23.804 2.143 -0.455 1.371

IDI2 31.865 10.146 33.536 10.571 0.425 0.745 32.269 9.992 -0.153 1.112 31.843 10.181 0.036 0.976

IL4 35.878 14.159 35.866 37.159 N/A 34.365 12.703 -1.456 2.743

INSIG1 24.382 2.663 25.291 2.326 -0.337 1.263 24.352 2.076 -0.588 1.503 24.124 2.462 -0.201 1.150

INSIG2 26.479 4.761 27.626 4.661 -0.100 1.072 27.080 4.803 0.043 0.971 26.790 5.128 0.368 0.775

LCAT 30.808 9.089 31.417 8.452 -0.638 1.556 31.616 9.340 0.250 0.841 31.153 9.492 0.402 0.757

LDLR 24.982 3.263 26.294 3.329 0.066 0.955 25.780 3.503 0.240 0.847 25.293 3.632 0.369 0.774

LDLRAP1 29.891 8.172 32.392 9.427 1.254 0.419 30.938 8.661 0.489 0.713 30.541 8.880 0.707 0.612

LEP 31.204 9.486 34.504 11.539 2.053 0.241 33.729 11.452 1.967 0.256 33.357 11.695 2.210 0.216

LIPE 29.610 7.891 30.528 7.563 -0.328 1.255 30.123 7.846 -0.044 1.031 29.430 7.768 -0.122 1.089

LRP10 27.245 5.526 29.029 6.064 0.538 0.689 28.206 5.929 0.403 0.756 27.553 5.892 0.366 0.776

LRP12 29.943 8.224 30.328 7.363 -0.861 1.816 30.571 8.294 0.070 0.953 29.936 8.275 0.051 0.965

LRP1B 35.013 13.294 0.000 0.000 N/A 0.000

LRP6 26.647 4.928 27.377 4.412 -0.516 1.430 27.039 4.763 -0.166 1.122 27.117 5.456 0.528 0.694

LRPAP1 25.565 3.846 26.646 3.681 -0.165 1.121 26.045 3.769 -0.078 1.055 25.340 3.679 -0.168 1.123

MBTPS1 27.063 5.344 28.064 5.099 -0.245 1.185 27.695 5.419 0.075 0.950 27.128 5.467 0.123 0.918

MVD 28.138 6.419 30.019 7.054 0.634 0.644 28.639 6.362 -0.057 1.040 28.231 6.570 0.151 0.901

MVK 27.862 6.143 29.684 6.719 0.576 0.671 28.896 6.619 0.477 0.719 28.323 6.662 0.519 0.698

NPC1L1 32.037 10.318 36.037 35.102 N/A 35.161

NR0B2 26.707 4.988 28.453 5.488 0.500 0.707 28.066 5.789 0.801 0.574 27.279 5.618 0.630 0.646

NR1H4 34.452 12.733 35.206 36.620 N/A 34.981 13.320 0.587 0.666

NSDHL 26.366 4.647 27.910 4.945 0.298 0.814 27.613 5.337 0.689 0.620 26.802 5.140 0.493 0.711

OLR1 34.572 12.853 38.206 34.619 12.342 -0.511 1.425 34.299 12.638 -0.215 1.161

OSBPL1A 27.554 5.836 28.456 5.491 -0.344 1.270 28.055 5.778 -0.058 1.041 27.512 5.850 0.015 0.990

OSBPL5 28.330 6.611 30.029 7.064 0.453 0.730 29.388 7.111 0.500 0.707 28.639 6.978 0.367 0.775

PCSK9 28.437 6.719 30.195 7.230 0.511 0.702 28.979 6.702 -0.017 1.012 28.584 6.923 0.204 0.868

PMVK 25.832 4.113 26.971 4.006 -0.107 1.077 26.276 3.999 -0.114 1.082 25.484 3.822 -0.291 1.223

PPARD 28.419 6.700 30.010 7.046 0.345 0.787 29.214 6.937 0.237 0.849 28.703 7.041 0.341 0.790

PRKAA1 24.454 2.735 26.056 3.091 0.356 0.781 25.286 3.010 0.275 0.827 25.005 3.344 0.609 0.656

PRKAA2 34.369 12.650 36.393 35.994 N/A 36.393

PRKAG2 27.972 6.253 29.045 6.080 -0.173 1.127 28.634 6.357 0.104 0.931 27.950 6.288 0.035 0.976

SCAP 29.993 8.274 31.765 8.800 0.526 0.695 31.308 9.032 0.757 0.592 30.670 9.008 0.734 0.601

SCARF1 32.331 10.612 33.875 10.910 0.297 0.814 34.170 11.893 1.281 0.411 32.561 10.900 0.288 0.819

SNX17 25.282 3.563 26.692 3.727 0.164 0.892 25.687 3.410 -0.153 1.112 25.137 3.476 -0.087 1.062

SOAT1 26.244 4.525 27.558 4.593 0.068 0.954 26.898 4.621 0.097 0.935 26.326 4.664 0.140 0.908

SORL1 26.414 4.696 27.606 4.641 -0.054 1.038 27.894 5.618 0.922 0.528 27.036 5.374 0.679 0.625

SREBF1 27.782 6.063 29.363 6.398 0.335 0.793 28.460 6.183 0.121 0.920 27.976 6.314 0.252 0.840

SREBF2 25.379 3.661 26.781 3.816 0.155 0.898 26.118 3.841 0.181 0.882 25.662 4.001 0.340 0.790

Table 11. RT2 Profiler PCR Array data and calculations (continued) 
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GENE NV ΔCt RV ΔCt ΔΔCt FC RV+A3 ΔCt ΔΔCt FC A3 ΔCt ΔΔCt FC
STAB1 33.130 11.411 33.733 10.768 -0.643 1.562 33.220 10.943 -0.468 1.383 32.419 10.758 -0.653 1.573

STAB2 32.396 10.677 35.483 34.316 12.039 1.362 0.389 32.316 10.654 -0.022 1.016

STARD3 27.527 5.808 30.037 7.072 1.264 0.416 28.768 6.491 0.683 0.623 28.365 6.703 0.895 0.538

TM7SF2 26.121 4.402 27.865 4.900 0.499 0.708 27.420 5.143 0.741 0.598 26.484 4.823 0.421 0.747

TRERF1 29.020 7.301 30.937 7.972 0.670 0.628 30.212 7.935 0.634 0.645 29.952 8.291 0.990 0.504

VLDLR 31.611 9.892 33.813 10.848 0.957 0.515 33.097 10.820 0.928 0.526 33.284 11.622 1.731 0.301

ACTB 19.332 21.013 20.876 20.077

B2M 22.437 23.325 22.399 21.976

GAPDH 21.001 22.605 22.155 21.346

HPRT 26.801 27.656 26.717 26.239

RPLP0 18.053 19.157 18.300 17.765

HGDC 38.394 40.382 38.331 39.000

RTC 21.805 21.264 21.177 21.099

RTC 21.784 21.216 21.252 21.112

RTC 21.593 21.592 21.549 21.438

PPC 19.799 19.823 19.906 19.684

PPC 19.658 19.721 19.779 19.636

PPC 19.862 19.857 19.991 19.608

Table 11. RT2 Profiler PCR Array data and calculations (continued) 
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