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ABSTRACT 
 

 

 

Understanding ecosystem carbon dynamics is of increasing importance with 

atmospheric carbon dioxide (CO2) concentrations on the rise.  Land management 

strategies, such as land use conversion, effect ecosystem carbon cycling dynamics and 

can alter the quantity of carbon sequestered in vegetation and soils. In East Texas and 

much of the southern United States, there has been a trend of converting marginal 

pastureland into loblolly pine (Pinus taeda) plantations. This afforestation, like all other 

land use conversions, leads to a redistribution of carbon in vegetation and soil carbon 

sinks. In 2003, five marginal pasturelands in East Texas were afforested with loblolly 

pine with the intent of quantifying the organic carbon sequestered as a result of this land 

use change. In 2003 and 2015, soils were sampled on three of the sites in East Texas to 

measure the change in soil organic carbon in the top 40 cm of soil, and the accumulated 

O horizons were sampled in 2015.  In the summer of 2017, tap root systems and coarse 

roots on each of the three sites were excavated to quantify belowground biomass. All 

sites experienced increases in carbon sequestered belowground in coarse roots, tap roots, 

and also O horizons.  Only one site had a statistically significant increase in soil organic 

carbon (SOC).  
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INTRODUCTION 
 

 

 

Carbon cycling occurs throughout all of the Earth’s basic geospheres.  The 

interfaces of the lithosphere, hydrosphere, atmosphere and biosphere produce variable 

and complex environments (Lal, 2008).  One of the most common of these interfaces is 

the pedosphere, or soil environment.  However, due to the difficulty and complexity of 

observing soil dynamics in-situ, there is still relatively little known on carbon dynamics 

of soil systems.  What is known is that the pedosphere is a large component of the global 

carbon cycle, acting as both a major sink and source for atmospheric carbon (Weil and 

Brady, 2017).  

It is well documented that localized disturbances of the pedosphere leads to 

redistribution of carbon. Some of the largest pedologic disturbances in the form of land 

use changes.  Until the 1940s, land use change, primarily the conversion of natural 

ecosystems to alternative uses; accounted for more carbon dioxide (CO2) emissions than 

the combustion of fossil fuels; by 2008, approximately 18% of global CO2 emissions still 

originated from deforestation in conversion to agricultural land use (Lal, 2008).   

 Anthropogenic influences on the global carbon cycle, such as land use change, 

have been one of the factors that have been linked to global climate change, and has 

made the importance of carbon accounting and modeling critical in determining 
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anthropogenic influences on climate change.  Using afforestation as a mitigation method 

offers the opportunity of sequestering carbon in soil carbon and in forest biomass, 

especially when previous land use management strategies were destructive to soil organic 

carbon, e.g. intensive deep tillage.    

 In its simplest form, organic carbon is introduced to soil environments from 

biologic inputs, primarily through autotrophic organisms.  Photosynthesizing organisms 

assimilate atmospheric CO2 and convert it to glucose (C6H12O6) which is used in cellular 

growth, maintenance, and respiration.  Necrosed matter is then subject to decomposition 

where some of the carbon is oxidized to CO2, and the remaining carbon is released as 

waste products of decomposer organisms.  These organic residues then can be sorbed to 

soil particles or transformed into other organic molecules by soil organisms.  

Decomposition rates are affected by many factors, including moisture, temperature, 

oxygen availability, and the bioavailability of the carbon in substrates. 

 Soil carbon, including biomass, detritus, and humus, represents the largest 

terrestrial carbon pool (Lal, 2004; Scharlemann et al., 2014; Weil and Brady, 2017).  In 

plant roots, biomass is one of the important pathways that organic introduces materials 

into soil systems.  Roots can be characterized in different ways; one of the most common 

is based on the diameter of roots, with fine roots being classified as smaller than 2 mm in 

diameter and coarse roots being larger than 2mm in diameter.   
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In the southeastern United States, a popular species for afforestation projects is 

loblolly pine (Pinus taeda) because of its rapid growth, economic value as a timber 

source, and site adaptability.  While there has been ample research on loblolly pine, most 

of the research has focused on the production of loblolly for fiber and timber.  The 

research that has focused on belowground characteristics of loblolly pine has generally 

been centered on fine root dynamics and seedling root:shoot ratios.   

In 2003, approximately 512 hectares on five sites of what had been previously 

pastureland in east Texas, was planted to loblolly pine as a part of a carbon sequestration 

project funded by STMicroelectronics in collaboration with the Arthur Temple College of 

Forestry and Agriculture at Stephen F. Austin State University.  These operational carbon 

sequestration plantations offered an opportunity to evaluate changes in soil carbon 

storage, including the contribution of carbon from coarse roots, as a result of afforestation 

activity.  This study examined the changes in coarse root, forest litter, and soil organic 

matter contributions to carbon sequestration after afforestation on three of the original 

five sites that together accounted for 460 hectares.  
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OBJECTIVES 
 

 

 

The principle purpose of this study was to observe and quantify the amount of 

carbon sequestered in loblolly pine (Pinus taeda) plantations from woody coarse roots, 

forest litter layers (O horizons), and soil organic carbon after 16 years since afforestation 

in Eastern Texas.  More specifically the objectives of this study were to quantify: 

1. belowground coarse woody root biomass of loblolly pine for the purpose of 

carbon sequestration assessment. 

2. carbon accumulation in forest litter (O horizons) for the purpose of carbon 

sequestration assessment. 

3. accumulation of soil organic carbon in a loblolly plantation setting for the purpose 

of carbon sequestration assessment. 
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LITERATURE REVIEW 
 

 

 

Carbon Dioxide and Climate Change 

 

 

 

The global climate throughout Earth’s history has been dynamic in nature.  

Within the past 40 years, changes in atmospheric gas composition has come to be 

understood as one of the sources of climate change, specifically the concentration of 

greenhouse gasses (GHGs), including methane (CH4), nitrogen oxides (NOx), and carbon 

dioxide (CO2).  Incoming solar radiation warms the surface of the earth which, in turn, 

reemits this thermal energy that is absorbed by GHGs and reemitted back towards earth 

(Anderson et al., 2016).  While the majority of GHGs are naturally occurring, the 

exponential increase of anthropogenic activity has led to an increase in GHGs 

atmospheric concentrations, with the combustion of fossil fuels and land use conversion 

as major contributors.  Reducing the CO2 produced from the combustion of fossil fuels is 

one of the primary targets of reducing net emissions in a global attempt to curb GHG 

emissions (IGBP, 1998). 

Emissions of CO2 from fossil fuel combustion have been projected to peak 

between the years 2029 and 2044, with emissions of 11.1Gt C yr-1 and 16.1GtC yr-1
, 

respectively, and not return to atmospheric concentration below 400 ppm CO2 for at least 

two centuries (Tans, 2009).   
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Carbon Cycling 

 

 

 

Carbon, like nitrogen and water, cycles throughout different pools on a global 

scale.  Carbon pools, or reservoirs, can be grouped into five major classifications: 

atmospheric, geologic, oceanic, pedologic, and biotic (Lal, 2008).  The latency of carbon 

in these pools varies and depends on many factors including bioavailability and 

reactivity.  For example, carbon sequestered in pedologic pools may be sequestered for 

centuries in humus (Weil and Brady, 2017). 

 

 

 

Carbon and Forest Ecosystems 

 

 

 

Mitigating increasing levels of atmospheric carbon dioxide through forest 

management and conservation was debated as early as the 1970s (Montagnini and Nair, 

2004).  Forests represent a large proportion of the terrestrial carbon pool, storing large 

amounts of carbon in organic materials and woody biomass (Birdsey, 1992).  The United 

States contains an estimated 295 million hectares of forests, which represent a large 

potential carbon sink (Birdsey, 1992).  In a forested ecosystem, carbon is exchanged with 

the atmosphere in the form of CO2, which is assimilated by trees and other plants through 

photosynthesis and stored in plant biomass, soil and litter components in the ecosystem.  

Respiration, both autotrophic and heterotrophic, release stored carbon back into the 

atmosphere, primarily as CO2.     
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It is best to quantify the flux of carbon in an ecosystem on a temporal scale.  

Photosynthesis is directly correlated with solar radiation, meaning carbon sequestration is 

correlated to solar radiation (IPCC, 2000).  During periods of little to no solar radiation, 

when forests are not photosynthesizing, carbon stored in carbohydrates is released during 

cellular respiration; this uses about 50% of the carbon assimilated, while the remaining 

carbon is used in growth and maintenance (IGBP, 1998).  The difference between gross 

photosynthesis and autotrophic respiration is referred to as net primary productivity 

(NPP) (IGBP, 1998; IPCC, 2000; Kinerson et al., 1977).  As trees grow, necrosed matter 

falls to the forest floor, where a portion is decomposed by heterotrophic organisms, and is 

released as CO2.  The remaining carbon in biomass and organic residues is net 

environmental productivity (NEP), i.e., the difference between gross photosynthesis and 

the sum of heterotrophic and autotrophic respiration equals NEP (IGBP, 1998; IPCC, 

2000; Kinerson et al., 1977).  The remaining biomass, in a forested setting, is often 

harvested for wood and fiber production. The difference between NEP and disturbances 

in an ecosystem (e.g. harvest or fire) is net biome productivity (NBP) (IGBP, 1998; 

IPCC, 2000).  Each component of a systems carbon flux is temporally based, with NPP 

ranging on an hourly to daily range, NEP on a monthly to yearly scale, and NBP on a 

decadal scale. While NBP has been thought to be zero across all natural ecosystems 

(±1Gt yr-1), the modeling does not account for ex situ carbon sequestered, or changes due 

to anthropogenic land use conversion.   
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Ex Situ Carbon Sequestration 

 

 

 

Carbon sequestered during the life span of a tree in a forested ecosystem is not 

automatically released back into the atmosphere upon the removal of biomass from the 

ecosystem (e.g. harvest).  Forests have the capacity to sequester carbon in situ (biomass, 

soil, litter) and ex situ (timber and wood products) (Johnsen et al., 2001).  Carbon can 

remain sequestered long past the rotation of a stand in the products that are derived from 

the wood and fiber products produced.  For example, timber used in the construction of 

single-family homes built before 1980 is estimated to have a half-life of 80 years (Skog 

and Nicholson, 1998).  The half-life of sequestered carbon is the amount of time it takes 

for half of the carbon in wood and fiber products in use to be transformed into more 

mobile forms of carbon such as CO2 or CH4.   

Ex situ sequestered carbon in wood and timber products no longer in use are 

usually deposited in landfills where they are buried with other wastes, which limits the 

amount of oxygen available for microorganisms to decay organic products.  Aerobic 

respiration produces CO2, but once oxygen is depleted and anaerobic respiration takes 

dominance, methane (CH4) is the primary greenhouse gas byproduct.  In the atmosphere, 

CH4 is more effective at trapping heat compared to CO2 by a factor of 25 (Skog and 

Nicholson, 1998).   
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In landfills that have been capped and closed, CO2 emitted through microbial 

respiration represents about 40% of total carbon emitted, while CH4 is roughly 60% 

(Skog and Nicholson, 1998).  Half of all CO2 emitted will occur in the first three years, 

while half of all CH4 will be released in the first 20 years (Micales and Skog, 1997).  

However, it is believed that less than 50% of carbon stored in timber or wood products in 

landfills is converted to CO2 or CH4 (Skog and Nicholson, 1998).  This is important 

because the remaining carbon in wood products and timber in landfills potentially could 

be considered as a longer term carbon sink from a carbon accounting perspective.  Not 

accounting for ex situ carbon sequestered can greatly underestimate the ability of forest 

systems to sequester carbon long term (Smith et al., 2006). 

 

 

 

Soil Organic Matter 

 

 

 

Globally, soils represent the largest terrestrial carbon pool at 3.3 times 

atmospheric concentrations and 4.5 times the size of the biotic pool (Lal, 2004).  The 

three major components of soil organic matter (SOM) are biomass, detritus, and humus 

(Weil and Brady, 2017).  Approximately 59% of carbon in forested ecosystems is 

contained in soils; with the addition of roots, it is estimated to be 64% (Birdsey, 1992).  
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Biomass 
 

 

 Soil biomass consists of all biotic organisms in soil environments, including, but 

not limited to, microbes, earthworms, and roots.  Typically the most abundant organisms 

found in soils globally on a mass/area basis are either bacteria or fungi, depending on 

factors that influence soil conditions such as soil pH and climatic variables (Weil and 

Brady, 2017).   

In addition to the biomass that roots contribute to soil organic matter, roots can 

contribute organic compounds to the soil in a number of ways, collectively known as 

rhizodeposition.  Primarily, the additions of organic substances to the soil can come from 

the inputs of cellular materials and exudates.  Carbon can be released in exudates as 

organic and inorganic carbon with the form of carbon depending on many factors 

including plant type, climate, and physical and chemical soil parameters (McNear Jr., 

2013).  Carbon mobilized from shoots of plants to the root system of plants can account 

for 2-30% of total dry matter production (Weil and Brady, 2017).  Rhizodeposition 

decreases with plant age and the majority of rhisodeposition studies are conducted in 

laboratory settings with juvenile plants which might not reflect true field conditions (Weil 

and Brady, 2017). Nevertheless, carbon contributed from biomass and exudates are 

important in carbon cycling and humus production in soil environments.     
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Detritus 
 

 

Detritus on the forest floor is primarily oxidized or modified through faunal and 

microbial activity, and factors that affect the respiration rates of these organisms will 

affect the latency of carbon stored in plant materials (Enriquez et al., 1993).  One factor is 

the carbon/nitrogen ratio of plant materials.  It is well understood that plant materials 

with low C:N ratios undergo faster decomposition than those with high C:N ratios 

(Enriquez et al., 1993; Weil and Brady, 2017).  Those with high C:N ratios are more 

resistant to decomposition and will have longer latency compared to detritus with low C: 

N ratios.   

Detritus originating from conifers have a median half-life higher than deciduous 

trees (Enriquez et al., 1993).  Additionally, detritus originating from multiple sources has 

higher decomposition rates than detritus from a single species (Hättenschwiler, 2005).  A 

monoculture would therefore generate detritus that has a longer latency than compared to 

natural stands or detritus produced by mixed forests. 

 Loblolly pine needles have been shown to decompose at a constant rate with 44% 

of needle dry weight remaining after one year of decomposition (Thomas, 1968).  If it is 

assumed that this rate holds constant, remnants of existing loblolly pine needles would 

still be present after two years of decomposition. 
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Humus 
 

 

Humification is the process in which organics from detritus and exuded organics 

are converted to humus through microbial decomposition.  Monomers and polymers with 

defined, known structures such as amino acids, lipids, and carbohydrates are classified as 

nonhumic substances.  Organic substances that do not fall into any one identifiable 

category of organic molecules are referred to as humic substances.  Humic substances can 

be further divided into humin, humic acid, and fulvic acids depending on a compound’s 

solubility in acidic and alkali conditions (Weil and Brady, 2017).  Humic substances 

make up 60 to 80% of humus, while nonhumic substances make up 20 to 30% (Weil and 

Brady, 2017).   

Biomass, detritus, and humus all contribute to total soil organic matter in 

pedologic environments.  However, carbon sequestered in biomass and detritus is 

typically more labile than carbon sequestered in humus, making humus a large sink to net 

carbon sequestration.  It was previously believed that the stability of humic substances 

came from the size of the molecules.  Ranging from 2,000 to 300,000 g mol-1, humic 

substances are very resistant to microbial decomposition, but not impervious (Weil and 

Brady, 2017).  However, these macromolecules may be the result of polymerization of 

smaller organic monomers and polymers formed during the laboratory extraction process 

(Denef et al., 2009; Weil and Brady 2017).  These smaller organic molecules that are now 

believed to exist in situ in soil are more bioavailable than previously believed. 
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Soil texture plays an important role in soil carbon dynamics; the clay and silt 

sized fraction of soils effects the potential of a soil for sequestering carbon in organic 

matter.  Some of the micropores formed by clay particles are physically inaccessible to 

decomposer organisms, leaving organics trapped in these pores inaccessible (Weil and 

Brady, 2017).  Additionally, organics can be sorbed to clay particles removing them from 

solution, rendering them inaccessible to decomposers.  The allophane clays associated 

with Andisols are believed to be a contributing factor for their high organic matter 

contents (Weil and Brady, 2017).     

 Soil organic carbon (SOC) is derived from SOM and is more meaningful when 

estimating carbon storage in an ecosystem.  To calculate SOC from SOM the accepted 

conversion is SOC is equal to half of SOM.  Previous empirical studies have found this 

value to be closer to 0.52 while theoretical studies have found it closer to 0.5 (Pribyl, 

2010; Weil and Brady, 2017).  The inherent variability of soils means that the accepted 

0.5 conversion factor will not hold true for all SOM, but is an acceptable value for 

simplified modeling on larger scales.   

 

 

 

Loblolly Pine (Pinus taeda) 

 

 

 

Loblolly pine (Pinus taeda) is the most important timber species in the southern 

United States, constituting over 50% of the standing pine volume in the region (Baker 



14 

 

and Langden, 1990), which as of 2004 was the most intensively managed forested area in 

the world (Johnsen et al, 2004).  In the southern United States, loblolly pine occupied 

some 11.7x106 ha, making it the most commercially significant timber species (Baker and 

Langden, 1990), and more recently, the US Forest Service estimated the total area of 

loblolly pine to encompass some 22x106 ha in the United States (USFS, 2018).  The 

westernmost expanse of the range of loblolly pine extends into eastern Texas, where it 

comprises 97% of all softwood volume with a volume of 2.36x109 m3 (Dooley and 

Brandeis, 2014). 

Aboveground Biomass of Loblolly Pine 
 

 

 The significance of loblolly pine as one of the most commercially important 

timber species means it is also one of the most widely studied species.  Most studies have 

focused on growth, yield, and responses to management practices for the production of 

timber.  One of the most practical applications of research has been the development of 

taper equations for land managers to predict the volume of trees and thus stands.  The 

earliest whole stand yield models were developed between 1937 and 1939 and have been 

continued to become more refined and species specific, as Coble (2009) used 987 

observations to develop a model for total loblolly pine tree ft3 ac-1 specifically for stands 

in East Texas.  Studies similar to this have been conducted across different loblolly pine 

sites to develop models for loblolly pine in different regions.  Using the wood volume 

produced by these equations, carbon stored in aboveground biomass can be estimated.  
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Belowground Biomass of Loblolly Pine  
 

 

 The majority of studies regarding the belowground component of biomass in 

loblolly pine plantations have focused on singular aspects of the root system such as root 

ball, tap roots, or lateral roots.  Others have separated roots based on diameter 

classifications. 

 Kinerson et al. (1977) excavated seven loblolly pine root systems and found that 

70-75% of lateral root biomass existed in the top 20cm of the soil and that 50% of the 

total root biomass was attributed to the belowground stump component.  Miller et al. 

(2006) found that 91.9% of the biomass in loblolly pine root systems occurs in the upper 

50cm of a soil profile, reaffirming Kinerson et al. (1977), who did not describe the 

method of excavation, leaving the question of whether or not the roots can be properly 

attributed to the above ground biomass of individual trees, which was used to derive their 

results.  They also made no mention of non-stump originating vertical (sinker) roots 

which could imply that excavation was done on a volume basis where roots were 

excavated and sieved, leading to no distinction from vertical and horizontal roots, and 

assumed all roots were laterally oriented.  Despite these shortcomings, the authors 

construct one of the early models for NPP in loblolly pine plantations.   

 Albaugh et al. (2006) examined three different stands of loblolly pine across 

different stand development stages and site characteristics and found that coarse root 

biomass was approximately 50% of stem biomass on a per hectare basis.   
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 Rooting density decreases with depth (Albaugh et al, 2006; Farrish, 1991; 

Johnsen et al, 2004; Kinerson et al, 1977; Parker and Van Lear, 1996), due to a large 

number of factors.  Parker and Van Lear (1996) point out some of the soil factors that 

could lead to this trend, such as finer textures and higher mechanical resistance impair 

root development at greater depths.  Additionally, decreases that are associated with 

increase in depth, such as decreases in organic matter, biologic activity, aeration, and 

fertility, could also discourage foraging behavior associated with fine roots (Parker and 

Van Lear, 1996).  These assumptions mean that root development at increasing depths 

could be genetically based or could serve to provide water for the plant in times of water 

stress, serve as structural support for the plant, or a combination of these and other 

factors.    

 The largest problem with rhizology studies in a natural environment is the 

methodology in which they are carried out.  Most methods are time consuming and labor 

intensive (Böhm, 1979).  Fine roots are relatively homogenously distributed in 

comparison to coarse roots, making estimation via soil coring a much more practical 

method than excavation methods necessary for coarse roots (Johnsen et al., 2004).  Mou 

et al. (1995) found no correlation between spatial distribution of aboveground biomass 

and fine root biomass, but there was a correlation between coarse roots and their 

proximity to the stems.  In their experimental design, juvenile loblolly pine trees were 

planted at random on experimental plots and not in rows as would be expected to be seen 

in a plantation setting.  In a row system, if the assumption that coarse root density is 
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correlated to the proximity of stems holds true, it would be expected that coarse roots are 

distributed more evenly than in natural stands.  This could make sampling for coarse 

roots contribution to carbon sequestration a more manageable task, as well and lead to 

more accurate models of carbon dynamics in plantation style forested ecosystems.      

   The most often used definition of fine roots are roots that are less than 2 mm in 

diameter (Johnsen et al; 2004).  Roots greater than 3 mm in diameter have undergone 

secondary xylem thickening along with developed phloem, meaning these roots are 

generally perennial in nature (McClaugherty and Aber, 1982).  While the definition of 

fine roots being less than 3 mm is backed in physiology, the less than 2 mm definition of 

fine roots is more widely used in the classification of fine roots.   

Fine roots compose only ~1% of standing biomass in loblolly pine trees but 

account for ~13% of annual biomass production (Albaugh et al., 1998).  While fine roots 

represent a significant portion of carbon allocation, their importance in NEP is 

questionable.  Relatively speaking, fine roots in forested ecosystems are short lived and 

decompose rapidly; therefore, much of the carbon in fine roots is released back into the 

atmosphere as CO2.   

Necromass, the portion of dead, recognizable mass, of loblolly pine tap root 

systems has been observed in situ in measurable quantities 60 years post-harvest 

(Ludovici et al., 2002), meaning coarse roots, including tap root systems, represent a 

multi-decade, if not century, sink for carbon in loblolly pine systems.
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METHODS 
 

 

 

Study Area 

 

 

 

The study was conducted on three SFA Real Estate Foundation-owned properties, 

known collectively as the STMicroelectronics properties.  Two of the three sites were 

located approximately 16km east of Crocket, Texas, near the western boundary of the 

Davy Crockett National Forest, approximately 10km apart in Houston County, Texas.  

The third site was located in Cherokee County, Texas, approximately 11km east 

southeast of Rusk, Texas.  Each site contained 16 year old, thinned loblolly pine 

plantations.  Prior to planting of loblolly in 2003, each site had previously been used as 

pastureland for forage production for several decades. 

 

 

 

Study Sites 

 

 

 

The  property located near the western edge of the Davy Crockett National Forest 

at 31°12’53.56”N, 95°18’7.18”W, will be referred to as the Arbor Grove site.  The 

second site located 10 km to the northeast of Arbor Grove is Hickory Creek 

(31°23’28.36”N, 95°15’52.21”W).  Because of the proximity of the Arbor Grove and 
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Hickory Creek sites, the climate data was identical with a mean temperature of 18.5°C 

with a mean annual precipitation of 106.8 cm year-1 (Soil Survey Staff, 2018).  Both 

Arbor Grove and Hickory Creek were pastureland prior to planting of loblolly pine in 

2003.  The third site was located in Cherokee County, Texas referred to as the Atoy site 

(31°15’38.12”N, 95°2’32.65”W).  Atoy receives a mean annual precipitation of 125.9 cm 

year-1 with a mean annual temperature of 18.2°C (US Climate Data, 2018).  Prior to 

planting of loblolly pine in 2003, the Atoy site supported an improved costal 

bermudagrass pasture. 

 Arbor Grove occupied 190.2 ha, with 148.6 ha supporting a 16 year old thinned 

loblolly pine plantation.  Hickory Creek was a 157.7 ha pine plantation with a small stand 

of planted hardwoods.  Hickory Creek was predominantly alluvial floodplain that 

accounts for 85.3 ha of the property with 49.1 ha designated as upland. Both the upland 

and most of the alluvial floodplain portions of the site had a 16 year old thinned loblolly 

pine plantation.  Similar to the Arbor Grove and Hickory Creek sites, Atoy had a 16 year 

old thinned loblolly pine plantation on 78.3 of the 154.1 ha.  The remaining area consists 

of un-thinned and poorly stocked pine plantations.   

 

 

 

Study Site Soils 

 

 

 

Soils in the Arbor Grove tract were predominantly Alfisols with approximately 

70% coverage with the remaining classified as Inceptisols.  The dominant soil series were 



20 

 

the Lovelady series (Arenic Glossudalfs) that occupied roughly 39% of the Arbor Grove 

site.  The remaining soils consisted of Fluvaquentic Endoaquepts, Glossic Natraqualfs, 

Oxyaquic Glossudalfs, Oxyaquic Eutrudepts, Aquic Glossudalfs, and Vertic Hapludalfs.  

Drainage classification ranged from well-drained to somewhat poorly drained with the 

Lovelady series classified as well-drained. 

 Hickory Creek, unlike Arbor Grove, was primarily composed of Inceptisols 

covering 54.3% of the site.  The remainder was composed of Alfisols and a small 

proportion of Ultisols, constituting 38.4% and 3.2% of total land area, respectively.  

Laneville loam series (Fluvaquentic Eutrudept) was the most abundant soil at 34.8% land 

coverage.  The remaining soils in order of land area were Vertic Hapludalfs, Fluvaquentic 

Dystrudepts, Aquic Glossudalfs, Fluvaquentic Endoaquepts, Glossic Paleudalfs, and 

Arenic Hapludults.  Like Arbor Grove, drainage classification ranged from well-drained 

to somewhat poorly drained, however there was a smaller proportion of somewhat poorly 

drained soils compared to Arbor Grove.  Moderately well-drained soils were the most 

abundant, including Laneville loam. 

 Over 70% of soils at Atoy were Ultisols with the remaining soils comprised of 

Alfisols and an Entisol.  Sacul fine sandy loam (Aquic Hapludult) covered the majority of 

Atoy with 55.1% coverage.  Like Hickory Creek, the predominant drainage classification 

was moderately well-drained covering 72% of the property.   
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Sampling 

 

 

 

 A total of nine trees, three each from Arbor Grove, Hickory Creek, and Atoy, were 

sampled in 2018 for belowground biomasses.  Aboveground biomasses of the trees was 

also recorded to evaluate possible aboveground predictors for belowground biomass. 

Soils were sampled in 2003 and 2015 for soil organic carbon to evaluate if any significant 

change in organic carbon had occurred. 

 

 

Aboveground Biomass Sampling 
 

 

Basal area was calculated using a 10-m radius sample plot with the sample tree 

placed at the center.  Additionally, trees counted within this sample plot were used to 

calculate trees per ha-1.  Before belowground biomass could be determined, sample trees 

were cut at ground line and their aboveground biomass determined.  Diameter at breast 

height (DBH) is correlated with aboveground biomass and was recorded prior to tree 

felling. Aboveground biomass was defined as all biomass >5cm above ground level.  

Once felled, two limbs from the upper and the lower crown were randomly selected for a 

total of four limbs, that were separated into branch and needle components to be dried 

and weighed to develop a correction for moisture content.  The remainder of crown green 

weight biomass was weighed using a large electronic platform scale in the field and 
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recorded to the nearest hundredth of a kilogram. Necromass was separated from biomass 

in order to avoid over estimation of biomass. 

 After all limbs were removed, the merchantable length of the stem was measured.  

Merchantable length was defined as the length between 5 cm above ground line to a 5 cm 

diameter top.  The stem was cut into manageable segments to allow for weighing and 

mass lost to kerf during cutting was assumed to be negligible. The stem was weighed 

using the same large electronic platform scale used for weighing the crown of the tree 

and weight was recorded to the nearest hundredth of a kilogram.  Three sub samples were 

cut from the stem, one at breast height, one at one-half of merchantable stem height and 

one at 90% merchantable stem height, and were oven-dried and weighed to develop a 

correction for stem moisture content.   

Moisture lost in stem and crown samples between the time of sampling and initial 

weighing was assumed to be negligible.  Sub-samples were weighed to determine initial 

weight and then placed in a forced draft drying oven at 60°C until a constant weight was 

achieved and oven-dry weight was recorded.     

 

Belowground biomass 
 

 

 A destructive sampling strategy was used to sample belowground biomass.  

However, every effort was made to keep roots intact if possible, to assure minimal root 

biomass loss.  A combination of an air spade that was operated between 90 and 100 psi, 

and mini excavator was used in order to extract coarse roots, stumps and taproots   
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 For coarse roots, a 1-m2 sample area was randomly selected along an imaginary 

grid system with the origin of the grid centered on the stump.  Using the mini excavator, 

a trench was dug parallel and adjacent to one side of the 1-m2 sample area.  The trench 

was necessary during operation of the air spade as a place for excess soil to be placed.  

Using the air spade system, the 1-m2 area was excavated in 20-cm increments to 1 m in 

depth, for an excavated volume of 1 m3 with all loblolly pine coarse roots collected.  A 

visual inspection of roots in the field was used to distinguish loblolly pine roots from 

other roots based on physical and morphological characteristics.  Coarse root samples 

were then oven-dried until a constant weight was achieved.  After which, sub samples 

were taken from coarse roots and cleaned of remaining soil to develop a correction for 

remaining adhering soil mass.  From this, roots were scaled to the 10 m radius plot used 

in calculating basal area and subsequently divided by the number of trees per plot to 

determine the average contribution of an individual tree to carbon stored in coarse roots. 

 Loblolly pine taproots were defined as roots originating from the primary root ball 

with a vertical orientation that were greater than 2 mm in diameter.  Removal of the 

taproot system began by excavating a “Y” shaped trench, with the stump and assumed 

diameter of the taproot system between the two arms of the “Y”.  The air spade system 

was used to remove remaining soil around the taproot system. Depending on soil 

characteristics and depth of tap root systems, determinations were made in the field to 

continue excavation with the air spade or excavator. Once the taproot system was 

removed, excess soil was removed using the air spade and non-taproots were removed 
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from the primary taproot system.  The entire taproot system was then weighed and three 

sub-samples were cut from the most prominent taproot used to correct for remaining soil 

and moisture content.  Sub-samples of the tap root originated near the end of the tap root, 

the middle, and the upper portion of the root.   

 

Soil Samples 
 

 

 Soil samples were collected to a depth of 40 cm on a 1.7-ha grid.  Collected in 

2003 and 2015, soil samples were analyzed in the Soil, Plant and Water Analysis 

Laboratory (SPWAL) located at Stephen F. Austin State University for organic carbon 

content.  Excess soil not used in analysis was oven-dried at 60°C and stored at 22°C.   

 Over the course of the multi-year sampling, the SPWAL used different C:N 

analyzers to determine soil carbon content of samples.  Carbon content of samples 

collected in 2003 were measured using different analytical equipment than what is 

currently used at SPWAL that was used to determine carbon in samples taken in 2015.  

This created a potential source of error that was addressed by retesting 16 randomly 

selected samples from 2003 to determine if there is a source of error caused by machine 

differences that could be misinterpreted as a difference in soil organic carbon.  It was 

assumed that after the initial drying and storage, carbon mineralization was negligible.  
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O Horizons 
 

 

 In 2015, the accumulated O horizons were sampled from a 27 cm diameter plot on 

the same 1.7-ha grid from which soil were sampled.  Samples were oven-dried at 60°C 

until a constant weight was achieved.  Organic matter was determined on subsamples by 

the loss on ignition method in a muffle furnace at 500°C.  The organic matter 

concentration was converted to organic carbon by dividing organic matter mass by 2. 

Statistical Analysis 

 

 

 

 Using paired t-tests, the average SOC in the mineral portion of the soil was 

compared by site between the years 2003 and 2015 with the null hypothesis being there 

was no change in SOC over time.  An alpha value of 0.05 was used in testing the 

probability of significant differences in SOC in the mineral portion of soil.  To determine 

outliers in the data set, Tukeys determination of outliers was used. 

Initially, the O horizon, as well as coarse woody tree roots, would be assumed to 

be negligible due to the previous grass-only vegetation community present before tree 

planting, which does not produce coarse woody roots.  In addition, before tree planting 

there was no significant accumulation of organic litter to form an O horizon.  Therefore, 

any measurable amounts of O horizon and coarse roots were assumed to be a net increase 

in their respective categories.      
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 Correlation analysis was run on all variables to determine if any aboveground 

variable (DBH, stem height, stem mass, and crown mass) was correlated with carbon 

stored belowground in coarse woody roots and taproot systems.  Afterwards, regression 

analysis was performed on correlations that were significant to develop models for 

estimating belowground carbon in coarse woody roots using measured aboveground 

variables.  All statistical tests were run using the statistical software package SAS version 

9.4 and used an alpha value of 0.05.  
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RESULTS AND DISCUSSION 
 

 

 

Belowground Carbon 

 

 

 

CN analytical limitations corrections 

 

 

There was a significant difference between the mean soil organic carbon 

measured in 2003 and retested in 2017 (p<0.0001) with those in 2017 consistently higher 

than the original values reported in 2003.  There was however, one outlier in the data set 

that was removed due to the fact that it showed the sample gained 16,698 mg C kg-1 dry 

soil.  It is highly unlikely that the sample gained this much organic carbon in the years it 

was in storage and that it is most likely due to some extraneous circumstance, most likely 

laboratory error.  Additionally, the sample size used for determining a machine correction 

factor was small enough that the outlier was unduly influencing the correction factor and 

needed to be removed in order to more accurately define the correction factor.  After the 

outlier was removed, there was still a significant difference in original (2003) 

measurements and the rerun samples (p<0.0001), with the rerun samples still consistently 

higher than the original values.   

The increase in organic carbon would not be expected to come from additions of 

organic materials, but more likely a difference in the analytical equipment’s ability to 
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quantify organic carbon concentrations.  To correct for the differences in the laboratory’s 

ability to quantify soil organic carbon due to technological limitations, a linear 

transformation was applied to the original values reported in 2003.  After the linear 

transformation was applied, there was no significant difference between original sample 

values and the rerun samples.  From this, it is assumed that values from 2003 read lower 

than analytical equipment used to run samples in 2015 would have read.  To correct for 

this, the linear transformation was applied to each 2003 sample using equation [1] to 

compensate for the differences between the laboratory’s technology used to calculate 

2003 and 2015 soil organic carbon. It is assumed that the coefficient of the function [1] 

represents the actual change in soil organic carbon in samples and the intercept (4043.2) 

is the difference in the analytical equipment.  The adjusted 2003 SOC (C03’) and the 

original 2003 SOC (C03) readings, are both expressed in mg C kg-1 dry soil. 

C03’ = C03 + 4043.2   [1] 

 

The differences could be due to changes in calibration technology, hardware and software 

technologies, or a combination of factors 

 

Soil Organic Carbon 

 

 

    After adjusting for the difference in analytical equipment used to evaluate soil 

organic carbon in 2003 and 2015, the 165 paired soil samples (n) for the Arbor Grove and 

the 150 paired samples from the Atoy sites, no significant difference was detected in 
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SOC located in the top 40 cm (Table 1).  The Hickory Creek site had 154 paired soil 

samples that showed a statistically significant increase in carbon in the top 40 cm.   

 The Hickory Creek site, on average, has poorer drainage than the other two sites 

based on field observations.  While the NRCS data may not reflect this observation, the 

alluvial floodplain on Hickory Creek holds more water than soils on the other two sites.  

This could create soil environment conditions that trend more towards anaerobic that 

would slow the decomposition of soil organic matter that leads to an accumulation of soil 

organic carbon.  

Table 1.  Results of paired t-tests between soil organic carbon (SOC) between 2003 and 

2015 by site.  Values expressed in mg C kg-1 soil (α=0.05). 

Site n Mean Std. dev. ± 95% CL P value 

Arbor Grove 165 -497.6 3385.6 520.5 0.0608 

Atoy 150 35.9 4392.2 708.6 0.9203 

Hickory Creek 154 3039.7 5399.6 859.6 <0.0001 

 

 

Coarse Roots 
 

 

  Mou et al. (1995) concluded that coarse roots are distributed in greater quantities 

near the stem, combined with the uniformity of stem planting associated with the row 

planting of plantation production operations; the 1 m3 excavated areas would be 

representative samples of coarse root densities within the stand.  With the assumption that 

there were no coarse roots present prior to tree planting, excavation of all 1 m3 yielded 

coarse woody roots.  On average, trees at the Arbor Grove site had 17.58 kg C in coarse 
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roots in the top 1.0 m, Atoy trees had 11.42 kg C in the top 1.0 m, and Hickory Creek 

trees had 14.50 kg C in the top 1.0 m.  Atoy had less coarse root mass than Hickory 

Creek and Arbor Grove, this difference is believed to be a result of pedologic conditions.  

Soils where trees were excavated on the Atoy site were all mapped as Ultisols. This 

relatively higher clay content, compared to other locations where trees were measured, 

should be investigated in further research to determine if rooting depth is effected by clay 

content.        

 At each site, carbon stored in coarse roots in the top 20 cm accounted for over 

30% of total carbon stored in coarse woody roots (Table 2).  Carbon stored in root 

biomass in the top 40 cm accounted for the majority of carbon stored in lateral coarse 

roots, with Arbor Grove having the lowest proportion at 62.4%.  The range from 0 to 60 

cm contained over 75% of carbon stored in coarse woody root biomass for all sites; this is 

in contrast to Kinerson et al. (1977), who found 70 – 75% of loblolly pine lateral roots 

were located in the top 20 cm of the soil profile.  The latter study was located on sandy 

loam over sandy clay to clay subsoils, which is similar to the soils excavated in this study 

(Table A1), but produced different results.  Retzlaff et al. (2001) showed that genetics 

between loblolly pines found in the Lost Pines region of Texas and Atlantic Coast Pines 

of the Piedmont region in North Carolina did not play a part in lateral root partitioning by 

depth, with similar results to Kinerson that over 70% of lateral roots were found in the 

upper 20 cm of the profile.  Trees excavated by Kinerson et al. were 16 years old at the 

time of excavation and trees excavated by Retzlaff were four years old at the time of the 
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study; both studies found the same depth of rooting patterns of lateral roots.  

Additionally, Retslaff et al. (2001) conducted their study on sandy, siliceous, thermic 

Psammentic Hapludults, while excavations at the Atoy site were conducted on fine, 

mixed, active, thermic Aquic Hapludults.  Coarse roots at Atoy should have had rooting 

patterns similar to the results in Retslaff et al., but roots were observed in greater 

proportions at depth compared to Retslaff.  The difference between the two studies 

suggest that age plays a part in coarse root partitioning at depth.  

 Arbor Grove and Hickory Creek both had increases in carbon stored in coarse 

roots at certain depths.  For Hickory Creek, the increase came at depths of 20-40 cm, 

while Arbor Grove experienced an increase at 60-80 cm in depth.  Only Atoy had a 

decline in coarse roots concentrations at every depth interval (Figure 1).  This again could 

be due to pedologic conditions.  With successive Bt horizons associated with the Aquic 

Hapludult (Sacul fine sandy loam), meaning higher mechanical resistance with depth, 

there might have been a greater diminishing return for trees to increase rooting density at 

depths.  

Few coarse roots were observed below 100 cm in depth. Observations of roots 

below 100 cm showed that there was an insignificant amount of coarse roots in relation to 

roots above 100 cm in depth. One sample collected from the Hickory Creek site had no 

roots, coarse or fine, below 80 cm in depth. Therefore, roots below 100 cm in depth were 

not sampled for their contribution to carbon sequestration.  
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Table 2.  Cumulative percentage of total carbon by depth to 100 cm in coarse woody 

roots (not including tap root systems) at Arbor Grove, Atoy, and Hickory Creek study 

sites. 

Depth (cm) Arbor Grove Atoy  Hickory Creek 

0 – 20 32.6 38.3 38.1 

20 – 40 62.4 71.8 78.5 

40 – 60 75.9 85.9 92.6 

60 – 80 92.5 98.0 98.3 

 80– 100 100 100 100 

 

 

Figure 1.  Mean Kg C by depth in coarse roots sequestered at Arbor Grove, Atoy and 

Hickory Creek study sites. 

 

Tap Roots 

 

 

 Excavated tap root systems had means of 25.75 kg C tree-1, 32.10 kg C tree-1, and 

34.83 kg C tree-1 for Arbor Grove, Atoy, and Hickory Creek, respectively.  To convert to 

Mg C ha-1, tap root mass was multiplied by trees per ha.  Arbor Grove, Atoy, and 
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Hickory Creek had on average 10.17, 13.28, and 18.33 Mg C ha-1, respectively, stored in 

tap root systems. 

 

O Horizons   

 

 

 O horizon means were 6.56 Mg C ha-1; 6.28, and 6.48 Mg C ha-1 for Arbor Grove, 

Atoy, and Hickory Creek, respectively (Table 5).  With the assumption that at the time of 

planting there was no O horizon present, the data shows that loblolly pine trees 

contributed significantly to accumulation of an O horizon and the carbon sequestered in 

it.  While carbon stored in the O horizon is subject to more rapid decomposition relative 

to other C sinks in forested systems, the O horizon should be considered a sink.  Barring 

drastic changes in the equilibrium of the system (e.g. fire, removal, clear cutting, etc.) 

decomposition and mineralization rates will not outpace accumulation rates of the O 

horizon.  The equilibrium of the system may shift over time with less accumulation and 

higher decomposition rates, but on a decadal scale, carbon will still be present in organic 

form within the O horizon. 

 

 

 

 

 

 

 

 

 

 



34 

 

Carbon Sequestration  

 

 

 

Hickory Creek was the only site that had a statistically significant change in SOC 

from 2003 to 2015.  The grassland ecosystems present prior to planting would have had 

carbon sequestered primarily in SOC, with the latency of carbon sequestered in biomass 

negligible due to the rapid decomposition associated with non-woody root structure of 

grasses.   

Total belowground carbon was considered to be the sum of C in SOC, taproots, 

and coarse roots.  All sites were able to sequester carbon belowground.  In 2017, the 

Arbor Grove and Atoy sites had no significant difference in carbon stored in SOC, 

therefore only carbon stored in coarse roots and tap root systems contributed to carbon 

sequestered.  The Arbor Grove site sequestered 16.60 Mg C ha-1 and Atoy sequestered 

18.01 Mg C ha-1.  Hickory Creek had an increase in carbon stored in SOC with 14.59 Mg 

C ha-1 sequestered, and with the addition of coarse roots and tap root systems, Hickory 

Creek sequestered 40.10 Mg C ha-1 (Table 3).   

  The largest contributor to carbon sequestered on all sites was in tap root system 

biomass, with coarse roots contributing the least to carbon sequestered.  Net carbon 

sequestered in SOC at Hickory Creek was another large contributor to total carbon 

sequestration.  However, the Arbor Grove and the Atoy sites did not contain the same 

amount of total carbon sequestered belowground due to the lack of supporting statistical 
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evidence that there was a change in carbon stored in SOM.  The difference of SOC 

present in 2015 from 2003 at the Hickory Creek site significantly contributed to total 

belowground carbon sequestered compared to the other two sites (Table 3).  

 In addition to sequestering the most carbon, Hickory Creek also had the most 

carbon present belowground (Table 4).  Even without the carbon sequestered in SOC, 

Hickory Creek had more carbon sequestered belowground than Arbor Grove and Atoy.  

With the sites being in close proximity, the difference is most likely due to pedologic 

differences.   

Table 3.  Net carbon sequestered (Mg ha-1) belowground by each site.  

 Arbor Grove Atoy Hickory Creek 

SOC - - 14.59 

Coarse Roots 6.43 4.73 7.18 

Tap Roots 10.17 13.28 18.33 

Total 16.60 18.01 40.10 

 

Table 4.  Carbon present belowground (Mg ha-1) in 2017.  Values in parenthesis are the 

percentage (%) of total carbon present belowground. 

 Arbor Grove Atoy Hickory Creek 

SOC 52.07 (75.82)  62.79 (77.71) 65.79 (72.05)  

Coarse Roots 6.43   (9.36) 4.73   (5.85)  7.18   (7.86)  

Tap Roots 10.17 (14.80) 13.28 (16.43) 18.33 (20.07) 

Total 68.67 80.80 91.30 

 

In all sites, carbon present in SOC made up over 70% of total belowground 

carbon with Atoy having the highest proportion of carbon in SOC to total belowground 
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carbon (Table 4).  The proportion of carbon stored by SOC, coarse roots, and tap roots by 

site were similar, differing only by 2.01 percentage points between carbon stored in 

coarse roots between Atoy and Arbor Grove.        

 With the addition of carbon sequestered in the O horizon, all sites were able to 

sequester over 6 Mg C ha-1 in addition to what was sequestered belowground (Table 5).   

Table 5.  Net carbon sequestered (Mg ha-1) belowground as well as in O horizons at 

Arbor Grove, Atoy, and Hickory Creek study sites.   

 Arbor Grove Atoy Hickory Creek 

SOC - - 14.59 

O Horizon 6.56 6.28 6.48 

Coarse Roots 6.43 4.72 7.18 

Tap Root 10.17 13.28 18.33 

Total 23.16 24.28  46.58 

 

 

 

Regression 

 

 

 

To explore the relationship between DBH, stem height, basal area, trees per 

hectare, crown C, stem C, tap root system C, coarse root C, aboveground C, belowground 

C, and total tree C, correlation and regression were performed.  Crown C, stem C, tap 

root system C, and coarse root C were the measured amounts of carbon stored in their 

respective category.  Aboveground C was the sum of crown C and stem C, while 

belowground C was the sum of tap root C and coarse root C.  The total tree C was the 
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sum of aboveground C and belowground C.  All values were expressed in kg C tree-1 

with the exception of DBH and stem height, which were expressed in cm. 

Analysis revealed that the most significant correlation was between belowground 

carbon sequestered in roots and carbon sequestered in tap roots.  However, the inherent 

relationship between carbon belowground and carbon in tap roots, does not provide a 

suitable means of predicting belowground carbon sequestered in coarse roots.  The 

correlation analysis did reveal that total carbon sequestered in trees was correlated with 

carbon sequestered in stems with an r value of 0.9455. 

Linear regression analysis was performed on carbon sequestered in merchantable 

stems and total carbon sequestered which resulted in equation 2 with a p-value <0.0001, 

r2 = 0.8940, and an RMSE = 12.8054. 

Total C = 74.6618 + 1.1350 (Stem C)  [2] 

Where Total C is the total carbon sequestered in loblolly pine biomass and Stem C is the 

carbon sequestered in loblolly pine merchantable stems.   

 While not a direct predictor for carbon sequestered belowground in coarse root 

mass, equation 2 provides the option for estimating total carbon sequestered which is 

more applicable and relevant to foresters in real world scenarios.   However, carbon in 

merchantable stems is not typically a metric that managers have readily available to them.  

Because producers are focused on predicting merchantable volume, the majority of the 
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models used to predict merchantable volume use DBH and length in calculations.  

Additionally, these metrics are easily measured in the field.   

 In order to produce a meaningful model for managers to assess carbon 

sequestered in loblolly pine mass, a non linear regression was performed using DBH and 

merchantable stem length as input parameters. This resulted in equation 3 below: 

Total C = 0.048 x DBH1.1241 x SL0.6415  [3] 

Where Total C is the total carbon sequestered in loblolly pine biomass, DBH is the 

diameter at breast height in cm, and SL is the merchantable stem length in cm. 

With a slightly higher RMSE than equation 2, equation 3 had an RMSE = 

12.8475.  However, equation 3 offers more standard approach to estimating total carbon 

sequestered by using parameters commonly measured in forest inventories; DBH and 

merchantable stem length.  In comparison, equation 2 requires the user to calculate 

carbon sequestered in stems to then calculate total carbon sequestered. Equation 3 allows 

the direct calculation of carbon sequestered, both above and below ground, per tree, 

directly from direct tree measurements.  
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CONCLUSIONS 
 

 

 

All sites had an increase in carbon sequestered belowground, with increases in 

carbon stored in tap roots, coarse roots, and O horizons, but only Hickory Creek 

experienced a significant increase in SOC.  Coarse roots on all sites were recorded at 

higher concentrations at deeper depths than reported in previous studies with over 75% of 

carbon stored in coarse roots found between 0 and 60 cm.  O horizons on all sites were 

able to sequester carbon.  The latency of these horizons and the carbon within them is 

heavily dependent on management practices.   

SOC in loblolly pine plantations is dependent on many soil factors, with only one 

site able to have a positive net sequestration of carbon.  More research into soil 

parameters affecting the accumulation of SOC in loblolly pine plantations is needed in 

order to more accurately assess whether afforestation leads to an increase in SOC in 

loblolly pine plantations. 

 Using regression analysis, two equations were developed using aboveground 

variables to estimate total carbon sequestered in loblolly pine components.  Derived from 

linear regression, equation 2 uses carbon sequestered in stems to calculate total carbon 

sequestered in loblolly pine biomass.  Equation 3 was derived from nonlinear regression 

techniques and uses DBH and merchantable stem length to calculate total carbon 
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sequestered in loblolly pine biomass.  Equation 3 was developed to be more useful in 

real-world applications by using parameters that are commonly measured during forest 

inventories; in contrast, carbon in stems, which cannot directly be calculated from field 

measurements, requires the use of additional equations to estimate above-ground carbon.  

With all trees being 16 years in their first rotation and the resulting narrow range 

in DBH, future studies should examine trees on a wider age range as well as different 

soils to examine whether relationships are constant across age ranges and different soil 

conditions such as texture and drainage classification.  

.



41 

 

LITERATURE CITED 
 

 

 

Albaugh T. J., H. L. Allen, and L. W. Kress. 2006 Root and stem partitioning of Pinus  

taeda. Trees 20: 176-185. 

 

Albaugh T.J., H.L Allen, P.M. Dougherty, L.W. Kress, and J.S. King. 1998. Leaf Area  

and Above- and Belowground Growth Responses of Loblolly Pine to Nutrient and 

Water Additions. Forest Science 44(2):317- 328.  

 

Anderson T.R., E. Hawkins, and P.D. Jones. 2016. CO2, the greenhouse effect and global  

warming: from the pioneering work of Arrhenius and Callender to today’s Earth 

System Models. Endeavour 40(3): 178-187.  

 

Baker J.B., and G. Langden. 1990. Loblolly Pine. In: R.M. Burns, and B.H.  

Honkala, editors. Silvics Manual Volume 1(Agricultural Handbook 654). U.S. 

Department of Agriculture, Forest Service, Washington, DC. P. 1018-1051 

 

Birdsey R.A. 1992. Carbon Storage and Accumulation in United States Forest  

Ecosystems. USDA Forest Service, Washington D.C. General Technical Report 

59.  

 

Böhm W. 1979. Methods of Studying Root Systems. Springer-Verlag, Berlin, New York. 

Coble D.W. 2009.  A New Whole-Stand Model for Unmanaged Loblolly and Slash Pine  

Plantations in East Texas.  Southern Journal of applied Forestry 33(2): 69-76. 

 

Denef K., A.F. Plante, and J. Six. 2009. Characterization of soil organic matter. In: Soil  

Carbon Dynamics: An Intigrated Methodology. Cambridge University Press, New 

York. 91-126. 

 

Dooley, K.J.W.; Brandeis, T.J. 2014. Forests of east Texas, 2013. Resource Update FS– 

31. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern 

Research Station. 4 p. 

 



42 

 

Enriquez S., C.M. Duarte, K. Sand-Jensen. 1993. Patterns in decomposition rates among  

photosynthetic organisms; the importance of detritus C:N:P content. Oecologia 

94: 457-471. 

 

Farrish K.W. 1991. Spatial and Temporal Fine-Root Distribution in three Louisiana  

Forest Soils. Soil Science Society of America Journal 55(6): 1752-1757. 

 

Hättenschwiler, S. 2005. Effects of Tree Species Diversity on Litter Quality and  

Decomposition. In: M. Scherer-Lorenzen, C Körner, and E.D Schultze, editors, 

Forrest diversity and Function. Springer. Berlin, Germany. p. 149.164. 

 

IGBP, Terrestrial Carbon Working Group, 1998. The Terrestrial Carbon Cycle:  

Implications for the Kyoto Protocol. Science 280: 1393-1394. 

 

IPCC. 2000. Land Use, Land-Use Change and Forestry. Cambridge University Press,  

Cambridge, England.  

 

Johnsen K.H., B. Teskey, L. Samuelson, J. Butnor, D. Sampson, F. Sanchez, C. Maier,  

and S. McKeand. 2004. Carbon Sequestration in Loblolly Pine Plantations: 

Methods, Limitations, and Research Needs for Estimating Storage Pools. In: 

General Technichal Report SRS-75. USDA, Ashville, N.C. p. 373-381. 

 

Johnsen K. H., D. Wear, R. Oren, R. O. Teskey, F. Sanchez, R. Will, J. Butnor, D.  

Markewitz, D. Richter, T. Rials, H.L. Allen, J. Seiler, D. Ellsworth, C. Maier, G. 

Katul, and P.M. Dougherty. 2001. Meeting Global Policy Commitments: Carbon 

Sequestration and Southern Pine Forests. Journal of Forestry. 99(4):14-21.   

 

Kinerson R.S., C.W. Ralston, and C.G. Wells. 1977. Carbon Cycling in a Loblolly Pine  

Plantation. Oecologia 29: 1-10. 

 

Lal R. 2008. Sequestration of atmospheric CO2 in global carbon pools. Energy &  

Environmental Science. 1:86-100. 

 

Lal R. 2004. Soil Carbon Sequestration Impacts on Global Climate Change and Food  

Security. Science 304:1623-1627. 

 



43 

 

Ludovici K. H., S. J. Zarnoch, D. D. Richter. 2002. Modeling in-situ pine root  

decomposition using data from a 60-year chronosequence. Canadian Journal of 

Forest Research 32: 1675-1684.  

 

McClaugherty, C.A., and J.M Aber. 1982. The role of fine roots in the organic matter and  

nitrogen budgets of two forested ecosystems. Ecology 63(5): 1481-1490. 

 

McNear Jr., D. H. (2013) The Rhizosphere - Roots, Soil and Everything In 

Between. Nature Education Knowledge 4(3):1  

 

Micales J.A., and K.E. Skog. 1997. The decomposition of forest products in landfills.  

International Biodeterioration and Biodegredation 39(2-3):145-158. 

 

Miller A.T., H.L Allen, and C.A. Maier. 2006. Quantifying the coarse-root biomass of  

intensively managed loblolly pine plantations. Canadian Journal of Forestry  

Research 36: 12-22.  

 

Montagnini F. and P.K.R., Nair. 2004. Carbon sequestration: An underexploited  

environmental benefit of agroforestry systems. Agroforestry Systems 61: 281-

295.  

 

Mou P., R.H. Jones, R.J. Mitchell, and B. Zutter. 1995. Spatial Distribution in Sweetgum  

and Loblolly Pine Monocultures and Relations with Aboveground Biomass and 

Soil Nutrients. Functional Ecology 9(4):689-699. 

  

Mowery, Irvin, C., and Harvey Oakes. 1959. Soil Survey of Cherokee County, Texas.  

U.S Dept. of Agriculture, SCS. 

 

Parker M.M., and D.H. Van Lear. 1996. Soil Heterogeneity and root Distribution of  

Mature Loblolly Pine Stands in Piedmont Soils. Soil Science Society Journal 60: 

1920-1925.  

 

Pribyl D.W. 2010. A critical review of the conventional SOC to SOM conversion factor.  

In: Geoderma 156(3-4):75-83. 

 

 



44 

 

Retzlaff, W.A, J.A Handest, D.M O’Malley, S.E McKeand, and M.A. Topa. 2001.  

Whole-tree biomass and carbon allocation of juvenile trees of loblolly pine (Pinus 

taeda): influence of genetics and fertilization. Canadian Journal of Forestry 

Research 31: 960-970. 

 

Scarlemann J.P.W., E.V.J. Tanner, R. Hiederer, and V. Kapos. 2014. Global soil carbon:  

understanding and managing the largest terrestrial pool. Carbon Management 

5(1): 81-91. 

 

Skog K.E., and G.A. Nicholson. 1998. Carbon cycling through wood products: The role  

of wood and paper products in carbon sequestration. Forest Products Journal 

48(7-8): 75-83. 

 

Smith J.E., L.S. Heath, K.E. Skog, and R.A. Birdsey. 2006. Methods for calculating  

forest ecosystem and harvested carbon with standard estimates for forest types of 

the United States. USDA General Technical Report NE-343. Delaware, OH. 

  

Soil Survey Staff. 2018. Web soil survey: Soil data mart. USDA-NRCS.  

http://websoilsurvey.nrcs.usda.gov (accessed 20 Feb. 2018).  

 

Steptoe, Levi. 2002. Soil Survey of Houston County, Texas. U.S Dept. of Agriculture,  

NRCS.  

 

Tans, P. 2009. An International Panel on Climate Change. 2000. Land Use, Land-Use  

Change and Forestry. IPCC, Accounting of the Observed Increase in Oceanic and 

Atmospheric CO2 and an Outlook for the Future. Oceanography 22(4): 26-35. 

 

Thomas, W.A., 1968. Decomposition of Loblolly Pine Needles With and Without  

Addition of Dogwood Leaves. Ecology 49(3): 568- 571. 

 

US Climate data. 2018. Your Weather Service. https://www.yourweatherservice.com  

(accessed 13 Jun. 2018).  

 

USFS. 2018. Forest Inventory and Analysis National Program EVALIDator v.1.7.0.01.  

USFS. https://apps.fs.usda.gov/Evalidator/evalidator.jsp (accessed 12 July, 2018). 

 

 



45 

 

Weil R.R., and N.C. Brady. 2017. The Nature and Properties of Soil. 14th ed. Revised.  

Pearson Prentice Hall. Upper Saddle River, New Jersey. 



46 

 

APPENDIX  
 

 

 

 

 

 

 

Figure A1.  Graphic representation of differences between readings of CN analyzer in 

2003, 2017, and adjusted 2003 values. 
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