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ABSTRACT 

 

West Gulf Coastal Plain provenance loblolly (Pinus taeda L.), longleaf (Pinus 

palustris Mill.), shortleaf (Pinus echinata Mill.), and slash pines (Pinus elliottii Engelm.) 

were planted in East Texas to compare initial growth and survival. Containerized 

seedlings were planted in December 2015 on three study sites in Shelby, Houston, and 

Cherokee counties using a randomized complete block design. Seedlings were 

measured in January-February 2016 and again January-February 2017, January 2018, 

and January 2019. Three years after planting, survival was best (76.4%) in Houston 

County and was lowest in Cherokee County (26.4). Damage by Texas leafcutter ants 

(Atta texana) caused significant mortality in Cherokee County, while feral hog (Sus 

scrofa) herbivory and uprooting greatly affected survival in Houston and Shelby counties. 

Tree heights were greater in loblolly and slash pine than in shortleaf and longleaf pine, 

while diameters were greater in loblolly than slash and shortleaf pine, which where 

greater than longleaf diameters. Height and survival rates were greater in Shelby County 

and were least in Cherokee County. Tree height was affected by soil moisture and 

texture, while plant moisture stress did not affect aboveground production.  
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INTRODUCTION 

Pine plantation forests are an important economic resource in East Texas and 

account for 22% of all forested area within the region. Pines are grown for timber 

production across diverse landscapes and soil types by private landowners and large 

timberland management organizations. Because these plantations can take up to 35 

years to maximize productivity, it is important for landowners to invest their money in the 

species that will best meet desired objectives. Each of the four major southern yellow 

pine species: loblolly pine (Pinus taeda L.), longleaf pine (Pinus palustris Mill.), shortleaf 

pine (Pinus echinata Mill.), and slash pine (Pinus elliottii Engelm.), require specific site 

conditions that allow them to produce valuable timber at higher growth rates. These 

differences in yield can provide the landowner with improved profit. Due to the economic 

value of timber in East Texas, there is an interest in finding the differences in growth 

rates of the four major southern pines on a variety of soil types. These comparisons may 

be able to provide landowners with a better understanding of which species will 

maximize wood production on their land in the early years of rotation.  

There has also been an increased interest in the improved genetics of West Gulf 

Coastal Plain southern pines. The West Gulf Coastal Plain provenance pines are gaining 

more attention because of their resistance to fusiform rust (Cronartium quercuum f.sp, 

fusiforme) and high drought tolerance in this sub-region. 



2 
 

Choosing the appropriate species to use is the most important decision to be 

made prior to planting pine in the South. Species, soil type, and seedling source play a 

large role in the growth and survival of trees in pine plantations. Although thousands of 

acres supporting shortleaf and longleaf pine have been declining in East Texas, the 

ecosystems associated with these species still hold high ecologic value. In recent years, 

large efforts have been made in promoting planting longleaf and shortleaf over loblolly 

pine in an attempt to restore these ecosystems in their native range. For landowners 

who have objectives that are not solely timber production, planting shortleaf and longleaf 

may be a viable choice for ecologic importance, as well as economic return if they are 

planted on suitable sites. Landowners can increase profits and maximize yields if 

species requirements and site characteristics are considered carefully. 
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OBJECTIVES 
 

The goal of this study was to compare the survival and growth of single West 

Gulf Coastal Plain provenances of loblolly pine, longleaf pine, shortleaf pine, and slash 

pine in East Texas with the following objectives: 

1. Assess seedling survival and growth rates each year. 

2. Use soil texture, drainage classifications, and moisture to determine the effects of 

these characteristics on seedling growth and survival response. 

3. Utilize leaf water potential of each species at each site to test seedling response 

to stress and moisture availability and its effects on survival and growth. 

4. Correlate needle and soil nutrients with mean height and diameters to determine 

the uptake of nutrients by trees for species and site.   
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LITERATURE REVIEW 

 

Silvics 

 

  Climate is one of the driving factors of tree growth and local adaptation 

(Schmidtling 2001) to drought-avoidance, biomass allocations, and water use efficiency 

(Eckert et al. 2010). Loblolly, longleaf, slash, and shortleaf pines require humid, hot 

summers with mild winters. Mean annual temperature and rainfall shape the distributions 

of the southern pines (Morgenstern 1996), where areas with temperatures ranging from 

13° to 24° C are preferred and average precipitation ranges from 102 cm to 152 cm 

(Baker and Langdon 1990). 

Loblolly Pine 

 

Loblolly pine grows from central Florida, northward to Delaware, and westward 

as far as East Texas. It is the major timber species in the southeastern United States 

where it is over 50% of standing pine volume (Shultz 1999) and dominates 11.7 million 

hectares (Baker and Balmer 1983). Loblolly pine is often chosen to reforest sites that 

have been previously impacted by human activities because it is highly adaptable 

(Shultz 1999). Although it can establish itself on a wide variety of soil types, loblolly pine 

grows faster than any other southern pines on well-drained, productive sites (Shiver et 
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al. 2000). Best growth can be obtained on slightly acidic soils with a moderate surface 

drainage, and a thick, silt loam texture, while the poorest performance occurs on shallow 

soils, or very wet, waterlogged sites (Baker and Langdon 1990). It is also an important 

component of moist sites that are not subject to frequent burning (Schultz 1999). The 

best seedling height growth occurs when day and night temperatures differ by 12 to 13 

°C during the growing season (Boyer 1970; Griffing and Elam 1971). Soil moisture is a 

critical factor in loblolly pine seedling establishment (Baker and Langdon 1990); 

however, seedlings cannot tolerate prolonged periods of flooding, with significant 

mortality occurring within two weeks of complete inundation (Baker and Balmer 1983). 

Height and diameter growth are greatly reduced by spring droughts (Fowells 1965; 

Stransky and Wilson 1964; Zahner 1968).  

Longleaf Pine 

 

Longleaf pine once occupied 37 million hectares across the southeastern U.S. 

from Virginia to Texas (Frost 2006). Due to fire suppression and land conversion to 

agriculture and urban development, longleaf pine monocultures have declined to 

approximately 1 million hectares (Scott and Burger 2014). While longleaf pine is 

relatively drought tolerant and competes well on xeric, sandy soils, it is also native to wet 

bottomlands where frequent fire reduces loblolly pine encroachment (Scott and Burger 

2014). Longleaf pine can tolerate heavy fluctuations between dry periods during the 

spring and summer months and heavy rains in the winter months (Ware et al. 1993). The 

most productive longleaf pine sites have been on upland sites with high nutrient content 

in both North Carolina and Texas (Outcalt 2000). Along with its ability to grow on 
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variable soils, longleaf pine is also the most insect, disease, windthrow, and fire-resistant 

pine in the southern United States (Franklin 2008). It also helps to maintain diverse early 

successional conditions in the understory with its narrow crown that allows sunlight to 

penetrate the forest floor and because it can be safely burned at shorter intervals than 

other southern pines. (Franklin 2008).  During the first few years after germination, 

longleaf pine seedlings remain in a grass stage where its long needles form a protective 

barrier around the cambium and terminal bud, shielding them from fire damage. During 

the grass stage, the majority of seedling growth occurs in the root system and once 

sufficient root growth has been made, longleaf pine seedlings can put on as much as 2 

m in stem growth within a couple of years (Outcalt 2000). Longleaf pine seedlings can 

remain in the grass stage for several years, but once they emerge from the grass stage 

they are as productive in growth as the other southern pine species (Landers et al. 

1995). In order to be successful, longleaf pine requires herbaceous and woody plant 

control during the first few years after establishment. It is a very intolerant species and 

cannot easily compete with other pines and hardwoods without fire or chemical control 

(Landers et al. 1995). Its deep taproot gives longleaf an advantage over other southern 

pine species on well-drained sandy soils (Little 1980). 

Shortleaf Pine 

 

Shortleaf pine has the most widespread native range of the southern pines 

(Hallgren and Tauer 1989). It has been recorded in 22 states and is the most common 

species to be regenerated in the northern and western portions of its range (Lawson 

1990). Shortleaf communities are usually associated with soils that are low in organic 
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matter; the best growth rate from the species as a community occurs west of the 

Mississippi River (Guldin 1986). Preferred soils are those that are well-drained and have 

a fine sandy loam or silty loam texture. Despite its wide range and adaptability to 

different sites, shortleaf pine is less preferred as a timber species due to its comparative 

slow growth rate, difficulty of regeneration, and its susceptibility to pathogens (Guldin 

1986). Shortleaf pine seedlings develop a j-shaped crook at their base in the first or 

second growing season (Little and Somes 1956). This crook is the most important 

adaptation for shortleaf pine seedlings (Mattoon 1915) because it provides seedlings 

with protection from low intensity fires (Schwilk and Ackerly 2001). Dormant buds are 

protected by the litter in the forest floor at the base of the crook, which gives them a 

higher chance of survival than buds above the ground (Shelton and Cain 2000). 

Shortleaf pine growth decreases the importance of the j-shaped crook as the seedling 

bark thickens and provides protection for the cambium (Lilly et al. 2012). After several 

years, shortleaf pine saplings have no visible trace of the j-shaped crook (Little and 

Mergen 1966). 

Slash Pine 

 

Slash pine has the smallest native range of the southern pine species in the 

United States and naturally occurs on the nutrient deficient soils of the lower Gulf 

Coastal Plain and into the hills of southern Georgia (Dicus and Dean 2008). Although it 

is not native to western Louisiana or East Texas, it has been planted commercially and 

is now naturalized. Typical slash pine excels in height growth as a seedling, while the 

south Florida provenance seedlings may develop a grass-like stage similar to longleaf 
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pine for 2 to 6 years (Little Jr. and Dorman 1954). Minimum temperature is an important 

factor in the limited range of slash pine (Fowells 1965). Slash pine grows best on sites 

with sufficient amounts of available soil moisture and on soils that are well aerated 

(Shoulders 1976, Shoulders and Parham 1983), but due to fire exclusion it has spread 

into drier, less typical sites (Abrahamson and Hartnett 1990, Hebb et al. 1976). Because 

slash pine has lower nutrient requirements than the other southern pine species (Fisher 

1983), it often outcompetes them on nutrient deficient soils (Haines et al. 1981). 

Exposing mineral soil via prescribed fire greatly increases seed germination and 

seedling survival (McMinn 1981, Osborne and Harper 1937). Fire resistance also plays a 

large role in slash pine’s ability to dominate sites where frequent fires occur. Slash pine 

bark is thick and overlapping, which protects the cambium from fire damage (de Ronde 

1982). If crown scorch damage mature slash pine trees, scorched foliage is replaced 

with new shoots, also giving slash pine the advantage over other southern pines that do 

not tolerate scorching as well (Wade 1983). Soils that do not support good slash pine 

growth and establishment are those that are deep, well drained sands or very poorly 

drained soils with high water tables. The most influential factors that affect growth and 

productivity of slash pine seedlings are the amount of water and space available to roots 

(Lohrey and Kussuth 1990). 
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Growth Comparisons Between Species 

 

Growth rates of southern pines has been studied throughout the southeastern 

United States, including the West Gulf Coastal Plain. These studies are often on 

comparable site conditions to observe the response of the trees to different silvicultural 

practices. Growth comparisons should provide land managers with better decision-

making skills regarding stand management (Gibson et al. 1986). 

Branan and Porterfield (1971) compared growth and survival of six southern 

pines in the Piedmont of South Carolina 13 years after planting, and found loblolly and 

slash pines were the most successful species in both growth and survival. Mean heights 

of loblolly and slash were 25cm and 33cm taller than shortleaf pine and longleaf pine, 

respectively. Kramer (1943) also found that loblolly pine produced the most growth of six 

coniferous species planted in northern North Carolina, while shortleaf and slash pine 

seedlings made only two-thirds of the growth of loblolly pine after 4 growing seasons. He 

also measured length of growing season for each species and concluded that while 

loblolly pine had longer growing seasons (by 4 days on average) than shortleaf and 

slash pines, it was not long enough to explain the large differences in amount of growth 

between the three southern pine species.  

Early growth responses of slash pine and loblolly pine were examined by Jokela 

et al. (2000) after fertilizer and herbaceous weed control were applied in the lower 

coastal plains of the southeastern United States.  They found that loblolly pine growth 
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responses to the silvicultural treatments were higher than slash pine growth at 5 years 

old. On sites where herbaceous weed control was the only treatment, mean loblolly pine 

heights and diameters were nearly double that of slash pine. However, Swindell et al. 

(1988) recorded that slash pine outcompeted loblolly pine in the flatwoods of central 

Florida when herbaceous weed control was applied. Haywood et al. (1990) found that 10 

year old loblolly pine grew better than slash pine on well drained soils, while slash pine 

produced significantly more growth on the poorly drained soils of the West Gulf Coastal 

Plain. Faust et al. (1999) applied intense silviculture management practices to young 

stands of loblolly and slash pine in the Peidmont of Georgia and Coastal Plain of Florida, 

respectively. They found that the mean annual increment (MAI) of the 14 year old loblolly 

stands where 68-100% higher than the 17 year old slash pine stands. Loblolly and slash 

pine second rotation growth response was observed on poorly drained soils of the Gulf 

Coastal Plain in Louisiana after being burned, disked, and bedded (Haywood and Tiarks 

2002). Loblolly pine growth was negative when planted on old beds, while slash pine 

remained unaffected. Second rotation slash pine trees also had significantly greater 

height, diameter, and volume per tree than the loblolly stands. Although the loblolly 

stands had higher densities than the slash pine stands, slash pine produced more yield 

on a per acre basis.  

Scott and Burger (2014) compared the response of longleaf and loblolly pine 

seedlings to soil compaction and soil water content in potted soils comparable to the 

soils of the West Gulf Coastal Plain. Longleaf pine growth was severely stunted (70% 
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less) compared to loblolly seedlings in compacted soils with extremes in both high and 

low soil water content.  

Creighton et al. (1987) compared longleaf, slash, and loblolly pine seedling 

growth after different herbicide treatments in the Gulf Coastal Plain from Louisiana to 

North Carolina. They reported that longleaf pine seedlings were significantly smaller in 

height and diameter than slash and loblolly pine seedlings. Loblolly pines had the 

highest response to herbaceous weed control and were the tallest of the three species. 

Longleaf, loblolly, and slash pine plantations were measured for response and recovery 

after a severe ice storm in the Georgia Piedmont (Mckellar 1942). Significantly less 

loblolly pine trees were badly bent compared to longleaf and slash pine trees. Loblolly 

pine also received less net losses in ice damage via broken stems, uprooted stems, and 

broken limbs than the other two species. However, longleaf pine and slash pine trees 

made nearly as much recovery to damage as loblolly pine trees, suggesting that longleaf 

and slash pines may be more susceptible to ice damage, but are just as capable of 

damage recovery as loblolly pine trees.  Smith et al. (1992) used data collected from 

loblolly, shortleaf, and longleaf pine stands in the southeastern United States to develop 

predictive growth and yield models for the species by recording crown widths, diameters, 

and radial growth of open grown trees. They found that loblolly pine had the highest 

growth rate followed by, shortleaf pine then longleaf pine.  

Schmidtling (1973) studied the effects of cultivation and fertilizer on the growth of 

slash, loblolly, and longleaf pines in Mississippi. Cultivated longleaf pines were 

significantly shorter than slash and loblolly pine trees. Fertilizer applications increased 
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longleaf, slash, and loblolly pine tree height by 9ft, 7ft, and 12ft, respectively. Longleaf 

pine had the lowest volume of the three species, while slash and loblolly pine had 

comparable volumes. In an earlier study, Smith and Schmidtling (1970) found that early 

height growth at 5 years old was greater in slash and loblolly pine by more than 1ft 

compared to longleaf growth. Loblolly pine grew at an average of 5.5ft per year, making 

it the tallest and fastest growing of the three species on fertilized plots.  

Gibson et al. (1986) reported the specific gravities, moisture content, heights, 

and diameters of the four major southern pine species on three sites and of the same 

age in northern Louisiana. All four species were planted on wet, dry, and intermediate 

sites in the same year, and data were collected at ages 25, 26, and 27. Diameter 

differences among species was only seen on the wet site, where slash and loblolly pine 

were larger than shortleaf pine. Shortleaf and longleaf pine heights were significantly 

shorter than the other two species on wet sites, but the shortest loblolly and slash pine 

trees were recorded on the dry site. 

West Gulf Coastal Plain Pines 

 

Transferring provenances across regions where they have not been tested 

leaves the landowner at risk of loss of wood volume, production, and profit (Schmidtling 

2001). Studies have shown that it is better to move provenances east, rather than west 

because of the risk of drought in western regions (Wakeley 1963). A good example may 

be seen in loblolly pine, where eastern provenances have greater mortality when planted 

in the West Gulf Coastal Plain due to drought intolerance and fusiform rust susceptibility 
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(Long 1980), while western varieties of loblolly pine are better adapted to drought than 

eastern varieties (Grissom and Schmidtling 1997). Long (1980) confirmed that choosing 

a drought resistant seed source is critical for regions with high possibilities of drought, 

such as East Texas. Longleaf pines (Schmidtling 1999) and shortleaf pines (Schmidtling 

2007) have no differences in adaptive traits among sources east and west of the 

Mississippi River. However, when comparing longleaf pine provenances from Virginia to 

East Texas, Wells and Wakeley (1970) saw that the longleaf seed sources from East 

Texas were the most susceptible to brown spot disease and in a slash pine provenance 

test by Snyder et al. (1976), western seed sources from Louisiana survived better than 

eastern variety slash pines planted in the Gulf Coast states. When choosing slash pine 

seed sources for west of the species’ natural range, Mississippi or Louisiana 

provenances are preferred and sources from central Florida should be completely 

avoided (Lantz and Kraus 1987). 

Conversely, moving western varieties east will increase survival due to disease 

resistance, although growth rates may be slower (Wells 1983). Powers and Matthews 

(1987) recorded that Texas and Arkansas seed source loblolly pine were the tallest and 

the most resistant to fusiform rust when planted in North Carolina. Wells (1983) 

compared the survivability and growth of eight seed sources of loblolly pine planted in 

Mississippi, Alabama, and Georgia at age 27. He found that the seed sources collected 

west of the Mississippi River were on average 7ft shorter than the more eastern sources.  

The most important factor that influences growth and survival of southern pine 

seedlings is minimum temperature (Schmidtling 1997). Seedlings will survive and grow 
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well if they come from an area having a minimum temperature within -15°C of the 

planting site’s minimum temperature (Schmidtling 2001). Transporting provenances 

outside of this range could lead to ice damage, decreased growth, and mortality. 

Although it is highly suggested to use local seed sources when planting, if provenances 

from other regions have been tested and proven to have high productivity in the new 

desired area, the landowner may gain wood volume. Additional reasons to use nonlocal 

seed sources include increased fusiform rust resistance, increased growth rate, 

increased survival, and lack of local seed source (Lambeth et al. 2005). 

Tree Physiology 

 

Leaf Water Potential  

 

Leaf water potential is used to determine the stress level of plants as a result of 

environmental factors. The stress levels of plants can influence their ability to produce 

new roots (Nambiar et al. 1979), regulate photosynthesis (Teskey et al. 1987), and 

produce leaves (Bongarten et al. 1985). Plant moisture stress can vary widely 

throughout the year, during different times of day, and within individual plants (Hellkvist 

et al. 1974) and can negatively affect processes that promote growth (Lopushinsky 

1969; Kaufmann 1968, Ramos and Kaufman 1979; Rutter and Sands 1958).  

Several studies analyzed the changes in the plant moisture stress of coniferous 

species throughout the day and the effects these changes have on plant production. 

Brissette and Chambers (1992) studied leaf water potential values and how they 

affected the root systems of shortleaf pine seedlings transplanted from a nursey into a 
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growth chamber. They found that seedlings that were able to return to their predawn 

water potential values the fastest after being exposed to light for several hours provided 

a longer period of time where conditions were favorable for cell division and elongation. 

Consequently, these seedlings were able to produce more extensive root systems than 

those seedlings who took longer to recover from being exposed to prolonged periods of 

light.   

Hellkvist et al. (1974) studied water potential of Sitka spruce (Picea sitchensis) 

throughout the height of tree. They found that on cloudy, wet days leaf water potentials 

were higher than warm, sunny days. They also noted that changes in moisture stress 

from pre-dawn to mid-day was less significant on overcast days than on clear days. 

They concluded that low water potentials were a result of high water loss into the 

atmosphere via needles and an increased distance for water flow from the soil to the 

leaves.  

Foliar Nutrients 

 Foliar nutrient analysis can provide an important indication of the amount of 

nutrients taken up by the tree from the soil. It is also a good indicator of tree health and 

vigor during different life stages and changing environmental and ecological conditions 

throughout the life of a tree (Turner et al. 1978). When foliar nutrient concentrations are 

at or below the critical thresholds  (1.0 % and 1.2% nitrogen for slash and loblolly pines, 

respectively, and 0.09% and 0.12% phosphorus for slash and loblolly pines, respectively 

(Wells et al. 1973; Pritchett and Comerford 1982; Allen 1987, plants respond with visible 

physical responses such as yellowing/thinning foliage, needle twisting, shoot die back, 
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and branch deformities (Stone 1968). At optimum foliar nutrient levels, however, 

increases leaf area index (Albaugh et al. 1998) and increased photosynthetic rate 

(Runion et al. 1999) have been observed.  

 

Soils 

 

Soil quality is the most important factor in forest management and influences 

which species will grow best. Physical soil factors have been found to be most critical in 

the prediction of height growth in southern pine plantations (Nemeth and Davey 1974). 

The most influential factors that impact soil productivity are topsoil depth, soil texture, 

limiting layers, and fertility. Topsoil depth is said to be the most critical factor affecting 

pine seedling growth and is where maximum root penetration and growth is most 

important. Typically, deep topsoils provide the most nutrients, water, and aeration and 

therefore, produce the highest yields (Hamilton 2003).   

Soil Texture 

Soil texture is the most crucial factor causing changes in species composition 

and ecosystem dynamics (Knox et al. 1995). Sandy soils often have lower nutrient levels 

and generally only support species such as longleaf pine that are able to perform well on 

nutrient deficient sites. Clay textured soils tend to have higher water holding capacity 

and contain adequate nutrients; however, soils with larger ratios of clay have less water 

available to plants because water and clay soil particles are tightly bound, making it 

more difficult for plant roots to take up water.  
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Drainage Class  

Drainage class also greatly affects nutrient and water absorption of plants. The 

relationship between soil drainage and tree diameter and height growth exists because 

the productivity of southern pines is influenced by the volume of soil available for root 

exploitation (Lorio et al. 1972). On better drained sites, establishment and early growth is 

rapid because seedlings have adequate rooting volume where excessive soil moisture is 

not limiting (Dicken et al. 1988). However, early growth is slower on poorly drained sites 

because of high water tables (Mckee and Willhite 1986).  

Bulk Density 

Bulk density is the ratio of dry soil solids to the total volume of soil and is often 

used as an indication of soil strength and porosity. Bulk density values can vary greatly 

between soils in the same stand and even within the same soil series. The utilization of 

harvesting/site prep machinery often determines an increase or decrease of soil 

compaction and bulk density.  High soil bulk density values due to soil compaction 

typically produce soil conditions that have reduced root penetration, aeration, and 

percolation and high volumetric water content and soil strength (Greacen and Sands 

1980). High soil bulk densities can restrict a plant’s ability to extract water and nutrients 

from the soil, leading to a reduction in growth and, at a stand level, negatively impact 

establishment (Daddow and Warrington 1983). Bulk density values become restricting 

for plant growth when they reach their growth-limiting bulk density, generally determined 

by soil texture (Veihmeyer and Hendrickson 1948; Schuurman 1965; O'Connell 1975) 

because of its impact on pore size and resistance to soil compaction. At growth-limiting 
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bulk density, soils have been compacted to the point where pore space is so limiting that 

roots can no longer penetrate the soil and growth is almost completely stopped 

(Wiersum 1957; Aubertin and Kardos 1965; O'Connell 1975). Typically, coarser textured 

soils will have higher growth limiting bulk densities because of their larger pore spaces, 

while fine textured soils have lower growth limiting bulk densities (Daddow and 

Warrington 1983).  

Soil Nutrients 

 Forest productivity and tree vigor is reliant on the amount of resources in the soil 

that are readily available for uptake by the plant. Increases of nutrients via fertilization 

have been shown to increase photosynthetic rates of plants (Zhang 1993; Murthy et al. 

1996; Runion et al. 1999) and increase maintenance respiration rates (Maier et al. 

1998).  Soils that are deficient in important macronutrients can result in low leaf area 

production, yellowing foliage, and stem deformities (Fisher and Binkley 2000).  

 Nitrogen is required by plants at more abundant rates than other macronutrients, 

and is often the most limiting nutrient in the soil of temperate forests (Flanagan and Van 

Cleve 1983; Pastor et al. 1984). Jose et al. (2003) found that increases in soil nitrogen 

availability could potentially increase net photosynthesis of longleaf pine, as long as soil 

water availability was not limiting. Albaugh et al. (1998) found that loblolly pine subjected 

to varying amounts of soil nutrients and water showed a strong positive response to the 

optimum nitrogen and phosphorus availability treatments. Fertilization provided an 

increased growth of leaf area and stem volume growth. 
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 Phosphorous availability is also a major limiting factor affecting the growth of 

southern pine stands (Fisher and Garbett 1980; Comerford et al. 1983; Gent et al. 1986; 

Allen 1987). Although phosphorous is typically applied at lower rates than nitrogen, 

when they are applied together growth increases of 25% have been obtained (Fox et al. 

2007). Pritchett et al. (1961) and Laird (1972) saw large increases (5 to 15ft) in site index 

after applying applications of phosphorus to slash pine on poorly drained clay soils in 

Florida.  

Planting 

 

Conditions 

Timing and weather conditions play a large role in the establishment and survival 

when planting southern pine seedlings.  Winter months are considered the best time to 

plant because competing species are dormant, allowing seedlings to root and establish. 

Dormancy of pine seedlings during winter also makes handling easier for nurseries and 

planters while also reducing the likelihood of seedling damage during transport and 

planting. Studies have shown, however, that a planting season including late fall and 

early spring months ranging from mid-October to mid-March may be sufficient. Several 

studies show that planting earlier in the fall can improve tree survival and growth 

because roots are given a longer time period to grow and acclimate before summer 

(Taylor et al. 2006; Larson 2002; Brissette et al. 1991; Mexal et al. 1979). Planting 

should take place in cool temperatures ranging from 1.6°C to 15.5°C with a relative 

humidity greater than 40% (Lantz et al. 1996). In order to prevent seedling roots from 

drying, wind speeds should remain below 16 kph and soil moisture above 50%. Although 
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these weather conditions are preferred, special care of the seedlings must be 

considered to prevent damage. If the soil is extremely dry, planting should be delayed 

until adequate moisture is reached. Planting during below freezing weather can also 

decrease seedling survival (Barry 2013).  

Seedlings 

Bare-root seedlings are more often used over containerized seedlings in the 

West Gulf Coastal Plain because they are easily produced but require more care than 

containerized seedlings and are more prone to drying out on sunny or windy days 

(Taylor et al. 2006). Containerized seedlings have several other advantages over bare-

root seedlings that increase survival and establishment rates: lower cost of survival on a 

per seedling basis, ease of planting, storage of seedlings is less complicated, and they 

are more widely available in most areas (Franklin 2008). Probably the greatest 

advantage of planting containerized seedlings is the extended planting season on 

excessively dry or wet sites (Schultz 1999). These types of seedlings produce well on a 

wide variety of sites but especially outperform bare-root seedlings on sites that are 

flooded at the time of planting or sites that have seasonal droughts (Larson 2002). 

Depth 

In general, planting at greater depths has been shown to increase seedling 

survival. Greater survival of deeply planted seedlings is related to less exposed foliage,
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and roots retaining moisture for longer periods (South et al. 2012). Deep planting is a 

technique that has been shown to increase the survival of loblolly, shortleaf, and slash 

pines in the south (Lantz et al. 1996). On the other hand, longleaf seedling survival is 

negatively affected by deep planting and the terminal bud remaining covered after 

planting (Hainds 2004). For longleaf pine, the root collar must be above the soil surface 

in order for the seedling to establish and acquire nutrients. Incorrect planting depth is the 

primary cause of longleaf establishment failure (Hainds et al. 2005). 
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METHODS 

Site Locations and Description 

 

This study occurred on three study sites in Houston, Cherokee, and Shelby 

Counties within the East Texas Upper West Gulf Coastal Plain. All study sites were in 

recently clearcut areas adjacent to loblolly pine plantations, but varied greatly in 

dominant soil type and drainage classifications. All research plots were blocked based 

on differences in soil series (Table 1).  

The Swink property was located 9.6 km west of Rusk, Texas in Cherokee County 

(31°46'32.3"N 95°13'46.2"W), on Bowie, Lilbert, and Darco soil series (Appendix A). The 

Bowie soil series is a fine-loamy, siliceous thermic Plinthic Paleudult that is well drained 

with 1 to 8 percent slopes (websoilsurvey.nrcs.usda.gov). The Lilbert soil series is a 

loamy Arenic Plinthic Paleudult with 5 to 8 percent slopes and a well-drained drainage 

class. The Darco series is a loamy, siliceous Grossarenic Paleudult that is somewhat 

excessively drained and has slopes that range from 1 to 25 percent. Study plots were 

located on a small ridge where commercial plantings of loblolly pine had recently failed. 

The ridge was mowed with a tractor and bush hog as a site prep operation prior to 

planting. 

The Arbor Grove study site was located 11.3 km East of Crocket, Texas in 

Houston County (31°18'45.7"N 95°18'05.1"). Study plots were predominantly on Fuller, 
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Lovelady, and Pophers soil series (Appendix B). The Fuller soil series is a fine-loamy, 

siliceous, thermic Albic Glossic Natraqualf that is somewhat poorly drained with slopes 

ranging from 0 to 5 percent. The Lovelady series is a loamy, mixed, thermic Arenic 

Glossudalf that is classified as well drained with moderate slopes from 1 to 8 percent, 

while the Pophers soil series is a fine silty loam, acidic Fluvaquentic Endoaquepts that is 

also somewhat poorly drained with a maximum of 1 percent slopes. All study plots were 

located in a relatively flat area with a slopes that ranged from 1 to 5 percent. A mixture of 

herbicides including 1.4 L of Chopper, 3.7 L of Accord, and 0.1 L of Oust were applied at 

30 L per hectare by ground application in Fall 2015. 

The Hilliard Creek property was located 6.4 km southeast of Tenaha, Texas in 

Shelby County (31°54'48.8"N 94°12'43.9"W). The Eastwood, Latex, and Metcalf-

Sawtown soil series made up the area where study plots were placed (Appendix C). The 

soil textures represented by these series are very fine sandy loam, fine sandy loam, and 

a complex of very fine sandy loam, loam, and clay, respectively. The Eastwood series is 

a fine, smetitic, thermic Chromic Vertic Hapludalf and contains slopes ranging from 5 to 

15 percent and has a drainage class rated as well drained. The Latex series is a fine-

loamy, siliceous, thermic Glossic Paleudalf and has a maximum slope of 3 percent and 

are moderately well drained. The Metcalf-Sawtown series is fine-loamy, siliceous, active 

thermin Typic Glossudalf that is relatively flat with slopes less than 2 percent and has a 

somewhat poorly drained drainage class rating. Study plots were laid out on the property 

edge on either side of the logging road that splits the tract. A mixture of herbicides 
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including 1.4 L of Chopper, 3.7 L of Accord, and 0.1 L of Oust were also applied at 30 L 

per hectare by ground application in Fall 2015 

Table 1. Soil series characteristics found in Cherokee, Houston, and Shelby counties in 

East Texas. Data from websoilsurvey.nrcs.usda.gov, August 29, 2016. 

Site/Soil Series Soil Texture Drainage Class 
Slope 

(%) 

Cherokee    
    Bowie fine sandy loam well drained 3-8 

    Darco loamy fine sand somewhat excessively drained 1-3 

    Lilbert loamy fine sand well drained 3-8 

Houston    
    Fuller fine sandy loam somewhat poorly drained 1-3 

    Lovelady loamy sand well drained 1-5 

    Pophers silt loam somewhat poorly drained 0-1 

Shelby    
    Eastwood very fine sandy loam well drained 5-15 

    Latex fine sandy loam moderately well drained 1-3 

    Metcalf-Sawtown  complex somewhat poorly drained 0-2 

 

Experimental Design 

 

Plots were arranged in a randomized complete block design (RCBD) with 3 

replicates per site for each of the four species. Soil texture and drainage class were 

attempted to be used as the blocking variables so that each block had all four species on 

the same soil type. Each species were planted in a 36.5 m by 36.5 m plot that had 9 to 

11 rows, with trees planted at a 2.4 m by 2.7 m spacing (1,500 trees per hectare). In 

Houston and Shelby counties, all blocks were directly adjacent to the others, but plots 
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were more dispersed in Cherokee County based on available space within the 

existing14 year old loblolly pine plantation 

Planting 

 

Planting took place during December 2015. Loblolly, slash, and shortleaf pines 

were machine planted as containerized seedlings, while longleaf pine containerized 

seedlings were hand planted to reduce the potential of a machine planting the root collar 

too deep, increasing the probability of seedling mortality. All seedlings were planted in 

furrows created by the machine planter. The furrows broke up compacted soil, promoting 

root growth and establishment while also reducing the likelihood of j-rooting seedlings. 

Seedlings were provided by International Forest Company (IFCO) and all were of West 

Gulf Coastal Plain Coast provenance (Table 2).  

Table 2. Genetic information and origin of pines planted in Houston County, Shelby 

County, and Cherokee County, December 2015. 

Species  Genetics Origin 

Loblolly  Improved, second generation, superior 
growth and form 

Cherokee Co., TX 

Longleaf  Natural stand mix Newton Co., TX 

Shortleaf  Improved, orchard mix Southern AR 

Slash  Improved, second generation, superior 
growth, form, and rust resistance 

Northern LA 
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Data Collection 

Growth and Survival 

To ensure observational units were not affected by adjacent plots or edge 

effects, the outer rows of each plot were reserved as unmeasured buffer rows. 

Measurement plots consisted of 7 to 10 rows with 14 to 16 seedlings per row (98 to 160 

trees per plot). Ground-line diameter (GLD) was measured on each seedling, taken 

where the main stem of the seedling intercepted the soil and recorded to the nearest 

millimeter. Seedling height was defined as the distance (to the nearest half centimeter) 

from the intercept of the main stem and the soil to the top of the terminal bud. Initial 

establishment and survival surveys were conducted in April 2016. All measurement plots 

were tallied and seedlings were recorded as live or dead. GLD, height, and survival data 

were recorded each January-February from 2016-2019.  

Soil Parameters 

Soil samples were collected and sent to the SFASU Soil, Plant, and Water 

Analysis Laboratory in order to obtain nutrient and pH data. Soil data was collected 

during summer 2018 at each plot corner and plot center to a depth of 15cm. Corner and 

center samples were compiled and mixed together to form a composite sample for each 

plot.  

Soil profile descriptions were conducted during winter 2019.  The web soil survey 

was used to determine the predominant soil series of each study site in order to 

compare those soil attributes with characteristics from soils found in each plot. Due to 

extremely wet conditions, profile descriptions could not be obtained in the field. An auger 



27 
 

hole was made at the four corners and in the center of each measurement plot.  

Individual horizons from each sample hole were bagged and taken back to the SFASU 

campus lab to dry. Once the samples were adequately dried, the color, field texture, 

consistency, pH, structure, and rooting and mottling amounts were observed in the A, E, 

and B horizons in order to determine which soil series was represented within each 

research plot. 

Soil samples were also taken between pre-dawn and mid-day leaf water potential 

measurements (see page 28) to determine soil moisture. An auger or soil probe was 

used to take soil samples at rooting depth at the base of the tree used for moisture 

stress analysis. Rooting depth was previously determined by augering into the soil next 

to a border tree that represented the average height of each species at each site, until 

no roots were visible within the sample. Field weights of soil moisture samples were 

taken immediately upon returning to the lab. Samples were dried at 41°C for 96 hours 

and weighed again before calculating gravimetric water content.  

Bulk density was measured using standard Soil Science Society of America 

methods. Samples were taken at the center of each research plot with a slide hammer. 

Field weights of soil and rings were recorded immediately upon returning to the lab. Bulk 

density rings were dried with the soil intact at 41°C for 96 hours. Once soil dry weight 

was taken, the soil was removed from the rings and each ring weight was recorded with 

its respective soil sample. Bulk density was calculated by using the formula: 

 bulk density (g/cm3) = dry soil weight(g) / soil volume (cm3)  [1] 
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Soil bulk density was also used to calculate the volumetric water content of samples 

from each research plot.  

Tree Physiology Parameters 

Leaf water potential data was collected pre-dawn and mid-day from March 2018 

through December 2018. Each study site was visited monthly during dormant season 

months (October-December), and bimonthly during the growing season (May-August). 

No leaf water potential data was collected during September 2018 due to extended rainy 

weather conditions. Needle fascicles from three randomly selected trees per plot were 

collected and placed in the pressure chamber. Pressure inside the chamber was steadily 

increased until a film of water began seeping from the top of the fascicle. Bar values 

were recorded at this pressure and later used to compare leaf water potential between 

species across all soil types and all three sites.  

Five needles were collected from each of the three randomly selected trees used 

for leaf water potential measurements in order to obtain needle moisture content. From 

March 2018-June 2018, needles collected were from the first growth flush of the year 

and from July 2018-December 2018 needles collected were from the second growth 

flush. Field weights of needles were recorded to the nearest 0.01g prior to drying. 

Needles were placed in a 41°C oven for 48 hours and then weighed again to obtain dry 

weight. Needle moisture was determined by the gravimetric moisture formula: 

 Moisture content (%) = 100-((dry weight (g)/wet weight (g))*100).      [2] 
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Foliar samples were also collected during summer 2018 and sent to the Stephen 

F. Austin Soil, Plant, and Water Analysis Laboratory in order to obtain nutrient values. 

Composite samples were made from needles removed from five individual seedlings 

located at each of the four corners and at plot center on all research plots.  Foliar 

nutrient samples were labeled to correlate with the soil samples collected within the 

same plot prior to being sent to the lab.  

Data Analysis 

A mixed model analysis was used to determine the effects of individual seedling 

responses of height and ground-line diameter based on soil type and tree species. 

Analysis of variance (ANOVA) was used to test the effects of site and species on 

seedling height and diameter. Assumptions of normality were met by plotting residual 

values of heights and diameters by species for all three measurement years. Data was 

analyzed using the following model: 

Yijkl=µ + Sitei + Speciesj + Blockk(i) + Sitei*Speciesj + ԑijkl             [3] 

Where Y is the tree height or diameter of the lth tree of the jth species growing at 

the kth block at the ith site.  

 Survival data, expressed as 0/1, was analyzed using a logistics model to 

calculate the odds ratio estimates and probability of survival for each species at each 

research site. The effect of site and species on survivability were analyzed using the 

model: 

Yijkl= µ + Sitei + Speciesj + Blockk(j)+ Sitei*Speciesj + ԑijk         [4] 
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Where Y is the survival of the lth tree of the jth species growing at the kth block at 

the ith site.  

 Volumetric water content was analyzed using an ANOVA mixed model. The 

effects of soil volumetric water content, species, and site on tree leaf water potential was 

analyzed using the model: 

Yijkl = Sitei + Speciesj + Volumetric Water Contentk +  Block(site)l + 

 Sitei*Speciesj + ɛ       [5] 

 Where Y is the moisture stress of the ith tree of the jth species on the soil with 

the kth volumetric water content growing at the lth block of the ith site.  

Soil and foliar nutrient data were analyzed using a mixed model ANOVA. The 

effect of site and species on soil nutrient values was analyzed using the model:  

  Yii=µ + Sitei + Speciesj + Blockk(i) + Sitei*Speciesj + ԑij             [6] 

Where Y is the soil nutrient concentrations of the lth plot of the jth species growing 

at the kth block at the ith site or where Y is the foliar nutrient concentrations of the 

lth tree of the jth species growing at the kth block at the ith site.  

 A Pearson correlation between foliar and soil nutrient content was used to 

determine the uptake of nutrients from the soil in the plant for each individual species 

and among all species at each site. A correlation between foliar and soil nutrients was 

used to assess the effects of nutrient availability on tree height and diameter. A Pearson 
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correlation was also used to determine the effects of predawn and midday leaf water 

potential values on mean tree height and diameter. 
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RESULTS 

 

Soil 

Soil profile descriptions confirmed that the soil series provided by Web Soil 

Survey were present at the respective study sites; however, soil series was not used as 

a blocking variable because of the inconsistent location of soil series within each block. 

Because soil texture, drainage class, and slope were similar within each site, but 

different between the sites, soil type was only used as an effect on growth and survival 

at the site level.  

 

Growth and Survival 

Establishment 

 

Initial Height, Basal Diameter, and Survival  

 One month after planting, mean initial heights of loblolly and slash pine were 

significantly greater (p<0.0001) than shortleaf, which was also greater than longleaf pine 

(Figure 1). Mean basal diameters were determined to be significantly different at the 

species (p<0.0001) and site (p=0.0090) level, with Cherokee County diameters greater 

than Shelby and Houston County and longleaf diameters greater than loblolly and slash 

pine; slash were greater than shortleaf (Figure 2). Four months after planting, survival 

did not significantly differ among species (p=0.9688), site (p=0.0720), or at the 

site*species interaction level (p=0.8254). 
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Figure 1. Mean initial height (centimeters) of loblolly, longleaf, shortleaf, and slash pines 

across all study sites. Data collected January-February 2016. Tukey analysis conducted 

the species level, where a change in letters represents a significant difference p<0.0001) 

by species.  
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Figure 2. Mean initial basal diameter (millimeters) of loblolly, longleaf, shortleaf, and 

slash pines across all study sites. Data collected January-February 2016. Tukey analysis 

conducted at the species level, where a change in letters represents a significant 

difference (p<0.0001) at the species level. 

Year 1  

 

Height, Diameter, and Survival 

 Mean height were significantly different (p<0.0001) across the four species after 

the first year of growth. Loblolly heights were significantly greater than slash pine 

heights, while slash pine and shortleaf pine were greater than longleaf pine. Mean 

heights were also significantly (p=0.0463) different at the site interaction level. Shelby 
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County heights were not greater than Cherokee County. Mean heights were also 

significantly different at the site*species  level (p=0.0298). Loblolly pine mean heights in 

Shelby County were not greater than at Houston County, but Shelby County was were 

greater than at Cherokee County (Figure 3). Longleaf, shortleaf, and slash pine mean 

heights were not significantly different. 

 

Figure 3. Mean height (centimeters) one year after planting of loblolly, longleaf, 

shortleaf, and slash pines at all study sites. Tukey analysis conducted within species, 

where a change in letters represent a significant difference (p=0.0298) in height. Data 

collected January-February 2017. 

 Mean diameters were significantly different at the site (p=0.0143) and species 

levels (p<0.0001). Longleaf diameters were significantly greater than loblolly and slash 

pine; all were greater than shortleaf diameters (Figure 4).  

0

10

20

30

40

50

60

Loblolly Longleaf Shortleaf Slash

H
e

ig
h

t 
(c

m
)

Houston Shelby Cherokee

A 

AB 

BC 

A A A 

A A 
A 

A 

A 

A 



36 
 

 

Figure 4. Mean diameter (millimeters), one year after planting, of loblolly, longleaf, 

shortleaf, and slash pines across all study sites. Tukey analysis conducted at the 

species level, where a change in letters represent a significant difference (p<0.0001) in 

diameter. Data collected January-February 2017. 

 One year after planting, Houston and Shelby County survivals were greater than 

in Cherokee County (p=0.0010) for all species (Figure 5), and loblolly, shortleaf, and 

slash pine survival rates across all sites were greater than longleaf pine (p=0.0015).  
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Figure 5. Percent survival of loblolly, longleaf, shortleaf, and slash pines in each county 

one year after planting. Tukey analysis conducted within species, where a change in 

letters represent a significant difference (p=0.0015) in survival by site.  

Year 2 

Height, Diameter, and Survival 

 Mean heights were significant (p<0.0001) by species two years after planting. 

Loblolly pine heights were greater than shortleaf and slash, which were greater than 

longleaf. Mean heights were also significant across the three study sites (p=0.0158), with 

both Shelby and Houston County heights not significantly different. Shelby County mean 

heights were greater than Cherokee County heights; Houston and Cherokee County 

heights were not different. Mean heights two years after planting were significantly 
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different at the site*species level (p=0.0022). Loblolly pine in Houston and Shelby 

counties were both greater than in Cherokee County (Figure 6); longleaf and shortleaf 

heights did not significantly differ across study sites. Cherokee County slash pine were 

significantly taller than slash pine in both Shelby and Houston counties, but Houston and 

Shelby County slash did not differ from each other.  

 

Figure 6. Mean height (centimeters) two years after planting of loblolly, longleaf, 

shortleaf, and slash pines at each study site. Tukey analysis conducted within species, 

where a change in letters represent a significant difference (p=0.0022) in height by site. 

Data collected January-February 2018. 

 Mean diameters were also significantly different (p<0.0001) by species. Loblolly 

pine diameters were greater than shortleaf and slash, and slash pine was greater than 

longleaf pine. Mean diameters were also different at the site as level Shelby and 
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Houston County mean diameters were significantly greater (p=0.0075) than Cherokee 

County. Diameters were also significant at the site*species level (p=0.0004) with loblolly 

diameters in Shelby and Houston counties greater than in Cherokee County (Figure 7); 

longleaf, shortleaf pine, and slash pine mean diameters did not significantly differ 

between study sites.  

 

Figure 7. Mean diameter (millimeters) two years after planting of loblolly, longleaf, 

shortleaf, and slash pines at each study site. Tukey analysis conducted within species 

where a change in letters represent a significant difference (p=0.0004) in diameters by 

site. Data collected January-February 2018 

Two years after planting, survival rates were significant at the site (p=0.0015) and 

species (p=0.0002) levels. Houston and Shelby County survivals were greater than in 
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Cherokee County, and loblolly, shortleaf and slash pine survival rates were greater than 

longleaf survival (Figure 8).   

 

Figure 8. Percent survival of loblolly, longleaf, shortleaf, and slash pines at each 

study site two years after planting. Tukey analysis conducted within species 

where a change in letters represent a significant difference (p=0.0002) in survival 

by site. 

Year 3 

 

Height, Diameter, and Survival  

 At the end of the third year, loblolly pine mean heights were significantly greater 

(p<0.0001) than slash and shortleaf pines, which were greater than longleaf pine. The 

site level interaction was also significant (p=0.0143). Shelby and Houston County mean 

heights were not significantly different; however, Shelby County heights were larger than 
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Cherokee County, but Houston County heights were not. Site*species interaction was 

also significantly different (p=0.0028). Loblolly pine in Houston and Shelby counties were 

greater than in Cherokee County (Figure 9). Longleaf and shortleaf pine mean heights 

were not different across study sites. Slash pine in Shelby and Houston counties did not 

significantly differ in height, and Shelby and Cherokee County slash pine also did not 

differ in mean height, but Houston County slash pine were significantly taller than 

Cherokee County slash pines. 

 

Figure 9. Mean height (centimeters) three years after planting of loblolly, longleaf, 

shortleaf, and slash pines at each study site. Tukey analysis conducted within species 

where a change in letters represent a significant difference (p=0.0028) in height by site. 

Data collected January 2019. 
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 Mean diameters of loblolly pine were significantly greater than slash and 

shortleaf diameters, which were greater than mean diameters of longleaf pine 

(p<0.0001). Diameters also differed significantly at the site level (p=0.0033). Houston 

and Shelby County mean diameters were greater than those in Cherokee County. Mean 

diameters were also significant at the site*species level (p=0.0005). Loblolly pine in 

Houston and Shelby counties obtained higher mean diameters than in Cherokee County 

(Figure 10). Although longleaf and shortleaf pine mean diameters did not differ between 

sites, Houston and Shelby County slash pine mean diameters were greater than 

Cherokee County slash.  

 

Figure 10. Mean diameter (millimeters) three years after planting of loblolly, longleaf, 

shortleaf, and slash pines at each study site. Tukey analysis conducted within species 

where a change in letters represent a significant difference (p=0.0005) in diameter by 

site. Data collected January-February 2019.  
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 Survival rates were significantly different at the site (p=0.0014) and species 

(p<0.0001) levels three years after planting, where Houston and Shelby counties were 

greater than Cherokee County (Figure 11). Loblolly, shortleaf, and slash pine survivals 

were greater than longleaf pine across all study sites.   

 

Figure 11. Percent survival of loblolly, longleaf, shortleaf, and slash pines at each study 

site three years after planting. Tukey analysis conducted within species where a change 

in letters represents a significant difference (p=0.0014) in survival by site. 

Seedling Physiology 

 

Leaf Water Potential 

 Pre-dawn moisture stress levels were more negative in shortleaf pines than the 

other species (p=0.0016) (Figure 12). Tree heights of all species in Houston County 
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were significantly (p= 0.0143) and negatively correlated (r= -0.2037) with predawn 

moisture stress values.  

 

Figure 12. Mean pre-dawn leaf water potentials, in megapascals (MPa), of loblolly, 

longleaf, shortleaf, and slash pines, and mean monthly precipitation (centimeters) across 

all study sites from March 2019-December 2019. 

 Midday water potential levels were significant at the site (p=0.0449) and species 

(p<0.0001) levels. Cherokee County water moisture stress values were more negative 

than Houston County, which were more negative than Shelby County. Water potentials 

were most negative in shortleaf and loblolly pines; loblolly and longleaf pine values were 

more negative than slash pine leaf water potentials (Figure 13). Leaf water potential 
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values were also significant (p=0.0073) and had a negative correlation (r= -0.2317) on 

tree height for all species.  

 

Figure 13. Mean midday leaf water potentials, in megapascals (MPa), of loblolly, 

longleaf, shortleaf, and slash pines, and mean monthly precipitation (centimeters) across 

all study sites from March 2019-December 2019. 

Soil Moisture 

 Soil moisture significantly affected leaf water potential values for both pre-dawn 

and mid-day measurements (p<0.0001). Volumetric water content was significantly 

greater at Shelby County than in Houston County, with an average moisture content of 

0

5

10

15

20

25

30

35

-2.5

-2

-1.5

-1

-0.5

0

P
re

c
ip

it
a

ti
o
n

 (
c
m

)

M
P

a

Loblolly Longleaf Shortleaf Slash Precipitation



46 
 

0.16g/g (Figure 14). Houston County soil moisture average was 0.12g/g with lows of 

0.04g/g  during summer months. Cherokee County soils held the least amount of 

moisture throughout the year, averaging 0.099g/g from May-December 2019. 

 

Figure 14. Mean volumetric water content (VWC) of soil by site and mean monthly 

precipitation (centimeters) across all study sites May 2019-December 2019. Soil 

moisture data collected on same day as leaf water potential measurements. No data 

was collected for Cherokee County in November. 

Soil Nutrients 

Macronutrients 

 Phosphorus values were significantly greatest (p<0.0001) Shelby County than in 

Houston and Cherokee counties (Table 3), with the same relationships for soil potassium 

(p=0.0052). Potassium soil levels in the soil were also significantly correlated with the 

mean height (p=0.0415) and mean diameter (p=0.0347) of loblolly pine, with positive 
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correlations of 0.6855 and 0.70292, respectively. Slash pine mean heights were also 

significantly (p=0.0372) and positively correlated (r=0.69619) with potassium availability. 

Calcium availability in the soil significantly varied by site (p<0.0001), as Houston County 

had higher levels than Shelby County, which had higher levels than Cherokee County. 

Magnesium levels were significantly higher (p=0.0006) in Houston and Shelby counties 

than in Cherokee County. Sulfur levels were higher in Shelby County than in Houston 

and Cherokee counties (p=0.0002). Sulfur availability in the soil was also significantly 

and positively correlated with mean height (p=0.0135) and diameter (p=0.0192) of slash 

pine across all sites with a correlation of 0.7784 and 0.75276, respectively.  

Soil Quality 

Soil pH was not significantly different at any interaction level. Nitrate values were 

significant (p=0.0008) at the site level only, with Shelby County greater than Houston 

and Cherokee counties. Soil salinity was also significant (p=0.0003) at the site level and 

were greater in Shelby County than in Houston and Cherokee counties.   
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Table 3. Mean values of soil components, Phosphorus (P), Potassium (K), Calcium 

(Ca), Magnesium (Mg), Sulfur (S), pH, nitrates, and salinity, at study sites. Data 

analyzed at the Stephen F. Austin State University Soil, Plant, and Water Analysis Lab 

December 2018. A change in Tukey letters represents a significant difference (p<.05) at 

the site level. 

 P K Ca Mg S Nitrates Salinity pH 

 ---------------------------------------ppm-----------------------------------  

Site         

Houston  19.50B
 50.56B

 676.36A
 45.42A

 5.58B
 1.45B

 43.46B
 5.91A

 

Shelby 111.65A
 64.17A

 474.60B
 41.52A

 12.32A
 3.62A

 83.92A
 5.18A

 

Cherokee 45.24B
 41.51B

 335.80C
 27.24B

 4.94B
 2.97B

 40.35B
 5.54A

 

 

Foliar Nutrients 

Macronutrients 

 Foliar phosphorus values were significantly different at the site (p=0.0038) and 

species (p=0.0003) levels. Shelby County phosphorus values were greater than Houston 

and Cherokee counties (Table 4).  At the species level, phosphorus was higher in 

loblolly and shortleaf pine than in longleaf and slash pines. Potassium values were 

significantly different (p=0.0032) at the site level only as, Cherokee and Shelby County K 

values were greater than Houston County. Foliar magnesium values were only 

significantly different (p=0.0028) at the species level, with longleaf and shortleaf having 
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the highest concentrations of Mg; longleaf pine was greater than slash pine, and longleaf 

and shortleaf were greater than loblolly pine. Foliar magnesium levels were significantly 

and positively correlated with mean height of longleaf pine (p=0.0274) and had a 

correlation of 0.72403. Sulfur values were significant at the site (p=0.0020) level. Foliar 

sulfur was greater in Shelby and Cherokee counties than in Houston County. Foliar 

sulfur was also significant at the species level (p=0.0012). Sulfur concentrations were 

higher in shortleaf and loblolly pines, where shortleaf values were greater than longleaf 

and slash pines. Calcium foliar concentrations were not significant at any interaction 

level; however, calcium availability was strongly correlated (0.80071) with mean height 

of longleaf pine across all sites (p=0.0095). 
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Table 4. Mean foliar nutrient values of macronutrients, Phosphorus (P), Potassium (K), 

Magnesium (Mg), Sulfur (S), and Calcium (Ca) by species at each site. Data analyzed at 

the Stephen F. Austin State University Soil, Plant, and Water Analysis Lab December 

2018. A change in Tukey letters represents a significant difference (p<.05) at the site or 

species level.  

Species/Site P K Mg S Ca 

 ---------------------------------------ppm------------------------------------ 

Loblolly      
Houston 1121.71B 4284.48B 888.97A 858.62B 2676.84A 

Shelby 1648.62A 6828.05A 929.93A 1085.89A 3706.89A 

Cherokee 1426.72AB 7050.76A 896.26A 930.73B 2460.96A 

Longleaf      

Houston  1049.05A 5835.07A 1249.56A 781.32A 2528.46A 

Shelby 1214.71A 7543.96A 1021.85A 866.16A 1954.15A 

Cherokee 1237.93A 7066.50A 1272.01A 977.91A 2988.89A 

Shortleaf      
Houston  1267.91A 6639.71A 1013.01A 1017.37A 2916.77A 

Shelby 1397.91A 7020.97A 1192.13A 1045.27A 3250.34A 

Cherokee 1445.47A 8039.50A 1102.56A 1068.82A 3245.77A 

Slash      
Houston 969.76A 5085.11A 1015.05A 776.39A 3218.15A 

Shelby 1199.21A 6392.04A 887.18A 857.21A 3676.09A 

Cherokee 1048.49A 7852.27A 974.37A 938.17A 2646.01A 

 

Micronutrients 

Foliar amounts of manganese were significantly higher in Shelby and Cherokee 

counties than in Houston County (p=0.0227) (Table 5). Needle amounts of zinc were 

significantly (p<0.0001) higher in Shelby County than in Cherokee and Houston 

counties. Copper levels in needles were also significantly (p=0.0070) at higher in Shelby 
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County than in Cherokee and Houston counties. Molybdenum needle concentrations 

were greater (p=0.0006) in Shelby and Houston counties than in Cherokee County. 

Boron values were significantly different at the site (p<0.0001) and species (p=0.0344) 

levels. Needle content of boron was greater in Shelby and Houston counties than in 

Cherokee County. Boron values by species were greatest in longleaf, slash, and 

shortleaf, and longleaf was greater than loblolly. Nickel content was significant 

(p=0.0079) at the site level only, with higher values Shelby County than in Houston and 

Cherokee counties. Boron concentrations that were determined as negative were due to 

analyzation errors made within the lab. Needle sodium values were significant at the site 

(p=0.0128) level and the site*species interaction level (p=0.0070). Na values were 

greater in Shelby and Houston counties, and Shelby County values were higher than 

Cherokee County needle Na amounts. Loblolly pine Na concentrations were greater in 

Shelby and Houston counties than in Cherokee County loblolly pine. Sodium amounts in 

longleaf, shortleaf, and slash pine were not significant across sites. Foliar content of 

aluminum was significant (p=0.0149) at the species level. Aluminum values were higher 

in loblolly, longleaf, and shortleaf pines, and shortleaf pine values were greater than 

slash. 
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Table 5. Mean needle nutrient values of micronutrients, Sodium (Na) Iron (Fe), 

Manganese (Mn), Zinc (Zn), Copper (Cu), Aluminum (Al), Boron (B), and Nickel (Ni), by 

species at each site. Data analyzed at the Stephen F. Austin State University Soil, Plant, 

and Water Analysis Lab December 2018. A change in Tukey letters represents a 

significant difference (p<.05) 

Species/Site Na Fe Mn Zn Cu Al B Ni 

Loblolly         

Houston 48.48AB 93.23A 237.55A 26.94A 3.86B 171.59A 6.02A 1.47A 

Shelby 187.33A 750.01A 478.21A 60.67A 10.61A 987.10A 7.75A 3.96A 

Cherokee 18.02B 126.78A 273.08A 30.19A 5.05AB 367.43A -5.59A 1.64A 

Longleaf         

Houston  20.90A 101.69A 190.05A 46.26A 4.81A 142.92A 13.28A 1.65A 

Shelby 50.98A 921.57A 311.41A 63.67A 8.37A 784.53A 13.71A 3.21A 

Cherokee 36.25A 215.03A 336.91A 39.60A 6.23A 397.97A 0.51A 4.14A 

Shortleaf         

Houston  60.60A 116.01A 194.09A 46.05AB 4.31A 289.93A 6.53AB 0.72A 

Shelby 78.13A 663.94A 482.02A 82.59A 8.41A 861.55A 10.62A 3.91A 

Cherokee 19.42A 129.73A 483.16A 36.97B 4.77A 744.79A -6.96B 2.46A 

Slash         

Houston 190.74A 73.42A 251.22A 35.92A 3.26A 107.28A 8.04A 1.02A 

Shelby 77.30A 258.03A 560.28A 74.50A 4.54A 473.72A 9.82A 3.50A 

Cherokee 19.05A 83.02A 349.10A 40.09A 3.83A 264.19A 5.20A 2.83A 

 

Nutrient Uptake 

 Seedling potassium uptake from the soil was significant (p=0.0091) for all 

species in Shelby County, with a positive correlation of 0.7143. Availability of sulfur in 

needles in Shelby County was also significant (p=0.0021) and had a positive correlation 
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of uptake from the soil of 0.7937. At the species level, phosphorus needle uptake was 

significant for loblolly (p=0.0246) and slash (p=0.0444) pine and had positive correlations 

of 0.73303 and 0.67874, respectively. Loblolly pine sulfur uptake was also significantly 

(p=0.0039) and positively correlated (0.8482) with needle-soil sulfur availability. 
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DISCUSSION 

Growth 

 Greater loblolly pine mean heights and diameters could be due to their improved 

genetics compared to the longleaf, shortleaf, and slash pine used in this study (McCrady 

and Jokela 1996), the closeness of the origin of planted seedlings to the study sites, and 

the overall observed faster growth rates of loblolly pine (Smith and Schmidtling 1970, 

Gibson et al. 1986). Loblolly pine also outperform other southern pines on loamy 

textured, moist soils (Baker and Langdon 1990) that are considered to have adequate 

drainage conditions (Haywood et al. 1990, McKee and Shoulders 1970, Shoulders 1976, 

Tiarks and Shoulders 1982), similar to those present in Houston and Shelby counties. 

Loblolly pine has produced a much higher yield than the other southern pines on soils 

with adequate nutrient and moisture availability (Kramer 1943, Haines et al. 1981, 

Haywood et al. 1990, Faust et al. 1999, Jokela et al. 2000).  

Slash pine were genetically superior to shortleaf pine in terms of growth, form, 

and rust resistance (based on genetic information provided by IFCO); however, East 

Texas is west of the native range of slash pine and receives less average annual rainfall, 

which could potentially stunt its growth. Slash pine typically outperforms shortleaf and 

loblolly pines when planted in poorly drained soils (Shoulders 1976, Shoulders and 

Parham 1983), which made up a small area of the Houston County site but were not 

present in Shelby or Cherokee County sites. Slash pine typically 
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outcompetes the other southern pines in growth and volume production on sites that are 

nutrient deficient (Fisher 1983), but do not put on substantial growth on soils with 

nutrient availability that satisfies its growth demands (Jokela et al. 2000).  The shortleaf 

seedling genetics and transferring them into a warmer, drier climate than their region of 

origin most likely affected seedling growth and establishment. A naturally slower growth 

rate (Guldin 1986, Lawson 1990) than loblolly and slash pine also resulted in the lower 

growth rates of shortleaf pine.  

The majority of longleaf seedlings remained in the grass stage, producing almost 

no aboveground stem biomass three years after planting. The length of the grass stage 

in longleaf pine was likely due to the lack of herbaceous plant control after the initial 

herbicide applications (Barnett 1989, Boyer 1993, Brockway and Outcalt 1998, Nelson et 

al. 1985, Scott and Burger 2014, Ramsey et al. 2003). Those few longleaf that grew out 

of the grass stage have put on substantial amounts of growth and potentially could meet 

the productivity of the other pine species in the future (Croker 1990, Landers et al. 

1995).  

Survival 

 Loblolly, shortleaf, and slash pine survival most likely remained high because 

East Texas received above average rainfall between 2016 and 2019 (2016=1440mm, 

2017=1235mm, 2018=1490mm, historic mean rainfall in East Texas=1185mm). The 

greatest causes of mortality among loblolly, shortleaf, and slash pine were damage to 

seedlings by feral hog activity in Houston and Shelby counties. Similar to Pessin 1939, 

feral hogs uprooting pine seedlings leaves root systems without soil contact and 
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exposed to high temperatures and sunlight, which leads to mortality. Another factor 

affecting seedling mortality post-planting was the inundated conditions of several field 

plots for several weeks after establishment.   

Much of the longleaf mortality in the first year could have been due to non-

optimum planting conditions. Planting temperatures (26C) were higher than 

recommended for planting (Lantz et al. 1996), and several plots in Houston and Shelby 

counties were inundated by frequent, heavy rains. Terminal buds and root collars of the 

longleaf pine seedlings remained underwater for weeks prior to planting, preventing 

them from receiving sunlight and oxygen for root allocation and causing several 

containerized seedlings to float out of the planting bar hole. Even after waters had 

subsided, sediment moved over the terminal buds and buried the root collars of longleaf 

pine, resulting in high mortality within the first four months (Hainds 2004; Larson 2002).  

 Feral hog damage to seedlings was the main cause of mortality in Shelby and 

Houston counties. Cherokee County soils were well drained to excessively well-drained, 

hindering the amount of water available to seedlings during summer months with low 

precipitation. The highest cause of mortality in Cherokee County was defoliation of 

seedlings by Texas leafcutter ant (Atta texana). Leafcutter ants began defoliating all 

species as early as one month after planting and continued through the third year. 

Cherokee County longleaf pine plots were also subject to feral hog damage and deer 

herbivory. Herbivory mortality caused the removal of the terminal bud and root collar and 

the exposure of root systems in the summer (Pessin 1939).  
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Leaf Water Potential 

Because longleaf pine seedlings in the grass stage do not allocate much energy 

to aboveground biomass and the distance water must travel from the root system to the 

needles is much shorter than the other species, longleaf pine is able to conserve more 

energy, thus leading to lower moisture stress levels. Longleaf pine also have a higher 

needle moisture content as an adaptation to fire. Nutrient and water demands of slash 

pine were adequately met, allowing the seedlings to perform growth throughout the year 

without experiencing long periods of moisture stress. Loblolly pine predawn water 

potentials were comparable to other studies from April-June and September-December 

and less negative during late summer months (Dalton and Messina 1994, Seiler and 

Johnson 1985). Maximum stress levels of loblolly pine, longleaf, and shortleaf pines 

during periods of moderate moisture stress were also similar for Sword Sayer et al. in 

(2005).  

Slower aboveground growth rates of all pines in Cherokee County could have 

been due to the dryer soil conditions compared to soils in Houston and Shelby counties, 

thus leading to higher levels of moisture stress (Hennessey and Dougherty 1984, Seiler 

and Johnson 1985). When exposed to long periods of low moisture availability, 

seedlings respond by allocating more carbon to the root system instead of the stem 

(Bongarten and Teskey 1987, McMurtie 1985). Depths to the B horizons containing clay 

content were more shallow in Houston and Shelby counties, allowing for more moisture 

availability to seedlings roots. In Shelby County, the depth to the B horizon was 
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shallower than in Houston County, retaining more water for seedlings during periods of 

low precipitation.  

Nutrients 

Nutrient availability at the soil and foliar level were well above the critical 

thresholds for all four species (Dickens et al. 2003, Jokela et al. 1991). Foliar nutrient 

concentrations in loblolly pine were similar to those found on trees studied by Metz and 

Wells (1965). Faster growth rates of loblolly and slash pine was most likely due to their 

ability to uptake greater amounts of phosphorus from the soil than longleaf and shortleaf.  

Slash pine nutrient requirements are not as demanding as other pine species, allowing it 

to compete with the faster growth rates of loblolly pine on sites where nutrient availability 

is not optimum (Jokela and Martin 2000, Binkley and Giardinia 1998). Similar to slash 

pine, shortleaf has a much lower nutrient demand than loblolly pine (Fowells 1965). Soils 

at all three study sites provided adequate nutrients for shortleaf pine growth, but were 

not deficient enough to negatively affect the growth of loblolly pine.  

Greater mean heights for all species in Shelby County may have been caused by 

high levels of potassium and phosphorus available in the soil. Dryer soil conditions in 

Houston County and the well-drained soils of Cherokee County could have been the 

cause of lower soil phosphorus values in these soils (Haywood et al. 1990, Fox et al. 

2007). 

Without adequate moisture, amounts of soil nutrients do not always produce 

higher growth yields in pine. This could be an explanation for the slower growth rates of 

the seedlings on well drained and excessively drained soils of Cherokee County and on 
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the dryer soils in Houston County. Seedlings in Shelby County were able to take 

advantage of available nutrients because of the moderate moisture within the soil 

(Seigel-Issem et al. 2005).  
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CONCLUSIONS 

 The natural growth rates, genetic improvements, nutrient demands, and 

response to moisture stress of the southern pines resulted in different yields of above 

ground biomass across the study sites. Shelby County soils, with the most adequate soil 

moisture and nutrient availability, had the highest productivity for all four species at the 

end of three growing seasons. The well drained and deep sand soils in Cherokee 

County produced the least amount of aboveground growth. Based on these results, 

loblolly pine is recommended for planting on sites where soil moisture and nutrients are 

adequate and when timber production is the main objective. Loblolly pine has the 

capability to adapt and outcompete the other pine species when soil water and nutrients 

are available because of it’s naturally faster growth rate. Slash pine can outcompete 

loblolly pine when planted on sites that have lower nutrient availability than loblolly 

demands, and on sites where soils are poorly drained. On soils that are excessively 

drained with low moisture and low nutrients, shortleaf should be considered. Because of 

longleaf pine’s ability to retain needle moisture and surface area during periods of low 

soil moisture, longleaf pine is suggested to be planted on sites that are more prone to 

drought. Longleaf pine will require more active management on any soil type in order to 

decrease herbaceous plant competition. If properly managed, longleaf pine growth is 

comparable to the other southern pines after growing out of the grass stage.  Continued 

measurements are required to determine if these growth and survival trends will 

continue over the lifespan of the trees. 
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