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ABSTRACT 

     The storm surge from Hurricane Ike in 2008 inundated much of Galveston 

Island, Texas, causing lasting below-ground impacts in the form of elevated soil 

sodium (Na+) concentrations.  The Na+ initially killed much of the vegetation on 

the Island and its persistence in soils and groundwater slowed revegetation with 

some species.  Soil amelioration techniques aimed at reducing soil Na+ 

concentrations were evaluated on an area affected by the storm surge.  The 

treatments were: constructed raised beds composed of uncontaminated soil, 

incorporation of organic mulch, gypsum application, and combinations of these 

treatments.  Inputs of Na+ from sea-spray aerosols were also quantified using a 

precipitation/dry-fall automated collector at the study site.  In addition, three 

species of plants, live oak (Quercus virginiana), hybrid bald cypress (Taxodium 

distichum), and yellow hibiscus (Hibiscus hamabo) were planted on the treatment 

plots.  A randomized factorial design using the eight treatment combinations with 

the three plant species was replicated six times. Plant survival and growth was 

monitored over two years.  Only exchangeable soil Na+ and soluble Ca2+ 

concentrations showed statistically significant differences among treatments.  

Na+ translocated into the constructed raised beds during the study. Na+ input 

from sea spray aerosols was quite variable over a one year period, but  
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the annual contribution to soil Na+ was relatively small.  Plant survival, height, 

and diameter growth were not significantly impacted by the applied soil 

amendment treatments for either measurement period during the first year of 

plant establishment.  However, constructed raised beds may have had a 

statistically significant, but weak, effect on plant volume growth between the first 

and second measurements.  The same effect was not observed on plant volume 

growth between the second and final measurements. 
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INTRODUCTION 

     Hurricanes have the potential to damage buildings, destroy trees, and flood 

cities, but the severity of impact depends on the magnitude of the storm.  

Hurricanes range from Category 1 storms, which are the least damaging, to 

Category 5 storms which are the most impactful.  Although hurricanes may be 

destructive during landfall, hurricanes may also create lasting effects long after 

the storm has ended.  In addition to flooding from abundant rainfall during 

hurricane events, coastal environments are often inundated by an accompanying 

storm surge.  Storm surges are generally associated with flooding of roads, 

houses, and cars with seawater in coastal regions, but storm surges also impact 

soils, groundwater, and vegetation.  Once the waters recede, salts are left behind 

in the soils and groundwater.  Depending on concentrations of the storm 

deposited salts, the soils, groundwater, and vegetation can be severely affected 

and may be slow to recover. 

     In 2008 Galveston Island, Texas suffered considerable above-ground damage 

from Hurricane Ike, a Category 2 storm, with 170 km hour-1 winds and a storm 

surge of approximately 4.5 m (Texas Forest Service, 2009). The storm surge 

also caused long lasting below-ground impacts in the form of elevated soil and

groundwater sodium (Na+) concentrations.  Na+ deposited by the storm will likely 

eventually leach out of the plant rooting zone, but Na+ enriched shallow 
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groundwater can be a source of continued contamination for a longer time frame.  

Groundwater may accumulate Na+ and if the water table is shallow 

(approximately 1.5 to 1.8 m) it can be a source of salts for surface soils, including 

plant rooting zones (United States Salinity Laboratory Staff, 1954).  There are 

several different types of ions associated with seawater, but the focus of this 

study was Na+, which is the most problematic for plants.  High soil Na+ 

concentrations can be detrimental to soil biology and plant growth.  A 

combination of damage by wind and debris with elevated soil Na+ greatly affected 

the historic live oak trees of Galveston Island, many of which were over 100 

years old.   

     While Na+ can leach out of soil profiles over time, there are soil management 

techniques for expediting Na+ remediation.  Principal methods of elevated soil 

Na+ amelioration include increasing Na+ leaching via irrigation, incorporating 

organic matter into the soil, employing elevated, or raised, planting beds, and 

adding chemical amendments that promote Na+ leaching.  Implementation of 

these remediation practices may also hasten revegetation of storm surge 

affected areas.  Reestablishment of vegetation may aid in reduction of soil Na+ 

by increasing soil porosity.  In addition, identifying plant species which are better 

suited for survival in seawater contaminated soils may improve survival of 

vegetation if future hurricanes impact the area. 
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     The effectiveness of soil remediation techniques in arid, Na+ affected 

agricultural regions has been extensively studied, but information describing the 

effectiveness of soil remediation techniques on storm surge affected soils is 

currently lacking.  After hurricanes, vegetation mortality is often attributed to 

damage caused by the storm, but not specifically to Na+ contamination from the 

accompanying storm surge.  Further study is required to fully understand how 

storm surge contaminated soils and groundwater may be remediated after a 

hurricane occurs.  Vegetation trials also need to be performed to determine the 

efficacy of specific plants for survival in Na+ impacted conditions.  The study of 

salt tolerant vegetation is necessary to find suitable species to revegetate coastal 

areas after storm surge damage. 

     Research performed on potential amelioration methods for elevated soil Na+ 

is also essential to restoring historic vegetation communities and may perhaps 

help to save existing vegetation after storm surge occurrences.  Timely 

application of remediation practices may aid in more rapid displacement of 

harmful soil salts.   The storm surge contaminated soils on Galveston Island 

offered an opportunity to study both the effectiveness of soil remediation 

techniques as well as screening plant materials for salt tolerance.     

     In this study, several different soil Na+ amelioration practices were studied: 1) 

growing plants on constructed raised beds versus on natural surface, 2) a 

chemical amendment (gypsum) application, 3) organic matter incorporation, and 
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4) combination of chemical amendment application and organic matter 

incorporation.  Elevated beds were constructed with soil originating from an off-

island source that was not contaminated by saltwater.  Fine composted pine bark 

was incorporated into the soil as the mulch treatment.  The chemical amendment 

was ground gypsum (CaSO4 • 2H2O).  The study evaluated the effectiveness of 

the soil management treatments using the survival and growth of three plant 

species, live oak (Quercus virginiana), hybrid bald cypress (Taxodium distichum 

var distichum X Taxodium distichum var mexicanum), and yellow hibiscus (Hibiscus 

hamabo) and by measuring changes in soil chemical properties.  A randomized 

factorial design using the eight treatment combinations with the three plant 

species was replicated six times on an area that was salt affected from the 

hurricane storm surge near Galveston Bay.   

     Hurricane storm surges create an acute, high concentration exposure of Na+ 

to soils and the groundwater.  A more chronic, low concentration exposure that 

requires further study is deposition of aerial salinity in coastal areas.  Aerial 

salinity (or sea spray) steadily transports salts inland through aerial suspension 

of oceanic water droplets.  Quantification of sea spray deposition is important in 

understanding the dynamics of Na+ in coastal soils.  Without accounting for this 

additional Na+ source the total input of Na+ into a system might be 

underestimated.  In order to better understand sodium loading in the ecosystem, 

current inputs of Na+ salts from sea-spray aerosols and during precipitation 
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events were quantified using a precipitation/dry-fall automated collector at the 

study site.  

     The Moody Gardens Foundation provided a study site location and funding for 

this project.  The overall purpose of this research was to test soil amelioration 

techniques, aimed at lowering soil sodium concentrations in storm surge affected 

soils, and to test the effectiveness of these techniques in allowing vegetation 

reestablishment.  

Objectives 

The specific objectives of this proposed were to: 

 Quantify the salinity of soils found at the storm surge impacted coastal 

site. 

 Evaluate soil Na+ amelioration practices for efficacy in displacement and 

reduction of soil Na+. 

 Conduct a plant trial of live oak (Quercus virginiana), hybrid bald cypress 

(Taxodium distichum var distichum X Taxodium distichum var mexicanum), and 

yellow hibiscus (Hibiscus hamabo).   

 Measure survival and growth response of the three plant species to 

applied soil amelioration treatments. 

 Quantify the aerial input of Na+ (sea spray) to the site through deposition 

during both wet and dry weather events. 
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LITERATURE REVIEW 

1. Impacts of Hurricane Ike 

     Galveston Island, Texas is susceptible to hurricanes with hurricane season 

lasting from early June to late November.  Galveston Island has a history of large 

impact hurricane occurrences, such as the Galveston Hurricane of 1900 and 

Hurricane Alicia in 1983, but the most recent was Hurricane Ike in 2008 (NOAA, 

2016).  Hurricane Ike was classified by Hope (2013) as a strong category two 

storm when it reached Galveston Island.  According to models simulating the 

storm, Hurricane Ike was rated 5.4 out of 6 on the Surge Destructive Potential 

Scale.  The combination of a forerunner surge, wind patterns, and the additional 

storm surge which accompanied the landfall of Hurricane Ike, caused severe 

flooding of the island.  Most of Galveston and surrounding areas remained 

inundated after landfall of the storm due to the pushing of already elevated water 

levels from Galveston Bay inland. 

     Hurricane Ike caused severe damage on Galveston Island.  The long-term 

effect from the storm of particular interest to this study is the elevated soil sodium 

(Na+) concentrations caused by sea water flooding from the storm surge.  

Elevated soil Na+ concentrations, along with above-ground damage from the 

storm, greatly affected the 
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historic live oak population of Galveston Island.  A tree survey that was 

conducted by the Texas Forest Service (2009), performed on only 15 km (of the 

328 total km) of streets in Galveston Island, resulted in an estimate of 

approximately 11,000 trees that died or were close to death after the storm.  

Mortality of the live oaks led to the eventual removal of a substantial number of 

trees.  Since the removal of the impacted trees, residents of Galveston have 

worked towards restoring the population of live oaks on the island.  However, 

persistence of sea water contamination of some soils on the island has made 

reestablishment difficult (Personal communication, Dr. David Creech, 2015). 

2. Site Characteristics / Background Information 

     The study site was located on Galveston Island, Texas, on the Moody 

Gardens property adjacent to Scholes International Airport.  The approximate 

location of the site is 29.275462 latitude, -94.858925 longitude.  On images 

obtained from Google Earth the site appears to have had some added fill and is 

graded.  The annual average temperature of the project site ranges from 18 to 

25⁰ C and the average annual precipitation is approximately 130 cm (NOAA, 

2017a).   

     The native soils of the site are Mustang fine sand (Typic Psammaquents) and 

Madre fine sand (Sodic Psammaquents) (Soil Survey Staff, 2017).  Mustang fine 

sands are characterized as having a zero to one percent slope, a fine sand 

texture, occurrences of frequent flooding and ponding, and a classified salinity of 
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nonsaline to very slightly saline.  The drainage class is poorly drained, the 

maximum SAR is 13, the depth to the water table ranges from 0 to 15cm, and the 

Saturated Hydraulic Conductivity (Ksat) is 8.73 μm sec-1.  The Madre soils are 

similar to the Mustang soils in both slope and frequency of ponding, but are only 

occasionally flooded. The classified salinity is very slightly saline to moderately 

saline and the texture is fine sand.  The drainage class is poorly drained, the 

maximum SAR is 40, the depth to the water table ranges from 0 to 15cm, and the 

Saturated Hydraulic Conductivity (Ksat) is 17.980 μm sec-1.  In addition to the 

native soils, the site was leveled with fill materials (Dr. Kenneth Farrish, personal 

communication, March, 2017).   

3. Sodium 

     Na+ is generally transported by water into soil systems.  The major cations of 

seawater contaminated soils include Na+, magnesium (Mg2+), calcium (Ca2+), and 

less frequently potassium (K+).  The major anions associated with these cations 

are chloride (Cl-), sulfate (SO4
2-), carbonate (CO3

2-), nitrate (NO3
-), and 

bicarbonate (HCO3
-) (Qadir et al., 2000).  

     Salt contamination of soils can originate from both natural occurrences and 

anthropogenic processes.  Once contamination occurs, biotic (vegetation, 

wildlife, microorganisms, etc.) and abiotic factors (soil, water, etc.) may be 

impacted for extended periods of time.  
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i. Sources of Salt Contamination 

     Some natural sources of salt contamination include salt water intrusion, sea 

spray, hurricanes, and flooding.  A few of the anthropogenic origins of salt 

contamination are irrigation with Na+ rich water, winter salting of roads, and 

spilled brine water produced from petroleum production.  

     Oceans cover approximately 70% of the Earth’s surface and are a major 

source of natural salt contamination in coastal areas. Oceans contain substantial 

concentrations of salts, which typically enter oceans in ionic form from rivers, 

streams and other runoff.  The salt ions originate from rocks which release ions 

due to chemical weathering by rainwater with slightly acidic properties.  

Rainwater becomes acidic due to carbon dioxide present in the atmosphere.  

Once the ions enter oceans, marine organisms utilize much of the other mineral 

ions, but Na+ and Cl- remain and accumulate over time, with Na+ and Cl- 

accounting for about 90% of the dissolved ions in the ocean.  Although seawater 

Na+ concentrations are somewhat variable, the salinity concentration is generally 

about 35 ppt (NOAA, 2017b).  

     Na+ can also affect groundwater through saltwater intrusion.  Withdrawing 

large volumes of fresh groundwater can often lead to saltwater intrusion. The 

three types of intrusion listed by Barlow (2010) are lateral intrusion from the 

ocean through sediments, downward intrusion from waters from the coasts, and 

upward intrusion from deeper groundwater sources of higher salt concentrations.  
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Salt water intrusion may also increase the Na+ content of associated soils and 

aquifer systems as well. 

     Sea spray, or aerial salinity, is another source of Na+ deposition. Winds 

blowing inland from the ocean continually mobilize airborne sea water droplets 

which are deposited on coastal areas.  Over time, the Na+ present in sea spray 

can accumulate on surfaces and leach into soils during precipitation events.  

Aerial salinity will be further described in the subsequent aerial salinity section of 

this document.   

     When hurricanes occur, sea levels near coastal areas often rise, resulting in 

storm surges that may flood coastal areas with seawater.  When the resulting 

flooding recedes or evaporates, Na+ is left behind in soils and groundwater.  This 

phenomenon can also occur with other weather events such as tropical storms 

and tsunamis. In addition to elevating soil Na+ concentrations, seawater flooding 

can also damage soil structure and induce short-term anaerobic conditions, 

which may cause reduction of iron and manganese (Kozlowski, 1997).  These 

anaerobic conditions are caused when soil pores fill with water, displacing air.    

     Vegetation is adversely affected both directly and indirectly by elevated salt 

concentrations caused by hurricanes.  Immediate damage can be caused when 

hurricanes affect vegetation directly with wind damage of aboveground plant 

components, salt on foliage, and also impact roots by altering soil osmotic 

potentials.  In addition, deflocculation of soils by Na+ can destroy soil structure 
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and reduce macro porosity.  Vegetation typically found in coastal settings often 

have adaptations to endure chronic Na+ exposure, but acute substantial 

seawater flooding events may cause mortality of even these adapted species. 

     Anthropogenic salt contamination originates from a variety of sources, 

including irrigation of crops with Na+ rich water, use of salts for road deicing, and 

generation of brine water from petroleum production.  Salt contamination is a 

notable problem in arid regions.  Weathering of minerals in native geologic 

features, rich in soluble salts, can increase saline concentrations of water 

sources.  Bauder and Brock (2001) found that weathered sediments of 

sandstone, limestone, siltstones, and gypsiferous shales increased the salinity of 

the Powder River in Montana.  Irrigation water sourced from wells in aquifers with 

high salt concentrations may lead to an accumulation of Na+ on the soil surface 

due to evapotranspiration, adversely impacting soils and vegetation.  Evaporation 

is particularly problematic in an arid agricultural setting where soils are left bare. 

Without cover, when crops are irrigated, water evaporates from the surface and 

the salts which were in solution are left behind on the surface.  Over-irrigating 

crops may also raise the water table, which can also bring salts closer to the 

surface.  

     Road deicing is a major source of salt contamination in regions which receive 

significant snowfall and can impact soils, vegetation, biota, and aquatic systems.  

Runoff from roads which undergo winter salting can enter water bodies and 
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cause a multitude of problems for freshwater organisms.  Road salting can even 

deter biota such as amphibians from crossing roads to avoid injury (Forman, 

1998).  Corsi et al. (2010) determined that the greatest amounts of salt entering 

water bodies in Milwaukee, Wisconsin occurred during winter months when road 

salting took place.  Cl- concentrations were found to exceed the EPA criteria for 

the acute water-quality concentration of 860 mg L-1 for 55% of the measured 

sites.  All of the sites exceeded the EPA criteria for the chronic water-quality 

concentration of 230 mg L-1 of Cl-, potentially affecting aquatic systems. 

     Brine is the waste water product of petroleum production.  Water is injected 

deep into the earth’s subsurface to aid in the collection of petroleum products 

and when it resurfaces, the Na+ content is increased substantially.  Atalay (1999) 

states that the constituents of brine waters include Mg2+, Ca2+, Na+, K+, CO3
2-,  

Cl-, HCO3
-, and SO2

4-. The produced water also contains other constituents such 

as oil, organic acids, radionuclides and heavy metals (Woolard and Irvine, 1995).  

The Clean Water Act requires that all contaminated water be treated before 

reintroduction into surface water, but this is not often economically feasible.  The 

alternative to treatment is injection of brine water into deep substrates below 

freshwater aquifers.  Produced brine water must be handled and disposed of 

carefully to avoid spills and surface contamination. 
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ii. Impacts 

     Salt contamination affects waterbodies, soils, vegetation, and other 

organisms.  This study mainly focused on Na+ impacted soils and the 

reestablishment of select vegetation.  High soil Na+ concentrations can be 

detrimental to soil biology and plant growth.  The impact Na+ has on soil, 

vegetation, and other biota depends on a great number of variables.  Some of 

these variables include the concentration and source of Na+, the salt tolerance of 

the biota, the amount of precipitation, the geologic properties of the area (e.g. 

areas with calciferous materials will not be as greatly impacted by Na+), and the 

physical and chemical properties of the soils involved.  

     One of the hazards to vegetation associated with Na+ are shifts in soil osmotic 

potentials which decreases plant water uptake, increases foliar damage through 

“salt burn”, and decreases nutrient uptake.  There are also several additional 

ways that salinity affects vegetation.  Kozlowski (1997) states that salinity can 

cause injury by modifying the anatomy and morphology of plants, by preventing 

germination of seeds, and by decreasing the growth and reproductive capabilities 

of plants.  Plants which are not adapted to survival in salt rich environments 

(nonhalophytes) are often damaged or succumb in salt contaminated areas. 

     Na+ can also affect plant growth, chlorophyll content, protein content, and 

internal osmotic potential.  Qados (2011) found that high concentrations of Na+ 

stunted plant growth and decreased the number of leaves and leaf area, the 
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osmotic potential of plants, and chlorophyll a concentrations.  High Na+ 

concentrations caused a decrease in chlorophyll b, total chlorophyll 

concentrations, but caused an increase in protein content which was attributed to 

salt stress.  Leaf loss, common with salt affected plants, is particularly 

detrimental to plants since leaves are essential to photosynthesis.  Decreased 

osmotic potential has been considered to be a defense mechanism by Qados for 

plants to tolerate salt stress and increase absorption of water.  Ravindran et al. 

(2007) state that depending on the concentration of Na+, if the plant does not 

perform osmotic adjustment it can face ion toxicity and nutrient imbalances. 

     Distortion of osmotic potentials is one of the major factors affecting plant 

growth in salt contaminated soils.  Na+ affects organisms by diminishing mobility 

of water molecules in soils and decreasing the ease of access to water.  Elevated 

soil Na+ makes it difficult for plants to draw in water due to the higher ion content 

of Na+ in soil relative to plant roots.  Water follows the concentration gradient of 

Na+, where water is transmitted from zones of lower Na+ concentrations toward 

zones of higher concentrations. 

     The impact elevated salinity has on plants is greatly dependent on the salt 

tolerance of the species involved.  Tolerance ranges vary with environmental 

factors including soil properties and fertility, climate, irrigation practices, and the 

dispersal of Na+ within the soil profile (Kozlowski, 1997).  Variation in tolerance 

can also occur in a single species depending on the age of a plant, genetics, and 
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adaptations the plant may have made to local influences such as close proximity 

to a Na+ source.  

     While foliar accumulated Na+ can be rinsed off by precipitation or irrigation 

water, soils with accumulated Na+ are more difficult to remedy.  Salts can be 

detrimental to soil health, structure, porosity, pH, etc.  Brady and Weil (2004) 

point out that in 2004 it was estimated that approximately 320 million hectares of 

land were impacted by salts.  Salt impacted soils can be classified into three 

different categories:  saline soils, saline-sodic soils, and sodic soils.  The 

category a soil falls into is dependent on which salts are present, in what 

concentrations, and soil pH.  

     Saline soils are soils which have accumulated soluble salts in quantities which 

could be harmful to normal soil function.  Saline soils have greater concentrations 

of Mg2+ and Ca2+ than Na+.  In order for a soil to be considered saline, the 

electrical conductivity (EC) must be greater than 4 dS m-1, the sodium adsorption 

ratio (SAR) must not exceed 13, and the pH must not be greater than 8.5 (Brady 

and Weil, 2004). 

     Saline-sodic soils have high concentrations of Na+, Mg2+, and Ca2+.  The 

concentrations of Ca2+ and Mg2+ can help maintain soil structure, but structure is 

impacted if the concentration of Na+ is higher.  The EC of saline-sodic soils are 

greater than 4 dS m-1 and the SAR must be greater than 13, but pH is less than 

8.5. 
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     Sodic soils are soils which have accumulated an excess of exchangeable Na+ 

ions which can be damaging to the soil.  Sodic soils have poor soil structure 

because Na+ disperses soil colloids and prevents cohesion, resulting in 

deflocculation.  Sodic soils have an EC of less than 4 dS m-1, a SAR of more 

than 13, and a pH greater than 8.5 due to the presence of sodium carbonate 

(NaCO3). 

     Na+ contamination has the potential to adversely affect the structure of soils 

and interfere with the interaction between soils and vegetation.  Changes in soil 

structure can be detrimental to vegetation growth and to soil properties such as 

porosity and permeability.   

     Na+ inhibits flocculation of soil particles and causes aggregates to break down 

due to Na+ causing repulsion between clay particles (Lakhdar et al., 2009).  

Inhibition of flocculation can interfere with soil porosity and permeability and 

impact the rooting zones of vegetation.  Strong bonding properties of Na+ also 

increase the difficulty of removing Na+ ions from the soil.  Depending on the 

severity of the Na+ impact, in order to regain use of these soils, remediation 

practices are often required.  

     Salt cations such as Ca2+, K+, Mg2+, and Na+ also increase the pH of soils by 

displacing hydrogen ions from soil cation exchange sites.  Areas with naturally 

high soil salt concentrations, such as arid regions, can become alkaline over time 

(Brady and Weil, 2004).   
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4. Soil Management Practices 

     Although coastal Na+ amelioration has not been as extensively studied as that 

of arid regions, the principles of Na+ amelioration can be applied in this situation.  

Na+ contamination can be addressed through several amelioration practices 

including leaching, incorporation of organic matter, application of chemical 

amendments to displace Na+ from soil cation exchange sites, and construction of 

raised beds.  The aim of many Na+ amelioration practices is to improve soil 

chemical and physical properties, often by translocating Na+ below the rooting 

zone of plants. 

i. Leaching 

     Leaching involves the forced movement or flushing of soil Na+ with percolating 

water out of the soil zone of concern, such as the rooting zone of plants.  

Through leaching, Na+ is mobilized and translocated deeper in the soil profile.  

Ideally, Na+ is leached to a great enough depth to be outside of the rooting zone.  

Once the rooting zone has had the concentration of Na+ reduced, vegetation can 

be established to further aid in reducing Na+ concentrations in soils.  The process 

of how vegetation reduces soil Na+ concentrations will be more thoroughly 

discussed in the vegetation portion of this section. 

ii. Organic Matter 

     The addition of organic mulch on the soil surface decreases evaporation of 

soil moisture and enhances water infiltration and percolation, and organic content 
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of surface soil.  An application of organic mulch on the surface of soils that are 

high in Na+ can decrease evaporation, and therefore, decrease Na+ accumulation 

at the soil surface.  Surface applied mulch could also potentially intercept some 

aerial salts from sources such as sea spray.   

     Incorporation of organic matter into the mineral soil can also aid in 

amelioration of Na+ impacted soils.  Atalay and Lynch (1999) describe organic 

matter as being influential in improving the biological, physical, and chemical 

properties of soils.  The addition of organic matter can improve water retention, 

hydraulic conductivity, porosity, soil tilth, bulk density, and aggregation of the soil.  

Incorporation of organic matter increases the average size of soil pores and 

allows for improved aeration, permeability, and infiltration rates.  The increased 

soil pore sizes (macropores) may promote aeration in soils, which can help 

address the loss of soil structure from deflocculation.  Increasing the permeability 

of soils is beneficial in that it promotes leaching of salts deeper into the soil 

profile.  Incorporation of organic matter is also beneficial because it can increase 

soil microbial populations and their activity.  

iii. Chemical Amendments 

     Commonly utilized chemical additives to address high Na+ concentrations 

include gypsum (CaSO4 • 2H2O) and calcium chloride (CaCl2).  A less common 

additive is magnesium sulfate (MgSO4 • 7H2O).  These additives work by 

displacing Na+ ions through cation exchange with either Ca2+ or Mg2+ ions 
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(Bauder and Brock, 2001).  For example, one Ca2+ ion replaces two soil Na+ ions 

on cation exchange sites.  After Na+ ions have been displaced, they are more 

easily leached by percolating rainwater.  Dirr and Biederman (1980) state that 

gypsum reduces Na+, and possibly Cl- , uptake and allows plants to better endure 

saline conditions.  Agriculture Handbook No. 60 (USDA, 1954) is useful in 

determining gypsum application rates.  Handbook 60 considers soil properties to 

determine adequate gypsum application rates.  The decision of which 

amendment and rate to use should be site specific and be based on soil 

properties, such as soil porosity and native soil chemistry, on the concentration of 

contaminants, on the desired timeframe of the remediation, and on economic 

feasibility.  Gypsum is one of the most popular chemical amelioration methods 

due to an abundant supply and low cost.   Gypsum is slowly soluble and is 

therefore a slow acting treatment.   Other treatments such as CaCl2 are more 

rapid acting, but are more costly (Dr. Kenneth Farrish, personal communication, 

March, 2015).   

iv. Bedding 

     The general theory behind the implementation of a bedded system is that 

raised beds may help to provide an area for plant roots to become established 

above soil with elevated Na+ concentrations.  Early in development, plants are 

particularly susceptible to damage caused by salt stress, so it is beneficial to 

provide an environment with minimal contamination during establishment.   
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     Shallow groundwater can cause soils to become waterlogged and if the 

groundwater has high Na+ concentrations, which can rise by capillary action 

through soils, the soils may become unproductive (Bakker et al., 2010).  In order 

to address concerns, raised beds can be constructed.  Raised beds improve 

vegetation survival by lifting the vegetation to where the rooting zone is elevated 

further above the groundwater level.  Raised beds allow vegetation to grow in a 

more favorable soil environment during establishment, while also promoting 

leaching of Na+.  Using uncontaminated offsite soil materials to construct raised 

beds also aids in the establishment of vegetation.  Bakker, Hamilton, and Spann 

(2010) found that the efficacy of raised beds varied by site depending on the 

underlying geology, weather patterns, and soil properties.  Site characteristics 

should be considered to determine if raised beds will be effective.  

5. Vegetation 

     As previously discussed, many plant species are susceptible to injury and 

even mortality if exposed to elevated Na+ concentrations, but there are a few 

species that are adapted to withstand elevated Na+ concentrations.  Some 

species with greater tolerance for Na+ may simply survive in elevated Na+, but 

there are other species, called halophytes, which are adapted to inhabit high Na+ 

soils specifically.  Certain halophytes can also be utilized to ameliorate Na+ 

impacted soils through phytoremediation (Ravindran et al., 2007). 
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i. Plants Used In This Study 

     Three plant species were evaluated in this study: live oak (Quercus 

virginiana), hybrid bald cypress / Montezuma cypress (Taxodium distichum var 

distichum  X Taxodium distichum var mexicanum), and yellow hibiscus (Hibiscus 

hamabo).   

     Live oak was evaluated to determine its salt tolerance and response to soil 

remediation techniques because of wide interest in the reestablishment of the 

species on Galveston Island.  Live oak is generally documented as being Na+ 

tolerant, through resistance to elevated soil Na+ concentrations and also to sea 

spray (NRCS, 2002).  However, there is disagreement among scientists about 

the degree of live oak Na+ tolerance.   Miyamoto (2008) suggested that 

classification of live oak as being Na+ tolerant has been based on controlled 

bench studies and believes that live oak should be classified as only moderately 

tolerant.   Miyamoto (2008) states that in field conditions there is spatial variation 

of Na+ concentration and that live oaks preferentially obtain water from areas of 

low Na+ concentration within the rooting zone.  When water sources within the 

soil areas of low Na+ concentration are exhausted, live oaks simply survive until 

more favorable conditions develop, such as rain, to dilute the salts. 

     Live oak is a popular ornamental tree which can be found in the southeastern 

coastal plains of the United States in soils ranging from high to low moisture 

content.  Well-drained sandy soils are ideal; however, live oaks may also become 
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established in the more porous, finer textured, soils such as clays.  Occasional 

flooding can also be withstood, but live oaks are not tolerant of prolonged 

saturation (NRCS, 2002).  Certain live oak populations native to coastal areas 

are generally better adapted to withstand hurricane conditions.  Survival after a 

storm generally depends on the severity of the storm and the properties of the 

native trees.  A Floridian live oak population impacted by Hurricane Andrew in 

1992 was reported to have recovered a few years after the storm (USDA, 2016). 

     Bald cypress was included in the study because a hybrid bald cypress / 

Montezuma cypress (Taxodium distichum var distichum  X Taxodium distichum var 

mexicanum) has shown tolerance to salt affected soils and may potentially serve 

as an ornamental on Galveston Island.  The degree of Na+ tolerance of bald 

cypress is also disputed among scientists.  Allen et al. (1996) reported bald 

cypress as being moderately salt-tolerant.  Conner and Inabinette (2005) differ in 

opinion by referencing bald cypress as sensitive to Na+, but they did recognize 

that bald cypress with greater Na+ tolerances do occur in regions such as 

Louisiana.  Na+ tolerance of bald cypress varies among individual populations 

depending on environmental adaptations to Na+ exposure.    

     The specific bald cypress that was used in this study was a hybrid bald 

(Taxodium distichum var distichum  X Taxodium distichum var mexicanum or Taxodium 

X ‘T406’) which is a hybrid cross of bald cypress with Montezuma cypress, a 

species native to Mexico.  With permission from Dr. Yin Yunlong of the Nanjing 
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Botanical Garden Taxodium X ‘T406’ is more commonly known by the varietal 

name ‘LaNana’.  Taxodium X ‘T406’ possesses characteristics which made it an 

ideal candidate for use in this study including salt tolerance and resistance to 

needle blight (Personal communication, Dr. David Creech, 2017).   

     Zhou et al. (2010) found that a bald cypress x Montezuma cypress hybrid, 

similar to the one used in this study, and Montezuma cypress had greater salt 

tolerance than bald cypress.  Montezuma cypress is generally more salt tolerant, 

but cannot withstand prolonged periods of water inundation.  Bald cypress is 

better suited to surviving prolonged inundation, so the hybrid combination of bald 

cypress and Montezuma cypress yields a more salt tolerant tree which can still 

withstand prolonged inundation.   

     Denny and Arnold (2007) discuss the varying opinions about the 

nomenclature used to describe bald cypress, Montezuma cypress, and pond 

cypress.  Taxodium was once believed to consist of three species including 

Taxodium distichum (bald cypress), Taxodium mucronatum (Montezuma 

cypress), and Taxodium ascendens (pond cypress).  One of the more modern 

theories is that bald cypress and pond cypress should be classified as two 

subspecies of Taxodium due to the overlap in range of occurrence.  A third 

theory is that Taxodium should be classified into one species, with three 

botanical varieties.  In this theory bald cypress would be classified as Taxodium 

distichum var. distichum (L.) Richard , Montezuma cypress as Taxodium 
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distichum var. mexicanum  Gordon  and pond cypress as Taxodium distichum 

var. imbricarium (Nutt.) Croom. 

     Tsumura et al. (1999) also stated that the range of bald cypress and pond 

cypress overlap, but that habitats differ between the taxa.  In order to better 

understand the relationship between bald cypress and pond cypress, Tsumura 

performed a study set out to investigate the genetic diversity between bald 

cypress and pond cypress using DNA analysis. They found that the cleaved 

amplified polymorphic sequences (CAPS) did not indicate that pond cypress and 

baldcypress had enough genetic difference to be classified as two distinct 

species.      

     Yellow hibiscus (Hibiscus Hamabo) was also included in this study due to its 

recognized salt tolerance.  Yellow hibiscus is a halophyte, which is native to salt 

marshes in the coastal areas of China, Japan, and Korea.  The natural habitat of 

yellow hibiscus typically includes tidally influenced salt marshes such as those 

ranging from the Yangtze Province to the Jiangsu Province in rivers such as the 

Yangtze River (Creech, 2016). 

     A study performed on Soan Island, Korea found only two wild yellow hibiscus 

which were located in sunny locations on the edge of forested areas on well-

drained soils (Ahn, Chung, and Park, 2003).  Yellow hibiscus is not widely 

distributed due to its habitation requirements and has even been designated as a 

preserved plant by the Korean Ministry of Environment.  
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     Despite its decline in natural ecosystems, yellow hibiscus has become a 

popular plant for use in salt impacted areas.   Yellow hibiscus is often cultivated 

in these regions to aid in reclamation of land from the sea.  Li et al. (2012)  found  

that yellow hibiscus could withstand low to moderate salinity with a NaCl survival 

concentration range between 5 and 10mM or 1.1 to 1.5%.  The salt tolerance of 

yellow hibiscus makes it an ideal candidate for this study.  If yellow hibiscus is 

found to successfully grow in the environment of Galveston Island with elevated 

soil salt concentrations, it could serve as another ornamental plant option for the 

area in the future, and might serve to improve sites contaminated by seawater.  

Additional studies on the properties and possible future uses of yellow hibiscus 

are currently being performed at Stephen F. Austin State University by Dr. Dave 

Creech, Dr. Josephine Taylor and Dr. Steve Wagner.  

ii. Amelioration Vegetation  

     Salt tolerant species have been tested and established in Na+ contaminated 

sites.  These species include, but are not limited to, various plants and 

microorganisms.  When native species cannot survive increased salinity, 

managers may attempt to introduce new species from other areas that are 

genetically better suited to endure the harsher conditions.  Salt tolerant 

vegetation may be used to remove Na+ from soils through uptake and serve as a 

means of phytoremediation.  Once Na+ has been absorbed into vegetation, the 

aerial plant parts can be harvested and removed, reducing soil Na+ 
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concentrations.  Qadir (2000) found that a combination of this crop harvest and 

leaching was the most sustainable and effective method of soil Na+ amelioration. 

     Kozlowski (1997) discusses several adaptations that plants have developed to 

endure elevated Na+ concentrations including tolerance, avoidance, or both.  

Tolerance is generally achieved by osmotic adjustment by sequestration of Na+ 

and Cl- into the vacuoles and generation of organic solutes which can balance 

out the internal salinity of the plant.  Generation of such solutes typically reduce 

the growth rate of plants in that some of the plant’s energy has to be re-allotted to 

solute synthesis.  Avoidance typically involves active Na+ extrusion, passive Na+ 

exclusion, and dilution of salts upon entrance to the plant space. Ravindran et al. 

(2007) agreed with Kozlowski that in order for a vegetative species to be Na+ 

tolerant, it must compartmentalize Na+ ions into vacuoles, accumulate compatible 

solutes in the cytoplasm, and have genes for salt tolerance. 

     According to Bauder and Brock (2001), establishment of salt tolerant species 

can increase permeability of the soil through root growth, which may further 

improve the leaching process.  Their study compared Na+ tolerance of three 

different crops: barley, alfalfa, and sordan.  Barley was found to remove the 

greatest amount of Na+ from the soils.  Ravindran et al. (2007) tested six different 

species of herbs and one species of tree and found that Sesuvium 

portulacastrum and Suaeda maritima had the greatest efficacy at removing Na+ 

from the soil.  This was accomplished by the plants compartmentalizing the Na+ 
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ions into vacuoles by increasing the vacuolar volume to accommodate the 

accumulation of cytosolic Na+, K+, and Ca2+ ions. 

     Planting salt tolerant species along with a chemical amendment application 

can further improve soils.  Plants aid in the incorporation of chemical 

amendments when their roots penetrate the soils and increase porosity.  One of 

the major concerns with introduction of new species is the possibility of an exotic 

species becoming invasive.  If the species is nonnative to the environment, it 

may outcompete native species, and if not controlled, it can become problematic.  

An example is the presence of nonnative salt-tolerant coastal plants along 

roadways which have undergone road salting in the Netherlands (Forman, 1998).  

Nonnative species may cause additional problems in the future that are not yet 

understood.  Introduced species should be carefully monitored and removed if 

they become invasive. 

6. Soil Tests 

     Soil tests are conducted to characterize the properties and quality of soils.  In 

this study, some of the specific parameters which were considered included the 

Sodium Adsorption Ratio (SAR), Electrical Conductivity (EC), and Soil Reaction 

(pH). 

i. SAR 

     Sodium Adsorption Ratio (SAR) is a comparison index of the ratio of Na+ to 

Ca2+ and Mg2+ in soils.  SAR compares the ratio of Na+ to Ca2+ and Mg2+ 
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because the latter two can offset problems caused by Na+.  Higher SAR values 

indicate greater concentrations of Na+ relative to Ca2+ and Mg2+ concentrations.  

Therefore, lower SAR values indicate more favorable conditions for plants.  

Lower SAR values are preferable because Ca2+ and Mg2+ have the potential to 

mitigate Na+ ions in soils and reduce the impact on vegetation and soil health 

(Brady and Weil, 2004).  SAR is calculated using the following equation where 

the concentrations of Na+, Ca2+, and Mg2+ are expressed in mmol of charge liter-

1. However, the SAR index does not have units. 

𝑆𝐴𝑅 =
[𝑁𝑎+]

(0.5[𝐶𝑎2+] + 0.5[𝑀𝑔2+])1/2
 

     SAR values range from 0-30 where 0-10 indicates a low sodium hazard, 10-

18 is a medium sodium hazard, and 18-30 is a high sodium hazard (United 

States Salinity Laboratory Staff, 1954).  SAR values for saline soils are typically 

less than 13 (meaning that there is a greater ratio of Ca2+ and Mg2+ satisfied 

cation exchange sites to Na+ exchange sites) and saline-sodic and sodic soils 

have SAR values of greater than 13 (Brady and Weil, 2004). 

ii. Electrical Conductivity 

     Electrical conductivity, or EC, serves as a means of indirectly measuring the 

amount of ionic substances present in a soil.  EC is typically measured using a 

saturated paste extract prepared from a soil sample.  The three types of salt 

affected soils have different EC values.  Saline and saline-sodic soils typically 
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have an EC value greater than 4 dS m-1 and sodic soils have an EC value of less 

than 4 dS m-1 (Brady and Weil, 2004).  

iii. Soil Reaction (pH) 

     When hydrogen ions in soils are replaced by salt ions, such as Na+, Ca2+, 

Mg2+, and K+, it can cause an increase in pH.  The pH of saline and saline sodic 

soils is less than 8.5, while the pH of sodic soils is greater than 8.5 due to the 

presence of NaCO3 (Brady and Weil, 2004). 

7. Aerial Salinity 

      Two types of aerial salinity were quantified in this study, including deposition 

during precipitation events and dry deposition during periods without precipitation 

events.  Edwards and Claxton (1964) claimed that there are two mechanisms 

responsible for passage of salts from the sea into aerial suspension.  They found 

that small droplets of salt in the air are formed when the film of bubbles on the 

ocean surface break while the larger droplets form when the crater of the broken 

bubble refills with water.  These bubbles form in wave breaks which can be 

produced throughout the ocean, but often occur near coastlines. 

     Areas in close proximity to saline waterbodies are more likely to have 

elevated aerial Na+ deposition.  Generally, the further away from the ocean, the 

less likely an area is to be impacted because the heavy, aerially mobilized 

particles fall out of suspension.  However, the amount of Na+ carried in sea spray 

is dependent on weather patterns.  More rapid wind speeds allow for the 
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transport of aerial particles further inland and for increased mobilization of 

aerosolized oceanic salts (Edwards and Claxton, 1964). 

     The Na+ and Cl- concentrations within sea spray are also variable throughout 

the year depending on weather, amount of rainfall, and wind patterns.  

Precipitation deposits aerial salts that accumulate in the atmosphere, but 

precipitation can also aid plants in rinsing off a portion of the foliar accumulated 

Na+.  Hingston and Galbraith (1990) found that damage could be caused to 

grapevines in southwest Australia during dry weather events when salts were 

allowed to accumulate on plant leaves and were not rinsed off by rain.  They also 

determined that sea spray Cl- concentrations were seasonally variable with a 

maximum of 250 mg Cl L-1 and an average of 10 mg Cl L-1.  

     Salt deposition is more evident on plant leaves because the damage can 

often be observed, however, salts are also being simultaneously deposited on 

soil surfaces as well.  The principle of salt accumulation on vegetation, and other 

surfaces, could contribute to elevated soil Na+ concentrations over time in soils.   

8. Microorganisms 

     Although not the focus of this study, microorganism involvement in 

amelioration of Na+ contaminated soils should be considered.  Microorganisms 

play vital roles in soil health and plant success.  One role for soil health includes 

nutrient cycling in soils through decomposition.  If Na+ contamination impacts the 
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soil microorganism population, the entire soil ecosystem and plants will be 

impacted. 

     Similar to what was previously discussed with Na+ tolerant vegetation, Na+ 

tolerant microorganisms exist as well.  Introduction of helpful microorganisms 

may serve as another remediation approach.  Woolard and Irvine (1995) 

collected halophilic bacteria from a naturally hypersaline site in Great Salt Lake, 

Utah to utilize in a salt contaminated site.  These bacteria were found to 

specifically require Na+ for survival.  Nonnative, Na+ tolerant species can be 

introduced to improve the relationship of plants and soil to offset Na+ 

contamination.    

     A companion study to this project was performed by Elaine Fowler (2017) to 

characterize and compare the microbial communities which occurred within the 

applied soil treatments.  Her study found that there was not a significant 

statistical difference between microbial communities among the different 

treatment plots.  Fowler’s study will be later described in the Additional Research 

section of this study. 
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METHODS OF STUDY 

1. Preliminary Study 

    In order to better understand the extent of the Na+ impact on the study site, a 

preliminary sampling of the area was performed.  Samples were collected in a 

grid of three rows with an approximate spacing of 40 x 24 m.  Row 1 (sample 

points 1, 4, 7, 10) was located proximal to a taxiway of Scholes International 

Airport and Row 3 (sample points 3, 6, 9, 12) was located in closer proximity to 

Offat’s Bayou.  Approximate placement of sampling locations and soil series at 

the site are illustrated in Figure 1.   

     A 7.62 cm diameter bucket auger was used to collect soil samples in 30 cm 

intervals to a depth of 150 cm below ground surface.  Soil samples were taken to 

the Stephen F. Austin State University Soil, Plant & Water Analysis Laboratory 

for analyses.  The laboratory analyses of the samples are described in the 

laboratory analyses section.  Tabular results for the measured parameters of pH, 

EC, Na+, Ca2+, Mg2+, and SAR are shown in Tables 1 and 2.  Graphical 

representations of the analytical results for Na+, Ca2+, and Mg2+, and SAR, are 

shown in Figures 2, 3, 4, and 5.   
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Figure 1. Map of the study site location showing distribution of preliminary sampling points, and soil series mapped 
at the site located near Scholes International Airport adjacent to Offat’s Bayou and Moody Gardens in Galveston, 
Texas. 
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Table 1.  Mean exchangeable Na+, Ca2+, and Mg2+ concentrations for soil 

samples taken from 12 preliminary soil sampling points (from the 0-30 cm depth 

sample) located on the site near Scholes International Airport adjacent to Moody 

Gardens in Galveston, Texas. 

Sample 
Point 

Na+  
(mg kg-1) 

Ca2+  

(mg kg-1) 
Mg2+ 

 (mg kg-1) 

1 107 9,167 190 

2 95 1,111 148 

3 280 13,023 287 

4 211 8,630 183 

5 262 7,428 166 

6 827 6,226 386 

7 249 2,899 295 

8 182 6,190 141 

9 174 3,503 328 

10 80 2,195 314 

11 92 3,598 245 

12 812 3,140 413 

 
 

 

 

 

 

 

 

 

 



35 

Table 2.  Measured values of pH, EC, water soluble Na+, Ca2+, and Mg2+, and 
SAR for samples taken from the preliminary soil sampling points located on the 
site near Scholes International Airport adjacent to Moody Gardens in Galveston, 
Texas. 

Sample 
Point 

Depth 
(cm) 

pH 
Electrical 

Conductivity 
(dSm

-1
) 

Na
+ 

(mg kg
-1

) 
Ca

2+ 

(mg kg
-1

) 
Mg

2+ 

(mg kg
-1

) 
SAR 

1 

0-30 8.09 0.0763 36 83 29 0.86 

30-60 8.19 0.0376 25 60 10 0.77 

60-90 8.43 0.0698 159 14 7 8.78 

90-120 8.50 0.0932 142 0 3 18.60 

120-150 8.35 1.075 240 9 8 14.31 

2 

0-30 8.49 0.0862 104 22 17 4.00 

30-60 8.50 0.0781 110 13 12 5.24 

60-90 8.31 1.671 229 13 12 11.09 

90-120 7.94 4.21 565 151 57 9.95 

120-150 7.80 4.5 593 171 59 9.97 

3 

0-30 8.24 1.277 205 34 25 6.54 

30-60 8.26 7.5 1,596 170 126 22.60 

60-90 7.50 11.53 1,959 341 230 20.10 

90-120 7.09 13.35 1,612 377 247 15.85 

120-150 7.30 12.23 1,623 360 248 16.11 

4 

0-30 8.56 0.0788 116 14 12 5.54 

30-60 8.36 0.0409 54 8 9 3.14 

60-90 8.28 1.359 164 12 8 8.92 

90-120 8.14 3.2 446 119 36 9.20 

120-150 8.13 3.62 458 152 43 8.45 

5 

0-30 8.59 1.15 251 10 11 12.82 

30-60 8.48 0.0513 118 11 9 6.45 

60-90 8.58 0.0909 187 1 6 15.65 

90-120 8.49 2.67 464 20 11 20.50 

120-150 8.59 3.28 427 41 17 14.18 

6 

0-30 8.26 6.14 1,097 82 64 22.11 

30-60 8.30 5.09 799 43 28 23.21 

60-90 7.81 7.84 1,342 131 82 22.66 

90-120 7.77 7.61 1,304 243 134 16.65 

120-150 7.85 7.09 881 210 104 12.43 
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Table 2.  (continued). 

7 

0-30 8.85 1.449 287 43 20 9.02 

30-60 8.00 0.0261 115 15 7 6.20 

60-90 8.08 0.0267 32 7 6 2.14 

90-120 8.09 0.0802 121 13 8 6.55 

120-150 7.91 1.345 230 29 10 9.35 

8 

0-30 8.45 0.0871 150 13 10 7.61 

30-60 8.76 0.0746 134 2 6 11.19 

60-90 8.44 1.052 250 2 5 21.91 

90-120 8.11 1.738 310 17 7 16.07 

120-150 8.10 2.04 400 34 14 14.62 

9 

0-30 8.44 1.112 182 56 31 4.82 

30-60 8.14 0.0941 150 1 4 15.86 

60-90 7.84 2.31 429 34 18 14.86 

90-120 7.68 3.35 552 99 41 11.79 

120-150 7.38 2.86 597 166 62 10.03 

10 

0-30 8.49 0.0843 72 111 38 1.50 

30-60 7.79 0.035 120 39 6 4.78 

60-90 8.76 0.0532 126 13 6 7.43 

90-120 7.87 0.0997 172 45 15 5.70 

120-150 7.94 1.208 173 74 20 4.62 

11 

0-30 8.24 0.0723 51 85 30 1.22 

30-60 8.11 0.0364 64 12 5 3.82 

60-90 8.47 0.0836 242 5 6 17.50 

90-120 8.30 0.0972 320 13 7 17.69 

120-150 8.52 1.018 198 5 3 17.83 

12 

0-30 8.48 6.81 949 149 105 14.55 

30-60 8.07 3.84 692 84 32 16.33 

60-90 7.55 3.67 338 65 28 8.80 

90-120 7.94 3.44 279 85 47 6.05 

120-150 7.70 3.07 311 160 63 5.26 
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Figure 2.  Mean SAR values by row of soil samples collected during the preliminary site 
sampling. 

 

Figure 3.  Mean Na+ concentration by row of soil samples collected during the 
preliminary site sampling. 
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Figure 4.  Mean Na+, Ca2+, and Mg2+ concentrations by row of soil samples collected 
during the preliminary site sampling. 

 

Figure 5.  Mean SAR values of soil samples collected in 30 cm depth increments during 
the preliminary site sampling. 
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     SAR values and water soluble Na+ concentrations were the greatest in Row 3 

(sample points 3, 6, 9, 12), which was in the closest proximity to Offat’s Bayou 

(Figure 2 and 3).  The SAR value indicates that Row 3 had the greatest ratio of 

Na+ compared to Ca2+ and Mg2+ of the three rows.  The same trend can be seen 

in the Inverse Distance Weighted (IDW) map (Figure 6) showing the gradient 

trends of SAR values as well as elevation of the surrounding area.  Na+, Ca2+, 

and Mg2+ concentrations were the greatest in Row 3, but Ca2+ concentrations 

were found to exceed both Na+ and Mg2+ (Figure 4).  The gradient of SAR and 

Na+ concentrations was expected since Offat’s Bayou is connected to Galveston 

Bay, and therefore the Gulf of Mexico, which is the Na+ source.  

     Na+, SAR, and pH values are variable throughout the site ranging from 

approximately 24.7 to 1959.1 mg kg-1, 0.8 to 23.2, and 7.1 to 8.9, respectively.  

While a Na+ value of 24.7 mg kg-1 Na+, a SAR value of 0.8, and a pH value of 7.1 

do not suggest sodium concern, the Na+, SAR, and pH values of 1959.1, 23.2, 

and 8.9 could classify as sodic soils.  Overall, the site could be classified as non-

saline to slightly saline.  The Na+ concentrations found in the preliminary study 

were used to determine where to place the study plots on the site and to 

determine the gypsum application rate.   

     The highest SAR values occurred at a depth of 60 to 90 cm (figure 5).  A 

possible explanation for this occurrence is that this is the region of the soil and 

groundwater interface.  Preliminary sampling indicated that the water table of the 
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site was variable with estimated depths ranging from 45 to 95 cm.  The average 

water table depth to groundwater was approximately 70 cm below ground 

surface.  The variability of the depth of the water table is problematic in that some 

areas of the site may be continuously contaminated with Na+ as the water table 

rises.  Because the area in which the site is located was inundated with brackish 

water from Galveston Bay during Hurricane Ike, salts were deposited onto the 

site.  These deposited salts likely leached through the soil into the water table 

and may still impact the water table to this day. 

     Water tables close to the ocean may also be tidally influenced depending on 

the permeability and porosity of soils.  Davis (1978) states that a water table has 

the capability of rising to the soil surface depending on several variables 

including; duration of the high tide, height of the tide, elevation of the site, and 

distance of the site from the tidal source.  The tidal characteristics were not 

measured in this study, but the site has a low elevation and is located roughly 

only 150 m from Offat’s Bayou.  The course, porous, texture of the soils onsite 

may also contribute to a tidal influence.  A tidally influenced water table may be 

problematic for plant establishment because of repeated Na+ exposure with each 

high tide.  Plants which grow in these areas must be tolerant of elevated Na+ 

concentrations.  
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Figure 6. An Inverse Distance Weighted (IDW) map of the initial sampling showing the gradient of greater SAR 
values in proximity to Offat’s Bayou and the elevation of the surrounding areas of Galveston, Texas. 
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1. Experimental Design 

     The project established two planting rows on the Moody Gardens property in 

close proximity (80 m) to Offat’s Bayou of Galveston Bay.  The specific 

placement of the planting rows was determined based on the gradient of 

elevated soil salinity concentrations, determined on preliminary testing of soil and 

groundwater samples.  There were a total of 48 planting plots, 24 in each 

planting row, which had dimensions of approximately 4m long by 3m wide.  

There was also a 1.5m buffer between each of the plots within a row, and the two 

rows were placed approximately 1.25m apart (Figure 7). This spacing was 

utilized in order to allow space for walkways and also to minimize overlapping 

treatment effects between plots. 

     The experimental design contained seven soil management treatments and 

one control.  Treatment plots consisted of constructed raised beds versus flat 

ground plots and received a treatment of incorporated pine bark mulch, ground 

gypsum (CaSO4 • 2H2O), or a combination of mulch and gypsum.  All treatment 

plots were then surface mulched.  Plant seedlings were approximately one year 

old rooted cuttings planted in each of the plots after they were constructed.  The 

three plant species that were evaluated in this study included live oak (Quercus 

virginiana), hybrid bald cypress (Taxodium distichum var distichum  X Taxodium 

distichum var mexicanum), and yellow hibiscus (Hibiscus hamabo).  The bald 
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cypress, originally sourced from the Nanjing Botanical Garden in Nanjing, China, 

is a cross between bald cypress and Montezuma cypress (Zhou, 2012). 

     The specific treatments were control flat (CF), control bedded (CB), gypsum 

flat (GF), gypsum bedded (GB), mulch flat (MF), mulch bedded (MB), mulch and 

gypsum flat (MGF), and mulch and gypsum bedded (MGB).  Each row contained 

six replications of each of the seven treatments and the control, yielding 48 plots 

in total (Figure 8).  The placement of each treatment within the rows was 

determined by randomly drawn selection to avoid placement bias.  A diagram 

illustrating the placement of each treatment within the plots is shown in Figure 7.  

     Raised beds were constructed of offsite sourced uncontaminated “bank sand” 

to an initial height of approximately 30 cm above the natural surface. Each of the 

plots receiving amendment treatments were tilled with a walk behind rototiller to 

incorporate the amendments.  The control bedded and control flat plots were not 

tilled.  The mulch treatment plots received an incorporation of approximately 8 

cm of pine bark mulch to a depth of approximately 15 cm into the plot during the 

tillage process.  The gypsum treatment plots received an application of ground 

gypsum, which was applied in a rate of approximately 907 kg per acre.  This 

application rate equates to 5.1 kg of gypsum per planting plot and was calculated 

based off of a general application rate for slightly saline soils in the Agriculture 

Handbook No. 60 (USDA, 1954).  In addition, approximately 8 cm of top mulch 
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composed of woody on-site sourced materials was applied over the surface of all 

of the experimental plots.  

     Each plot contained two of each of the previously listed plants (live oak, a 

hybrid bald cypress, and yellow hibiscus) for a total of six plants which were 

randomly placed within each treatment plot.  The plants were staked to avoid 

wind damage and laid out in an alternating pattern which provided a spacing of 

approximately 1m between each plant (Figure 7).   Approximately 63 grams of 

18-6-12 Osmocote™ fertilizer were spread around the base of each plant once 

planting was completed in March of 2016.  A second application of approximately 

32 grams of the fertilizer was applied two months later in May of 2016.  The 

plants were irrigated for the duration of the first growing season with an above 

ground irrigation system using onsite reverse osmosis treated wastewater. 
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Figure 7.  A diagram demonstrating the layout of the plants within a plot, 

treatments within a replication, and the replications within the two rows of plots at 

the study site located in the Moody Gardens property in Galveston, Texas. (BC - 

Hybrid bald cypress, YH - yellow hibiscus, LO - live oak) 
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Figure 8.  A diagram of the placement of the eight implemented treatments, including combinations of mulch, gypsum, and 

bedded treatments, at the study site located in the Moody Gardens property in Galveston, Texas.  
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2. Soil Sampling Method 

     Soil samples were collected from the top 10cm of each plot using a soil 

sampler push probe.  Several soil sample cores were collected randomly within 

each plot and composited into one sample which was of adequate size for 

analysis.  Soil samples were taken to the Soil, Plant & Water Analysis Laboratory 

at Stephen F. Austin State University for analysis where they were air-dried and 

then analyzed.  The measured soil parameters were pH, electrical conductivity, 

exchangeable sodium, calcium, magnesium, phosphorus, potassium, sulfur, 

boron, aluminum, arsenic, cadmium, copper, iron, mercury, manganese, lead, 

zinc, nickel, selenium, sodium adsorption ratio (SAR), total organic carbon, and 

total nitrogen. 

3. Plant Measurement 

     Plant growth served as a means of monitoring plant response to the applied 

treatments.  Ground line diameter and total height of each plant was measured 

three times, once immediately after planting in the spring of 2016, once during 

mid-summer (July) of 2016, and finally during the fall of 2016 (November) after 

plant growth ceased.  The ground line stem diameter of each plant was 

measured utilizing a digital caliper at the base of the stem just above the root 

collar.  Two ground line stem diameter measurements were taken, by rotating the 

caliper 90 degrees from the first measurement for the second measurement, and 

the two measurements were averaged.  Total height was obtained by measuring 
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from the top of the root collar to the tip of the dominant stem with a tape 

measure.  Similar to diameter measurement, crown diameter was measured for 

the shrub used in the study, yellow hibiscus, by averaging two diameter 

measurements which were taken 90 degrees apart using a tape measure.  

Diameter, height growth, and crown diameter were calculated from the 

measurements.   

4. Aerial Salt Collection 

     This study measured two paths of sea salt deposition including airborne (dry) 

sea salt deposition and precipitation (wet) deposition.  A precipitation collector 

Model 301 (Aerochem Metrics Inc., Bushnell, FL) was placed in the field, near 

the planting site, to capture aerial salt input (Figure 9).  The instrument collected 

both dry and wet deposition with a system of two pails.  The dry pail remained 

uncovered during dry periods, while the wet pail was covered.  The dry pail 

collected the airborne salts that are dispersed during dry weather conditions by 

sea spray.  When a precipitation event occurred, a circuit on the instrument 

sensor was completed and the cover, which was formerly covering the wet pail, 

shifted to cover the dry pail.  This allowed for the wet pail to collect the aerial 

salts contained in precipitation, while preventing aerial salts carried in 

precipitation from contaminating the dry sample.  Pails were collected and 

replaced with another set of acid-washed pails every other week.  The pails were 

then brought back to the laboratory for processing of the samples and further 
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analysis.  Sampling took place for a year from May of 2016 to May of 2017.  

Once sampling was completed, after approximately one year, the results of the 

analyses were used to characterize annual loading of salts from aerial 

deposition.  Deposition was compared to average rainfall and wind gusts during 

the study duration for Galveston Island to help better understand periods of 

greater aerial salt deposition compared to weather patterns. 

 

Figure 9.  An image of the Precipitation Collector Model 301, in the dry fall 

sampling position, which was placed at the study site located in the Moody 

Gardens property in Galveston, Texas. 

Dry Sample Processing 

     The dry sample pails received a rinse of ultra-pure deionized water down the 

sides of the pails to put deposited ions into solution for measurement.  After 

rinsing, the volume of water in each pail was measured and then filtered through 
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Whatman 541 hardened, ashless filter paper.  This process was repeated three 

times to ensure thorough rinsing of the pails.  

Wet Sample Processing 

     The water samples were first agitated to collect precipitated ions from the 

sides of the pails.  The total volume of the sample was measured for later 

calculation of concentration.  A subsample was then filtered and collected for 

analysis.  In cases where there was not a great enough volume of precipitation to 

form an adequate sample, the wet sample pail was processed in the same 

manner as is described in the dry sample process. 

     The resulting samples were taken to the Stephen F. Austin State University 

Soil, Plant & Water Analysis Laboratory for chemical analysis.  The measured 

parameters included sodium, calcium, magnesium, chloride, electrical 

conductivity and pH.  After the samples were analyzed, deposition concentrations 

were calculated to characterize the annual loading of salts from aerial deposition. 

5. Statistical Analyses 

     A split plot ANOVA analysis was utilized to analyze the relationships between 

plant growth and the applied treatments with a significance level, or alpha, of 

0.05.  When the split plot ANOVA analysis indicated significant differences 

among the parameters, a Tukey test was also performed to determine mean 

separations.   The data analyses for this paper were generated using SAS 

software. Copyright © 2019 SAS Institute Inc. SAS and all other SAS Institute 
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Inc. product or service names are registered trademarks or trademarks of SAS 

Institute Inc., Cary, NC, USA. 

6. Laboratory Analyses 

     Several different soil parameters were measured including pH, electrical 

conductivity, soluble and exchangeable sodium, calcium, and magnesium, 

sodium adsorption ratio (SAR), total organic carbon, and total nitrogen.  

     A Mehlich 3 extraction was utilized to quantify the concentrations of plant 

extractable nutrients.  A Thermo Scientific  iCAP 7400D Inductively Coupled 

Plasma Analyzer (ICP) was used to analyze the exchangeable salts (sodium, 

potassium, calcium, magnesium) from the Mehlich 3 soil test extraction.  The 

Mehlich 3 soil test extraction procedure also was used for determination of 

phosphorus, sulfur, and boron concentrations (Mehlich, 1984).     

     Soil pH was determined utilizing a 1:2 soil to water ratio by volume saturated 

paste extract and a Thermo Electron Corporation Orion 3 Star Benchtop pH 

meter.  Electrical conductivity (EC) and sodium adsorption ratio (SAR) were 

determined following the USDA Handbook 60 guidelines (United States Salinity 

Laboratory Staff, 1954).  A SevenEasy Mettler Toledo conductivity meter was 

utilized to determine the EC.  SAR calculations were applied using the soluble 

salts calcium, magnesium, and sodium concentrations measured using ICP. 
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     Total N and total organic C were quantified with a carbon nitrogen combustion 

analyzer (Leco CN628) following SFASU Soil laboratory procedures. 

     The aerial salinity samples were characterized with a SFA soil laboratory 

standardized water test analysis which quantified a range of elements (this 

project focused on phosphorous, sodium, magnesium, calcium, and potassium) 

using the ICP.  The standard water test analyses also included fluoride, chloride, 

nitrate, phosphate, and sulfate measured with an Ion Chromatograph (Dionex 

ICS-1000) using a Thermo Scientific 064141 separation column.  
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RESULTS AND DISCUSSION 

     Three parameters were measured in this study; select soil properties (soil 

chemical constituents), plant growth (plant height, stem diameter, crown 

diameter, and volume), and aerial salinity deposition.  The analytical results of 

these measurements are presented and discussed in the following sections. 

1. Soil 

     Soil samples were collected before treatment application (3/21/16) and 

approximately seven months later (10/27/16).  Measured soil parameters 

included pH, NO3
-, EC, CN Ratio, SAR,  exchangeable and soluble Na+, Ca2+, 

and Mg2+, P, K+, S2- , B3+ total organic C, and total N.  Parameters of particular 

interest in this study included exchangeable and soluble Na+, Ca2+, and 

Mg2+(Table 3) as well as pH, EC, and SAR (Table 4), but results of all measured 

parameters are provided in Appendix A.   

     Concentrations of soluble and exchangeable cations varied among the 

treatment plots.  Soluble and exchangeable cations differed in how they are held 

in soils which in turn influences measurement.  Soluble salts are those which are 

in the soil solution, while exchangeable cations are held on soil cation exchange 

sites and must first be 
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displaced to be measured.   Analytical results of the initial and final soil sampling 

events for soluble and exchangeable Na+, Ca2+, and Mg2+, are presented in 

Table 3. 

Table 3.  The mean concentrations of soluble and exchangeable Na+, Ca2+, and 
Mg2+ (mg kg-1) in soil samples by treatment collected before treatment application 
(3/21/16) and seven months after application (10/27/16) as well as the change in 
concentration between sampling events.  Subscript letters indicate Tukey 
groupings among treatments within statistically significant soil parameters. 

  
Treatment 

Soluble Exchangeable 

  3/21/16 10/27/16 Change 3/21/16 10/27/16 Change 

Na+ 

CF 125.62 A 95.92 -29.71 202.89 207.32 A 4.42 

CB 26.71 B 60.57 33.87 134.59 139.53 AB 4.95 

MF 84.58 AB 70.24 -14.34 120.97 146.23 B 25.26 

MB 29.25 B 80.56 51.31 167.14 170.68 AB 3.54 

GF 94.93 A 74.87 -20.07 116.29 135.57 B 19.28 

GB 28.67 B 64.59 35.93 147.10 138.39 B -8.71 

MGF 86.42 AB 75.14 -11.28 120.07 163.14 AB 43.07 

MGB 33.23 B 72.01 38.78 177.51 131.21 B -46.31 

Ca2+ 

CF 65.55 A 76.97 B 11.41 2794.54 2389.76 -404.78 

CB 32.63 B 95.30 AB 62.67 2966.22 3099.76 133.54 

MF 91.16 A 88.93 B -2.23 3219.69 2399.34 -820.36 

MB 33.04 B 92.37 AB 59.33 3442.76 2815.13 -627.63 

GF 69.65 A 97.13 AB 27.48 3626.91 2094.76 -1532.15 

GB 27.96 B 106.13 AB 78.17 3925.71 3551.84 -373.87 

MGF 67.65 A 96.20 AB 28.55 2944.39 2161.26 -783.12 

MGB 29.34 B 127.68 A 98.34 3841.46 3335.16 -506.30 

Mg2+ 

CF 28.32 A 30.15 1.84 424.69 497.77 73.08 

CB 11.35 B 25.60 14.25 327.09 382.76 55.67 

MF 35.56 A 27.96 -7.60 329.00 435.70 106.70 

MB 8.64 B 23.28 14.64 320.60 362.21 41.61 

GF 30.64 A 30.97 0.32 286.49 349.81 63.33 

GB 7.63 B 24.64 17.01 355.22 355.37 0.14 

MGF 29.52 A 28.12 -1.40 330.12 369.09 38.97 

MGB 7.62 B 29.06 21.44 378.44 308.32 -70.12 
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     Quantifying Na+, Ca2+, and Mg2+ concentrations (before and during the study) 

aided in understanding salt movement in soils, but other soil properties were 

measured in order to better understand the soil treatment effects.  Additional 

measured soil parameters included pH, EC, CN Ratio, and SAR.  The measured 

mean pH, EC, total organic C, total N, CN ratio, and SAR are presented in Table 

4. 

Table 4.  Mean values of pH, EC, total organic C, total N, CN ratio, and SAR for 
samples taken from different treatment plots located on the site near Scholes 
International Airport adjacent to Moody Gardens in Galveston, Texas. 
 

  Treatment 3/21/2016 10/27/2016 

pH 

CF 8.62 8.40 

CB 8.33 8.25 

MF 8.51 8.47 

MB 8.30 8.37 

GF 8.42 8.20 

GB 8.29 8.36 

MGF 8.56 8.31 

MGB 8.40 8.29 

EC (uS/cm) 

CF 1923.67 1168.50 

CB 677.50 1031.50 

MF 1925.00 1060.00 

MB 735.83 1090.17 

GF 1859.17 1148.83 

GB 695.33 1103.67 

MGF 1713.33 1137.17 

MGB 735.17 1237.17 

Total 
Organic C 

(uS/cm) 

CF 18310.17 15837.00 

CB 6463.27 12616.17 

MF 16148.40 20027.17 

MB 8532.88 16259.50 

GF 13152.00 14817.00 

GB 6655.77 12831.83 

MGF 14816.20 21401.17 

MGB 6557.08 17845.00 
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Table 4.  (continued). 

Total N 

(uS/cm) 

CF 2124.02 1909.63 

CB 988.63 1585.83 

MF 1873.17 1928.80 

MB 1171.82 1639.68 

GF 1607.30 1836.00 

GB 1032.12 1610.45 

MGF 1805.80 1985.25 

MGB 981.07 1705.07 

CN Ratio 

CF 8.55 8.27 

CB 6.55 7.92 

MF 8.28 10.43 

MB 7.10 9.86 

GF 8.18 8.07 

GB 6.45 7.96 

MGF 8.10 10.62 

MGB 6.70 10.46 

SAR 

CF 3.50 2.48 

CB 1.07 1.43 

MF 1.92 1.67 

MB 1.19 2.08 

GF 2.51 1.71 

GB 1.33 1.47 

MGF 2.28 1.87 

MGB 1.42 1.51 

 

i. Statistical Analyses and Significant Soil Constituents 

     Statistical results of soil constituent concentrations across treatment types 

before (initial) and post treatment applications are presented in Table 5.  Initially, 

there were not many statistically significant differences among treatments and 

blocks.  No significant block differences were observed between treatment plots.  

The only statistical difference observed during the initial sampling was for soluble 
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Na+, Ca2+, and Mg 2+, which showed that there were differences in these 

constituent concentrations among treatment plots before treatment application.   

     Seven months later there were a greater number of significant differences in 

constituent concentrations.  After treatment applications soluble Na+ and Mg 2+ 

concentrations no longer showed a significant statistical difference among 

treatments.  Soluble Ca2+ concentrations, however, still showed statistically 

significant differences among treatment plots after treatment application.  

Exchangeable Na+ also showed a significant treatment difference among 

treatment plots.  Block differences were observed after treatment application for 

EC, soluble and exchangeable Na+ and Mg2+, K+, P, B3+, and S2-.  Statistically 

significant differences may have been observed between blocks post treatment 

due to varying concentrations of chemical constituents in the water table or could 

have been the result of inconsistent or excessive irrigation.  Results of all of the 

statistical analyses performed on measured soil parameters are recorded in 

Appendix D. 
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Table 5.  The results of an ANOVA statistical analysis to analyze the different soil 

constituent concentrations across treatment types before and after treatment 

applications with a significance level of 0.05. 

    Initial Post Treatment 

  
Treatment Block Treatment Block 

SAR -- 0.1732 0.6065 0.1472 0.0309 

EC -- 0.5494 0.8383 0.8263 0.0064 

pH -- 0.3878 0.0650 0.2288 0.0362 

Na+ Soluble  <0.0001 0.1379 0.2366 0.0261 

Exchangeable 0.8824 0.8393 0.0121 0.0004 

Ca2+ Soluble <0.0001 0.4896 0.0122 0.1872 

Exchangeable 0.6631 0.0366 0.5849 0.3980 

Mg2+ Soluble <0.0001 0.1815 0.1468 0.0013 

Exchangeable 0.2191 0.1369 0.1253 0.0021 

K+ -- 0.1856 0.4537 0.1569 0.0055 

C -- 0.5229 0.7800 0.5598 0.1030 

N -- 0.4223 0.9058 0.9293 0.2760 
CN 
Ratio -- 0.8330 0.4911 0.3210 0.1495 

 

Sodium (Na+) 

     Preliminarily, there was a statistically significant difference among the 

treatment plot soluble Na+ concentrations, but there was not a significant 

difference among the treatment blocks.  This was likely due to the different soils 

used for the different treatment plots.  Specifically, the constructed raised beds 

were constructed with offsite sourced uncontaminated soils while the flat ground 

plots were composed of native, salt contaminated soils.  However, soluble Na+ 

concentrations among post treatment collected soil samples were not statistically 

different, but as previously mentioned there was a significant difference among 

treatment blocks. 
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     Greater changes in soil Na+ concentrations were evident for soluble Na+ than 

exchangeable Na+ during the initial sampling.  The constructed plots had 

consistently lower soluble Na+ concentrations, initially, but concentrations 

increased by the final sampling (Figure 10).  Soluble Na+ concentrations may 

have increased in bedded treatments which were constructed with offsite 

sourced soils which were not initially contaminated, but may have had salts 

introduced from aerial salinity deposition, capillary rise of Na+ contaminated 

groundwater, or both.  Soluble Na+ concentrations for flat ground plots were 

higher than that of the constructed raised bed plots, but decreased to 

concentrations more similar to constructed raised bed plots by the final sampling.  

However, the greatest concentrations of soluble Na+ during the initial and final 

samplings were found in the flat ground control plots (CF) where no treatments 

were applied.  A relatively light CaSO4 treatment application (gypsum) slightly 

decreased the Na+ concentrations of flat ground plots (GF and MGF).  

Application of a greater amount of gypsum could be considered to potentially 

help to further decrease the soil Na+ concentration. 
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Figure 10.  A comparison among the soluble Na+ values of soil samples by 
treatment collected before treatment application (3/21/16) and seven months 
after application (10/27/16).  n=6, standard deviation shown. 
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may have been to decrease because gypsum was somewhat effective in aiding 

of displacement of exchangeable Na+ in constructed raised bed plots.  As with 

soluble Na+, the greatest concentrations of exchangeable Na+ were found in the 

flat ground control plots (CF).  

 

Figure 11.  A comparison among the exchangeable Na+ values of soil samples 
by treatment collected before treatment application (3/21/16) and seven months 
after application (10/27/16).  n=6, standard deviation shown. 
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initial and final sampling events, with the exception of flat ground plots with 

incorporated mulch (MF) which slightly decreased.  Ca2+ concentrations of all 

treatment plots could have potentially increased due to aerial deposition of salts 

from sea spray or from irrigation water.  Constructed raised bed treatments 

generally had a greater increase in soluble Ca2+ concentrations compared to flat 

ground treatments.  Notably, the constructed raised beds with incorporated 

mulch and gypsum (MGB) had an initial soluble Ca2+ concentration similar to 

those of the other raised beds, but had the greatest concentration for the final 

sampling.  Plots with applied gypsum treatments generally had greater Ca2+ 

concentrations, which makes sense as gypsum is a source of Ca2+.  The applied 

CaSO4 treatment (gypsum) was relatively light, but if more CaSO4 • 2H2O had 

been applied, Ca2+ concentrations would likely have been higher. 

 

Figure 12.  A comparison among the soluble Ca2+ values of soil samples by 
treatment collected before treatment application (3/21/16) and seven months 
after application (10/27/16).  n=6, standard deviation shown. 
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     Exchangeable Ca2+ concentrations were not statistically different among 

treatments or treatment blocks for the initial or post treatment sampling events.  

The general trend of exchangeable Ca2+ concentrations was a decrease between 

the initial and final measurement (Figure 13).  Flat ground plots had lower 

exchangeable Ca2+ concentrations during the final measurement than the 

constructed raised beds.  The greatest exchangeable Ca2+ concentrations were 

found in the constructed raised beds with incorporated gypsum (GB),  

 

Figure 13.  A comparison among the exchangeable Ca2+ values of soil samples 
by treatment collected before treatment application (3/21/16) and seven months 
after application (10/27/16).  n=6, standard deviation shown. 

 

ii. Other Notable Trends 

     Although the only soil constituents which showed significant differences 

among treatment plots after treatment application were exchangeable Na+ and 

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

CF CB MF MB GF GB MGF MGB

C
a2

+  
(m

g 
kg

-1
) 

3/21/2016

10/27/2016



64 

soluble Ca2+, additional notable trends were observed.  Notable trends were 

observed for Mg2+, EC, and SAR. 

Magnesium (Mg2+) 

     Soluble Mg2+ concentrations were found to be statistically different among soil 

treatments during the initial soil sampling.  Initially, the constructed raised beds 

had lower soluble Mg2+ concentrations than the plots on flat ground (Figure 14).  

Although post treatment soluble Mg2+ concentrations did not show statistical 

difference among soil treatments after treatment application, a notable trend 

could be observed.  The most notable trend was the increase in Mg2+ 

concentrations between the initial and final sampling of the constructed raised 

beds.  The trend of soluble Mg2+ concentrations increasing might have been due 

to aerial deposition of salts from sea spray.  Irrigation water may have also 

contributed to the Mg2+ concentrations.  
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Figure 14.  A comparison among the soluble Mg2+ values of soil samples by 
treatment collected before treatment application (3/21/16) and seven months 
after application (10/27/16).  n=6, standard deviation shown. 
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Figure 15.  A comparison among the EC values of soil samples by treatment 
collected before treatment application (3/21/16) and seven months after 
application (10/27/16).  n=6, standard deviation shown. 
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vegetation bringing Na+ into foliage from deeper in the soil and subsequent 

deposition on the soil with leaf fall and decomposition.  

 

Figure 16.  A comparison among the SAR values of soil samples by treatment 
collected before treatment application (3/21/16) and seven months after 
application (10/27/16).  n=6, standard deviation shown. 
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Unanticipated Enrichment and Influences 

     A notable trend of Na+ enrichment during the study was observed in the 

constructed beds composed of off-site uncontaminated soil.  This trend may have 

been due to capillary movement of Na+ upward from contaminated soil and 

groundwater and/or aerial deposition, or both.  Another factor which may have 

potentially influenced ionic soil concentrations were soil biota such as ants.  

There were a notable amount of fire ants which inhabited the constructed raised 

beds over time.  Fire ants cycle soil from deeper depths to the soil surface and 

also from the soil surface to deeper depths.  The noncompacted soils of the 

constructed raised beds were potentially favorable to fire ant inhabitation and 

colonization.  Therefore, these beds may have become Na+ enriched by  

contaminated soils which were carried by ants from greater depths and dispersed 

throughout the uncontaminated soils of the constructed raised beds. 

2. Plant Survival and Growth 

     The height and stem diameter of the plants in this study were measured a 

total of three times during the first growing season to help determine the efficacy 

of the applied soil treatments on growth. The initial measurement immediately 

after planting took place on 3/15/16, the second measurement on 7/19/16, and 

the final measurement on 1/28/17.  The mean heights, stem diameters, mean 

height growth, and mean stem diameter growth of live oak, hybrid bald cypress, 

and yellow hibiscus planted within each treatment are displayed for each 
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measurement period in Tables 6 and 7.  All of the recorded plant measurements 

can be found in Appendix B.  The initial survival rate after planting was notable 

with mortality of only two out of the 288 planted plants after four weeks had 

passed.  This high survival rate is probably attributable to the regular irrigation in 

the first growing season.  However, the irrigation may have also masked potential 

treatment effects. 

     Statistical analyses of height and stem diameter growth for the initial and two 

subsequent measurement periods were conducted.  Statistically significant 

differences were not found within each species for the initial measurements.  

Consequently, growth values shown in this section are based on the difference 

between the initial to second and the initial to final measurement. 

     Statistically significant differences were found among the plant species for 

both height and stem diameter growth between each of the measurement 

periods.  Since different plant species with different growth rates were utilized in 

this study, statistical differences in growth were to be expected.  Within each 

species, however, there were no statistically significant differences among the 

height and stem diameter growth by soil treatments.  Results of the statistical 

analyses performed on plant height, diameter, and volume growth are recorded 

in Appendix E. 
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Table 6.  The mean heights of live oak, hybrid bald cypress, and yellow hibiscus 
by soil treatments during the initial measurement (3/15/16), second measurement 
(7/19/16), and final measurement (1/28/17) along with the growth between the 
initial and second measurements and the initial and final measurements. (CF= 
Control Flat, CB= Control Bedded, MF= Mulch Flat, MB= Mulch Bedded, GF= 
Gypsum Flat, GB= Gypsum Bedded, MGF= Mulch, Gypsum, Flat, and MGB= 
Mulch, Gypsum, Bedded) 

  Treatment 

Mean Height (cm) Growth (cm) 

Initial 
(1) 

Second 
(2) 

Final (3) 1 - 2 1 - 3 

Live 
Oak 

CF 69.13 82.75 117.25 13.62 48.12 

CB 73.63 93.67 124.58 20.04 50.96 

MF 48.18 70.67 109.25 22.49 61.08 

MB 73.58 83.83 107.00 10.26 33.43 

GF 88.79 102.75 133.83 13.96 45.04 

GB 68.43 84.42 115.25 15.99 46.83 

MGF 78.34 101.92 133.33 23.58 54.99 

MGB 72.29 96.17 124.75 23.88 52.46 

Hybrid 
Bald 

Cypress 

CF 79.09 120.92 186.67 41.83 107.58 

CB 76.53 122.75 187.58 46.23 111.06 

MF 80.87 125.50 186.08 44.63 105.22 

MB 83.99 137.17 193.17 53.18 109.18 

GF 84.70 114.80 192.75 30.10 108.05 

GB 72.68 119.75 182.50 47.07 109.82 

MGF 74.34 118.83 176.75 44.50 102.41 

MGB 90.28 140.58 203.17 50.31 112.89 

Yellow 
Hibiscus 

CF 11.71 59.00 110.00 47.29 98.29 

CB 11.60 61.75 113.75 50.15 102.15 

MF 11.60 54.00 112.42 42.40 100.82 

MB 12.23 60.75 105.00 48.52 92.77 

GF 12.42 62.83 124.08 50.42 111.67 

GB 13.59 62.00 101.75 48.41 88.16 

MGF 11.33 64.18 117.18 52.85 105.85 

MGB 12.13 55.92 115.33 43.79 103.21 
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Table 7. The mean groundline stem diameters of live oak, hybrid bald cypress, 
and yellow hibiscus by soil treatment during the initial measurement (3/15/16), 
second measurement (7/19/16), and final measurement (1/28/17) along with the 
growth between the initial and second measurements and the initial and final 
measurements. (CF= Control Flat, CB= Control Bedded, MF= Mulch Flat, MB= 
Mulch Bedded, GF= Gypsum Flat, GB= Gypsum Bedded, MGF= Mulch, 
Gypsum, Flat, and MGB= Mulch, Gypsum, Bedded) 

  Treatment 

Mean Diameter (mm) 
Growth 
(mm) 

Initial 
(1) 

Second 
(2) 

Final (3) 1 - 2 1 - 3 

Live 
Oak 

CF 8.71 14.51 22.93 5.80 14.22 

CB 9.37 16.30 26.54 6.92 17.17 

MF 7.36 13.58 19.28 6.22 11.93 

MB 10.01 16.13 23.63 6.13 13.62 

GF 9.00 14.05 23.01 5.05 14.01 

GB 8.75 15.19 21.85 6.44 13.10 

MGF 8.31 14.95 22.97 6.63 14.65 

MGB 8.84 14.94 22.84 6.09 14.00 

Hybrid 
Bald 

Cypress 

CF 12.27 26.81 51.53 14.55 39.27 

CB 13.35 30.25 53.74 16.90 40.38 

MF 12.31 25.04 45.42 12.72 33.11 

MB 13.12 31.00 53.98 17.88 40.86 

GF 13.13 26.72 52.21 13.59 39.07 

GB 12.27 28.15 54.35 15.88 42.08 

MGF 12.18 23.51 46.49 11.33 34.31 

MGB 13.47 29.35 54.68 15.88 41.22 

Yellow 
Hibiscus 

CF 4.40 19.69 51.11 15.29 46.71 

CB 5.39 22.36 53.76 16.97 48.37 

MF 5.30 19.23 49.18 13.93 43.87 

MB 5.18 20.93 52.98 15.75 47.81 

GF 4.73 20.79 50.58 16.06 45.85 

GB 5.77 18.86 47.72 13.09 41.94 

MGF 5.13 19.65 55.00 14.52 49.87 

MGB 4.69 21.18 49.72 16.49 45.04 
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i. Height Growth 

     Hybrid bald cypress and yellow hibiscus had similar height growth between 

the initial and second measurement.  The pattern of height growth among 

treatments was more uniform for yellow hibiscus than for hybrid bald cypress 

which had slightly more variation among treatments (Figure 17).  The greatest 

height growth for this measurement period was with hybrid bald cypress in the 

(MB) raised bed with incorporated mulch treatment.  The greatest height growth 

for yellow hibiscus was in (GF) flat plot with incorporated gypsum (Table 6).  Live 

oak had the lowest height growth overall for each of the measurement periods.  

However, some unrequested pruning by Moody Garden Staff of the live oak and 

yellow hibiscus seedlings may have affected height growth measurements. 

     Hybrid bald cypress generally had the greatest height growth between the 

initial and final measurements, but the height growth of yellow hibiscus was only 

slightly less than that of hybrid bald cypress.  During this measurement, height 

growth for hybrid bald cypress became more uniform across all treatments, while 

yellow hibiscus height growth still had more variation (Figure 18).  The greatest 

height growth for this measurement period, and for hybrid bald cypress, was 

found in the treatment (MGB) composed of raised bed with incorporated mulch 

and gypsum.  The flat treatment plot with incorporated gypsum (GF) yielded the 

greatest yellow hibiscus height growth (Table 6).  
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     A statistically significant difference among plant species was found for height 

growth between the first and second measurement, however, a significant 

difference was not observed between the first and final measurement.  These 

results may have been influenced by a lapse in communication, when the top 

portions of several plants (live oaks and yellow hibiscus) were removed by 

Moody Gardens staff just before the second measurement.  Two height growth 

values were removed from the statistical analysis due to pruning which caused 

substantial negative growth values.  

     Since the tops of some of the plants were inadvertently pruned, stem diameter 

growth may serve as a more suitable indicator of plant growth.  A significant 

difference was found between stem diameter growth for the first and second 

measurement periods, confirming that the plants had significant growth during 

the study, in spite of the undesired pruning. 
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Figure 17. Mean total height growth by treatment between the initial and second 
measurement of live oak, hybrid bald cypress, and yellow hibiscus.  n=6, 
standard deviation shown. 

 

Figure 18. Mean total height growth by treatment between the initial and final 
measurement of live oak, hybrid bald cypress, and yellow hibiscus.  n=6, 
standard deviation shown. 
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ii. Stem Diameter Growth 

     In general, yellow hibiscus showed greater stem diameter growth than hybrid 

bald cypress or live oak for both measurement periods.  However, hybrid bald 

cypress had the greatest stem diameter growth recorded during the first 

measurement (Figure 19) with a treatment of a constructed raised bed and 

incorporated mulch (MB).  Yellow hibiscus stem diameter growth was greatest 

with a raised bed treatment (CB).  During the second measurement the greatest 

stem diameter growth (Figure 20), which was that of yellow hibiscus, occurred in 

a flat plot with incorporated mulch and gypsum (MGF).  The raised bed with 

incorporated gypsum (GB) treatment yielded the greatest stem diameter growth 

for hybrid bald cypress.  Measurements for yellow hibiscus and hybrid bald 

cypress were also more uniform across treatments during the second 

measurement period.  Live oak had the least stem diameter growth for both 

measurement periods and maintained a somewhat standard stem diameter 

across all treatments.   
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Figure 19.  Mean groundline stem diameter growth by treatment between the 
initial and second measurement of live oak, hybrid bald cypress, and yellow 
hibiscus.  n=6, standard deviation shown. 

 

Figure 20.  Mean groundline stem diameter growth by treatment between the 
initial and final measurement of live oak, hybrid bald cypress, and yellow 
hibiscus.  n=6, standard deviation shown. 
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     Construction of raised beds and incorporation of mulch were predicted to 

positively affect plant growth, but the results did not show this outcome.  Raised 

beds were constructed to provide more volume of soil above the underlying salt 

impacted soils and water table, and providing more favorable conditions for plant 

establishment. Mulch was incorporated to improve soil structure, aeration, and 

water infiltration rates and to increase microbial activity.  During this study there 

was no significant difference in height or stem diameter growth between the 

constructed raised beds and flat ground plots (Figure 21 and Figure 22).  There 

also was not a significant difference in stem diameter or height growth between 

the control plots and those with incorporated mulch (Figure 23 and Figure 24). 

 

Figure 21.  A comparison of mean groundline stem diameter growth of live oak, 
hybrid bald cypress, and yellow hibiscus between the initial and final 
measurement of the flat and bedded treatments.  n=6, standard deviation shown. 
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Figure 22.  A comparison of mean total height growth of live oak, hybrid bald 
cypress, and yellow hibiscus between the initial and final measurement of the flat 
and bedded treatments.  n=6, standard deviation shown. 

 

Figure 23.  A comparison of mean groundline stem diameter growth of live oak, 
hybrid bald cypress, and yellow hibiscus between the initial and final 
measurement of the control and mulch treatments.  n=6, standard deviation 
shown. 
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Figure 24.  A comparison of mean total height growth of live oak, hybrid bald 
cypress, and yellow hibiscus between the initial and final measurement of the 
control and mulch treatments.  n=6, standard deviation shown. 
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     One factor that may have contributed to the lack of statistical differences 

among the plots was frequent irrigation.  Irrigation was continued by Moody 

Gardens staff from when planting occurred, in March 2016, until January 2017.  

Frequent irrigation may have caused some leaching of salts deeper into soils, out 

of the plant rooting zone.  In addition, the irrigation may have kept root system 

development shallower than it would have been without irrigation.  If seedling 

roots had grown deeper they may have encountered higher salt concentrations at 

depth. 

     An additional observation was also made about yellow hibiscus.  The yellow 

hibiscus was the smallest plant during the initial planting, but had a rapid growth 

rate throughout the study.  For unknown reasons, yellow hibiscus was particularly 

susceptible to fire ant inhabitation.  Ant colonization was prevalent on the stem of 

a great number of yellow hibiscus on the stem and soil interface.  Additional 

studies would have to be performed to determine the relationship between and 

possible impact of ants inhabiting the yellow hibiscus. 

iii. Crown Diameter Growth 

     Because the structure of yellow hibiscus was a shrub, compared to the tree 

structures of live oak and bald cypress, the crown diameter of the yellow hibiscus 

was also measured.  Initially, yellow hibiscus had crown diameters ranging from 

approximately 5 to 10 cm.  During the final tree measurement crown diameters 
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were measured after significant growth had occurred.  Mean crown diameter 

measurements for the final measurement are presented in Table 8.  

Table 8.  Mean measured crown diameter of yellow hibiscus during the final 
measurement period (1/28/17) by soil treatment.  (CF= Control Flat, CB= Control 
Bedded, MF= Mulch Flat, MB= Mulch Bedded, GF= Gypsum Flat, GB= Gypsum 
Bedded, MGF= Mulch, Gypsum, Flat, and MGB= Mulch, Gypsum, Bedded) 

Treatment 

Mean 
Crown 
Diameter 
(cm) 

CF 117.42 

CB 117.50 

MF 120.17 

MB 113.67 

GF 117.88 

GB 116.17 

MGF 131.00 

MGB 122.67 

 

 

Figure 25.  Mean measured crown diameter of yellow hibiscus during the final 
measurement period (1/28/17) by soil treatment.  n=6, standard deviations 
shown. 
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     Overall, there was not much variation among the measured crown diameters 

of yellow hibiscus with applied soil treatments (Figure 25).  The greatest mean 

crown diameter was measured in a flat plot with incorporated mulch and gypsum 

(MGF).  Unfortunately, before the final measurement, the yellow hibiscus were 

pruned by Moody Garden staff, severely affecting crown diameter measurements 

of the plants.  Because crown diameter growth was so severely affected, 

statistical analyses were not performed.   

iv. Volume Growth 

     Volume growth was also calculated to aid in determining the efficacy of the 

applied treatments in improving salt contaminated soils for plant growth.  Volume 

growth was calculated using stem diameter growth and height growth with the 

equation: volume = stem diameter2 x height (Table 9).    
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Table 9.  The mean stem volume growth of live oak, hybrid bald cypress, and 
yellow hibiscus by soil treatment during the initial measurement (3/15/16), 
second measurement (7/19/16), and final measurement (1/28/17) along with the 
growth between the initial and second measurements and the initial and final 
measurements. (CF= Control Flat, CB= Control Bedded, MF= Mulch Flat, MB= 
Mulch Bedded, GF= Gypsum Flat, GB= Gypsum Bedded, MGF= Mulch, 
Gypsum, Flat, and MGB= Mulch, Gypsum, Bedded).  Subscript letters indicate 
Tukey groupings among treatments within statistically significant soil parameters. 

  Treatment 
Mean Stem Volume (cm3) Growth 

Initial 
(1) 

Second 
(2) 

Final 
(3) 

1 - 2 1 - 3 

Live 
Oak 

CF 52.42 174.25 616.51 121.83 564.08 

CB 64.68 248.74 877.67 184.06 812.99 

MF 26.07 130.30 406.27 104.23 380.20 

MB 73.69 218.22 597.34 144.53 523.65 

GF 71.88 202.71 708.70 130.83 636.82 

GB 52.39 194.73 550.29 142.34 497.90 

MGF 54.15 227.70 703.37 173.54 649.21 

MGB 56.55 214.60 651.04 158.05 594.49 

Bald 
Cypress 

CF 118.99 869.28 4956.88 750.30 4837.89 

CB 136.46 1123.15 5416.63 986.68 5280.17 

MF 122.55 786.57 3839.35 664.02 3716.80 

MB 144.64 1318.46 5628.22 1173.81 5483.58 

GF 146.06 819.45 5253.30 673.38 5107.24 

GB 109.50 949.18 5390.83 839.68 5281.32 

MGF 110.27 656.79 3819.45 546.52 3709.18 

MGB 163.72 1210.84 6075.13 1047.12 5911.41 

Yellow 
Hibiscus 

CF 2.27 228.70 2873.64 226.44 2871.38 

CB 3.37 308.73 3287.38 305.36 3284.01 

MF 3.26 199.69 2718.81 196.42 2715.54 

MB 3.28 266.05 2947.55 262.77 2944.27 

GF 2.78 271.69 3174.26 268.91 3171.48 

GB 4.53 220.54 2316.64 216.01 2312.12 

MGF 2.98 247.75 3544.52 244.77 3541.54 

MGB 2.66 250.85 2851.42 248.18 2848.75 

 

     All plants had volume growth, but bald cypress and yellow hibiscus had 

substantial growth between the first and second measurement periods.  Yellow 
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hibiscus generally had the greatest mean volume growth between the initial and 

second measurements, followed closely by bald cypress.  Bald cypress grown in 

constructed beds with incorporated mulch (MB) had the greatest mean volume 

growth (Figure 26).  Between the initial and final measurements yellow hibiscus 

had the greatest volume growth over all applied treatments, with the exception of 

the constructed bed with incorporated gypsum treatment (GB) where bald 

cypress had the greatest volume growth (Figure 27).  Live oak volume growth 

was notably lower than that of bald cypress or yellow hibiscus between the initial 

and second measurement and initial and final measurement. 

 

Figure 26.  Mean volume growth by treatment between the initial and second 
measurement of live oak, hybrid bald cypress, and yellow hibiscus.  n=6, 
standard deviation shown. 
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Figure 27.  Mean volume growth by treatment between the initial and final 
measurement of live oak, hybrid bald cypress, and yellow hibiscus.  n=6, 
standard deviation shown. 
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measurements.  The lack of effect between the second and final measurement 

may have been due to the Na+ enrichment of the constructed beds over time. 

     A significant difference was observed among species for both measurement 

periods.  The significant difference in volume growth among species can be 

attributed to the variation of growth rates of different species.  Volume growth 

between the initial and final measurement was also impacted by the 

unauthorized pruning of the live oak and yellow hibiscus.  The removal of the 

tops of several trees would decrease the mean volume growth for the affected 

plants. 

3. Aerial Salinity Deposition 

     Another factor to consider when characterizing the salt content of soils and 

the impact on above ground plots of plants is the continuous input of Na+ and Cl- 

from aerial deposition.  This study sought to quantify the concentrations of 

deposited sea spray constituents, including Na+ and Cl-.  Concentrations of PO4
3-, 

SO4
2-, P3-, and K+ were also quantified.  Samples were collected over a one-year 

period from mid May of 2016 to mid May of 2017.  During this time measurable 

amounts of salts were deposited. 

     No statistical tests were made on these data since only one sampling device 

was used.  Deposition concentrations were highly variable among the 14 day 

sample collection periods.  The sample collected from the 6/3/16 – 6/17/16 

sampling does not include a dry fall deposition due to a missing collection pail 
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which was taken from the precipitation collector by persons unknown.  Measured 

aerial deposition ionic concentrations and rainfall amounts are recorded in 

Appendix C.  Generally, a trend of greater ionic deposition being deposited 

during wet fall (precipitation events) than during dry fall events was observed 

(Table 10).  Na+, Cl-, and Mg2+ had a greater percentage of deposition during wet 

fall than dry fall, but Ca2+ differed in that it had a greater percentage of deposition 

during dry fall.  Cl- had the greatest percentage of wet fall compared to dry fall, 

followed closely by Na+. 

Table 10.  Percentages of dry and wet fall of total Na+, Cl-, Mg2+, and Ca2+ 
deposition at Moody Gardens on Galveston Island from May 2016 to May 2017. 

  % Wet Fall % Dry Fall 

Na+ 58.2 41.8 

Cl- 60.3 39.7 

 Mg2+ 53.1 46.9 

Ca2+ 45.9 54.1 

 

     As can be seen in Figure 28 and 29, the greatest deposition for both Na+ and 

Cl-   were collected from the sampling which took place from 12/2/16 to 12/16/16.  

The elevated Na+ and Cl- concentrations during this collection period can be 

attributed to Galveston Island receiving an above average amount of rainfall 

lasting from 12/2/16 – 12/5/16 (National Weather Service, 2016).   
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Figure 28.  Na+ deposition per m2 at Moody Gardens on Galveston Island during 
14 day sample collection periods from May 2016 to May 2017. 

 

Figure 29.  Cl- deposition per m2 at Moody Gardens on Galveston Island during 
14 day sample collection periods from May 2016 to May 2017. 
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     Smaller amounts of Mg2+ and Ca2+ deposition occurred compared to Na+ and 

Cl-, but the same trend of variability between sampling events was followed.  The 

same Na+ and Cl- peak from the 12/2/16 to 12/16/16 sampling event was not 

observed.  Instead, Mg2+ deposition peaked on the 4/21/17 to 5/5/17 sampling 

event with deposition of approximately 60 mg m-2 (Figure 30).  Ca2+ deposition 

peaked at approximately 200 mg  m-2 on the 7/29/16 to 8/12/16 sample (Figure 

31).  The peak Ca2+ deposition was different from the general trend of wet fall 

deposition exceeding dry fall deposition.  The dry fall deposition of Ca2+, 

approximately 160 mg m-2, was about four times as much as the wet fall 

deposition of approximately 40 mg. 

 

Figure 30.  Mg2+ deposition per m2 at Moody Gardens on Galveston Island during 
14 day sample collection periods from May 2016 to May 2017. 
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Figure 31.  Ca2+ deposition per m2 at Moody Gardens on Galveston Island during 
14 day sample collection periods from May 2016 to May 2017. 
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Figure 32. Total accumulation of Cl- , PO4
3-, SO4

2-, Na+, Mg2+, Ca2+, and K+ on a 
per hectare basis deposited at the study location from May 2016 to May 2017. 
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spring, late summer, and the month of December.  September was characterized 

as having the strongest wind gust of approximately 70 knots (2017a).   

     A correlation between deposition concentrations and wind patterns cannot be 

distinguished in this study, but further studies and more frequent sampling might 

reveal a distinguishable pattern.  Weather patterns vary from year to year and 

since sodium deposition concentrations are highly dependent on weather 

patterns, conditions from several years would be required to calculate accurate 

average deposition patterns.  Installation of additional collection devices would 

provide a more representative sample and also aid in comparison of variation in 

deposition around Galveston Island.  Samples in this study were collected every 

two weeks, but in order to better understand the rates of deposition and to more 

closely correlate deposition to weather patterns, more frequent sampling would 

be ideal.  Samples collected daily, for instance, could be more accurately 

attributed to weather patterns for that specific day.  Collecting samples more 

frequently would also aid in insuring that samples are not lost due to overflowing 

of wet fall buckets during heavy rain events. 

     In order to better understand the impact aerial Na+ deposition may have on 

soil Na+ concentrations, aerial deposition was compared to soil concentrations.  

Soil Na+ concentrations for this comparison were taken from samples of the top 

10 cm of soil, above groundwater influence.  The amount of annual Na+ 

deposition (0.0007 mg cm-2) during the study was equivalent to 0.39% of the total 
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amount of Na+ quantified in the top 10 cm of soil (1.7798 mg cm-2).  Although the 

annual aerial input was only 0.39% of the total amount of Na+ in the top 10 cm of 

soil, notable damage may occur in the form of foliar impact of vegetation from 

Na+ buildup on leaf surfaces.  This annual rate of deposition could also 

accumulate over time and could encourage persistence of elevated soil Na+ 

concentrations. 

4. Problems Encountered 

     Several obstacles were encountered during this study which may have 

affected results.  The first was that due to a miscommunication, the tops of 

various plants were removed in order to reduce wind stress.  Roughly seven live 

oak trees, along with several yellow hibiscus, were confirmed to have been 

pruned throughout random treatment plots.   

     Since it was not discovered that the plants would been pruned until after the 

pruning occurred, there was not a way to determine how much height was 

removed from each plant. This error negatively impacted the height 

measurements, and perhaps growth, of the affected plants.  In some instances 

the removal of the plant tops caused negative growth values between 

measurements taken before and after the pruning. 

     The plants were staked to aid in resilience against wind stress.  The addition 

of poles was also inconsistent due to different types of poles being added at 
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different times.  Installation of poles could have damaged plant roots and 

different types of poles were installed, which causes further inconsistencies.   

     Over-irrigation and inconsistent irrigation may have also impacted the study.  

Initially, the irrigation system was planned to be shut off after plant establishment 

in order to stress the plants to better observe the effect that the treatments had 

on the plants.  However, the irrigation system remained on later in the season 

which may have aided in reducing Na+ in the plant rooting zones and influenced 

treatment effectiveness.   

     Another point to take into consideration was that the study took place eight 

years after Hurricane Ike occurred.  Therefore, the salt concentrations in the soil 

were not necessarily the same as the concentrations that were present just after 

the storm surge subsided.  Over time some of the Na+ ions probably had leached 

out of the system before the study occurred.  
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CONCLUSIONS 

     The three measured parameters in this study, select soil properties, plant 

growth, and aerial salinity deposition had unexpected results.  Initially, during the 

initial soil sampling event, there were statistical differences observed for soluble 

Na+, Ca2+, and Mg2+.  Exchangeable Na+ and soluble Ca2+ concentrations 

showed statistically significant differences among treatment plots after treatment 

application. 

     Soil amendment treatments did not significantly affect plant survival, height, or 

diameter growth for either measurement period during this first year of plant 

measurement.  Constructed raised beds may have had a statistically significant, 

but weak, effect on plant volume growth between the first and second 

measurements, but the same effect was not observed between the second and 

final measurements. 

     In order to observe an effect from soil treatments, the plants may require 

further study over a greater period of time.  For example, treatments such as 

gypsum, which is a slow release soil amendment, may require a greater amount 

of time than a year to become effective.  Application of a greater amount of 

gypsum could also be considered to potentially help to further decrease the soil 

Na+ concentration.  Extended irrigation duration beyond the original planned 

duration may have contributed to the lack of soil amendment treatment effects. 
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 Additionally, the unauthorized pruning of the trees may have also impacted 

potential plant growth that could have shown treatment effects. 

     Unsurprisingly, aerial deposition of sea spray constituents was highly variable 

throughout the sampling period.  The general trend of aerial salinity was greater 

ionic deposition occurring during periods of precipitation opposed to during dry 

conditions.  Cl- ions, followed by Na+, were found to be deposited in the greatest 

concentrations and could continually contribute to soil Na+ concentrations.   

     At the conclusion of this study several noteworthy observations can be made.  

The first is that the amount of annual Na+ deposition during the study was 

equivalent to 0.39% of the total amount of Na+ quantified in the top 10 cm of soil 

above groundwater.  This annual rate of deposition could accumulate over time 

and could contribute to persistence of elevated soil Na+ concentrations. 

     An additional point of particular interest was that the constructed beds 

composed of off-site uncontaminated soil, became enriched with Na+ and other 

ions during the study. Likely, this enrichment occurred because of capillary 

movement upward from contaminated soil and groundwater, transport of 

contaminated soils into the constructed beds by ants, and/or by aerial deposition, 

or a combination of all of these factors.  In order to better understand the cycle of 

Na+ accumulation an additional study characterizing the properties of the site’s 

water table and the role the water table might play in further Na+ contamination 

would be beneficial. 
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Table a.1.  SAR and soluble Na+, Ca2+, and Mg2+ (mg kg-1) concentrations in soil samples by treatment collected 
before treatment application (3/21/16) and seven months after application (10/27/16).  

Bed 
Number 

Treatment Na+ (mg kg-1) Ca2+ (mg kg -1) Mg2+ (mg kg-1) SAR 

3/21 10/27 3/21 10/27 3/21 10/27 3/21 10/27 

1 MF 43.72 54.84 93.96 61.45 33.77 17.74 0.98 1.59 

2 GF 63.16 73.63 48.70 104.89 19.08 31.74 1.94 1.62 

3 CB 33.16 53.98 22.87 102.75 6.88 23.11 1.56 1.25 

4 GB 25.89 49.40 17.46 114.33 4.48 18.81 1.43 1.13 

5 MGF 59.04 52.54 79.89 123.46 32.66 30.59 1.41 1.10 

6 CF 68.87 75.18 66.86 65.46 26.66 27.32 1.80 1.97 

7 MB 28.96 54.26 19.57 94.03 5.03 21.61 1.51 1.31 

8 MF 92.05 71.11 95.40 100.65 30.51 27.43 2.10 1.62 

9 MGB 35.50 65.67 22.05 157.55 6.62 34.13 1.70 1.24 

10 GB 32.54 74.21 14.32 90.78 3.79 20.43 1.98 1.83 

11 MGF 86.06 62.88 39.81 90.21 17.93 27.20 2.85 1.49 

12 MF 75.62 55.64 98.46 73.41 35.18 22.67 1.66 1.46 

13 MF 48.29 59.70 95.60 113.46 40.23 36.63 1.04 1.25 

14 CB 32.34 51.80 28.72 90.81 6.70 22.34 1.41 1.26 

15 MGB 24.10 70.15 21.83 102.16 4.45 22.23 1.23 1.64 

16 CF 84.76 68.80 85.58 108.74 33.67 43.16 1.96 1.41 

17 CB 31.89 60.39 34.29 117.14 8.56 31.80 1.26 1.28 

18 CF 136.00 83.96 85.93 109.12 43.20 40.31 2.99 1.74 

19 GF 223.30 111.46 51.60 93.66 24.78 32.26 6.39 2.53 

20 MGB 31.49 113.32 32.40 115.69 8.66 32.97 1.27 2.39 

21 GB 35.20 93.30 33.44 120.58 6.64 34.05 1.45 1.93 
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Table a.1.  (continued). 

22 MGB 45.46 69.12 34.19 136.64 9.31 30.91 1.78 1.39 

23 MGF 55.42 60.09 43.12 88.22 30.28 30.58 1.58 1.41 

24 GF 69.15 86.03 91.88 70.10 44.59 27.90 1.48 2.20 

25 MGB 37.91 47.23 32.86 137.89 8.14 27.96 1.53 0.96 

26 CF 148.70 129.96 40.52 46.87 18.12 20.34 4.88 3.99 

27 MB 31.41 127.11 31.27 50.24 7.26 14.30 1.31 4.07 

28 MGF 149.58 142.97 64.52 56.17 22.38 15.93 4.09 4.34 

29 MGB 24.90 66.55 32.73 116.16 8.57 26.17 1.00 1.45 

30 GB 24.43 57.53 23.57 76.95 6.80 21.01 1.14 1.50 

31 CB 10.91 61.34 28.64 89.24 6.91 29.06 0.47 1.44 

32 GF 80.34 73.33 72.36 107.81 28.66 32.91 2.02 1.59 

33 CB 28.39 59.74 55.47 68.36 25.98 17.41 0.79 1.67 

34 CF 106.29 81.67 71.66 50.22 29.16 19.05 2.67 2.49 

35 GF 54.42 43.53 79.11 104.40 35.94 29.34 1.27 0.97 

36 MB 42.62 65.42 58.13 105.86 12.78 23.27 1.32 1.50 

37 GF 79.22 61.23 74.28 101.94 30.82 31.65 1.95 1.36 

38 MGF 61.05 51.67 75.74 117.44 29.25 31.38 1.51 1.09 

39 MB 23.88 52.74 25.22 129.92 8.21 35.21 1.06 1.06 

40 GB 24.24 60.26 45.35 125.54 13.84 27.71 0.81 1.27 

41 MF 116.14 91.23 85.28 94.00 35.79 30.33 2.66 2.09 

42 GB 29.68 52.86 33.62 108.59 10.21 25.82 1.15 1.18 

43 MGF 107.37 80.70 102.83 101.71 44.65 33.03 2.23 1.78 

44 MB 21.57 59.40 27.38 85.18 7.97 23.14 0.93 1.47 
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Table a.1.  (continued). 

45 MB 27.08 124.45 36.69 88.99 10.60 22.14 1.01 3.06 

46 CF 209.13 135.93 42.77 81.41 19.09 30.74 6.68 3.26 

47 MF 131.64 88.91 78.24 90.62 37.91 32.95 3.06 2.03 

48 CB 23.55 76.19 25.76 103.51 13.05 29.87 0.94 1.70 

 

 



106 

Table a.2.  Exchangeable Na+, Ca2+, Mg2+, and K+ (mg kg-1) concentrations in 
soil samples by treatment collected before treatment application (3/21/16) and 
seven months after application (10/27/16). 

SAMPLE 
ID 

Treatment 
Na

+ 
(mg kg

-1
) Ca

2+ 
(mg kg 

-1
) Mg

2+ 
(mg kg

-1
) K

+ 
(mg kg

-1
) 

3/21 10/27 3/21 10/27 3/21 10/27 3/21 10/27 

1 MF 91.4 146.7 2789.2 2800.4 358.7 553.6 202.6 313.6 

2 GF 135.5 115.6 2249.6 1686.4 303.0 353.0 160.8 190.1 

3 CB 104.6 114.2 6724.7 3504.5 303.4 326.8 46.2 148.9 

4 GB 111.1 120.9 4154.1 3069.9 278.9 261.3 71.2 142.8 

5 MGF 99.5 105.8 1970.1 1995.4 331.0 302.5 173.1 194.4 

6 CF 238.7 165.3 4344.6 1848.7 583.5 505.3 359.1 269.8 

7 MB 159.9 114.1 8465.3 2634.8 448.2 281.9 107.7 126.6 

8 MF 303.1 135.6 4654.2 3080.2 603.7 388.1 287.6 204.0 

9 MGB 190.1 120.0 7018.8 3538.1 419.8 296.4 106.7 153.3 

10 GB 178.8 166.6 8588.9 5167.3 431.2 372.1 112.1 174.9 

11 MGF 184.6 111.6 3573.1 1923.9 524.0 327.6 284.4 168.5 

12 MF 98.4 108.4 2368.4 2343.4 381.0 367.1 183.7 211.9 

13 MF 97.1 96.6 4106.9 1719.1 244.7 321.1 77.4 179.1 

14 CB 88.1 100.4 3529.8 2417.1 221.8 329.1 78.3 162.0 

15 MGB 151.6 122.1 3774.6 2725.6 435.5 267.5 191.8 137.9 

16 CF 63.4 128.4 2026.9 2725.9 175.9 430.4 55.0 221.8 

17 CB 224.9 103.0 2639.9 2917.7 505.5 297.7 265.4 129.5 

18 CF 481.2 124.6 3937.6 1997.5 626.8 347.1 333.5 182.2 

19 GF 114.7 178.2 3755.9 3072.3 247.0 386.4 78.9 224.5 

20 MGB 116.6 158.9 5521.8 2241.5 287.1 314.1 90.8 130.9 

21 GB 138.1 136.9 5031.4 3223.2 299.1 299.0 88.0 138.5 

22 MGB 130.8 90.7 1188.5 2211.0 427.3 232.7 254.2 99.7 

23 MGF 177.1 78.8 2712.9 1019.1 433.8 198.4 234.6 125.6 

24 GF 114.9 132.2 5075.1 1318.1 286.8 277.9 80.3 154.8 

25 MGB 383.5 115.5 2136.5 5444.3 493.7 316.9 283.1 174.4 

26 CF 61.4 267.4 2571.3 1769.7 160.2 457.8 40.7 273.8 

27 MB 173.2 292.4 1283.5 2824.5 275.4 396.8 158.1 216.7 

28 MGF 74.9 411.3 2556.3 3424.4 186.9 520.9 48.8 350.1 

29 MGB 92.4 180.1 3408.6 3850.5 207.3 422.3 54.8 299.6 

30 GB 53.8 152.5 976.7 3413.6 122.8 394.5 39.8 244.1 

31 CB 116.2 173.4 1369.0 2359.8 268.7 472.6 147.1 260.9 

32 GF 85.3 180.2 4377.8 2821.5 223.1 419.6 44.0 261.8 

33 CB 185.4 184.5 1548.8 4203.0 360.3 460.0 192.8 217.4 

34 CF 124.5 277.0 1730.7 3175.7 464.3 694.9 244.3 400.3 
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Table a.2.  (continued). 

35 GF 91.5 111.7 3424.2 2401.2 212.7 373.3 56.9 245.7 

36 MB 140.5 127.5 1693.9 2730.9 372.8 285.5 191.4 119.8 

37 GF 155.8 95.6 2878.8 1269.2 446.2 288.7 246.5 166.1 

38 MGF 110.2 116.4 3715.9 2290.9 270.7 396.8 66.3 214.2 

39 MB 126.4 134.4 4205.3 2993.2 268.4 418.2 82.8 191.6 

40 GB 194.8 116.3 1955.0 2841.6 470.7 327.1 269.8 140.9 

41 MF 72.2 167.8 3478.2 2148.8 218.6 467.7 47.1 235.8 

42 GB 206.0 137.2 2848.2 3595.5 528.6 478.1 286.4 205.6 

43 MGF 74.1 154.9 3138.1 2313.9 234.4 468.4 62.5 226.5 

44 MB 71.3 126.3 2946.9 2236.4 175.1 374.9 49.6 141.2 

45 MB 331.5 229.3 2061.7 3470.8 383.7 416.0 168.9 167.0 

46 CF 248.2 281.3 2156.1 2821.0 537.4 551.2 250.6 250.4 

47 MF 63.6 222.2 1921.2 2304.2 167.2 516.5 57.2 268.8 

48 CB 88.4 161.7 1985.0 3196.4 302.9 410.4 85.8 174.8 
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Table a.3.  pH, E.C., and NO3
- concentrations in soil samples by treatment 

collected before treatment application (3/21/16) and seven months after 
application (10/27/16).  

SAMPLE 
ID 

Treatment pH E.C. (uS/cm) NO3
- 
(mg/kg

-1
) 

3/21 10/27 3/21 10/27 3/21 10/27 

1 MF 8.6 8.6 1576 775 10 21 

2 GF 8.8 8.4 1258 1055 12 6 

3 CB 8.4 8.3 633 949 1 16 

4 GB 8.2 8.3 580 994 1 4 

5 MGF 8.7 8.4 1595 1146 7 1 

6 CF 8.7 8.5 1506 950 6 6 

7 MB 8.4 8.3 609 949 1 3 

8 MF 8.7 8.5 1890 1097 12 9 

9 MGB 8.3 8.1 630 1417 1 16 

10 GB 8.2 8.5 586 1029 1 3 

11 MGF 8.6 8.4 1305 1013 14 5 

12 MF 8.6 8.5 1844 871 1 6 

13 MF 8.5 8.3 1800 1195 2 1 

14 CB 8.4 8.4 753 964 1 3 

15 MGB 8.3 8.4 596 1059 1 1 

16 CF 8.6 8.2 1903 1346 1 2 

17 CB 8.5 8.2 784 1203 1 6 

18 CF 8.5 8.2 2380 1436 7 3 

19 GF 8.7 8.4 2540 1386 1 1 

20 MGB 8.4 8.3 778 1399 1 5 

21 GB 8.5 8.2 887 1441 1 1 

22 MGB 8.5 8.3 878 1201 1 1 

23 MGF 8.5 7.7 1424 1099 4 1 

24 GF 8.1 7.6 2190 1185 3 1 

25 MGB 8.5 8.1 827 1199 1 1 

26 CF 8.7 8.5 1757 1091 6 14 

27 MB 8.4 8.7 735 1093 1 4 

28 MGF 8.8 8.7 2050 1229 9 4 

29 MGB 8.4 8.5 702 1148 1 4 

30 GB 8.4 8.5 602 915 1 4 

31 CB 8.4 7.9 565 1058 1 2 

32 GF 8.2 8.2 1656 1173 16 6 

33 CB 8.3 8.4 755 811 1 4 

34 CF 8.5 8.5 1796 835 6 5 

35 GF 8.3 8.4 1804 1021 8 5 
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Table a.3.  (continued). 

36 MB 8.4 8.4 1132 1077 1 7 

37 GF 8.4 8.2 1707 1073 2 2 

38 MGF 8.4 8.3 1606 1160 1 1 

39 MB 8.1 8.0 612 1288 1 1 

40 GB 8.3 8.3 805 1191 1 33 

41 MF 8.4 8.6 2250 1203 3 4 

42 GB 8.2 8.4 712 1052 1 10 

43 MGF 8.3 8.4 2300 1176 5 6 

44 MB 8.3 8.4 627 934 1 6 

45 MB 8.2 8.5 700 1200 1 15 

46 CF 8.8 8.4 2200 1353 4 2 

47 MF 8.3 8.3 2190 1219 2 4 

48 CB 8.0 8.3 575 1204 1 3 
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Table a.4.  P, B3+, and S2- concentrations in soil samples by treatment collected 
before treatment application (3/21/16) and seven months after application 
(10/27/16).  

SAMPLE 
ID 

Treatment 
P (mg kg-1) B3+ (mg kg -1) S2- (mg kg-1) 

3/21 10/27 3/21 10/27 3/21 10/27 

1 MF 5.3 3.8 0.2 1.0 10.7 9.5 

2 GF 7.9 6.4 0.3 0.8 12.0 9.9 

3 CB 7.1 5.9 -0.8 0.3 11.4 7.8 

4 GB 9.7 5.5 -0.9 0.2 10.4 17.2 

5 MGF 4.9 5.7 -0.3 0.3 8.6 9.6 

6 CF 8.3 6.2 -0.2 0.2 18.8 11.0 

7 MB 9.6 5.3 -1.1 0.0 16.1 3.6 

8 MF 10.3 4.7 0.2 0.2 60.1 6.5 

9 MGB 9.0 5.8 -1.1 0.2 18.3 13.6 

10 GB 13.0 5.6 -1.2 0.0 21.6 9.5 

11 MGF 7.3 5.7 0.8 0.0 13.6 4.6 

12 MF 5.2 5.9 0.7 0.1 9.6 4.8 

13 MF 7.2 5.1 -0.2 0.0 5.8 4.2 

14 CB 4.2 5.0 -0.2 -0.2 4.2 3.4 

15 MGB 4.6 7.3 2.2 -0.1 18.2 7.0 

16 CF 2.8 5.4 0.3 0.2 3.1 8.0 

17 CB 7.3 7.5 1.9 -0.4 14.9 4.6 

18 CF 4.5 5.7 2.5 0.1 37.3 5.6 

19 GF 4.4 5.9 0.2 0.6 6.7 20.2 

20 MGB 4.9 6.2 0.2 -0.1 8.8 10.0 

21 GB 5.5 6.0 0.2 0.6 10.4 17.2 

22 MGB 8.4 5.6 0.6 0.0 10.0 4.4 

23 MGF 12.0 5.9 1.2 -0.6 17.6 4.1 

24 GF 4.4 9.4 -0.1 -0.3 6.6 10.5 

25 MGB 7.9 10.3 0.7 -0.5 17.5 10.7 

26 CF 3.3 7.0 0.3 -0.4 3.7 15.4 

27 MB 4.0 7.9 0.9 0.0 8.5 16.4 

28 MGF 5.0 6.8 0.2 0.2 5.8 33.8 

29 MGB 4.5 8.3 0.1 0.0 6.2 17.0 

30 GB 6.0 7.1 0.0 0.5 3.2 19.2 

31 CB 5.2 7.6 0.3 -0.7 7.5 15.2 

32 GF 2.6 8.1 0.0 -0.3 3.6 18.6 

33 CB 4.4 7.8 0.5 -0.4 8.1 12.0 

34 CF 6.2 7.1 0.6 0.0 8.3 18.2 

35 GF 4.6 7.6 0.0 0.2 7.5 17.7 
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Table a.4.  (continued). 

36 MB 6.3 5.2 0.8 0.8 9.6 6.7 

37 GF 7.7 6.7 1.1 0.9 12.1 9.8 

38 MGF 4.1 4.1 -0.1 0.8 6.7 13.5 

39 MB 4.7 4.3 -0.2 0.5 6.8 16.7 

40 GB 4.8 4.6 0.7 0.6 8.8 14.0 

41 MF 2.0 6.9 -0.1 0.8 4.0 22.4 

42 GB 6.7 6.4 1.0 0.7 16.9 19.5 

43 MGF 3.9 5.4 -0.2 0.8 4.9 21.8 

44 MB 3.6 4.6 -0.2 0.5 4.7 9.7 

45 MB 4.2 5.5 1.2 0.6 18.1 13.5 

46 CF 6.7 6.2 1.6 1.2 16.7 20.2 

47 MF 5.1 6.2 -0.2 1.6 3.9 13.1 

48 CB 0.7 8.6 -0.2 1.1 6.1 9.7 
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Table a.5. C, N, and CN Ratio concentrations in soil samples by treatment 
collected before treatment application (3/21/16) and seven months after 
application (10/27/16).  

SAMPLE 
ID 

Treatment 
C (mg kg

-1
) N (mg kg

-1
) CN RATIO  

3/21 10/27 3/21 10/27 3/21 10/27 

1 MF 15620.0 16893.0 1950.1 1784.6 8.0 9.5 

2 GF 18871.0 26121.0 2258.5 2414.6 8.4 10.8 

3 CB 6910.8 12343.0 935.6 1542.3 7.4 8.0 

4 GB 6256.0 11395.0 1034.6 1485.8 6.0 7.7 

5 MGF 14623.0 29479.0 1684.8 2193.8 8.7 13.4 

6 CF 14862.0 19477.0 1823.3 2012.0 8.2 9.7 

7 MB 6372.0 21672.0 1017.5 1758.5 6.3 12.3 

8 MF 13103.0 22613.0 1672.3 1720.9 7.8 13.1 

9 MGB 6783.5 20862.0 1010.4 1789.5 6.7 11.7 

10 GB 6570.4 12964.0 1027.3 1648.3 6.4 7.9 

11 MGF 17248.0 18461.0 2115.9 1894.4 8.2 9.7 

12 MF 20058.0 21111.0 2173.2 2026.1 9.2 10.4 

13 MF 15872.0 17677.0 1885.6 1852.0 8.4 9.5 

14 CB 6371.5 10403.0 991.7 1413.4 6.4 7.4 

15 MGB 5975.0 14264.0 1018.0 1708.4 5.9 8.3 

16 CF 18556.0 13125.0 2045.6 1725.9 9.1 7.6 

17 CB 6754.6 15079.0 1041.2 1668.7 6.5 9.0 

18 CF 19959.0 16810.0 2308.6 2069.1 8.6 8.1 

19 GF 27409.0 14528.0 2580.1 1942.8 10.6 7.5 

20 MGB 6327.9 20292.0 984.6 1879.8 6.4 10.8 

21 GB 6992.2 14457.0 1002.1 1651.3 7.0 8.8 

22 MGB 7624.1 16313.0 1022.3 1689.2 7.5 9.7 

23 MGF 16839.0 14207.0 1943.3 1575.8 8.7 9.0 

24 GF 27038.0 12599.0 2813.7 1661.4 9.6 7.6 

25 MGB 6858.6 16289.0 893.2 1542.8 7.7 10.6 

26 CF 13208.0 15367.0 1778.3 1968.2 7.4 7.8 

27 MB 6033.5 12236.0 1004.4 1411.7 6.0 8.7 

28 MGF 15052.0 17013.0 1933.4 1833.7 7.8 9.3 

29 MGB 5773.4 19050.0 957.9 1620.7 6.0 11.8 

30 GB 6068.5 11415.0 1011.7 1489.7 6.0 7.7 

31 CB 5476.3 10218.0 958.4 1528.7 5.7 6.7 

32 GF 17825.0 11720.0 2162.4 1614.1 8.2 7.3 

33 CB 7485.7 15350.0 975.8 1737.1 7.7 8.8 

34 CF 18347.0 14192.0 2171.4 1797.8 8.4 7.9 

35 GF 18548.0 13652.0 2197.6 1871.8 8.4 7.3 
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Table a.5.  (continued). 

36 MB 11554.0 16536.0 1215.4 1700.7 9.5 9.7 

37 GF 13152.0 14817.0 1607.3 1836.0 8.2 8.1 

38 MGF 17841.0 22328.0 2054.1 2074.7 8.7 10.8 

39 MB 6270.4 14783.0 995.8 1560.6 6.3 9.5 

40 GB 7585.9 12504.0 1083.0 1657.6 7.0 7.5 

41 MF 26285.0 21747.0 2523.7 2141.4 10.4 10.2 

42 GB 6461.6 14256.0 1034.0 1730.0 6.2 8.2 

43 MGF 7294.2 26919.0 1103.3 2339.1 6.6 11.5 

44 MB 6567.4 16431.0 1030.1 1715.1 6.4 9.6 

45 MB 14400.0 15899.0 1767.7 1691.5 8.1 9.4 

46 CF 24929.0 16051.0 2616.9 1884.8 9.5 8.5 

47 MF 5952.4 20122.0 1034.1 2047.8 5.8 9.8 

48 CB 5780.7 12304.0 1029.1 1624.8 5.6 7.6 
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APPENDIX B: MEASURED PLANT PARAMETERS 
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Table b.1.  Measured diameters of live oak, hybrid bald cypress, and yellow hibiscus by soil treatments during the 
initial measurement (3/15/16), second measurement (7/19/16), and final measurement (1/28/17) along with the 
growth between the initial and second measurements and the initial and final measurements.  * -Trees which had 
to be replaced during the course of the study 

Bed 
Number 

Treatment 
ID 

Number 
Species 

Diameter (mm) Growth 
1 (mm) 

Growth 
2 (mm) 3/15/2016 7/19/2016 1/28/2017 

1 MF 

1 LO 6.16 10.73 19.08 4.57 12.92 

2 BC 16.66 26.49 51.11 9.84 34.46 

3 HH 9.98 19.84 56.09 9.87 46.11 

4 HH 8.70 17.80 55.14 9.10 46.45 

5 LO 8.31 10.20 21.70 1.89 13.40 

6 BC 10.27 22.79 45.89 12.52 35.62 

2 GF 

7* HH 5.155 25.495 48.945 20.34 43.79 

8 LO 10.54 15.42 23.33 4.88 12.79 

92 LO 11.66 15.58 21.83 3.93 10.17 

10 BC 10.13 19.14 48.98 9.02 38.86 

11 HH 4.10 16.37 44.49 12.27 40.39 

12 BC 20.16 24.72 36.04 4.57 15.89 

3 CB 

13 BC 5.88 18.57 47.98 12.69 42.10 

14 HH 5.34 23.45 48.29 18.11 42.95 

15 HH 4.94 22.26 54.72 17.33 49.78 

16 LO 10.44 13.93 16.26 3.49 5.82 

17 BC 14.11 19.02 42.88 4.91 28.77 

18 LO 6.92 15.54 23.59 8.62 16.67 
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Table b.1.  (continued). 

4 GB 

19 HH 8.98 18.49 43.94 9.52 34.96 

20 HH 5.70 18.81 57.09 13.11 51.40 

21 BC 15.96 31.30 58.62 15.34 42.67 

22 LO 6.44 12.41 19.27 5.97 12.83 

23 BC 15.84 31.63 57.13 15.79 41.29 

24 LO 9.01 16.45 19.87 7.44 10.86 

5 MGF 

25* HH 5.31 18.77 45.49 13.46 40.18 

26 HH 6.94 23.05 52.90 16.11 45.97 

27 BC 9.80 15.39 35.84 5.59 26.04 

28 BC 12.50 28.02 50.52 15.52 38.02 

29 LO 10.01 16.84 21.18 6.84 11.17 

30 LO 10.79 19.18 29.79 8.39 19.00 

6 CF 

31 HH 5.18 17.47 47.46 12.29 42.28 

32 BC 15.13 37.46 66.23 22.33 51.11 

33 HH 4.92 12.97 40.91 8.06 35.99 

34 BC 11.86 21.38 45.81 9.52 33.95 

35 LO 10.24 14.58 27.68 4.34 17.44 

36 LO 9.57 16.27 25.61 6.70 16.05 

7 MB 

37 LO 9.54 17.97 24.37 8.43 14.83 

38 HH 5.40 26.82 64.15 21.43 58.75 

39 HH 4.86 31.78 60.68 26.92 55.83 

40 BC 9.31 16.85 35.46 7.54 26.15 

41 BC 11.24 31.72 51.71 20.48 40.47 

42 LO 9.13 14.58 18.94 5.45 9.81 
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Table b.1.  (continued). 

8 MF 

43 HH 5.44 18.39 48.67 12.95 43.23 

44 BC 10.91 27.99 45.30 17.08 34.39 

45 HH 5.75 11.83 38.46 6.08 32.71 

46 BC 13.86 24.65 44.18 10.79 30.32 

47 LO 2.38 5.95 11.26 3.57 8.88 

48 LO 6.39 13.98 20.76 7.59 14.37 

9 MGB 

49 LO 8.12 15.85 21.50 7.74 13.38 

50 HH 5.26 23.42 46.14 18.16 40.88 

51 BC 15.35 26.83 53.97 11.48 38.63 

52 HH 4.17 14.50 31.12 10.33 26.96 

53 LO 7.66 16.64 22.41 8.98 14.75 

54 BC 12.22 26.16 44.76 13.95 32.54 

10 GB 

55 HH 5.67 21.17 48.02 15.50 42.36 

56 HH 8.39 16.60 34.80 8.22 26.42 

57 BC 14.62 32.42 63.17 17.80 48.55 

58 LO 10.24 14.89 18.95 4.66 8.72 

59 LO 11.38 18.33 24.30 6.96 12.93 

60 BC 16.90 36.03 66.41 19.13 49.51 

11 MGF 

61 HH 5.98 24.05 60.16 18.07 54.18 

62 BC 11.36 23.28 50.01 11.92 38.65 

63 LO 9.07 14.22 18.70 5.15 9.63 

64 BC 17.73 24.62 54.68 6.89 36.95 

65 LO 10.46 15.25 19.97 4.79 9.51 

66 HH 4.85 20.39 59.88 15.55 55.03 
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Table b.1.  (continued). 

12 MF 

67 HH 4.42 21.23 48.70 16.81 44.28 

68 LO 8.17 12.66 17.23 4.50 9.07 

69 BC 10.74 27.32 47.91 16.59 37.17 

70 LO 8.36 14.77 22.74 6.41 14.38 

71 BC 14.80 30.09 48.43 15.30 33.63 

72 HH 4.58 24.99 57.90 20.41 53.32 

13 MF 

73 HH 5.29 21.26 48.75 15.97 43.46 

74 LO 5.69 17.53 15.10 11.84 9.41 

75 BC 13.17 24.80 39.09 11.64 25.92 

76 LO 10.83 15.59 21.17 4.76 10.34 

77 HH 4.16 17.27 45.21 13.11 41.05 

78 BC 10.71 19.49 39.64 8.79 28.94 

14 CB 

79 LO 7.66 17.17 24.79 9.51 17.13 

80 LO 10.48 21.73 31.57 11.26 21.10 

81 BC 10.98 32.38 52.21 21.40 41.23 

82 BC 18.21 35.02 59.90 16.81 41.69 

83 HH 5.25 20.54 46.52 15.29 41.27 

84 HH 6.27 20.84 52.10 14.57 45.83 

15 MGB 

85 LO 11.55 17.24 25.28 5.69 13.73 

86 HH 5.07 28.82 52.65 23.75 47.58 

87 HH 3.36 18.98 43.90 15.62 40.54 

88 LO 9.41 15.03 23.39 5.63 13.99 

89 BC 19.82 33.90 59.60 14.09 39.79 

90 BC 13.72 29.35 58.21 15.63 44.49 
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Table b.1.  (continued). 

16 CF 

91 LO 6.61 14.17 21.99 7.56 15.38 

92 LO 7.60 12.13 16.83 4.53 9.23 

93 HH 5.55 25.96 56.43 20.41 50.88 

94 BC 12.65 29.85 52.02 17.20 39.37 

95 BC 19.89 27.01 47.74 7.12 27.86 

96 HH 3.76 20.24 48.26 16.48 44.50 

17 CB 

97 HH 6.32 25.79 62.72 19.48 56.40 

98 LO 13.07 15.06 24.91 1.99 11.85 

99 LO 9.41 15.72 22.14 6.31 12.73 

100 BC 16.05 35.61 50.38 19.56 34.33 

101 HH 5.98 21.40 50.21 15.43 44.23 

102 BC 11.64 33.01 62.92 21.37 51.28 

18 CF 

103 LO 8.83 18.13 32.90 9.30 24.07 

104 LO 10.69 13.74 19.55 3.05 8.86 

105 BC 10.40 32.13 61.35 21.73 50.95 

106 BC 5.56 18.52 46.39 12.96 40.83 

107 HH 3.65 20.12 48.48 16.48 44.84 

108 HH 4.39 19.59 56.85 15.20 52.47 

19 GF 

109 HH 4.69 17.84 54.54 13.16 49.85 

110 LO 9.34 13.84 19.60 4.50 10.26 

111 LO 4.37 9.09 15.76 4.73 11.40 

112 BC 7.39 24.39 50.55 17.00 43.16 

113 BC 12.26 28.22 55.15 15.96 42.89 

114 HH 4.79 22.04 50.16 17.25 45.37 
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Table b.1.  (continued). 

20 MGB 

115 LO 10.67 17.07 26.15 6.41 15.49 

116 BC 18.34 35.02 54.21 16.68 35.87 

117 HH 5.94 22.00 57.49 16.07 51.56 

118 HH 4.09 16.80 39.65 12.72 35.57 

119 BC 7.38 31.19 53.15 23.81 45.77 

120 LO 7.72 11.58 15.91 3.86 8.20 

21 GB 

121 LO 9.10 14.12 22.30 5.02 13.20 

122 BC 13.01 28.80 62.00 15.79 48.99 

123 LO 9.89 19.24 28.96 9.35 19.07 

124 HH 5.47 19.82 46.48 14.35 41.01 

125 HH 5.06 17.60 43.94 12.54 38.88 

126 BC 7.21 24.92 49.00 17.72 41.79 

22 MGB 

127 LO 4.96 12.09 24.83 7.13 19.88 

128 LO 11.21 15.65 26.07 4.44 14.87 

129 HH 4.79 19.13 45.04 14.34 40.25 

130 BC 18.03 32.80 62.21 14.77 44.18 

131 HH 4.37 21.88 53.40 17.52 49.04 

132 BC 10.75 30.55 72.64 19.80 61.89 

23 MGF 

133 LO 5.43 11.25 22.52 5.82 17.10 

134* BC 15.22 19.525 51.66 4.305 36.44 

135 HH 3.34 18.56 55.24 15.22 51.90 

136 BC 8.89 21.18 52.42 12.29 43.54 

137 HH 5.50 19.07 50.49 13.58 45.00 

138 LO 5.23 14.25 27.55 9.03 22.33 
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Table b.1.  (continued). 

24 GF 

139 LO 8.15 14.53 29.72 6.38 21.57 

140 LO 5.52 12.34 23.58 6.82 18.06 

141 HH 4.80 19.90 52.53 15.10 47.73 

142 BC 20.13 34.45 69.66 14.32 49.53 

143 BC 8.81 23.70 44.81 14.89 36.00 

144 HH 4.51 20.37 30.89 15.86 26.38 

25 MGB 

145 LO 5.80 8.47 15.39 2.67 9.59 

146 BC 7.81 23.67 47.43 15.86 39.62 

147 HH 5.76 31.63 71.82 25.87 66.07 

148 HH 4.57 18.11 42.58 13.54 38.01 

149 LO 9.08 16.06 22.31 6.98 13.23 

150 BC 14.16 33.10 58.03 18.94 43.87 

26 CF 

151 BC 11.77 27.20 54.24 15.43 42.48 

152 BC 8.98 21.22 44.78 12.24 35.80 

153 LO 7.55 10.84 18.75 3.29 11.20 

154 LO 9.65 15.17 19.43 5.53 9.79 

155 HH 5.27 18.61 52.29 13.34 47.02 

156 HH 4.07 17.12 41.34 13.05 37.27 

27 MB 

157 LO 7.56 11.48 16.53 3.92 8.97 

158 HH 7.48 20.45 72.07 12.97 64.59 

159 BC 17.09 30.35 57.83 13.26 40.74 

160 BC 11.33 28.43 50.26 17.10 38.93 

161 HH 4.79 22.52 56.43 17.73 51.64 

162 LO 8.78 14.82 24.67 6.04 15.89 
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Table b.1.  (continued). 

28 MGF 

163 LO 9.20 15.53 23.94 6.33 14.74 

164 HH 6.48 18.97 47.50 12.49 41.02 

165 HH 4.62 17.34 48.88 12.72 44.26 

166 BC 14.29 21.17 29.29 6.88 15.00 

167 BC 7.63 28.26 49.23 20.64 41.60 

168 LO 8.89 14.78 23.54 5.89 14.65 

29 MGB 

169 LO 11.06 16.19 25.99 5.13 14.93 

170 LO 8.94 17.43 24.93 8.49 15.99 

171 BC 11.78 18.97 34.70 7.20 22.93 

172 HH 4.36 19.33 53.27 14.98 48.91 

173 HH 4.55 19.59 59.64 15.05 55.09 

174 BC 12.28 30.67 57.31 18.39 45.04 

30 GB 

175 LO 6.56 9.61 13.99 3.05 7.43 

176 BC 7.87 23.74 50.42 15.88 42.56 

177 LO 5.77 14.19 23.43 8.42 17.66 

178 HH 4.00 22.95 60.13 18.96 56.13 

179 HH 4.57 16.87 45.81 12.30 41.24 

180 BC 9.73 19.18 41.95 9.45 32.22 

31 CB 

181 LO 9.76 16.84 24.03 7.08 14.27 

182 HH 5.70 23.06 51.72 17.36 46.02 

183 BC 14.80 26.29 50.95 11.49 36.15 

184 LO 6.61 14.92 22.52 8.32 15.92 

185 BC 17.22 29.70 47.92 12.49 30.70 

186 HH 4.54 30.35 56.85 25.81 52.31 
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Table b.1.  (continued). 

32 GF 

187 LO 9.90 14.56 23.08 4.66 13.18 

188 BC 17.59 32.35 59.42 14.76 41.83 

189 HH 4.37 26.32 58.03 21.95 53.66 

190 LO 13.14 19.43 27.98 6.29 14.84 

191 BC 16.04 26.41 45.09 10.37 29.05 

192 HH 4.49 13.56 37.11 9.07 32.62 

33 CB 

193 LO 13.32 16.07 17.22 2.75 3.90 

194 LO 7.51 14.95 25.28 7.44 17.77 

195 HH 4.00 14.07 42.16 10.07 38.16 

196 BC 14.65 37.00 62.51 22.35 47.86 

197 BC 15.58 33.68 63.00 18.10 47.42 

198 HH 4.60 19.06 67.10 14.47 62.50 

34 CF 

199 LO 5.46 12.37 22.07 6.91 16.61 

200 BC 15.00 28.53 54.90 13.53 39.90 

201 HH 2.89 20.95 57.49 18.06 54.60 

202 BC 11.73 27.22 49.97 15.50 38.25 

203 HH 3.65 24.58 63.28 20.94 59.64 

204 LO 5.03 12.75 22.70 7.72 17.67 

35 GF 

205 LO 8.76 11.77 22.43 3.01 13.67 

206 BC 11.37 29.64 56.94 18.27 45.57 

207 HH 4.57 21.57 51.60 17.00 47.03 

208 LO 10.72 15.84 26.33 5.12 15.62 

209 HH 5.87 19.53 58.00 13.67 52.13 

210 BC 10.54 23.78 51.60 13.24 41.06 
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Table b.1.  (continued). 

36 MB 

211 LO 9.31 16.32 22.57 7.01 13.27 

212 BC 9.83 35.23 59.24 25.41 49.41 

213 LO 10.78 14.47 22.45 3.70 11.67 

214 BC 13.89 34.43 53.34 20.54 39.45 

215 HH 5.35 22.76 67.48 17.41 62.13 

216 HH 4.46 21.28 51.93 16.82 47.48 

37 GF 

217 HH 3.94 22.89 66.17 18.95 62.23 

218 BC 16.12 31.22 58.69 15.11 42.58 

219 LO 6.58 13.26 20.51 6.68 13.93 

220 LO 9.32 12.92 22.02 3.60 12.70 

221 HH 5.53 23.67 54.50 18.15 48.98 

222 BC 7.07 22.61 49.57 15.54 42.50 

38 MGF 

223 HH 5.52 21.98 64.43 16.46 58.92 

224 LO 4.94 13.36 23.83 8.42 18.89 

225 LO 9.14 15.15 21.17 6.01 12.03 

226 BC 12.14 30.34 49.71 18.20 37.57 

227 BC 14.02 26.18 52.75 12.16 38.73 

228 HH 4.15 21.09 48.23 16.94 44.08 

39 MB 

229 LO 7.01 17.31 28.95 10.30 21.94 

230 HH 4.80 20.01 51.41 15.22 46.61 

231 BC 13.05 28.09 54.27 15.04 41.22 

232 HH 4.25 16.27 40.25 12.03 36.01 

233 LO 7.01 12.67 21.87 5.67 14.87 

234 BC 16.17 37.44 65.98 21.27 49.81 
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Table b.1.  (continued). 

40 GB 

235 LO 10.33 14.83 26.25 4.50 15.92 

236 LO 9.58 12.88 21.91 3.31 12.33 

237 HH 3.92 17.67 43.29 13.75 39.37 

238 BC 11.78 26.97 39.86 15.20 28.09 

239 HH 5.85 19.25 50.27 13.40 44.42 

240 BC 18.38 32.32 61.20 13.94 42.82 

41 MF 

241 LO 8.16 13.58 22.01 5.42 13.85 

242 BC 13.36 27.52 51.27 14.16 37.91 

243 HH 4.13 18.12 47.33 14.00 43.21 

244 LO 9.29 15.19 20.72 5.90 11.43 

245 BC 13.48 29.41 47.28 15.93 33.80 

246 HH 3.37 21.26 46.51 17.90 43.14 

42 GB 

247 LO 9.97 15.25 21.88 5.29 11.91 

248 HH 4.73 18.72 53.38 13.99 48.66 

249 LO 6.76 20.07 21.14 13.31 14.38 

250 BC 6.60 22.01 48.15 15.41 41.55 

251 HH 6.96 18.41 45.47 11.45 38.51 

252 BC 9.42 28.54 54.30 19.13 44.88 

43 MGF 

253 BC 8.09 25.03 51.00 16.95 42.92 

254* HH 3.21 -- -- -- -- 

255 HH 5.69 26.80 71.80 21.11 66.11 

256 LO 9.41 17.30 24.16 7.89 14.75 

257 BC 14.50 19.14 30.75 4.64 16.25 

258 LO 7.23 12.28 19.31 5.06 12.08 
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Table b.1.  (continued). 

44 MB 

259 BC 11.54 29.30 53.03 17.76 41.49 

260 BC 9.85 31.30 52.19 21.45 42.34 

261 LO 10.51 14.66 23.97 4.15 13.46 

262 HH 4.17 17.67 40.65 13.50 36.48 

263 LO 6.99 11.56 15.76 4.57 8.77 

264 HH 5.45 14.72 43.74 9.27 38.30 

45 MB 

265 HH 5.75 17.10 44.30 11.35 38.55 

266 LO 10.71 17.76 25.69 7.05 14.98 

267 BC 16.53 32.55 55.84 16.02 39.32 

268 LO 11.83 20.57 29.10 8.74 17.27 

269 HH 5.38 19.78 42.74 14.41 37.36 

270 BC 17.67 36.39 58.62 18.72 40.96 

46 CF 

271 LO 8.82 15.38 21.14 6.56 12.32 

272 HH 5.31 18.15 47.84 12.84 42.54 

273 BC 11.18 28.60 52.55 17.42 41.37 

274 HH 4.20 20.53 52.74 16.34 48.55 

275 LO 14.46 18.63 26.54 4.17 12.08 

276 BC 13.06 22.67 42.42 9.61 29.36 

47 MF 

277 BC 7.61 18.19 41.35 10.58 33.74 

278 HH 4.55 19.43 52.96 14.89 48.41 

279 BC 12.19 21.70 43.66 9.51 31.47 

280 LO 5.26 17.12 7.97 11.86 2.72 

281 HH 3.32 19.37 44.45 16.05 41.13 

282 LO 9.31 15.69 31.69 6.38 22.38 
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Table b.1.  (continued). 

48 CB 

283 BC 12.24 32.96 53.47 20.72 41.23 

284 LO 10.06 17.53 60.42 7.47 50.36 

285 LO 7.27 16.13 25.81 8.86 18.54 

286 BC 8.91 29.77 50.75 20.87 41.85 

287 HH 6.15 21.93 55.78 15.78 49.63 

288 HH 5.65 25.60 56.98 19.95 51.34 
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Table b.2.  Measured heights of live oak, hybrid bald cypress, and yellow hibiscus by soil treatments during the 
initial measurement (3/15/16), second measurement (7/19/16), and final measurement (1/28/17) along with the 
growth between the initial and second measurements and the initial and final measurements.  * -Trees which had 
to be replaced during the course of the study 

Bed 
Number 

Treatment 
ID 

Number 
Species 

Height (cm) Growth 
1 (cm) 

Growth 
2 (cm) 3/15/2016 7/19/2016 1/28/2017 

1 MF 

1 LO 64.0 65.0 105.0 1.0 41.0 

2 BC 106.0 146.0 205.0 40.0 99.0 

3 HH 11.0 41.0 115.0 30.0 104.0 

4 HH 13.0 52.0 117.0 39.0 104.0 

5 LO 36.0 67.0 128.0 31.0 92.0 

6 BC 63.0 145.0 227.0 82.0 164.0 

2 GF 

7* HH 11.0 57.0 110.0 46.0 99.0 

8 LO 101.0 109.0 132.0 8.0 31.0 

9 LO 115.0 143.0 172.0 28.0 57.0 

10 BC 86.0 84.0 195.0 -2.0 109.0 

11 HH 16.0 53.0 125.0 37.0 109.0 

12 BC 83.0 72.0 160.0 -11.0 77.0 

3 CB 

13 BC 25.5 94.0 185.0 68.5 159.5 

14 HH 15.0 42.0 87.0 27.0 72.0 

15 HH 14.0 52.0 127.0 38.0 113.0 

16 LO 94.5 67.0 66.0 -27.5 -28.5 

17 BC 63.0 117.0 180.0 54.0 117.0 

18 LO 85.0 114.0 144.0 29.0 59.0 
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Table b.2.  (continued). 

4 GB 

19 HH 14.0 57.0 103.0 43.0 89.0 

20 HH 14.0 66.0 124.0 52.0 110.0 

21 BC 80.0 130.0 180.0 50.0 100.0 

22 LO 62.0 78.0 98.0 16.0 36.0 

23 BC 109.0 136.0 210.0 27.0 101.0 

24 LO 82.0 100.0 105.0 18.0 23.0 

5 MGF 

25* HH 8.0 67.0 105.0 59.0 97.0 

26 HH 12.0 65.0 140.0 53.0 128.0 

27 BC 69.5 102.0 192.0 32.5 122.5 

28 BC 63.0 110.0 203.0 47.0 140.0 

29 LO 100.0 132.0 193.0 32.0 93.0 

30 LO 97.5 150.0 141.0 52.5 43.5 

6 CF 

31 HH 12.5 50.0 88.0 37.5 75.5 

32 BC 87.0 146.0 219.0 59.0 132.0 

33 HH 13.5 45.0 82.0 31.5 68.5 

34 BC 53.0 104.0 161.0 51.0 108.0 

35 LO 95.0 116.0 148.0 21.0 53.0 

36 LO 89.5 100.0 149.0 10.5 59.5 

7 MB 

37 LO 112.0 87.0 106.0 -25.0 -6.0 

38 HH 18.0 87.0 148.0 69.0 130.0 

39 HH 15.0 59.0 94.0 44.0 79.0 

40 BC 65.0 118.0 142.0 53.0 77.0 

41 BC 67.0 122.0 198.0 55.0 131.0 

42 LO 36.0 80.0 90.0 44.0 54.0 
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Table b.2.  (continued) 

8 MF 

43 HH 12.0 55.0 130.0 43.0 118.0 

44 BC 87.0 144.0 181.0 57.0 94.0 

45 HH 13.0 52.0 100.0 39.0 87.0 

46 BC 87.0 144.0 170.0 57.0 83.0 

47 LO 7.0 41.0 66.0 34.0 59.0 

48 LO 51.0 88.0 120.0 37.0 69.0 

9 MGB 

49 LO 49.0 85.0 128.0 36.0 79.0 

50 HH 13.0 50.0 117.0 37.0 104.0 

51 BC 78.0 117.0 200.0 39.0 122.0 

52 HH 12.0 40.0 82.0 28.0 70.0 

53 LO 64.0 78.0 101.0 14.0 37.0 

54 BC 110.0 150.0 232.0 40.0 122.0 

10 GB 

55 HH 17.0 67.0 131.0 50.0 114.0 

56 HH 16.5 68.0 110.0 51.5 93.5 

57 BC 101.0 132.0 226.0 31.0 125.0 

58 LO 93.0 93.0 103.0 0.0 10.0 

59 LO 98.0 100.0 154.0 2.0 56.0 

60 BC 94.0 154.0 196.0 60.0 102.0 

11 MGF 

61 HH 10.0 63.0 110.0 53.0 100.0 

62 BC 98.0 141.0 202.0 43.0 104.0 

63 LO 85.0 86.0 114.0 1.0 29.0 

64 BC 108.0 135.0 176.0 27.0 68.0 

65 LO 105.0 137.0 153.0 32.0 48.0 

66 HH 14.0 75.0 150.0 61.0 136.0 
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Table b.2.  (continued). 

12 MF 

67 HH 8.0 63.0 130.0 55.0 122.0 

68 LO 50.5 50.0 109.0 -0.5 58.5 

69 BC 90.0 131.0 226.0 41.0 136.0 

70 LO 56.0 78.0 97.0 22.0 41.0 

71 BC 84.0 119.0 180.0 35.0 96.0 

72 HH 12.0 56.0 118.0 44.0 106.0 

13 MF 

73 HH 11.0 52.0 114.0 41.0 103.0 

74 LO 56.0 64.0 112.0 8.0 56.0 

75 BC 108.0 131.0 148.0 23.0 40.0 

76 LO 53.0 91.0 186.0 38.0 133.0 

77 HH 13.0 56.0 115.0 43.0 102.0 

78 BC 60.0 118.0 167.0 58.0 107.0 

14 CB 

79 LO 71.0 129.0 178.0 58.0 107.0 

80 LO 67.0 95.0 170.0 28.0 103.0 

81 BC 73.5 114.0 178.0 40.5 104.5 

82 BC 113.5 154.0 190.0 40.5 76.5 

83 HH 14.0 63.0 120.0 49.0 106.0 

84 HH 10.0 72.0 124.0 62.0 114.0 

15 MGB 

85 LO 85.5 112.0 128.0 26.5 42.5 

86 HH 8.5 50.0 125.0 41.5 116.5 

87 HH 9.0 50.0 118.0 41.0 109.0 

88 LO 102.0 109.0 140.0 7.0 38.0 

89 BC 116.0 169.0 244.0 53.0 128.0 

90 BC 92.0 139.0 208.0 47.0 116.0 
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Table b.2.  (continued). 

16 CF 

91 LO 46.5 48.0 85.0 1.5 38.5 

92 LO 53.0 60.0 79.0 7.0 26.0 

93 HH 11.0 55.0 128.0 44.0 117.0 

94 BC 105.0 147.0 210.0 42.0 105.0 

95 BC 130.0 125.0 190.0 -5.0 60.0 

96 HH 12.0 70.0 116.0 58.0 104.0 

17 CB 

97 HH 11.0 70.0 100.0 59.0 89.0 

98 LO 70.0 80.0 114.0 10.0 44.0 

99 LO 56.0 72.0 96.0 16.0 40.0 

100 BC 65.0 113.0 178.0 48.0 113.0 

101 HH 13.5 65.0 78.0 51.5 64.5 

102 BC 85.0 125.0 156.0 40.0 71.0 

18 CF 

103 LO 61.5 95.0 158.0 33.5 96.5 

104 LO 95.0 89.0 102.0 -6.0 7.0 

105 BC 63.5 105.0 210.0 41.5 146.5 

106 BC 50.5 102.0 166.0 51.5 115.5 

107 HH 11.5 60.0 126.0 48.5 114.5 

108 HH 12.0 68.0 110.0 56.0 98.0 

19 GF 

109 HH 12.5 65.0 140.0 52.5 127.5 

110 LO 59.0 80.0 76.0 21.0 17.0 

111 LO 68.5 85.0 102.0 16.5 33.5 

112 BC 57.0 98.0 191.0 41.0 134.0 

113 BC 106.0 130.0 195.0 24.0 89.0 

114 HH 11.0 57.0 140.0 46.0 129.0 
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Table b.2.  (continued). 

20 MGB 

115 LO 63.0 100.0 155.0 37.0 92.0 

116 BC 99.0 146.0 204.0 47.0 105.0 

117 HH 13.0 67.0 126.0 54.0 113.0 

118 HH 12.5 55.0 100.0 42.5 87.5 

119 BC 66.5 113.0 169.0 46.5 102.5 

120 LO 53.5 75.0 99.0 21.5 45.5 

21 GB 

121 LO 59.0 70.0 132.0 11.0 73.0 

122 BC 90.0 115.0 196.0 25.0 106.0 

123 LO 80.0 125.0 153.0 45.0 73.0 

124 HH 15.0 57.0 75.0 42.0 60.0 

125 HH 9.0 70.0 117.0 61.0 108.0 

126 BC 65.5 120.0 196.0 54.5 130.5 

22 MGB 

127 LO 55.0 70.0 137.0 15.0 82.0 

128 LO 58.5 100.0 141.0 41.5 82.5 

129 HH 12.0 50.0 103.0 38.0 91.0 

130 BC 106.5 165.0 215.0 58.5 108.5 

131 HH 12.5 50.0 89.0 37.5 76.5 

132 BC 65.0 142.0 219.0 77.0 154.0 

23 MGF 

133 LO 55.5 62.0 157.0 6.5 101.5 

134* BC -- 115.0 203.0 115.0 -- 

135 HH 12.0 45.0 100.0 33.0 88.0 

136 BC 39.0 125.0 180.0 86.0 141.0 

137 HH 11.0 45.0 113.0 34.0 102.0 

138 LO 59.0 78.0 123.0 19.0 64.0 
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Table b.2.  (continued). 

24 GF 

139 LO 91.5 116.0 164.0 24.5 72.5 

140 LO 50.0 72.0 145.0 22.0 95.0 

141 HH 12.5 70.0 155.0 57.5 142.5 

142 BC 97.0 136.0 205.0 39.0 108.0 

143 BC 75.5 102.0 170.0 26.5 94.5 

144 HH 14.5 57.0 100.0 42.5 85.5 

25 MGB 

145 LO 65.0 83.0 82.0 18.0 17.0 

146 BC 60.8 123.0 170.0 62.2 109.2 

147 HH 13.5 68.0 137.0 54.5 123.5 

148 HH 15.6 60.0 125.0 44.4 109.4 

149 LO 98.0 113.0 131.0 15.0 33.0 

150 BC 93.0 141.0 197.0 48.0 104.0 

26 CF 

151 BC 101.0 127.0 204.0 26.0 103.0 

152 BC 57.0 107.0 173.0 50.0 116.0 

153 LO 78.0 74.0 103.0 -4.0 25.0 

154 LO 99.6 100.0 85.0 0.4 -14.6 

155 HH 12.0 56.0 110.0 44.0 98.0 

156 HH 11.0 45.0 94.0 34.0 83.0 

27 MB 

157 LO 70.7 72.0 69.0 1.3 -1.7 

158 HH 6.5 65.0 136.0 58.5 129.5 

159 BC 100.0 141.0 180.0 41.0 80.0 

160 BC 102.2 155.0 176.0 52.8 73.8 

161 HH 12.0 56.0 116.0 44.0 104.0 

162 LO 59.9 85.0 102.0 25.1 42.1 
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Table b.2.  (continued). 

28 MGF 

163 LO 97.5 105.0 115.0 7.5 17.5 

164 HH 9.6 60.0 112.0 50.4 102.4 

165 HH 7.0 65.0 105.0 58.0 98.0 

166 BC 81.0 99.0 125.0 18.0 44.0 

167 BC 57.7 102.0 190.0 44.3 132.3 

168 LO 108.0 112.0 121.0 4.0 13.0 

29 MGB 

169 LO 87.0 109.0 129.0 22.0 42.0 

170 LO 87.0 120.0 126.0 33.0 39.0 

171 BC 103.5 142.0 182.0 38.5 78.5 

172 HH 12.7 81.0 122.0 68.3 109.3 

173 HH 11.2 50.0 140.0 38.8 128.8 

174 BC 93.0 140.0 198.0 47.0 105.0 

30 GB 

175 LO 37.7 40.0 65.0 2.3 27.3 

176 BC 67.5 112.0 177.0 44.5 109.5 

177 LO 44.7 57.0 120.0 12.3 75.3 

178 HH 11.0 66.0 128.0 55.0 117.0 

179 HH 11.4 60.0 108.0 48.6 96.6 

180 BC 30.2 88.0 163.0 57.8 132.8 

31 CB 

181 LO 113.0 115.0 127.0 2.0 14.0 

182 HH 7.0 54.0 104.0 47.0 97.0 

183 BC 80.5 114.0 188.0 33.5 107.5 

184 LO 54.0 83.0 118.0 29.0 64.0 

185 BC 96.3 133.0 182.0 36.7 85.7 

186 HH 7.7 60.0 121.0 52.3 113.3 
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Table b.2.  (continued). 

32 GF 

187 LO 94.1 117.0 156.0 22.9 61.9 

188 BC 102.5 152.0 217.0 49.5 114.5 

189 HH 14.0 100.0 116.0 86.0 102.0 

190 LO 147.2 130.0 139.0 -17.2 -8.2 

191 BC 86.0 119.0 210.0 33.0 124.0 

192 HH 9.0 45.0 90.0 36.0 81.0 

33 CB 

193 LO 67.0 84.0 83.0 17.0 16.0 

194 LO 81.5 116.0 153.0 34.5 71.5 

195 HH 11.0 45.0 114.0 34.0 103.0 

196 BC 86.5 133.0 206.0 46.5 119.5 

197 BC 88.0 126.0 204.0 38.0 116.0 

198 HH 10.0 70.0 132.0 60.0 122.0 

34 CF 

199 LO 32.0 68.0 125.0 36.0 93.0 

200 BC 89.3 139.0 225.0 49.7 135.7 

201 HH 10.5 77.0 113.0 66.5 102.5 

202 BC 49.4 118.0 154.0 68.6 104.6 

203 HH 12.5 74.0 155.0 61.5 142.5 

204 LO 42.0 53.0 121.0 11.0 79.0 

35 GF 

205 LO 128.5 107.0 134.0 -21.5 5.5 

206 BC 58.5 117.0 191.0 58.5 132.5 

207 HH 11.5 70.0 129.0 58.5 117.5 

208 LO 116.0 128.0 170.0 12.0 54.0 

209 HH 12.1 47.0 126.0 34.9 113.9 

210 BC 90.0 116.0 181.0 26.0 91.0 
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Table b.2.  (continued). 

36 MB 

211 LO 75.0 89.0 147.0 14.0 72.0 

212 BC 72.0 145.0 231.0 73.0 159.0 

213 LO 78.5 98.0 115.0 19.5 36.5 

214 BC 90.0 128.0 182.0 38.0 92.0 

215 HH 12.0 51.0 125.0 39.0 113.0 

216 HH 11.5 70.0 114.0 58.5 102.5 

37 GF 

217 HH 11.6 78.0 123.0 66.4 111.4 

218 BC 108.0 139.0 200.0 31.0 92.0 

219 LO 41.7 66.0 96.0 24.3 54.3 

220 LO 53.0 80.0 120.0 27.0 67.0 

221 HH 13.3 55.0 135.0 41.7 121.7 

222 BC 67.0 112.0 198.0 45.0 131.0 

38 MGF 

223 HH 12.5 70.0 122.0 57.5 109.5 

224 LO 46.0 84.0 109.0 38.0 63.0 

225 LO 83.6 104.0 136.0 20.4 52.4 

226 BC 88.5 122.0 147.0 33.5 58.5 

227 BC 92.0 130.0 156.0 38.0 64.0 

228 HH 14.5 73.0 120.0 58.5 105.5 

39 MB 

229 LO 57.3 67.0 106.0 9.7 48.7 

230 HH 15.0 64.0 120.0 49.0 105.0 

231 BC 76.2 130.0 188.0 53.8 111.8 

232 HH 15.3 54.0 67.0 38.7 51.7 

233 LO 46.2 72.0 95.0 25.8 48.8 

234 BC 93.5 142.0 216.0 48.5 122.5 
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Table b.2.  (continued). 

40 GB 

235 LO 62.0 111.0 107.0 49.0 45.0 

236 LO 73.7 90.0 150.0 16.3 76.3 

237 HH 16.0 66.0 80.0 50.0 64.0 

238 BC 38.0 88.0 145.0 50.0 107.0 

239 HH 10.0 55.0 80.0 45.0 70.0 

240 BC 98.0 137.0 174.0 39.0 76.0 

41 MF 

241 LO 50.1 60.0 63.0 9.9 12.9 

242 BC 90.0 126.0 193.0 36.0 103.0 

243 HH 12.1 56.0 107.0 43.9 94.9 

244 LO 35.0 66.0 97.0 31.0 62.0 

245 BC 71.7 109.0 183.0 37.3 111.3 

246 HH 9.0 65.0 80.0 56.0 71.0 

42 GB 

247 LO 53.0 80.0 83.0 27.0 30.0 

248 HH 14.0 65.0 97.0 51.0 83.0 

249 LO 76.0 69.0 113.0 -7.0 37.0 

250 BC 48.0 117.0 160.0 69.0 112.0 

251 HH 15.2 47.0 68.0 31.8 52.8 

252 BC 51.0 108.0 167.0 57.0 116.0 

43 MGF 

253 BC 56.0 116.0 187.0 60.0 131.0 

254* HH -- -- -- -- -- 

255 HH 14.0 78.0 112.0 64.0 98.0 

256 LO 40.0 103.0 130.0 63.0 90.0 

257 BC 65.0 129.0 160.0 64.0 95.0 

258 LO 63.0 70.0 108.0 7.0 45.0 
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Table b.2.  (continued). 

44 MB 

259 BC 77.7 150.0 214.0 72.3 136.3 

260 BC 80.5 119.0 208.0 38.5 127.5 

261 LO 70.0 74.0 80.0 4.0 10.0 

262 HH 10.0 50.0 90.0 40.0 80.0 

263 LO 80.5 60.0 83.0 -20.5 2.5 

264 HH 12.5 50.0 90.0 37.5 77.5 

45 MB 

265 HH 5.0 67.0 88.0 62.0 83.0 

266 LO 110.5 112.0 143.0 1.5 32.5 

267 BC 89.2 150.0 183.0 60.8 93.8 

268 LO 86.3 110.0 148.0 23.7 61.7 

269 HH 14.0 56.0 72.0 42.0 58.0 

270 BC 94.6 146.0 200.0 51.4 105.4 

46 CF 

271 LO 68.0 90.0 123.0 22.0 55.0 

272 HH 13.0 52.0 85.0 39.0 72.0 

273 BC 82.0 114.0 140.0 32.0 58.0 

274 HH 9.0 56.0 113.0 47.0 104.0 

275 LO 69.5 100.0 129.0 30.5 59.5 

276 BC 81.4 117.0 188.0 35.6 106.6 

47 MF 

277 BC 57.0 64.0 143.0 7.0 86.0 

278 HH 11.4 50.0 127.0 38.6 115.6 

279 BC 66.7 129.0 210.0 62.3 143.3 

280 LO 62.5 58.0 68.0 -4.5 5.5 

281 HH 13.7 50.0 96.0 36.3 82.3 

282 LO 57.0 120.0 160.0 63.0 103.0 
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Table b.2.  (continued). 

48 CB 

283 BC 90.5 157.0 205.0 66.5 114.5 

284 LO 54.0 96.0 156.0 42.0 102.0 

285 LO 70.5 73.0 90.0 2.5 19.5 

286 BC 51.0 93.0 199.0 42.0 148.0 

287 HH 15.0 78.0 131.0 63.0 116.0 

288 HH 11.0 70.0 127.0 59.0 116.0 
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Table b.3.  Measured crown diameters of yellow hibiscus by soil treatments 
during the second measurement (7/19/16) and final measurement (1/28/17) 
along with the growth between the second and final measurements.  * -Trees 
which had to be replaced during the course of the study 

Bed 
Number 

Treatment 
ID 

Number 

Crown 
Diameter 1 

(cm) 

Crown 
Diameter 2 

(cm) 

Crown 
Diameter 
Growth 

(cm) 

1 MF 
3 126 119 -7 

4 120 115 -5 

2 GF 
7* 120 120 0 

11 139 140 1 

3 CB 
14 91 64 -27 

15 110 112 2 

4 GB 
19 143 123 -20 

20 142 143 1 

5 MGF 
25* 141 153 12 

26 136 100 -36 

6 CF 
31 114 100 -14 

33 130 116 -14 

7 MB 
38 170 150 -20 

39 110 124 14 

8 MF 
43 110 120 10 

45 123 102 -21 

9 MGB 
50 167 135 -32 

52 68 66 -2 

10 GB 
55 170 101 -69 

56 110 102 -8 

11 MGF 
61 155 150 -5 

66 150 180 30 

12 MF 
67 134 109 -25 

72 120 130 10 

13 MF 
73 100 182 82 

77 140 107 -33 

14 CB 
83 124 139 15 

84 100 166 66 

15 MGB 
86 113 114 1 

87 150 163 13 

16 CF 
93 140 125 -15 

96 70 127 57 
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Table b.3.  (continued). 

17 CB 
97 123 136 13 

101 103 110 7 

18 CF 
107 110 166 56 

108 100 50 -50 

19 GF 
109 100 72 -28 

114 100 140 40 

20 MGB 
117 124 172 48 

118 75 60 -15 

21 GB 
124 124 128 4 

125 114 107 -7 

22 MGB 
129 110 113 3 

131 140 136 -4 

23 MGF 
135 115 86 -29 

137 97 106 9 

24 GF 
141 149 140 -9 

144 92 87 -5 

25 MGB 
147 114 120 6 

148 159 120 -39 

26 CF 
155 162 135 -27 

156 90 125 35 

27 MB 
158 115 111 -4 

161 139 128 -11 

28 MGF 
164 156 109 -47 

165 126 82 -44 

29 MGB 
172 148 157 9 

173 130 90 -40 

30 GB 
178 151 167 16 

179 97 103 6 

31 CB 
182 106 153 47 

186 134 152 18 

32 GF 
189 151 132 -19 

192 84 84 0 

33 CB 
195 110 134 24 

198 65 90 25 

34 CF 
201 96 146 50 

203 142 147 5 

35 GF 
207 174 124 -50 

209 120 95 -25 
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Table b.3.  (continued). 

36 MB 
215 156 120 -36 

216 96 85 -11 

37 GF 
217 114 117 3 

221 110 125 15 

38 MGF 
223 100 129 29 

228 130 132 2 

39 MB 
230 102 140 38 

232 97 114 17 

40 GB 
237 90 105 15 

239 64 55 -9 

41 MF 
243 138 150 12 

246 69 125 56 

42 GB 
248 155 107 -48 

252 90 97 7 

43 MGF 
254* -- -- -- 

255 169 180 11 

44 MB 
262 36 113 77 

264 95 75 -20 

45 MB 
265 102 123 21 

269 98 129 31 

46 CF 
272 73 123 50 

274 106 125 19 

47 MF 
278 122 157 35 

281 69 97 28 

48 CB 
287 130 114 -16 

288 99 155 56 
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APPENDIX C: MEASURED AERIAL DEPOSITION PARAMETERS 
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Table c.1.  Cl-, NO3
-, PO4

3-, SO4
2-, P, Na+, Mg2+, Ca2+, K+ deposition from wet and dry fall samples collected at 

Moody Gardens on Galveston Island during 14 day sample collection periods from May 2016 to May 2017.  The 
6/3/16 – 6/17/16 sampling does not include a dry fall deposition due to a missing collection pail which was taken 
from the precipitation collector by persons unknown. 

 

(mg/L) (mg/m2) (mg/L) (mg/m2) (mg/L) (mg) (mg/m2) (mg/L) (mg/m2) (mg/L) (mg/m2) (mg/L) (mg) (mg/m2) (mg/L) (mg/m2) (mg/L) (mg/m2) (mg/L) (mg/m2)

Wet 17 7.0 2.2 397.8 1.5 273.0 - - - 0.8 150.3 0.1 18.7 1.4 9.9 259.8 0.2 34.2 0.5 96.1 0.9 169.3

Dry 17 0.5 5.0 64.5 0.7 9.0 - - - 0.9 12.1 0.1 1.1 3.4 1.7 44.4 0.5 6.4 1.3 17.4 0.5 6.4

Wet 15 2.5 1.6 103.1 0.9 56.3 0.9 2.3 61.3 0.5 32.0 0.3 16.7 0.5 1.2 31.0 0.1 5.8 0.2 15.0 0.6 39.0

Dry N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Wet 15 1.4 2.1 75.8 1.3 47.9 0.2 0.3 8.6 1.1 40.2 0.2 5.5 1.5 2.1 54.6 0.2 8.2 0.7 25.6 0.4 15.1

Dry 15 0.5 2.4 34.8 1.4 19.8 0.5 0.3 7.4 0.6 9.2 0.4 5.5 1.9 1.1 27.9 0.3 4.2 1.2 17.8 1.9 26.8

Wet 15 0.4 2.3 27.3 0.6 7.2 - - - 0.3 3.5 0.2 2.2 0.9 0.4 10.6 0.1 1.5 0.2 2.1 0.0 0.4

Dry 15 0.4 14.1 163.9 0.9 10.1 0.2 0.1 2.1 2.2 25.9 0.4 4.5 8.2 3.6 95.8 1.3 14.6 2.6 30.4 2.2 26.1

Wet 15 3.7 1.2 113.6 1.2 110.6 - - - 0.5 45.1 0.1 6.7 1.1 3.9 101.6 0.1 12.6 0.6 55.7 - -

Dry 15 0.5 2.5 32.4 1.2 15.6 0.7 0.4 9.3 0.8 10.4 1.7 21.3 4.0 1.9 51.3 0.3 4.3 1.1 13.8 1.8 23.0

Wet 15 0.3 1.0 9.2 0.6 5.5 0.2 0.1 2.1 0.2 1.9 0.1 1.2 - - - 0.0 0.4 4.5 41.4 1.3 11.6

Dry 15 0.4 4.9 51.6 0.1 1.0 0.2 0.1 1.9 1.4 14.6 0.1 1.3 2.7 1.1 28.4 0.6 6.5 15.3 160.4 2.0 20.6

Wet 15 5.4 2.3 326.0 0.6 81.1 - - - 0.6 78.3 0.0 2.6 1.0 5.4 143.0 0.1 14.2 0.1 7.5 0.5 70.8

Dry 15 0.5 - - 1.2 14.7 0.3 0.2 4.3 2.9 36.3 0.1 1.0 7.4 3.5 92.3 1.3 15.9 2.8 35.3 0.7 8.7

Wet 15 2.3 4.8 288.0 1.1 65.9 2.7 6.1 160.5 0.8 50.1 0.4 26.7 2.5 5.7 151.0 0.2 14.0 0.2 11.1 3.1 187.8

Dry 15 0.5 2.8 36.0 1.7 22.0 0.2 0.1 3.0 1.0 12.2 0.1 0.8 2.3 1.1 29.2 0.3 3.9 1.2 15.3 0.7 8.9

Wet 15 1.5 1.7 68.1 0.8 31.1 0.4 0.7 17.3 0.8 30.4 0.1 2.4 0.8 1.3 33.9 0.1 5.1 0.3 11.6 1.5 62.6

Dry 15 0.5 2.3 28.3 2.1 25.4 0.4 0.2 4.9 1.1 13.5 0.1 1.5 2.0 0.9 23.7 0.3 4.1 2.1 25.9 1.4 17.6

Wet 15 0.3 4.9 37.9 6.7 51.8 1.9 0.6 14.6 3.1 23.7 0.5 3.6 2.6 0.8 19.8 0.5 3.9 2.1 16.4 0.6 4.6

Dry 15 0.5 3.8 48.5 3.5 45.9 1.6 0.8 20.3 2.6 34.1 0.4 4.8 1.5 0.7 19.0 0.4 5.1 2.8 35.7 1.7 22.0

Wet 15 1.7 2.4 108.7 2.1 92.4 1.0 1.8 46.3 1.6 70.0 0.1 6.6 1.0 1.6 43.3 0.1 4.6 0.1 3.8 0.5 22.7

Dry 15 0.5 4.6 58.3 2.5 32.1 1.1 0.5 13.2 3.2 40.3 0.2 2.0 2.6 1.2 32.4 0.4 5.0 1.3 16.6 0.7 9.0

Wet 15 0.5 1.9 24.7 0.7 9.3 - - - 0.3 4.0 0.6 7.4 0.3 0.2 4.1 0.1 1.4 0.2 3.0 0.7 8.9

Dry 15 0.5 3.5 41.9 1.4 16.9 0.4 0.2 5.0 1.3 15.8 0.6 6.9 2.1 0.9 24.9 0.4 4.4 0.9 10.5 1.0 12.3

5/18/16 - 6/3/16

6/3/16 - 6/17/16

6/17/16 - 7/1/16

7/1/16 - 7/15/16

PO4
3-NO3

-Cl-

Dates
Sample 

Type

Days 

Sampled

Volume 

(L)

7/15/16  - 7/29/16

7/29/16 - 8/12/16

8/12/16 - 8/26/16

8/26/16 - 9/9/16

9/9/16 - 9/23/16

9/23/16 - 10/7/16

10/7/16 - 10/21/16

10/21/16 - 11/4/16

K+Ca2+Mg2+Na+PSO4
2-
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Table c.1.  (continued). 

 

  

Wet 15 0.3 5.4 46.5 2.2 18.4 - - - 2.3 19.4 0.6 4.9 3.3 1.1 28.6 0.5 4.4 1.9 16.2 1.5 12.8

Dry 15 0.5 2.6 32.2 4.1 51.5 0.1 0.1 1.6 2.9 36.5 0.6 7.4 1.8 0.8 22.0 0.3 4.2 0.8 10.3 1.1 13.9

Wet 15 0.4 11.1 112.3 2.5 24.8 0.4 0.1 3.6 3.6 36.3 0.7 7.4 6.9 2.7 70.4 1.0 9.6 2.4 23.9 1.2 12.1

Dry 15 0.5 10.3 135.2 1.4 18.1 0.3 0.1 3.8 2.6 34.5 0.6 8.1 6.8 3.4 89.7 1.0 13.2 1.7 21.9 2.3 30.4

Wet 15 7.4 3.1 604.7 1.9 367.4 - - - 2.0 385.8 0.1 19.6 1.3 9.8 257.6 0.1 22.5 0.1 13.6 0.4 73.9

Dry 15 0.4 13.5 145.8 15.4 166.3 1.6 0.6 16.8 4.6 49.6 0.4 4.4 8.7 3.5 93.4 1.2 12.8 3.3 35.6 2.1 23.1

Wet 15 0.5 7.7 92.1 3.1 37.2 - - - 3.4 40.7 0.2 1.8 4.4 2.0 52.9 0.6 6.8 1.1 12.8 1.1 13.1

Dry 15 0.5 5.2 63.4 2.9 34.9 - - - 2.5 30.2 0.1 1.4 2.8 1.3 34.4 0.4 4.5 1.1 14.0 0.5 5.5

Wet 15 1.5 3.6 142.7 2.0 82.2 - - - 2.1 82.4 0.1 4.4 1.7 2.6 67.9 0.2 7.1 0.3 10.6 0.3 11.6

Dry 15 0.5 7.5 89.8 2.4 28.1 - - - 2.5 30.1 0.1 1.3 4.3 1.9 50.9 0.5 5.8 0.8 9.0 0.4 4.4

Wet 15 0.2 11.7 46.1 11.3 44.5 1.6 0.2 6.3 8.5 33.5 0.4 1.6 7.3 1.1 28.7 1.2 4.8 15.1 59.6 1.1 4.2

Dry 15 0.5 6.7 80.5 3.2 38.4 - - - 3.0 35.5 0.1 1.7 4.1 1.9 48.7 0.6 6.8 1.9 22.2 0.7 7.9

Wet 15 0.1 1.5 5.3 1.8 6.4 - - - 1.4 5.0 0.1 0.3 0.3 0.0 0.9 0.0 0.1 0.0 0.1 0.3 1.0

Dry 15 0.5 9.1 114.3 3.5 43.4 1.9 0.9 24.2 3.8 47.1 0.5 6.7 5.0 2.4 62.0 0.5 6.8 1.2 14.6 2.3 28.6

Wet 15 3.6 2.7 256.4 1.9 175.0 - - - 1.7 161.1 0.1 11.4 1.1 4.0 106.5 0.1 7.7 0.1 9.9 0.2 21.2

Dry 15 0.5 7.3 104.3 3.7 53.4 - - - 2.9 42.2 0.1 2.0 4.1 2.3 59.4 0.5 7.8 1.7 23.7 0.6 8.4

Wet 15 0.5 12.0 150.2 2.3 28.5 - - - 2.9 36.2 0.1 1.6 6.9 3.3 86.7 0.8 9.7 1.6 19.4 0.5 6.7

Dry 15 0.5 20.8 247.6 3.4 40.6 - - - 4.7 55.5 0.2 2.0 12.0 5.4 143.1 1.4 16.7 2.8 32.9 1.4 16.3

Wet 15 0.5 8.0 107.2 3.1 41.0 2.7 1.4 36.4 3.2 42.1 0.9 11.4 5.6 2.8 74.3 0.6 8.1 2.1 27.7 1.8 24.0

Dry 15 0.5 9.8 119.8 3.3 40.2 1.1 0.5 12.9 8.9 108.9 0.1 1.8 5.9 2.7 72.1 0.8 9.2 1.5 18.8 0.7 8.1

Wet 15 0.5 9.0 106.5 2.3 27.2 - - - 2.7 31.6 0.2 1.8 8.3 3.8 98.9 1.1 12.5 2.5 29.7 0.8 9.8

Dry 15 0.4 15.1 169.8 3.4 37.9 - - - 3.9 43.9 0.4 4.4 5.9 2.5 66.2 0.8 8.8 3.3 36.9 1.7 19.1

Wet 15 0.5 8.9 117.3 21.9 288.4 1.6 0.8 21.7 3.7 48.4 0.2 2.0 6.6 3.3 86.6 0.9 12.0 2.7 35.8 0.7 8.8

Dry 15 0.4 12.5 125.1 3.2 32.0 - - - 3.2 31.7 0.1 1.1 4.9 1.9 49.4 0.7 6.6 1.5 15.4 0.5 4.9

Wet 15 0.4 8.7 84.4 3.9 38.2 - - - 4.2 40.9 0.6 5.5 13.9 5.1 135.2 3.1 30.6 3.3 31.8 3.2 30.9

Dry 15 0.4 22.2 204.8 3.0 27.6 2.0 0.7 18.3 13.6 125.2 0.6 5.3 14.1 4.9 129.5 3.2 29.2 3.2 29.3 3.2 29.3

Wet 15 0.4 3.8 40.2 2.1 22.5 1.2 0.5 12.4 1.9 20.2 0.1 1.1 6.5 2.6 68.3 0.1 1.3 0.7 7.2 0.4 3.8

Dry 15 0.4 10.7 101.9 1.6 14.9 - - - 2.7 26.2 0.2 1.5 5.8 2.1 55.0 0.8 7.7 2.9 27.6 1.4 13.3

12/16/16 - 12/30/16

11/4/16 - 11/18/16

11/18/16 - 12/2/16

12/2/16 - 12/16/16

3/24/17 - 4/7/17

4/7/17 - 4/21/17

4/21/17 - 5/5/17

5/5/17 - 5/19/17

12/30/16 - 1/13/17

1/13/17 - 1/27/17

1/27/17 - 2/10/17

2/10/17 - 2/24/17

2/24/17 - 3/10/17

3/10/17 - 3/24/17
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APPENDIX D: SOIL STATISTICAL ANALYSES RESULTS
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Table d.1.  Statistical results of ANOVA test run on measured soluble soil Na+ 
concentrations from soil samples collected before treatment application (3/21/16) 
and seven months after application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 118.8940 16.9849 8.3500 <0.0001 

Block 5 18.3346 3.6669 1.8000 0.1379 

 

Table d.2.  Statistical results of ANOVA test run on measured exchangeable soil 
Na+ concentrations from soil samples collected before treatment application 
(3/21/16) and seven months after application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 26001.4196 3714.4885 0.4200 0.8824 

Block 5 18027.4525 3605.4905 0.4100 0.8393 

 

Table d.3.  Statistical results of ANOVA test run on measured soluble soil Ca2+ 
concentrations from soil samples collected before treatment application (3/21/16) 
and seven months after application (10/27/16).  

Source DF Type III SS 
Mean 

Square F Value Pr  > F  

Treatment 7 61.2471 8.7496 15.4600 <0.0001 

Block 5 2.5578 0.5116 0.9000 0.4896 

 

Table d.4.  Statistical results of ANOVA test run on measured exchangeable soil 
Ca2+ concentrations from soil samples collected before treatment application 
(3/21/16) and seven months after application (10/27/16).  

Source DF Type III SS Mean Square 
F 

Value Pr  > F  

Treatment 7 13226663.4000 1889523.3400 0.7100 0.6631 

Block 5 35827562.6600 7165512.5300 2.7000 0.0366 
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Table d.5.  Statistical results of ANOVA test run on measured soluble soil Mg2+ 
concentrations from soil samples collected before treatment application (3/21/16) 
and seven months after application (10/27/16).  

Source DF Type III SS 
Mean 

Square F Value Pr  > F  

Treatment 7 41.6792 5.9542 21.9000 <0.0001 

Block 5 2.1966 0.4393 1.6200 0.1815 

 

Table d.6.  Statistical results of ANOVA test run on measured exchangeable soil 
Mg2+ concentrations from soil samples collected before treatment application 
(3/21/16) and seven months after application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 148911.1575 21273.0225 1.4500 0.2191 

Block 5 133064.2273 26612.8455 1.8100 0.1369 

 

Table d.7.  Statistical results of ANOVA test run on measured SAR values from 
soil samples collected before treatment application (3/21/16) and seven months 
after application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 17.1567 2.4510 1.5800 0.1732 

Block 5 5.6458 1.1292 0.7300 0.6065 

 

Table d.8.  Statistical results of ANOVA test run on measured EC values from 
soil samples collected before treatment application (3/21/16) and seven months 
after application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 2627666.9170 375380.9880 0.8600 0.5494 

Block 5 898963.0000 179792.7500 0.4100 0.8383 
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Table d.9.  Statistical results of ANOVA test run on measured soil pH values from 
soil samples collected before treatment application (3/21/16) and seven months 
after application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 0.2307 0.0330 1.0900 0.3878 

Block 5 0.3476 0.0695 2.3100 0.0650 

 

Table d.10.  Statistical results of ANOVA test run on measured soil K+ 
concentrations from soil samples collected before treatment application 
(3/21/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 87338.5887 12476.9412 1.5400 0.1856 

Block 5 38947.6177 7789.5236 0.9600 0.4537 

 

Table d.11.  Statistical results of ANOVA test run on measured soil CN Ratio 
values from soil samples collected before treatment application (3/21/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 6.5203 0.9315 0.4900 0.8330 

Block 5 8.5131 1.7026 0.9000 0.4911 

 

Table d.12.  Statistical results of ANOVA test run on measured soil total organic 
C concentrations from soil samples collected before treatment application 
(3/21/16).  

Source DF Type III SS Mean Square 
F 

Value Pr  > F  

Treatment 7 292028090.0000 41718298.6000 0.8900 0.5229 

Block 5 114976964.0000 22995392.8000 0.4900 0.7800 
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Table d.13.  Statistical results of ANOVA test run on measured soil total N 
concentrations from soil samples collected before treatment application 
(3/21/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 2686774.8550 383824.9790 1.0400 0.4223 

Block 5 565654.3790 113130.8760 0.3100 0.9058 

 

Table d.14.  Statistical results of ANOVA test run on measured soil P 
concentrations from soil samples collected before treatment application 
(3/21/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 54.7961 7.8280 1.7200 0.1359 

Block 5 76.1362 15.2272 3.3500 0.0141 

 

Table d.15.  Statistical results of ANOVA test run on measured soil S2- 
concentrations from soil samples collected before treatment application 
(3/21/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 269.6902 38.5272 0.4000 0.8929 

Block 5 717.2466 143.4493 1.5100 0.2128 

 

Table d.16.  Statistical results of ANOVA test run on measured soil B3+ 
concentrations from soil samples collected before treatment application 
(3/21/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 2.5648 0.3664 0.6200 0.7385 

Block 5 5.4990 1.0998 1.8500 0.1284 
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Table d.17.  Statistical results of ANOVA test run on measured soluble soil Na+ 
concentrations from soil samples collected seven months after treatment 
application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 9.2187 1.3170 1.4000 0.2366 

Block 5 13.7699 2.7540 2.9300 0.0261 

 

Table d.18.  Statistical results of ANOVA test run on measured exchangeable soil 
Na+ concentrations from soil samples collected seven months after treatment 
application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 47294.7828 6756.3975 3.0900 0.0121 

Block 5 66783.7217 13356.7443 6.1100 0.0004 

 

Table d.19.  Statistical results of ANOVA test run on measured soluble soil Ca2+ 
concentrations from soil samples collected seven months after treatment 
application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 22.6072 3.2296 3.0900 0.0122 

Block 5 8.3485 1.6697 1.6000 0.1872 

 

Table d.20.  Statistical results of ANOVA test run on measured exchangeable soil 
Ca2+ concentrations from soil samples collected seven months after treatment 
application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 4455372.6080 636481.8010 0.8100 0.5879 

Block 5 4170837.5590 834167.5120 1.0600 0.3980 
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Table d.21.  Statistical results of ANOVA test run on measured soluble soil Mg2+ 
concentrations from soil samples collected seven months after treatment 
application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 2.1007 0.3001 1.6800 0.1468 

Block 5 4.5631 0.9126 5.1000 0.0013 

 

Table d.22.  Statistical results of ANOVA test run on measured exchangeable soil 
Mg2+ concentrations from soil samples collected seven months after treatment 
application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 76539.7864 10934.2552 1.7700 0.1253 

Block 5 145926.6331 29185.3266 4.7200 0.0021 

 

Table d.23.  Statistical results of ANOVA test run on measured SAR values from 
soil samples collected seven months after treatment application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 5.6360 0.8051 1.6800 0.1472 

Block 5 6.7543 1.3509 2.8100 0.0309 

 

Table d.24.  Statistical results of ANOVA test run on measured EC values from 
soil samples collected seven months after treatment application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 77111.9167 11015.9881 0.5000 0.8263 

Block 5 428605.0000 85721.0000 3.9100 0.0064 

 

Table d.25.  Statistical results of ANOVA test run on measured pH values from 
soil samples collected seven months after treatment application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 0.3603 0.0515 1.4200 0.2288 

Block 5 0.4903 0.0981 2.7000 0.0362 
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Table d.26.  Statistical results of ANOVA test run on measured soil K+ 
concentrations from soil samples collected seven months after treatment 
application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 32437.2891 4633.8984 1.6400 0.1569 

Block 5 56729.6543 11345.9309 4.0100 0.0055 

 

Table d.27.  Statistical results of ANOVA test run on measured soil CN Ratio 
values from soil samples collected seven months after treatment application 
(10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 19.8922 2.8417 1.2100 0.3210 

Block 5 20.4507 4.0901 1.7500 0.1495 

 

Table d.28.  Statistical results of ANOVA test run on measured soil total organic 
C concentrations from soil samples collected seven months after treatment 
application (10/27/16).  

Source DF Type III SS Mean Square 
F 

Value Pr  > F  

Treatment 7 103342182.0000 14763168.9000 0.8400 0.5598 

Block 5 175052973.7000 35010594.7000 2.0000 0.1030 

 

Table d.29.  Statistical results of ANOVA test run on measured soil total N 
concentrations from soil samples collected seven months after treatment 
application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 129728.4292 18532.6327 0.3400 0.9293 

Block 5 360203.9742 72040.7948 1.3300 0.2760 
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Table d.30.  Statistical results of ANOVA test run on measured soil P 
concentrations from soil samples collected seven months after treatment 
application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 8.7852 1.2550 0.9300 0.4967 

Block 5 29.7423 5.9485 4.4000 0.0033 

 

Table d.31.  Statistical results of ANOVA test run on measured soil S2- 
concentrations from soil samples collected seven months after treatment 
application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 302.9203 43.2743 1.9200 0.0953 

Block 5 781.8310 156.3662 6.9500 0.0001 

 

Table d.32.  Statistical results of ANOVA test run on measured soil B3+ 
concentrations from soil samples collected seven months after treatment 
application (10/27/16).  

Source DF Type III SS 
Mean 

Square 
F 

Value Pr  > F  

Treatment 7 1.0123 0.1446 1.1000 0.3826 

Block 5 6.0389 1.2078 9.2200 <0.0001 
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APPENDIX E: PLANT STATISTICAL ANALYSES RESULTS  
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Table e.1.  Statistical results of split plot analysis run on measured plant height 
growth between the initial (3/15/16) and second (7/19/16) tree measurements.  

Effect 
Num 

DF 
Den 
DF 

F 
Value Pr  > F  

Treatment 7 35 0.96 0.4738 

Species 2 10 114.15 <0.0001 

Treatment*Species 14 70 1.36 0.1941 

 

Table e.2.  Statistical results of split plot analysis run on measured plant height 
growth between the second (7/19/16) and final (1/28/17) tree measurements.  

Effect 
Num 

DF 
Den 
DF 

F 
Value Pr  > F  

Treatment 7 35 0.90 0.5168 

Species 2 10 148.19 <0.0001 

Treatment*Species 14 70 0.79 0.6733 

 

Table e.3.  Statistical results of split plot analysis run on measured plant diameter 
growth between the initial (3/15/16) and second (7/19/16) tree measurements.  

Effect 
Num 

DF 
Den 
DF 

F 
Value Pr  > F  

Treatment 7 35 2.66 0.0255 

Species 2 10 206.97 <0.0001 

Treatment*Species 14 70 1.63 0.0922 

 

Table e.4.  Statistical results of split plot analysis run on measured plant diameter 
growth between the second (7/19/16) and final (1/28/17) tree measurements.  

Effect 
Num 

DF 
Den 
DF 

F 
Value Pr  > F  

Treatment 7 35 1.87 0.1051 

Species 2 10 522.57 <0.0001 

Treatment*Species 14 70 1.40 0.1746 
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Table e.5.  Statistical results of split plot analysis run on measured plant volume 
growth between the initial (3/15/16) and second (7/19/16) tree measurements.  

Effect 
Num 

DF 
Den 
DF 

F 
Value Pr  > F  

Treatment 7 35 4.38 0.0014 

Species 2 10 275.96 <0.0001 

Treatment*Species 14 70 3.22 0.0006 

 

Table e.6.  Statistical results of split plot analysis run on measured plant volume 
growth between the second (7/19/16) and final (1/28/17) tree measurements.  

Effect 
Num 

DF 
Den 
DF 

F 
Value Pr  > F  

Treatment 7 35 2.17 0.0618 

Species 2 10 259.46 <0.0001 

Treatment*Species 14 70 2.01 0.0294 
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