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ABSTRACT

In this work, we discuss the properties of the 3-rung Möbius ladder on the torus.

We also prove Z2 is an orientation preserving topological symmetry group of the

3-rung Möbius ladder with sides and rungs distinct, embedded in the torus.
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1 INTRODUCTION

The field of topological stereochemistry was developed from the research of topol-

ogist Jon Simon in an attempt to answer the questions of chemist David Walba. In

1982, Walba, Richards, and Haltiwanger became the first chemists to synthesize a

molecule that they believed to have the structure of a 3-rung Möbius ladder [5]. The

Möbius ladder is similar to a Möbius strip, but the strip is replaced with a ladder

that contains three rungs. Figure 1.1 below illustrates the structure of the 3-rung

Möbius ladder and its mirror image. By the mirror image of an object we mean the

object as seen in a mirror [5].

Figure 1.1: A 3-rung Möbius ladder and its mirror image [5]

The molecule Walba and his researchers created was constructed from carbon and

oxygen atoms. The sides of the ladder were made from a polyether chain consisting

of carbon and oxygen atoms and the rungs were formed by carbon-carbon double

bonds with no oxygen atoms. So, the sides and rungs of the ladder are chemically

different. To prove that the molecule had the structure of a 3-rung Möbius ladder, the

researchers used nuclear magnetic resonance to gather evidence that the molecule was

chemically chiral. A molecule is said to be chemically achiral if it can be deformed

into its mirror image. Otherwise, it is said to be chemically chiral [5].

As seen in Figure 1.2(a), the molecular cylinder is its own mirror image and so it

is chemically achiral. The evidence of chirality led the researchers to believe they had
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Figure 1.2: Different structures of Walba, Richards, and Haltiwanger’s molecule [5]

successfully synthesized the first molecular Möbius ladder. The researchers created

many ladders and then forced the ends to join together. They assumed that some

of the ladders would have joined in a half-left twist and some in a half-right twist as

seen in Figure 1.2(b, c).

Amino acids in living organisms are typically chiral. This means that organisms

may have different reactions to different enantiomers. A chiral molecule and its mirror

image together are called enantiomers [4]. We see this effect in medicine for humans

where one enantiomer may have the desired effect, and the other is often ineffective.

However, in the 1960s a chiral drug, Thalidomide, was given to pregnant women as a

racemic mixture meaning it had a 50 : 50 mixture of the two enantiomers [4]. The left-

handed enantiomer helped cure morning sickness and the right-handed enantiomer

caused terrible birth defects. Chemists are able to separate the enantiomers to make

medicines that eliminate these side effects, but this is a costly process. So, it is of

importance to determine whether or not a molecule is chemically chiral [4].

Walba conjectured that even with complete flexibility the 3-rung Möbius ladder

could not be deformed into its mirror image so that rungs would go to rungs and sides

would go to sides, but he was unable to prove it. When the sides and rungs of the
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3-rung Möbius ladder are not chemically different it is possible to deform the half-left

twist into its mirror image, the half-right twist, and vice versa [11]. However, when the

sides and rungs are chemically different as they are in this molecule, the 3-rung Möbius

ladder cannot be deformed into its mirror image. In 1985, Simon completed the proof

that the embedded graph of a Möbius ladder with 3 rungs cannot be deformed into

its mirror image such that rungs go to rungs and sides go to sides [11].

Chemists have long been interested in finding molecules that are structurally re-

lated to each other. These molecules are called isomers and the type of interest to

topologists is the topological stereoisomer. The topological stereoisomers of a given

molecule are those molecules that have the same abstract graph as the given molecule,

but as embedded graphs one cannot be deformed into the other [4]. Topologists have

become interested in two branches of stereochemistry. The first is recognizing when

one embedding of a graph cannot be deformed into another embedding and the second

is evaluating the properties that are presented by the deformation.

1.1 Topology

Now, we transition into the topological ideas that we use in this work. Here we

present more formal definitions of the mathematical terms we have introduced above.

Definition 1.1. A homeomorphism, or topological equivalence, is a one-to-one and

onto continuous function between topological spaces with a continuous inverse [1].

Definition 1.2. Let A and B be subsets of a set M , which is a subset of Rn. We

say that A is ambient isotopic to B in M if there is a continuous function F : M ×

[0, 1]→M such that for each fixed t ∈ [0, 1] the function F (x, t) is a homeomorphism,

F (x, 0) = x for all x ∈ M , and F (A × {1}) = B. The function F is said to be an

ambient isotopy [4].

Since this definition corresponds with our intuitive conception of a deformation

3



we use the words ambient isotopy and deformation interchangeably.

Definition 1.3. Let X and Y be topological spaces. If f : X → Y is a one-to-one

map, f : X → f(X) is a homeomorphism, and f(X) has the induced topology from

Y, we call f an embedding of X into Y [1].

Definition 1.4. A graph is a finite collection of vertices together with disjoint edges

connecting pairs of vertices, with the requirement that there is at most one edge

between any pair of vertices and every edge has two distinct vertices [4].

Definition 1.5. Let X be a graph considered as a topological space with the discrete

topology and Y a topological space. If an embedding f of X into Y exists, we call

f(X) an embedded graph.

Definition 1.6. An abstract graph is a graph that is considered independent of any

particular embedding in three-dimensional space [4].

Definition 1.7. A graph embedded in three-dimensional space is topologically achiral

if it can be deformed into its mirror image. Otherwise it is topologically chiral [5].

With his proof, Simon showed that the molecular Möbius ladder with 3 rungs

that are chemically different from the sides is topologically chiral and that the 3-rung

Möbius ladder and its mirror image are topological stereoisomers. This result led

topologists to question if it was the abstract structure of the graph or the particular

embedding that made the molecule chiral. Flapan answered this question in 1989

with her proof that no embedding of a Möbius ladder with an odd number of rungs

greater than one can be deformed into its mirror image in such a way that rungs go

to rungs and sides go to sides [3].

Definition 1.8. An automorphism of a graph is defined as a bijection from the graph

to itself, taking vertices to vertices in such a way that adjacent vertices are taken to

adjacent vertices [4].
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One way to determine if a molecule is chemically chiral is to examine all of its

topological stereoisomers. Given a particular embedded graph of the molecule, per-

forming an automorphism that is not induced by a deformation of the embedded

graph in space creates a topological stereoisomer. There are only a finite number of

automorphisms of a given graph, so enumerating all topological stereoisomers should

be possible. Whether or not a particular automorphism can be induced by a de-

formation depends on the embedding of the graph. So, determining the topological

symmetry groups of a molecule is the first step.

Definition 1.9. For a particular embedded graph G in a topological space X, a

topological symmetry group is the group of automorphisms of G induced by homeo-

morphisms on X [6].

Definition 1.10. Let A and B be subsets of R3, and let h : A→ B and g : A→ B be

homeomorphisms. We say h and g are isotopic if there exists a continuous function

F : A × [0, 1] → B such that F (x, 0) = h(x), F (x, 1) = g(x), and for every fixed

t ∈ [0, 1], the function F (x, t) is a homeomorphism [4].

Definition 1.11. Let h : R3 → R3 be a homeomorphism. If h is isotopic to the

identity map, then we say h is orientation preserving. If h is isotopic to a reflection

map, then we say h is orientation reversing [4].

An important result in topology is that every homeomorphism h : R3 → R3 is

isotopic to either the identity map or to a reflection map, but not to both [4]. So,

orientation reversing homeomorphisms map an embedded graph to its mirror image

or a deformation of its mirror image, while orientation preserving homeomorphisms

map an embedded graph to itself or a deformation of itself in space [4]. We are

interested only in orientation preserving topological symmetry groups so we only

need to consider orientation preserving homeomorphisms.
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The 3-rung Möbius ladder has six vertices, or six places where the rungs meet

the sides of the ladder. For this reason the topological symmetry groups must be

subgroups of the symmetric group S6. Flapan and Lawrence discovered all of the

orientation preserving topological symmetry groups of a 3-rung Möbius ladder graph

in the 3-sphere, S3. As in knot theory, they chose to embed graphs in the 3-sphere

instead of R3 noting that the topological symmetry groups are the same whether the

graph is embedded in R3 or S3 [6].

The non-trivial subgroups of S6 up to an isomorphism are: Z6,Z5,Z4,Z3,Z2, D6,

D5, D4, D3, D2, A6, A5, A4, S6, S5, S4,Z5 × Z4,Z3 × Z3,Z2 × Z4, (Z3 × Z3)× Z4, (Z3 ×

Z3)×Z2,Z2×Z2×Z2, D3×D3, D4×Z2, D3×Z3, A4×Z2, S4×Z2, S3 oZ2 [6]. Flapan

and Lawrence were able to find a complete list of the nontrivial groups which occur

as orientation-preserving topological symmetry groups for some embedding of the 3-

rung Möbius ladder in S3. The groups are as follows: Z6,Z3,Z2, D6, D3, D2, D3 ×

D3,Z3 × Z3, (Z3 × Z3)× Z2, D3 × Z3 [6].

The Möbius ladder can be embedded in S3, but it could also be embedded in

other topological spaces such as the surface of a torus, T 2. In this work, we seek to

classify the orientation preserving topological symmetry groups of some embedding

of the 3-rung Möbius ladder in the torus. This question has not been investigated

elsewhere. We do not yet have a complete list of the orientation preserving topological

symmetry groups of some embedding of the 3-rung Möbius ladder in the torus.

In chapter 3 we present a proof of one group that occurs as an orientation pre-

serving topological symmetry group of the 3-rung Möbius ladder with sides and rungs

distinct, embedded in the torus. To complete this proof we present a formal definition

of the torus and discuss its topological properties in chapter 2.
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2 Properties of the Torus

In order to consider embeddings of the molecular 3-rung Möbius ladder in T 2 we

need to examine its properties. The torus as shown in Figure 2.1 is commonly defined

as the product of two unit circles, S1 × S1. We call the first circle the longitude, l,

and the second circle the meridian, m.

l

m

Figure 2.1: The torus

2.1 The Torus as an Identification Space

It is useful to define the torus as an identification space when we are interested in

the embeddings on its surface. In this section we present two ways to construct the

torus as an identification space.

Definition 2.1. Let X be a topological space and let P be a family of disjoint

nonempty subsets of X such that
⋃
P = X, called the partition of X. We form a new

space, Y called an identification space, as follows: the points of Y are the members

of P and, if ϕ : X → Y sends each point of X to the subset of P containing it,

the topology on Y is the largest for which ϕ is continuous. This topology is called

the identification topology on Y . We think of Y as the space obtained from X by

identifying each of the subsets of P to a single point [1].
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Definition 2.2. Take X to be the unit square [0, 1]× [0, 1] in R2 with the subspace

topology, and partition X into the following subsets:

1. the set {(0, 0), (0, 1), (1, 0), (1, 1)} of four corner points;

2. sets consisting of pairs of points (x, 0), (x, 1), where 0 < x < 1;

3. sets consisting of pairs of points (0, y), (1, y), where 0 < y < 1;

4. sets consisting of a single point (x, y) where 0 < x < 1 and 0 < y < 1.

The resulting identification space is the torus [1].

Intuitively the torus can be formed by rotating the bottom segment forwards to

glue it to the top of the unit square to form a cylinder. Then stretch the cylinder

around and glue the ends of the cylinder together so that the four corners all lie on

top of each other. This creates the torus from the unit square as shown in Figure 2.2.

Figure 2.2: Construction of the torus from the unit square

We can also create the torus as an identification space from a regular hexagon.

We define a new coordinate system so that the x-axis passes through the hexagon at

8



(
2
3
, 2
3

)
(0, 1)

(
− 1

3
, 2
3

)
(0, 0)

(
2
3
,−1

3

)
(1, 0)

y − axis

x− axis

Figure 2.3: The unit hexagon

points (0, 0) and (1, 0) and the y-axis passes through the hexagon at points (0, 0)

and (0, 1) as shown in Figure 2.3. We call this hexagon a unit hexagon in R2.

As demonstrated in Figure 2.4, the first step is to rotate the top and bottom of

the hexagon up out of the page and glue them together. Next, add a 180 degree twist

by leaving the left side alone and rotating the bottom right corner up out of the page.

Finally, stretch the shape around so the ends are glued together.

Definition 2.3. Take X to be the unit hexagon in R2 with the subspace topology,

and partition X into the following subsets:

1. the set {(0, 0), (0, 1), (1, 0), (2
3
, 2
3
), (−1

3
, 2
3
), (2

3
,−1

3
)} of six corner points;

2. sets consisting of pairs of points (x,−1
2
x), (x,−1

2
x+ 1) where 0 < x < 2

3
;

3. sets consisting of pairs of points (x,−2x), (x+ 1,−2x) where −1
3
< x < 0;

4. sets consisting of pairs of points (x, x+ 1), (x+ 1, x) where −1
3
< x < 0;

5. sets consisting of a single point (x, y) where 0 < x < 1 and 0 < y < 2
3
;

6. sets consisting of a single point (x, y) where −1
3
< x < 0 and 2

3
< y < x+ 1;

7. sets consisting of a single point (x, y) where 0 < x < 2
3

and 2
3
< y < −1

2
x+ 1;
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8. sets consisting of a single point (x, y) where 0 < x < 2
3

and −1
2
x < y < 0;

9. sets consisting of a single point (x, y) where 2
3
< x < 1 and x− 1 < y < 0;

The resulting identification space is the torus.

Figure 2.4: Construction of the torus from the unit hexagon

There are other ways to define a coordinate system on a regular hexagon. We

consider only one other coordinate system that we call the unit hexagon with alternate

coordinates. Figure 2.5 shows the unit hexagon with the alternate coordinates. Notice

that the torus could be formed as an identification space from the unit hexagon with

alternate coordinates in a similar way to the unit hexagon.
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(1, 1)
(

1
2
, 1
)

(
0, 1

2

)

(0, 0)
(

1
2
, 0
)

(
1, 1

2

)
y − axis

x− axis

Figure 2.5: The unit hexagon with alternate coordinates

For our work it is useful to construct the torus as an identification space from

R2. Previously, we defined the torus as an identification space from the unit square.

However, in chapter 3 we transform our unit square so that the unit square is not

always taken back to itself. So, we have an alternative definition of the torus as an

identification space. We identify (x, y) ∈ R2 with (x + m, y + n) where m,n ∈ Z.

Then, we construct the torus as an identification from the unit square by the same

definition as before.

Definition 2.4. For every (x, y) ∈ R2 send (x, y) to (x + m, y + n) where m,n ∈ Z

so that 0 ≤ x+m ≤ 1 and 0 ≤ y + n ≤ 1.

Take X to be the unit square [0, 1]× [0, 1] in R2 with the subspace topology, and

partition X into the following subsets:

1. the set {(0, 0), (0, 1), (1, 0), (1, 1)} of four corner points;

2. sets consisting of pairs of points (x, 0), (x, 1), where 0 < x < 1;

3. sets consisting of pairs of points (0, y), (1, y), where 0 < y < 1;

4. sets consisting of a single point (x, y) where 0 < x < 1 and 0 < y < 1.

The resulting identification space is the torus.
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Although the details of identifying R2 to the torus through the unit hexagon are

different, we can similarly define the torus as an identification space from all of R2

using the hexagon tiling.

2.2 Homeomorphisms of the Torus

In this section we discuss which subgroups of S6 could possibly be orientation

preserving topological symmetry groups of the torus. We construct this list after con-

sidering the correspondence of homeomorphisms of the torus to elements in GL2(Z).

Definition 2.5. The general linear group GL2(Z) is the set of all 2×2 matrices with

integer entries and a nonzero determinant.

Definition 2.6. The special linear group SL2(Z) is the set of all 2× 2 matrices with

integer entries and determinant 1.

According to Casson and Bleiler, the homeomorphisms of the torus correspond

up to isotopy to the elements of the general linear group GL2(Z) [2]. Furthermore, a

homeomorphism preserves orientation if and only if it corresponds to an element of

the special linear group SL2(Z) [2]. Since we are interested only in the orientation-

preserving topological symmetry groups, we can rule out all subgroups of S6 that are

not isomorphic to subgroups of SL2(Z).

In [10], Newman states that the finite subgroups of GL2(Z) are Z1,Z2,Z3,Z4,Z6,

D2, D3, D4, D6. Furthermore, the finite subgroups of SL2(Z) are isomorphic to the

cyclic groups Z1,Z2,Z3,Z4,Z6. We consider only the non-trivial subgroups. This

means that Z2,Z3,Z4,Z6 are the only groups that could possibly be nontrivial orien-

tation preserving topological symmetry groups of the 3-rung Möbius ladder embedded

on the torus.
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2.3 Correspondence of Homeomorphisms

In this section we describe the correspondence between the elements of SL2(Z) and

the homeomorphisms of the torus. The homeomorphisms correspond to rotations of

the unit square, unit hexagon, and unit hexagon with alternate coordinates as shown

in Figure 2.6 before the torus is constructed as an identification space.

~a =
(

1 0
)T

~b =
(

0 1
)T

~b =
(

0 1
)T

~a =
(

1 0
)T

~b =
(

0 1
)T

~a =
(

1 0
)T

Figure 2.6: Identity homeomorphism

We write ~a =
(
ax ay

)T
and ~b =

(
bx by

)T
where ax, ay, bx, by are integers that

correspond to the magnitude of the vector along the x− and y − axes. For our

purposes, ax, ay, bx, by ∈ {−1, 0, 1}. Then, we create a matrix from vectors ~a,~b as

13



follows ax bx

ay by

 .

The identity matrix

1 0

0 1

 corresponds to the identity homeomorphism of the

torus. That is, no transformation occurs. Figure 2.6 shows the unit square, unit

hexagon, and unit hexagon with alternate coordinates with the vectors ~a,~b that cor-

respond to the identity matrix.

There are twelve elements of finite order in SL2(Z). They are listed in Table 2.1

with their order and corresponding rotation of the unit square, unit hexagon, or unit

hexagon with alternate coordinates.

The matrices 1 0

0 1

 ,

0 −1

1 0

 ,

−1 0

0 −1

 ,

 0 1

−1 0


naturally correspond to homeomorphsims of the torus defined as the identification

space of the unit square since rotations of 0,
π

2
, π,

3π

2
send the boundary of the unit

square to itself. The matrices1 0

0 1

 ,

0 −1

1 1

 ,

−1 −1

1 0

 ,

−1 0

0 −1

 ,

 0 1

−1 −1

 ,

 1 1

−1 0


naturally correspond to homeomorphsims of the torus defined as the identification

space of the unit hexagon since rotations of 0,
π

3
,
2π

3
, π,

4π

3
,
5π

3
send the boundary of

the unit hexagon to itself.

The matrices 1 −1

1 0

 ,

0 −1

1 −1

 ,

−1 1

−1 0

 ,

 0 1

−1 1


correspond to homeomorphsims of the torus defined as the identification space of

the unit hexagon with alternate coordinates. It is most natural to examine these

homeomorphisms as matrix transformations.
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Matrix Order Rotation Matrix Order Rotation1 0

0 1

 1 0

−1 0

0 −1

 2 π

0 −1

1 1

 6
π

3

 0 1

−1 −1

 3
4π

3

1 −1

1 0

 6
π

3

−1 1

−1 0

 3
4π

3

0 −1

1 0

 4
π

2

 0 1

−1 0

 4
3π

2

−1 −1

1 0

 3
2π

3

 1 1

−1 0

 6
5π

3

0 −1

1 −1

 3
2π

3

 0 1

−1 1

 6
5π

3

Table 2.1: The finite order SL2(Z) elements

To find an order-2 automorphism, we can examine embeddings of the 3-rung

Möbius ladder on the unit square or the unit hexagon. To find an order-4 auto-

morphism, it is most natural to consider embeddings on the unit square and to find

automorphisms of order 3 or 6 it is most natural to examine embeddings on the unit

hexagon. We can also use a change of coordinates to examine an embedding on the

unit square, the unit hexagon, and the unit hexagon with alternate coordinates.
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2.4 The Loop of the 3-rung Möbius Ladder

In this section we discuss a technique for determining that a homeomorphism does

not induce an automorphism of the 3-rung Möbius ladder. Since our 3-rung Möbius

ladder has sides and rungs that are chemically distinct, our automorphisms must send

rungs to rungs and sides to sides.

Definition 2.7. A loop in a topological space X is a continuous function α : [0, 1]→

X such that α(0) = α(1), and we shall say the loop is based at the point α(0) [1].

We define the loop of our molecule on the torus as the sides of the ladder based

at 1, so that our loop is 123456 as shown in Figure 2.7. So, our automorphisms must

send the loop to itself through continuous deformation.

•
3

•
2

•
1

•
3

•
2

•
1

•
3

•
2

•
1

•
6

•
5

•
4

Figure 2.7: A loop of the 3-rung Möbius ladder

Definition 2.8. Let X, Y be topological spaces and f, g : X → Y be continuous

functions. Then f is homotopic to g if there exists a continuous function F : X ×

[0, 1] → Y such that F (x, 0) = f(x) and F (x, 1) = g(x) for all points x ∈ X.

Furthermore, the function F is called a homotopy from f to g [1].

Notice that isotopy is a special case of homotopy since, by definition every isotopy

is a homotopy. We do not need to meet all of the requirements of an isotopy, as

a homotopy provides us with the continuous deformation that we need. Also, the

relation of homotopy is an equivalence relation [1].
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Definition 2.9. The equivalence class of a loop L under the equivalence relation of

homotopy is denoted [L] and called the homotopy class of L [8].

Definition 2.10. Let Σ be a compact connected orientable surface. The mapping

class group of Σ,M(Σ), is the group of orientation preserving homeomorphisms from

Σ to Σ up to isotopy among orientation preserving homeomorphisms [9].

Two homeomorphisms from Σ to Σ are homotopic if and only if they are isotopic

[9]. Since the torus is a compact connected orientable surface, we can use homotopy

and isotopy interchangeably. Massuyeau states the mapping class group of the torus

is isomorphic to SL2(Z) [9], that is, M(T 2) ∼= SL2(Z). Furthermore, if a homeomor-

phism h ∈M(T 2) and L is a loop such that h(L) is isotopic to L, then [h(L)] = [L].

We can also say that if [h(L)] 6= [L] then h(L) is not isotopic to L and in this case h

would not provide us with an automorphism of the 3-rung Möbius Ladder.

We use the fundamental group of the torus to describe the homotopy class of the

loop. It is well known that the fundamental group of the torus is Z×Z [1]. Homotopy

classes can be seen as ordered pairs where the first coordinate represents the number of

times the loop circles the longitude, and the second coordinate represents the number

of times the loop circles the meridian.
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3 Orientation Preserving Topological Symmetry Group

In this chapter we present a proof that Z2 occurs as an orientation preserving

topological symmetry group of the 3-rung Möbius ladder with sides and rungs distinct,

embedded in the torus. First, we introduce an embedding of the 3-rung Möbius

ladder and show that it supports an order-2 automorphism. Then we prove that this

embedding does not support any higher-order automorphisms so that we can conclude

Z2 is the topological symmetry group of this particular embedding.

Theorem 3.1. The finite cyclic group Z2 occurs as an orientation preserving topo-

logical symmetry group of the 3-rung Möbius ladder with sides and rungs distinct,

embedded in the torus.

Proof: Recall, that the only element of order 2 in SL2(Z) is−1 0

0 −1

 .

This matrix corresponds to a rotation of the unit square by π. Consider the embed-

ding, f , of the 3-rung Möbius ladder in the unit square as shown in Figure 3.1. The

loop, L, is 123456 and is represented by the dashed line and the rungs 14, 25, and 36

are represented by the dotted lines.

A rotation of the unit square by π takes the unit square to the square [−1, 0] ×

[0,−1]. Recall that we defined the torus as an identification space from R2. So, the

torus we construct as an identification space before and after we rotate the embedding

in R2 is the same torus. Notice, this rotation takes vertices to vertices and edges to

edges as seen in Figure 3.2. Also, notice that the loop is still 123456 and we have not

reversed the orientation.
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~a =
(

1 0
)T

~b =
(

0 1
)T
•
1

•
2

•
3

•
4

•
5

•
6

Figure 3.1: The 3-rung Möbius ladder embedded in the unit square

~a =
(
−1 0

)T

~b =
(

0 −1
)T

•
6

•
5

•
4

•
3

•
2

•
1

Figure 3.2: Rotation of the 3-rung Möbius ladder embedded in the unit square

So, this homeomorphism h of the torus taking the embedding f of the 3-rung

Möbius ladder to itself induces an order 2 automorphism (16)(25)(34). Since this

embedding supports an orientation preserving order-2 automorphism, the topological

symmetry group must be Z2,Z4, or Z6. We now show that Z4 and Z6 are not possible

for this embedding. In order to rule out Z4, we examine rotations of the unit square

by
π

2
and

3π

2
.
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~a =
(

1 0
)T

~b =
(

0 1
)T
•
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•
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•
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•
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•
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•
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Figure 3.3: f embedded in the unit square

We start with the embedding f in the unit square as shown in Figure 3.3 with

the longitude and meridian labeled. The homotopy class of the loop L is [L] = (2, 1)

since the loop circles the longitude twice and the meridian once.

~b =
(
−1 0

)T

~a =
(

0 1
)T

1

2

3

4

5

6

longitude

m
er

id
ia

n

Figure 3.4: h1(f) embedded in the unit square

Now, when we apply the homeomorphism h1 to the torus that corresponds to a

rotation of the unit square by
π

2
the loop becomes h1(L) as seen in Figure 3.4. It is

clear that the homotopy class of h1(L) is [h1(L)] = (1, 2) since the loop circles the
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longitude once and the meridian twice. Since, [h1(L)] 6= [L] then h1(L) is not isotopic

to L and thus this homeomorphism, h1, does not induce an automorphism.

Applying the homeomorphism h2 to the torus that corresponds to a rotation of the

unit square by
3π

2
and the loop becomes h2(L) as seen in Figure 3.5. The homotopy

class of h2(L) is [h2(L)] = (1, 2) since the loop circles the longitude once and the

meridian twice. Since, [h2(L)] 6= [L] then h2(L) is not isotopic to L and thus the

homeomorphism, h2, does not induce an automorphism.

~b =
(

1 0
)T

~a =
(

0 −1
)T 6

5

4

3

2

1

longitude
m

er
id

ia
n

Figure 3.5: h2(f) embedded in the unit square

We have examined both order 4 homeomorphisms, h1 and h2. Neither one is an

automorphism of the 3-rung Möbius ladder, so the topological symmetry group of the

embedding f cannot be Z4.

We have two methods when examining the homeomorphisms of the torus to rule

out Z6. For the elements

0 −1

1 1

 and

 1 1

−1 0

 we examine rotations of the unit

hexagon by
π

3
and

5π

3
. First, consider the embedding, g, in the unit hexagon as

shown in the top left corner of Figure 3.6.
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Figure 3.6: Transformation of an embedding
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We can form the torus as an identification space from the unit hexagon and then

take it apart again so that we have f embedded in the unit square as shown in the

bottom right corner of Figure 3.6. This means that the embeddings f and g are

identical when we form the torus as an identification space.

So, we start with the embedding g in the unit hexagon as shown in Figure 3.7.

The homotopy class of the loop L is [L] = (2, 1) since g gives us the same embedding

of the 3-rung Möbius ladder in the torus as f .

~b =
(

0 1
)T

~a =
(

1 0
)T

1

2

3

4

5

6

Figure 3.7: g in the unit hexagon

Applying the homeomorphism h3 to the torus that corresponds to a rotation of the

unit hexagon by
π

3
and the loop becomes h3(L) as seen in Figure 3.8. The homotopy

class of h3(L) is [h3(L)] = (1, 3) since the loop circles the longitude once and the

meridian three times. Since, [h3(L)] 6= [L] then h3(L) is not isotopic to L and thus

this homeomorphism does not induce an automorphism.

We then apply the homeomorphism h4 to the torus that corresponds to a rotation

of the unit hexagon by
5π

3
the loop becomes h4(L) as seen in Figure 3.9. The homo-

topy class of h4(L) is [h4(L)] = (3, 2) since the loop circles the longitude three times

and the meridian twice. Since, [h4(L)] 6= [L] then h4(L) is not isotopic to L and thus

this homeomorphism does not induce an automorphism.
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Figure 3.8: h3(L) embedded in the torus
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~b =
(

1 0
)T

~a =
(

1 −1
)T
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Figure 3.9: h4(L) embedded in the torus
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For the elements

1 −1

1 0

 and

 0 1

−1 1

 we examine the homeomorphisms as

matrix transformations. The matrix

1 −1

0 1

 transforms rectangular coordinates

into the alternate hexagonal coordinates. Then we apply the SL2(Z) element that

corresponds to a rotation in the alternate hexagonal coordinates. Finally the ma-

trix

1 1

0 1

 transforms the alternate hexagonal coordinates back into rectangular

coordinates.

For example, the embedding f has vertex 1 located at the point

(
1

4
,
3

4

)
. We treat

this ordered pair like the vector

(
1

4

3

4

)T

. First we perform the multiplication that

takes vertex 1 to the alternate hexagonal coordinates.

1 −1

0 1

1
4

3
4

 =

−1
2

3
4


Then we perform the multiplication that rotates vertex 1 by

π

3
in the alternate

hexagonal coordinates.

0 −1

1 1

−1
2

3
4

 =

−5
4

−1
2


Finally, we perform the multiplication that takes vertex 1 back to rectangular

coordinates.

1 1

0 1

−5
4

−1
2

 =

−7
4

−1
2


Notice that vertex 1 is no longer in the unit square. However, it identifies with the

point

(
1

4
,
1

2

)
when we form the torus as an identification space from R2. Figure 3.10

depicts this process for the embedding f .
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Figure 3.10: h5(L) embedded in R2
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Figure 3.11 illustrates the construction of the torus and the embedding h5(L) as

an identification space from the unit square after R2 has be identified to the unit

square. The homotopy class of h5(L) is [h5(L)] = (1, 1) since the loop circles the

longitude once and the meridian once. Since, [h5(L)] 6= [L] then h5(L) is not isotopic

to L and thus this homeomorphism does not induce an automorphism.
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4
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6

1 23 45 6

Figure 3.11: h5(L) embedded in the torus

Now, we apply the homeomorphism h6 to f as shown in Figure 3.12. Then we

construct the torus as an identification space from R2 as shown in Figure 3.13. The

homotopy class of h6(L) is [h6(L)] = (1, 0) since the loop circles the longitude once

and never makes a complete circle of the meridian. Since, [h6(L)] 6= [L] then h6(L) is

not isotopic to L and thus this homeomorphism does not induce an automorphism.
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Figure 3.12: h6(L) embedded in R2
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Figure 3.13: h6(L) embedded in the torus

We have examined all four of the order 6 homeomorphisms: h3, h4, h5, and h6.

None of them are an automorphism of the 3-rung Möbius ladder, so the topological

symmetry group of the embedding f cannot be Z6.

Thus, f is an embedding that supports an orientation preserving order-2 auto-

morphism, but not an order-4 or order-6 automorphism. So, Z2 is an orientation

preserving topological symmetry group of the 3-rung Möbius ladder embedded in the

torus.
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4 Future Work

We hope to determine whether Z1,Z3,Z4, and Z6 can occur as topological sym-

metry groups of some embedding of the 3-rung Möbius ladder. If so, we hope to

construct the embedding. Similar to the work in [6], we would also like to find an

embedding that has Z2 as a topological symmetry group without the need to declare

that rungs must go to rungs.
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