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ABSTRACT 

 The eastern peninsula of Fort Hood Military Installation is underlain by a complex 

karst spring network.  These springs are a primary water source in a protected habitat 

for endangered songbirds, which has only recently begun to be fully investigated.  These 

Fredericksburg Group springs express both epigenetic and hypogenetic karst 

signatures.  The study area is part of a paleo reef trend, a hydraulically disconnected 

segment of the northern section of the Edwards Aquifer.  This study utilized standard ion 

index values, repeated measures, and principal component analyses on the chemical 

profiles of six perennial springs to classify spring water sources and their chemical 

composition.  Spring water quality was found to be within acceptable limits for TCEQ 

regulated analytes, with the exception of total dissolved solids.  Of the springs sampled 

the chemical profiles of springs to the north were epigenetic in composition and those to 

the south expressed more hypogenetic influences.   
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1. INTRODUCTION 

 Fort Hood Military Installation (FH) is located in central Texas (Figure 1).  This 

region is classified as a semi-arid climate.  FH is predominated by mixed juniper and oak 

woodlands interspersed with mixed shrubland.  The eastern peninsula of FH is unique in 

that this region is home to an endangered species of song bird, the Golden-cheeked 

Warbler (Setophaga chrysoparia).  The eastern peninsula is also the only known habitat 

for an undescribed sub-species of salamander (Plethodon albagula) which utilizes karst 

springs as its sole habitat (Pekins, 2007).  The protected species utilizing this region as 

their habitat make this location particularly sensitive.  A complete understanding of the 

region’s environmental system is important to protect and manage this habitat.  Until 

recently, there has been little emphasis on understanding the network of karst springs 

that are found throughout FH.  Water is fundamental to life; it is only logical that 

advancing an understanding hydrology of this region would be of utmost importance for 

successful management of this sensitive ecosystem.
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.  

Figure 1: Fort Hood location and general study area map 
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1.1 Site Description 

1.1.1 Study Area 

 FH straddles Bell and Coryell counties in Central Texas.  Geographically 

speaking, this is the largest U.S. military installation in the world, having an approximate 

area of 96,921 hectares. FH was officially opened on September 18, 1942 for tank 

destroyer training and firing center in response to the start of United States military 

activities in World War 2 (Briuer, 2015).  Due to the rapid establishment of FH, over 300 

farming families were forced to relocate on a short timetable.  To compensate for this, 

many of those original farming families were allowed to continue grazing their cattle on 

government property, which is a continued practice today.  Fort Hood is the primary 

garrison for the III Corps, composed of the First Calvary Division, Fourth Infantry Division 

(mechanized), and 36th Engineer Brigade with a total base population of over 41,000 

soldiers (History of the Great Place, 2007). FH today is utilized for a variety of combat 

training missions involving infantry, rotary wing aircraft and mechanized armor divisions.  

The main mission of FH is to maintain a high state of readiness for combat missions and 

training for the III Corps (Briuer, 2015). 

The study area for this project is the eastern-most portion of the FH installation.  

Specifically, a peninsula reaching out into Lake Belton, within Bell County that is 

bounded to the north by Preachers Creek, to the south by Cowhouse Creek and to the 
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east by Lake Belton.  There are two outlying springs also studied in this project lying to 

the south of Cowhouse Creek, along North Nolan Creek.  The springs studied are shown 

in Figure 1.  The springs chosen in the study area due to their perennial discharge.  

They had been known historically to continue to produce water despite the drought 

Central Texas at the time of study.  Topography of the region is quite rugged, 

characterized by large limestone mesas, comprising the Owl Mountains, and steep 

valleys covered in thick mixed juniper and oak woodlands.  Elevation difference in the 

study area is approximately 120 meters (from 290 meters above mean sea level (AMSL) 

to 170 meters AMSL).  Soils in the study area are predominantly mollisols and exposed 

calcareous bedrock.  Soils ranges from clay to loamy in texture and are well drained 

(National Resources Conservation Service, 2014 a).  The geology of the region consists 

predominantly of Lower Cretaceous carbonates modified by karst features such as 

sinkholes, caves, rock shelters and springs. 

1.1.2 Climate 

 Fort Hood is in a transitional zone between sub-tropical, sub-humid, and sub-

tropical humid regions.  This region is classified as the North Central Climatic division by 

the National Climate Data Center (NCDC) (Narasimhan et al.2005).  NCDC data 

indicates seasonal variability in mean monthly rainfall where the greatest precipitation 

volumes are in the late winter to early spring.  The lowest precipitation volumes are in 

the summer months.  Average annual precipitation for region is 88.72 cm (National 

Oceanic and Atmospheric Administration, 2014).  The region has regularly experienced 
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less precipitation annually within the last 10 years and has fluctuated between minor to 

severe drought conditions consistently per the National Drought Mitigation Center 

(MDMC).  The annual average temperature for the region is 19.5 °C with mean highs 

and lows of 25.7 °C and 13.3 °C, respectively, spanning a 12.4 °C range.  All climate 

related averages were calculated over a 30-year period (1980-2010) (National Oceanic 

and Atmospheric Administration, 2014).  In Figure 2 precipitation and temperature data 

are shown for Ft. Hood locally between 2010 and 2014. 

1.2 Geology 

1.2.1 Geologic Setting 

 The geologic strata directly underlying FH are comprised of Lower Cretaceous 

(Comanchean) aged formations of the Fredericksburg and Trinity groups.  The 

sedimentary formations comprising these groups were deposited in a range of 

environments from costal to marine settings.  During the Cretaceous, Central Texas 

depositional environment alternated between transgression and regression of the 

epicontinental sea, changing the depositional environment of the sedimentary formations 

of the Lower Cretaceous (Walker, 1979).  The geologic region is defined by a regional 

positive elevation feature known as the Belton High, which is bounded to the  
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Figure 2: Fort Hood climate data 2010-2014 monthly rainfall and temperatures (maximum and minimum averages represented as error bars) (National 

Oceanic and Atmospheric Administration, 2014)
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northeast by the North Texas -Tyler Basin, to the southwest by the Round Rock Syncline 

and to the west by the Llano Uplift (Figure 4).  The creation of the Belton High is 

believed to be associated with a reef structure at the northern extent of the main 

Edwards Reef trend during the Late Cretaceous (Brown, 1972). 

 Proterozoic rocks within the region are comprised of granites and schists 

(Sellards, 1930).  These formations were subaerially exposed which resulted in 

significant erosion in the late Precambrian and into the Cambrian (Walker, 1979).  

During the Cambrian, Central Texas was beginning to be transgressed by an 

epicontinental sea (Figure 3).  During this time, deposition of sediments began across 

the region and participated in varying rates of subsidence of the sea floor (Walker, 

1979).  The transgression of the epicontinental sea and deposition of sediments 

continued into the Ordovician until the Edwards Plateau region was uplifted by the 

Ouachita Orogeny, and deposition ceased (Figure 3).  The Ouachita Orogeny uplift and 

faulting significantly affected the formations of the Cambrian and Ordovician causing 

extensive deformation, creating difficulties in determining an exact succession of 

geologic processes prior to this Pennsylvanian age orogeny (Adkins, 1930).  

The Pennsylvanian period is initiated by the Ouachita Orogeny (Figure 3).  

During this mountain building phase, bedding planes of prior sediments were 

significantly folded and faulted creating many of the large regional trends such as the 

Concho Arch and the Central Texas Bend Flexure to the west of Bell County (Figure 4).  

By the end of the Pennsylvanian, formations in the region were tilted toward the Midland 

Basin to the west of the study area.  This basin was then being supplied alternatingly 
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with erosional material by river systems flowing west from the newly formed Ouachita 

range and marine sediments from a transgressing and regressing sea. 

During the Permian, the sea continued to enlarge and migrate west of the 

Ouachita Range.  The early part of the Permian saw the development of marine reefs to 

the west of the study area (Figure 3).  This was followed with the deposition of 

evaporites.  The late Permian continued to see deposition of evaporites as well as the 

addition of shales. 

The Triassic saw the retreat of the sea dominating the region during the Permian.  

This retreat allowed for erosion of Permian formations across the region (Figure 3); 

however, the severity of this erosion is not thought to have removed large amounts of 

material (Walker, 1979).  Erosion continued through the Jurassic and into the 

Cretaceous.  The erosional events of the Triassic and Jurassic created a relatively flat, 

stable depositional surface for Cretaceous sediments, known as the Comanche Shelf 

(Figure 4). 

The Cretaceous is marked by the final epicontinental sea transgressing across 

Central Texas (Figure 3).  This sea began to regress near the end of the Cretaceous in 

alternating surges of sea level rise and fall.  These sequences of transgression and 

regression of the sea allowed for interbedded layers of sandstone and limestone 

sediments to be deposited upon the Comanche Shelf, which stretched from Mexico to 

beyond the northern Texas border in a north-east direction.  This shelf throughout the 

Lower Cretaceous never became a deep marine depositional environment like what was 

found to the southeast of the Comanche Shelf in the paleo Gulf of Mexico.  Along the 
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Figure 3: Paleogeography of Texas modified from (Blakeley, 2011) 
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boundary between the deeper ancient Gulf of Mexico and the shallow Comanche Shelf 

formed a narrow band of coral and algae that spanned the length of the Comanche Shelf 

known as the Stuart City Reef (Figure 4).  The Stuart City Reef protected the leeward 

side of the reef, creating a low energy depositional environment after its formation.  The 

Comanche Shelf region was relatively flat with regional depth changes and notable 

depressions to the southwest and northeast, being the Maverick and North Texas-Tyler 

Basins respectively (Figure 4).  Between these depressions was a long shallow region 

trending northwest named the Central Texas Platform.  On the Central Texas Platform 

and found within the study area is a sub-regional variance in deposition where the 

Edwards limestone deposition is significantly thicker than found in other areas 

measured.  This sub-regional thickening is believed to be near 6.5 km wide and trends 

northwest, known as Moffatt Mound.  The Moffatt Mound is thought to be an outlying 

paleo reef associated with the Edwards Group deposition, unique with its oolite and 

pellet facies as opposed to rudist and milloid facies found in other locations within the 

area (Amsbury, 1984).  The study area shows a similar shoal trend as that of the Moffatt 

mound as described by (Bryant, 2012) and (Faulkner, 2016).  As the Comanchean gave 

way to the Gulfian midway through the Cretaceous, sea level began to recede and an 

erosional unconformity is evident between the two series (Walker, 1979).  Sediments, 

however, continued to be deposited in the paleo Gulf of Mexico, creating structural strain 

forming the basis of the Balcones Fault that roughly trends along with the Comanche 

Shelf. 
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Figure 4: Geologic structures of central Texas modified from (Walker, 1979) and (Amsbury, 1984) 
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The Balcones Fault continued to develop through the Cenezoic into the Miocene.  

The Balcones Fault fractured and exposed Cretaceous sediments stretching from 

Kinney to Bell Counties (Figure 4).  Faulting displaced Cretaceous sediments vertically 

more than 150 m in Bell County from their original depositional location due to the 

tectonic activity through the Miocene (Adkins, 1930) which down-dropped formations to 

the southeast forming the Gulf Coastal Plain.  Bell County is bisected north to south by a 

series of prominent, down-to-the- east, normal faults being part of the Balcones Fault 

Zone.  The faulting and subsequent exposure of calcareous sediments to meteoric water 

allowed for the development of the Edwards Aquifer (Figure 5). 

1.2.2 Stratigraphy 

 There are two Groups within the Comanche Series that crop out in the study 

area: Trinity and Fredericksburg (Figure 6).  The Trinity Division is divided into three 

formations: Travis Peak Sandstone, Glen Rose Limestone and Paluxy Sand.  Three 

distinct formations comprise the Fredericksburg Division:  Walnut, Comanche Peak and 

Edwards formations.  The Comanche Peak and Edwards formations are most prevalent 

at higher elevations and Walnut is predominantly found in valleys within the study area. 

The Glen Rose Formation is comprised of thinly bedded, Miliolid-rich limestone 

alternating with marl to marly limestone beds (Moore, 1964).  The marl is more resistant 

to weathering which creates a stair-stepped, differential weathering of outcrops.  Glen 

Rose strata are limited to outcropping along Cowhouse Creek predominantly in the 

western region of Fort Hood (Adkins, 1930). 
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Fredericksburg Division comprises the remainder of outcropping formations 

within the study area (Figure 6).  The Walnut Formation contains five separate members:  

Bull Creek Limestone, Bee Cave Marl, Cedar Park Limestone, Keys Valley Marl and 

Upper Marl, of which only the upper two, Keys Valley Marl and Upper Marl members, are 

predominantly present in Cowhouse and Owl Creek stream sides (Figure 7).  The Keys 

Valley is both marl and fossiliferous nodular limestone.  The fauna within the Keys Valley 

unit is diverse, containing gastropods, pelecypods, echinoids, oysters, ammonites and a 

distinct upper boundary of Gryphaea (Moore, 1964).  The Upper Marl unit is 

differentiated from Keys Valley in that it is more abundant in limestone, fauna within are 

less abundant and comprised of Gryphaea mucronata, Exogyra texana, gastropods, 

pelecypods, and Inoceramus (Moore, 1964).  The variations within the Walnut facies 

were driven by slight variations in depositional environment caused by sea level change 

during Fredericksburg time (Rose, 1972).  Comanche Peak is a nodular massive 

limestone comprised of shell fragments and micrite in its lower regions which then   



14 
 

 

Figure 5: Edwards Aquifer and Balcones Fault Zone (George et al. 2011) 
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becomes oolite rich and dolomitized in the upper sections (Moore, 1964).  The final 

formation of the Fredericksburg Division is the Edwards.  The Edwards Limestone 

generally thins across Bell County towards Williamson County.  However, there is a 

unique alteration of this trend near the town of Moffat.  The Edwards Limestone has 

deposits of nearly 40 meters thick in this region, which is known as the Moffat Mound 

(Nelson, 1959).  The Edwards is generally described as fossiliferous dolomitized 

limestone with black chert facies commonly found as caprock (Moore, 1964).  In the 

Moffat Mound region, however, Edwards facies are oolite rich within a grainstone matrix 

(Amsbury 1984 and Moore 1964).  Amsbury concluded that the long and narrow Moffat 

Mound region (5 km wide and 80 km long trending West-Northwest) is a paleo reef 

structure separating tidal flat and open marine depositional environments.   

1.1.1 Karst Geomorphology 

 Karst as a term was coined in 1893 by Jovan Cvijić, a Serbian.  The term karst 

has been expanded from its original definition, initially used for describing the geography 

of the Kras region in Europe along the Adriatic Sea from Italy to Slovenia.  The term 

karst is commonly used now to describe any terrain comprised of sinkholes, caves, 

sinking streams and/or springs.  All these features are tertiary modifications to soluble 

bedrock formations.  Karst terrain is commonly formed in carbonate rock formations 

such as limestone or dolomite.  However, karst features also occur in any rock that is 

comprised of minerals that can be solvated, such as sulfates, halides or even some 

silicate deposits (Ford & Williams, 2007). 
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Figure 6: Stratigraphic units and their relative positions in Bell County 

(Moore, 1964)

 

Figure 7: Stratigraphic cross section: vertical facies distribution, 

Fredericksburg Division (Moore, 1964) 
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Carbonate karst features develop through interactions between water and rock.  

The water serves as a dilute aqueous acidic solution capable of precipitating out 

minerals within rock formations.  Water naturally contains trapped gaseous carbon 

dioxide (CO2(g)) and dissolved carbon dioxide (CO2(aq)).  This mixture is due to pressures 

atmospheric carbon dioxide exerts on liquid water.  Pressure causes a portion of the gas 

to become trapped in the intermolecular spaces within liquid water.  The resulting 

solution of CO2 and H2O then undergoes chemical reaction generating carbonic acid 

(H2CO3) (Equation 1).  As carbonate rock is exposed to this dilute carbonic acid, 

carbonate begins to react with water, being simple dissolution, and carbonic acid, both 

precipitating bicarbonates in solution (HCO3
- (aq)) (Equation 2).  The concentration of 

carbonic acid, bicarbonate and carbonate present in the aqueous phase is dependent 

upon the pH of the system (Figure 8).  Carbonic acid dissolution occurs at the highest 

kinetic rate at or near the soil-bedrock interface, due to the meteoric water being free of 

carbonates prior to introduction into pores within carbonate rock (Williams, 1983) or in 

regions where two aqueous solutions mix and chemical equilibria is disturbed, increasing 

the dissolution potential of carbonic or other acidic agents into solution (Dreybrodt & 

Eisenlohr, 2000).  The dissolution of carbonate out of solid rock and into aqueous 

solution is the most common method for karst features to form in carbonate rich rock 

formations. 

Equation 1: Formation of carbonic acid (Ford & Williams, 2007) 

𝐶𝑂2(𝑔) ⇌  𝐶𝑂2(𝑎𝑞) 

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂(𝑙) ⇌ 𝐻2𝐶𝑂3(𝑎𝑞) 
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Equation 2:  Dissolution of calcium carbonate in the presence of natural water (Ford & Williams, 2007) 

𝐶𝑎𝐶𝑂3(𝑠) + 𝐻2𝑂(𝑙) ⇌ 𝐶𝑎(𝑎𝑞)
2+ + 𝐻𝐶𝑂3(𝑎𝑞)

− + 𝑂𝐻(𝑎𝑞)
−  (1) 

𝐶𝑎𝐶𝑜3(𝑠) + 𝐻2𝐶𝑂3(𝑎𝑞) ⇌ 𝐶𝑎(𝑎𝑞)
2+ + 2𝐻𝐶𝑂3(𝑎𝑞)  (2)

𝐶𝑎𝐶𝑂3(𝑠) + 𝐶𝑂2(𝑔) + 𝐻2𝑂(𝑙) ⇌ 𝐶𝑎(𝑎𝑞)
2+ + 2𝐻𝐶𝑂3(𝑎𝑞)

−  

 

 

Figure 8: Carbonate aqueous speciation diagram Points 1 and 2 indicate pH where the two carbonate species in 

question are at equal concentrations in solution.  Point 3 indicates the pH at which bicarbonate concentration 

dominates (Univeristy of California Davis, 2014). 

Carbonic acid is not the only reagent capable of producing dissolution within 

formations.  Water interacting with minerals at depth can also solvate other acids or form 

ionic solutions capable of dissolution, such as pyrite (FeS2) oxidation producing sulfuric 

acid or geothermal water containing hydrogen sulfide from igneous formations at depth 

(Equation 3).  These processes, over time, begin to produce differential weathering 

patterns on and within carbonate rocks.  



19 
 

Equation 3:  Pyrite oxidation contributing to carbonate dissolution (Ford & Williams, 2007) 

𝐹𝑒𝑆2(𝑠) + 𝑂2(𝑔) + 4𝐻2𝑂(𝑎𝑞) ⇌ 𝐹𝑒2𝑂3(𝑠) + 𝐻2𝑆𝑂4(𝑎𝑞) 

𝐻2𝑆𝑂4(𝑎𝑞) + 𝐶𝑎𝐶𝑂3(𝑠) ⇌ 𝑆𝑂4(𝑎𝑞)
2− + 𝐶𝑂2(𝑔) 

Introduction of aqueous acids or ionic dissociation over time develop tertiary 

dissolution channels within the rock.  These tertiary dissolutional features preferentially 

form along primary permeability features, such as bedding planes.  Secondary fractures 

within soluble formations created through weathering or tectonic movement are also 

susceptible to tertiary dissolutional modification.  Dissoloutional features can also form 

transversely across soluble formations between interconnected pores within a 

formation’s matrix (Klimchouk, 2000).  As channels develop, they become the most 

preferential pathway for water to infiltrate bedrock and enhance water storativity and 

transmisitivity within rock formations, creating viable aquifers (Ford & Williams, 2007).   

The bulk composition of a rock can be a predominating factor in development of 

tertiary features.  Proportions of soluble material found within rock formations define the 

maximum potential for dissolution.  Rocks with greater than 70% soluble material 

globally exhibit the best dissolution potential (Ford & Williams, 2007).  High surface area 

of individual grains that comprise formations are also an essential factor in dissolution 

potential.  There is an inverse correlation between surface area and grain size; 

therefore, the finer the grain size, the higher the potential for dissolution.  This correlation 

holds until the grains comprising the formation are classified as well-sorted, which allows 

for better packing of grains, reducing the potential for pores between the sediment grains 

(Ford & Williams, 2007).  Therefore, carbonate rock that is in the wackestone to 
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packstone classification (Figure 9) would be the best candidate for karst feature 

development.  The Edwards and Comanche Peak Formations in the study area are fine 

grained and wackestone to packstone in classification.  Both candidates for karst 

formation. 

 

Figure 9: Dunham carbonate rock classification ( (Dunham, 1962)) 

Chemical dissolution can occur under different regimes, either through sub aerial 

water interaction (meteoric water interaction at the surface) or interaction with water at 

depth such as from cross-formational or geothermal sources.  Karst features developed 

at the surface are classified as epigene features while hypogene features are developed 

at depth (Figure 10).  Distinct morphological differences occur between hypogene and 

epigene regimes which are predominantly derived from hydrodynamic differences in the 

two systems.   
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Figure 10: Epigene and hypogene karst diagram (Klimchouk, 2007). 

Epigene systems are found in unconfined settings, where channel openings are 

both exposed at the surface, with their development controlled by hydraulic capacity and 

available recharge water.  In the unsaturated zone of epigene systems water movement 

is driven by gravity, whereas in the phreatic zone hydrostatic pressure exerted by 

meteoric water directs the dissolution predominantly downward into soluble formations 
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(Ford & Williams, 2007).  As dissolution conduits are developed and breakthrough, there 

is a positive feedback on the system allowing for a direct increase in epigenetic 

speleogenesis, coinciding with increased water flow.  Epigenetic speleogenesis 

develops generally as corrosive waters encounter any void space within a soluble rock 

formation.  These voids can be bedding planes, joints, interconnected matrix pores, or 

faults.  As the corrosive water infiltrates fractures within soluble rock, driven 

predominantly by gravity, the soluble rock dissolves into solution widening the fractures 

and creating conduits within the rock formation.  There may be many conduits that begin 

to form, and due to the heterogeneity of the rock matrix and the fractures within, some 

conduits will form preferentially faster than others.  After a conduit has broken through 

into a more permeable formation or becomes subaerially exposed, conduit development 

accelerates along this flow path and slows on other competing secondary conduits.  

Over time secondary conduits may begin to interconnect with the primary conduit that 

achieved breakthrough either by elongation of their flow path or though continued 

expansion of the primary conduit. 

Alternatively, the development in hypogene systems is not as intuitive.  The 

prevailing factor that determines hypogene development is hydraulic head differences 

between two adjacent layered aquifers separated by a leaky soluble confining unit.  

Hypogene karst development is classified by an overall upward direction of water flow, 

moving transverse to the bedding plane of a formation (Figure 10).  The transverse 

movement of water within a hypogene segment of a karst aquifer commonly connects 

layered aquifers through confining beds (Klimchouk, 2014).  During initiation of 
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hypogene speleogenesis the soluble unit is commonly an upper leaky confining bed of 

an adjacent aquifer (Figure 11).  As the pressure of the aquifer below begins to drive 

water into pore spaces of the soluble unit above, multiple competing conduits begin to 

form, transversely across the soluble unit.  All competing conduits will develop at 

relatively similar rates, which is due in part to the relatively slow initiation of conduit 

development that favors uniformity (Klimchouk, 2000).   Some conduits may even exhibit 

lateral development along the soluble unit though still exhibiting a transverse 

progression overall.  These multiple competing conduits can create a complex branching 

maze like network (Klimchouk, 2007).  When a conduit achieves breakthrough into the 

adjoining aquifer above, the upper aquifer will most likely have a permeability greater 

than that of the non-modified soluble unit; however, it will still not be greater than the 

newly formed conduits.  After breakthrough is achieved some of the competing conduit 

development may slow, resulting in dead end terminations for conduits.  After 

breakthrough there may be some increase in flow through the “successful” conduit 

initially but will stabilize to the newly entered formations permeability limit.  This output 

control on hypogene karst allows for all competing conduits to continue developing 

uniformly within a soluble unit due to the pressure head differences between the units 

above and below the soluble unit being relatively similar (Klimchouk, 2000).  When 

hypogene systems break through to another soluble member, their feedback is regulated 

by the lowest permeable member in the system, thus creating a control on flow rates in 

hypogene systems.  This cross-formational interaction allows for potential mixing of 

water inputs and varied mineral contact, thus altering chemical equilibrium.  Waters from 

different formations mix and their chemical composition changes and moves chemical 
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composition farther from equilibrium, thus more favorable for speleogenesis (Klimchouk, 

2014). 

 

Figure 11:  Hypogene speleogenesis initiation (Klimchouk, 2000) 

In naturally occurring systems it is common to find karst features that exhibit both 

epigene and hypogene speleogenesis.  Karst development is episodic; a function of 

water interacting with soluble rock, over geologic time scales, differently depending upon 

the current geologic position of a series of formations.  As a formation is deposited, 

buried and outcrops again on the surface, speleogenesis can occur at any phase of this 

sequence and will exhibit different karst features brought on by either or both 

speleogenetic regimes. 

Eogenetic karst networks are the most simplified, where speleogenesis begins 

soon after deposition, prior to deep burial and epigene speleogenesis regime dominates.  

Telogenetic karst development occurs after burial, where by hypogene upward 

movement of water prevails speleogenetic activity.  As a soluble formation is uplifted and 
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or the overlying formations erode, eogenetic features can modify historical telogenetic 

features adding greater complexity to the karst network.  Commonly identified formations 

exhibiting hypogenetic features have been decoupled from the hydrologic network that 

developed them and have been reconnected with a different epigenetic hydrologic 

system, exposing the network to the surface prior to human observation (Klimchouk, 

2007).  The evolution of karst features is depicted below in Figure 12. 

 

Figure 12: Evolutionary karst types and speleogenetic environments (Klimchouk, 2007) 
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1.1.2 Karst Hydrology 

Porosity, the availability of void spaces within rock, and permeability, the 

interconnected nature of those pores, are of equal importance for the presence of water 

to develop into a viable groundwater source.  Aquifers are groundwater bodies that have 

sufficient volumes and flow rates to provide sufficient water for an intended purpose.  

Therefore, aquifer is a relative designation for a water body; an aquifer sufficient to 

supply a single domicile might not be considered an aquifer if being drawn upon for a 

municipality. 

The way in which the primary porosity (matrix), secondary porosity (fractures) 

and dissolution modification (tertiary) are connected is a major determining factor to how 

a karst aquifer behaves hydraulically.  In all karst aquifers there is some level of 

connectedness between these porosities.  Commonly one porosity regime will be 

dominant over the others.  The empirical discharge data are truly a result of digenesis 

and morphology of the basin.  Variations in flow are due to the narrow pore throats that 

groundwater must infiltrate and migrate through (the tortuosity) as well as length of flow 

paths taken within the host formation. 

In epigene karst where the dissolution channels and or fractures are well-

developed and highly interconnected, hydrologic response to infiltrating water into the 

system can be rapid, resulting in discharge of water at springs or wells with short lag 

times, on the order of minutes to days (Kresic et al. 2010).  Rapid response times are 

due to the large diameter dissolution channels’ (compared to matrix interstitial spaces) 

ability to move volumes of water rapidly driven by gravity and atmospheric pressure.  
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Similar rapid response times are also possible in formations that have a high functional 

porosity, resulting from high interconnectivity between pore spaces within the matrix, 

such as can be seen commonly in non-soluble sand formations (Ford & Williams, 2007).   

Hypogene systems are two or more transmissive formations interconnected by 

soluble leaky confining formations.  As the confining soluble material begins to 

precipitate into the groundwater, karst structures begin to form.  Over time phreatic 

pressure drives groundwater upward through geostatic, thermobaric, or compressive 

forces towards the soluble confining formation (Klimchouk, 2014).  Geostatic forces are 

generated by subsiding structures, which exert pressure on water filled voids.  

Thermobaric pressure is created in deep seated formations where the pressure gradient 

is sufficient to increase trapped water temperatures, thus further pressurizing 

groundwater.  Pressure exerted by folded and faulted formations is classified as 

compressional force.  All three hypogenic forces drive groundwater towards areas 

having lower pressure gradients, generally higher in strata elevation.  Strata above water 

bearing units commonly have lower pressure heads due to reduced overburden, thus 

reducing geostatic pressure.  Formation and breakthrough of hypogene systems are 

commonly found in regions where surficial erosion has removed overburden material, 

such as near incising streams (Klimchouk, 2000).   

In cases where there is appreciable primary, secondary and tertiary porosity, the 

system will exhibit multiple flow regimes.  In practice, it can be difficult to differentiate 

between secondary and tertiary porosity; commonly they are considered jointly.  As 

conduits are drained, the matrix pores that were also filled with water, during infiltration, 
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will begin to release this water into the larger fractures and dissolution channels over 

time. The slow release of water from pores in the rock matrix is expressed as less 

discharge per unit of time, over larger lengths of time (Kresic et al. 2010).  During large 

water inputs into epigene aquifers that are fractured or have developed dissolution 

morphology, there will be a sharp rise in discharge through the system, with a duration of 

discharge comparable to the duration of water application from the source.  This direct 

control of karst discharge by the source is characteristic of true epigene systems (Ford & 

Williams, 2007).  Hypogene systems are comprised of one or more soluble formations 

sandwiched between water bearing formations; discharge is controlled by the upper 

confining bed (Klimchouk, 2000).  This condition occurs because the permeability of the 

formations below are significantly higher than that of the uppermost minimally modified 

confining bed, thus the uppermost confining unit is the limiting factor in discharge for the 

network. 

Regardless of which classification best fits a spring network, the initial surge of 

water detected at the outlet will be water that resided within the aquifer for some time 

prior to any flushing storm events.  The first increase in discharge detected at an outlet 

will be resident water previously retained within the aquifer that was flushed out of the 

system through the hydrostatic pressure exerted on the aquifer from infiltrating water.  

After some period, the highly transmissive zones of the aquifer will be flushed of “old” 

resident water and the infiltrated water will begin to be observed at the outlet.  The rate 

at which each aquifer exhibits this flushing mechanism will be dependent upon the 

composition of the aquifer and the physical structure of the drainage network. 
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Observation of water flushing from the aquifer and collection of water quality data 

can indicate the origins of water contributing to a spring outlet.  Water collected from a 

spring that contains certain mineral signatures can indicate origins of the sample.  Spring 

locations that are monitored regularly and show variations in mineral concentrations or 

compositions may show changes in water source.  Mineral content variations over time 

may also indicate residence time changes within the aquifer or mixing with other 

sources. 

Spring water discharges associated with a storm event can be evidence of 

different karst morphologies.  The speleogenetic regime, aquifer matrix, channel 

structure, duration, and intensity of the storm event will all be significant factors in 

discharge rate and volume.  Well-developed epigene channel networks behave as 

underground streams showing storm discharges characterized by a sharp peak and 

short duration, characteristic of the dominant channel flow regime (Ford and Willams 

2007).  Karst aquifers with poorly developed channel networks or hypogene systems 

that are highly regulated by their semipermeable members express storm discharge 

events more gradually (Klimchouk, 2007).  The discharge will have poorly defined peaks 

and occur over a larger period, respective of the storm event duration.  The cause for the 

longer residence time is the increase of path length, greater tortuosity, low permeability 

and/or low effective primary porosity. 
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1.2 Groundwater Chemistry 

 The chemistry of karst groundwater is much richer than its predecessor, meteoric 

water, due to its interaction with the aquifer rock matrix, surrounding geological 

formations, and soil horizons.  As water encounters these materials, loose particles can 

become suspended in the water.  Chemical reactions also occur that dissolve 

constituents into the water.  Nearly all materials are soluble in water, to varying degrees, 

which gives water a composition that reflects the environments to which it has been 

exposed.  In carbonate aquifers, the most prevalent water constituents are bicarbonate, 

calcium, and magnesium.  This is a result of limestone (CaCO3) and dolomite 

(CaMg(CO3)2) being the main sedimentary rocks in carbonate formations.  Other major 

ionic constituents of groundwater are potassium, sodium, sulfate and chloride.  These 

major ion constituents form a large portion of the ionic character of natural waters 

(Drever, 1997).  Concentrations of major ions in natural waters are useful in determining 

groundwater sources.  Bicarbonate waters, which are also rich in calcium and 

magnesium, are associated with carbonate groundwater (Kresic et al. 2010).  Sulfate 

waters, also rich in high levels of magnesium, are normally associated with evaporites or 

igneous groundwater sources.  Chloride waters, which are also found to have high alkali 

ion concentrations, can be associated with surface water sources, evaporites or deep 

saltwater aquifers (Ford & Williams, 2007).  The minor ionic constituents of natural 

waters are predominantly trace metals and anthropogenic compounds. 
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 In karst aquifers, however, groundwater is not always found at equilibrium due to 

the reaction kinetics of carbonate with natural water.  The reaction kinetics for carbon 

dioxide gas to become aqueous are quite rapid, occurring in under a minute.  The 

reaction of aqueous carbon dioxide to form carbonic acid occurs in milliseconds, which 

then dissociates as rapidly into hydrogen ions and bicarbonate.  This essentially allows 

for natural waters to almost instantaneously begin the reaction with carbonate 

sediments.  However, reaction kinetics for carbonates occurs over days (Morse & 

Arvidson, 2002).  The kinetics of carbonate essentially does not allow for rapidly flushing 

carbonate aquifer water to reach equilibrium with the source rock.  Due to this non-

equilibrium situation, calculations can be done to assist in determining the relative age of 

spring water based upon its carbonate concentration. 

Equation 4: Carbon dioxide gas into aqueous solution reaction 

𝐶𝑂2(𝑔) ⇌ 𝐶𝑂2(𝑎𝑞) 

 Another useful chemical analysis that can be conducted on karst aquifers is to 

calculate the calcium to magnesium ratio.  The Ca/Mg ratio can assist in identifying the 

composition of the aquifer.  Ratios in the range of 6-8 are indicative that the aquifer is 

primarily comprised of limestone.  However, if the ratio is less than this range, the 

aquifer is comprised of dolomite as well as limestone (White W. B., 2010). 

 Saturation index is another calculation that can be conducted based upon the 

measured activity product of calcium and carbonate species present in spring water.  

These calculations help to quantify how far the spring water sample is from equilibrium.  
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Values that are found to be above the equilibrium constant for carbonate are super 

saturated and those below are considered to be under saturated (Drever, 1997). 

 Fundamental chemical and physio-chemical properties are an efficient way to 

identify and classify water sources.  Critical water quality parameters that are commonly 

utilized for assessment of water bodies are temperature, pH, dissolved oxygen and 

conductivity.  Each of these parameters is easily collected in the field and can assist in 

rapid classification of a water body. 

 Temperature of natural waters is a fundamental water quality parameter.  

Generally, an increase in temperature will increase chemical reaction rates as described 

in the Arrhenius equation in Equation 5 (Laidler, 1984).  Biological activity within an 

aquatic system will also increase with temperature (Chang, 2006).  Surface waters can 

have rather large temperature swings throughout a water year; groundwater will maintain 

a more constant temperature due to the insulation factor of bedrock substrates, resulting 

in temperatures close to annual air temperature averages, except for situations where 

there is a geothermal contribution to the groundwater system.  These differences in 

temperatures can allow for qualitative observations that allow analysts to determine 

potential sources of groundwater.  Groundwater that is found to be above average 

annual regional temperatures is likely to coincide with deep water geothermal 

mechanisms or be part of an epigenetic karst system with short allogenic recharge flow 

paths during summer months.  Groundwater that is at or below regional temperatures 

can be attributed to shallow groundwater storage or again be a part of an epigenetic 

system with short flow paths but during winter months (Kresic et al. 2010).  Groundwater 
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of intermediate or varying temperatures is not as conclusive, whereby the source could 

be meteoric or deeper seated groundwater that is sourced from mixed aquifers being 

flushed through channels either by storm event, sinking stream, or transverse hypogene 

flow.   

Equation 5:  Arrhenius equation 

𝑘 = 𝐴𝑒
−𝐸𝑎
𝑅𝑇  

 The acidity of a water body is also another useful property for analysis.  The 

acidity or alkalinity of a water sample is measured by pH.  The pH measurement is the 

hydronium ion concentration within a sample (H3O+).  This concentration is expressed as 

an inverse logarithm of the hydronium concentration (-log [H3O+]).  Natural waters on 

average have pH ranging from 6.0-8.5.  However, in some extreme situations, thermal 

springs have been found to have pH readings at the limits of the pH range (Hem, 1985).  

Meteoric water generally has a more acidic characteristic being 5.6 or lower (Charlson & 

Rodhe, 1982).  Surface water pH is regulated by the dissolved ion content generated by 

water/sediment interaction and biological interaction.  Groundwater pH is also modified 

based upon its interaction with the aquifer rock, sediments the inflowing water percolated 

through, biological activities within the aquifer and dissolved gasses trapped within the 

inflowing water.  Surface water interaction with sediment/bedrock that generates 

substantial negatively charged ions (carbonates, phosphates, nitrates, etc.) will create a 

buffer solution allowing for acidic material, such as meteoric water, to be mixed with 

groundwater without decreasing pH drastically. 
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 Dissolved oxygen is critical for biota to thrive in natural waters.  High dissolved 

oxygen levels within a water body allow aquatic organisms to be sustained in that 

system and promote biological diversity.  Dissolved gas concentrations (such as oxygen 

or carbon dioxide) have an inverse relationship with the temperature of the water body, 

the lower the temperature the greater the potential a gas has for dissolving into liquid 

water.  However, the total gas concentration within a water body is dependent upon the 

partial pressure of said gas available within the atmosphere surrounding the water body.  

As water is drawn into an aquifer the partial gas pressure of oxygen effectively reduces 

to zero due to the liquid water filling the interstitial spaces within the substrate, driving 

out gases.  Groundwater then will initially have dissolved oxygen concentrations similar 

to its source.  Decreased oxygen levels in groundwater systems can be an indicator of 

long retention times for an aquifer.  Deoxygenation through bacterial activities, as well as 

chemical reactions with the aquifer substrate, are both mechanisms for oxygen level 

reduction in groundwater  (Hem, 1985). 

 Electrical conductivity measurements are another simple but effective measure of 

water quality.  Conductivity measurements are an indirect measure of total dissolved 

solids within a water sample.  Dissolved solids can be measured in this way because 

many inorganic solids that are soluble in water are electrolytic compounds (those that 

conduct electricity).  Using this information, total dissolved solid (TDS) measurements 

can be calculated based upon the conductivity of a water sample.  However, TDS 

measurements are not exact because there can be organic constituents within the water 

sample as well that are dissolved but produce no electrical charge.  These non-
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electrolytic compounds are considered minor constituents of whole natural environments 

however.  Conductivity measurements for water range from 5.5x10-6 Siemens per meter 

(S/m) for pure water to 5 S/m for salt water (Lenntech, 2013).  Freshwater streams range 

from 1 S/m to 0.2 S/m in conductance.  Meteoric water conductivity measurements 

range from 2x10-4 to 4.2x10-3 S/m (State Water Resources Board, 2007). 
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2. OBJECTIVES 

 The goal of this project is to obtain a better understanding of the karst spring 

network of the eastern peninsula of Fort Hood.  Understanding of the spring network was 

enhanced in the following ways: 

• Identified water input into studied springs via allogenic, autogenic, or cross-

formational sources. 

• Increased understanding of the hydrochemical composition of groundwater within 

the eastern peninsula of FH and its relationship to karst development. 
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3. METHODS 

3.1 Field Data Collection 

 Groundwater grab samples were collected monthly from springs selected from 

the study area.  On each sampling run, one 500 mL sample was collected for each 

spring location.  Springs were selected due to their historical consistency in discharge 

through the year.  Springs studied were: Amphitheatre, Bear Spring, Cold Spring, 

Crayfish Spring, Gnarly Root Spring, Geocache, Nolan Creek Spring and Road Spring 

(Figure 1).  Between determination of springs to be included in the study and initiation of 

monthly sampling Amphitheatre and Cold Spring ceased consistent discharge, thus were 

excluded from the sample data set.  Eagle Picher certified clean PTFE polycarbonate 

500 mL bottles were used to collect samples.  Spring water was collected as close to the 

spring orifice as possible.  The sample bottle was filled to the maximum to minimize 

headspace within the bottle to reduce the potential interaction of the samples and 

trapped ambient air at the time of sampling.  Each sample was recorded and 

immediately placed on ice to maintain a maximum temperature of 4°C.  Each set of 

samples was delivered to Stephen F. Austin State University Soil, Plant and Water 

Laboratory for laboratory analysis within 48 hours of sample collection.  If this maximum 
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time was exceeded, the samples were frozen, as a preservation technique, until the 

samples were processed. 

 Field measurements were also recorded utilizing an YSI multi-probe and a 

FH950 electromagnetic flow meter.  The YSI is equipped with probes that are capable of 

measuring temperature, pH, total dissolved solids (TDS), and dissolved oxygen.  These 

measurements were also taken at each spring as close to the spring orifice as possible.  

A minimum of 25 measurements recorded from each spring were averaged by the 

sampling instrument to report the average for the event.  The electromagnetic flow meter 

was also used at each spring to quantify the flow velocity from each spring. 

3.2 Laboratory Analysis 

3.2.1 Instrumentation 

A Thermo Scientific iCAP 7400 inductively coupled plasma optical emission 

spectroscope (ICP) was utilized for the analysis of both water-soluble metals and total 

metal concentrations.  ICP is a rapid and accurate analytical technique that allows for 

multiple emission bands to be analyzed instantaneously when a sample is excited within 

the plasma excitation source.  Limits of detection (LOD) for each analyte are listed in 

Table 1.  The variations within the limits of detection are due to the unique spectral 

signature of each element and how the spectral background was interfering with 

measurement.  Ion exchange chromatography (IEC) was utilized to analyze fluoride, 
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sulfate, chloride, and nitrate concentrations within spring water samples.  Dionex ICS-

2100 IEC with a Dionex IonPac AS22 4x250 mm column and a suppressed conductivity 

detector was used.  The IEC was run at 1200-2300 psi producing a 0.25 mL per minute 

flow rate.  Bicarobonate analysis was carried out by a sulfuric acid titration and pH 

meter.  Water quality measurements were compared to state and national standards for 

the parameters tested (Table 1).  Based upon the comparison of data collected and 

standards regulators have set forth, any parameters that exceed standards were 

identified and potential causes of exceedance are discussed below, with respect to 

potable human use as well as for impact on ecological quality. 

Table 1.  Testing parameters, limits of detection and standard testing method number. 

Chemical 
Formula 

Name EPA Method 
Limit of 

Detection 
Analytical 
Method 

Al Aluminum EPA 200.7 12 ppb ICP-OES 

As Arsenic EPA 200.7 48.3 ppb ICP-OES 

B Boron EPA 200.7 4.8 ppb ICP-OES 

Ca Calcium EPA 200.7 58.5 ppb ICP-OES 

Cu Copper EPA 200.7 6.6 ppb ICP-OES 

Fe Iron EPA 200.7 4.2 ppb ICP-OES 

K Potassium EPA 200.7 82.2 ppb ICP-OES 

Mg Magnesium EPA 200.7 8.4 ppb ICP-OES 

Mn Manganese EPA 200.7 0.90 ppb ICP-OES 

Na Sodium EPA 200.7 17.10 ppb ICP-OES 

P Phosphorus EPA 200.7 35.10 ppb ICP-OES 

Pb Lead EPA 200.7 43.50 ppb ICP-OES 

S Sulfur EPA 200.7 33.90 ppb ICP-OES 

Zn Zinc EPA 200.7 0.60 ppb ICP-OES 

Cl- Chloride EPA 300.0 4.0 ppb IEC 

F- Fluoride EPA 300.0 2.0 ppb IEC 

NO3
-
 Nitrate EPA 300.0 3.7 ppb IEC 

SO4
2-

 Sulfate EPA 300.0 18 ppb IEC 

PO4
3-

 Phosphate EPA 300.0 14 ppb IEC 

HCO3
-
 Bicarbonate EPA SM 2320 2 mg/L Titration 
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3.2.2 Elemental Analysis 

 Upon sample arrival at the laboratory, 100 mL aliquots of each sample were 

filtered through a 0.45μm filter for water soluble elemental analysis.  Another 100-mL 

aliquot was analyzed for both water soluble and suspended solid metals within the 

samples.  Total metal analysis, prior to ICP injection, requires 1000 μL of concentrated 

nitric acid (1:1) and an additional 500 μL of hydrochloric acid (1:1) to be added to each 

aliquot.  These samples were then placed on a heating block and raised to 85°C and left 

to flux for a minimum of 30 minutes to allow the volume to reduce to approximately 20 

mL.  After the volume was reduced, the aliquot was brought back to 100 mL and mixed 

vigorously following the adopted USEPA method 200.7 (Martin et al. 1994).  After 

sample preparation for both the total recoverable and aqueous analytes ICP was 

conducted immediately. 

 A high and low standard, as well as a laboratory blank, were run for each set of 

samples processed. The high and low standard were certified reference materials used 

to verify instrumentation measurements and calibration.  These quality controls were 

implemented to validate the method.  Results obtained from ICP analyses were 

generated based upon means obtained from three sample injections.  The mean values 

obtained from each sample were then be compared to limit of detection (LOD) values for 

each element separately.  The method outlined above is EPA 200.7 method for 

determination of metals and trace elements in water by ICP (Martin et al. 1994).  

Concentrations of elements tested were compared to state and national regulations.  
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Analyses of major and minor ions concentration results were conducted utilizing various 

statistical methods outlined below 

3.2.3 Anion Analysis 

 An aliquot of 10 µL of each sample was injected into the Thermo Fisher Dionex 

IEC-2100 for analysis.  For each set of samples, the Dionex 7 anion calibration standard 

was utilized for calibration of each sample run.  The elution profile created was used as 

a calibration chromatogram, to quantify the results.  The concentrations and retention 

times for the standard chromatogram are shown below in Figure 13.  This method of 

analysis is EPA 200.7 determination of inorganic anions by ion chromatography (Pfaff, 

1993).  Bicarbonate / carbonate analysis was conducted via sulfuric acid titration of 50 

mL aliquots of spring water.  The titration was conducted to an inflection point of pH 4.5 

for bicarbonate.  Based upon the volume of sulfuric acid utilized the bicarbonate 

concentrations of each sample were calculated. 

 

Figure 13: Elution profile for 8 compound standards for Dionex ICS-2100 IEC 
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3.3 Statistical Analysis 

 After laboratory and field measurements were compiled, standard ion indices, t-

tests, repeated measures ANOVA and principal component analysis (PCA) were 

conducted to identify variations between sampled springs.  T-tests were conducted 

between soluble and total element results for each analyte to determine if there was any 

statistical difference among the analytical results.  Repeated measures ANOVA assisted 

in identifying which elements had similar contributions to the variance of an individual 

sample location as well as to the variance between springs on a sampling date.  

Principal component analysis allowed for the visualization of multiple variables and their 

effects on variability within the data set.  Statistical Analysis Software (SAS) version 9.2 

was utilized for all statistical analyses.  The General Linear Model (GLM) procedure was 

run to produce ANOVA results with a 95% significance level.  The Principal Component 

procedure in SAS was used to group analytes based upon their significance to the 

variation of spring characteristics. 

3.3.1 Standard Ion Indexes 

 The standard ion index (SII) statistical approach was employed on the ion 

concentrations for all the springs in two ways  (Şen, 2011).  The first method identified 

ionic composition changes comparatively between all samples individually.  Each ion’s 

individual contribution to the sample was studied.  The second method compared ion 
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concentration for springs individually and indicates, graphically, how ion concentrations 

evolve over time. 

The SII is a method of comparing the effect of multiple analytes on the overall 

ionic character of a water sample or successive water samples with dimensionless 

standard values.  The SII is created by converting all analyte values into molar 

concentrations, determining the molar average and standard deviation for each water 

sample followed by dividing the difference between the analyte and the molar average 

for the sample by the standard deviation of the sample (Equation 6).  Standardizing the 

concentrations obtained from analytical analyses by this method creates dimensionless 

values with a zero mean and a standard deviation of 1 for each sample.  The 

modification of the analytical results allows for equitable comparisons of the sampled 

ions.  Chemical analysis results that were below the analytical limit of detection were 

excluded from SII analysis.  The SII magnitude indicates the contribution a specific 

analyte gives to the overall ionic character of the sample.  The sign of the SII value 

indicates analyte contribution being more (positive) or less (negative) than the average 

ion contribution to the overall ionic character of the sample. 

Equation 6:  Standard ion index calculation modified from (Şen, 2011) 

𝑥𝑖 =
(𝑥𝑖 − 𝑋̅)

𝑆𝑋
 

𝑎𝑛𝑎𝑙𝑦𝑡𝑒𝑠 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑋1, 𝑋2, 𝑋3, … 𝑋𝑛)  
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3.3.1.1 Individual Standard Ion Indices (ISII) 

SII values are then plotted as the ordinate ratio value over each nominal analyte 

value along the abscissa for each spring location.  The graphs generated indicate the 

ISII for each analyte at each spring.  Comparing each monthly sample at a specific 

spring assists in determining compositional variations in spring water over time.  ISII 

graphs allow us to apply the following assumptions about the data: 

• Positive SII values indicate the analyte is in greater abundance in the 

sample than the average ion concentration. 

• Negative SII values indicate an analyte has less than average ion 

contribution to the sample. 

• Ions that are nearer to the zero mantissa are less ionically significant to 

the overall character of the sample. 

• Ions that fluctuate between positive and negative values between 

sampling events are an indication of instability in the overall ion character 

of the spring, which could be caused by changes in the spring waters 

source. 

• Ions that exhibit spreading in the vertical direction indicate variation in the 

ion concentration through the sampling interval. 
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3.3.1.2 Successive Standard Ion Indices (SSII) 

 SSII are created by comparing one month’s sample to the following month’s 

sample for each spring, plotting the initial sample on the ordinate and the following 

sample on the abscissa.   The plots generated show analytes differentiated into clusters 

that in an ideal situation should center on a line through the origin with a 45° slope.  

Longitudinal spreading along the ideal line for analytes indicate consistent incremental 

change to the SII; lateral dispersion of clusters along the ideal line indicate fluctuations in 

the SII between the successive samples.  SII values in the lower left and upper right 

quadrants of the plot indicate the analytes contribute less or greater, respectively, to the 

samples composition consistently between sequential sampling events.  Sample points 

that appear in the upper left (quadrant 4) or lower right quadrants (quadrant 2) of plots 

indicate that the analyte fluctuated, high to low or low to high SII values respectively, 

between sequential sampling events. 

3.3.2 t-Test 

 T-testing was performed to compare concentration averages among each spring 

between soluble and total element analyses as well as among sample dates.  However, 

before t-tests were conducted, an F-test was used to determine if the data sets 

variances were normally distributed.  The normalcy was then used to determine if the 

two sample t-test was to be run assuming equal or unequal variance.  All analyses were 

conducted at the 95% confidence interval.  
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3.3.3 Repeated Measures Analysis of Variance (ANOVA) 

Repeated measures ANOVA was conducted for each spring sampled.  Each 

spring was considered a repeated measures subject, classifying each successive 

sample date as a treatment in the statistical design.  The repeated measures analysis of 

variance is used to determine differences in chemical composition among sample dates, 

as well as among each sampled spring.  Results from spring water analysis that were 

below the limit of detection for all sampling events were excluded from ANOVA testing.  

Those results that were intermittently below the LOD were still considered in ANOVA 

testing, reporting concentrations below the LOD as half the method detection limit.  

Student-Newman-Keuls (SNK) comparison tests were utilized to identify subgroups of 

springs. 

3.3.4 Principal Component Analysis (PCA) 

 A principle component analysis (PCA) was conducted on the sample data to 

assist in reducing the number of variables and to determine if there are groups of 

variables that are correlated and similarly effect the variance found in the dataset.  PCA 

reduces the number of variables within a dataset by generating several synthetic 

variables equal to the number of subjects in the analysis, those being the sample events 

in our study.  Each of these synthetic variables, principal components (PC), are 

composed of a linear summation of each analyte multiplied by an optimized coefficient 

that indicates the weight, or impact, that the analyte has on the principal component 

variation (Equation 7).  The first PC is a vector that has been optimized to describe the 
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largest covariance of dataset.  Each successive PC describes the next largest 

covariance of the data set while being orthogonal, or uncorrelated, to other PC.  The 

PCA uses an eigenequation to determine the optimized coefficient (eigenvalue) and 

eigenvectors for each analyte which are used to calculate analyte loadings for each 

principal component.  Each variable collected at a sampling event has a representative 

loading on each PC calculated by Equation 8.  The loading magnitude explains the 

variables influence on a given PC and the sign of the loading indicates the increasing or 

decreasing value of the variables that are weighted heavily on the PC.  Review of the 

eigenvalues and the variable loadings on each of factor will determine which of the 

factors are significant for analysis.   

Equation 7:  General formula for calculating principal components modified from (SAS, 2014) 

𝑐𝑛 = ∑ 𝑏𝑛𝑝(𝑥𝑝)

𝑝

1

 

cn = subject score on PCn 

bnp = regression coefficient (weight) for varible p which was used in creating PCn 

xp = subject′s value for varible p 

Equation 8: Principal component loading equation 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 = 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 × √𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 

There are multiple methods of determining which factors are meaningful: the 

eigenvalue one, scree plot analysis, and percent contribution tests.  The eigenvalue one 

test is the simplest to implement; those PC with eigenvalues of one or greater should be 
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retained.  However, this method is only recommended if communalities (the sum of 

squared factor loadings for a specific variable) are greater than 0.70 in datasets having 

fewer than 30 variables (Stevens, 1986) which this data set matches.  A scree test is a 

review of the scree plot whereby the analyst identifies where the eigenvalues begin to 

level off on the plot.  Any factors with higher eigenvalues than the break point on the plot 

are to be retained (Cattell, 1966).  A percent contribution test would recommend 

retaining any eigenvalues that are greater than either 5% or 10% of the total contribution 

to the dataset variance.  In best practice it is recommended to use a combination of all 

methods to determine the number of components to retain.  If there are eigenvalues that 

are on the cusp of a cutoff, it is worthwhile to also evaluate those values to determine if 

their inclusion enhances the interpretation of results.  The retained components should 

also total a minimum of 70% of the total variance for the dataset to ensure valid results. 

Determining which eigenvectors significantly load on a factor is determined by 

identifying those loadings that have the highest absolute values with respect to the 

loadings of other variables on the factor.  Determining the exact eigenvector values to 

include in a factor is up to the analyst.  Depending upon which variables are loading at 

what value, as well as which variables would logically be correlated, are all important for 

determining which variables should be loaded onto a factor. 

All variables that were above the analytical limit of detection and were 

determined to be statistically significant in ANOVA testing were included in the PCA.  To 

ensure the reliability of results, it is recommended that the number of samples, or 

subjects, be a minimum of five times the number of variables contained in the PCA 
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(SAS, 2014).  Being that this dataset has 22 variables and 70 samples, the PCA was 

conducted on the soluble (13 variables / 70 samples) and total elements (13 variables / 

70 samples) separately to ensure the ratio of variables to samples is sufficient.   
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4. RESULTS 

4.1 Water Quality Analysis 

One of the objectives of this project is to classify the perennial spring waters that 

are produced in and around the eastern peninsula of Ft. Hood.  The Owl Mountain 

region on the eastern peninsula of Fort Hood is predominantly a protected endangered 

species wildlife area with limited human activity.  Since these springs will have little use 

as a human drinking water source utilizing Texas Commission on Environmental Quality 

(TCEQ) surface water standards (TCEQ 2012) is more appropriate than the 

Environmental Protection Agency (EPA) drinking water standard.  TCEQ assigns surface 

water standards for water bodies based upon location and usage of the waterbody.  The 

studied springs are in the Belton Lake’s watershed, which is segment number 1220 

within the Brazos River basin.  Segment 1220 is classified as a level 1 primary contact 

recreation area, with a high aquatic life use, and is also used as a public water supply.  

The designation of level 1 primary contact recreation is given to any perennial water 

body that has the potential for recreational uses where people have direct contact with 

water but are not likely to ingest high quantities of water while doing so, such as boating 

or fishing.  The classification of high aquatic life use indicates that there is high diversity 

of regionally expected species while also having sensitive aquatic indicator species 
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present (TCEQ 2012).  The assumed human use and native fauna’s reliance on these 

spring waters are in line with the level 1 primary contact classification and were used as 

the maximum contaminate level guideline for this project. 

General water quality measurements were recorded at each of the subject 

springs including pH, TDS, spring discharge, and temperature (Table 2).  The pH over 

the course of the project was relatively constant for each spring with occasional acidic 

outliers for each spring, but no discernible pattern arose from those variations.  

Temperature was also consistent (≈ 19 ± 1 °C) at near average annual air temperatures 

for the region, being approximately 18.75 °C (NOAA 2014), for all sampled springs.  

Discharge varied across time at each spring with each exhibiting spikes in discharge 

volume that could be due to past rain events; however, there was no consistent 

discharge increase across multiple springs that could be definitively attributed to a storm 

event (Figure 14).  TDS measurements for all springs but Crayfish and Geocache 

ranged from 451.30 to 471.46 ppm.  Crayfish TDS was slightly higher at 493.75 ppm and 

Geocache had an average of 594.00 ppm.  The increase in TDS measures agrees with 

chemical analysis results.  Five or more analyzed elements at Crayfish and Geocache 

had higher than average concentrations.  The chemical analyses are further presented 

in the following sections.
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Table 2: Physicochemical attributes of sampled springs 

  pH TDS Discharge Temp Dissolved O2 
   

Spring 
Name 

n   σ ppm σ cm3/sec σ C° σ % σ LSI Saturation 
Ca/Mg 
Ratio 

Bear 13 7.03 0.49 461.92 104.96 2514.68 1227.37 19.24 0.76 77.23 5.46 -0.34 Under 11.35 

Crayfish 12 7.05 0.62 493.75 111.62 522.06 581.81 19.42 0.63 81.51 9.98 -0.26 Under 4.20 

Geocache 9 6.79 0.61 594.00 135.16 171.96 101.36 18.97 0.60 75.14 15.19 -0.63 Under 2.64 

Gnarly Root 13 6.95 0.62 461.08 128.46 5463.21 5038.85 19.04 1.39 75.98 6.11 -0.41 Under 6.23 

Nolan Creek 13 6.96 0.53 471.46 114.54 601.35 295.32 19.46 1.05 74.77 8.57 -0.42 Under 3.10 

East Range Road 10 6.56 0.42 451.3 91.62 27.71 17.47 19.59 1.64 69.03 16.75 -0.81 Under 24.94 

 

 

Figure 14: Spring discharge and monthly precipitation for eastern peninsula of Ft. Hood 
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Ca2+/Mg2+ ratios and Langelier saturation indexes (LSI) were calculated for the 

sampled springs (Table 2).  Ca2+/Mg2+ ratios were used to determine the dolomitic 

character of water.  The water samples with Ca2+/Mg2+ ratio below 6:1 are dolomitic  

(Drever, 1997).  The Ca2+/Mg2+ ratios range from 25:1 to 2.6:1 for East Range Road and 

Geocache respectively.  Nolan Creek, Geocache, and Crayfish are classified as being 

dolomitic.  The remaining springs, Bear, Gnarly Root, and East Range Road had much 

higher Ca2+/Mg2+ ratios and were considered to have a more limestone characteristic.  

The trend of the springs to the north (Bear, Gnarly Root, and East Range Road) being 

less Mg saturated than those to the south (Nolan Creek, Geocache, and Crayfish) is 

visually represented in Figure 15.  The LSI is a measure of the dissolution potential of 

calcium carbonate by a water sample.  The average LSI value for all springs was under 

saturated (negative LSI values) with respect to calcium carbonate dissolution. 

The water samples reported in Table 2, Table 3, Table 4, and Table 5 are of the 

averages for each analyte across the entire project at each spring location.  The detailed 

report of results from each sampling event are available in the appendix (Field and 

Laboratory Results).  For each analyte, the average spring concentration was below the 

level 1 primary contact recreational maximum contaminant level (MCL) standard except 

for TDS (Table 6).  The TDS concentration most likely exceeded the TCEQ MCL for 

level 1 primary contact recreational use due to the standard being set for surface water 

bodies and not turbid springs.  The chemical composition of groundwater will commonly 

have greater concentrations of dissolved compounds due to increased water pressure 

and prolonged contact with karst strata allowing for spring water to have higher 
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Figure 15:  Piper diagram of studied springs from December 2012 to December 2013
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concentrations of solutes in a groundwater system.  In contrast for Belton Lake, pressure 

on water is decreased to atmospheric pressures which over time allows for solutes to 

precipitate out of solution, lowering TDS, in this open pressure system.  Additionally, 

meteoric water inputs to Belton Lake also contribute to decreasing TDS.   

The results for spring concentrations for regulated analytes for human or aquatic 

concern (Table 7 and Table 8) seem to indicate the springs are within acceptable ranges 

with the exception of Pb.  The results for Pb were found below the LOD while still being 

above the MCL set by TCEQ.  Due to this fact determinations of safety, with respect to 

these two elements, would need additional analysis using instrumentation capable of 

detecting below the MCL set forth by the TCEQ. 

Table 3: Soluble cation concentrations of sampled springs 

Spring Name n 
Ca Mg Na K S 

mg/L σ mg/L σ mg/L σ mg/L σ mg/L σ 

Bear 13 109.68 24.46 10.35 3.23 5.23 3.28 0.64 0.19 3.74 0.80 

Crayfish 12 110.59 16.69 26.62 2.92 10.19 4.57 2.61 2.96 8.10 1.47 

Geocache 9 87.39 26.04 33.09 5.84 13.37 4.46 2.93 3.14 5.47 1.45 

Gnarly Root 13 98.27 21.96 16.08 1.92 6.63 1.57 1.91 2.96 3.08 0.55 

Nolan Creek 13 91.42 17.26 29.58 3.06 10.54 3.95 2.43 2.35 5.14 0.68 

East Range Road 10 102.73 27.23 5.62 3.19 6.78 2.84 2.11 3.46 3.77 0.55 

 

Table 4: Total cation concentrations of sampled springs 

Spring Name n 
Ca Mg Na K S 

mg/L σ mg/L σ mg/L σ mg/L σ mg/L σ 

Bear 13 124.53 18.42 9.34 4.58 6.78 1.39 0.47 0.07 3.40 0.51 

Crayfish 12 127.65 34.39 26.17 6.05 12.25 2.77 0.89 0.32 7.35 1.66 

Geocache 9 105.24 23.75 36.65 7.63 16.50 3.72 1.04 0.22 5.56 0.92 

Gnarly Root 13 119.19 29.43 19.88 3.88 8.17 1.57 0.56 0.63 3.11 0.49 

Nolan Creek 13 101.33 15.85 31.09 4.97 12.49 1.99 1.42 0.41 4.49 0.78 

East Range Road 10 146.28 62.16 8.59 3.09 9.01 3.51 0.36 0.13 4.59 3.19 
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Table 5: Anion concentrations of sampled springs 

Spring Name 

 Cl- F- HCO3
-
 NO3

-
 SO4

2-
 PO4

3-
 

n mg/L σ mg/L σ mg/L σ mg/L σ mg/L σ mg/L σ 

Bear 13 10.12 1.99 0.375 0.27 254.13 43.10 4.37 1.25 4.49 3.18 1.61 2.90 

Crayfish 12 15.53 2.45 0.624 0.21 259.43 40.02 7.90 2.40 12.05 9.14 3.97 7.19 

Geocache 9 16.89 5.52 0.558 0.29 285.10 30.10 3.26 1.91 6.42 9.72 3.46 6.11 

Gnarly Root 13 9.96 2.69 0.609 0.29 264.95 38.22 5.65 1.13 3.41 2.66 1.67 3.44 

Nolan Creek 13 15.09 2.63 0.506 0.21 267.51 30.40 3.83 0.90 7.16 5.66 2.58 5.89 

East Range Road 10 13.73 4.40 0.288 0.15 242.83 43.66 4.37 2.88 4.24 2.73 1.62 4.54 

 

Table 6: Results compared to level 1 primary contact recreational surface water maximum contaminate level standards for Belton Lake (TCEQ 2012) 

Spring Name Cl- (mg/L) SO4
2-

 (mg/L) TDS (PPM) 
Dissolved Oxygen 

(mg/L) pH (SU) Temperature (°C) 

Sample MCL Sample MCL Sample MCL Sample Standard Sample Standard Sample Standard 

Bear Average 10.12 100.00 4.49 75.00 461.92 500.00 9.21 5.00 7.03 6.5-9.0 19.24 33.89 

Crayfish Average 15.53 100.00 12.05 75.00 493.75 500.00 9.17 5.00 6.90 6.5-9.0 19.45 33.89 

Geocache Average 16.89 100.00 6.42 75.00 594.00 500.00 9.17 5.00 6.67 6.5-9.0 19.44 33.89 

Gnarly Root Average 9.96 100.00 3.41 75.00 461.08 500.00 9.23 5.00 7.22 6.5-9.0 19.14 33.89 

Nolan Creek Average 15.09 100.00 7.16 75.00 471.46 500.00 9.20 5.00 6.83 6.5-9.0 19.29 33.89 

East Range Road Average 13.73 100.00 4.24 75.00 451.30 500.00 8.99 5.00 7.01 6.5-9.0 20.47 33.89 
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Table 7:  Results compared to aquatic life and human health maximum contaminate level protection standards (TCEQ 2012) 

 Al (µg/L) As (µg/L) Pb (µg/L)1 Zn (µg/L)2 

Spring Name Sample MCL Sample MCL Sample MCL Sample MCL 

Bear Average 7.12 991 < 48.30 340 < 43.50 8.84 3.22 15.22 

Crayfish Average 58.68 991 < 48.30 340 < 43.50 8.75 5.04 15.66 

Geocache Average 24.19 991 < 48.30 340 < 43.50 8.8 2.88 15.46 

Gnarly Average 13.18 991 < 48.30 340 < 43.50 8.85 6.47 15.18 

Nolan Average 14.5 991 < 48.30 340 < 43.50 8.8 6.46 15.44 

Road Average 7.55 991 < 48.30 340 < 43.50 8.88 6.95 14.94 

         
 

1:  𝑃𝑏𝐴𝑞𝑢𝑎𝑡𝑖𝑐 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = (1.46203 − ln(ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠∗)) × 𝑤𝑒(1.273 ln(ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠∗) − 1.460) 

2: 𝑍𝑛𝐴𝑞𝑢𝑎𝑡𝑖𝑐 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 0.978𝑤𝑒(0.8473 ln(ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠∗) + 0.884 

∗∶   ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠𝑡𝑜𝑡𝑎𝑙 𝑎𝑠 𝐶𝑎𝐶𝑂3
=  2.5[𝐶𝑎2+] + 4.1[𝑀𝑔2+] 

𝑤 = 𝑠𝑖𝑡𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑤𝑎𝑡𝑒𝑟𝑤𝑎𝑦, 𝑛𝑜𝑛𝑒 𝑠𝑒𝑡 𝑠𝑜 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 (1)𝑤𝑎𝑠 𝑢𝑠𝑒𝑑 

 

Table 8:  Results compared to human health maximum contaminate level protection standards (TCEQ 2012) 

 
As (µg/L) F (µg/L) Pb (µg/L) NO3

-
 µg/L 

Spring Name Sample MCL Sample MCL Sample MCL Sample MCL 

Bear Average < 48.30 10 375.48 4000 < 43.50 1.15 4365.33 10000 

Crayfish 
Average 

< 48.30 
10 623.96 4000 < 43.50 1.15 7904.97 10000 

Geocache 
Average 

< 48.30 
10 558.1 4000 < 43.50 1.15 3257.5 10000 

Gnarly Average < 48.30 10 609.22 4000 < 43.50 1.15 5648.65 10000 

Nolan Average < 48.30 10 505.82 4000 < 43.50 1.15 3832.16 10000 

Road Average < 48.30 10 288.28 4000 < 43.50 1.15 4365.22 10000 
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4.2 Standard Ion Indexes 

4.2.1 Individual Standard Ion Indexes 

Review of each spring’s overall individual SII index graph shows similar ionic 

composition general trends between springs (Figure 16 through Figure 21).  The ions 

that contribute the most to the ionic composition of subject springs in descending order 

of influence are: HCO3
-
, Ca2+, Mg2+, Na+, and Cl-.  HCO3

-  had the largest influence on the 

ionic character of the samples, with the SII value having the general trend of decreasing 

influence over the sampling period.  Geocache, Gnarly Root, and Nolan Creek Springs 

are the only three springs that at some point during the sampling interval had measured 

Ca2+ contribution less than the average ionic contribution, thus resulting in a negative 

Ca2+ SII value in the sample.  The observed Ca2+ concentrations exhibit a large vertical 

variation with respect to the other analytes.  Ca2+ SII values decrease to negative or near 

negative values in March 2013 for Bear, Geocache, Gnarly Root, and Nolan Creek 

Springs, and again in November 2013.  The large vertical variation in SII values is an 

indicator of a fluctuating water source (Şen, 2011).  In both situations, there was a 

precipitation increase months prior which may have led to the decrease in Ca2+ 

concentration.  However, there was no definitive increase in spring discharge directly 

coupled to these spring chemical changes, with only Gnarly Root spring having an 

increase in discharge over its average discharge, indicating a more complex relationship 
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between the sampled springs discharge and precipitation (Figure 14).  Mg2+SII values for 

Bear, Road, and Gnarly Root Springs were generally negative, while Geocache, Nolan 

Creek, and Crayfish springs were positive, with nearly the same contribution to the 

overall SII value as calcium for many sample events.  The high Mg2+contribution for 

those springs in the southern portion of the study area are consistent with the water 

quality analysis of Ca2+/ Mg2+ratios.  Na+ SII values for Geocache began with above 

average contribution for roughly the first half of the sampling interval and moved to less 

than average for the remaining months of sampling.  Road Spring also indicated a higher 

than normal (positive) Na+ SII value until March, while for the remainder of the sampling 

interval Na+ SII values were negative.  This change in SII value for Na+ is a possible 

indicator of change in water source from a more deeply seated hypogenetic regime to a 

more epigenetic regime, where residence time within the aquifer does not allow for 

higher concentrations of Na+ to accumulate.  The remaining elements analyzed in the 

individual SII index did not fluctuate significantly during the sampling period. 

4.2.2 Successive Standard Ion Index 

The general chemical concentration trends for each sampled spring were relatively 

consistent with most analytes having similar ionic contribution from month to month, 

which was indicated in the successive standard ion index (SSII) values being in the 

lower left and upper right quadrants of the graphs below (Figure 22 to Figure 33).  Many 

of the analytes trend along the ideal line of the plots, with some lateral dispersion and 

vertical dispersion.  Variation patterns such as these indicate the chemical composition  
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Figure 16: Standard ion index of major and trace ions for Bear Spring from December 2012 to December 2013 
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Figure 17: Standard ion index of major and trace ions for Crayfish Spring from December 2012 to December 2013 
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Figure 18: Standard ion index of major and trace ions for Geocache Spring from December 2012 to December 2013 
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Figure 19: Standard ion index of major and trace ions for Gnarly Root Spring from December 2012 to December 2013 
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Figure 20: Standard ion index of major and trace ions for Nolan Creek Spring from December 2012 to December 2013 
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Figure 21: Standard ion index of major and trace ions for East Range Road Spring from March 2012 to December 2013
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of the spring water samples does vary incrementally across time, which would be 

expected in natural systems.  However, there were some SSII values that indicate 

significant ion contribution variation.   

Ca2+, Mg2+, and Na+ are the only three analytes that exhibited SSII fluctuations of 

positive to negative, or vice versa, between successive samples, indicated by points 

lying in the upper left (quadrant 4) and lower right (quadrant 2) quadrants of the graphs 

below.  Results lying in quadrant 2 and 4 are sampling events that transitioned from 

either more than or less than the average contribution to the overall ionic character of 

the sample to the reverse from one month to the next.  Fluctuations of this magnitude 

point to varying or complex water sources of differing chemical compositions.  Crayfish 

(February to March and July to August, negative to positive changes) Na+ concentrations 

had drastic contribution differences to the overall ionic character of samples between 

sample dates.  Geocache also had SSII sign changes for Na+ values in the December 

2012 to January 2013 sample interval, as well as July to September sample interval.  

For Road Springs March to April both springs had positive to negative value changes.  

Bear (August negative to September positive) and Gnarly Root (September positive to 

October negative) springs both had these large contribution swings in Mg2+ and 

concentrations in the late summer to early fall.  Geocache (February to March and 

October to November both positive to negative change), Gnarly Root (October positive 

to November negative), and Nolan Creek (February positive to March negative) springs 

all had sign changes for Ca2+ SSII values.   
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Figure 22: Successive standard ion index for Bear Spring from December 2012 to December 2013 
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Figure 23: Successive standard ion index subset for Bear Spring from December 2012 to December 2013 
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Figure 24: Successive standard ion index for Crayfish Spring from December 2012 to December 2013 
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Figure 25: Successive standard ion index subset for Crayfish Spring from December 2012 to December 2013 
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Figure 26: Successive standard ion index for Geocache Spring from December 2012 to December 2013 
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Figure 27: Successive standard ion index subset for Geocache Spring from December 2012 to December 2013 
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Figure 28: Successive standard ion index for Gnarly Root Spring from December 2012 to December 2013 
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Figure 29: Successive standard ion index subset for Gnarly Root Spring from December 2012 to December 2013 
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Figure 30: Successive standard ion index for Nolan Creek Spring from December 2012 to December 2013 
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Figure 31: Successive standard ion index subset for Nolan Creek Spring from December 2012 to December 2013 
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Figure 32: Successive standard ion index for Road Spring from December 2012 to December 2013 
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Figure 33: Successive standard ion index subset for Road Spring from December 2012 to December 2013
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4.3 Inferential Statistics 

 Table 9 and Table 10 show the mean spring values.  Included in the tables are 

data collected from regional water suppliers (Bell County 2013, Belton, City of 2013, 

Temple, City of 2013, and U.S. Army 2013), a water well collecting from the Trinity 

Division Hensell Sand member of the Travis Peak Formation which is directly under the 

Fredericksburg Division (Groundwater Database, 1995-2007), and general rainfall 

averages for the region (Junge et al. 1958).  These adjacent water sources are included 

as a reference to assist in characterizing and inferring similarities and differences of the 

sampled spring data.  The chemical composition differences between the three 

comparative water sources and sampled springs are thus illustrated.   

Major ion concentrations in rainfall were the lowest of the water source 

references.  This is to be expected being that residence time is a major factor in 

increasing chemical concentrations in natural waters.  Residence time of water in the 

various segments of the water cycle, precipitation residence time on the order of days 

(van der Ent and Tuinenburg 2017), surface residence time months, and ground water 

residence time can be centuries (Ford and Williams 2007), lead to the increasing 

chemical complexity of each water cycle segment.  Along with residence time the 

surrounding environment plays a significant role in the water chemistry.  The studied 
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Table 9: Mean major ion and physicochemical comparison table for sampled springs and adjacent water sources (mg/L unless specified) 

Spring Name Ca K Mg Na HCO3
- F Cl NO3

-
 SO4

2-
 pH °C 

TDS 
(ppm) 

Bear 109.68 0.64 10.35 5.23 254.13 0.38 10.12 4.37 4.49 7.03 19.24 461.92 

Crayfish 110.59 2.61 26.62 10.19 259.43 0.62 15.53 7.90 12.05 6.90 19.45 493.75 

Geocache 87.39 2.93 33.09 13.37 285.10 0.56 16.89 3.26 6.42 6.67 19.44 594.00 

Gnarly Root 98.27 1.91 16.08 6.63 264.95 0.61 9.96 5.65 3.41 7.22 19.14 461.08 

Nolan Creek 91.42 2.43 29.58 10.54 267.51 0.51 15.09 3.83 7.16 6.83 19.29 471.46 

East Range Road 102.73 2.11 5.62 6.78 242.83 0.29 13.73 4.37 4.24 7.01 20.47 451.30 

Spring Avg. 100.47 2.05 20.02 8.59 261.09 0.50 13.33 4.97 6.29 6.96 19.47 488.92 

Well 1.83 4.83 2.36 446.00 333.89 2.15 237.67 0.19 255.67 9.27 24.23 N/A 

Surface 48.60 N/A 9.71 23.57 135.50 0.21 23.85 0.26 31.30 7.30 N/A 411.00 

Rainfall 1.75 1.75 N/A 0.40 N/A N/A 0.37 N/A 1.80 0.00 N/A N/A 

 

Table 10: Mean trace metal comparison table of sampled springs and adjacent water sources (μg/mL) 

Spring Name Al As B Cu Fe Mn Pb Zn 

Bear 7.12 < 48.3 25.23 8.34 2.83 1.54 < 43.50 3.22 

Crayfish 58.68 < 48.3 39.90 8.12 88.31 4.45 < 43.50 5.04 

Geocache 24.19 < 48.3 25.84 3.30 28.83 2.67 < 43.50 2.88 

Gnarly Root 13.18 < 48.3 27.81 34.44 13.85 2.78 < 43.50 6.47 

Nolan Creek 14.50 < 48.3 25.26 5.77 12.62 1.79 < 43.50 6.46 

East Range Road 7.55 < 48.3 26.02 20.49 12.72 3.25 < 43.50 6.95 

Spring Avg. 20.87 < 48.3 28.34 13.41 26.53 2.75 < 43.50 5.17 

Well 8.67 1.53 916.00 3.74 32.00 10.67 2.33 17.93 

Surface 22.80 N/A N/A 11.40 N/A 1.38 1.37 43.25 
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concentrations are to be expected due to the spring waters’ sustained interaction with 

marine sedimentary rock susceptible to dissolution, e.g. limestone and dolomite.   

NO3
-
 concentrations of spring water may also be increased due to meteoric water 

interaction with detritus or cattle manure prevalent in the region prior to percolation into 

the groundwater system or as runoff into the spring outlet pools where sampling 

occurred.   

The Hensell Sand at 770 feet below surface level is the water bearing unit of the 

Trinity Formation being compared (Groundwater Database, 1995-2007).  The well in the 

Trinity Formation has higher concentrations of K, Na, HCO3
-
, F, Cl, SO4

2-
, and B.  The 

increases in groundwater element concentrations at greater depth is a sign of a longer 

residence time for water within the Trinity Formation.  The nearest outcrop of the Hensell 

Sand at the surface is over 75 km from the study site (United States Geological Survey, 

2018).  The significant distance from the closest outcropping of the formation to the 

study site indicates a longer residence time for the Hensell Sand than the springs in the 

study whose formations outcrop within the study area.  The longer water remains in 

contact with a substrate, the closer to equilibrium water will reach with the substrate it is 

contained within.  Belton Lake major ion concentrations were intermediate between the 

Trinity well and the studied springs for all ions except for HCO3
-
, which was lower than 

the other two water sources (Table 9).   

 Trace metal concentrations for the studied springs were compared to the Trinity 

Aquifer well and Belton Lake (Table 10).  Of the trace metals tested, As and Pb were 

found below the LOD for the spring locations, which limits the significance of those 
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results.  The Trinity Aquifer well had the highest concentration of B and Mn of all 

locations reviewed, which again can be an indicator of longer residence time, allowing 

water to reach closer to equilibrium with the surrounding rock strata.  Belton Lake 

contained the highest Zn concentration, which is likely from anthropogenic sources such 

as runoff from surrounding impervious road surfaces that collect debris from vehicular 

traffic and is flushed into the lake. 

4.3.1 Statistical Analysis 

4.3.1.1 Major Ion and Physicochemical Repeated Measures Grouped by Spring 

Repeated measures and t-tests were conducted on sampled springs and 

summary results are shown in Table 11 and Table 12.  Soluble and total Ca averages 

among springs were found to have means that were statistically different in t-testing.  

Result differences between soluble and total Ca analyses indicates that there is 

significant suspended solid Ca being carried from the aquifer to the surface.  Bear and 

Crayfish Spring locations showed high soluble Ca concentrations where East Range 

Road, Bear and Crayfish Springs showed high total Ca concentrations.  This chemical 

transport has been a historical occurrence and is evidenced at Bear Spring in the large 

tufa formations adjacent to the spring.  Geocache Spring has the lowest soluble Ca 

concentration; Nolan Spring has the lowest total Ca concentration.  However, these two 

springs have the highest Mg concentrations.  This relationship is an indication of more 

dolomitized limestone interaction.   
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Total and soluble K analyses were statistically different with t-test analyses 

(Table 11).  For soluble K, only Bear spring is differentiated by SNK grouping having the 

lowest concentration of the sampled springs.  Total K results were more differentiated 

with Geocache and Nolan Springs being the highest concentrations; Bear and East 

Range Road Spring having the lowest concentrations.  While K is commonly attributed to 

impurities found in clay minerals, it is possible that the springs to the north (Bear and 

East Range Road) have less clay characteristic to their aquifer composition than those 

to the south (Geocache and Nolan Creek).  It is also worth noting that both Geocache 

and Nolan Creek have associated cave features with the springs where soils are present 

and could easily be incorporated into the spring discharge with fluctuations in flow 

through the cave.  The total K concentrations were found to be less than the soluble K 

concentrations for all springs sampled, which reduces the reliability of conclusions drawn 

from the analysis. 

Soluble and total Mg analyses were not significantly different at the 95% 

confidence level in t-tests (Table 11).  This result indicates that the measured Mg in the 

samples collected was predominately dissolved in solution.  SNK groupings for both 

soluble and total analyses support this observation.  Groupings are relatively consistent 

between the two t-tests.  All soluble Mg concentrations were separated by SNK testing 

among springs.  Total Mg results showed Crayfish and Nolan Creek Springs grouped 

together with higher concentrations and Bear and Road Springs grouped with lower 

concentrations.  Concentration of soluble and total Mg does appear higher to the south 

of the study area and lower to the north.   
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Table 11:  Repeated measures ANOVA and SNK grouping by spring for major cations of sampled springs (mg/L) 

Spring Name 
Ca Mg Na P K S 

Soluble* Total* Soluble* Total* Soluble* Total* Soluble* Soluble* Total* Soluble* Total* 

Bear 109.7 A 135.36 AB 10.35 E 8.92 D 5.23 C 6.89 B 0.02 B 0.64 B 0.46 C 3.74 C 3.44 CD 

Crayfish 110.6 A 139.92 AB 26.62 C 28.64 B 10.2 B 12.95 B 0.02 B 2.61 A 0.9 AB 8.1 A 7.61 A 

Geocache 87.39 D 116.66 BC 33.09 A 38.87 A 13.4 A 17.44 A 0.02 B 2.93 A 1.12 A 5.47 B 5.62 B 

Gnarly Root 98.27 BC 125.64 BC 16.08 D 17.37 C 6.63 C 6.99 D 0.03 A 1.91 A 0.66 BC 3.08 D 2.78 D 

Nolan Creek 91.42 CD 106.51 C 29.59 B 32.07 B 10.5 B 12.86 B 0.02 B 2.43 A 1.23 A 5.14 B 4.52 BC 

East Range 
Road 

102.7 AB 154.83 A 5.62 F 5.69 D 6.78 C 8.79 C 0.02 B 2.11 A 0.37 C 3.77 C 4.61 BC 

ANOVA P <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0077 0.0019 <0.0001 <0.0001 <0.0001 

t-test P 0.00407 0.8153 0.32306     0.00792 0.9086 

* SNK groupings are done by letter assignment where multilettered assignments are in multiple SNK groups  

 

Table 12:  Repeated measures ANOVA and SNK grouping by spring for major anions and physicochemical parameters for sampled springs (mg/L 

unless noted) 

Spring Name 
F- Cl- NO3

-
 PO4

3-
 SO4

2-
 HCO3

-
 

pH* °C* TDS (ppm) * 
Discharge*  

Soluble* Soluble* Soluble* Soluble* Soluble* Soluble* cm3/sec 

Bear 0.38 B 10.12 B 4.37 BC 1.61 A 4.49 B 254.1 A 7.03 B 19.2 B 461.92 B 2515 B 

Crayfish 0.62 A 15.53 A 7.91 A 3.97 A 12.1 A 259.4 A 6.9 BC 19.5 B 493.75 B 583 B 

Geocache 0.56 A 16.89 A 3.26 C 3.46 A 6.42 B 285.1 A 6.67 D 19.4 B 594.00 A 154 B 

Gnarly Root 0.61 A 9.96 B 5.65 B 1.67 A 3.41 B 265 A 7.22 A 19.1 B 461.08 B 5462 A 

Nolan Creek 0.51 A 15.09 A 3.83 BC 2.58 A 7.16 B 267.5 A 6.83 C 19.3 B 471.46 B 601 B 

East Range 
Road 

0.29 B 13.73 A 4.37 BC 1.62 A 4.24 B 242.8 A 7.01 B 20.5 A 451.30 B 27.7 B 

ANOVA P <0.0001 <0.0001 <0.0001 0.0167 <0.0001 0.2245 <0.0001 0.002 0.0025 <0.0001 

* SNK groupings are done by letter assignment where multilettered assignments are in multiple SNK groups 
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Na analyses, as with Mg, were not statistically different using t-tests between 

soluble and total analyses (Table 11).  Crayfish and Nolan Springs were similar in SNK 

grouping for soluble Na.  Bear, Gnarly Root and Road Springs were grouped by SNK in 

soluble Na analysis.  Bear, Crayfish, and Nolan Springs exhibit similar total Na 

concentrations.  Results indicate the trend of springs to the north and south are 

differentiated in Na concentrations, as with Mg concentrations.  Higher concentrations of 

Na to the south and lower to the north. 

T-tests indicate there is no significant difference in the findings of soluble and 

total S analysis, indicating the majority of sampled S was dissolved in solution.  Crayfish 

and Geocache Springs had the highest soluble S and SO4
2-

 concentrations with Gnarly 

Root Spring having the lowest soluble S levels (Table 11 and Table 12).  Lithology 

studies in the area by Bryant (2012) indicate there are pyrite inclusions in the Comanche 

Peak and Edwards formations which may be a source of S. 

Crayfish, Gnarly Root, and Geocache Spring NO3
-
 concentrations were 

significantly different, with Crayfish having the highest and Geocache being the lowest in 

concentrations with Gnarly Root being intermediate between the two (Table 12).  At 

Crayfish Spring there were often signs of cattle feces, which during storm events may be 

washing into the spring pool.  This circumstance may be associated with the increase in 

NO3
-
 concentration.   

Bear and East Range Road Springs have lower F- concentrations with respect to 

the other springs.  Cl- concentration analysis differentiates Bear and Gnarly Root 
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Springs; with lower concentrations with respect to the other sampled springs (Table 12).  

Despite these variations in Cl- and F- concentrations, the sampled springs appear to 

have concentrations similar to those that were reviewed from Belton Lake studies 

(Temple, City of, 2013), which would indicate short residence time within the aquifer. 

Soluble P concentrations were below LOD across all springs, apart from a small 

peak at Gnarly Root Spring (Table 11).  There was no significant concentration 

difference in HCO3
-
 concentrations among the spring sample sets (Table 12).  The pH 

averages of all springs ranged from 6.67-7.22, with Crayfish, Nolan Creek, and 

Geocache being slightly more acidic.  Temperature averages for spring outlet waters 

were consistent across all springs at 19°C ± 1°C.  East Range Road was the exception 

with an average of 20.5°C.  The increase in temperature is most likely due to the spring 

outlet pool being exposed to greater incident solar heat than the other springs.  TDS 

among springs was also consistent, apart from Geocache having higher ppm values 

than the other sampled springs (Table 12). 

4.3.1.2 Trace Metals Repeated Measures Grouped by Spring 

 T-tests were conducted on soluble and total trace metal pairs for each element.  

The only two trace elements that were different in soluble and total concentration results 

were Al and Fe (Table 13).  The other tests, with results above the LOD, did not have 

significant concentrations of suspended trace elements. 

Soluble Al concentrations among sampled springs were not significantly different.  

This was true for total concentrations of Al as well except for Crayfish Spring which had 
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a higher concentration of total Al (Table 13).  The increase in total Al may be due to 

suspended clays in the spring.   

Crayfish Spring was the only spring with significantly higher B concentrations 

(Table 13).  The increase in B concentration from Crayfish Spring may be an indicator of 

hypogenetic water influence since Trinity Formation waters were found to have higher B 

concentrations (Groundwater Database, 1995-2007).  Geocache Spring is the only 

sampled spring with a higher total Zn concentration, which may be an indicator of 

similarity with surface water.  There was no significant difference in concentration among 

springs for Cu, Fe, or Mn concentrations. 

4.3.1.3 Major Ion and Physicochemical Repeated Measures Grouped by Date 

Ca was the only major ion that was significantly different among sample dates 

based on t-test results (Table 14).  The remaining ions with analytical results above the 

LOD (K, Mg, Na, and S) were not significantly different among sample dates. 

Ca concentrations among dates were not statistically different apart from March 

and November sampling dates for soluble concentrations, which were lower than the 

other sampling dates (Table 14).  Total Ca concentration in July was the only statistically 

differentiated result from the sample set.  Mg, Na, and TDS measurements were also at 

their highest for the July sampling, being an indicator of a flushing event; however, there 

was no increase in flow coinciding with this event (Table 14 and Table 16). 

Soluble K concentrations were higher in November and December 2012 and 

2013 when there were no statistical differences in total K concentrations (Table 15).  The 
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soluble and total element analyses were not differentiated using t-test and SNK 

groupings, but there is variance in the soluble among dates’ ANOVA data and not in the 

total ion among the dates’ ANOVA results. Soluble Mg concentrations were highest in 

July and lowest in April (Table 14).  Total Mg concentrations also followed this pattern 

with a peak in July with decreases in December 2012 and April 2013.  This correlation 

between soluble and total Mg results are supported by the t-test results identifying the 

two analytes as not significantly different.   

Soluble and total Na concentrations both peaked in July (Table 14).  Lower than 

average soluble values were found in April, November and December 2013 samplings.  

Total Na values were lower than the average for sampled springs in February, April, 

May, June, and August.  The SNK groupings between the soluble and total ion analyses 

for Na are not different which would be expected from the t-testing of results of the two 

analyses, further supporting these comparisons. 

P and PO4
3-

 results were only intermittently above LOD, limiting the inferential 

utility of these parameters (Table 15).  Soluble S concentrations peaked in September 

and were lowest in April and November.  SO4
2-

 values were higher in February when the 

remaining winter months of 2012-2013 were the lowest sampled.  The pH in fall 2013 

was higher than the remainder of the sample set (Table 16).  Spring water temperatures 

were warmer in the late summer and early fall of 2013 and cooler in the winter to early 

spring of 2012-2013.  TDS was lowest in the spring-summer of 2013 apart from the 

highest measurement of the data set occurring in July. 
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Table 13: Repeated measures ANOVA and SNK grouping by spring for trace metals of sampled springs (μg/L) 

 Al B Cu Fe Mn Zn 

Spring Name Soluble* Total* Soluble* Total* Soluble* Soluble* Total* Soluble* Soluble* Total* 

Bear 7.12 B 53.25 B 25.23 B 33.54 B 8.34 A 2.83 B 40.80 B 1.54 A 3.22 A 8.85 B 

Crayfish 58.68 A 324.24 A 39.90 A 51.90 A 8.12 A 83.31 A 208.42 A 4.45 A 5.04 A 6.50 B 

Geocache 24.19 B 45.46 B 25.84 B 32.81 B 3.30 A 28.83 B 34.37 B 2.67 A 2.88 A 14.31 A 

Gnarly Root 13.18 B 111.13 B 27.81 B 33.77 B 34.44 A 13.85 B 116.44 B 2.79 A 6.47 A 7.15 B 

Nolan Creek 14.50 B 135.78 B 25.26 B 34.46 B 5.77 A 12.62 B 75.24 B 1.79 A 6.46 A 6.48 B 

East Range 
Road 

7.55 B 138.76 B 26.02 B 34.66 B 20.49 A 12.72 B 148.21 B 3.25 A 6.95 A 3.86 B 

ANOVA P 0.3561 0.0014 < 0.0001 <0.0001 0.3883 0.1674 0.0368 0.5990 0.1180 0.0005 

T-test P 0.0423 0.0523   0.0351   0.1277 

* SNK groupings are done by letter assignment where multilettered assignments are in multiple SNK groups 
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Table 14:  Repeated measures ANOVA and SNK grouping by date for Ca, Mg, and Na spring analyses 

Date 
Ca Mg Na 

Soluble* Total* Soluble* Total* Soluble* Total* 

12/1/2012 108.5 A 122.08 B 20.97 AB 25.57 B 10.06 AB 11.13 BC 

1/1/2013 105.1 A 114.6 B 21.35 AB 23.17 BC 9.58 AB 10.23 BC 

2/1/2013 103.3 A 102.44 B 20.95 AB 21.25 BC 9.22 AB 9.36 C 

3/1/2013 57.43 B 116.07 B 20.41 AB 18.7 BC 11.22 AB 10.14 BC 

4/29/2013 113.5 A 120.6 B 15.58 B 16.5 C 7.54 B 7.8 C 

5/17/2013 115.1 A 127.22 B 16.83 AB 18.47 BC 8.21 AB 8.91 C 

6/22/2013 102.5 A 127.24 B 19.25 AB 18.82 BC 11.33 AB 8.81 C 

7/11/2013 120 A 209.42 A 22.49 A 30.97 A 11.56 A 16.09 A 

8/25/2013 115.3 A 121.34 B 17.3 AB 17.25 BC 8.23 AB 8.32 C 

9/16/2013 112.1 A 119.14 B 21.53 AB 21.89 BC 11 AB 10.82 BC 

10/1/2013 103.4 A 128.33 B 21.28 AB 23.71 BC 8.84 AB 11.11 BC 

11/1/2013 60.62 B 119.74 B 17.58 AB 18.24 BC 2.76 C 10.85 BC 

12/1/2013 101.4 A 140.28 B 22.74 A 23.23 BC 2.66 C 13.11 B 

ANOVA P <0.0001 <0.0001 0.0847 0.0005 <0.0001 <0.0001 

T-test P 0.0064 0.2587 0.0764 

* SNK groupings are done by letter assignment where multilettered assignments are in multiple SNK groups 

 

Table 15:  Repeated measures ANOVA and SNK groupings by date for P, K, and S spring analyses 

 P K S 

Date Soluble* Soluble* Total* Soluble* Total* 

12/1/2012 0.02 B 3.97 B 0.81 A 5.32 ABC 4.68 A 

1/1/2013 0.02 B 0.94 C 0.96 A 4.92 ABCD 4.43 A 

2/1/2013 0.02 AB 0.9 C 0.81 A 3.98 DE 5.04 A 

3/1/2013 0.02 B 1 C 0.87 A 5.33 ABC 4.22 A 

4/29/2013 0.04 A 0.67 C 0.48 A 3.63 E 3.39 A 

5/17/2013 0.03 AB 0.69 C 0.72 A 4.56 BCDE 4.36 A 

6/22/2013 0.02 B 0.84 C 0.64 A 5.55 AB 4.44 A 

7/11/2013 0.02 AB 0.73 C 0.97 A 5.78 AB 6.51 A 

8/25/2013 0.02 AB 0.67 C 0.84 A 4.88 ABCDE 4.27 A 

9/16/2013 0.03 AB 0.74 C 0.61 A 5.95 A 4.64 A 

10/1/2013 0.02 B 0.76 C 0.71 A 5.09 ABCD 4.48 A 

11/1/2013 0.02 B 6.81 A 0.79 A 3.47 E 5.37 A 

12/1/2013 0.02 B 6.77 A 0.93 A 4.2 CDE 4.48 A 

ANOVA P 0.0809 <0.0001 0.879 <0.0001 0.4802 

T-test P   0.09158 0.552 

* SNK groupings are done by letter assignment where multilettered assignments are 
in multiple SNK groups 
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 Table 16:  Repeated measures ANOVA and SNK by date for physicochemical spring data 

Date pH* C°* TDS* (ppm) cm3/sec* 

12/1/2012 7.07 BCD 19.32 ABCD 462.60 CD 580.00 A 

1/1/2013 7.49 A 18.64 D 448.60 CD 852.00 A 

2/1/2013 7.09 BCD 18.46 D 397.40 D 2462.00 A 

3/1/2013 6.96 CD 18.25 D 607.50 AB 2007.00 A 

4/29/2013 7.34 AB 18.90 CD 455.50 CD 1202.00 A 

5/17/2013 7.26 ABC 19.14 BCD 369.60 D 1010.00 A 

6/22/2013 7.32 AB 19.61 ABCD 413.80 D 998.00 A 

7/11/2013 7.26 ABC 20.42 AB 645.67 A 1472.00 A 

8/25/2013 7.32 AB 20.17 ABC 412.40 D 1147.00 A 

9/16/2013 6.85 D 20.71 A 591.50 ABC 254.00 A 

10/1/2013 6.97 CD 20.30 ABC 526.50 ABCD 2326.00 A 

11/1/2013 6.93 D 20.15 ABC 502.33 BCD 1531.00 A 

12/1/2013 5.41 E 18.57 D 387.83 D 3496.00 A 

ANOVA P <0.0001 <0.0001 <0.0001 0.4529 

* SNK groupings are done by letter assignment where multilettered assignments are in 
multiple SNK groups 

 

Table 17:  Repeated measures ANOVA and SNK grouping by date for anion analyses 

Date F- Cl- NO3
-
 PO4

-3
 SO4

2-
 HCO3

-
 

12/1/2012 0.47 BC 13.57 A 4.59 A 7.50 B 0.00 D 266.72 A 

1/1/2013 0.44 BC 13.57 A 5.80 A 9.22 B 0.00 D 272.16 A 

2/1/2013 0.23 C 11.17 A 5.55 A 1.27 C 22.89 A 283.65 A 

3/1/2013 0.56 B 17.22 A 6.57 A 11.93 A 0.06 D 269.89 A 

4/29/2013 0.53 BC 13.06 A 6.17 A 2.32 C 4.78 D 283.12 A 

5/17/2013 0.55 BC 10.89 A 4.35 A 0.00 C 7.84 B 261.88 A 

6/22/2013 0.83 A 15.11 A 5.74 A 0.00 C 8.94 B 257.34 A 

7/11/2013 0.88 A 14.22 A 4.20 A 0.00 C 8.94 B 253.26 A 

8/25/2013 0.40 BC 12.67 A 4.91 A 0.01 C 7.91 B 247.36 A 

9/16/2013 0.44 BC 13.61 A 3.49 A 0.01 C 0.98 CD 267.88 A 

10/1/2013 0.46 BC 13.10 A 4.69 A 0.00 C 7.02 BC 282.02 A 

11/1/2013 0.29 BC 10.84 A 5.49 A 0.03 C 6.94 BC 245.20 A 

12/1/2013 0.38 BC 13.61 A 3.64 A 0.00 C 6.65 BC 220.25 A 

ANOVA P <0.0001 0.0746 0.0494 <0.0001 <0.0001 0.2308 

* SNK groupings are done by letter assignment where multilettered assignments are in multiple SNK 
groups 
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 4.3.1.4 Trace Element Repeated Measures Grouped by Sample Date 

Al and Fe were the only two trace elements that were statistically different 

between soluble and total analyses among sample dates by t-test comparison (Table 

18).  Soluble and total B were not significantly different among sampling dates.  Although 

there were differences in SNK groupings for B the repeated measures analyses between 

the soluble and total tests, the t-test comparisons make any differences found to be less 

significant. 

Table 18:  Repeated measures ANOVA and SNK grouping by date for Al, B, Cu and Fe analyses 

 Al B Cu Fe 

Date Soluble Total Soluble Total Soluble Soluble Total 

12/1/2012 7.2 B 124.68 AB 37.4 B 43.64 CD 3.3 B 1.2 A 89.08 B 

1/1/2013 8.02 B 99.7 AB 38.08 B 41.28 CD 3.3 B 1.2 A 62.7 B 

2/1/2013 174.8 A 10.5 B 38.58 B 38.32 CD 3.3 B 99.94 A 11.1 B 

3/1/2013 18.97 B 177.97 AB 52.43 A 56.28 B 3.3 B 1.2 A 47.72 B 

4/29/2013 6 B 140.75 AB 35.83 B 34.3 D 3.3 B 1.2 A 85.13 B 

5/17/2013 10.22 B 239.28 AB 40.5 B 43.56 D 145.7 A 1.2 A 126.74 B 

6/22/2013 6 B 83.82 AB 2.4 C 45.3 BCD 5.98 B 8.24 A 69.88 B 

7/11/2013 16.77 B 381.28 A 47.38 AB 75.42 A 3.3 B 1.2 A 386.32 A 

8/25/2013 7.22 B 300.14 AB 37.68 B 50.62 BC 3.3 B 1.2 A 150.4 B 

9/16/2013 6 B 198.62 AB 38.48 B 45.6 BCD 3.3 B 1.2 A 152.48 B 

10/1/2013 6 B 10.5 B 2.4 C 4.05 E 4.42 B 122.27 A 91.85 B 

11/1/2013 6 B 10.5 B 2.4 C 4.05 E 3.3 B 41.87 A 27.03 B 

12/1/2013 6 B 10.5 B 2.4 C 4.05 E 3.3 B 41.87 A 32.03 B 

ANOVA P 0.0083 0.0024 <0.0001  <0.0001 <0.0001 0.2663 0.0075 

T-test P 0.0032 0.2954   0.0167 

* SNK groupings are done by letter assignment where multilettered assignments are in multiple 
SNK groups 
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 Table 19:  Repeated measures ANOVA and SNK grouping for Mn and Zn analyses  

 Mn Zn 

Date Soluble Soluble Total 

12/1/2012 2.88 AB 12.6 B 2.32 D 

1/1/2013 1.86 B 5.04 C 35.26 A 

2/1/2013 2.04 B 1.56 C 0.85 D 

3/1/2013 3.892 AB 0.75 C 22.85 B 

4/29/2013 2.925 AB 8.5 BC 10.225 CD 

5/17/2013 2.53 B 19.12 A 1.68 D 

6/22/2013 0.45 B 4.24 C 1.06 D 

7/11/2013 3.117 AB 1.35 C 3.967 D 

8/25/2013 10.68 A 12.74 B 3.46 D 

9/16/2013 4.208 AB 4.617 C 1.275 D 

10/1/2013 0.45 B 1.917 C 2.042 D 

11/1/2013 0.45 B 0.3 C 11.817 C 

12/1/2013 0.45 B 0.3 C 3.633 D 

ANOVA P 0.032 <0.0001 <0.0001 

T-test P   0.5322 

 

Soluble Al concentration was only significantly higher in February when 

compared to the other sampling dates (Table 18).  Total Al was highest in July and 

lowest in the late fall and winter of the sampling interval.  The increase in total Al 

coincides with the other peaks in major ion increases for July, possibly resulting from a 

flushing event.   

Soluble B concentrations were highest in March and below the LOD in the fall 

and winter of 2013 (Table 18).  Total B concentrations peaked in July and were also 

below the LOD for fall and winter of 2013.  Soluble Cu spiked in concentration in May, 

while for the remainder of the sampling events soluble Cu had values near the LOD.  

Total Fe concentrations were only significantly different for July, being higher in 

concentration than the other sampling events.  Soluble Mn concentrations were highest 
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 in August with the lowest values being in the winter of 2012 and 2013 (Table 19).  

Soluble Zn concentrations were highest in May and December 2012 and August 2013 

of the sampling interval.  The remaining months’ Zn concentrations were not significantly 

different.  Total Zn concentrations were highest in January and March; April and 

November were also elevated while the other months remained relatively constant. 

4.3.2 Principal Component Analysis 

4.3.2.1 Soluble Element Principal Component Analysis 

Thirteen factors were used in the soluble PCA and are shown in Table 20.  Five 

principal components (PC) were retained for analysis after review of eigenvalues from 

the soluble PCA.  The conclusion of five components to be retained was based on the 

eigenvalue of each retained component being above 1, and that over 70% of the total 

dataset variation was accounted for using only these five components (Table 21).  The 

magnitude of variable loadings for each component was the basis for deciding which 

variables were included in the analysis.  The magnitudes of some analytes were highly 

influential on specific PC, with similar magnitudes, while the remaining analytes were 

less influential.  Analytes were then grouped based on this pattern of magnitude analysis 

and spring chemical characteristics.  

The 5 retained principal components for the soluble PCA are shown in Table 22.  

Principal component 1 was heavily loaded by Cl, Na, Mg, and S.  K and pH had an 

inverse relationship; they have significant loadings on component 2.  NO3
-
 and 
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 temperature were also inversely related and had significant impact on component 3.  

TDS had the most significant loading for component 4.  Ca, F, and spring discharge 

were all significant factors of component 5.   

Table 20:  Table of PCA variables for soluble and total element data sets 

PCA Dataset Variables Mean Standard Deviation 

Soluble 
Elements 

Soluble B (ppm) 0.0284 0.0203 

 Soluble Ca (ppm) 100.4657 23.0788 

 Cl- (ppm) 13.3258 4.1645 

 Fl- (ppm) 0.4967 0.264 

 Soluble Mg (ppm) 20.0246 10.4133 

 NO3
-
 (ppm) 4.969 2.3199 

 Soluble K (ppm) 2.051 2.6751 

 Soluble Na (ppm) 8.5936 4.3783 

 Soluble S (ppm) 4.8493 1.9409 

 pH 6.9576 0.5581 

 C° 19.467 1.1248 

 TDS (ppm) 484.457 119.318 

 Spring Discharge (cm3/sec) 1716.869 2950.0281 

 

Table 21: Soluble elements PCA eigenvalues of the correlation matrix 

PC Eigenvalue Difference Proportion Cumulative 

1 3.6202 1.3610 0.2785 0.2785 
2 2.2592 0.7600 0.1738 0.4523 
3 1.4992 0.3211 0.1153 0.5676 
4 1.1782 0.0606 0.0906 0.6582 
5 1.1176 0.1758 0.0860 0.7442 
6 0.9418 0.2355 0.0724 0.8166 
7 0.7063 0.2749 0.0543 0.8710 
8 0.4314 0.0314 0.0332 0.9042 
9 0.4000 0.0405 0.0308 0.9349 

10 0.3595 0.1479 0.0277 0.9626 
11 0.2117 0.0526 0.0163 0.9789 
12 0.1591 0.0434 0.0122 0.9911 
13 0.1157 N/A 0.0089 1.0000 
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Table 22:  Component loadings for soluble PCA 

Factor Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 

Soluble B 0.4801 0.5512 0.1867 -0.0285 -0.1528 

Soluble Ca 0.0170 0.4810 -0.3853 -0.2771 0.6547 

Cl- 0.7422 -0.3391 -0.0759 -0.1640 -0.1547 

F- 0.5925 0.0725 0.2116 0.2157 0.4752 

Soluble Mg 0.7037 -0.5006 0.0245 0.0010 0.1084 

NO3
-
 0.2213 0.2378 0.6529 -0.4212 0.0338 

Soluble K -0.2560 -0.7904 0.0858 -0.1706 0.0281 

Soluble Na 0.8784 0.1095 -0.0755 0.1517 -0.0882 

Soluble S 0.8318 -0.0934 -0.0456 -0.2993 0.2003 

pH 0.0810 0.7942 0.0575 0.0310 -0.3200 

Temperature -0.0110 0.1175 -0.7381 0.1556 0.1163 

TDS 0.5221 -0.0788 -0.0149 0.6738 -0.1352 

Spring Discharge -0.3675 0.0192 0.5245 0.4784 0.4691 

Eigenvalue 3.6202 2.2592 1.4992 1.1782 1.1176 

 

Components 1 and 2 (Figure 34) describe nearly half (45%) of the overall 

variance observed for sampled springs.  Springs south of Owl Mountain (Crayfish, 

Geocache, and Nolan Creek Springs) had higher concentrations of magnesium, 

chloride, sulphur, and sodium, which would indicate longer residence time for water in 

those systems than those to the north (Bear, Gnarly Root, and Road Springs) which are 

chemical signatures of shorter residence times.  Similar groupings were seen between 

the north and south portions of Owl Mountain in component 2 loadings, where the 

springs to the north had higher pH and lower potassium concentrations.  The southern 

springs exhibited lower pH and higher potassium concentrations.  However, these trends 

were not seen for the last two sampling events (November and December 2013) where 

all samples had a negative component loading for both components.  This change for all 

springs in November and December was possibly due to the observed shift of all springs 

to a more epigenetic chemical composition from the large rain event in June, lowering 
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 the concentrations of the associated ions in component 1.  These negative loadings 

indicate that on these sampling dates all springs had lower than average magnesium, 

chloride, sulphur, sodium, and pH but higher potassium.  The increase in potassium was 

interesting, since there is reported to be minimal potassium in the formations through 

which the water is flowing.  The source of the potassium may be related to suspended 

clay soil being washed into the aquifer and migrating through the karst system.  As noted 

previously, the two springs with cave features (Geocache and Nolan Creek) are known 

to be sources of soil; they consistently had low values for component 2 loadings, 

indicating higher potassium concentration.  The majority of sampling events had similar 

loadings for component 3 (an inverse relationship between nitrogen and temperature) 

apart from positive outliers for Gnarly Root and Crayfish in March 2013 as well as 

negative loading outliers for East Range Road in July, August, and September (Figure 

35).  As stated previously, the increases in nitrogen for Gnarly Root were most likely 

associated with cattle feces contaminating the spring pool.  Component 4, which is 

associated with conductivity, had increases in eigenvalues for most springs in March, 

July, and September (Figure 36). Each of these increases in discharge and conductivity 

roughly coincided with rain events occurring approximately a month prior to the recorded 

increase.  Component 5 did not show any discernable pattern with respect to date or 

locations for the sampled springs. 
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Figure 34: Soluble analytes PCA biplot of component 1 (Cl, Na, Mg, and S) and component 2 (pH and -|K|) 
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Figure 35: Soluble analytes PCA biplot for component 3 (NO3 and -|C°|) and component 5 (Ca, F, and discharge) 
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Figure 36: Soluble analytes PCA biplot for component 4 (TDS) and component 5 (Ca, F, and discharge)
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4.3.2.2 Total Element Principal Component Analysis 

 For total element PCA there were 13 factors utilized for the analysis as shown in 

Table 23.  Five principal components (PC) were retained for interpretation of the total 

element principal component analysis (Table 24).  The retention of components was 

made based upon both the eigen value being greater than 1 combined with more than 

70% of the observed variation being explained by these 5 components as shown in 

Table 25.  The first PC indicated component loadings of Al, Fe, Na, and S.  The second 

PC indicated an inverse correlation for Mg and K with respect to the loading value.  This 

means that components with higher loadings will have lower concentrations of analytes, 

which is indicated by both analytes having negative loadings on PC 2.  The third PC is 

affected by B, Zn, and pH.  Spring discharge volume and conductivity are each loaded 

on the fourth and fifth components respectively. 

Table 23:  Total elements PCA dataset 

PCA Dataset Variables Mean Standard Deviation 

Total Elements Total Al (ppm) 0.137 0.2038 

 Total B (ppm) 0.037 0.0236 

 Total Ca (ppm) 129.354 35.4038 

 Total Fe (ppm) 0.1045 0.1676 

 Total Mg (ppm) 21.5581 12.7652 

 Total K (ppm) 0.7866 0.4742 

 Total Na (ppm) 10.6818 4.4084 

 Total S (ppm) 2.1537 2.1537 

 Total Zn (ppm) 0.011 0.011 

 pH 0.5581 0.5581 

 C° 1.1248 1.1248 

 TDS (ppm) 484.457 119.318 

  Spring Discharge (cm3/sec) 2950.028 2950.0281 
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 Table 24: Total element PCA eigenvalues of the correlation matrix 

PC Eigenvalue Difference Proportion Cumulative 

1 3.8056 1.2833 0.2927 0.2927 

2 2.5222 0.8786 0.1940 0.4868 

3 1.6436 0.3285 0.1264 0.6132 

4 1.3151 0.3290 0.1012 0.7144 

5 0.9861 0.1983 0.0759 0.7902 

6 0.7878 0.2258 0.0606 0.8508 

7 0.5620 0.0917 0.0432 0.8940 

8 0.4702 0.1104 0.0362 0.9302 

9 0.3598 0.0987 0.0277 0.9579 

10 0.2611 0.0663 0.0201 0.9780 

11 0.1948 0.1392 0.0150 0.9929 

12 0.0556 0.0195 0.0043 0.9972 

13 0.0361  0.0028 1.0000 

 

Table 25:  Component loadings for retained factors for total element PCA 

Factor Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 

Total Al 0.7312 0.3921 0.2405 0.1519 -0.3000 

Total B 0.5959 0.3617 0.5223 -0.0094 -0.1378 

Total Ca 0.5497 0.5373 -0.2864 0.2537 0.1752 

Total Fe 0.7297 0.5341 -0.0172 0.2653 -0.0706 

Total Mg 0.6132 -0.6696 0.0272 -0.0468 -0.0280 

Total K 0.4012 -0.6518 0.1794 0.2767 -0.2098 

Total Na 0.7628 -0.5403 -0.2131 -0.1447 0.1052 

Total S 0.7400 -0.1561 -0.1369 -0.2433 -0.1776 

Total Zn -0.0409 -0.2381 0.7067 -0.0141 0.3225 

pH -0.1508 0.4643 0.5954 -0.3866 -0.0295 

C° 0.2767 0.4405 -0.4836 -0.3659 0.2831 

TDS 0.4801 -0.0710 0.2111 0.1112 0.7509 

Spring Discharge -0.2882 0.0524 -0.0324 0.8381 0.0722 

Eigenvalue 3.8056 2.5222 1.6436 1.3151 0.9861 

  



 

103 
 

  The biplot of components 1 and 2 of the total element analysis shows a clear 

distinction between the springs to the north of Owl Mountain and those to the south 

(Figure 37).  Springs to the north have lower concentrations of all indicated elements for 

the first (Al, Fe, Na, and S) as well as the second (Mg and K) factors, indicative of 

shorter water residence time.  In contrast, springs to the south have higher 

concentrations of elements loaded on the first two components, indicating longer 

residence times.  There was no discernible pattern of differences among sample 

locations based on the distribution of PC 3 values. However, there was some temporal 

variation among sampling dates.  January and March of 2013 had higher loadings on PC 

3 values, while in October, November, and December of 2013 the PC values were still 

high in magnitude but were negative, indicating lower concentrations (Figure 38).  These 

changes are likely driven primarily by pH changes associated with the flushing event 

initiated by storms in June, which could have lowered spring discharge water pH in 

October through December 2013 (sample collections 11-13).  Epigenetic waters flushing 

through the spring network could have moved the system away from equilibrium with the 

aquifer substrate, diluting the ionic strength of spring water, resulting in a more acidic 

pH.  Discharge volume of the sampled springs greatly influences PC 4.  PC 4 scores 

were relatively flat near zero.  This is an indicator that discharge did not play a significant 

role in variation of the dataset, until sampling events in February (3), March (4), July (8), 

and September (10) through December (13) (Figure 38).  Principal component 5, loaded 

highly by conductivity measurements, coincides with increases in discharge for July (8) 

and September (10) through December 2013 (13).   
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Figure 37: Total metal PCA biplot for component 1 (Al, Fe, Na, and S) and component 2 (-|Mg| and -|K|) 
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Figure 38: Total metal PCA biplot for component 3 (B, Zn, and pH) and component 4 (discharge) 
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5. DISCUSSION 

5.1 Study Significance 

 The eastern peninsula of Ft. Hood is a rugged terrain covered by mixed juniper 

and oak shrubland, growing in calcareous clay loam to loamy soils, underlain by 

predominately carbonate rock of the lower Cretaceous (Walnut Clay, Comanche Peak, 

and Edwards Limestone), with extensive karst features throughout the study area.  The 

karst features of specific interest of this study were the springs which are utilized by an 

endangered species the golden cheek warbler and a sub species of salamander 

Plethodon albagula.  Despite water being essential for the wellbeing of wildlife, 

hydrology of the region has only recently begun to be studied in more detail by (Bryant, 

2012) and (Faulkner, 2016).  Historically, springs in the region discharged sufficient 

volumes of water perennially.  However, drought conditions have significantly impacted 

spring discharge.  Due to water becoming a limiting resource, desire to understand the 

spring hydrology has become more important.   

The primary objective of this study was to identify and characterize the spring 

water chemistry of the eastern peninsula of Fort Hood Military Installation.  During the 

course of the study there were 6 months with greater than average (5.66 cm for the 6 

years prior) rainfall: January (8.65 cm), March (7.44 cm), April (11.76 cm), May (6.39 
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 cm), July (16.85 cm) and September (10.17 cm) as shown in Figure 14.  Sampling for 

the project ran from December 2012 to December 2013.  Eight springs were sampled 

monthly.  Two of the springs ran dry (Amphitheater and Cold Springs) and were 

excluded from the study.  Three of the remaining springs were located to the north of the 

Owl Mountains, which comprise much of the peninsula (Bear, East Range Road, and 

Gnarly Root), one spring along the south west margin of the peninsula (Crayfish), and 

two springs in the Nolan Creek region to the south of the eastern peninsula (Nolan 

Creek and Geocache), across Belton Lake.  Bear, Nolan Creek, and East Range Road 

Springs are underlain by the Edwards Formation, Crayfish and Geocache are located at 

the boundary of the Edwards and Comanche Peak formations.  Gnarly Root Spring is 

underlain by the Walnut Clay Formation.  The complete list of analytical parameters and 

averages for the study were referenced in Table 1.   

5.2 Regulatory Standards Water Quality Review 

All regulated chemical constituents were within the TCEQ limits (Table 5, Table 6, 

and Table 7) with the exception of Pb with MCL’s below the LOD of the selected 

chemical analysis method.  TDS also exceeded TCEQ limits for this segment, 1220 of 

the Brazos River basin.  The TDS standard for the sampled springs may not necessarily 

be the most appropriate criteria, since the standard is for open pressure surface systems 

such as rivers and lakes (TCEQ 2012).  These springs are closed to semi closed 
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 pressurized systems that can naturally contain much higher concentrations of solutes.  

As these springs equilibrate with surface conditions and mix with surface waters, TDS 

values should become more consistent with TCEQ criteria.   

5.3 Karst Hydrogeology Interpretation Using Geochemical 

Evidence 

The complex spring recharge mechanisms driven by the interplay between 

deeper seated hypogenetic hydrologic water flow with more rapid epigenetic flow 

regimes are not well understood and were the subject of this investigation.  Water 

chemistry was used to characterize this hydrologic regime.  A complex pattern of 

alternating spring water sources and recharge was evident from the pattern of ion 

concentrations observed over the study period.  During periods of basal flow for the 

studied springs, where the spring water is near its steady state chemical concentration, 

the springs to the north of the study area (Bear, East Range Road, and Gnarly Root) had 

chemical compositions that can be attributed to more epigenetic flow regimes.  Those to 

the south (Crayfish, Nolan Creek, and Geocache) had characteristics of longer 

residence times and more hypogenetic characteristics.  The Ca2+ / Mg2+ ratios of the 

northern springs are Ca dominant, while to the south, Mg concentrations were more 

prevalent (Table 2).  Ca concentrations dominate epigenetic regimes due to Mg being in 

lower quantities in most carbonate formations and requiring longer residence time to 
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 precipitate into solution.  This condition limits soluble Mg in faster flowing systems, as 

found in many epigene systems (Dreybrodt and Eisenlohr 2000) (Drever, 1997) (Hem, 

1985) (Kresic, Stevanovich, & Zoran, 2010).  Other than increased Ca and minimal Mg 

concentrations from dissolution of carbonates, water in epigenetic regimes has similar 

chemical composition to surface waters when compared to deeper seated hypogenetic 

systems (Klimchouk, 2007).  The standard ion index for the northern springs (Figure 16, 

Figure 19, and Figure 21) indicate HCO3
-
 (dissolved into solution through carbon dioxide 

interaction with water) Ca2+ and to a lesser extent Mg2+ (being lesser than half the 

significance on the ion composition as calcium) were the dominant ions.  The remaining 

elements being almost insignificant in contribution to ionic value.  This contrasts with the 

southern springs with SII values for Mg2+ being nearly equal in the ionic composition 

(Figure 17, Figure 18, and Figure 20).  Repeated measures ANOVA results confirmed 

the epigenetic nature of the northern springs, with a more hypogenetic character to the 

south.  Ca was the only element in the northern springs in higher concentrations and 

greater chemical diversity than the southern springs (Table 11).  Principal component 

analysis (PCA) also indicated an epigenetic regime with the northern springs having 

minimal loadings in general for soluble PCA component 1 (Mg, Cl, S and Na) and total 

PCA component 1 (Al, Fe, Na, and S).  The springs to the south had the exact opposite 

loadings on the first components of the soluble and total element PCAs (Figure 34 and 

Figure 37).  As this spring network is driven from its steady state through storm events, 

rising potentiometric surfaces in the different interrelated formations change the 

chemical indicators in these springs, allowing better inference into how these springs are 

related to differing water sources. 
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  In karst systems, when large volumes of water are added, moving transitioning 

vadose zones into phreatic, there is an associated increase in chemical concentration 

of water leaving the system (Ford & Williams, 2007) at spring outlets.  In simple 

epigenetic systems, this chemical concentration increase is accompanied by an increase 

in discharge proportional to the volume of water added to the system.  In hypogenetically 

regulated systems, there may still be a chemical concentration increase at the onset of a 

flushing event; however, the accompanying discharge increase will be dampened by the 

semi-confined strata involved in the system, spreading the discharge signature over a 

longer time interval (Klimchouk, 2014).  This hypogenetic regulated scheme was 

observed in the study area.  There were 6 months of above average precipitation during 

the study period and with our sampling interval a discernable pattern of discharge 

correlating to precipitation events was not evident.  In March, July, September, October, 

November, and December of 2013 Gnarly Root Spring discharge was a significant factor 

in the variance of the spring as illustrated by the total element PCA component 1 x 4 

biplot.  Repeated Measures ANOVA SNK groupings by date (Table 14, Table 16, and 

Table 18) for July results showed across the board increases in ion concentrations for 

Ca, Mg, Na, Al, B, Fe and TDS values at all spring sources.  However, no definitive 

increase in discharge among all springs in July, was observed.  This could be an 

indicator of significant pressure head increases in the hypogenetic segments of this 

spring network.  The rise in ionic concentration peaks in the 8th sampling event in July 

and slowly reduces to the lowest ionic concentrations for all springs by the 13th event in 

December of 2013.  This transition can be seen in the soluble PCA component 1 which 

is associated with Mg, Cl, S, and Na (Figure 34).  During this period, the transition can 
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 also be seen in the total element PCA results with increased loadings on component 1 

(total Al, Na, and S) at their maximum in July and decreasing steadily until December 

2013.  Total element PCA component 2 (total Mg and K) is a possible indicator of 

suspended soils being pushed through the system.  This is based upon soil 

characterizations summarized in (Faulkner, 2016) indicating calcareous clay soils are 

prevalent across the region.  These clays contain potassium and magnesium due to the 

dolomitic Edwards limestone being the most prevalent caprock in the region.  

Concentration of these solids is lower at the onset of the ionic increase, marking the start 

of the flushing event, while soluble magnesium is high in the southern set of springs.  As 

the flushing event progresses, soluble magnesium decreases as total magnesium 

increases, which likely indicates residence time changes for the spring network.  The 

association of potassium and soils is supported by results from two springs (Geocache 

and Nolan Creek) that have associated cave systems, known to have soil within them 

(Bryant, 2012).  These are both identified with having high total potassium 

concentrations from ANOVA tests (Table 11).  There are also some indications of faster 

acting epigenetic mechanisms at work at Geocache and Nolan Creek Springs.  At both 

springs in March, there is a fluctuation in their calcium SII values (Figure 26 and Figure 

30) which is an indicator of an influx of meteoric water into the system.  At the time of 

sampling, there was a rain event occurring, which most likely inundated the associated 

cave features of these two springs, diluting the calcium content at the spring orifices.  
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6. CONCLUSION 

 The Lower Cretaceous formations of Walnut Clay, Comanche Peak, and 

Edwards Limestone that underlay the Eastern Peninsula of Fort Hood Military Installation 

contain a complex network of karst springs.  Overall water quality of the studied springs 

was within the TCEQ human and aquatic life primary contact water quality standards.  

TDS measurement for Geocache was the only analyte above the TCEQ standard. The 

TDS result being high is most likely due to the standard being designed for surface water 

bodies and not turbid groundwater springs.  These karst springs show evidence of both 

hypogenetic and epigenetic modifications.  Generally, the spring's epigenetic signature is 

predominant with varying hypogenetic characteristics.  The springs to south displayed 

more hypogenetic influence than those to the north.  As precipitation recharges these 

systems, on the order of three to six months after initiation, there is little to no fluctuation 

in discharge volume, indicating hypogenetically coupled recharge mechanisms.  During 

sampling there was observed increases in precipitation with no significant discharge 

variation among most springs.  This is despite indicating short residence time epigenetic 

chemical signatures.  The model of the system as presented by Bryant (2012) and 

Faulkner (2016) is that of a terraced epigenetic system hydraulically linked with an older 

hypogenetic system.  The springs appear to be a system where the hydrostatic pressure 

of the two segments are in competition.  When the pressure is high in the epigenetic 

segment it overpowers the hypogenetic and the chemical signature is epigenetic.  As the 
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 meteoric water increases pressure on the system, an increase in ionic concentrations 

of soluble and total ions from all springs is observed on the order of months after the 

initiation of the rain event.  This increased ionic activity decreases over time as the 

“fresh” influx of water flushes through the karst network, for soluble measurements, and 

the majority of total ion measurements, with the exception of those associated with 

particulate material drawn through the epigenetic segments of system such as 

suspended soil particles (Mg and K).  These suspended soil particulates increase at the 

end of the sampling interval in total measurements but decrease in soluble 

measurements, indicating that these materials did not resided long enough in the karst 

network to precipitate into solution.  As the epigenetic hydrostatic pressure decreases 

the hypogenetic waters begin to have a greater contribution and maintain the same 

relative discharge volumes at the spring orifice, but with differing chemical signatures.  

To determine what the exact correlation between the springs discharge and precipitation 

sampling intervals would need to be more frequent to validate our observations.  

Utilization of isotopic analysis would more definitively determine the actual ages of the 

waters being discharged from this karst network.  These techniques could be utilized in 

additional studies to more comprehensively characterize these springs. 
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8. APPENDIX 

8.1 Field and Laboratory Results 

8.1.1 Physicochemical Attributes Data Table 

Table 26: Physicochemical attributes 

Spring Name Sample Date pH C° μS/cm cm/sec DO % cm/sec cm wide 
cm 

deep 
Discharge 
cm3/sec 

Bear 12-Dec 7.13 19.30 678.80 12.14 74.30 12.14 40.00 4.00 1942.88 

Bear 13-Jan 7.36 19.20 653.10 15.30 81.00 15.30 40.00 4.00 2448.00 

Bear 13-Feb 6.79 19.20 372.40 40.00 84.60 40.00 40.30 3.70 5964.40 

Bear 13-Mar 7.43 19.10 899.40 14.68 86.90 14.68 40.00 4.00 2348.80 

Bear 13-Apr 7.35 19.49 709.00 17.43 80.60 17.43 41.60 3.80 2756.06 

Bear 13-May 7.31 19.51 630.00 21.43 80.80 21.43 41.20 3.80 3354.68 

Bear 13-Jun 7.35 19.53 644.00 8.26 78.60 8.26 39.80 3.80 1249.25 

Bear 13-Jul 6.84 19.80 907.80 7.90 73.90 7.90 37.40 3.80 1122.75 

Bear 13-Aug 7.36 19.56 660.00 15.18 71.90 15.18 40.00 4.10 2489.36 

Bear 13-Sep 6.86 19.50 947.10 16.12 70.80 16.12 36.00 3.80 2205.22 

Bear 13-Oct 7.18 19.42 710.30 14.98 78.30 14.98 39.60 3.90 2313.51 
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Table 26: Physicochemical attributes continued 

Spring Name Sample Date pH C° μS/cm cm/sec DO % cm/sec cm wide 
cm 

deep 
Discharge 
cm3/sec 

Bear 13-Nov 6.84 19.70 945.10 12.69 69.50 12.69 32.00 3.60 1461.89 

Bear 13-Dec 5.62 16.80 630.70 16.80 72.80 16.80 42.00 4.30 3034.08 

Bear Average N/A 7.03 19.24 722.13 16.38 77.23 16.38 39.22 3.89 2514.68 

Crayfish 12-Dec 7.10 19.50 768.00 1.21 90.50 1.21 23.00 8.00 223.19 

Crayfish 13-Jan 7.74 18.80 751.00 5.10 90.20 5.10 23.00 8.00 938.40 

Crayfish 13-Feb 7.43 18.50 741.50 23.00 91.00 23.00 8.00 12.23 2250.32 

Crayfish 13-Mar 6.93 18.50 1048.00 3.41 98.70 3.41 23.00 8.00 627.44 

Crayfish 13-May 7.16 19.24 736.00 1.46 81.60 1.46 22.90 8.10 271.38 

Crayfish 13-Jun 7.17 19.24 801.00 2.26 82.40 2.26 23.10 8.00 416.82 

Crayfish 13-Jul 6.73 19.53 1175.20 3.11 72.20 3.11 23.00 8.20 586.55 

Crayfish 13-Aug 7.16 19.60 617.00 0.76 75.30 0.76 23.00 8.00 140.21 

Crayfish 13-Sep 6.61 20.33 621.30 0.65 68.20 0.65 22.90 6.40 95.26 

Crayfish 13-Oct 6.82 20.20 649.30 7.22 71.30 7.22 14.90 3.40 365.77 

Crayfish 13-Nov 6.77 20.10 754.40 6.43 86.30 6.43 14.80 3.60 342.59 

Crayfish 13-Dec 5.22 19.90 598.50 12.85 70.40 12.85 14.60 3.90 731.68 

Crayfish Average N/A 6.90 19.45 771.77 5.62 81.51 5.62 19.68 7.15 582.47 

Geocache 12-Dec 6.88 19.30 794.10 2.22 74.60 2.22 9.00 4.00 79.81 

Geocache 13-Jan 7.40 19.40 763.40 6.50 85.70 6.50 9.00 4.00 234.00 

Geocache 13-Feb 6.96 18.70 662.70 9.00 96.60 9.00 4.00 2.35 84.60 

Geocache 13-Mar 6.60 18.60 1096.00 1.72 79.80 1.72 9.00 4.00 61.92 

Geocache 13-Jul 6.78 19.70 1012.40 1.79 94.90 1.79 8.90 3.40 54.17 

Geocache 13-Sep 6.71 20.40 1206.90 6.16 55.50 6.16 9.10 4.20 235.44 

Geocache 13-Oct 6.82 20.10 1114.20 4.67 58.60 4.67 8.90 4.10 170.41 

Geocache 13-Nov 6.75 19.70 1056.30 5.15 67.20 5.15 7.60 2.90 113.51 
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Table 26: Physicochemical attributes continued 

Spring Name Sample Date pH C° μS/cm cm/sec DO % cm/sec cm wide 
cm 

deep 
Discharge 
cm3/sec 

Geocache 13-Dec 5.15 19.10 650.70 8.87 63.40 8.87 9.40 4.20 350.19 

Geocache Average N/A 6.67 19.44 928.52 5.12 75.14 5.12 8.32 3.68 153.78 

Gnarly Root 12-Dec 7.31 18.90 650.50 0.44 74.20 0.44 50.00 10.00 219.50 

Gnarly Root 13-Jan 7.77 17.80 641.10 0.70 73.10 0.70 50.00 10.00 350.00 

Gnarly Root 13-Feb 7.22 17.90 626.40 50.00 73.10 50.00 10.00 5.90 2950.00 

Gnarly Root 13-Mar 6.98 16.70 896.20 17.12 77.30 17.12 50.00 10.00 8560.00 

Gnarly Root 13-Apr 7.57 18.91 681.00 3.35 78.90 3.35 51.40 9.10 1568.24 

Gnarly Root 13-May 7.56 19.71 240.00 1.71 75.60 1.71 50.20 6.10 522.68 

Gnarly Root 13-Jun 7.68 20.20 675.00 7.80 86.70 7.80 50.40 7.40 2910.16 

Gnarly Root 13-Jul 7.28 21.30 931.30 13.26 82.80 13.26 50.10 10.40 6908.99 

Gnarly Root 13-Aug 7.65 20.45 658.00 5.24 84.10 5.24 49.60 8.80 2288.27 

Gnarly Root 13-Sep 7.16 20.40 930.90 20.62 76.30 20.62 51.60 11.40 12129.51 

Gnarly Root 13-Oct 7.14 20.10 933.70 18.65 72.40 18.65 50.30 11.10 10412.85 

Gnarly Root 13-Nov 7.17 19.10 924.40 12.58 67.40 12.58 50.30 10.10 6391.02 

Gnarly Root 13-Dec 5.34 17.30 579.40 25.57 65.80 25.57 52.40 11.80 15810.44 

Gnarly Root Average N/A 7.22 19.14 720.61 13.62 75.98 13.62 47.41 9.39 5463.21 

Nolan Creek 12-Dec 6.95 19.60 725.70 8.95 87.90 8.95 20.20 2.40 433.94 

Nolan Creek 13-Jan 7.20 18.00 699.20 6.35 82.60 6.35 19.80 2.30 289.18 

Nolan Creek 13-Feb 7.05 18.00 702.60 20.00 87.40 20.00 22.10 2.40 1060.80 

Nolan Creek 13-Mar 6.73 18.00 1008.00 9.86 84.10 9.86 19.60 2.10 405.84 

Nolan Creek 13-Apr 7.19 18.38 771.00 9.36 79.00 9.36 21.10 2.20 434.37 

Nolan Creek 13-May 7.12 18.53 657.00 17.40 71.00 17.40 20.60 2.50 896.31 

Nolan Creek 13-Jun 7.13 19.30 484.00 9.97 71.40 9.97 19.40 2.10 406.05 

Nolan Creek 13-Jul 6.81 19.70 1038.40 3.46 76.60 3.46 19.80 1.90 130.17 
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Table 26: Physicochemical attributes continued 

Spring Name Sample Date pH C° μS/cm cm/sec DO % cm/sec cm wide 
cm 

deep 
Discharge 
cm3/sec 

Nolan Creek 13-Aug 7.17 20.61 606.90 16.52 66.50 16.52 20.40 2.40 808.83 

Nolan Creek 13-Sep 6.66 20.80 991.80 9.79 66.10 9.79 20.10 2.20 432.91 

Nolan Creek 13-Oct 6.77 20.60 746.15 14.65 66.80 14.65 19.90 2.30 670.53 

Nolan Creek 13-Nov 6.79 20.20 498.70 18.60 67.50 18.60 19.80 2.30 847.04 

Nolan Creek 13-Dec 5.19 19.00 651.10 22.65 65.10 22.65 20.10 2.20 1001.58 

Nolan Creek Average N/A 6.83 19.29 736.97 12.89 74.77 12.89 20.22 2.25 601.35 

East Range Road 13-Mar 7.11 18.60 749.50 2.76 76.80 2.76 7.60 1.90 39.85 

East Range Road 13-Apr 7.24 18.82 686.20 3.08 55.30 3.08 7.60 2.10 49.13 

East Range Road 13-May 7.15 18.72 625.40 0.46 47.00 0.46 7.60 1.20 4.17 

East Range Road 13-Jun 7.26 19.76 630.50 0.64 48.10 0.64 7.80 1.50 7.49 

East Range Road 13-Jul 6.70 22.50 989.10 1.91 85.40 1.91 7.60 1.90 27.58 

East Range Road 13-Aug 7.27 20.65 680.70 0.49 54.10 0.49 7.50 1.70 6.22 

East Range Road 13-Sep 7.10 22.80 847.20 3.28 84.10 3.28 7.40 1.80 43.69 

East Range Road 13-Oct 7.10 21.40 786.90 1.58 67.90 1.58 7.60 1.70 20.41 

East Range Road 13-Nov 7.27 22.10 531.20 2.17 91.70 2.17 7.50 1.90 30.92 

East Range Road 13-Dec 5.93 19.30 527.40 3.34 79.90 3.34 7.50 1.90 47.60 

East Range Road 
Average 

 N/A 7.01 20.47 705.41 1.97 69.03 1.97 7.57 1.76 27.71 
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8.1.2 Soluble Elements Data Tables 

Table 27:  Major soluble element analysis (mg/L) 

Spring Name Sample Date Ca K Mg Na P S 

Bear 12-Dec 124.500 0.904 8.004 5.968 0.018 4.119 

Bear 13-Jan 121.000 0.755 8.381 5.920 0.018 3.590 

Bear 13-Feb 117.700 0.535 7.861 5.475 0.018 2.753 

Bear 13-Mar 67.700 0.616 8.328 6.018 0.018 3.448 

Bear 13-Apr 125.900 0.487 8.628 6.025 0.018 3.314 

Bear 13-May 124.900 0.445 8.529 5.926 0.018 3.434 

Bear 13-Jun 103.700 0.550 10.470 9.200 0.018 4.180 

Bear 13-Jul 128.700 0.382 10.670 7.264 0.018 4.334 

Bear 13-Aug 123.200 0.397 8.897 6.121 0.018 3.775 

Bear 13-Sep 113.700 0.683 19.940 10.080 0.018 5.852 

Bear 13-Oct 113.520 0.850 11.630 0.009 0.018 3.290 

Bear 13-Nov 47.400 0.840 11.650 0.009 0.018 2.770 

Bear 13-Dec 113.900 0.870 11.610 0.009 0.018 3.710 

Bear Average N/A 109.679 0.640 10.354 5.233 0.018 3.736 

Crayfish 12-Dec 115.900 6.810 24.150 12.080 0.018 8.282 

Crayfish 13-Jan 109.500 1.080 24.280 11.060 0.018 7.793 

Crayfish 13-Feb 110.600 1.288 23.250 10.200 0.018 6.354 

Crayfish 13-Mar 63.540 1.401 26.620 12.540 0.018 9.237 

Crayfish 13-May 118.500 0.906 25.110 11.450 0.018 7.732 

Crayfish 13-Jun 106.400 0.940 29.890 14.890 0.018 9.780 

Crayfish 13-Jul 125.700 0.802 30.520 13.790 0.042 10.030 
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Table 27:  Major soluble element analysis (mg/L) continued 

Spring Name Sample Date Ca K Mg Na P S 

Crayfish 13-Aug 127.600 0.742 25.600 11.940 0.018 8.357 

Crayfish 13-Sep 123.600 0.700 26.660 12.270 0.018 9.599 

Crayfish 13-Oct 105.500 0.980 23.840 10.460 0.018 7.770 

Crayfish 13-Nov 113.850 8.170 27.070 0.820 0.018 7.180 

Crayfish 13-Dec 106.400 7.470 32.450 0.790 0.018 5.040 

Crayfish Average N/A 110.591 2.607 26.620 10.191 0.020 8.096 

Geocache 12-Dec 99.440 3.917 31.230 14.260 0.018 5.796 

Geocache 13-Jan 97.340 1.085 32.430 13.900 0.018 5.419 

Geocache 13-Feb 94.120 1.032 31.350 13.590 0.039 4.451 

Geocache 13-Mar 42.130 1.291 37.620 16.810 0.018 6.368 

Geocache 13-Jul 108.700 0.987 39.050 17.770 0.018 6.837 

Geocache 13-Sep 102.900 0.846 34.980 16.570 0.018 6.635 

Geocache 13-Oct 96.730 0.800 32.880 15.580 0.018 6.240 

Geocache 13-Nov 42.040 8.550 19.790 5.410 0.018 2.130 

Geocache 13-Dec 103.130 7.840 38.520 6.410 0.018 5.380 

Geocache Average N/A 87.392 2.928 33.094 13.367 0.020 5.473 

Gnarly Root 12-Dec 107.800 2.109 14.170 5.904 0.018 3.150 

Gnarly Root 13-Jan 105.600 0.498 14.650 6.221 0.018 3.014 

Gnarly Root 13-Feb 100.400 0.535 13.590 5.596 0.018 2.255 

Gnarly Root 13-Mar 58.510 0.964 15.120 8.001 0.018 3.894 

Gnarly Root 13-Apr 110.200 0.498 15.460 6.097 0.066 2.652 

Gnarly Root 13-May 109.000 0.443 15.350 6.108 0.055 2.720 

Gnarly Root 13-Jun 111.700 0.570 17.640 11.170 0.018 3.710 

Gnarly Root 13-Jul 113.900 0.525 18.270 7.102 0.038 3.389 
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Table 27:  Major soluble element analysis (mg/L) continued 

Spring Name Sample Date Ca K Mg Na P S 

Gnarly Root 13-Aug 107.000 0.436 15.550 6.237 0.043 3.283 

Gnarly Root 13-Sep 107.400 0.770 16.060 7.013 0.074 3.809 

Gnarly Root 13-Oct 105.600 0.500 14.650 6.240 0.018 3.010 

Gnarly Root 13-Nov 42.040 8.550 19.790 5.410 0.018 2.130 

Gnarly Root 13-Dec 98.320 8.460 18.780 5.040 0.018 3.020 

Gnarly Root Average N/A 98.267 1.912 16.083 6.626 0.032 3.080 

Nolan Creek 12-Dec 94.870 6.121 27.290 12.080 0.018 5.252 

Nolan Creek 13-Jan 92.030 1.284 27.010 10.820 0.018 4.808 

Nolan Creek 13-Feb 93.460 1.107 28.680 11.250 0.018 4.091 

Nolan Creek 13-Mar 50.230 1.249 32.000 14.040 0.018 5.706 

Nolan Creek 13-Apr 97.110 1.111 30.370 12.210 0.018 4.917 

Nolan Creek 13-May 100.800 1.195 27.200 11.920 0.018 5.149 

Nolan Creek 13-Jun 90.310 1.590 28.830 12.740 0.018 5.650 

Nolan Creek 13-Jul 109.100 1.288 33.640 13.440 0.018 6.050 

Nolan Creek 13-Aug 100.600 1.327 28.090 11.100 0.018 4.926 

Nolan Creek 13-Sep 95.670 1.146 29.440 11.510 0.018 5.701 

Nolan Creek 13-Oct 98.710 0.840 35.280 12.050 0.018 5.790 

Nolan Creek 13-Nov 59.080 5.890 24.320 3.070 0.018 3.700 

Nolan Creek 13-Dec 106.440 7.470 32.450 0.790 0.018 5.040 

Nolan Creek Average N/A 91.416 2.432 29.585 10.540 0.018 5.137 

East Range Road 13-Mar 62.480 0.492 2.771 9.906 0.018 3.314 

East Range Road 13-Apr 120.700 0.565 7.851 5.808 0.060 3.622 

East Range Road 13-May 122.200 0.453 7.983 5.641 0.018 3.753 

East Range Road 13-Jun 100.400 0.560 9.400 8.670 0.018 4.430 
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Table 27:  Major soluble element analysis (mg/L) continued 

Spring Name Sample Date Ca K Mg Na P S 

East Range Road 13-Jul 134.100 0.396 2.810 9.980 0.018 4.047 

East Range Road 13-Aug 118.300 0.439 8.364 5.773 0.018 4.082 

East Range Road 13-Sep 129.400 0.320 2.098 8.530 0.018 4.080 

East Range Road 13-Oct 100.400 0.560 9.400 8.670 0.018 4.430 

East Range Road 13-Nov 59.280 8.880 2.860 1.860 0.018 2.890 

East Range Road 13-Dec 80.020 8.480 2.620 2.940 0.018 3.010 

East Range Road Average  N/A 102.728 2.115 5.616 6.778 0.022 3.766 

 

Table 28:  Soluble anion analysis of sampled springs (mg/L) 

Spring Name 
Sample 

Date 
F- Cl- NO3

- PO4
3- SO4

2- HCO3
- 

Bear 12-Dec 0.291 10.717 3.563 6.059 N/A 294.840 

Bear 13-Jan 0.221 10.350 3.808 5.899 N/A 250.990 

Bear 13-Feb 0.122 7.778 5.539 1.076 14.795 241.920 

Bear 13-Mar 0.220 11.348 3.965 7.860 N/A 294.840 

Bear 13-Apr 0.401 8.394 4.371 N/A 5.263 317.520 

Bear 13-May 0.396 8.604 3.702 N/A 4.989 285.770 

Bear 13-Jun 1.161 14.541 8.114 N/A 6.931 267.620 

Bear 13-Jul 0.603 9.743 3.744 N/A 5.800 176.900 

Bear 13-Aug 0.273 8.678 3.453 N/A 5.087 258.550 

Bear 13-Sep 0.374 13.236 4.201 N/A 
N/A 225.290 

Bear 13-Oct 0.410 10.340 4.450 N/A 5.450 285.770 
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Table 28:  Soluble anion analysis of sampled springs (mg/L) continued 

Spring Name 
Sample 

Date 
F- Cl- NO3

- PO4
3- SO4

2- HCO3
- 

Bear 13-Nov 0.150 8.580 3.820 N/A 5.020 214.700 

Bear 13-Dec 0.260 9.220 4.020 N/A 5.030 189.000 

Bear Average N/A 0.376 10.118 4.365 5.223 6.485 254.130 

Crayfish 12-Dec 0.607 19.990 3.505 11.170 N/A 264.600 

Crayfish 13-Jan 0.607 15.338 10.625 16.080 N/A 257.040 

Crayfish 13-Feb 0.334 12.121 9.554 2.091 39.392 297.860 

Crayfish 13-Mar 0.730 16.028 11.083 18.297 N/A 182.950 

Crayfish 13-May 0.707 14.235 7.982 N/A 15.091 260.060 

Crayfish 13-Jun 1.171 20.087 9.046 N/A 17.873 273.670 

Crayfish 13-Jul 0.660 15.879 8.580 N/A 17.048 219.240 

Crayfish 13-Aug 0.569 15.591 7.718 N/A 17.208 223.780 

Crayfish 13-Sep 0.532 15.795 7.496 N/A 
N/A 319.030 

Crayfish 13-Oct 0.710 14.240 7.980 N/A 15.090 317.520 

Crayfish 13-Nov 0.380 12.550 8.050 N/A 14.700 246.460 

Crayfish 13-Dec 0.480 14.500 3.240 N/A 8.140 250.990 

Crayfish Average N/A 0.624 15.530 7.905 11.909 18.068 259.430 

Geocache 12-Dec 0.624 9.191 7.172 4.215 N/A 261.580 

Geocache 13-Jan 0.668 18.637 3.574 10.492 N/A 294.840 

Geocache 13-Feb 0.252 15.638 2.779 1.445 26.151 326.590 

Geocache 13-Mar 0.645 23.748 3.413 14.969 N/A 317.520 

Geocache 13-Jul 1.223 21.910 1.857 N/A 10.636 322.060 

Geocache 13-Sep 0.431 20.856 0.723 N/A 
N/A 261.580 

Geocache 13-Oct 0.400 14.440 2.870 N/A 7.580 263.090 

Geocache 13-Nov 0.360 8.020 5.010 N/A 3.690 252.500 
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Table 28:  Soluble anion analysis of sampled springs (mg/L) continued 

Spring Name 
Sample 

Date 
F- Cl- NO3

- PO4
3- SO4

2- HCO3
- 

Geocache 13-Dec 0.420 19.530 1.920 N/A 9.720 266.110 

Geocache Average N/A 0.558 16.886 3.258 7.780 11.555 285.100 

Gnarly Root 12-Dec 0.284 10.844 3.594 5.912 N/A 269.140 

Gnarly Root 13-Jan 0.335 9.602 7.140 5.071 N/A 276.700 

Gnarly Root 13-Feb 0.199 7.182 5.931 0.617 10.960 267.620 

Gnarly Root 13-Mar 0.900 12.720 7.658 8.896 0.167 297.860 

Gnarly Root 13-Apr 0.673 8.371 6.749 1.219 4.022 284.260 

Gnarly Root 13-May 0.637 8.042 5.337 N/A 3.743 276.700 

Gnarly Root 13-Jun 1.048 17.440 6.249 N/A 5.073 244.940 

Gnarly Root 13-Jul 1.170 9.944 5.697 N/A 4.035 189.000 

Gnarly Root 13-Aug 0.581 8.348 4.950 N/A 3.624 266.110 

Gnarly Root 13-Sep 0.584 8.664 4.279 N/A 
N/A 341.710 

Gnarly Root 13-Oct 0.650 10.420 5.700 N/A 5.050 264.600 

Gnarly Root 13-Nov 0.360 8.020 5.010 N/A 3.690 261.580 

Gnarly Root 13-Dec 0.500 9.860 5.140 N/A 3.960 204.120 

Gnarly Root Average N/A 0.609 9.958 5.649 4.343 4.432 264.950 

Nolan Creek 12-Dec 0.551 17.113 5.123 10.126 N/A 243.430 

Nolan Creek 13-Jan 0.358 13.932 3.840 8.573 N/A 281.230 

Nolan Creek 13-Feb 0.260 13.106 3.944 1.110 23.127 284.260 

Nolan Creek 13-Mar 0.660 20.812 5.188 13.538 N/A 309.960 

Nolan Creek 13-Apr 0.812 16.776 5.440 N/A 9.668 297.860 

Nolan Creek 13-May 0.567 15.406 3.135 N/A 9.384 232.850 

Nolan Creek 13-Jun 0.417 14.901 3.772 N/A 8.942 254.020 

Nolan Creek 13-Jul 0.992 16.387 3.575 N/A 9.676 284.260 
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Table 28:  Soluble anion analysis of sampled springs (mg/L) continued 

Spring Name 
Sample 

Date 
F- Cl- NO3

- PO4
3- SO4

2- HCO3
- 

Nolan Creek 13-Aug 0.399 14.306 3.241 0.065 8.724 278.210 

Nolan Creek 13-Sep 0.410 14.910 2.652 0.069 0.000 222.260 

Nolan Creek 13-Oct 0.420 14.900 3.770 N/A 8.940 309.960 

Nolan Creek 13-Nov 0.250 9.180 2.900 N/A 6.480 231.340 

Nolan Creek 13-Dec 0.480 14.500 3.240 N/A 8.140 247.970 

Nolan Creek Average N/A 0.506 15.094 3.832 5.580 9.308 267.510 

East Range Road 13-Mar 0.219 18.687 8.125 8.040 0.172 216.220 

East Range Road 13-Apr 0.219 18.687 8.125 8.040 0.172 232.850 

East Range Road 13-May 0.425 8.170 1.606 N/A 5.990 254.020 

East Range Road 13-Jun 0.377 8.556 1.515 N/A 5.896 246.460 

East Range Road 13-Jul 0.620 11.479 1.744 N/A 6.460 328.100 

East Range Road 13-Aug 0.159 16.431 5.179 N/A 4.888 210.170 

East Range Road 13-Sep 0.305 8.221 1.572 N/A 5.857 237.380 

East Range Road 13-Oct 0.179 14.277 3.377 N/A 
N/A 275.180 

East Range Road 13-Nov 0.220 18.690 8.120 0.170 8.040 264.600 

East Range Road 13-Dec 0.160 14.070 4.290 N/A 4.920 163.300 

East Range Road Average N/A 0.288 13.727 4.365 5.416 4.711 242.830 
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Table 29: Trace metal soluble element analysis (mg/L) 

Spring Name Sample Date Al As B Cu Fe Mn Pb Zn 

Bear Dec-12 0.0060 0.0242 0.0348 0.0033 0.0012 0.0041 0.0218 0.0064 

Bear Jan-13 0.0060 0.0242 0.0355 0.0033 0.0012 0.0038 0.0218 0.0034 

Bear Feb-13 0.0206 0.0242 0.0291 0.0033 0.0224 0.0005 0.0218 0.0013 

Bear Mar-13 0.0060 0.0242 0.0424 0.0033 0.0012 0.0011 0.0218 0.0003 

Bear Apr-13 0.0060 0.0242 0.0328 0.0033 0.0012 0.0025 0.0218 0.0053 

Bear May-13 0.0060 0.0242 0.0346 0.0688 0.0012 0.0005 0.0218 0.0077 

Bear Jun-13 0.0060 0.0242 0.0024 0.0033 0.0012 0.0005 0.0218 0.0003 

Bear Jul-13 0.0060 0.0242 0.0404 0.0033 0.0012 0.0011 0.0218 0.0006 

Bear Aug-13 0.0060 0.0242 0.0288 0.0033 0.0012 0.0017 0.0218 0.0103 

Bear Sep-13 0.0060 0.0242 0.0400 0.0033 0.0012 0.0030 0.0218 0.0054 

Bear Oct-13 0.0060 0.0242 0.0024 0.0033 0.0012 0.0005 0.0218 0.0003 

Bear Nov-13 0.0060 0.0242 0.0024 0.0033 0.0012 0.0005 0.0218 0.0003 

Bear Dec-13 0.0060 0.0242 0.0024 0.0033 0.0012 0.0005 0.0218 0.0003 

Bear Average  N/A 0.0071 0.0242 0.0252 0.0083 0.0028 0.0015 0.0218 0.0032 

Crayfish Dec-12 0.0060 0.0242 0.0521 0.0033 0.0012 0.0018 0.0218 0.0092 

Crayfish Jan-13 0.0060 0.0242 0.0569 0.0033 0.0012 0.0010 0.0218 0.0045 

Crayfish Feb-13 0.5911 0.0242 0.0536 0.0033 0.2413 0.0058 0.0218 0.0030 

Crayfish Mar-13 0.0433 0.0242 0.0769 0.0033 0.0012 0.0005 0.0218 0.0003 

Crayfish May-13 0.0158 0.0242 0.0587 0.0611 0.0012 0.0025 0.0218 0.0186 

Crayfish Jun-13 0.0060 0.0242 0.0024 0.0033 0.0100 0.0005 0.0218 0.0003 

Crayfish Jul-13 0.0060 0.0242 0.0643 0.0033 0.0012 0.0077 0.0218 0.0031 

Crayfish Aug-13 0.0060 0.0242 0.0525 0.0033 0.0012 0.0297 0.0218 0.0170 

Crayfish Sep-13 0.0060 0.0242 0.0542 0.0033 0.0012 0.0026 0.0218 0.0036 

Crayfish Oct-13 0.0060 0.0242 0.0024 0.0033 0.7000 0.0005 0.0218 0.0003 

Crayfish Nov-13 0.0060 0.0242 0.0024 0.0033 0.0500 0.0005 0.0218 0.0003 

Crayfish Dec-13 0.0060 0.0242 0.0024 0.0033 0.0500 0.0005 0.0218 0.0003 

Crayfish Average  N/A 0.0587 0.0242 0.0399 0.0081 0.0883 0.0044 0.0218 0.0050 
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Table 29:  Trace metal soluble element analysis (mg/L) continued 

Spring Name Sample Date Al As B Cu Fe Mn Pb Zn 

Geocache Dec-12 0.0120 0.0242 0.0288 0.0033 0.0012 0.0027 0.0218 0.0140 

Geocache Jan-13 0.0060 0.0242 0.0313 0.0033 0.0012 0.0022 0.0218 0.0053 

Geocache Feb-13 0.1387 0.0242 0.0413 0.0033 0.1335 0.0013 0.0218 0.0012 

Geocache Mar-13 0.0310 0.0242 0.0464 0.0033 0.0012 0.0142 0.0218 0.0003 

Geocache Jul-13 0.0060 0.0242 0.0476 0.0033 0.0012 0.0018 0.0218 0.0016 

Geocache Sep-13 0.0060 0.0242 0.0300 0.0033 0.0012 0.0005 0.0218 0.0026 

Geocache Oct-13 0.0060 0.0242 0.0024 0.0033 0.0200 0.0005 0.0218 0.0003 

Geocache Nov-13 0.0060 0.0242 0.0024 0.0033 0.0500 0.0005 0.0218 0.0003 

Geocache Dec-13 0.0060 0.0242 0.0024 0.0033 0.0500 0.0005 0.0218 0.0003 

Geocache Average  N/A 0.0242 0.0242 0.0258 0.0033 0.0288 0.0027 0.0218 0.0029 

Gnarly Root Dec-12 0.0060 0.0242 0.0400 0.0033 0.0012 0.0027 0.0218 0.0115 
Gnarly Root Jan-13 0.0060 0.0242 0.0329 0.0033 0.0012 0.0009 0.0218 0.0036 
Gnarly Root Feb-13 0.0819 0.0242 0.0316 0.0033 0.0592 0.0022 0.0218 0.0014 
Gnarly Root Mar-13 0.0060 0.0242 0.0441 0.0033 0.0012 0.0019 0.0218 0.0003 
Gnarly Root Apr-13 0.0060 0.0242 0.0412 0.0033 0.0012 0.0027 0.0218 0.0013 
Gnarly Root May-13 0.0173 0.0242 0.0349 0.4014 0.0012 0.0013 0.0218 0.0289 
Gnarly Root Jun-13 0.0060 0.0242 0.0024 0.0100 0.0100 0.0005 0.0218 0.0200 
Gnarly Root Jul-13 0.0060 0.0242 0.0504 0.0033 0.0012 0.0039 0.0218 0.0003 
Gnarly Root Aug-13 0.0121 0.0242 0.0367 0.0033 0.0012 0.0020 0.0218 0.0074 
Gnarly Root Sep-13 0.0060 0.0242 0.0401 0.0033 0.0012 0.0168 0.0218 0.0085 
Gnarly Root Oct-13 0.0060 0.0242 0.0024 0.0033 0.0012 0.0005 0.0218 0.0003 
Gnarly Root Nov-13 0.0060 0.0242 0.0024 0.0033 0.0500 0.0005 0.0218 0.0003 
Gnarly Root Dec-13 0.0060 0.0242 0.0024 0.0033 0.0500 0.0005 0.0218 0.0003 

Gnarly Root Average  N/A 0.0132 0.0242 0.0278 0.0344 0.0138 0.0028 0.0218 0.0065 

Nolan Creek Dec-12 0.0060 0.0242 0.0313 0.0033 0.0012 0.0031 0.0218 0.0219 
Nolan Creek Jan-13 0.0161 0.0242 0.0338 0.0033 0.0012 0.0014 0.0218 0.0084 
Nolan Creek Feb-13 0.0418 0.0242 0.0373 0.0033 0.0433 0.0005 0.0218 0.0009 
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Table 29:  Trace metal soluble element analysis (mg/L) continued 

Spring Name Sample Date Al As B Cu Fe Mn Pb Zn 

Nolan Creek Mar-13 0.0060 0.0242 0.0392 0.0033 0.0012 0.0036 0.0218 0.0003 
Nolan Creek Apr-13 0.0060 0.0242 0.0324 0.0033 0.0012 0.0026 0.0218 0.0183 
Nolan Creek May-13 0.0060 0.0242 0.0385 0.0354 0.0012 0.0038 0.0218 0.0154 
Nolan Creek Jun-13 0.0060 0.0242 0.0024 0.0033 0.0100 0.0005 0.0218 0.0003 
Nolan Creek Jul-13 0.0706 0.0242 0.0381 0.0033 0.0012 0.0028 0.0218 0.0022 
Nolan Creek Aug-13 0.0060 0.0242 0.0360 0.0033 0.0012 0.0025 0.0218 0.0130 
Nolan Creek Sep-13 0.0060 0.0242 0.0322 0.0033 0.0012 0.0012 0.0218 0.0024 
Nolan Creek Oct-13 0.0060 0.0242 0.0024 0.0033 0.0012 0.0005 0.0218 0.0003 
Nolan Creek Nov-13 0.0060 0.0242 0.0024 0.0033 0.0500 0.0005 0.0218 0.0003 
Nolan Creek Dec-13 0.0060 0.0242 0.0024 0.0033 0.0500 0.0005 0.0218 0.0003 

Nolan Creek Average  N/A 0.0145 0.0242 0.0253 0.0058 0.0126 0.0018 0.0218 0.0065 

East Range Road Mar-13 0.0215 0.0242 0.0656 0.0033 0.0012 0.0021 0.0218 0.0030 
East Range Road Apr-13 0.0060 0.0242 0.0369 0.0033 0.0012 0.0039 0.0218 0.0091 
East Range Road May-13 0.0060 0.0242 0.0358 0.1618 0.0012 0.0046 0.0218 0.0250 
East Range Road Jun-13 0.0060 0.0242 0.0024 0.0100 0.0100 0.0005 0.0218 0.0003 
East Range Road Jul-13 0.0060 0.0242 0.0435 0.0033 0.0012 0.0014 0.0218 0.0003 
East Range Road Aug-13 0.0060 0.0242 0.0344 0.0033 0.0012 0.0175 0.0218 0.0160 
East Range Road Sep-13 0.0060 0.0242 0.0344 0.0033 0.0012 0.0012 0.0218 0.0052 
East Range Road Oct-13 0.0060 0.0242 0.0024 0.0100 0.0100 0.0005 0.0218 0.0100 
East Range Road Nov-13 0.0060 0.0242 0.0024 0.0033 0.0500 0.0005 0.0218 0.0003 
East Range Road Dec-13 0.0060 0.0242 0.0024 0.0033 0.0500 0.0005 0.0218 0.0003 

East Range Road Average  N/A 0.0076 0.0242 0.0260 0.0205 0.0127 0.0033 0.0218 0.0070 
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8.1.3 Total Element Data Tables 

Table 30: Total major element analysis (mg/L) 

Spring Name Sample Date Ca K Mg Na P S 

Bear 12-Dec 138.80 0.44 9.19 6.45 0.02 3.30 

Bear 13-Jan 124.30 0.51 8.26 5.75 0.05 2.99 

Bear 13-Feb 119.60 0.49 8.20 5.72 0.02 3.47 

Bear 13-Mar 125.60 0.56 8.00 5.90 0.02 2.98 

Bear 13-Apr 128.40 0.35 8.67 6.01 0.02 3.01 

Bear 13-May 132.20 0.43 8.94 6.25 0.02 3.06 

Bear 13-Jun 141.10 0.36 10.03 6.84 0.02 3.48 

Bear 13-Jul 191.20 0.49 13.56 9.77 0.02 4.43 

Bear 13-Aug 125.50 0.38 8.87 6.23 0.02 3.24 

Bear 13-Sep 120.20 0.56 20.43 9.94 0.02 4.58 

Bear 13-Oct 133.79 0.51 7.54 6.86 0.02 3.38 

Bear 13-Nov 142.60 0.43 2.14 6.84 0.02 3.39 

Bear 13-Dec 136.42 0.51 2.10 7.02 0.02 3.45 

Bear Average N/A 135.36 0.46 8.92 6.89 0.02 3.44 

Crayfish 12-Dec 127.60 1.01 29.41 12.83 0.02 7.52 

Crayfish 13-Jan 121.00 1.17 26.31 11.74 0.02 7.11 

Crayfish 13-Feb 106.50 0.98 23.84 10.46 0.02 7.77 

Crayfish 13-Mar 124.40 1.22 22.66 10.44 0.08 6.82 

Crayfish 13-May 142.40 1.08 29.51 13.17 0.02 7.94 

Crayfish 13-Jun 135.40 0.71 28.49 12.67 0.02 7.94 

Crayfish 13-Jul 239.50 1.28 45.70 20.67 0.06 12.07 
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Table 30:  Total major element analysis (mg/L) continued 

Spring Name Sample Date Ca K Mg Na P S 

Crayfish 13-Aug 133.20 0.85 25.50 11.96 0.02 7.48 

Crayfish 13-Sep 140.90 0.66 27.34 12.16 0.02 7.83 

Crayfish 13-Oct 127.60 1.01 29.41 12.83 0.02 7.52 

Crayfish 13-Nov 117.89 0.17 23.72 11.06 0.02 4.73 

Crayfish 13-Dec 162.64 0.61 31.84 15.35 0.02 6.60 

Crayfish Average N/A 139.92 0.90 28.64 12.95 0.03 7.61 

Geocache 12-Dec 111.60 1.08 37.82 16.24 0.02 5.20 

Geocache 13-Jan 110.40 1.24 36.26 15.49 0.02 5.11 

Geocache 13-Feb 93.97 1.06 31.66 13.75 0.05 5.92 

Geocache 13-Mar 109.00 1.23 35.81 16.11 0.02 5.08 

Geocache 13-Jul 158.40 1.35 51.80 23.79 0.02 7.14 

Geocache 13-Sep 107.80 0.84 36.59 17.27 0.02 5.30 

Geocache 13-Oct 93.35 0.73 31.83 15.02 0.02 4.61 

Geocache 13-Nov 110.40 1.24 36.26 15.49 0.02 5.11 

Geocache 13-Dec 155.00 1.35 51.80 23.79 0.02 7.14 

Geocache Average N/A 116.66 1.12 38.87 17.44 0.02 5.62 

Gnarly Root 12-Dec 114.40 0.38 15.42 5.95 0.02 2.32 

Gnarly Root 13-Jan 114.40 0.52 15.18 6.38 0.02 2.57 

Gnarly Root 13-Feb 101.00 0.48 14.07 5.78 0.02 2.82 

Gnarly Root 13-Mar 113.00 0.61 13.80 6.83 0.02 3.17 

Gnarly Root 13-Apr 113.20 0.23 15.70 6.07 0.02 2.36 

Gnarly Root 13-May 121.10 0.36 16.64 6.45 0.05 2.48 

Gnarly Root 13-Jun 118.10 0.25 16.56 6.27 0.02 2.46 

Gnarly Root 13-Jul 192.30 0.55 25.62 10.19 0.02 3.74 



 

135 
 

Table 30:  Total major element analysis (mg/L) continued 

Spring Name Sample Date Ca K Mg Na P S 

Gnarly Root 13-Aug 115.40 0.87 15.97 6.49 0.02 2.68 

Gnarly Root 13-Sep 113.10 0.32 15.94 6.03 0.05 2.59 

Gnarly Root 13-Oct 188.70 0.55 25.62 10.19 0.02 3.74 

Gnarly Root 13-Nov 104.17 0.77 16.15 5.83 0.02 2.32 

Gnarly Root 13-Dec 124.40 2.67 19.07 8.37 0.02 2.91 

Gnarly Root Average N/A 125.64 0.66 17.36 6.99 0.02 2.78 

Nolan Creek 12-Dec 118.00 1.13 36.02 14.19 0.02 5.07 

Nolan Creek 13-Jan 102.90 1.38 29.83 11.81 0.02 4.38 

Nolan Creek 13-Feb 91.13 1.03 28.47 11.09 0.02 5.21 

Nolan Creek 13-Mar 100.30 1.16 29.92 12.92 0.02 4.43 

Nolan Creek 13-Apr 116.50 1.09 33.69 13.35 0.02 4.83 

Nolan Creek 13-May 105.90 1.24 28.63 12.54 0.02 4.68 

Nolan Creek 13-Jun 114.60 1.55 30.14 11.99 0.02 4.76 

Nolan Creek 13-Jul 149.10 1.61 44.34 17.67 0.02 6.18 

Nolan Creek 13-Aug 106.80 1.53 27.64 10.93 0.02 4.37 

Nolan Creek 13-Sep 96.51 1.05 28.97 11.07 0.02 4.33 

Nolan Creek 13-Oct 100.26 1.14 38.98 15.44 0.02 4.08 

Nolan Creek 13-Nov 93.74 1.85 28.53 10.96 0.02 3.19 

Nolan Creek 13-Dec 88.85 0.16 31.77 13.19 0.02 3.29 

Nolan Creek Average N/A 106.51 1.23 32.07 12.86 0.02 4.52 

East Range Road 13-Mar 124.10 0.43 1.99 8.66 0.02 2.86 

East Range Road 13-Apr 124.30 0.24 7.96 5.75 0.02 3.34 

East Range Road 13-May 134.50 0.51 8.64 6.16 0.02 3.61 

East Range Road 13-Jun 127.00 0.30 8.88 6.29 0.02 3.54 
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Table 30:  Total major element analysis (mg/L) continued 

Spring Name Sample Date Ca K Mg Na P S 

East Range Road 13-Jul 326.00 0.53 4.78 14.44 0.08 5.49 

East Range Road 13-Aug 125.80 0.60 8.26 5.98 0.02 3.59 

East Range Road 13-Sep 136.30 0.24 2.10 8.45 0.02 3.19 

East Range Road 13-Oct 126.30 0.30 8.88 6.29 0.02 3.54 

East Range Road 13-Nov 149.62 0.28 2.63 14.93 0.02 13.46 

East Range Road 13-Dec 174.34 0.26 2.79 10.95 0.02 3.51 

East Range Road Average N/A 154.83 0.37 5.69 8.79 0.02 4.61 

 

Table 31:  Total trace element analysis (μg/L) 

Spring Name Sample Date Al As B Cu Fe Mn Pb Zn 

Bear 12-Dec 79.50 18.00 43.20 2.85 96.50 0.45 12.30 2.60 

Bear 13-Jan 67.30 18.00 40.00 2.85 74.80 0.45 12.30 34.30 

Bear 13-Feb 10.50 18.00 29.10 2.85 11.10 0.45 12.30 0.45 

Bear 13-Mar 110.20 18.00 47.80 2.85 11.10 1.60 12.30 29.90 

Bear 13-Apr 70.10 18.00 31.60 2.85 47.20 1.40 12.30 10.60 

Bear 13-May 10.50 18.00 35.30 2.85 11.10 0.45 12.30 1.40 

Bear 13-Jun 10.50 18.00 38.10 2.85 11.10 0.45 12.30 0.45 

Bear 13-Jul 104.30 18.00 68.90 2.85 54.90 1.70 12.30 3.00 

Bear 13-Aug 70.00 18.00 42.00 2.85 27.90 0.45 12.30 1.40 

Bear 13-Sep 127.90 18.00 47.80 2.85 93.60 2.90 12.30 1.00 

Bear 13-Oct 10.50 18.00 4.05 2.85 50.00 0.45 12.30 10.00 

Bear 13-Nov 10.50 18.00 4.05 2.85 11.10 0.45 12.30 10.00 
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Table 31:  Total trace element analysis (µg/L) continued 

Spring Name Sample Date Al As B Cu Fe Mn Pb Zn 

Bear 13-Dec 10.50 18.00 4.05 2.85 30.00 0.45 12.30 10.00 

Bear Average N/A 53.25 18.00 33.53 2.85 40.80 0.90 12.30 8.85 

Crayfish 12-Dec 118.50 18.00 63.30 2.85 66.50 1.60 12.30 1.90 

Crayfish 13-Jan 209.80 18.00 60.00 2.85 97.50 2.00 12.30 35.30 

Crayfish 13-Feb 10.50 18.00 51.90 2.85 11.10 0.90 12.30 1.10 

Crayfish 13-Mar 294.10 18.00 75.60 6.90 151.90 1.70 12.30 25.40 

Crayfish 13-May 863.90 18.00 65.10 2.85 388.20 9.20 12.30 2.20 

Crayfish 13-Jun 105.50 18.00 63.60 2.85 49.40 1.30 12.30 0.45 

Crayfish 13-Jul 1077.00 18.00 107.60 2.85 877.40 63.70 12.30 3.50 

Crayfish 13-Aug 416.40 18.00 61.60 2.85 175.40 5.90 12.30 4.40 

Crayfish 13-Sep 763.70 18.00 62.00 2.85 533.60 31.40 12.30 2.40 

Crayfish 13-Oct 10.50 18.00 4.05 2.85 70.00 0.45 12.30 0.45 

Crayfish 13-Nov 10.50 18.00 4.05 2.85 50.00 0.45 12.30 0.45 

Crayfish 13-Dec 10.50 18.00 4.05 2.85 30.00 0.45 12.30 0.45 

Crayfish Average N/A 324.24 18.00 51.90 3.19 208.42 9.92 12.30 6.50 

Geocache 12-Dec 61.90 18.00 36.50 2.85 52.40 0.90 12.30 2.60 

Geocache 13-Jan 42.20 18.00 33.90 2.85 26.70 1.10 12.30 36.30 

Geocache 13-Feb 10.50 18.00 40.80 2.85 11.10 1.30 12.30 0.45 

Geocache 13-Mar 151.50 18.00 63.40 2.85 50.00 1.00 12.30 29.70 

Geocache 13-Jul 84.50 18.00 72.50 11.50 56.90 1.90 12.30 8.40 

Geocache 13-Sep 27.00 18.00 36.00 2.85 11.10 0.45 12.30 0.90 

Geocache 13-Oct 10.50 18.00 4.05 2.85 11.10 0.45 12.30 0.45 

Geocache 13-Nov 10.50 18.00 4.05 2.85 30.00 0.45 12.30 40.00 

Geocache 13-Dec 10.50 18.00 4.05 10.00 60.00 0.45 12.30 10.00 
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Table 31:  Total trace element analysis (µg/L) continued 

Spring Name Sample Date Al As B Cu Fe Mn Pb Zn 

Geocache Average N/A 45.46 18.00 32.81 4.61 34.37 0.89 12.30 14.31 

Gnarly Root 12-Dec 138.10 18.00 34.60 2.85 98.30 4.00 12.30 2.30 

Gnarly Root 13-Jan 98.30 18.00 32.70 2.85 69.10 2.40 12.30 34.00 

Gnarly Root 13-Feb 10.50 18.00 30.20 2.85 11.10 2.00 12.30 1.80 

Gnarly Root 13-Mar 101.50 18.00 41.60 2.85 11.10 0.45 12.30 20.30 

Gnarly Root 13-Apr 10.50 18.00 35.20 2.85 11.10 1.00 12.30 8.90 

Gnarly Root 13-May 128.20 18.00 44.40 2.85 113.30 2.30 12.30 1.60 

Gnarly Root 13-Jun 177.20 18.00 45.50 2.85 202.40 6.70 12.30 1.40 

Gnarly Root 13-Jul 383.10 18.00 60.60 2.85 336.30 12.80 12.30 4.20 

Gnarly Root 13-Aug 188.50 18.00 52.40 2.85 109.60 3.00 12.30 5.60 

Gnarly Root 13-Sep 177.30 18.00 49.60 2.85 170.30 4.50 12.30 1.90 

Gnarly Root 13-Oct 10.50 18.00 4.05 10.00 340.00 10.00 12.30 0.45 

Gnarly Root 13-Nov 10.50 18.00 4.05 10.00 30.00 0.45 12.30 10.00 

Gnarly Root 13-Dec 10.50 18.00 4.05 2.85 11.10 0.45 12.30 0.45 

Gnarly Root Average N/A 111.13 18.00 33.77 3.95 116.44 3.85 12.30 7.15 

Nolan Creek 12-Dec 225.40 18.00 40.60 2.85 131.70 2.60 12.30 2.20 

Nolan Creek 13-Jan 80.90 18.00 39.80 2.85 45.40 1.00 12.30 36.40 

Nolan Creek 13-Feb 10.50 18.00 39.60 2.85 11.10 6.80 12.30 0.45 

Nolan Creek 13-Mar 216.10 18.00 58.30 2.85 26.70 1.20 12.30 15.10 

Nolan Creek 13-Apr 427.60 18.00 37.20 2.85 231.20 4.70 12.30 11.20 

Nolan Creek 13-May 86.90 18.00 33.30 2.85 51.60 2.50 12.30 2.10 

Nolan Creek 13-Jun 58.80 18.00 38.60 2.85 34.70 1.30 12.30 1.60 

Nolan Creek 13-Jul 151.00 18.00 60.70 2.85 83.20 3.00 12.30 1.90 

Nolan Creek 13-Aug 411.60 18.00 50.10 2.85 200.00 5.30 12.30 1.90 
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Table 31:  Total trace element analysis (µg/L) continued 

Spring Name Sample Date Al As B Cu Fe Mn Pb Zn 

Nolan Creek 13-Sep 64.90 18.00 37.60 2.85 52.50 0.45 12.30 0.45 

Nolan Creek 13-Oct 10.50 18.00 4.05 2.85 30.00 0.45 12.30 0.45 

Nolan Creek 13-Nov 10.50 18.00 4.05 2.85 30.00 0.45 12.30 10.00 

Nolan Creek 13-Dec 10.50 18.00 4.05 2.85 50.00 0.45 12.30 0.45 

Nolan Creek Average N/A 135.78 18.00 34.46 2.85 75.24 2.32 12.30 6.48 

East Range Road 13-Mar 194.40 18.00 51.00 2.85 35.50 2.00 12.30 16.70 

East Range Road 13-Apr 54.80 18.00 33.20 2.85 51.00 2.30 12.30 10.20 

East Range Road 13-May 106.90 18.00 39.70 2.85 69.50 5.10 12.30 1.10 

East Range Road 13-Jun 67.10 18.00 40.70 2.85 51.80 4.60 12.30 1.40 

East Range Road 13-Jul 487.80 18.00 82.20 2.85 909.20 12.40 12.30 2.80 

East Range Road 13-Aug 414.20 18.00 47.00 2.85 239.10 24.30 12.30 4.00 

East Range Road 13-Sep 30.90 18.00 40.60 2.85 53.80 0.45 12.30 1.00 

East Range Road 13-Oct 10.50 18.00 4.05 2.85 50.00 0.45 12.30 0.45 

East Range Road 13-Nov 10.50 18.00 4.05 2.85 11.10 0.45 12.30 0.45 

East Range Road 13-Dec 10.50 18.00 4.05 2.85 11.10 0.45 12.30 0.45 

East Range Road Average N/A 138.76 18.00 34.66 2.85 148.21 5.25 12.30 3.86 
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8.2 Statistics Data Tables 

8.2.1 t-test Results 

Table 32: Major element t-tests among springs 

  

 
Calcium Potassium Magnesium Sodium Sulphur 

  Soluble Total Soluble Total Soluble Total Soluble Total Soluble Total 

Mean 100.01 129.82 2.11 0.79 20.23 21.93 8.79 10.99 4.88 4.76 

Variance 89.78 298.44 0.65 0.12 124.42 177.72 9.48 17.32 3.31 2.92 

F value 3.32 5.23 1.43 1.83 1.13 

Pf 0.11 0.05 0.35 0.26 0.45 

T value -3.71 3.67 -0.24 -1.04 0.12 

Pt 4.07E-03 7.92E-03 0.82 0.32 0.91 

 

 

Table 33: Trace element t-tests among springs 

 Aluminum Boron Iron Zinc 

 Soluble Total Soluble Total Soluble Total Soluble Total 

Mean 20.87 134.77 28.34 36.85 25.69 103.91 5.17 7.86 

Variance 381.36 10219.29 32.93 54.80 866.35 4536.50 3.12 12.58 

F value 26.80 1.66 5.24 4.04 

Pf 0.001 0.29 0.05 0.08 

T value -2.71 -2.23 -2.61 -1.66 

Pt 4.23E-02 5.02E-02 3.51E-02 0.13 
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Table 34: Major element t-tests among sample dates 

 Calcium Potassium Magnesium Sodium Sulphur 

 

Solubl
e Total 

Solubl
e Total 

Solubl
e Total 

Solubl
e Total 

Solubl
e Total 

Mean 101.40 128.35 1.96 0.78 19.87 21.37 8.63 10.51 4.82 4.64 

Variance 388.19 669.65 5.37 0.02 5.38 16.23 8.60 4.83 0.64 0.52 

F value 1.73 256.05 3.02 1.78 1.23 

Pf 0.18 1.58E-12 0.03 0.17 0.36 

T value -2.99 1.83 -1.16 -1.85 0.60 

Pt 6.40E-03 0.09 0.26 0.08 0.55 

 

Table 35: Trace element t-tests among sample dates 

 Aluminum Boron Iron Zinc 

 Soluble Total Soluble Total Soluble Total Soluble Total 

Mean 21.48 137.56 28.92 37.42 102.50 24.91 5.62 7.73 

Variance 2141.22 14217.86 358.84 462.11 9266.14 1704.91 35.16 107.53 

F value 0.15 1.29 5.43 3.06 

Pf 1.29E-03 0.33 3.20E-03 0.03 

T value -3.27 -1.07 -2.67 -0.64 

Pt 3.22E-03 0.30 0.02 0.53 
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8.2.2 Soluble Element PCA Biplots 

 

Figure 39: Soluble element PCA biplot of component 1 (Cl, Na, Mg, and S) x component 2 (K and inverse pH) 
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Figure 40: Soluble element PCA biplot component 1 (Cl, Na, Mg, and S) x component 3 (N and inverse temperature) 
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Figure 41: Soluble element PCA biplot component 1 (Cl, Na, Mg, and S) x component 4 (conductivity) 
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Figure 42: Soluble element PCA biplot component 1 (Cl, Na, Mg, and S) x component 5 (Ca, F, and discharge) 
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Figure 43: Soluble element PCA biplot component 2 (K and inverse pH) x component 3 (N and inverse temperature) 
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Figure 44: Soluble element PCA biplot component 2 (K and inverse pH) x component 4 (conductivity) 
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Figure 45: Soluble element PCA biplot component 2 (K and inverse pH) x component 5 (Ca, F, and discharge) 
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Figure 46: Soluble element PCA biplot component 3 (N and inverse temperature) x component 4 (conductivity) 
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Figure 47: Soluble element PCA biplot component 3 (N and inverse temperature) x component 5 (Ca, F, and discharge) 
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Figure 48: Soluble element PCA biplot component 4 (conductivity) x component 5 (Ca, F, and discharge) 
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8.2.3 Total Element PCA Biplots 

 

Figure 49: Total element PCA biplot component 1 (Al, Fe, Na, and S) x component 2 (Mg and inverse K) 
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Figure 50: Total element PCA biplot component 1 (Al, Fe, Na, and S) x component 3 (B, Zn, and pH) 
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Figure 51: Total element PCA biplot component 1 (Al, Fe, Na, and S) x component 4 (discharge) 
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Figure 52: Total element PCA biplot component 1 (Al, Fe, Na, and S) x component 5 (conductivity) 
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Figure 53: Total element PCA biplot component 2 (Mg and inverse K) x component 3 (B, Zn, and pH) 
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Figure 54: Total element PCA biplot component 2 (Mg and inverse K) x component 4 (discharge) 
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Figure 55: Total element PCA biplot component 2 (Mg and inverse K) x component 5 (conductivity) 
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Figure 56: Total element PCA biplot component 3 (B, Zn, and pH) x component 4 (discharge) 
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Figure 57: Total element PCA biplot component 3 (B, Zn, and pH) x component 5 (conductivity) 
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Figure 58: Total element PCA biplot component 4 (discharge) x component 5 (conductivity) 
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