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ABSTRACT

This thesis is based on a Poisson model that uses both error-free data and error-

prone data subject to misclassification in the form of false-negative and false-positive

counts. We present maximum likelihood estimators (MLEs), Fisher’s Information,

and Wald statistics for the Poisson rate parameter and the two misclassification pa-

rameters. Next, we invert the Wald statistics to get asymptotic confidence intervals

for the Poison rate parameter and false−negative rate parameter. The coverage and

width properties for various sample size and parameter configurations are studied via

a simulation study. Finally, we apply the MLEs and confidence intervals to one real

data set and another realistic data set.

.
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1 INTRODUCTION

Mathematical statistics is the foundation of the statistics and is the starting place

for every statistical model. There are two major components in statistics called

descriptive statistics and inferential statistics. Descriptive statistics help summarize,

organize, and display a data set. Statistical Inference is used in drawing conclusions

about parameters of the population using sample data and some inferential technique.

Confidence intervals for parameters is a common inferential technique.

In day to day life, decisions to either do something or not are common. Such

binary data are frequently used in a wide range of applications, including survey

analysis, criminology, clinical medicine, and information technology. We also see

binary or binomial data in epidemiology, which is the study of the distribution of

health-related states and events in populations. Bross(1950) [6], Tenenbein(1970)

[15], Hochberg(1977) [11], Chen(1979) [8], Viana, Ramakrishnan and Levy (1993) [3],

Joseph, Gyorkos and Coupal(1995) [2], and York et al.(1995) [1] published research

papers concerning parameter estimation for count data with misclassification for both

the binomial and multinomial models.

Count data with a Poisson distribution can also be seen in the areas of epidemiol-

ogy, market research, and criminal justice. Researchers often propose Poisson models

to compare the rates of certain events for different populations. For instance, models

to compare mortality rates of different diseases, or to compare crime rates for differ-

ent neighborhoods. Counts which are used to estimate the Poisson rate of interest

could be subject to error on the inferences and rates due to misclassification. An-

derson, Bratcher, and Kutron(1994) [7] published an article concerning the Poisson

model with misclassification, estimating a Poisson rate allowing for false negatives.

Bayesian estimators for the rate of occurrence and probability of false negatives were
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given by Andersonetal. Also Bayesian methods to estimate Poisson rates in the pres-

ence of both false−negative and false−positive misclassification were used by Bratcher

and Stamey (2002) [5]. Stamey and Young (2005) [12] published a paper discussing a

Poisson model that uses error free data and error-prone data subject to misclassifica-

tion in the form of false-negative and false-positive counts. In both research papers, a

multi-sample procedure was used. In this procedure, a first sample is called training

sample or expensive sample that is usually not very large. The second (inexpensive)

sample is larger and cheaper than the training sample.

In this thesis, we consider a method to find the confidence interval for a single

Poisson parameter and Binomial misclassification parameter when data is subject to

misclassification, based on common maximum- likelihood-based asymptotic statistics

called Wald statistics. Wald statistics were presented by Abraham Wald in the mid

20th century. We develop a statistical model that uses a double-sampling procedure

on binary data that is subject to misclassification. A Monte Carlo simulation is used

to investigate the coverage and width properties which related interesting parameters.

The thesis is organized in the following manner. In section 1.1, we discuss some

motivating examples and some terminology. Chapter 2 discusses the mathematical

theory which is related to the study. Next, in chapter 3, we develop the statistical

model for that uses error−prone Poisson data and error−free Poisson, Binomial data

to estimate relevant parameter of interest. In chapter 4, we present Wald−based

confidence intervals for the Poisson rate and false−negative rate, and study their

coverage and width properties via a simulation study. The real wold examples intro-

duced in section 1.1 will be evaluated using the misclassification model in chapter 5.

Comments and conclusions are deliberated in chapter 6.

2



1.1 Motivating Examples

1.1.1 Example One

Mortality data and statements of cause of death on the death certificates are

used as major sources of information characterizing the health of population groups.

Hence, accuracy on death certificates is very important. Age, sex, date of death,

residence, and cause of death are routinely recorded death certificates. Problems

with the reliability of the statement of cause of death appear to be related to the

current state of medical knowledge, and incomplete information at the time of death.

Therefore, there may be major and minor asperities between the medical section of

the death record and other sources of clinical and pathological information relating

to the death of the patient.

Autopsy is the one of several methods used to supplement or revise the cause of

death on death certificates. There are two type of autopsies. One is forensic autopsy

and other is clinical autopsy, the latter involves a highly specialized surgical procedure

which is an expensive examination of the corpse to identify the cause of death. Data

from forensic autopsy can result in misclassification of the cause of death. Therefore,

the misclassification model discussed in this thesis can be applied when considering

such autopsy results.

This example data taken from Stamey and Young (2005) research paper [12] is

based on Kircher, Nelson and Burdo (1985) [16], and includes data based on the death

certificates of all people who died in Connecticut in 1980. In that year 28, 440 deaths

occurred in Connecticut. Forensic autopsies were performed on 3884 of the decedents.

From the sample of 280 autopsy report randomly drawn for the present study, 272

cases were checked by clinical autopsy.

3



The primary objective of this epidemiology study is to obtain a valid and precise

estimate of the expected occurrences of deaths due to digestive disease in the popu-

lation of the Connecticut. Here incidence refers to the occurrence of new deaths in a

Connecticut in 1980. The population of Connecticut in 1980 was 3.108 million. All of

these autopsies were performed under the jurisdiction of the state. From the 272 clini-

cal autopsies performed, 32 deaths were attributed to digestive disease. For this same

sample, 18 deaths had been attributed to digestive disease by forensic autopsy, of the

18, 16 were correct, 2 were false−positives. 16 forensic autopsies identified as due to

some other cause, but death was actually due to digestive disorder (false−negatives).

Of all the forensic autopsies conducted in Connecticut in (1980), 6.1% identified the

cause of death as digestive disorder.

1.1.2 Example Two

Defects, internal and external corrosion, dents, and gouges are regularly found in

oil and gas pipelines. In the majority of cases, defects are minor and have no impact

on safety of the pipeline. In some cases, however, defects may can be significant and

a repair is necessary. Identifying defects that are critical, and need to be repaired is

important. Hence, any method of identifying and assessing critical defects must be

accurate and not conservative.

In this example, there are two defect identification approaches, manual inspection

and ultrasonic method. Doing inspection manually is more expensive with labour

cost and equipment cost versus the ultrasonic method. ABC Technical Service.Inc is

interested in the average number of defects per 1000 feet of oil pipelines near Houston,

Texas. Using an ultrasonic method, 30, 000 feet were inspected and 145 defects were

found.

4



For 2, 000 feet, ultrasonic and manual inspection methods were used, and 25 de-

fects were identified from the ultrasonic method, but only 23 true defects were iden-

tified by the manual method. Of the 25 defects found by ultrasonic method, 16 were

classified as false−positive and 4 were correct, and there was 14 false−negative. The

model proposed and evaluated in this study can be applied in each of the examples

above.

5



2 MATHEMATICAL PRELIMINARIES

2.1 Misclassification Models

In day−to−day life, we make classifications that may either be correct or wrong.

If the classification is incorrect, that is called a misclassification. For binary data,

there are two misclassifications, false−negative and false−positive. As an example, in

medical diagnosis, a patient can be classified as not having a specific disease when in

fact the patient does have the disease. This is called a false-negative. A false−positive,

occurs when the patient is diagnosed to have the disease, when, in really, he does not

have the disease. Misclassification can occur because of human error, experimental

error, etc. While misclassification may be a common mistake, the consequences can

often be severe.

Statistical models may be helpful in accounting for the potentially misclassified

data. Such models can allow for appropriate estimates of parameters of interest, as

well as misclassification parameters. Binomial, Multinomial, Poisson, negative bi-

nomial distributions are just a few of the probability models that may be used. In

general, the strategy of developing the model is different from application to applica-

tion.

In this research, we consider a Poisson model with misclassification, and a double-

sampling procedure involving a binomial model that is used to appropriately estimate

a Poisson rate parameter and misclassification parameters. From the model we will

also develop and study relevant confidence intervals based on the Wald statistics.

6



2.2 Double Sampling Procedure

Suppose we have two classifying devices, one is perfect (or infallible) while the

other device is prone to misclassification (or fallible). Typically, the infallible classi-

fier is expensive in terms of time or money, and the fallible classifier is less expensive.

These two devices make up a double sampling procedure. In order to create the first

sample, the fallible classifier is applied to a large sample. Note that this ”fallible”

sample may included false−positive and false−negative results, but they are not ob-

servable. For the second sample, the fallible and infallible classifier are applied to a

small sample. In this second sample, false−positive and false−negative counts are

observable because of the infallible classifier.

Figure 2.1: Double Sample Procedure

7



2.3 Binomial Distribution

Swiss mathematician Jakob Bernoulli, is credited with the beginning of the bi-

nomial distribution[12]. A Bernoulli experiment is a random experiment when the

outcome can be classified as only success or failure (e.g., female or male, life or death,

no defective or defective). The binomial distribution models the number of successes

from independent Bernoulli trials where the probability of success is constant. The

binomial distribution is used to obtain the probability of observing x successes in n

trials, with the probability of success on a single trial denoted by p. The formula for

the binomial probability mass function is

P (x; p, n) =

(
n

x

)
px(1− p)(n−x),

where (
n

x

)
=

n!

x!(n− x)!
,

and

x! = x(x− 1)(x− 2) . . . 3 2 1, 0! = 1, and x = 0, 1, 2, . . . , n

2.4 Poisson Distribution

The Poisson distribution is a discrete probability distribution which has many

application in statistics, and was discovered by French mathematician Simon Denis

Poisson [12]. He derived the distribution using the limit of the binomial distribution.

It is used to model the number of occurrences of particular event occurring within a

given interval of time, space, or area.

Let X denote the number of occurrences in a in a given interval and assume X

follows an approximate Poisson process (described below) with parameter λ> 0.

8



The formula for the Poisson probability mass function is

p(x, λ) =
e−λλx

x!
, x = 0, 1, 2, . . .

.

The assumptions used to support use of the Poisson distribution are,

• Events occur at random in continuous space or time.

• Events occur singly, and the probability of two events occurring simultaneously

is zero.

• Events occur uniformly, i.e. the expected number of events in a given interval

is proportional to the size of the interval.

• Events occur independently, i.e. the probability of an event occurring in any

small interval is independent of the probability of the event occurring in any

other small interval.

• The variable is the number of events that occur in an interval of a given mag-

nitude.

However, in practical situations the above assumption might not be valid. For

example, blood cells, or yeast cells, or any other organism held in suspension in

a liquid, will not remain uniformly spaced through the liquid, unless the liquid is

shaken up in its container before each drop is taken to place on a microscope slide.

This lack of uniform occurrence can result in a change of mean. Physical arguments

like these are always very valuable in deciding whether a Poisson model is appropriate.

In addition, the Poisson distribution has the special property of the mean and

variance being equal. Consequently, if we divide the sample variance by the sample

mean, we should obtain a number which is very close to one when data really do come

from a Poisson distribution, suggesting that true Poisson model is appropriate.

9



2.5 Likelihood Background

In this section, we discuss maximum likelihood estimation, Fisher’s information,

and Wald statistics by looking at the appropriate likelihood function. R.A Fisher

introduced this most significant development of statistics in the 20th century. He

spent ten years, from 1912 to 1922, when he published several papers related to the

likelihood function. After these publications, a whole branch of statistical reasoning

had been established. Hogg, Mckean, and Craig (2005) [4] provide a nice overview of

the likelihood function, which is summarized here.

2.5.1 Likelihood Function

Consider a random vector X = (X1, X2, . . . , Xn)′ of dimension n where the X ′s

are jointly distributed with probability density f( X | θ ), where θ = (θ1, θ2, . . . , θm)′

is a parameter vector of dimension m contained in the parameter space Ω ⊂ Rm.

The likelihood function of θ views f(X | θ) as a function of θ given X and is

defined as

L(θ) ≡ L(θ | X) = f(X | θ).

2.5.2 Maximum Likelihood Estimators

The maximum likelihood estimator(MLE) of θ , if it exists, is defined to be the

value, θ̂ = θ̂ (X) such that

θ̂ = Argmax{L(θ)}.

An important measure in large sample likelihood theory is the score function,

u(θ) ≡ ∂

∂θ
L(θ),

10



where ∂
∂θ
L(θ) = ( ∂

∂θ1
L(θ), ∂

∂θ2
L(θ), . . . , ∂

∂θm
L(θ))′. The MLE is often the solution to

the equation u(θ) = 0.

2.5.3 Fisher’s Information

The Fisher’s information is a way of measuring the amount of information that an

observable random variable X carries about an unknown parameter θ of a distribution

that models X.

To obtain the Fisher’s information, certain regularity condition are needed. These

conditions are given in detail in Hogg, Mckean, Craig ” Introduction To Mathematical

Statistics” [4].

When the conditions hold, we can compute the (i, j)th element of the m × m

Fisher’s information matrix as

Ii,j(θ) = − E
[
∂ ln(L(θ))

∂θi ∂θj
′

]
, i, j = 1, . . . ,m

.

2.5.4 Properties of MLE’s

The large sample properties on the Likelihood function and Maximum Likelihood

Estimators include,

• MLE’s become unbiased minimum variance estimators as the sample size in-

creases.

• MLE’s have approximately normal distributions and approximate sample vari-

ances that can be calculated and used to generate confidence bounds for large

sample sizes.
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• Likelihood functions can be used to test hypotheses about models and param-

eters.

2.5.5 Wald Statistics and Confidence Intervals

The Wald statistic is a first order asymptotic statistic composed from a function

of the Fisher’s information matrix.

Suppose θ = (θ1, θ2, θ3)
′, where θ1,θ2 and θ3 are scalars. θ1 is the parameter of

interest and θ2 and θ3 are the nuisance parameters. Then the Wald statistic for θi is

Wi ≡
θ̂i − θi

I ii(θ̂1, θ̂2, θ̂3)
,

for i = 1, 2, 3.

Where, θ̂i are MLE’s of θi and I ii(θ̂1, θ̂2, θ̂3) is the corresponding (i, i) diagonal

element of I[θ̂1, θ̂2, θ̂3]
−1. W is asymptotically N(0, 1) and W 2 is asymptotically χ2

1.

In order to develop a confidence interval for parameters θi, consider the following

probability statements,

P
(
−Zα/2 ≤ W ≤ Zα/2

)
≈ 1− α,

P

(
−Zα/2 ≤

θ̂i − θi
I ii(θ̂1, θ̂2, θ̂3)

≤ Zα/2

)
≈ 1− α,

P

(
−Zα/2

√
I ii(θ̂1, θ̂2, θ̂3) ≤ θ̂i − θi ≤ Zα/2

√
I ii(θ̂1, θ̂2, θ̂3)

)
≈ 1− α.

Hence, a (1− α)100% confidence interval for θi can be expressed as

θ̂i + Zα/2

√
I ii(θ̂1, θ̂2, θ̂3) ≥ θi ≥ θ̂i − Zα/2

√
I ii(θ̂1, θ̂2, θ̂3),

where Zα/2 is the corresponding standard normal percentile.
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3 THE MISCLASSIFICATION MODEL

In this mathematical model, we utilize the Poisson and binomial distributions with

a double sampling procedure to account for misclassification. We have two samples,

an infallible or training sample (expensive sample) and a fallible sample (inexpensive

sample).

Infallible sample: using the infallible and fallible classifier, we take a small sample

of size A0. Note: A0 may not be a positive integer, but might be any positive

real number reflecting an area, distance, or time frame of general interest. We able

to observe the number of false negatives (X0), the number of false positive (Y0),

the number of true occurrence (T0), and the error−prone (as labeled by the fallible

classifier) count of occurrences, Z0. Note that Z0 = T0 + Y0 −X0. Here, we assume

T0 ∼ Pn(A0λ), where λ is the expected number of true occurrence over one unit

of interest. Also, the maximum numbers of false negatives is T0, and we assume

(X0|T0 = t0) ∼ Bi(t0, θ) where θ is the rate of false negative results for the fallible

classifier. Given the Poisson nature of occurrences, the false positive random variable

has no upper bound. Therefore, we model the true count and the false positive

count as independent Poisson random variables. We assume Y0 ∼ Pn(A0φ), where

φ is the the expected number of false−positives over one unit of interest. Hence

Z0 ≈ Pn(A0µ), where µ = λ(1 − θ) + φ, the expected number of occurrences when

using the fallible classifier over one unit of interest. As a summary, λ is the occurrence

rate parameter that is the main parameter of interest, φ is the occurrence rate of false

positive observations, and θ is the probability of a single false negative observation.

Fallible sample: using only the fallible classifier, we obtain a large sample of size A.

Note: A also may not be a positive integer, but insted might be positive real number

reflecting an area, distance, or time frame of general interest. In this data set, we have

13



error−prone data that possibly contains false−positives (Y ), false−negatives (X)

counts, and true occurrences (T ). However, we cannot observe such counts. Rather,

we can only observe Z, where Z = T + Y − X. Assuming a similar distribution

structure to the infallible sample, we have that Z ∼ Pn(Aµ). In this study, we

ultimately will investigate the confidence intervals for λ and θ, based on a Wald

statistic.

3.1 Joint Probability Mass Function of Misclassification Model

With the assumption and using double sampling as described, we need the proba-

bility mass functions of the following random variables to derive the joint probability

mass function. In summary:

• T0 ∼ Pn(A0λ)

• Y0 ∼ Pn(A0φ)

• (X0|T0 = t0) ∼ Bi(t0, θ)

• Z ∼ Pn(Aµ)

where,

A0 = number of sample units within the time or space interval in the traning sample,

A = number of sample units within the time or space interval in the fallible sample,

T0 = number of true incidences in the sample A0,

Y0 = number of false−positives in the sample A0,

14



X0 = number of false−negatives in the sample A0,

Z0 = number of occurrences identified by the fallible classifier in the sample A0,

Z = number of occurrences in observed the sample A (using only the fallible classifier),

λ = expected number of true occurrence over one unit of time or space,

θ = probability of be a single false−negative observation, and

φ = expected number of false−positives over one unit of time or space.

As mentioned in the beginning of the chapter, the number of true occurrences

(incidences) (T0) and the number of false−positives (Y0) are assumed to be indepen-

dent. However, true occurrences (T0) and false−negatives (X0) are dependent, and a

binomial model is appropriate when the effective training sample (infallible sample)

size is small. The Poisson model for T0 actually assumes a sufficiently large search

area. Consequently,A0 − t0 (where T0 = t0 scaled to the appropriate unit same as

A0 ) is also large enough to follow the Poisson, rather than the Binomial distribution

model. Again, assuming φ is small, T0 and Y0 are approximately independent. Hence,

we have known probability mass functions (pmf),

pT0(t0) =

{
(A0λ)t0e−A0λ

t0!
, for t0 ≥ 0,

pY0(y0) =

{
(A0φ)y0e−A0φ

y0!
, for y0 ≥ 0, and

pX0|T0(x0|t0) =

{(
t0
x0

)
θx0(1− θ)(t0−x0), for 0 ≤ x0 ≤ t0.

The joint pmf of the X0 and T0 can now be determined from the conditional

distribution of X0 and T0:
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pX0|T0(x0|t0) =
pX0Y0(x0, t0)

pT0(t0)

pX0T0(x0, t0) = pT0(t0)× pX0|T0(x0|t0)

pX0T0(x0, t0) =
(A0λ)t0e−A0λ

t0!

(
t0
x0

)
θx0(1− θ)(t0−x0)

pX0T0(x0, t0) =
At00

x0!(t0 − x0)!
(
λt0e−A0λθx0(1− θ)(t0−x0)

)
where 0 ≤ x0 ≤ t0, t0 ≥ 0, λ > 0 , 0 ≤ θ ≤ 1.

The joint pmf of X0, T0 and Y0:

pX0Y0T0(x0, y0, t0) = pX0,T0(x0, t0)× pY0(y0)

=
At00

x0!(t0 − x0)!
(
λt0e−A0λθx0(1− θ)(t0−x0)

) (A0φ)y0e−A0φ

y0!

=
At0+y00

x0!y0!(t0 − x0)!
(
λt0e−A0λθx0(1− θ)(t0−x0)φy0e−A0φ

)
,

where t0, y0 ≥ 0, 0 ≤ x0 ≤ t0 λ, φ > 0, 0 ≤ θ ≤ 1.

Now we need to find the distribution of the Z0(number of occurrence), which can

be derived using transforming technique related to Z0 = T0 + Y0 −X0. T0 follow the

Poisson distribution with parameter λ A0, Y0 also follow the Poisson distribution with

parameter φ A0, and X0 is depend on T0 and follows conditional binomial distribution

with sample size t0 and probability of successes θ. In here T0 and Y0 are independent

random variable and also X0 and Y0 are independent random variables. Since only
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T0 and X0 are dependent, that is only necessary to find the distribution of T0 −X0,

using

pX0T0(x0, t0) = pT0(t0)× pX0|T0(x0|t0)

pX0T0(x0, t0) =
(A0λ)t0e−A0λ

t0!

(
t0
x0

)
θx0(1− θ)(t0−x0)

where t0 ≥ 0, 0≤ x0 ≤ t0, λ > 0 , 0 ≤ θ ≤ 1.

Consider the random variables Z1 = T0 −X0 and Z2 = T0, then

X0 = Z2 − Z1,

T0 = Z2,

where Z2 ≥ 0, 0 ≤ Z1 ≤ Z2.

Then,we have:

pZ1Z2(z1, z2) =
(A0λ)z2e−A0λ

z2!

(
z2

z2 − z1

)
θz2−z1(1− θ)z1

Thus, the probability mass function of Z1 is

pZ1(z1) =
∞∑

z2=z1

PZ1Z2(z1, z2)

=
∞∑
z2

(A0λ)z2e−A0λ

z2!

(
z2

z2 − z1

)
θz2−z1(1− θ)z1
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= (1− θ)z1
∞∑

z2=z1

(A0λ)z2e−A0λ

z2!

z2!

z1!(z2 − z1)!
θz2−z1

=
(λA0)

z1(1− θ)z1
z1!

∞∑
z2=z1

1

(z2 − z1)!
e−A0λ(θA0λ)z2−z1

=
[λA0(1− θ)]z1

z1!
e−A0λ

∞∑
z2=z1

(θA0λ)z2−z1

(z2 − z1)!
.

Let consider y = z2 − z1. Hence

pZ1(z1) =
[λA0(1− θ)]z1

z1!
e−A0λ

∞∑
y=0

(θA0λ)y

y!

=
[λA0(1− θ)]z1

z1!
e−A0λ eθA0λ

=
[λA0(1− θ)]z1

z1!
e−A0λ(1−θ) z1 ≥ 0

Thus, Z1 follows the Poisson distribution with parameter A0λ(1− θ).

We need to find the distribution of Z0 that is equal to summation of Z1 and Y0.

But, Z1 and Y0 are independent Poisson random variables, hence, Z0 has a Poisson

distribution with parameter A0λ(1− θ) + A0θ [4]. So,

pZ0(z0) =
[A0(λ(1− θ) + φ)]z0

z0!
e−A0(λ(1−θ)+φ), z0 ≥ 0.

According to the assumption the distribution on counts in fallible sample are

similar to the corresponding infallible sample counts. Therefore,

pZ(z) =
[A(λ(1− θ) + φ)]z

z!
e−A(λ(1−θ)+φ) z ≥ 0.
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3.2 Likelihood Function of Misclassification Model

Using the pmf in section 3.1, the likelihood function for the proposed misclassifi-

cation model is:

L(λ, φ, θ) = pT0(t0)pY0(y0)pX0T0(x0, t0)pZ(z)

L(λ, φ, θ) = K
(
λt0e−λA0φy0e−φA0θx0(1− θ)(t0−x0)(λ(1− θ) + φ)ze−Aλ(1−θ)−Aφ

)
,

where, K is a constant involving combinatorial terms that are not a function of

the parameters.

The log−likelihood, l(λ, φ, θ)=ln (L(λ, φ, θ)), is a one−to−one and order preserv-

ing transformation of L(λ, φ, θ), and hence, MLE’s can be formed using this transfor-

mation. The log−likelihood is

l(λ, φ, θ) = ln (K(λt0 exp−λA0 φy0 exp−φA0 θx0(1− θ)(t0−x0)(λ(1− θ) + φ)z exp−Aλ(1−θ)−Aφ))

= lnK + t0 lnλ− λA0 ln e+ y0 lnφ− φA0 ln e+ x0 ln θ

+(t0 − x0) ln (1− θ) + z ln (λ(1− θ) + φ)− (Aλ(1− θ) + Aθ) ln e

= lnK + t0 lnλ− λA0 + y0 lnφ− φA0 + x0 ln θ + (t0 − x0) ln (1− θ)

+z ln (λ(1− θ) + φ)− (Aλ(1− θ) + Aθ).

3.3 Maximum Likelihood Estimator

To find the estimators, we first derive the partial derivatives of l(λ, φ, θ) and set

them equal to zero, generating three equations whose solution yields MLE’s for λ, φ,

and θ. The partial derivatives with respective to λ, φ, θ are:
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∂l

∂λ
=
t0
λ
− A0 +

z(1− θ)
(λ(1− θ) + φ)

− A(1− θ),

∂l

∂φ
=
y0
φ
− A0 +

z

(λ(1− θ) + φ)
− A, and

∂l

∂θ
=
x0
θ
− (t0 − x0)

(1− θ)
− z λ

(λ(1− θ) + φ)
+ Aλ.

Setting ∂l
∂λ

= 0, ∂l
∂φ

= 0, ∂l
∂θ

= 0, we get the following estimating equations:

t0(λ(1− θ) +φ)−λ(λ(1− θ) +φ)A0 + z(1− θ)λ−A(1− θ)λ(λ(1− θ) +φ) = 0 (3.1)

y0(λ(1− θ) + φ)− φ(λ(1− θ) + φ)A0 + zφ− Aφ(λ(1− θ) + φ) = 0 (3.2)

x0(1−θ)(λ(1−θ)+φ)−θ(λ(1−θ)+φ)(t0−x0)−zλθ(1−θ)+Aλθ(1−θ)(λ(1−θ)+φ) = 0

(3.3)

After solving above equation 3.1, 3.2 and 3.3, the maximum likelihood estimators

for λ,φ, and θ are:

λ̂ = α1

(t0 + z(1− y0
z0

))

A0

+ α2

(
x0
A0

)
, (3.4)

φ̂ =
y0(z + z0)

z0(A+ A0)
, (3.5)

θ̂ =
x0(A0 + A)

A0(z + t0 + x0
A0
A− y0

z0
z)
, (3.6)

where z0=t0+y0−x0, α1=
A0

(A+A0)
and α1+α2=1.
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3.4 Interpretation of MLE’s

There is an intuitive interpretation for λ̂, φ̂, and θ̂. For that:

• Recall the quantity z0 is the number of occurrences observed by the fallible

classifier in the training ( infallible ) sample.

• y0
z0

is the proportion of false positives in the observed training sample data.

• The estimated rate of false negatives is x0
A0

.

Then we can re−express the estimated parameter:

λ̂ =
z + t0 + x0

A0
A− y0

z0
z

A0 + A
.

Since λ is the expected number of true occurrences over one unit, and following

the double sampling procedure, the numerator of above equation should be the num-

ber of true occurrences from the two samples. t0 is the true occurrences from training

sample but the only observable count in fallible sample is z, hence z should be cor-

rected by adding the expected number of false−negatives in fallible sample ( x0
A0
A) and

subtracting the expected number of false−positives in the fallible sample (y0
z0
z). The

denominator is the total sample size A0 + A.

Note that φ̂ can be re−expressed as:

φ̂ =

y0
z0
z + y0

(A+ A0)
.

For the false−positive parameter, the expected number of false−positives(y0
z0
Z)

from the error−prone sample should be added with y0 from training sample to get

the numerator. This numerator is then averaged over the total sample size A0 + A.
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Note that θ̂ can be re−expressed as:

θ̂ =
x0 + x0

A0
A

estimated number of true occurrences from two sample
.

Calculate the ”total” false−negatives by adding false−negative from training sam-

ple and expected number of false−negatives from fallible sample together. Then it is

averaged over the number of true occurrences from the two samples to get an estimate

for the probability of a single false−negative observation.

Hence, the estimated number of true occurrences from the two samples is (z+t0+

x0
A0
A− y0

z0
z).

3.5 Fishers Information Matrix

To derive Fisher’s information matrix for our misclassification model, first we need

the second partial derivatives of l(λ, φ, θ) with respect to λ, φ, and θ:

∂2l

∂λ2
= − t0

λ2
− z(1− θ)2

(λ(1− θ) + φ)2
, (3.7)

∂2l

∂λ∂φ
= − z(1− θ)2

(λ(1− θ) + φ)2
, (3.8)

∂2l

∂λ∂θ
= A+

(z(1− θ)λ)

((1− θ)λ+ φ)2
− z

((1− θ)λ+ φ)
, (3.9)

∂2l

∂φ2
= − z

(1− θλ+ φ)2
− y0
φ2
, (3.10)

∂2l

∂φ∂θ
=

zλ

((1− θ)λ+ φ)2
, (3.11)
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and
∂2l

∂θ2
= − zλ2

(1− θ)λ+ φ)2
− t0 − x0

(1− θ)2
− x0
θ2
. (3.12)

Next, we compute the expected values of (3.7)− (3.12) to get I(λ, φ, θ):

−E


∂2l
∂λ2

∂2l
∂λ∂φ

∂2l
∂λ∂θ

∂2l
∂φ∂λ

∂2l
∂φ2

∂2l
∂φ∂θ

∂2l
∂θ∂λ

∂2l
∂θφ

∂2l
∂θ2

 =


−E( ∂

2l
∂λ2

) −E( ∂2l
∂λ∂φ

) −E( ∂2l
∂λ∂θ

)

−E( ∂2l
∂φ∂λ

) −E( ∂
2l

∂φ2
) −E( ∂2l

∂φ∂θ
)

−E( ∂2l
∂θ∂λ

) −E( ∂
2l

∂θφ
) −E( ∂

2l
∂θ2

)



=


Iλλ Iλφ Iλθ

Iφλ Iφφ Iφθ

Iθλ Iθφ Iθθ


The element of Fisher’s Information Matrix are:

Iλλ = −E
(
− t0
λ2
− z(1− θ)2

(λ(1− θ) + φ)2

)
=
A0µ+ Aλ(1− θ)2

λµ
,

Iλφ = −E
(
− z(1− θ)2

(λ(1− θ) + φ)2

)
=
A(1− θ)

µ
,

Iλφ = −E
(
− z(1− θ)2

(λ(1− θ) + φ)2

)
=
A(1− θ)λ

µ
,
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Iφλ = −E
(
− z(1− θ)2

(λ(1− θ) + φ)2

)
=
A(1− θ)

µ
,

Iφφ = −E
(
− z

(1− θλ+ φ)2
− y0
φ2

)
=
A0µ+ Aφ

φµ
,

Iφθ = −E
(

zλ

((1− θ)λ+ φ)2

)
= −Aλ

µ
,

Iφθ = −E
(

zλ

((1− θ)λ+ φ)2

)
= −Aλ

µ
,

Iθλ = −E
(
A+

(z(1− θ)λ)

((1− θ)λ+ φ)2
− z

((1− θ)λ+ φ)

)
= −A(1− θ)λ

µ
,

Iθφ = −E
(

zλ

((1− θ)λ+ φ)2

)
= −Aλ

µ
, and

Iθθ = −E
(
− zλ2

(1− θ)λ+ φ)2
− t0 − x0

(1− θ)2
− x0
θ2

)
= −A0λµ+ Aλ2θ(1− θ)

θ(1− θ)µ
.
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4 WALD CONFIDENCE INTERVALS FOR λ AND θ

In this chapter we consider the Wald−based confidence interval for λ and θ. We

study their coverage and width properties in a Monte Carlo simulation.

4.1 Inverse of Fisher’s Information

To find the Wald statistic from chapter 2 for λ and θ, we need the diagonal

elements of the inverse of Fisher’s information matrix, I−1(λ, φ, θ)

The (1, 1) entry of I−1(λ, φ, θ) is

I11(λ, φ, θ) = −λ(A(−θλ+ θ2λ− φ)− µA0)

A0(A(λ− θλ) + φ) + µA0

= −λ(A(θλ(−1 + θ)− φ)− µA0)

A0(A(λ(1− θ) + φ) + µA0)
,

Using µ = λ(1− θ) + φ, we can rewrite I11(λ, φ, θ):

I11(λ, φ, θ) =
λ(A(θλ(1− θ) + φ) + µA0)

A0(Aµ) + µA0

=
λ(A(θλ(1− θ) + φ) + µA0)

A0(A+ A0)µ
.

The (2, 2) entry of I−1(λ, φ, θ) is

I22(λ, φ, θ) = − φ(A(θ − 1)λ− µA0)

A0(A(λ− θλ+ φ) + µA0)
,

and using µ = λ(1− θ) + φ,we can rewrite as

I22(λ, φ, θ) =
φ(A(1− θ)λ+ A0µ)

A0(A+ A0)µ
.
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The (3, 3) entry of I−1(λ, φ, θ) is

I33(λ, φ, θ) =
(−1 + θ)θ(A((−1 + θ)2λ+ φ)µA0)

λA0(A((−1 + θ)λ− φ)− µA0)

=
θ(θ − 1)(A(λ(−1 + θ)2 + µ) + µA0)

λA0(A(θ − 1)λ− φ)− µA0

=
θ(θ − 1)(A(λ(−1 + θ)2 + µ) + µA0)

−λA0(A(1− θ)λ+ φ)− µA0

,

and using µ = λ(1− θ) + φ, we can rewrite I33(λ, φ, θ) as

I33(λ, φ, θ) =
θ(θ − 1)(A(λ(−1 + θ)2 + φ) + A− 0µ)

−A0λ(Aµ)− µA0

= −θ(θ − 1)(A(λ(1− θ)2 + φ)A0µ)

A0Aλµ+ µA0

=
µ(1− θ)(A(λ(θ − 1)2 + φ) + A0µ)

A0µλ(A0 + A)
.

4.2 Confidence Intervals for λ and θ

Using the general approach described in section 2.5.5, we consider a Wald−based,

large sample confidence interval for λ and θ.

4.2.1 Confidence Interval for λ

For the Wald Statistic for λ,

Wλ =
λ̂− λ√
I11(λ̂, φ̂, θ̂)

,

we have that

P
(
−Zα/2 ≤ W ≤ Zα/2

)
u 1− α
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for ”large” sample sizes. Hence,

P

−Zα/2 ≤ λ̂− λ√
I11(λ̂, φ̂, θ̂)

≤ Zα/2

 u 1− α

⇒ P

(
−Zα/2

√
I11(λ̂, φ̂, θ̂) ≤ λ̂− λ ≤ Zα/2

√
I11(λ̂, φ̂, θ̂)

)
u 1− α

⇒ P

(
−λ̂− Zα/2

√
I11(λ̂, φ̂, θ̂) ≤ −λ ≤ −λ̂+ Zα/2

√
I11(λ̂, φ̂, θ̂)

)
u 1− α

⇒ P

(
λ̂+ Zα/2

√
I11(λ̂, φ̂, θ̂) ≥ λ ≥ λ̂− Zα/2

√
I11(λ̂, φ̂, θ̂)

)
u 1− α

⇒ P

(
λ̂+ Zα/2

√
λ̂(A(θ̂λ̂(1− θ̂) + φ̂) + µ̂A0)

A0(A+ A0)µ̂
≥ λ ≥

λ̂− Zα/2

√
λ̂(A(θ̂λ̂(1− θ̂) + φ̂) + µ̂A0)

A0(A+ A0)µ̂

)
u 1− α

Therefore, a large sample (1− α)100% confidence interval for λ is

λ̂± Zα/2

√
λ̂(A(θ̂λ̂(1− θ̂) + φ̂) + µ̂A0)

A0(A+ A0)µ̂

,

where Zα/2 is corresponding standard normal percentile.

27



4.2.2 Confidence Interval for θ

For the Wald statistic for θ

Wθ =
θ̂ − θ√

I33(λ̂, φ̂, θ̂)
,

we have that

P
(
−Zα/2 ≤ W ≤ Zα/2

)
u 1− α

for ”large” sample sizes. Hence,

P

−Zα/2 ≤ θ̂ − θ√
I33(λ̂, φ̂, θ̂)

) ≤ Zα/2)

 u 1− α

⇒ P

(
−Zα/2

√
I33(λ̂, φ̂, θ̂) ≤ θ̂ − θ ≤ Zα/2

√
I33(λ̂, φ̂, θ̂)

)
u 1− α

⇒ P

(
−θ̂ − Zα/2

√
I33(λ̂, φ̂, θ̂) ≤ −θ ≤ −θ̂ + Zα/2

√
I33(λ̂, φ̂, θ̂)

)
u 1− α

⇒ P

(
θ̂ + Zα/2

√
I33(λ̂, φ̂, θ̂ ≥ θ ≥ θ̂ − Zα/2

√
I33(λ̂, φ̂, θ̂)

)
u 1− α

⇒ P

(
θ̂ + Zα/2

√
µ̂(1− θ̂)(A(λ̂(θ̂ − 1)2 + φ̂) + A0µ̂)

A0µ̂λ̂(A0 + A)
≥ θ ≥

θ̂ − Zα/2

√
µ̂(1− θ̂)(A(λ̂(θ̂ − 1)2 + φ̂) + A0µ̂)

A0µ̂λ̂(A0 + A)

)
u 1− α

Therefore, a large sample (1− α)100% confidence interval for θ is

θ̂ ± Zα/2

√
µ̂(1− θ̂)(A(λ̂(θ̂ − 1)2 + φ̂) + A0µ̂)

A0µ̂λ̂(A0 + A)

.

where Zα/2 is corresponding standard normal percentile.
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4.3 A Monte Carlo Simulation

In this Monte Carlo simulation, we used R to study the width and coverage proper-

ties of the Wald−based intervals for λ and θ. The R-code can be seen in Appendix A.

We perform the simulation by first generating the infallible sample counts from their

respective distributions: T0 ∼ Pois(A0λ). If the t0 is greater than zero, then we create

the X0 ∼ Bi(t0, θ) otherwise x0 set to zero, Y0 ∼ Pois(A0φ), and Z0 can be found us-

ing the T0, Y0, and X0 (Z0 = T0+Y0−X0). Z0 is forced to be one when its become zero

because to prevent the numerical singularities. Next, the fallible sample is generated

using the Poisson model with rate µ = λ(1− θ) + φ: Z ∼ Pois(Aµ). This simulation

study was carried out for different fallible and training sample sizes. For the confidence

interval for λ the infallible sample sizes were chosen A0 = 1, 5, 10, 20, and 50. For the

confidence interval for θ, A0 = 5, 10, 20, and 50 . The fallible sample size chosen in

both setting were A = 10, 50, 100, 1000. The parameter configuration chosen for the

study of the confidence interval for λ were: λ = 1, 2, 3, 4, . . . , 100, θ = 0.05, 0.25, and

φ = 1, 5. The parameter configurations chosen for the study of the Confidence inter-

val for θ were: θ = 0.02, 0.03, 0.04, . . . , 0.98; λ = 5, 10, 15,φ = 1, 5. A 90% nominal

confidence level has been considered for each simulation and 10, 000 iterations were

performed in each simulation. The simulation results were used to create plots of es-

timated coverages and estimated average widths of confidence interval using Minitab

statistical software. Those graphs appear in Appendix B.

4.3.1 Simulation Interpretation for Confidence Interval for λ

In Appendix B, Figures 6.1 and 6.2 display the estimated actual coverage of the

confidence interval for λ. When θ = 0.05, φ = 1, and A0 = 1, we see the confidence

interval often undercovers. This is especially true when A = 1000, or when
(
A0

A

)
=

0.001. This particular curve converges to the nominal level much more slowly than

29



for smaller A. One reason of this phenomenon might be the large ratio of tainted

data to good data.

For second plot of first column in Appendix B, Figure 6.1 when φ = 5, the

coverages converge more quickly to the nominal level. This is also true for plots in

Figure 6.2 first column with the increase in θ. One reason for improved coverage might

be more observed false−negative and false−positive counts in the infallible sample,

which helps to better estimate θ and φ, and hence more appropriately account for the

false−negative and false−positive misclassification. We also see that for increasing

A0 respectively from 1 to 5, 10, 20, and 50 (Note plots for infallible sample size of

A0 = 20, A0 = 50 that are not included because of similarity with plots of A0 = 10

in Appendix B, Figures 6.1 and 6.2.), the confidence interval for λ covers quite well.

Overall, for larger infallible sample size, θ, and φ the confidence interval for λ has

good coverage properties.

Figures 6.3 and 6.4 in Appendix B display estimated average widths for the con-

fidence interval for λ. First, we note that the estimated average width decreases with

an increased A for a fixed A0. More interesting perhaps is that the estimated average

widths increase with larger θ and φ. Another interesting aspect is that the estimated

average width is getting smaller when the training sample size increases. Overall, the

estimated average widths are reduced when more counts in the training sample may

be observed. These counts include the false−positive and false−negative counts.

4.3.2 Simulation Interpretation for Confidence Interval for θ

When we look in Appendix B, Figures 6.5 and 6.6 for the estimated coverage of the

confidence interval for θ, we can see relatively upside down ’U’ shape curves for each

ratio
(
A0

A

)
in each plot. In all configurations, the ratio

(
A0

A

)
seems to have no effect

on the coverage properties. However, as λ increase, the rate of convergence quickens.
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We also see improvements in converges with A0 increases, which is intuitive. We also

note that as φ goes from 1 to 5, there is not much influence on coverage.

From Appendix B, Figures 6.7 and 6.8, we see reduction in the estimated average

width as A0 increase, and λ grows. The reason for this may be there are more counts

of true occurrence with the Poisson distribution with large λ and A0. Also, changes

in φ seem to have very little effect on the estimated average widths.

As mentioned above, the interested upside down ’U’ shape, appears for the both

estimated coverage confidence interval and estimated average width of the confidence

interval. One possible reason for this shape is that the variance of the binomial

distribution that is quadratic in its probability of success. The upside down ’U’ shape

is not exactly symmetric, rather, its shape is changing with the infallible sample size

and θ. When the sample size is small and φ = 1, the upside down ’U’ shape is

slightly skewed right, but with larger samples φ = 5 the shape approaches symmetry.

Overall in this simulation study of the estimated coverage and estimated average of

confidence interval of θ, we have approximately symmetric shapes.

4.3.3 Overall Conclusion

According to the above interpretations, in order to get good coverage and width

properties, we need to have a sufficiently large training sample to get the good clas-

sification of misclassified data. Most importantly, when we have large counts for true

occurrences, false−positives, false−negatives from the training sample by infallible

classifier and fallible classifier, we get more useful information from fallible sample,

hence, we can more precisely and accurately estimate parameters in this model.
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5 APPLICATION ON REAL DATA

In this section, we consider the data sets from chapter one, section 1.1 to illus-

trate the usefulness of the model, and obtain confidence intervals for the parameter

of interest in each example. First, we need to identify the proper sample units and

their measured counts for each sample. Subsections of this chapter will discuss single

sample confidence intervals and compare these with double sample confidence inter-

vals using the misclassification model in an effort to show the utility of the model

with the double−sampling scheme.

5.1 Engage With Example One

Suppose, there is interest in the rate of death due to digestive disease per 10, 000

person−years, death rate per 10, 000 person−years of classified as digestive disease

but cause of death is not digestive disease (false−positive misclassification rate) , and

probability of death cause by digestive disease but classified otherwise (probability

of a false− negative observation). Hence, the search sample sizes need to be in per

10, 000 person−years units used commonly by epidemiologists.

In this example, we have the following classifiers.

Infallible classifier (expensive) : Clinical autopsy

Fallible classifier (less expensive) : Forensic autopsy

In the training sample there were 272 individuals receiving both clinical autopsy and

forensic autopsy.

In the fallible sample, there were 3604 individual death certificates with only forensic

autopsy.

To convert the sample counts to search a sample size in 10, 000 person−years, we
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need the following formula for incidence proportion (Risk) [7],

Number of deaths in sample

Size of population at start of period
× 10, 000.

Now, Stamey and Young (2005), calculated the two sample sizes in 10, 000 person−years.

According to the formula above, it appearances they used approximately 29.4% of

population (913752) in Connecticut in 1980 as a size of population at start of pe-

riod. This might be the part of the population above age 54, which is mean age of

training sample [16]. There is not much information in Stamey and Young (2005),

and Kircher, Nelson and Burdo (1985) papers, about the person−years. However,

there has to have been some assumption which is made by Stamey and Young (2005)

(which is unclear in the paper) in order to get the following search sample sizes:

A0 = 3 in 10, 000 person−year units

A = 39.4 in 10, 000 person−year units.

The observed counts in training sample are:

t0 (true number of deaths due to digestive disease ) = 32

y0 (number of deaths are incorrectly classified as due to digestive disease ) = 02

x0 (number of deaths caused by digestive disease but classified otherwise) = 16

z0 (number of deaths classified by fallible classifier as due to digestive disease) = 18

The only observed count in fallible sample is:

z (number of deaths classified by fallible classifier as due to digestive disease) = 219
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z is calculated using 6.1% of deaths classified as due to digestive disease from forensic

autopsies of all deaths in Connecticut in 1980 (3604× 6.1
100

h 219).

The parameters in this example are defined as follows:

λ = average number of deaths per 10, 000 person−years due to digestive disease

θ = probability of death caused by digestive disease but classified otherwise

φ = average number of deaths per 10, 000 person−years due to digestive disease but

classified as due to non−digestive disease

The double−sample−based MLE values and confidence interval formulas are used

to estimate the parameters. The 90% asymptotic confidence intervals for parameters

noted above and widths of these confidence intervals are represented in Table 5.1.

Parameter Estimate 90% asymptotic Width of

confidence interval confidence internal

λ 10.3018 [7.9374, 12.6663] 4.7289

θ 0.5177 [0.4058, 0.6295] 0.2237

φ 0.6210 [0, 1.3298] 1.3298

Table 5.1: Parameter Estimates, Confidence Intervals and Width of Confidence In-

terval Using Double Sample Procedure for Digestive Disease Data

A simulation was conducted using parameters near these parameter estimates

in Table 5.1 with A0 = 3 and A = 39.4. These simulation results for the confidence

interval for λ are in the Appendix B, Figure 6.9, indicating that our confidence interval

on λ has appropriate coverage in this example. Figure 6.10 indicates our confidence

interval on θ might slightly undercover as compared to the nominal level of 90%.
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Note that the single sample (only training sample) confidence intervals for λ, θ,

and φ are:

Large sample (1− α)100% confidence interval for λ:

t0
A0

± Zα/2
√

t0
A0

Large sample (1− α)100% confidence interval for θ:

x0
t0
± Zα/2

√√√√(1− x0
t0

)
x0
t0

t0

Large sample (1− α)100% confidence interval for φ:

y0
A0

± Zα/2
√
y0
A0

.

The computed 90% single sample confidence intervals for λ, θ, and φ are:

Parameter Estimate 90% asymptotic Width of

confidence interval confidence internal

λ 10.6667 [5.2942, 16.0392] 10.7450

θ 0.5 [0.3546, 0.6454] 0.2908

φ 0.6667 [0, 2.0098] 2.0098

Table 5.2: Parameter Estimates, Confidence Intervals and Width of Confidence In-

terval for Only Training Sample Data in Example one

According to the Table 5.1 and 5.2, the estimated death rate due to digestive

disease is 3.42% smaller for double sample procedure than for the single sample pro-

cedure, while the estimated probability of a false−negative is 3.5% bigger and the

estimated false−positive rate is 6.85% smaller. One reason for these differences might

be the larger fallible sample.
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Figure 5.1: Comparison of Single and Double Sample CI for Example One

We can see clearly in the Table 5.2 and Figure 5.1, the width of all the confidence

intervals from using only the training sample (single sample) are larger than the Wald

confidence intervals from the double sample procedure. Furthermore, the confidence

interval width ratios of the single sample confidence intervals versus the double sample

confidence intervals for λ, θ, and φ, respectively 2.2726, 1.2999, and 1.5113. Hence,

using the double sample process, we get the more precise information about the

parameters than when only using the single infallible sample data to estimate the

parameters.

5.2 Engage With Example Two

From the fictitious, yet realistic example two, from chapter one section 1.1, we

have the following classifiers:

Infallible classifier (expensive) : Manual method

Fallible classifier (less expensive) : Ultrasonic method

36



Training sample (A0) = 2, 000 feet oil pipeline

Fallible sample (A) = 30, 000 feet oil pipeline

To convert to per 1, 000 feet oil pipeline, we need the following formula for inci-

dence rate,

Search feet of oilpipeline

1000 feet
.

Hence, our search sample sizes are:

A0 = 2 (1, 000 feet oil pipeline)

A = 30 (1, 000 feet oil pipeline).

The observed counts in the training sample are:

t0 (true number of defect of oilpipeline ) = 23

y0 (number of defects are classified incorrectly as defect ) = 16

x0 (number of defects are classified as non-defects) = 14

z0 (number of defects are observed by fallible classifier) = 25

The observed counts in the fallible sample is:

z (number of defects are observed by fallible classifier) = 145

The parameters in this example have the following definitions:

λ = Average number of defects per 1,000 feet of oil pipeline

θ = Probability of missing a defect by ultrasonic method

φ = Average number of falsely declared defects per 1,000 feet oil pipeline

by ultrasonic method
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Their respective MLE’s and 90% confidence intervals are given in Table 5.3.

Parameter Estimate 90% asymptotic Width of

confidence interval confidence internal

λ 8.9125 [5.5680, 12.2569] 6.6889

θ 0.7854 [0.6482, 0.9225] 0.2743

φ 3.4 [2.0434, 4.7565] 2.7131

Table 5.3: Parameter Estimates, Confidence Intervals and Width of Confidence In-

terval for the Parameters for Example Two

A simulation was also conducted using parameters near these parameter estimates

in Table 5.3 with A0 = 3 and A = 30. These simulation results for the confidence

interval for λ are in the Appendix B, Figure 6.11, indicating that our confidence

interval on λ has appropriate coverage in this example. Figure 6.12 indicates our

confidence interval on θ might slightly undercover as compared to the nominal level

of 90%.

The large sample single sample confidence intervals (CI) for example two are given

in Table 5.4.

Parameter Estimate 90% asymptotic Width of

confidence interval confidence internal

λ 11.5 [5.9216, 17.0784] 11.1568

θ 0.6086 [0.4412, 0.7760] 0.3348

φ 8 [3.3472, 12.6527] 9.3055

Table 5.4: Parameter Estimates, Confidence Intervals and Width of Confidence In-

terval for the Parameters Corresponding to Only Infallible Sample Data for Example

Two
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The point estimate of the average number of defects per 1, 000 feet of oil pipeline

in single sample procedure is reduced by 22.5% using the double sample procedure.

The estimated average number of false defects per 1, 000 feet oil pipeline in single

sample is decreased by 57.5% in the double sample. In the single sample procedure,

the estimated probability of missing a defect is increased by 29.0% using the double

sample procedure. One reason for the great disparities is likely due to the small

training sample and large false negative misclassification.

Figure 5.2 compares the confidence intervals under the double sampling scheme

and only training single sampling scheme.

Figure 5.2: Comparison of Single and Double Sample CI for Example Two

In Figure 5.2, the width of confidence intervals for parameters λ, θ, and φ in the

double sample procedure are much narrowest than the single sample procedure. The

width ratios of single sample versus double sample procedure of λ and φ are 1.6679

and 3.4298, respectively. The width ratio for θ is greater than one (1.2183), hence,

double sample confidence interval is relatively smaller than single sample procedure.
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6 COMMENTS

In this paper, we studied confidence intervals for the single Poisson parameter from

a model where the data are subject to misclassification, as well as the false−negative

probability interval estimators by inverting the appropriate Wald statistics. The

Wald confidence intervals coverage and width properties were studied in Monte Carlo

simulation for various parameter and sample size configurations. The confidence

interval for λ performed well except for small training sample size and large fallible

sample size with small θ and φ. Also, the confidence interval for θ carried out good

coverage and width properties except for the small λ and small training sample.

One interesting outcome is that an appropriate fallible sample size depends on the

training sample size in order to maintain the good coverage and width properties of

the confidence intervals.

Finally, we applied confidence intervals to real data sets involving death certificates

and oil pipeline defects. The model and resulting confidence intervals provide better

estimates of the average death rate due to digestive failure and average number of

defects per 1, 000 feet of oil pipeline, as well as of the misclassification involved in

death certificate and defects on oil pipeline for the populations of interest. These

two examples, support the appropriate use of a double sample procedure as a better

method for finding good confidence intervals for the Poisson parameter of primary

interest when the data is subject to misclassification. For future study, we could

compute score and profile log−likelihood confidence interval, and study their coverage

and width properties. Also, we could study the coverage and width properties for

a confidence interval on φ. Finally, better understanding the effects of the ratio of

training sample and fallible sample could be another study.
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APPENDIX

APPENDIX A :- R-Software Code for Simulation

SIMULATION CODE FOR λ

library(xlsx)

N<-10000

L <-c()

U <-c()

total<-c()

est_lambda_hat<-c()

est_phi_hat<-c()

est_mu_hat<-c()

est_theta_hat<-c()

est_lambda_covert<-c()

est_var_lambda_hat<-c()

lamda<-c()

coverage <-c()

width1<-c()

width<-c()

SDAc<-c()

SDCw<-c()

Ao <-1 # sample Size of Infallible

A <-100# sample Size of fallible

e1 <-(Ao/(A+Ao)) # alpha1 e1+e2=1
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e2 <-(1-e1) # alpha2

theta<-0.05

phi<-1

for (m in 1:100)

{

lamda[m]<-(10+m)

}

for(k in 1:100)

{

lambda=lamda[k]

mu<-(lambda*(1-theta)+phi)

for(i in 1:N)

{

to <- rpois(1,Ao*lambda)

xo <- rbinom(1,size=to,prob=theta)

yo <- rpois(1,Ao*phi)

z <- rpois(1,A*mu)

zo<-to+yo-xo

if(zo==0)

{zo=1

}

est_lambda_hat[i]<-(e1*(to+z*(1-yo/zo))/(Ao))+

(e2*(xo/Ao)) # Estimate lambda

est_phi_hat[i] <-(yo*(z+zo))/((A+Ao)*zo)

# Estimate Phi

est_theta_hat[i]<-(xo*(Ao+A))/(Ao*(z+to+(xo/Ao)

*A-(yo/zo)*z)) # Estimate Theta
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est_mu_hat[i]<-(est_lambda_hat[i]*(1-est_theta_hat[i])

+est_phi_hat[i])

#print(paste("zo: ",zo))

est_var_lambda_hat[i]<-(est_lambda_hat[i]*

(A*(est_theta_hat[i]*est_lambda_hat[i]*

(1-est_theta_hat[i])+est_phi_hat[i)

+est_mu_hat[i]*Ao))/(Ao*est_mu_hat[i]*(Ao+A))

# Wald 90%confidence for occurence-rate parameter(lambda)

L[i]<-est_lambda_hat[i]-1.645*sqrt(est_var_lambda_hat[i])

U[i]<-est_lambda_hat[i]+1.645*sqrt(est_var_lambda_hat[i])

total[i]<- ifelse(((lambda>L[i])&(lambda<U[i])),1,0)

width1[i]<-(U[i]-L[i])

}

#print(total)

coverage[k] <- mean(total)

width[k]<-mean(width1)

SDAc[k]<-sd(total)/sqrt(10000)

SDCw[k]<-sd(width1)/sqrt(10000)

}

coverage

width

SDAc

SDCw

par(mfrow=c(1,2))

plot(lamda,coverage, pch = 1)
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plot(lamda,width, pch =2 )

write.xlsx(coverage,"C:/Users/Nishantha Janith/Desktop/Reserach out put/Lambda/

NewNewWay/Ao1_theta0.05_phi1/

OutputCov_A100.xlsx")

write.xlsx(width, "C:/Users/Nishantha Janith/Desktop/Reserach out put/Lambda/

NewNewWay/Ao1_theta0.05_phi1/

OutputWid_A100.xlsx")

write.xlsx(SDAc, "C:/Users/Nishantha Janith/Desktop/Reserach out put/Lambda/

NewNewWay/Ao1_theta0.05_phi1/

OutputCov_SD_A100.xlsx")

write.xlsx(SDCw, "C:/Users/Nishantha Janith/Desktop/Reserach out put/Lambda/

NewNewWay/Ao1_theta0.05_phi1

/OutputWid_SD_A100.xlsx")

SIMULATION CODE FOR θ

library(xlsx)

N<-10000

L <-c()

U <-c()

total<-c()

est_lambda_hat<-c()

est_phi_hat<-c()

est_mu_hat<-c()

est_theta_hat<-c()

est_lambda_covert<-c()

est_var_theta_hat<-c()
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thetaa<-c()

coverage <-c()

width1<-c()

width<-c()

Ac<-c()

Cv<-c()

Ao <-50 # sample Size of Infallible

A <-10# sample Size of fallible

e1 <-(Ao/(A+Ao)) # alpha1 e1+e2=1

e2 <-(1-e1) # alpha2

lambda<-10

phi<-1

for (m in 1:100)

{

thetaa[m]<-(m/100)

}

for (k in 1:100)

{

theta=thetaa[k]

mu<-(lambda*(1-theta)+phi)

for (i in 1:N)

{

to <- rpois(1,Ao*lambda)

if(to >0)

{
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xo <- rbinom(1,size=to,prob=theta)

}

if(to==0)

{

xo<-0

}

yo <- rpois(1,Ao*phi)

z <- rpois(1,A*mu)

zo<-to+yo-xo

if(zo==0)

{zo=1

}

est_lambda_hat[i]<-(e1*(to+z*(1-yo/zo))/(Ao))

+(e2*(xo/Ao)) # Estimate lambda

est_phi_hat[i] <-(yo*(z+zo))/((A+Ao)*zo)

# Estimate Phi

est_theta_hat[i]<-(xo*(Ao+A))/(Ao*(z+to+(xo/Ao)

*A-(yo/zo)*z)) # Estimate Theta

est_mu_hat[i]<-(est_lambda_hat[i]*(1-est_theta_hat[i])+est_phi_hat[i])

#print(paste("zo: ",zo))

est_var_theta_hat[i]<-(est_theta_hat[i]*

(1-est_theta_hat[i])*(A*(est_lambda_hat[i]*

(est_theta_hat[i]-1)^2+est_phi_hat[i])

+Ao*est_mu_hat[i]))/(Ao*est_lambda_hat[i]*

est_mu_hat[i]*(Ao+A))

# Wald 90%confidence for occurence-rate parameter(theta)

L[i]<-est_theta_hat[i]-1.645*sqrt(est_var_theta_hat[i)

48



U[i]<-est_theta_hat[i]+1.645*sqrt(est_var_theta_hat[i)

total[i]<- ifelse(((theta>L[i])&(theta<U[i])),1,0)

width1[i]<-(U[i]-L[i])

}

#print(total)

coverage[k] <- mean(total)

width[k]<-mean(width1)

SDAc[k]<-sd(total)/sqrt(10000)

SDCw[k]<-sd(width1)/sqrt(10000)

}

coverage

width

SDAc

SDCw

par(mfrow=c(1,2))

plot(thetaa,coverage, pch = 1)

plot(thetaa,width, pch =2 )

write.xlsx(coverage, "C:/Users/Nishantha Janith/Desktop/Reserach output/Theta/

Ao50_lambda15_phi1/OutputCov_A1000.xlsx")

write.xlsx(width, "C:/Users/Nishantha Janith/Desktop/Reserach out put/Theta/

Ao50_lambda15_phi1/OutputWid_A1000.xlsx")

write.xlsx(Ac, "C:/Users/Nishantha Janith/Desktop/Reserach out put/Theta/

Ao50_lambda15_phi1/OutputCov_SD_A1000.xlsx")

write.xlsx(Cv, "C:/Users/Nishantha Janith/Desktop/Reserach out put/Theta/

Ao5_lambda15_phi1/OutputWid_SD_A1000.xlsx")
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