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ABSTRACT 

 

 
Loblolly pine (Pinus taeda) is the most important commercial species in 

the southern United States and as such, foresters must choose the most 

appropriate silvicultural prescriptions to maintain or improve the site quality of 

plantations and natural forests.  The quality of a forest site can be estimated by 

several means, however, the most commonly used method is site index (SI).  To 

date, there is no available SI model for intensively managed loblolly pine 

plantations in the Western Gulf Coastal Plain.  To fill the gap, the scope of the 

East Texas Pine Plantation Research Project (ETPPRP) was expanded and 

permanent plots were established in intensively managed loblolly pine 

plantations across east Texas and western Louisiana.  Using the data collected, 

this study developed a SI model specific to intensively managed loblolly pine 

plantations in the West Gulf Coastal Plain region.  Data were fitted to six  

commonly used SI models: Schumacher Algebraic Difference Approach (ADA) 

model, Chapman-Richards ADA model, Schumacher Generalized Algebraic 

Difference Approach (GADA) model, Chapman-Richards GADA model, 

Cieszewski GADA model, and McDill-Amateis GADA model.  Results showed
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that the Chapman-Richards GADA model and the McDill-Amateis GADA model 

were similar and best in their fit statistics.  These two models were further 

compared to the existing models of Diéguez-Aranda et al. (2006) and Coble and 

Lee (2010), both of which were developed using data from extensively managed 

plantations and are currently utilized in forest management in the region.  Both 

Chapman-Richards GADA and McDill-Amateis GADA models consistently 

predicted greater heights at younger ages on higher quality sites than the models 

of Diéguez-Aranda et al. (2006) and Coble and Lee (2010), however, the GADA 

models predicted shorter heights at older ages.  Ultimately, the McDill-Amateis 

GADA model was chosen as the best model for its good fit statistics and ease of 

use.  Foresters will be able to use this model to make silvicultural prescriptions 

better suited for intensively managed loblolly pine plantations in the West Gulf 

Coastal Plain.  
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INTRODUCTION 

 

 

The West Gulf Coastal Plain spans parts of four southern states: east 

Texas, western Louisiana, southeastern Oklahoma and southwestern Arkansas 

(The Nature Conservancy 2003).  In east Texas and western Louisiana, the West 

Gulf Coastal Plain stretches from the western edge of the Mississippi River 

floodplain in Louisiana to the Trinity River in east Texas and north from the Gulf 

Coast to the rolling hills of northeast Texas and northern Louisiana (The Nature 

Conservancy 2003).  Texas alone has 63.4 million acres of forestland with 12.3 

million acres (approximately 20%) of that forestland located in east Texas 

(Parajuli et al. 2017).  According to a 2015 study by the Texas A&M Forest 

Service, in 28 of the 43 east Texas counties, wood-based industries were in the 

top five employers within the manufacturing sector (Parajuli et al. 2017).  

Forest industry is vital to the Texas economy, making the management of 

forests for sustainable output of products important as well.  Sustainability is 

often described as the steady output of forest commodities in a non-declining 

flow over time (Clutter et al. 1983).  The quality of a forest site is linked to 
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sustainability through biotic and abiotic factors (Avery and Burkhart 2002), and 

the role of the forester is to ensure the site quality is not degraded through 

management.  Direct measurements of site quality such as culmination of mean 

annual increment are difficult to quantify, so foresters often measure site quality 

indirectly as site index.  Site index (SI) is an indirect relative measure of site 

quality in that it uses the height of dominant and codominant trees at a specific 

point in the life of the forest (i.e., index age or base age) as a surrogate for site 

quality.  The primary reason to use height in developing SI is that height, 

particularly that of dominant and codominant trees, is minimally affected by stand 

density within the normal density range of operational forestry and is also related 

to the yield of a stand.  The height and age of trees are also relatively easy to 

estimate. 

In east Texas, SI models were first developed for loblolly pine (Pinus 

taeda L.) planted in old-field sites (i.e., abandoned agricultural land) (Lenhart 

1971; Lenhart and Fields 1970).  Subsequently, site index models were 

developed for loblolly pine and slash pine (Pinus elliottii Engelm.) planted on non-

old-field sites (i.e., natural mixed pine hardwood forests converted to pine 

plantations) (Coble and Lee 2006; Coble and Lee 2010; Lenhart et al. 1986).  

These plantations were managed extensively in that low-intensity establishment 

practices were used such as mechanical piling and burning of logging slash and 

woods-run genetics (genetically unimproved) seedlings were planted.  Extensive 
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forest management aims to keep operating and investment costs low on a per 

acre basis. It involves the use of management procedures that ultimately 

encourage natural regeneration of a stand.  Intensive forest management, 

however, attempts to maximize productivity on a per acre basis by utilizing a 

variety of forest management and silvicultural techniques.  Intensive silvicultural 

activities such as planting genetically improved seedlings, applying fertilizer, 

bedding, and other procedures have been frequently applied to pine plantations 

(referred to as intensively managed plantations) across the southern United 

States, including the West Gulf Coastal Plain region.  By the late 1990s and early 

2000s, east Texas pine plantations were being re-established on cut-over sites 

that used more intensive establishment practices.  Recently, Priest et al. (2016) 

published site indices for loblolly pine in east Texas, however, their work was 

limited to reclaimed mineland in only one county, and those stands were 

managed with relatively few silvicultural inputs.  Though site index data for 

intensively-managed loblolly pine plantations have been collected by the East 

Texas Pine Plantation Research Project (ETPPRP) since 2004, no site index 

model has been developed for the West Gulf Coastal Plain.  The purpose of this 

research project was to develop a new site index model for intensively-managed 

loblolly pine plantations growing on cut-over sites in the West Gulf Coastal Plain, 

specifically east Texas and western Louisiana.  
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OBJECTIVES 

 

 

The purpose of this research project was to develop a new site index 

model for intensively-managed loblolly pine plantations growing on cut-over sites 

in the West Gulf Coastal Plain.  The specific objectives are: 

1. Organize the data that will be used to develop the new site index 

model from the ETPPRP database. 

2. Develop a new site index model for intensively managed loblolly pine 

plantations in the West Gulf Coastal Plain. 

3. Compare the new site index model to previously published models for 

the east Texas region and the south-wide range. 

4. Prepare site index  graphs that can be used by foresters working in the 

east Texas and western Louisiana regions.
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LITERATURE REVIEW 

 

Site Quality 

 

 

Site quality commonly refers to the capacity of a site to grow trees and/or 

other vegetation.  Forest or site productivity refers to the capacity of a site to 

aggrade biomass.  Biotic and abiotic factors which could include wildlife, insects, 

microbes, soil parent material, soil chemistry, precipitation, sunlight exposure, 

existing vegetation, and climate play a role in determining site quality or forest 

productivity.  Site quality has been assessed utilizing a variety of methods.  

Ideally, site quality would be measured directly using yields in the same way 

agricultural crops like wheat, corn, or soybeans are quantified.  With agricultural 

crops, the crop is planted then harvested at the end of its growing season or 

rotation.  This rotation is usually less than a year, and yield can be determined 

after harvest in terms of bushels per acre or a similar measure.  In forestry, 

however, the crops, or trees, are grown on much longer rotations, typically 

anywhere from 25 to 80 years depending on the species of tree.  Therefore, 
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direct measurements are difficult if not impossible to obtain and foresters must 

rely on indirect methods of evaluating site quality.  Various indirect 

measurements have been developed, such as plant associations and habitat 

types, soil-site relationships, biogeophysical relationships, and potential 

productivity such as culmination of mean annual increment (MAI).  However, site 

index is the most widely used method (Avery and Burkhart 2002). 

 

 

Site Index 

 

 

Foresters most often use site index (SI) to indirectly measure forest or site 

quality.  This is a vegetation-based method of assessing site quality defined as 

the average height (feet) of the dominant and codominant trees of a given 

species at an index age or base age (Avery and Burkhart 2002; Clutter et al. 

1983).  SI is based on Eichorn’s Law which states that canopy height is strongly 

correlated with yield (volume) (Skovsgaard and Vanclay 2013).  Trees are 

assumed to be phytometers in that they integrate all the biotic and abiotic site 

factors affecting growth and yield of the site.  Height of trees in the upper canopy 

is minimally affected by stand density within the normal density range of forest 
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management.  Therefore, for even-aged pure stands, dominant and codominant 

tree height can be used as a surrogate for site quality because higher quality 

sites will have taller trees compared to poorer quality sites at an index age.  

Because of this strong correlation, SI is the most widely accepted and simplest 

method for estimating site quality (Diéguez-Aranda et al. 2006; Sharma et al. 

2002). 

Site index is an expression of the interaction of trees with edaphic factors 

(Krumland and Eng 2005).  Selected trees, termed “site trees,” are used to 

estimate site index.  Site trees are chosen based on explicit criteria: they must be 

of the target species, in the dominant or codominant height class, free-growing 

having never been suppressed by overstory trees, and free of damage that would 

inhibit height growth (Avery and Burkhart 2002; Carmean and Hahn 1981; 

Carmean 1971, 1978; Hanson et al. 2003).  The use of genetically-improved 

seedlings and improved cultural measures to increase tree growth can and does 

increase site index (Burger 2009; Eisenbies 2006; Krumland and Eng 2005; Zhao 

et al. 2016).  However, cultural treatments can negatively alter the SI as well 

(Krumland and Eng 2005).  Nevertheless, SI is still the most common measure of 

site quality and a critical component of growth and yield models. 
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Site Index Models 

 

 

Site index has been used in North American forest management since the 

early 1900s.  Miscellaneous Publication 50 (US Forest Service 1929, revised 

1976) was the first comprehensive site index system published for major 

southern pines in second-growth natural forests across the South.  Schnur 

(1937) developed site index curves for upland oaks in the central United States.  

McArdle and Meyer (1930) first published site index curves for Douglas-fir 

(Pseudotsuga menziesii Mirb.) in the Pacific Northwest in 1930, then revised 

them in 1949 and again in 1961 (McArdle et al. 1949; 1961).  King (1966) 

developed site index curves for second-growth Douglas-fir in the Pacific 

Northwest.  More site index curves were developed for other western tree 

species (Brickell 1966; Chojnacky 1986; Cochran 1979, 1985; Curtis et al. 1974; 

DeLasaux and Pillsbury 1987; DeMars and Herman 1987; Dolph 1983, 1987, 

1991; Edminster and Jump 1976; Edminster et al. 1985).  Additional site index 

curves were developed for other tree species in the central and eastern United 

States (Beck 1971; Carmean 1971, 1972, 1978; Cooley 1958; Doolittle and 

Vimmerstedt 1960; Kulow et al. 1966) and the southern United States (Bennett 

1963, Coile and Schumacher 1964, Newberry and Pienaar 1978, Borders et al. 

1984).  Other site index curves can be found at the National Register of Site 
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Index Curves References (https://esi.sc.egov.usda.gov/html/fsregref.htm. 

Accessed 28 April 2015). 

In the early 1970s, site index models for abandoned agricultural land or 

old-field loblolly pine plantations in northeast Texas and the Interior West Gulf 

Coastal Plain were developed (Lenhart 1971; Lenhart and Fields 1970).  By 

1986, approximately two million acres of mixed pine-hardwood had been 

harvested in east Texas and then replanted with loblolly and slash pine (Lenhart 

et al. 1986).  Lenhart et al. (1986) published site index models for these non-old-

field loblolly and slash pine plantations in east Texas.  Coble and Lee (2006; 

2010) published two sets of site index models for non-old-field loblolly and slash 

pine plantations in east Texas.  They improved the models developed by Lenhart 

et al. (1986) and added newly acquired data from older plantations.  While their 

models had been widely used in developing forest management plans, their new 

models still applied to only non-old-field loblolly and slash pine plantations 

established with low-intensity establishment practices (e.g., piling and burning 

slash piles, woods-run (genetically unimproved) seedlings).  By the late 1990s 

and early 2000s, east Texas pine plantations were being established on cut-over 

pine plantation sites with more intensive silvicultural practices (e.g. chemical site 

preparation to control competing vegetation, bedding, mid-rotation thinning, and 

establishment fertilization) and genetically-improved pine seedlings.  Eisenbies 

(2006) found that intensive silvicultural practices had doubled yields of loblolly 

https://esi.sc.egov.usda.gov/html/fsregref.htm
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pine plantations and decreased rotation lengths from 20-30 years to 15-20 years 

in some cases.  At the end of World War II, large amounts of agricultural land 

had been abandoned due to poor soil productivity brought about by abusive 

agricultural practices.  During the 1920’s and 1930’s, the United States Forest 

Service and other entities successfully replanted well over 1 million acres in the 

south and demonstrated the conservation value of trees.  Forest nurseries run by 

states, industrial organizations and government agencies such as the United 

States Forest Service, provided high quality seedlings needed to continue 

reforestation efforts.  Seed orchards and tree improvement programs were 

established in order to provide seedlings with improved volume growth, tree form, 

disease resistance, and wood quality.  Prior to the 1950’s, planting was mostly 

done on old fields while the seed tree method was used to regenerate cut-over 

sites albeit with poor success rates.  Mechanical site preparation procedures 

attempted to replicate old field conditions and control competing hardwood 

vegetation.  These methods increased the success of plantations established on 

cut-over sites, however, concerns of the impact on long-term site productivity led 

to chemical site preparation procedures gaining favor over mechanical 

procedures.  Herbicides targeting herbaceous vegetation without harming pine 

seedlings were later developed and improved plantation success along with mid-

rotation fertilization typically using nitrogen and phosphorous (Fox et al. 2007).   
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Bedding, for example, is an intensive silvicultural practice whose benefits in 

drainage, reduction of soil compaction, and competition control had been well-

established (Eisenbies 2006).  The rate at which site resources are made 

available to a plantation is one factor that governs stand growth, therefore, 

practices that increased the availability of those site resources effectively 

elevated site index (Eisenbies 2006).  The long-term breeding programs of 

loblolly pine had significantly enhanced plantation productivity which may alter SI 

(Li et al. 1999; McKeand et al. 2003).  Current  genetic improvement programs 

are typically aimed at increasing the productivity of loblolly pine stands (Antony et 

al. 2013; McKeand et al. 2003).  Significant gains in productivity had been 

realized with first generation and second generation planting stock (Antony et al. 

2013; Li et al. 1999; McKeand et al. 2003).  These gains effectively altered the 

site index of stands planted with these improved seedlings.  Site index can also 

be affected by 1) increased carrying capacity with the use of P fertilizer at stand 

establishment on a P deficient site, and 2) accelerated stand development with 

mid-rotation N fertilization and/or bedding.  The site index models developed by 

Lenhart et al. (1986) as well as Coble and Lee (2006; 2010) do not capture these 

improvements in genetics and silvicultural treatments now used in loblolly pine 

plantations established in the West Gulf Coastal Plain.   

Site index models mathematically describe the height development of the 

upper-canopy trees across stand age for a range of site qualities.  All site index 
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models incorporate a  base age or index age that is typically chosen to coincide 

with the average stand rotation.  Commonly used index ages include 25 years, 

50 years,  or even 100 years for some western species.  Statistical regression 

analysis procedures are used to estimate the coefficients of site index models 

(Clutter et al. 1983).  There are two types of models or curves: anamorphic and 

polymorphic (Avery and Burkhart 2002; Clutter et al. 1983).  Anamorphic site 

index curves have the same shape because they are proportional to each other.  

The assumption with anamorphic curves is that the height-age relationship is 

constant across the range of sites.  Polymorphic site index curves are not 

proportional so they can differ in shape. This allows polymorphic curves to be 

more flexible to better represent different height-age relationships that apply to 

different sites. 

 

 

Anamorphic, Base-Age Invariant Site Index Models  

 

 

Bailey and Clutter (1974) introduced base-age invariance as a property of 

site index models using the Algebraic Difference Approach (ADA) method to 

derive base-age invariant site index models.  ADA assigns one parameter in the 

base model, sometimes called the “Guide Curve”, as site-specific (local) 
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parameter with the other parameters assigned as common (global) parameters.  

ADA site index models are typically anamorphic with a single asymptote. 

Schumacher ADA Model 

Schumacher (1939) proposed the first mathematical site index model used 

in North America. Schumacher (1939) included a logarithmic transformation on 

height to create a linear function with the reciprocal of age.  The base form or 

guide curve equation of his model is: 

𝑯 = 𝒆(𝜷𝟎+𝜷𝟏∗𝑨
−𝟏)                                                  (1) 

where, 

H = total height (feet), 

A = total age (years),  

e = Euler’s number = 2.71828, truncated at five decimal places, and  

0, 1 = regression parameters to be estimated. 

 

Taking the natural logarithm of this equation gives: 

ln(𝐻) = 𝛽0 + 𝛽1 ∗ 𝐴
−1    (2) 

 

To develop the Schumacher ADA site index model, first substitute the 

index age for age in the base model.  Thus, the height at the index age is site 

index (S): 
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ln(𝑆) = 𝛽0 + 𝛽1 ∗ 𝐴𝑖
−1    (3) 

 where Ai = index age (years), and all other variables are defined as before.  The 

regression parameter, β0, is the intercept of the equation also known as the site-

specific or local parameter while β₁ is the slope of the equation also known as the 

global parameter.  Solving for β0 gives: 

𝛽0 = ln(𝑆) − 𝛽1 ∗ 𝐴𝑖
−1     (4) 

Substituting b0 into the original equation gives the Schumacher anamorphic, 

base-age invariant height-age model: 

ln(𝐻) = ln(𝑆) + 𝛽1(𝐴
−1 − 𝐴𝑖

−1).    (5) 

Inverting this equation to solve for site index gives the Schumacher anamorphic, 

base-age invariant site index model:   

𝐥𝐧(𝑺) = 𝐥𝐧(𝑯) + 𝜷𝟏(𝑨𝒊
−𝟏 − 𝑨−𝟏).                                     (6) 

 

Coile and Schumacher (1964) used this anamorphic site index model for 

loblolly pine plantations growing on the Piedmont Plateau in the southeastern 

United States and obtained the following SI model:  

log(𝑆) = log(𝐻) + 5.190(𝐴−1 − 𝐴𝑖
−1)   (7) 

where, 
 

S = site index (feet), 
 
H = total height of tree (feet), 
 
A = total age (years),  
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Ai = Index or base age = 25 years, and 
 
log = common log base 10. 

 

Chapman-Richards ADA Model 

One of the most widely used site index models today is the Chapman-

Richards model.  The base form or guide curve equation of this model is: 

( ) 3
211

 A
eH
−

−=                                                                  (8) 

where all other variables are defined as before.  The parameter, β₁, defines the 

asymptotic or maximum site index while the parameter, β2, describes the rate, 

and the parameter, β3, describes the shape of the curve.   

 

To develop the ADA Chapman-Richards site index model, first substitute the 

index age for age in the base model.  Thus, the height at the index age is site 

index (S): 

( ) 3
211

 iA
eS
−

−= .      (9) 

where all other variables are defined as before.  The asymptote can be 

considered to vary across sites, so it can be isolated to allow site index to vary 

across sites while keeping the curve shape constant.  Solving for β₁ gives: 

( ) 3
211


−−

−= iA
eS .      (10) 



16 
 

Substituting β₁ into the original equation gives the Chapman-Richards 

anamorphic, base-age invariant height-age model: 

3

2

2

1

1















−

−
=

−

−

iA

A

e

e
SH .      (11) 

Inverting this equation to solve for site index gives the Chapman-Richards 

anamorphic, base-age invariant site index model:  

3

2

2

1

1

















−

−
=

−

−

A

A

e

e
HS

i

.       (12)                                                       

 

Newberry and Pienaar (1978) developed an equation for site-prepared 

slash pine plantations of the Atlantic and Gulf Coastal Plain of Georgia and 

Florida using this model:  

516188.01
1

)(100354.0

)(100354.0

1

1 −

−

−










−

−
=

A

A

e

e
HS

i

 .    (13) 

Newberry and Pienaar (1978) found that the Chapman-Richards model proved to 

be more flexible than earlier models because it more closely followed the height 

growth pattern of trees over time.   

 Lenhart et al. (1986) used the Chapman-Richards model to describe site 

index for loblolly pine plantations growing in east Texas on non-old-field sites: 

62857.1

)(08005.0

)(08005.0

1

1









−

−
=

−

−

A

A

e

e
HS

i

.    (14) 
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Lenhart et al. (1986) found that this site index model was a great improvement 

over earlier site index models for east Texas loblolly pine plantations. 

Schnute ADA Model 

Coble and Lee (2006) developed an equation for non-old-field loblolly pine 

plantations growing in east Texas.  They used a generalized sigmoid growth 

model first presented by Schnute (1981): 

( )
68232.0

1

)1A(08036.0

)1A(08036.0
68232.068232.068232.0

e1

e1
99476.0H99476.0S

i










−

−
−+=

−−

−−

(15) 

where all variables are defined as before.  The Schnute model was an 

improvement over the Chapman-Richards model of Lenhart et al. (1986). Coble 

and Lee (2010) improved on their 2006 model using a self-referencing technique 

described by Northway (1985) to account for serial autocorrelation, which is the 

relationship of repeated height observations on the same tree through time 

because they are not independent observations. 
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Polymorphic, Base-Age Invariant Models 

 

 

 

The models described so far are all anamorphic (i.e., same shape) and 

base-age invariant (Bailey and Clutter 1974), which means the equation can be 

developed to compute predictions from any height-age pair without having to 

already know or previously measure the site index.  Base-age invariance allows 

for all height-age pairs to be used in the model fitting process, not just those pairs 

with heights measured at an index age.  Though base-age invariant, anamorphic 

models were an improvement in describing height development patterns over 

time, they still described curves with one shape.  Polymorphic site index models 

(i.e., more than one shape) offer more flexibility than anamorphic models in 

describing height development patterns over time.  Krumland and Eng (2005) 

developed several base-age invariant, polymorphic site index models for a 

variety of tree species in California.  Diéguez-Aranda et al. (2006) developed a 

base-age invariant, polymorphic site index model for loblolly pine across its 

native range in the South.  Cieszewski (2001) developed a base-age invariant, 

polymorphic site index model for Douglas-fir that performed better than 

anamorphic models. 
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Cieszewski and Bailey (2000) introduced the Generalized Algebraic 

Difference Approach (GADA) which allows more than one parameter to be local 

or site-specific.  GADA site index models can be polymorphic with multiple 

asymptotes, which is the main advantage over ADA.  In GADA, a variable is 

introduced that represents the unobservable site index value.  This unobserved 

variable need not be defined because it is only used in intermediate steps and 

later replaced by a function of initial conditions and other global parameters. 

Schumacher GADA Model 

As stated before, the base form or guide curve equation of Schumacher’s 

model is: 

𝑯 = 𝒆(𝜹𝟎+𝜹𝟏∗
(𝟏 𝑨⁄ ))

 = 𝒆(𝜹𝟎+𝜹𝟏∗𝑨
−𝟏)

                                       (16) 

where 0 and 1 are model parameters and all other variables defined as before. 

 

To create the GADA solution of the Schumacher model, first make 0 and 

1 both local parameters by replacing 0 with an unobserved site quality variable, 

X, and 1 with a linear function of X, 1 + 2*X: 

𝐻 = 𝑒(𝑋+(𝛽1+𝛽2∗𝑋)𝐴
−1) .     (17) 

 

Taking the natural logarithm and solving for X gives: 
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𝑋 =
(ln(𝐻)−𝛽1𝐴

−1)

1+𝛽2𝐴−1
.      (18) 

 

Substituting the initial conditions H0 and A0 into the equation for X gives: 

𝑋0 =
(ln(𝐻0)−𝛽1𝐴0

−1)

1+𝛽2𝐴0
−1 .      (19) 

 

Replace X in the GADA solution with X0 to create a polymorphic, base-age 

invariant formulation of the Schumacher height-age model: 

𝑯 = 𝒆(𝑿𝟎+(𝜷𝟏+𝜷𝟐∗𝑿𝟎)𝑨
−𝟏)                                              (20) 

where X0 is defined as the function above and all other variables are defined as 

before. 

Chapman-Richards GADA Model 

As stated before, the base form or guide curve equation of the Chapman-

Richards model is: 

( ) 3
211

 A
eH −=                                                             (21) 

where 1, 2, and 3 are model parameters and all other variables are defined as 

before. 

To create the GADA solution of the Chapman-Richards model, first make 

1 and 3 both local parameters by replacing 1 with an exponential function of 

the unobserved site quality variable, X, and 3 with a linear inverse function of X 
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or 3 + 4 / X.  The parameter 2 is estimated as a global parameter, 2.  The 

GADA formulation is: 

( )( )XAX eeH
/43

21
 +

−= .        (22) 

 

First, take the natural logarithm of both sides of the equation and solve for X: 

( ) ( )( )







 −=
−+ 1

43
21lnln

XAX eeH
    (23) 

( ) ( ) ( )( )







 −+=
−+ 1

43
21lnlnln

XAX eeH
      (24) 

( ) ( ) ( )A
eXXH 21ln*ln 1

43

 −++= −    (25) 

   ( ) ( ) ( )AA
eXeXH 22 1ln1lnln 1

43

  −+−+= −  (26) 

   ( ) ( ) ( )AA
eXXeH 22 1ln1lnln 1

43

  −+=−− −   (27) 

( ) ( ) ( )( )AA
eXXeH 22 1ln1lnln 4

21

3

  −+=−− −   (28) 

   ( ) ( )( ) ( )AA
eXeHX 22 1ln1lnln 4

2

3

  −+=−−   (29) 

   ( ) ( )( ) ( ) 01ln1lnln 22

43

2 =−+−−−
AA

eXeHX
   (30) 

 

Solving for X requires a quadratic solution.  First, let: 

1=a ,        (31) 

( ) ( )( )A
eHb 21lnln 3

 −−−= ,    (32) 

( )A
ec 21ln4

 −= .      (33) 
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Then, use the quadratic formula to find the solution: 

𝑋 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
      (34) 

𝑋 =
−(−(ln𝐻)−𝛽3 ln⁡( 1−𝑒

𝛽2𝐴)))±√(−(ln(𝐻)−𝛽3 ln(1−𝑒
𝛽2𝐴)))2−4∗1∗𝛽4 ln(1−𝑒

𝛽2𝐴)

2∗1
 (35) 

𝑋 =
(ln(H)−𝛽3 ln(1−𝑒𝛽2𝐴))±√(ln(H)−𝛽3 ln(1−𝑒𝛽2𝐴))2−4𝛽4 ln(1−𝑒𝛽2𝐴)

2
 (36) 

 

Next, substitute the initial conditions for X0, A0, and H0 in the equation for X and 

take the roots most likely to be positive and real: 

𝑋0

=
(ln(𝐻0) − 𝛽3 ln⁡(1 − 𝑒𝛽2𝐴0)) + √(ln(𝐻0) − 𝛽3 ln(1 −𝑒𝛽2𝐴0))2 − 𝛽4 ln(1 − 𝑒𝛽2𝐴0)

2
 

(37) 

 

Solve for 1 in the initial condition formulation of the model, and express in terms 

of the GADA formulation: 

( ) 3
02110

 A
eH −= ,      (38) 

( ) 3
02101


−

−=
A

eH ,      (39) 

( ) ( )1
032

02101

−+−

−==
XAX eHe

 .    (40) 
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Then, substitute this initial condition for 1 into the original GADA formulation of 

the model to create a polymorphic, base-age invariant formulation of the 

Chapman-Richards height-age model: 

( )1
032

02

2

1

1
0

−+










−

−
=

X

A

A

e

e
HH







,                                                   (41) 

where X0 is defined as the function above, H0 = S, A0 = Ai, and all other variables 

are defined as before. 

Cieszewski GADA Model 

Cieszewski (2001, 2002, 2003) examined several GADA formulations of 

Hossfeld models, also known as log-logistic models.  The base form of the 

Hossfeld equation that performed best (Cieszewski 2002) is: 

(42) 

 

where 1, 2, and 3 are model parameters and all other variables defined as 

before. 

To create the GADA solution of the Hossfeld model, first make 1 and 2 

both local parameters by replacing 1 with a constant plus the unobserved site 

quality variable, X, and e2 with 2 / X.  The parameter 3 is estimated as a global 

parameter, 3.  The GADA formulation is: 

3232 11

1

)ln(

1





Aee
H

A
+

=
+

=
+
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3

3

1

2

1

2

1

1
1


 







AX

X

A
X

X
H

−+

+
=

+

+
=     (43) 

To solve for X, first let 𝑌 = 3b
A : 

YX

X
H

1

2

1

1 −+

+
=




     (44) 

Then, 

( )YXX

X
H

2

1

1





+

+
=

−
     (45) 

( )
YX

XX
H

2

1





+

+
=      (46) 

( ) ( )XXYXH +=+ 12      (47) 

2

12 XXYHHX +=+      (48) 

021

2 =−−+ YHHXXX     (49) 

( ) 021

2 =−−+ YHXHX      (50) 

( ) 021

2 =−−− YHXHX     (51) 

 

Solving for X requires a quadratic solution.  First, let: 

1=a ,      (52) 

( )1−−= Hb ,     (53) 

YHc 2−= .      (54) 
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Then, use the quadratic formula to find the solution: 

𝑋 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
.      (55) 

𝑋 =
−(−(𝐻−𝛽1))±√(−(𝐻−𝛽1))

2
−4∗1∗−𝐻𝛽2𝑌

2∗1
.    (56) 

𝑋 =
(𝐻−𝛽1)±√(𝐻−𝛽1)2+4𝐻𝛽2𝑌

2
=

(𝐻−𝛽1)±√(𝐻−𝛽1)2+4𝐻𝛽2𝐴
𝛽3

2
.   (57) 

 

Next, substitute the initial conditions for X0, A0, and H0 in the equation for X and 

take the roots most likely to be positive and real: 

𝑋0 =
(𝐻0−𝛽1)+√(𝐻0−𝛽1)2+4𝐻0𝛽2𝐴0

𝛽3

2
.    (58) 

 

Replace X in the GADA solution with X0 and simplify to create a polymorphic, 

base-age invariant formulation of the Cieszewski-Hossfeld height-age model: 

31

02

01

1




AX

X
H

−+

+
= ,                                                 (59) 

where X0 is defined as the function above, H0 = S, A0 = Ai, and all other variables 

are defined as before. 
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McDill and Amateis GADA Model 

McDill and Amateis (1992) proposed another variant of the Hossfeld 

model that only considers 2 as the local parameter in the Cieszewski (2002) 

GADA model.  As before, the base form of the Cieszewski (2002) model is: 

321

1





Ae
H

+
=                                                                (60) 

where 1, 2, and 3 are model parameters and all other variables defined as 

before. 

To create the GADA solution of the McDill-Amateis model, first make 2 

the local parameter by replacing e
2 with 2 / X, where X is the unobserved site 

quality variable.  The parameters 1 and 3 are estimated as global parameters, 

1 and 3, respectively.  The GADA formulation is: 

3

3

1

2

1

2

1

1
1


 







AX
A

X

H
−+

=

+

=     (61) 

To solve for X, first let 𝑌 = 3A : 

YX
H

1

2

1

1 −+
=




.     (62) 

Then, 

( )YXX
H

2

1

1





+
=

−
     (63) 
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YX

X
H

2

1





+
=      (64) 

( ) 12  XYXH =+      (65) 

12  XYHHX =+      (66) 

YHXHX 21  −=−      (67) 

( ) YHHX 21  −=−      (68) 

1

2





−

−
=

H

YH
X       (69) 

( )1

1

2

1 −−

−
=

HH

YH
X




     (70) 
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=

H
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    (71) 

 

Next, substitute the initial conditions for X0, A0, and H0 in the equation for X: 

     
1
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02

0
1
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−
=

H

A
X


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     (72) 

 

Replace X in the GADA solution with X0 and simplify to create a polymorphic, 

base-age invariant formulation of the McDill-Amateis height-age model: 
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
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Since 3 is a parameter to be estimated, the McDill-Amateis model can also be 

expressed as: 

  

( )
3
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11















−−
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A
H

H                                                                              (77) 

where H0 = S, A0 = Ai, and all other variables are defined as before. 

 

 

East Texas Pine Plantation Research Project  

 

 

The East Texas Pine Plantation Research Project (ETPPRP) was 

established in 1982 by J. David Lenhart in the Arthur Temple College of Forestry 
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and Agriculture at Stephen F. Austin State University and four participating 

industrial collaborators.  The purpose was to provide growth and yield information 

for planted pine plantations across east Texas (Lenhart et al. 1986).  The intent 

of the ETPPRP was to install permanent plots in young pine plantations 

throughout east Texas so as to have a range of sites available for growth and 

yield research.  Key components of the ETPPRP include: collect data during the 

life of the plantations, track wood production over time, and develop models to 

estimate growth and yield of these plantations.  Regular data summaries and 

analyses are provided to ETPPRP participants while information and quantitative 

tools are provided to east Texas foresters and plantation landowners. 

In the ETPPRP’s Phase 1 study which initiated in 1982 and terminated in 

2016, permanent plots were installed in extensively managed pine plantations 

across east Texas.  To fill knowledge gaps in growth and yield models, beginning 

in 2004, ETPPRP researchers began to establish new permanent plots (Phase 2 

plots) in young cut-over, intensively managed loblolly pine plantations across 

east Texas and western Louisiana.  Plot locations were selected to represent 

geologic formations and a range of soil drainage classes common to the region.  

Furthermore, within geologic formations and drainage classes, plots were 

selected to represent a range of site establishment practices that included 

mechanical and chemical competition control, fertilization at site establishment, 
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and bedding.  The specific establishment practices and dates of application were 

available for each selected plantation for the project. 

Similar to the Phase 1 plots, trees at each Phase 2 plot were measured 

when the plot was installed and remeasured every three years thereafter.  Data 

collection is ongoing.  The focus of this new effort was to determine the growth 

and yield of intensively managed pine plantations in the West Gulf Coastal Plain.  

These new data will deliver the necessary information to better provide growth 

and yield information for the management of genetically-improved, intensively-

managed loblolly pine plantations in the West Gulf Coastal Plain.  A 2017 study 

by Coble et al. found that loblolly pine trees planted in the intensively managed 

Phase 2 plots are reaching greater heights faster than those in the extensively 

managed Phase 1 plots (Figure 1).  This further justifies the need for updated site 

index curves developed specifically for intensively managed plantations. 
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Figure 1.  Average height for intensive (Phase 2) and extensive (Phase 1) 
ETPPRP plots with average trend lines.
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METHODS 

 

 

Data Description 

 

 

The Phase 2 plots are distributed across east Texas and into western 

Louisiana to best represent the growing conditions unique to the Interior West 

Gulf Coastal Plain (Figure 2.  At each study location, one permanent square plot 

measuring approximately 0.25 acres (approximately 100 foot by 100 foot) was 

installed (Appendix A).  The following items were recorded for each plot: 

plantation establishment date, initial planting density, slope, aspect, landform, 

geographic location (UTM NAD 83 Zone 15 coordinates with GPS), and stand 

history.  The plots were installed in such a way that plot boundaries run 

parallel/perpendicular to the planting rows.  Plot boundaries running parallel to 

the planted rows were located at the midpoint of the rows, as much as possible.  

Some exceptions occurred where rows were established along contours.   As of 

2017, there were a total of 133 Phase 2 plots available for analysis.  Of this total, 



33 
 

125 plots were actively measured and 8 had been logged or otherwise disturbed, 

but still provided data for analysis. 
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Figure 2. Map depicting the locations of Phase 2 plots of the East Texas Pine 
Plantation Research Project. 
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At each plot, both planted pine trees and non-planted trees (>4-inch dbh) 

were permanently marked with numbered aluminum tags.  When the plot was 

installed and every three years thereafter, diameter at breast height (dbh; nearest 

0.1 inch) was measured while height (nearest 1.0 foot), and crown length 

(nearest 1.0 foot) were estimated.  The trees’ crown class (dominant, 

codominant, intermediate, suppressed) as well as the presence of fusiform rust 

(yes or no, on stem or branch), and any damage to the tree were also recorded 

(Coble and Pendergast 2013).   

This study used 469 longitudinal observations from 133 unthinned Phase 

2 plots (Table 1).  Individual tree measurements from each plot were summarized 

to obtain dominant height for each measurement cycle and plantation total age 

was obtained from known plantation history.  Dominant height (feet) was 

determined by averaging the total heights of the dominant and co-dominant trees 

that were free of damage that affected height growth (e.g., broken tops, dead 

tops, forks, fusiform rust).  Plantation total age (years) was determined as the 

total time between the current measurement date and the plantation 

establishment date.
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Table 1. Observed stand characteristics for east Texas and western Louisiana 
loblolly pine plantations established on cut-over sites.  
Based on N=469 observations made from 133 plots in the ETPPRP Phase 2 
database. 

Variables Mean SD Minimum Maximum 

Age 8.1 3.6 2.0 19.0 

Hd 32.0 12.3 6.5 63.4 

TPA 524.2 100.0 326.7 858.1 

BAPA 79.5 44.8 1.2 184.3 

     
Note: Age=plantation age, Hd=height of dominant and codominant trees 
(feet), TPA=trees per acre, BAPA=basal area per acre (ft²), SD=standard 

deviation 

 

 

Data Analysis 

 

 

Six models: Schumacher ADA, Chapman-Richards ADA, Schumacher 

GADA, Chapman-Richards GADA, Cieszewski GADA, and McDill-Amateis 

GADA were selected to model site index.  This was a decision based on previous 

studies of the ETPPRP Phase 1 data (Lenhart et al. 1986).  Data were fitted to 

each of the above models using PROC NLIN of SAS version 9.4 procedure (SAS 

2017).  

Serially correlated data, also known as longitudinal data, are repeated 

measurements made on the sampling unit over time.  In this study, total heights 
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of individual dominant and codominant site trees that were averaged to obtain a 

dominant height for each plot every three years represent the serially correlated 

data.  These repeated measurements are not independent of each other 

because each plot contributed a series of measurements over time.  

Measurements that occurred closer together in time are more highly correlated 

than measurements farther apart in time.  Special statistical procedures are 

needed when the independence condition is violated by the presence of serial 

correlation.  If serial correlation was ignored, the coefficients in the model would 

still be unbiased, but their variances would be inflated which creates problems for 

statistical inference (e.g., is the coefficient significantly different from zero?).  

Other than the issue related to independence, heteroscedasticity could also be a 

problem that inflates variances with measurements made over time.  

Heteroscedasticity is present when the size of the error term differs across 

values of an independent variable.  

Northway (1985) presented a methodology for fitting dynamic functions to 

serially correlated data that had been used in some form by others (Coble and 

Lee 2010; Krumland and Eng 2005; Strub and Cieszewski 2002) that could 

address both serial autocorrelation and heteroscedasticity.  Northway’s (1985) 

methodology required an estimate of H0 at A0 prior to the fitting process, which 

was a problem since H0 at A0 were rarely measured in the field.  He referred to 

this estimate of H0 and A0 as site index (S) at the index age (Ai).  Each 

http://www.statisticssolutions.com/academic-solutions/resources/directory-of-statistical-analyses/homoscedasticity/
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remeasured ETPPRP plot provided a growth series from which estimates of S 

were calculated during the iterative nonlinear fitting process.  Each record in the 

dataset contained a single height-age pair from a plot, along with its entire growth 

series, which was every height-age pair from a plot measured over time.  This 

growth series was used to estimate S for each height-age pair.  The GADA 

models of Schumacher, Chapman-Richards, Cieszewski, and McDill and 

Amateis were fitted to these height-age pairs.  All non-linear procedures were run 

in PROC NLIN of SAS version 9.4.  Residual plots were viewed to verify that this 

procedure minimized the effects of serial correlation and heteroscedasticity. 

To estimate S for each height-age pair, initial estimates of the regression 

coefficients were first set equal to the starting values (obtained previously from 

an initial model fit using all the data) in the iterative nonlinear fitting process, and 

they were changed with successive iterations.  Within each iteration, conditional 

site index estimates (CSI) were used in the equation being fit.  Heights were 

predicted for the entire growth series for the CSIs.  The squared differences 

(observed – predicted) in height were then calculated.  The values of CSI for the 

current iteration that minimized the squared differences were used as final S 

estimates to estimate new values of the regression coefficients for the next 

iteration.  This process was repeated until the least squares error for the overall 

regression was minimized.  Thus, CSI was the estimate of site index that 

minimized squared differences of serially correlated observations, given the 
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current coefficient estimates.  Therefore, the procedure simultaneously estimated 

S for the growth series and CSI used in the function.  Final CSI values were local 

estimates (i.e., plot or site-specific estimates) of the height at the index age (25 

years in this study) for each growth series.    Model parameter estimates were 

evaluated at alpha=0.05 to determine their significance. 

 

 

Model Comparison 

 

 

The data were fitted to the Cieszewski GADA model, both Chapman-

Richards ADA and GADA models, both Schumacher ADA and GADA models, as 

well as the McDill-Amateis GADA model.  These six models were evaluated to 

determine which model fit the Phase 2 data best.  The models were compared 

based on statistical and visual analyses of the model residuals.  Four fit statistics 

were used in this study: root mean square error (RMSE) which measured model 

precision, the coefficient of determination for nonlinear models (pseudo-R2) 

which measured the amount of variability in the dependent variable explained by 

the independent variable, and Akaike’s information criterion (AIC) (Akaike 1974) 

which measured the goodness of fit of an estimated statistical model.  AIC was a 

tool that allowed the selection of the best fit model from a pool of candidate 
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models.  AIC differences (Δi) allows candidate models to be ranked and thus 

compared to find the best fit model with larger Δi denoting poorer models.  Δi are 

found by subtracting the lowest AIC value from the AIC of each model.  A Δi of 0-

2 indicates a substantial level of support for the model, 4-7 indicates considerably 

less support, and >10 indicates essentially no support for the model (Burnham 

and Anderson 2003).  The model with the lowest RMSE, AIC, and Δi  values as 

well as the highest pseudo-R2 value was considered the best fit model. 

Ideally, each model would be evaluated based on its ability to predict 

responses for a set of independent data.  Since no independent data were 

available for this project, the ETPPRP data could have been split into a model 

fitting data set and a model validation data set.  The model would have been fit 

with the former and validated with the latter.  However, Kozak and Kozak (2003) 

showed that this splitting technique as well as cross-validation techniques for 

model validation did not provide any additional information about the model 

beyond what ordinary fit statistics provided from the model fit with the entire data 

set.  Therefore, data splitting or cross-validation techniques were not used in this 

study to determine the best fit model. 
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Comparison to Other Studies 

 

 

It was expected that the best fit model in this study would have better 

predictability than the models currently being used in east Texas, thus the best fit 

model was further compared to the base-age invariant, polymorphic model for 

loblolly pine throughout the south developed by Diéguez-Aranda et al. (2006).  

The purpose of this comparison was to determine which model best represents 

height development patterns in east Texas loblolly pine plantations.  The best fit 

model of this study was also compared to the base-age invariant, anamorphic 

model for non-old-field loblolly pine plantations in east Texas developed by Coble 

and Lee (2010).  The purpose of this comparison was only for a point of 

reference since the loblolly pine trees represented in the two studies characterize 

different silvicultural activities including genetically different populations.  

However, it was a useful comparison since the model of Coble and Lee (2010) is 

still widely used by foresters in east Texas.  The comparison was based on visual 

analysis since no independent data were available to evaluate the models across 

a range of site index and plantation age values. 
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RESULTS 

 

 

These plantations were young in that they range in age from 2 to 19 years 

with an average age of 8.1 years.  The average height of the dominant and 

codominant trees was 32.0 feet, the average stand density was 524.2 trees per 

acre, and the average basal area was 79.5 ft² per acre (Table 1).  

The R² values of all the models were >0.97 indicating all the models 

produce very good predictions of the height-age relationship (Table 2).  All 

models displayed low RMSE values (<2.4 ft.) which again indicates that all 

models are good.  The Chapman-Richards GADA, Cieszewski GADA, and 

McDill-Amateis GADA models resulted in the lowest values of 1.5 feet.  The 

Chapman-Richards ADA model had a slightly larger value of 1.6 feet, and the 

Schumacher ADA and GADA models had the highest RMSE values of 2.3 feet.  

The differences between the models are best judged using the Akaike 

Information Criterion (AIC), a measure of model fit that considers bias and 

precision (low AIC scores = best fit model) and delta AIC.  The Schumacher ADA 

and GADA models had the largest AIC values at 801.5 and 783.2, respectively.  

The AIC values for the other models were much lower; 436.5 for the Chapman-
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Richards ADA model, 410.0 for the Chapman-Richards GADA model, and 

410.2 McDill-Amateis GADA model, and  408.6 for the Cieszewski GADA model.  

The delta AIC (Δi) values were calculated for each model with the Cieszewski 

GADA model having the most support at 0.00.  The Chapman-Richards GADA 

and McDill-Amateis GADA models had Δi values of 1.5 and 1.7 respectively 

which indicated a substantial level of support for the models.  The remaining 

models all had Δi values greater than 10 meaning the models had very little 

support as candidates for the best fit model.  However, for the Cieszewski GADA 

model, the parameter estimate  for β2 is not significant (the 95% confidence 

interval contains zero) which means the formulation for the local parameter 2 is 

not correct for these data.   
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Table 2. Parameter estimates and fit statistics for the equations where SE= standard error, CI= confidence interval, R²= 
coefficient of determination, RMSE= root mean square error, AIC= Akaike information criterion, and Δ i = AIC differences. 

Model Parameter Estimate SE 95% CI R² RMSE (ft.) AIC ∆𝑖 
Schumacher ADA  b1 -5.765 0.077 -5.917 -5.613 0.966 2.338 801.483 392.923 

Equation [6]          

          
Chapman-Richards 
ADA b2 1.122 0.034 

1.055 1.190 
0.984 1.584 436.514 27.954 

Equation [12] b3 0.074 0.007 0.060 0.087     

          

Schumacher GADA  b1 -34.408 9.051 -52.193 -16.623 0.968 2.293 783.237 374.677 

Equation [20] b2 6.663 2.106 2.525 10.801     

          
Chapman-Richards 
GADA b1 0.079 0.007 

0.067 0.092 
0.984 1.540 410.025 1.465 

Equation [41] b2 -1.909 0.773 -3.428 -0.390     

 b3 13.418 3.395 6.746 20.090     

          

Cieszewski GADA b1 92.273 19.900 53.169 131.400 0.985 1.538 408.560 0.000 

Equation [59] b2 892.300 904.300 -884.700 2669.400     

 b3 1.184 0.032 1.121 1.248     

    
  

    
McDill-Amateis 
GADA b1 112.100 6.548 

99.216 125.000 
0.984 1.540 410.237 1.677 

Equation [77] b3 1.173 0.030 1.114 1.232        
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Models were further compared with residual plots (Figures 2-7).  The 

residuals for the Chapman-Richards ADA model (Figure 4), Chapman-Richards 

GADA model (Figure 6), Cieszewski GADA model (Figure 7), and McDill-Amateis 

GADA model (Figure 8) all indicated no evidence of bias, autocorrelation, or 

heteroscedasticity.  The residuals for both Schumacher models (Figures 3 and 

5), however, exhibited curvilinear trends, which was indicative of bias from serial 

autocorrelation.  
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Figure 3. Plot of residuals against predicted total tree height for Schumacher 
ADA model Equation [6]. 
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Figure 4. Plot of residuals against predicted total tree height for Chapman-
Richards ADA model Equation [12]. 
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Figure 5. Plot of residuals against predicted total tree height for Schumacher 
GADA model Equation [20]. 
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Figure 6. Plot of residuals against predicted total tree height for Chapman-
Richards GADA model Equation [41]. 
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Figure 7. Plot of residuals against predicted total tree height for Cieszewski 
GADA model Equation [59]. 
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Figure 8. Plot of residuals against predicted total tree height for McDill-Amateis 
GADA model Equation [77]. 
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In the process of estimating unobserved site index values to fit the 

models, final CSI values represented local or site-specific estimates of the total 

height at the index age (25 years in this study) for each ETPPRP Phase 2 plot.  

Since site index was not observed for the plots (maximum age = 19 years), these 

estimates were considered the best estimate of site index for the plots.  As such, 

they were useful for any application that required an estimate of site index of 

each plot.  These values were included in the Appendix. 

The site index curves for all models show an appropriate curvilinear 

height-age relationship over time at different levels of site index (Figures 9-14).  

All models performed equally well in terms of R-square and RMSE.  Both 

Schumacher models exhibit visibly obvious autocorrelation trends in their 

residual plots (Figures 3 and 5), while all other residual plots showed no trends 

(Figures 4, 6-8).  The Chapman-Richards GADA, McDill-Amateis GADA, and 

Cieszewski GADA models performed best in terms of AIC, but the Cieszewski 

GADA model had a non-significant parameter estimate, which means it is not 

ideally formulated for this data set.  Since the Chapman-Richards GADA model 

(Equation 41, Figure 12) and the McDill-Amateis GADA model (Equation 77, 

Figure 14) performed equally well without any demerits, both of these two models 

were chosen to further compare to the existing models of Diéguez-Aranda et al. 

(2006) and Coble and Lee (2010). 
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Figure 9. Site index curves for Schumacher ADA model Equation [6]. 

 

 

 

 

 

 



54 
 

 

 

Figure 10. Site index curves for Chapman-Richards ADA model Equation [12].
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Figure 11. Site index curves for Schumacher GADA model Equation [20]. 
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Figure 12. Site index curves for Chapman-Richards GADA model Equation [41].
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Figure 13. Site index curves for Cieszewski GADA model Equation [59]. 
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Figure 14. Site index curves for McDill-Amateis GADA model Equation [77].



59 
 

 

The comparison to the existing curves was performed at four site index 

values that represented a range of poor to excellent site quality: 50, 60, 70, and 

80 feet.  Total height in feet was plotted over plantation age in years.  Even 

though maximum age for the data used in this study was only 19 years, 

plantation age was plotted up to 50 years to examine the extrapolative behavior 

of all the models.   

The Diéguez-Aranda et al. (2006) model (DA 2006) and the Coble and 

Lee (2010) model (CL 2010) predicted similar heights at ages less than 25 years. 

However, after age 25, DA 2006 consistently predicted greater heights than CL 

2010 (Figures 15-18).  Across the range of site indices examined, the Chapman-

Richards GADA (Equation 41) and McDill-Amateis GADA (Equation 77)  models 

predicted greater heights at ages less than 25 years than either the DA 2006 or 

CL 2010 models. As site index increased, the difference in heights also 

increased (Figures 15-18). After age 25, the greatest heights were predicted by 

DA 2006 for all site indices, followed by Equation 6, CL 2010, and Equation 41 

for SI 50, 60, and 70. At SI 80, CL 2010 predicted greater heights than Equation 

77, but still shorter heights than DA 2006 while Equation 41 still predicted the 

shortest heights. 
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Figure 15. Comparison of models for site index 50. 
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Figure 16. Comparison of models for site index 60. 
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Figure 17. Comparison of models for site index 70. 
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Figure 18. Comparison of models for site index 80. 
 

 

 Site index shows a steady decline over age for both the Diéguez-Aranda 

et al. 2006 and the Coble and Lee 2010 models (Figure 19). However, both the 

Chapman-Richards GADA (Equation 41) and McDill-Amateis GADA (Equation 

77) models maintain a steady site index.  
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Figure 19. Comparison of calculated site index.  
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DISCUSSION 

 

 

In this study both anamorphic and polymorphic site index models were 

developed.  Results of this study based on fit statistics suggest that the 

polymorphic forms, probably due to their flexibility in allowing more than one 

parameter to be local, outperformed the anamorphic models (Table 2).  

Comparisons in performance using various models to model height and age 

curves have been done, and various conclusions were achieved in terms of 

producing adequate site curves (Burkhart and Tomé 2012; Weiskittel et al. 2011).  

Furnival et al. (1990) realized that there were biases present when certain types 

of data were used to formulate anamorphic site index curves.  For example, stem 

analysis data presented a selectivity bias since stands on higher quality sites 

tended to be harvested at younger ages skewing the trajectory of the curves.  

The Algebraic Difference Approach (ADA) developed by Bailey and Clutter 

(1974) was originally used to generate polymorphic site index curves that were 

more flexible than anamorphic curves, but still had only single asymptotes 

(Cieszewski et al. 2006; Furnival et al. 1990). Cieszewski and Bailey (2000) 
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compared GADA and ADA and formulated GADA derived equations that were 

polymorphic with multiple asymptotes and were base-age invariant which could 

not be achieved with ADA.  Cieszewski et al.(2006) compared ADA and GADA 

methods for developing equations for site index curves for Scots pine and found 

GADA was superior.  These advanced polymorphic models (multiple asymptotes) 

described growth patterns better than anamorphic or simple polymorphic (single 

asymptote) models for various species (Cieszewski et al. 2006; Krumland and 

Eng 2005).  ADA was able to derive anamorphic and polymorphic curves with 

single asymptotes while GADA developed polymorphic curves with multiple 

asymptotes as well as being base-age invariant—all desirable characteristics 

(Cieszewski and Bailey 2000).    

Statistically the Chapman-Richards GADA model (Equation 41, Figure 9) 

and the McDill-Amateis GADA model (Equation 77, Figure 11) provided the best 

SI predictions for intensively managed loblolly pine plantations in the western 

portion of the Western Gulf Coastal Plain (i.e., east Texas and western 

Louisiana).  It was equally important to see their performances by comparing 

them to the SI models currently being utilized (CL 2010 and DA 2006).  Both CL 

2010 and DA 2006 were developed for extensively (non-intensively) managed 

loblolly pine plantations, with the former being specifically for east Texas and the 

latter targeting the southeastern United States. It was expected that differences 
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existed between these two models due to regional differences in climate, 

genetics, and other dynamics.  Our results showed that they were similar in 

heights below 25 years, but DA 2006 heights exceeded CL 2010 at ages greater 

than 25 years.  One explanation for this, although speculative, was that loblolly 

pine trees growing further east, which are represented by DA 2006’s equations, 

reached greater heights than loblolly pine trees growing in the West Gulf Coastal 

Plain, which were represented by CL 2010’s equations, either due to unspecified 

genetic differences or environmental differences.  Trees growing in east Texas 

have harsher conditions to survive, mainly greater evapotranspirative demand in 

August/September.  In either case, DA 2006 did not represent east Texas well.   

Data for CL 2010, the Chapman-Richards GADA model, and the McDill-

Amateis GADA model were collected from the east Texas region.  As expected, 

predicted heights of the Chapman-Richards GADA model (Equation 41) or the 

McDill-Amateis GADA model (Equation 77) were greater than those of CL 2010 

at young ages (i.e., <=25 years), suggesting the intensive silvicultural activities 

and planting genetically improved seedlings greatly improved early height 

growth.  However, after age 25, greater heights for CL 2010 versus the 

Chapman-Richards GADA model (Equation 41) and the McDill-Amateis GADA 

model (Equation 77) were observed (Figure 17), and this underestimate was 

especially true for the Chapman-Richards GADA model (Equation 41). This was 
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conjectured to have resulted from a lack of data at older ages from the 

intensively managed plantations.  The CL 2010 model was created using data 

available for unthinned loblolly pine plots that ranged in age from 14 to 37 years 

creating a data set that, like DA 2006, comprised a full rotation (Coble and Lee 

2006; 2010; Lenhart et al. 1986).  The Chapman-Richards GADA model 

(Equation 41) and the McDill-Amateis GADA model (Equation 77) did not reach 

the greater heights at older ages like the CL 2010 and DA 2006 models.  The DA 

2006 model was created using long-term data available for unthinned, 

extensively managed loblolly pine plots across the southeastern United States up 

to an age class of 45 years (43-47 years) which created a data set that 

encompassed a full rotation (Diéguez-Aranda et al. 2006).  Similarly, the 

Chapman-Richards GADA model (Equation 41) and the McDill-Amateis GADA 

model (Equation 77) had significantly greater heights than DA 2006 at younger 

ages.  Many factors including climate, silviculture, and genetics may have 

contributed to these differences.  The greater heights for the Chapman-Richards 

GADA model (Equation 41) and the McDill-Amateis GADA model (Equation 77) 

mostly reflected the improved height growth due to intensive management.  

However, the faster height growth by the Chapman-Richards GADA model 

(Equation 41) and the McDill-Amateis GADA model (Equation 77) were not 

evident at older ages because available data for this study was less than 19 
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years old.  The height differences became more pronounced as site index 

increased, suggesting that genetic effects and effects of intensive silvicultural 

activities were not constant across site quality.  In essence, there were more 

benefits from using improved genetics and intensive silvicultural practices on 

better sites as compared to poor sites.   

The data for this study was limited by the fact that the oldest Phase 2 

plantations were only 19 years.  Therefore, data older than 19 years had to be 

extrapolated for the models and data are lacking to definitively establish the 

asymptote of the model.  Despite this data limitation, this study is still worthwhile 

because many intensive silvicultural practices are applied before age 25.  

Effects of silvicultural activities and genetics on height growth have been 

studied extensively.  Zhao et al. (2016) found that the intensity of silvicultural 

treatments strongly interacted with site quality in that lower quality sites 

responded more to higher intensity silvicultural treatments than higher quality 

sites.  Therefore, silvicultural treatment intensity should be based on site quality 

to optimize silvicultural prescriptions (Zhao et al. 2016).  For a given stand, site 

index often varied significantly due to changes in genetics, silvicultural activities, 

and other environmental factors.  Genetic variation explained more than 40% of 

the original variation in site index in Douglas-fir (Monserud and Rehfeldt 1990).  

Assessments of the effects of seed source on the variation of site index for 
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loblolly pine have been presented by Nance and Wells (1981) and Buford and 

Burkhart (1987).  Compared to unimproved seedlots, the improved seedlots 

changed the asymptotic coefficient of the height-age relationship significantly 

(Buford and Burkhart 1987).  Site index has proven to be extremely sensitive to 

many silvicultural activities currently being used such as soil bedding, vegetation 

control, or fertilization (Weiskittel et al. 2011; Zhao et al. 2016). Therefore, the 

change in SI could be used to measure the response of stands to various 

management regimes (Zhao et al. 2016).  Without doubt, the differences 

between the CL 2010 model and our SI model were a result of a complex 

byproduct of genetics, climate, applied silvicultural treatments, and even their 

interactions.  The differences between DA 2006 and our SI model may have 

been due more to population differences in nature and climate.  Without doubt, 

applying both the Chapman-Richards GADA (Equation 41) and the McDill-

Amateis GADA models (Equation 77) developed in this study could greatly 

improve height prediction at ages 25 years and younger for intensively managed 

loblolly pine plantations across the Western Gulf Coastal Plain region than the 

models currently being used.  

While the Chapman-Richards GADA model (Equation 41) and the McDill-

Amateis GADA model (Equation 77) predicted early height growth well, the 

McDill-Amateis GADA model (Equation 77) obtained more realistic heights than 
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the Chapman-Richards GADA model (Equation 41) after ages 25 years.  We 

selected the McDill-Amateis GADA model (Equation 77) as the best model for 

predicting SI for intensively managed loblolly pine plantations.  This model could 

be used in conjunction with growth and yield models for the Western Gulf Coastal 

Plain region (Coble et al. 2016).  
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CONCLUSION 

 

 

Due to the similarities in the fits statistics of both models, the Chapman-

Richards GADA model (Equation 41, Figure 12) and the McDill-Amateis GADA 

model (Equation 77, Figure 14) were both chosen to compare to the existing 

models of Diéguez-Aranda et al. (2006) and Coble and Lee (2010).  The McDill-

Amateis GADA model (Equation 77) was ultimately chosen as the best model 

having an R² value of 0.984, RMSE of 1.54 feet, AIC value of 410, and a strong Δ

i of 1.7 (Table 2).  The McDill-Amateis GADA model (Equation 77) reliably 

predicted greater heights at younger ages on higher quality sites than the models 

of DA 2006 and CL 2010, but predicted shorter heights at older ages due to a 

lack of data for older ages.  Although the data set was young and will require 

continued research through an entire stand rotation, this study was still valuable.  

Foresters now have a set of site index curves developed specifically for the West 

Gulf Coastal Plain.  These site index curves will aid foresters in making more 

appropriate silvicultural prescriptions for intensively managed loblolly pine 

plantations in this unique region.  Better management regimes can potentially 
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increase the value of the stands and in turn benefit the economy.  Several 

hypotheses for future research can be developed from this study. These 

hypotheses could include: 

1. Height-age/Site index models developed with data from the 

southeastern United States (SE) will show greater heights at older 

ages compared to West Gulf models (WG). 

2. Height-age/Site index models developed with data from improved 

plantations will show greater heights at all ages compared to 

unimproved plantations. 

3. Heights at all ages will be greater in improved plantations versus 

unimproved plantations in any region.  

This can be depicted visually with four curves of heights plotted over age.  

Two curves will represent improved/unimproved from the West Gulf Coastal Plain 

region, and the other two curves will represent improved/unimproved for the 

southeastern United States.  The two improved curves (one from WG and the 

other from SE) will be greater at all ages as opposed to the two unimproved 

curves from the two regions.  However, the SE curves will be greater at older 

ages and the same at younger ages versus the WG curves in a similar way 

(shape) for both improved and unimproved plantations.  
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 In the Piedmont and Upper Coastal Plain of the southern United States, 

long-term productivity of loblolly pine has shown to increase with intensive site 

preparation treatments including herbaceous and woody competition control and 

mechanical treatments (Lauer and Zutter 2001; Zhao et al. 2009; Zutter and 

Miller 1998).  A study by Zhao et al. (2009a) found that genetically improved 

slash pine seedlings planted in the Flatwoods area of the Lower Coastal Plain 

benefitted from various silvicultural treatments overall (Zutter and Miller 1998).  

Varied responses were possible with different combinations of silvicultural 

treatments applied to a range of sites under diverse environmental conditions, 

but the general conclusion was that more intensive methods provided increased 

growth over lower intensity treatments (Shiver et al. 1990; Zhao et al. 2009b). 
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Table 3. Site index estimates for the Schumacher ADA equation (Equation 1). 
Plot 
Number 

Site Index 
Estimate (ft.)  

Plot 
Number 

Site Index 
Estimate (ft.)  

Plot 
Number 

Site Index 
Estimate (ft.) 

200 50.1  249 49.1  298 61.9 
201 48.1  250 62.1  299 50.7 
202 52.8  251 61.1  300 61.4 
203 54.6  252 53.9  301 57.1 
204 47.0  253 65.5  302 48.1 
205 50.0  254 63.4  303 59.3 
206 53.1  255 59.5  304 58.1 
207 69.0  256 58.9  305 59.5 
208 54.5  257 55.3  306 62.9 
209 54.5  258 58.3  307 60.5 
210 58.1  259 76.6  308 62.2 
211 56.1  260 59.2  309 62.2 
212 43.8  261 69.4  310 52.1 
213 60.1  262 55.5  311 66.3 
214 56.0  263 51.2  312 47.0 
215 61.0  264 51.4  313 45.5 
216 43.9  265 56.6  314 53.3 
217 58.6  266 67.4  315 51.6 
218 58.8  267 54.2  316 45.4 
219 59.3  268 70.5  317 54.7 
220 56.2  269 58.7  318 65.5 
221 55.1  270 57.7  319 59.1 
222 58.6  271 57.2  320 65.7 
223 61.3  272 48.2  321 59.3 
224 57.6  273 61.2  322 59.9 
225 60.6  274 65.4  323 63.3 
226 61.0  275 57.7  324 59.1 
227 58.7  276 55.4  325 46.4 
228 52.6  277 44.6  326 60.9 
229 57.7  278 49.2  327 51.3 
230 56.0  279 47.1  328 50.7 
231 54.6  280 57.1  329 51.1 
232 48.8  281 56.4  330 46.8 
233 58.7  282 51.3  331 55.3 
234 61.7  283 61.6  332 54.9 
235 67.0  284 63.9  

  

236 63.6  285 50.1  
  

237 62.1  286 56.5    
238 50.6  287 60.9    
239 64.3  288 59.4    
240 59.6  289 56.0    
241 61.9  290 49.8    
242 65.7  291 52.1    
243 64.9  292 66.4    
244 70.5  293 55.8    
245 48.4  294 50.3    
246 38.6  295 58.2    
247 50.4  296 56.9    
248 56.3  297 57.8    
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Table 4. Site index estimates for the Chapman-Richards ADA equation (Equation 
2). 

Plot 
Number 

Site Index 
Estimate (ft.)  

Plot 
Number 

Site Index 
Estimate (ft.)  

Plot 
Number 

Site Index 
Estimate (ft.) 

200 60.7  248 67.9  296 67.5 
201 55.5  249 58.3  297 70.5 
202 63.0  250 73.8  298 73.6 
203 66.2  251 71.9  299 61.9 
204 54.7  252 63.9  300 74.4 
205 57.1  253 77.7  301 69.3 
206 63.0  254 78.1  302 57.5 
207 83.7  255 69.4  303 72.5 
208 66.7  256 69.9  304 70.9 
209 64.0  257 66.7  305 72.7 
210 68.0  258 69.1  306 75.8 
211 64.2  259 94.4  307 72.4 
212 49.0  260 72.9  308 75.1 
213 70.8  261 82.0  309 76.2 
214 68.2  262 64.8  310 62.2 
215 70.4  263 59.8  311 81.0 
216 51.6  264 60.3  312 55.9 
217 69.0  265 66.8  313 54.9 
218 66.0  266 80.0  314 63.8 
219 70.06  267 64.9  315 63.1 
220 67.1  268 85.6  316 55.4 
221 66.5  269 70.2  317 66.3 
222 69.9  270 68.6  318 78.3 
223 71.7  271 69.5  319 72.1 
224 68.4  272 59.8  320 78.5 
225 73.6  273 74.3  321 72.0 
226 74.3  274 79.0  322 73.0 
227 69.2  275 68.5  323 77.4 
228 64.1  276 68.9  324 70.1 
229 69.7  277 53.3  325 56.6 
230 66.9  278 60.0  326 74.3 
231 66.2  279 56.4  327 63.0 
232 57.5  280 68.9  328 62.2 
233 69.3  281 69.0  329 62.8 
234 73.4  282 62.6  330 57.3 
235 79.5  283 74.4  331 67.9 
236 76.0  284 77.3  332 67.5 
237 73.0  285 60.7  

  

238 60.5  286 67.7  
  

239 76.2  287 71.7    
240 72.7  288 71.0    
241 73.9  289 66.0    
242 80.1  290 60.4    
243 77.4  291 62.9    
244 85.3  292 78.2    
245 57.8  293 65.8    
246 45.9  294 59.3    
247 59.9  295 69.1    



88 
 

 

Table 5. Site index estimates for the Schumacher GADA equation (Equation 3). 
Plot 
Number 

Site Index 
Estimate  

Plot 
Number 

Site Index 
Estimate  

Plot 
Number 

Site Index 
Estimate 

200 52.1  249 51.6  298 61.0 
201 49.7  250 61.2  299 53.5 
202 54.0  251 60.4  300 61.1 
203 56.3  252 55.1  301 57.5 
204 49.6  253 63.4  302 51.1 
205 51.7  254 61.6  303 59.7 
206 54.6  255 59.1  304 58.7 
207 66.1  256 58.6  305 59.4 
208 56.3  257 56.6  306 61.6 
209 55.1  258 58.5  307 60.1 
210 57.9  259 68.8  308 61.3 
211 56.5  260 58.8  309 61.5 
212 45.3  261 65.8  310 54.0 
213 59.7  262 55.9  311 63.9 
214 57.2  263 52.6  312 49.4 
215 60.5  264 52.5  313 49.3 
216 46.3  265 56.8  314 54.8 
217 58.5  266 64.4  315 54.0 
218 58.8  267 55.3  316 49.1 
219 58.7  268 66.5  317 56.3 
220 56.7  269 58.3  318 63.6 
221 55.5  270 57.7  319 59.1 
222 58.4  271 57.6  320 63.7 
223 60.2  272 51.5  321 59.9 
224 57.5  273 60.4  322 59.8 
225 59.6  274 63.6  323 61.7 
226 60.2  275 57.7  324 58.7 
227 58.4  276 56.4  325 49.8 
228 54.4  277 48.4  326 60.1 
229 58.1  278 52.3  327 54.1 
230 56.7  279 50.3  328 53.6 
231 55.5  280 57.6  329 54.0 
232 50.8  281 57.7  330 51.0 
233 58.3  282 53.8  331 56.5 
234 60.3  283 60.7  332 56.4 
235 64.3  284 62.6  

  

236 62.4  285 52.9  
  

237 61.1  286 57.3    
238 52.8  287 60.1    
239 62.7  288 59.1    
240 59.2  289 56.6    
241 60.8  290 52.1    
242 63.0  291 53.9    
243 62.9  292 64.1    
244 67.4  293 56.4    
245 51.1  294 52.0    
246 42.9  295 59.0    
247 52.2  296 57.3    
248 57.2  297 58.4    
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Table 6. Site index estimates for the Chapman-Richards GADA equation 
(Equation 4). 

Plot 
Number 

Site Index 
Estimate  

Plot 
Number 

Site Index 
Estimate  

Plot 
Number 

Site Index 
Estimate 

200 61.7  248 67.2  296 66.9 
201 56.8  249 59.9  297 69.2 
202 63.3  250 71.7  298 71.6 
203 66.2  251 70.5  299 62.9 
204 56.7  252 64.2  300 72.1 
205 58.6  253 74.5  301 68.2 
206 63.6  254 73.7  302 59.5 
207 78.9  255 68.5  303 70.6 
208 66.4  256 68.6  304 69.6 
209 64.0  257 66.4  305 70.6 
210 67.2  258 68.3  306 72.5 
211 64.4  259 83.6  307 70.5 
212 50.4  260 70.6  308 72.2 
213 69.4  261 77.6  309 73.0 
214 67.7  262 64.7  310 63.0 
215 69.4  263 60.7  311 76.4 
216 53.5  264 60.8  312 57.5 
217 68.1  265 66.2  313 57.7 
218 65.7  266 76.0  314 64.1 
219 68.6  267 64.7  315 63.7 
220 66.3  268 79.8  316 57.9 
221 65.7  269 68.5  317 66.2 
222 68.5  270 67.5  318 73.6 
223 70.0  271 68.3  319 69.9 
224 67.3  272 61.5  320 74.9 
225 71.0  273 71.9  321 70.6 
226 71.0  274 75.1  322 71.0 
227 68.1  275 67.5  323 73.4 
228 64.3  276 67.7  324 68.8 
229 68.3  277 56.3  325 58.7 
230 66.3  278 61.6  326 71.6 
231 65.8  279 58.5  327 63.8 
232 58.9  280 67.7  328 63.2 
233 68.1  281 68.1  329 63.7 
234 70.9  282 63.5  330 59.9 
235 75.8  283 71.6  331 67.1 
236 73.2  284 73.9  332 66.9 
237 71.1  285 62.1  

  

238 61.6  286 67.1  
  

239 73.6  287 70.2    
240 70.4  288 69.4    
241 71.4  289 65.8    
242 75.4  290 61.5    
243 74.0  291 63.3    
244 80.2  292 75.1    
245 59.5  293 65.6    
246 49.8  294 60.4    
247 60.8  295 68.7    
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Table 7. Site index estimates for the Cieszewski GADA equation (Equation 5). 
Plot 
Number 

Site Index 
Estimate  

Plot 
Number 

Site Index 
Estimate  

Plot 
Number 

Site Index 
Estimate 

200 63.7  249 62.0  297 70.4 
201 59.2  250 72.6  298 72.4 
202 65.2  251 71.5  299 64.8 
203 67.7  252 65.9  300 72.9 
204 59.0  253 75.0  301 69.6 
205 60.7  254 74.3  302 61.6 
206 65.4  255 69.8  303 71.6 
207 78.7  256 69.9  304 70.7 
208 67.9  257 68.0  305 71.6 
209 65.7  258 69.6  306 73.4 
210 68.6  259 82.6  307 71.6 
211 66.1  260 71.6  308 73.1 
212 52.8  261 77.6  309 73.7 
213 70.6  262 66.4  310 64.9 
214 69.0  263 62.8  311 76.5 
215 70.6  264 62.8  312 59.9 
216 56.1  265 67.7  313 59.9 
217 69.5  266 76.3  314 65.8 
218 67.2  267 66.4  315 65.5 
219 69.9  268 79.4  316 60.2 
220 67.9  269 69.8  317 67.7 
221 67.4  270 68.9  318 74.4 
222 69.8  271 69.6  319 71.1 
223 71.1  272 63.5  320 75.4 
224 68.8  273 72.7  321 71.5 
225 72.0  274 75.5  322 71.9 
226 72.2  275 68.9  323 74.1 
227 69.5  276 69.1  324 70.0 
228 66.1  277 58.6  325 61.0 
229 69.7  278 63.6  326 72.5 
230 67.9  279 60.7  327 65.6 
231 67.4  280 69.1  328 65.1 
232 61.2  281 69.4  329 65.5 
233 69.4  282 65.3  330 62.0 
234 72.0  283 72.5  331 68.6 
235 76.1  284 74.5  332 68.3 
236 74.0  285 64.0  

  

237 72.1  286 68.5    
238 63.6  287 71.3    
239 74.2  288 70.6    
240 71.5  289 67.4    
241 72.4  290 63.6    
242 75.8  291 65.1    
243 74.6  292 75.5    
244 79.7  293 67.2    
245 61.7  294 62.5    
246 52.4  295 69.9    
247 62.9  296 68.4    
248 68.7  297 70.4    
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Table 8. Site index estimates for the McDill-Amateis GADA equation (Equation 
6).  

Plot 
Number 

Site Index 
Estimate  

Plot 
Number 

Site Index 
Estimate  

Plot 
Number 

Site Index 
Estimate 

200 64.6  248 69.2  296 68.9 
201 60.1  249 63.0  297 70.7 
202 66.0  250 72.6  298 72.5 
203 68.3  251 71.7  299 65.7 
204 60.1  252 66.7  300 72.9 
205 61.6  253 74.7  301 70.0 
206 66.2  254 74.0  302 62.7 
207 77.8  255 70.2  303 71.8 
208 68.5  256 70.3  304 71.0 
209 66.4  257 68.6  305 71.7 
210 69.0  258 70.0  306 73.3 
211 66.7  259 80.4  307 71.7 
212 53.6  260 71.8  308 73.0 
213 70.8  261 76.8  309 73.5 
214 69.5  262 67.1  310 65.7 
215 70.9  263 63.7  311 75.9 
216 57.2  264 63.7  312 61.0 
217 69.9  265 68.3  313 61.0 
218 67.8  266 75.7  314 66.6 
219 70.2  267 67.1  315 66.3 
220 68.5  268 78.3  316 61.3 
221 68.0  269 70.1  317 68.3 
222 70.2  270 69.4  318 74.0 
223 71.3  271 70.0  319 71.3 
224 69.2  272 64.5  320 75.0 
225 72.1  273 72.8  321 71.7 
226 72.2  274 75.1  322 72.1 
227 69.9  275 69.4  323 73.8 
228 66.8  276 69.6  324 70.4 
229 70.1  277 59.7  325 62.1 
230 68.5  278 64.6  326 72.5 
231 68.1  279 61.8  327 66.5 
232 62.1  280 69.6  328 66.0 
233 69.8  281 69.9  329 66.3 
234 72.0  282 66.1  330 63.1 
235 75.6  283 72.5  331 69.1 
236 73.8  284 74.2  332 68.9 
237 72.2  285 64.9  

  

238 64.5  286 69.0  
  

239 74.0  287 71.5    
240 71.6  288 70.8    
241 72.4  289 68.0    
242 75.2  290 64.5    
243 74.3  291 66.0    
244 78.6  292 75.2    
245 62.7  293 67.8    
246 53.6  294 63.4    
247 63.9  295 70.3    
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