Tip moth control and loblolly pine growth in intensive pine culture: four year results

David Kulhavy
Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, dkulhavy@sfasu.edu

Jimmie L. Yeiser
Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University

L. Allen Smith

Follow this and additional works at: https://scholarworks.sfasu.edu/forestry

Part of the Forest Sciences Commons

Tell us how this article helped you.

Repository Citation

Kulhavy, David; Yeiser, Jimmie L.; and Smith, L. Allen, "Tip moth control and loblolly pine growth in intensive pine culture: four year results" (2006). *Faculty Publications*. 200.
https://scholarworks.sfasu.edu/forestry/200

This Conference Proceeding is brought to you for free and open access by the Forestry at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.
TIP MOTH CONTROL AND LOBLOLLY PINE GROWTH IN INTENSIVE PINE CULTURE: FOUR YEAR RESULTS

David L. Kulhavy, Jimmie L. Yeiser, and L. Allen Smith

Abstract—Twenty-two treatments replicated four times were applied to planted loblolly pine, Pinus taeda L., on bedded industrial forest land in east Texas for measurement of growth impact of Nantucket pine tip moth (NPTM), Rhyacionia frustrana Comstock, and effects on pine growth over 2 years. Treatments were combinations of Velpar®, Oust®, Escort®, and Arsenal® herbicides; diammonium phosphate (DAP) fertilizer with treatments in 2000, in 2001, or in both years. Ten of the treatments were treated with Mimic timed with pheromone traps to reduce NPTM infestations. NPTM was controlled with the Mimic, and there was a small but significant increase in the loblolly pine growth at the end of the second growing season. However, the increase was minimal by the end of the fourth growing season. The best growth of pines with the most intensive treatments was equal with and without NPTM control. NPTM control made a difference on intermediate treatments.

INTRODUCTION
The Nantucket pine tip moth (NPTM), Rhyacionia frustrana (Comstock), is an important pine regeneration insect in the eastern and southern United States (Berisford 1987), with larval feeding causing significant damage particularly in areas of forest regeneration (Yates and others 1981). Southeastern industrial forestry, to maximize production of wood and fiber, currently emphasizes establishment of large, homogeneous pine plantations that may favor increased damage by NPTM following vegetation control treatments (Ross and Berisford 1990). NPTM infestation rates tended to increase as site preparation intensity increased and levels of competing vegetation and overstory decrease (Berisford and Kulman 1967, Hertel and Benjamin 1977, Hood and others 1988, Lantagne and Burger 1988, Nowak and Berisford 2000, White and others 1984, Zutter and others 1986). Intensive forest management practices that improve tree growth, such as weed control and fertilization, have been shown to exacerbate NPTM damage and decrease volume growth (Cade and Hedden 1987, Fettig and others 2000, Ross and Berisford 1990, Ross and others 1990, Sun and others 1999). However, McCravy and Berisford (2001) showed significantly lower NPTM damage in plots with vegetation control than in untreated plots; and Nowak and others (2003) found NPTM populations to be unstable following applications of fertilizers and herbicides. Miller and Stephen (1983) indicated competing herbaceous and woody vegetation provide food and shelter for NPTM predators and parasites. Pritchert and Smith (1972) observed little change in NPTM infestation on trees fertilized with nitrogen. Application of phosphorus, however, resulted in a significant NPTM reduction, with potassium reducing NPTM even further. Tiarks and Haywood (1985), in a study measuring effects of fertilization and vegetation control on loblolly pine, observed uniform NPTM damage across all treatments, but NPTM infestation rates were not quantified. Meeker and Kulhavy (1992) found a negative correlation between NPTM levels in soil and foliage and NPTM infestation rates, with increasing levels of phosphorus associated with decreasing infestation rates.

Herbicides, including Sulfometuron methyl (Oust®) and Hexazinone (Velpar®-L), are commonly used to reduce competing herbaceous vegetation in loblolly pine plantations (Cantrell and others 1985, Creighton and others 1986, Kulhavy and others 2004, Michael 1985, Yeiser and Boyd 1989, Yeiser and Rhodenbaugh 1994). Use of herbicides for vegetation management continues to increase (Dubois and others 1999) along with growth (Glover and others 1994); forest fertilization has increased, with 200,000 acres of southern pines fertilized at planting. The resulting population of NPTM following herbicide applications and fertilizers, especially addition of phosphorus, warrants additional investigation. Ross and others (1990) documented that percent infested trees and percent infested shoot tips were significantly higher in banded and broadcast-treated plots than in check plots during the third NPTM generation.

METHODS
Twenty-two six tree by six tree plots with a two row buffer were established on an Upper Coastal Plain industrial forest site with a fine sandy silt loam near Diboll, Angelina County, TX, in early 2000. The study was a complete randomized block with 22 treatments replicated 4 times. The area was site prepared with pre-emergent herbicides and deep plowed with loblolly pine planted on the ridges.

The 22 treatments are shown in table 1. Mimic was applied five times each season, timed to first instar larvae with pheromone traps. Mimic® 2LV Insecticide (active ingredient tebuzofenoxide) (Rohm and Haas, ownership of the product changed to Dow AgroSciences LLC, June 1, 2001) was applied following label instructions on a per acre basis timed with pheromone traps baited with synthetic NPTM lures. Dr. Don Grosman, Forest Pest Management, Texas Forest Service, Lufkin, TX, provided NPTM trap catch data and advice on Mimic timing for application. NPTM infestations were counted on a whole tree basis after the third generation in 2000, at the end of the season (fifth generation overwintering in the tips), after the third generation in 2002, and at the end of the season (fifth generation). Infestations were counted on the (1) terminal (infested or not infested), (2) top whorl except for the top terminal, (3) top half of the tree, and (4) bottom half of the tree (Kulhavy and others 2004). Each tip was examined as...
infested or uninfested. A total tree count was taken for the site for each of the treatments over the replications. Data were analyzed with SAS with an ANOVA using New Duncan’s Multiple Range Test at p = 0.05 (SAS 1988).

RESULTS AND DISCUSSION
There was no difference in survival for year 4 between the Mimic and non-Mimic treatments, with 85.4 percent survival for both treatments. There were no differences in survival among any treatments. There was 86.3 percent survival of Mimic and non-Mimic treatments in year 2.

Height in feet was not significantly greater for Mimic treatments in year 4; height averaged 19.32 feet for Mimic treatments and 18.32 feet for non-Mimic treatments. Among non-Mimic treatments, heights were equal between VO 250 (year 1) + AO (year 2), 19.99 feet; VO 125 (year 1) + AO 125 (year 2), 19.0 feet; VO/AO 125 (year 1) + AO 125 (year 2), 19.21 feet; and VO/AO 250 (year 1) and AO (year 2), 19.46 feet. These treatments were significantly greater than VO (year 1), 17.05 feet; and VO/AO 250 (year 1) and AO (year 2), 19.46 feet. Both were greater than VO (year 1, 18.01) and the check (16.03 feet). The VO was greater than the check for Mimic treatments.

Mimic-treated plots combined were significantly greater in year 4, 24.1 cubic feet volume compared to 21.3 for non-Mimic treatments. The only difference between treatments occurred between Velpar-Oust (year 1 treatment) + Arsenal-Oust (year 2 treatment) with the Mimic-treated plots with 24.0 cubic foot volume and the non-Mimic treatments with 20.5 cubic foot volume (table 2). Ground line diameter (inches) was not significantly greater in Mimic treatments by year 4 (4.7 inches Mimic, 4.5 inches non-Mimic).

At the end of year 2, for non-Mimic treatments, NPTM infestations were significantly higher on the check plots [(10.46 infested tips) versus VO + 125 pounds DAP (9.7 infested tips); VO + AO + 125 pounds DAP (2000) (9.5 infested tips); and VO + AO (2000) and AO (2001) (9.32 infested tips)] compared to all other treatments. The lowest infestations were on VO + 250 pounds DAP (2000) and AO (2001) (5.19 infested tips) and VO (2000) and AO (2001) (5.65 infested tips). Intermediate infestations ranged from 7.07 to 8.42 infested tips. NPTM infestations were not taken in year 4 due to the height of the sample trees.

During a year of low to moderate NPTM infestations (2001), the most intensive cultural treatments had similar volume growth with or without Mimic for NPTM control. For Mimic applications, NPTM infestations were intermediate at the end of year 2 with intermediate treatments [VO + 125 pounds DAP (2000) and AO + 125 pounds DAP (2001); and VO + 250 pounds DAP (2000) and AO (2001)] (Kulhavy and others 2004).

SUMMARY
For 2001, a year of low to moderate NPTM infestations, the most intensive cultural treatments showed no difference in cubic feet volume growth with or without Mimic. For intermediate cultural treatments, Mimic applications had a significant increase in tree volume. The timing of spraying coupled with the cost of the insecticide and the labor for application need to be considered in long-term intensive management of industrial pine plantations. At the end of year 4, the only differences were in overall volume growth between Mimic and non-Mimic plots; differences among treatments occurred between VO + 250 pounds DAP (year 1) + AO (year 2). This indicates the use of Mimic, especially for low to moderate treatments, may not have a lasting effect on overall growth. Differences did

Table 1—Herbicide and fertilizer treatments, 2000-2001

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Fertilizer</th>
<th>Herbicide</th>
<th>Fertilizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO*</td>
<td></td>
<td>VO*</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>VO/AO*</td>
<td></td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>AO</td>
<td></td>
</tr>
<tr>
<td>VO*</td>
<td>125</td>
<td>AO</td>
<td>125</td>
</tr>
<tr>
<td>VO/AO</td>
<td>250</td>
<td>AO</td>
<td></td>
</tr>
<tr>
<td>VO/AO*</td>
<td>125</td>
<td>AO</td>
<td>125</td>
</tr>
<tr>
<td>250</td>
<td>AO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHECK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2—Volume Index (cubic feet) for loblolly pine (year 4), following control of Nantucket pine tip moth with Mimic, years 1 and 2

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Volume index</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>2001</td>
</tr>
<tr>
<td>Herbicide</td>
<td>Fertilizer</td>
</tr>
<tr>
<td>VO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
</tr>
<tr>
<td>VO</td>
<td>250</td>
</tr>
<tr>
<td>VO/AO</td>
<td>125</td>
</tr>
<tr>
<td>VO/AO</td>
<td>250</td>
</tr>
<tr>
<td>VO</td>
<td>AO</td>
</tr>
<tr>
<td>VO</td>
<td>125 AO 125</td>
</tr>
<tr>
<td>VO</td>
<td>250 AO</td>
</tr>
<tr>
<td>VO/AO</td>
<td></td>
</tr>
<tr>
<td>VO/AO</td>
<td>125 AO 125</td>
</tr>
<tr>
<td>VO/AO</td>
<td>250 AO</td>
</tr>
<tr>
<td>CHECK</td>
<td></td>
</tr>
</tbody>
</table>

Means with letters are significantly different between columns, p< 0.05; means without letters are not significantly different.
occur among treatments, but these mainly reflected the intensity of the site preparation and increased fertilization rather than NPTM control. Timing and frequency of Mimic applications need to be examined in years of high NPTM infestations.

LITERATURE CITED

