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A New Diameter Distribution Model for
Unmanaged Loblolly Pine Plantations in

East Texas

Young-Jin Lee, Department of Forest Resources, Kongju National University, Yesan,
Chungnam, 340-802, South Korea; and Dean W. Coble, Arthur Temple College of
Forestry and Agriculture, Stephen F. Austin State University, Box 6109 SFA Station,
Nacogdoches, TX, 75962.

ABSTRACT: A parameter recovery procedure for the Weibull distribution function based on four
percentile equations was used to develop a diameter distribution yield prediction model for unmanaged
loblolly pine (Pinus taeda L.) plantations in East Texas. This model was compared with the diameter
distribution models of Lenhart and Knowe, which have been used in East Texas. All three models were
evaluated with independent observed data. The model developed in this study performed better than the
other two models in prediction of trees per acre and cubic-foot volume per acre (wood and bark, excluding
stump) across diameter classes. Lenhart’s model consistently underestimated the larger-diameter classes
because it was developed originally with data mostly collected in young plantations. Knowe’s model
overestimated volume in sawtimber-sized trees, which could lead to overestimations of volume in older
loblolly pine plantations found in East Texas. An example also is provided to show users how to use this new
yield prediction system. These results support the recommendation that forest managers should use growth
and yield models designed and/or calibrated for the region in which they are implemented. South. J. Appl.
For. 30(1):13–20.

Key Words: Pinus taeda, growth and yield models, Weibull distribution, parameter recovery.

Forestland in East Texas occupies about 12.1 million ac
(Miles 2005). Of this area, 2.9 million ac are classified as
pine plantations, with about 2.7 million ac (90%) of this
total on private land. Many acres of natural forest in East
Texas were converted to loblolly pine plantations during the
1970s and early 1980s to provide raw material for the
growing local forest products industry. A variety of site
preparation techniques were used to establish these planta-
tions, such as shearing, chopping, windrowing, and burning.
However, no other treatments except possibly a prescribed
burn were applied during the life of these plantations. Al-
though many of these unmanaged plantations have been

converted to intensively managed plantations in recent
years, unmanaged pine plantations still can be found on
many sites across East Texas. Both industrial and nonindus-
trial forest managers still need growth and yield information
for these types of plantations growing on the western ex-
treme of the southern pine range.

Several southwide or West Gulf Region studies provided
yield estimates by diameter class that are applicable to
unmanaged loblolly pine plantations in East Texas (Feduc-
cia et al. 1979, Amateis et al. 1984, Burkhart et al. 1987).
However, only 1–3% of the observations used in these
studies were located in East Texas. Lenhart (1987, 1988)
developed a diameter distribution yield prediction system
based on 234 observations across East Texas. His data set
represented relatively young plantations (mean age, 9 years;
range, 3–19 years) commonly found at that time. Today,
these unmanaged plantations are older and are not well
represented by Lenhart’s yield prediction system anymore.

The objective of this study was to develop a new diam-
eter distribution yield prediction system for unmanaged
loblolly pine plantations in East Texas. We hoped to im-
prove on Lenhart (1988) in two ways: (1) use data from

NOTE: Dean W. Coble can be reached at (936) 468-2179; Fax: (936)
468-2489; dcoble@sfasu.edu. The authors thank Temple-In-
land, International Paper, and Stephen F. Austin State Univer-
sity for funding this study through the East Texas Pine Plan-
tation Research Project. The authors are indebted to Dr. J.
David Lenhart for creating the ETPPRP as well as all the
people that helped collect the data over the years. The authors
also thank Dr. Ian Munn, an anonymous associate editor and
three anonymous reviewers for their helpful suggestions to
improve the article. Manuscript received July 21, 2003, ac-
cepted August 1, 2005. Copyright © 2006 by the Society of
American Foresters.
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older plantations in model development and (2) build a new
yield prediction system based on different underlying equa-
tions rather than update his yield prediction equations. We
also wanted to compare our new model with that of Knowe
(1992). Although not developed with East Texas data,
Knowe’s model often is used in East Texas for older,
unmanaged plantations (up to 30 years).

Study Site Description

This study used 1,111 observations for loblolly pine from
269 remeasured permanent plots located in East Texas pine
plantations (Table 1). From the total 1,111 observations,
approximately 10% (n � 104 observations from 82 perma-
nent plots) were randomly selected and removed from the
data set used for model fitting. They were reserved for
model evaluation. Thus, a total of 1,007 observations from
187 permanent plots were used for model fitting.

The 269 permanent plots are part of the East Texas Pine
Plantation Research Project (ETPPRP; Lenhart et al. 1985),
which covers 22 counties across East Texas. Generally, the
counties are located within the rectangle from 30 to 35°
north latitude and 93 to 96° west longitude. Each plot
consists of two adjacent subplots separated by a 60-ft buffer.
Within a subplot, diameter at breast height (dbh; measured
at 4.5 ft above the groundline), total height, and the survival
status (live or dead) were monitored for each planted
loblolly pine tree over a 20-year period. Plots were remea-
sured on fixed, 3-year intervals. Data from only one subplot
(the development subplot) were used in this study.

Diameter Distribution Model

Bailey and Dell (1973) first introduced the Weibull cu-
mulative distribution function to model diameter distribu-
tions in single-species, single-cohort stands:

F� x� � 1 � exp���x � a

b �c� (1)

where (a � x � �), 0 otherwise,

a � location parameter (minimum diameter),
b � scale parameter, and
c � shape parameter.

To compute relative proportions of trees per acre (TPA) by
diameter class, substitute the upper and lower limits of the
class into Equation 1. Next, subtract the cumulative distri-
bution up to the lower limit of the class from the upper limit
to find the proportion of TPA in that class (Avery and
Burkhart 1994):

Pi � F�Ui� � F�Ui�1�,

or

Pi � �1 � exp���Ui � a

b �c��
� �1 � exp���Ui�1 � a

b �c�� (2)

where,

Pi � proportion of trees in diameter class i,
Ui � upper limit of diameter class i,

and other variables are defined as aforementioned.
Da Silva (1986) introduced a parameter recovery method

subsequently used by Bailey et al. (1989) and Brooks et al.
(1992) that is based on the 0th, 25th, 50th, and 95th diam-
eter percentiles. The parameter recovery procedure uses the
expected value of the minimum observation from a sample
size n from the Weibull distribution, the four percentiles
(D0, D25, D50, and D95, respectively), and the second mo-
ment of the Weibull distribution to estimate the a, b, and c
parameters.

Da Silva’s procedure first determines the predicted loca-
tion parameter (a) using the predicted values for D0 and
D50, sample size (n � TPA * (100 * 100)/43,560 � TPA *
0.229568411), and an initial assumption that the shape
parameter (c) is 3.0:

Table 1. Observed stand characteristics for East Texas unthinned loblolly pine plantation datasets for percentile
diameter prediction model (Equations 6–10).

Model development dataset
(n � 1,007 observations from 187 plots)

Model evaluation dataset
(n � 104 observations from 82 plots)

Variables Mean SD Minimum Maximum Mean SD Minimum Maximum

A 14.2 6.7 3.0 37.0 14.3 6.7 3.0 29.0
Hd 45.3 19.8 3.0 94.0 44.5 20.8 3.0 86.0
SI 69.4 12.2 25.0 117.0 68.0 13.4 27.0 102.0
ITPA 703.7 142.2 363.0 1,361.0 717.8 165.2 363.0 1,361.0
TPA 450.4 145.4 30.0 1,002.0 437.6 158.2 87.0 958.0
D0 2.2 1.6 0.0 7.7 2.2 1.7 0.0 7.4
D25 4.8 2.2 0.0 10.3 4.7 2.4 0.0 12.2
D50 5.8 2.5 0.0 11.7 5.7 2.8 0.0 13.1
D95 7.9 3.2 0.0 16.3 7.9 3.6 0.0 16.4
Dq 5.9 2.5 0.0 11.5 5.8 2.8 0.0 12.9
RNTB 0.1 0.1 0.0 0.9 0.1 0.1 0.0 0.6

Note: A � plantation age (total years), Hd � average height of dominant and codominant trees (feet), SI � site index (base age � 25 yr), ITPA � trees per acre at planting,
TPA � trees per acre, PBA � loblolly pine basal area per acre (BAPA, ft2), Di � diameter (in.) at the i � 0, 25, 50, and 95th percentiles, Dq � quadratic mean diameter (in.),
RNTB � ratio of nonplanted BAPA (volunteer pines, hardwoods, and large shrubs) to the total BAPA (nonplanted plus planted pine).
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a � (n1/3D0 � D50)/(n
1/3 � 1), if a � 0.0 then a � 0. (3)

The shape parameter (c) was estimated by using the value
from Equation 3, D95, and D25:

c � 2.343088/ln�D95 � a

D25 � a� . (4)

The scale parameter (b) was obtained by solving the second
moment of the Weibull distribution for the positive root
with the estimates for a, c, and Dq2:

b � �
a�i

�2
� �� a

�2
� 2

��1
2 � �2� �

Dq2

�2
, (5)

where,

� � the gamma function,
�1 � �(1 � 1/c),
�2 � �(1 � 2/c), and
Dq � quadratic mean diameter.

Quadratic Mean Diameter Model

Quadratic mean diameter (Dq) is the most important
independent variable in predicting the percentile-based di-
ameter prediction equations. The following model was used
in this study (Table 2):

Dq � exp��0 � �1� 1

Hd� � �2ln�A�

� �3ln�A � TPA�� � � (6)

where

Hd � average height of dominant and codominant
trees,

A � plantation age,
TPA � trees per acre,
�i � coefficients to be estimated,
� � random error

and all other variables are defined as aforementioned.

Percentile Prediction Equations

The prediction equations for the 0th, 25th, 50th, and 95th
percentiles were fitted simultaneously for this study (Table
2):

D0 � �0 � �1 * Dq � �2 * A � � (7)

D25 � �0 � �1 * Dq � �2 * A � � (8)

D50 � �0 � �1 * Dq � �2 * A � � (9)

D95 � �0 � �1 * Dq � �2 * A � � (10)

where all variables are defined as before. Because Dq ap-
pears in Equations 6–10, seemingly unrelated regression
(SUR) was used to account for correlation across the equa-
tions (Borders 1989, Robinson 2004). SUR also reduced
serious autocorrelation associated with fitting Equations
6–10 to the repeated measurement data from the permanent
plots. (Using the Durbin-Watson test statistic, we failed to
reject the null hypothesis, H0; the error terms are not
autocorrelated, at both the 95% and the 99% confidence
levels for negative autocorrelation [all Durbin-Watson sta-
tistics ranged from 2.1 to 2.4]. For positive autocorrelation,

Table 2. Parameter estimates and fit statistics of East Texas loblolly pine plantation predictive equations for
quadratic mean diameter (Dq), percentiles of the diameter distribution (D0, D25, D50, and D95), DI guide curve (Hd), and
individual loblolly pine tree height (hi).

Equation Parameter Parameter Estimate Standard Error Pr(�i � 0) R2 RMSE

6 �0 3.35089 0.07879 �0.0001 0.975 0.109
(Dq) �1 �24.29940 0.26272 �0.0001

�2 0.35747 0.01306 �0.0001
�3 �0.22096 0.00968 �0.0001

7 �0 �1.19901 0.05819 �0.0001 0.803 0.695
(D0) �1 0.47833 0.01753 �0.0001

�2 0.03834 0.00650 �0.0001
8 �0 �0.32783 0.02346 �0.0001 0.983 0.280
(D25) �1 0.97042 0.00707 �0.0001

�2 �0.04100 0.00262 �0.0001
9 �0 �0.11524 0.01283 �0.0001 0.996 0.153
(D50) �1 1.04189 0.00387 �0.0001

�2 �0.01489 0.00143 �0.0001
10 �0 0.41539 0.03326 �0.0001 0.984 0.397
(D95) �1 1.17813 0.01002 �0.0001

�2 0.04418 0.00372 �0.0001
12 �0 86.4424 0.75190 �0.0001 0.874 7.319
(Hd) �1 0.08480 0.00191 �0.0001

�2 1.60620 0.02670 �0.0001
15 �0 0.02806 0.00111 �0.0001 0.626 0.116
(hi) �1 0.36027 0.00183 �0.0001

�2 0.03718 0.00113 �0.0001

RMSE � root mean square errors.
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we failed to reject H0 at both the 95% and the 99% confi-
dence levels for Equations 8–10 [all Durbin-Watson statis-
tics � 1.9], and the 99% confidence level for Equations 6
and 7 [both Durbin-Watson statistics � 1.6].)

Survival Model

Adams et al. (1996) developed a survival model that
incorporates site quality and the incidence of fusiform rust
(Cronartium quercuum [Berk.] Miyabe ex Shirai f. sp. fusi-
forme). The model consists of a system of two equations,
one of them represents the number of surviving trees in-
fected by fusiform rust and the other represents the number
of trees not infected by fusiform rust. The Adams survival
model was refitted using the most current loblolly develop-
ment subplot data set:

Ni2 � �Ni1 � 0.120333Nu1� exp� � 0.00096 � SI � �A2 � A1��

� 0.120333Nu1 exp� � 0.00022 � SI � �A2 � A1��

R2 � 0.572 RMSE � 25.250 n � 949

Nu2 � Nu1 exp� � 0.00022 � SI � �A2 � A1��

R2 � 0.942 RMSE � 34.120 n � 949 (11)

where

A2 � projection age (years),
A1 � initial age (years),
Ni2 � number of surviving infected TPA at A2,
Ni1 � number of surviving infected TPA at A1,
Nu2 � number of surviving uninfected TPA at A2,
Nu1 � number of surviving uninfected TPA at A1,
SI � site index in feet (index age, 25 years),

and all other variables are defined as aforementioned.

SI and Individual Tree Height Prediction
Equations

The Chapman-Richards growth function was used as a
guide curve to develop an anamorphic SI prediction equa-
tion to estimate SI for a given index age (base age, 25
years). A total of 11,367 age-height pairs of the ten tallest
trees in the loblolly development subplots were used to fit
the guide curve equation (Table 2):

Hd � �0	1 � exp���1 � A�
�2 � � (12)

where all variables are defined as aforementioned.
If SI is unknown, but A and Hd are known, then SI is

estimated by the following equation:

SI � Hd� 0.87997

1 � exp��0.0848 � A��
1.6062

(13)

Equation 13 can be algebraically rearranged to predict Hd
from the SI and A.

Hd � SI�1 � exp��0.0848 � A�

0.87997 �1.6062

(14)

The height-diameter model developed by Lenhart (1968)
was used for prediction of individual loblolly pine tree
height. A total of 36,995 individual loblolly pine tree
height-diameter observations from the most current loblolly
development subplot data set were used to fit Lenhart’s
model (Table 2):

ln�hi� � ln�Hd� � �0

� �ln�di� � ln�Dmax�� � ��1 � �2 ln�Dq�� � �, (15)

where

hi � predicted height of the ith tree,
di � dbh of the ith tree,
Dmax � midpoint value of the largest diameter class,

and all other variables are defined as aforementioned.
A property of Equation 15 is that as d approaches Dmax,

h approaches e�0 * Hd. Other variants of this type of tree
height prediction model for even-aged stands have been
developed, which relate tree height to dbh and variety of
stand attributes (Clutter et al. 1983, Amateis et al. 1984,
Zhang et al. 1997).

Individual Tree Volume Model
The individual tree cubic-foot volume equation from

Lenhart et al. (1987) was used in this study:

V � 0.002103D1.958489H1.062348

� 0.0020323�d3.187878/D1.187878��H � 4.5�, (16)

where

V � cubic-foot volume for wood and bark,
excluding stump,

D � dbh (in inches),
H � total height of the tree (in feet), and
d � merchantable top diameter (in inches).

Equation 16 can be used to estimate total stem content as
well as stem content to any upper-stem diameter. This
equation also can be converted into taper function to esti-
mate upper-stem diameter outside bark (d) and height po-
sition (h) on the stem where d occurs.

Comparison and Evaluation Criteria
The diameter distribution growth model developed in

this study was compared with the models of Lenhart (1988)
and Knowe (1992). All three models were evaluated with
the independent 10% evaluation data set (n � 104). To
provide fair comparisons, all three models used the same
volume equation, height-diameter equation, and survival
equations; only the core diameter distribution prediction
equations differed. Furthermore, because Knowe’s model
requires an estimate of competing vegetation, the ratio of
nonplanted woody vegetation (volunteer pine, hardwoods,
and large shrubs) basal area per acre to total (planted pine
plus nonplanted vegetation) basal area per acre this ratio
was set to 0.1, which is the mean value observed in the data
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set (Table 1). If this ratio was set to zero, Knowe’s model
would grow pine as if no competition existed, which would
overpredict growth compared with the other two models.

The three models were evaluated at two levels: (1) Dq,
overall volume (volume � cubic-foot volume per acre for
total tree including wood and bark, but excluding stump)
and TPA and (2) volume and TPA by 1-in.-diameter classes.
To compare Dq, overall volume, and TPA, this study used
an estimation procedure developed by Reynolds (1984). His
procedures test both bias and precision rather than overall
prediction accuracy. These procedures were converted to a
BASIC program (Rauscher 1986), and then later to an SAS
program (SASATEST; Gribko and Wiant [1992]). SASA-
TEST examines both bias and precision on an absolute or
percentage basis, but this study used percent bias only. In
SASATEST, percent bias is calculated as a percentage of
the observed value:

BIAS � 100� �Ŷ � Y�

Y �
where Ŷ is predicted Dq, volume, or TPA, and Y is observed
Dq, volume, or TPA. In this study, precision is expressed as
the standard deviation (SD) of percent bias, which also is
calculated by SASATEST. SASATEST then uses the mean
percent bias (measure of bias) and the SD (measure of
precision) to calculate a 95% confidence interval. If this
confidence interval does not contain zero, then the bias is
significant at the � � 0.05 level. SASATEST also checks
the errors between predicted and observed values for depar-
tures from normality. If nonnormality is detected (as was the
case for this study), a 10% trimmed mean and jackknife SD
were used to provide more robust confidence intervals. The
mean squared error (MSE � bias2 � �2) also was used to
evaluate Dq, volume, and TPA because a biased estimator
with a small variance may be preferable to an unbiased
estimator with a large variance (Devore 1982).

To compare volume and TPA at the diameter class level,
mean volume and TPA were calculated for each 1-in.-
diameter class. Then, for each of the three models, mean
difference (MD � predicted [� observed) for both volume
and TPA were calculated for each 1-in.-diameter class.
Then, MD was plotted over diameter class to further exam-
ine model prediction trends across the range of diameter
classes, where negative values represent underpredictions
and positive values represent overpredictions.

Evaluation Results

Bias was not significant (P � 0.05) for our model’s
prediction of overall TPA and Dq (Table 3). TPA precision
was highest for our model, and then Knowe (1992), and,
last, Lenhart (1988). Dq precision was highest for Lenhart
(1988), followed by our model, and then Knowe (1992).
Bias was significant (P � 0.05) for predictions of overall
volume by our model and Lenhart (1988), but not for
Knowe (1992; Table 3). Volume precision was about equal
for our model and Knowe (1992), although it was much
lower for Lenhart (1988). We were puzzled at the overall

bias results for Knowe (1992) because the sign for TPA bias
was opposite those of Dq and volume bias. However, the
diameter class results, discussed next, showed that Knowe’s
model greatly underpredicted TPA in the 3-in.-diameter
class, which contributed to the overall negative bias for
TPA. Similarly, Lenhart’s model greatly underpredicted
TPA in both the 3- and the 4-in.-diameter classes, although
the signs for all measures of overall bias were all negative.
Lenhart’s model also showed much higher bias for overall
TPA and volume compared with the other two models
(Table 3).

At the diameter class level, TPA and volume MD values
for our model usually fell closest to the zero line compared
with the models of Knowe and Lenhart (Figures 1 and 2). In
particular, our model predicted TPA and volume better than
the other models for diameter classes greater than 9 in.
Knowe’s model overpredicted TPA and volume for diame-
ter classes greater than 9 in. Although Knowe’s model
overpredicted TPA for diameter classes between 4 and 9 in.,
it underpredicted volume. This seems to indicate that more
trees were predicted than observed, but they were not of
sufficient size to have predicted more volume than ob-
served. Although all models overpredicted TPA for diame-
ter classes around 7 in. (Figure 1) and overpredicted volume

Table 3. RMSE and 95% CI for observed and predicted
TPA, volume, and quadratic mean diameter (Dq) from
three loblolly pine growth and yield models (this study,
Knowe [1992], and Lenhart [1988]).

Source 95% CI RMSE

This study TPA �2.52 � 3.05 15.34
Volume �6.15 � 5.45a 27.72
Dq �0.23 � 2.32 11.51

Knowe (1992) TPA �9.08 � 4.15a 22.49
Volume 2.71 � 6.10 30.40
Dq 6.20 � 2.65a 14.55

Lenhart (1988) TPA �27.82 � 6.59a 42.94
Volume �25.14 � 6.24a 39.86
Dq �2.32 � 2.02a 10.31

Note: All values are expressed as a percent of observed.
aSignificant (P � 0.05).
CI � confidence interval, RMSE � root means square errors.

Figure 1. Mean difference (predicted � observed) of TPA from
three loblolly pine growth and yield models (this study, Knowe
[1992]), and Lenhart [1988]). Note, diameter classes 3 and 4 are
not shown for Lenhart or for Knowe’s diameter class 3 because
the mean differences exceeded �8.0 (mean differences were
�57, �61, and �57, respectively).
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for diameter classes below 9 in. (Figure 2), Lenhart’s model
underpredicted TPA for diameter classes above 7 in. (Figure
1) and underpredicted volume for all diameter classes (Fig-
ure 2). Although not shown in Figure 1, Knowe’s model
greatly underpredicted TPA in the 3-in.-diameter class
(MD � �57), while Lenhart’s model greatly underpre-
dicted TPA in both the 3-in. and the 4-in.-diameter classes
(MD � �61 and �57, respectively). This large underpre-
diction occurred because these models failed to predict any
trees in these diameter classes, although trees were ob-
served. Our model did not suffer from this problem because
it predicted trees in these diameter classes.

Comparison of Models with Examples of
Yield Prediction

The predicted cubic-foot volume per acre for wood and
bark excluding stump (volume) by 1-in.-diameter classes
for the model developed in this study was compared with
the models of Knowe (1992) and Lenhart (1988) (Figure 3,
a–c). The comparison used an example of 25-year-old
loblolly pine plantation initially planted at 600 TPA for
three different SI values: 50, 70, and 90 ft. Fusiform rust
infection rate was set to 10%. These conditions are repre-
sentative of loblolly pine plantations at rotation age in East
Texas.

For an SI of 50, both Knowe’s and Lenhart’s models
predicted lower volume compared with our model, although
the range of diameter classes was similar (Figure 3a). For an
SI of 70, Lenhart’s model continued to predict lower vol-
ume compared with our model, but Knowe’s model pre-
dicted volume similar to our model (Figure 3b). The range
of diameter classes was similar between the three models,
except that Lenhart’s model predicted a smaller maximum-
diameter class than the other two models. We are not
surprised by this result considering Lenhart’s model was
developed mostly with younger plantation data. For an SI of
90, Lenhart’s model again predicted less volume, but
Knowe’s model predicted more volume compared with our
model (Figure 3c). Differences in the range of diameter
classes were more pronounced between the three models,

but only for the larger-diameter classes. Lenhart’s model
predicted more volume in the 9-in.-diameter class compared
with the other two models. We again attribute this to Len-
hart’s use of younger and therefore smaller trees to develop
his model. Because his model estimated fewer trees in the
larger-diameter classes compared with the other two mod-
els, most of his volume was concentrated in the lower-di-
ameter classes, which is evident for the 9-in. class. Len-
hart’s model has increasingly less volume for diameter
classes greater than 10 in. compared with the other two
models for this same reason. For the entire range of SI,
Lenhart’s model predicted less volume compared with our
model. Knowe’s model predicted less volume at lower SI,
more volume at higher SI, and similar volume at medium SI
compared with our model. This supports the notion that
Knowe’s model predicts volume less reliably compared
with our model at the extremes of SI typically found in East
Texas. This notion is further supported from the earlier

Figure 2. Mean difference (predicted � observed) of cubic-foot
volume wood and bark excluding stump (volume) from three
loblolly pine growth and yield models (this study, Knowe
[1992], and Lenhart [1988]).

Figure 3. Predictions of volume by diameter class from three
loblolly pine growth models (this study, Lenhart [1988], Knowe
[1992]) for a 25-year-old loblolly pine plantation in East Texas
with 600 initial TPA at each of the following site indices: (a) 50
ft, (b) 70 ft, and (c) 90 ft.
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result that showed Knowe’s model significantly overpre-
dicted volume for larger-diameter classes.

Applications
To show how to use the new model, we will illustrate the

procedure used to produce Figure 3b.

1. Calculate the average height of the dominant and
codominant trees (Equation 14; recall SI � 70 ft;
age � 25 years):

Hd � 70 � �1 � exp��0.0848 � 25�

0.87997 �1.6062

� 70 feet

2. Calculate surviving TPA (Equation 11; recall initial
TPA � 600; fusiform infection rate � 10%):

Ni2 � �60 � 0.120333 � 540� exp��0.00096 � 70 � �25

� 0�� � 0.120333 � 540 � exp��0.00022 � 70

� �25 � 0�� � 43.3

Nu2 � 540 � exp��0.00022 � 70 � �25 � 0�� � 367.4

total TPA � 43.3 � 367.4 � 410.7

3. Calculate Dq (Equation 6):

Dq � exp�3.35089 � 24.29940� 1

70� � 0.35747ln�25�

� 0.22096ln�25 � 410.7�� � 8.3 in.

4. Calculate percentiles (Equations 7–10):

D0 � � 1.19901 � 0.47833 � 8.3 � 0.03834 � 25 � 3.7 in.

D25 � � 0.32783 � 0.97042 � 8.3 � 0.04100 � 25 � 6.7 in.

D50 � � 0.11524 � 1.04189 � 8.3 � 0.01489 � 25 � 8.2 in.

D95 � 0.41539 � 1.17813 � 8.3 � 0.04418 � 25 � 11.3 in.

5. Calculate the Weibull parameters (Equations 3–5):

n � 410.7 � 0.229568411 � 94.2837

a � �94.28371/3 � 3.7 � 8.2�/�94.28371/3 � 1� � 2.4

c � 2.343088/ln�11.3 � 2.4

6.7 � 2.4 � � 3.2

b � �
2.4 � ��1 � 1/3.2�

	�1 � 2/3.2�

� �� 2.4

��1 � 2/3.2��
2

���1 � 1/3.2�2 � ��1 � 2/3.2�� �
8.32

��1 � 2/3.2�

� 6.2

6. Calculate the TPA in each diameter class (Equation
2). For example, use diameter class � 10 in.:

P10 � �1 � exp���10.5 � 2.4

6.2 �3.2�� �

�1 � exp���9.5 � 2.43.2

6.2 �� � 0.12

TPA10 � 0.12 * 410.7 � 49 TPA in 10-in. class

This process is repeated for all diameter classes.

7. Calculate the average height for each diameter class
(Equation 15). Again, use the 10-in.-diameter class as
an example:

ln�h10� � ln�70� � 0.02806 � �ln�10�

� ln�14�� � �0.36027 � 0.03718ln�8.3�� � 62 feet

This process is repeated for all diameter classes.

8. Calculate the volume for each diameter class (Equa-
tion 16). Again, use the 10-in.-diameter class as an
example (note that d � 0 because total tree volume is
desired):

CFVtree � 0.002103 � 101.958489621.062348 � 15.3 ft3

CFV for the 10-in.-diameter class � 15.3 ft3 * 49 TPA �
750 ft3 per ac. This process is repeated for all diameter
classes.

9. Once all diameter classes are calculated, sum volume
across diameter classes to find the total volume for
the plantation. This process can be repeated for dif-
ferent ages and SI to create stand-level yield curves
(Figure 4). Note, rounding errors are present in this
example; the answers will differ if all decimal places
are carried throughout the calculations.

Conclusions
The model developed in this study represents an im-

provement over the model of Lenhart (1988). Lenhart’s
model was developed with data predominantly collected
from young plantations. The data used to develop the new

Figure 4. Predictions of cubic-foot volume wood and bark
excluding stump per acre (volume) over time from the new East
Texas loblolly pine growth-and-yield model with 600 initial TPA
for different levels of SI (SI in feet, base age, 5 years).
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model in this study incorporate more observations in older
plantations. The model developed in this study is also su-
perior to the model of Knowe (1992) for unmanaged
loblolly pine plantations in East Texas. Knowe’s model
consistently overpredicted volume in diameter classes
greater than 9 in. It also predicted greater volume for higher
SIs and lower volume for lower SIs, which could lead to
incorrect estimations of volumes if it was used for yield
forecasting in East Texas. Based on the results of this study,
we recommend that growth models be developed and/or
calibrated for the regions in which they are used.
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