A New Diameter Distribution Model for Unmanaged Slash Pine Plantations in East Texas

Dean W. Coble
Stephen F. Austin State University, Arthur Temple College of Forestry and Agriculture, dcoble@sfasu.edu

Young Jin Lee

Follow this and additional works at: https://scholarworks.sfasu.edu/forestry

Part of the Forest Sciences Commons

Tell us how this article helped you.

Repository Citation
https://scholarworks.sfasu.edu/forestry/178

This Article is brought to you for free and open access by the Forestry at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.
A New Diameter Distribution Model for Unmanaged Slash Pine Plantations in East Texas

Dean W. Coble and Young-Jin Lee

ABSTRACT

Domek and Coble (2006) developed a new diameter distribution model for loblolly pine in East Texas. The functional forms of their model are similar to those of the model of Lee and Coble (2006), an iterative modification of Lee and Coble (2006), and an iterative procedure introduced by Cao (2004). These three new models also were compared to the slash pine diameter distribution model of Lenhart (1988) for East Texas.

Methods

Data Description

This study used 484 observations from 84 remeasured permanent plots located in East Texas slash pine plantations (Table 1). These plots are part of the East Texas Pine Plantation Research Project (Lenhart et al. 1985). From the total 484 observations, approximately 10% \((n = 45)\) observations from 36 permanent plots) were randomly selected and removed from the data set used for model fitting. They were reserved for model evaluation. Thus, a total of 439 observations from 84 permanent plots were used for model fitting. After validation was complete, the 90 and 10% data sets were combined into a 100% data set (i.e., all observations) to refit the final prediction equations. Refer to Lee and Coble (2006) for a description of the study sites.

Statistical Analysis

Lee and Coble (2006) developed a new diameter distribution model for loblolly pine in East Texas. The functional forms of their prediction equations for diameter percentiles, quadratic mean diameter, and cubic-foot volume per acre (wood and bark, excluding stump). An example also is provided to show users how to use this new yield prediction system. We recommend that the model developed in this study be used to estimate growth and yield of East Texas slash pine plantations.

Keywords: Pinus elliottii, growth and yield models, Weibull distribution, parameter recovery

The objective of this study was to develop a new diameter distribution yield prediction system for unmanaged slash pine plantations in East Texas. Three new models were developed using the methodologies of Lee and Coble (2006), an iterative modification of Lee and Coble (2006), and an iterative procedure introduced by Cao (2004). These three new models also were compared to the slash pine diameter distribution model of Lenhart (1988) for East Texas.

Methods

Data Description

This study used 484 observations from 84 remeasured permanent plots located in East Texas slash pine plantations (Table 1). These plots are part of the East Texas Pine Plantation Research Project (Lenhart et al. 1985). From the total 484 observations, approximately 10% \((n = 45)\) observations from 36 permanent plots) were randomly selected and removed from the data set used for model fitting. They were reserved for model evaluation. Thus, a total of 439 observations from 84 permanent plots were used for model fitting. After validation was complete, the 90 and 10% data sets were combined into a 100% data set (i.e., all observations) to refit the final prediction equations. Refer to Lee and Coble (2006) for a description of the study sites.

Statistical Analysis

Lee and Coble (2006) developed a new diameter distribution model for loblolly pine in East Texas. The functional forms of their prediction equations for diameter percentiles, quadratic mean diameter, surviving trees, dominant height, and individual tree height.
were applied to the slash pine data of this study to develop the first new model (hereafter called LEE). These equations are presented:

\[
D_q = \exp\left(\alpha_0 + \alpha_1(1/Hd) + \alpha_2\ln(A) + \alpha_3A^{*TPA}\right) + \varepsilon, \tag{1}
\]

\[
D_0 = \beta_0 + \beta_1D_q + \beta_2A + \varepsilon, \tag{2}
\]

\[
D_{25} = \chi_0 + \chi_1D_q + \chi_2A + \varepsilon, \tag{3}
\]

\[
D_{50} = \delta_0 + \delta_1D_q + \delta_2A + \varepsilon, \tag{4}
\]

\[
D_{95} = \phi_0 + \phi_1D_q + \phi_2A + \varepsilon, \tag{5}
\]

\[
N_{12} = (N_{\text{ii}} - \psi_0N_{\text{ii}})\exp(\psi_1SI(A_2 - A_1)) + \psi_2N_{\text{ii}}\exp(\psi_3SI(A_2 - A_1)), \tag{6}
\]

\[
N_{a2} = N_{\text{ii}}\exp(-\psi_2SI(A_2 - A_1)), \tag{7}
\]

\[
Hd = \gamma_0[1 - \exp(-\gamma_1A)]^\tau_0 + \varepsilon, \tag{8}
\]

\[
SI = Hd\left[1 - \exp(-\gamma_1A)\right]^{\tau_0}, \tag{9}
\]

\[
\ln(H) = \ln(Hd) + \tau_0
+ \ln(D) - \ln(D_{\text{max}}) \ast (\tau_1 + \tau_2\ln(D_q)) + \varepsilon, \tag{10}
\]

\[
V = 0.002021D^{1.780506}H^{0.183087}
- 0.0024438\left(D^{0.62363}D^{1.62363}\right)(H - 4.5), \tag{11}
\]

where TPA = trees per acre, \(D_q\) = quadratic mean diameter (in.), \(D_0\) = 0th diameter percentile (in.), \(D_{25}\) = 25th diameter percentile (in.), \(D_{90}\) = 90th diameter percentile (in.), \(Hd\) = average height (ft) of dominant and codominant trees, \(A\) = plantation age (years), \(A_2\) = projection age (years), \(A_1\) = initial age (years), \(N_{12}\) = number of surviving infected TPA at \(A_2\) \(N_{\text{ii}}\) = number of surviving infected TPA at \(A_1\) \(N_{a2}\) = number of surviving uninfected TPA at \(A_2\) \(N_{\text{ii}}\) = number of surviving uninfected TPA at \(A_1\) \(SI\) = site index in feet (index age = 25 years), \(H\) = total height of the tree (ft), \(D\) = dbh (in.), \(D_{\text{max}}\) = midpoint value of the largest diameter class, \(V\) = cubic-foot volume for wood and bark, excluding stump (Lenhart et al. 1987), \(d\) = merchantable top diameter (in.) is zero for this study, \(ln\) = natural logarithm, \(exp\) = exponential function, \(\alpha_0, \beta_0, \chi_0, \delta_0, \phi_0, \psi_0, \gamma_0, \tau_0\) = coefficients to be estimated, \(\varepsilon\) = random error.

The LEE model used the same procedure (Da Silva 1986) as Lee and Coble (2006) to estimate the three parameters of the Weibull cdf. See Lee and Coble (2006) for further details.

In keeping with Da Silva (1986), Lee and Coble (2006) specified that the shape parameter \(c\) be set equal to 3.0 to initially determine the location parameter \(a\) for the Weibull distribution function. For the second new model of this study (hereafter called ModLEE), \(c\) was determined iteratively; otherwise, the procedure was identical to that of Lee and Coble (2006). The final value for \(c\) was selected when the change in total cubic-foot volume did not differ between iterations by more than 0.1 ft\(^3\). This procedural modification from Lee and Coble (2006) refined the estimate for \(c\), rather than relying on a fixed value of 3.0.

As in Lee and Coble (2006), seemingly unrelated regression was used in the MODEL procedure of SAS to account for correlation across the equations (Robinson 2004, Borders 1989). Seemingly unrelated regression also reduced serious autocorrelation associated with fitting the system of equations with serially correlated data (i.e., remeasured plot data). The Durbin-Watson test statistic was not significant at both the 95 and 99% confidence levels for negative and positive autocorrelation (all DW statistics ranged from 0.8 to 2.1).

Cao (2004) compared six methods to determine the three parameters of the Weibull cdf. He recommended his method 6, cdf regression, as the superior choice; so it was implemented in this study (hereafter called CAO). This method predicts the \(a\), \(b\), and \(c\) parameters of the Weibull cdf directly using the equations

\[
a = 0.5 * D_{0}, \tag{12}
\]

\[
b = \exp(\xi_0 + \xi_1RS + \xi_2\ln(Hd)) + \xi_3A^{-1} + \varepsilon, \tag{13}
\]

\[
c = \exp(\varphi_0 + \varphi_1RS + \varphi_2\ln(Hd)) + \varphi_3A^{-1} + \varepsilon, \tag{14}
\]

\[
D_{0} = \exp(\theta_0 + \theta_1RS + \theta_2\ln(Hd)) + \theta_3A^{-1} + \varepsilon. \tag{15}
\]
Table 2. Parameter estimates and fit statistics of East Texas slash pine plantation predictive equations for quadratic mean diameter (D_q, percentiles of the diameter distribution (D_{05}, D_{25}, D_{50}, and D_{75}), survival (N), SI guide curve (H_d), and individual slash pine tree height (h_i) for the LEE model developed in this study.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Parameter</th>
<th>Parameter estimate</th>
<th>Standard error</th>
<th>$Pr(\beta = 0)$</th>
<th>R^2</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (D_q)</td>
<td>α_0</td>
<td>2.36552</td>
<td>0.10506</td>
<td><0.0001</td>
<td>0.963</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td>α_1</td>
<td>-18.31000</td>
<td>0.33774</td>
<td><0.0001</td>
<td>0.963</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td>α_2</td>
<td>0.41638</td>
<td>0.01664</td>
<td><0.0001</td>
<td>0.963</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td>α_3</td>
<td>-0.14639</td>
<td>0.01205</td>
<td><0.0001</td>
<td>0.963</td>
<td>0.122</td>
</tr>
<tr>
<td>2 (D_q)</td>
<td>β_0</td>
<td>-1.09330</td>
<td>0.09127</td>
<td><0.0001</td>
<td>0.783</td>
<td>0.774</td>
</tr>
<tr>
<td></td>
<td>β_1</td>
<td>0.62666</td>
<td>0.03305</td>
<td><0.0001</td>
<td>0.783</td>
<td>0.774</td>
</tr>
<tr>
<td></td>
<td>β_2</td>
<td>-0.01682</td>
<td>0.01291</td>
<td><0.0001</td>
<td>0.783</td>
<td>0.774</td>
</tr>
<tr>
<td>3 (D_{50})</td>
<td>χ_0</td>
<td>-0.31598</td>
<td>0.03254</td>
<td><0.0001</td>
<td>0.985</td>
<td>0.277</td>
</tr>
<tr>
<td></td>
<td>χ_1</td>
<td>0.93600</td>
<td>0.01167</td>
<td><0.0001</td>
<td>0.985</td>
<td>0.277</td>
</tr>
<tr>
<td></td>
<td>χ_2</td>
<td>-0.02009</td>
<td>0.00456</td>
<td><0.0001</td>
<td>0.985</td>
<td>0.277</td>
</tr>
<tr>
<td>4 (D_{05})</td>
<td>δ_0</td>
<td>-0.11170</td>
<td>0.02035</td>
<td><0.0001</td>
<td>0.995</td>
<td>0.173</td>
</tr>
<tr>
<td></td>
<td>δ_1</td>
<td>1.03594</td>
<td>0.00737</td>
<td><0.0001</td>
<td>0.995</td>
<td>0.173</td>
</tr>
<tr>
<td></td>
<td>δ_2</td>
<td>-0.00831</td>
<td>0.00288</td>
<td><0.0001</td>
<td>0.995</td>
<td>0.173</td>
</tr>
<tr>
<td>5 (D_{95})</td>
<td>ν_0</td>
<td>0.29507</td>
<td>0.04838</td>
<td><0.0001</td>
<td>0.984</td>
<td>0.411</td>
</tr>
<tr>
<td></td>
<td>ν_1</td>
<td>1.20065</td>
<td>0.01732</td>
<td><0.0001</td>
<td>0.984</td>
<td>0.411</td>
</tr>
<tr>
<td></td>
<td>ν_2</td>
<td>0.03680</td>
<td>0.00677</td>
<td><0.0001</td>
<td>0.984</td>
<td>0.411</td>
</tr>
<tr>
<td>6 (N)</td>
<td>ψ_0</td>
<td>1.237712</td>
<td>0.2399</td>
<td><0.0001</td>
<td>$N_2 = 0.485$</td>
<td>$N_2 = 52.229$</td>
</tr>
<tr>
<td></td>
<td>ψ_1</td>
<td>-0.00010</td>
<td>0.000084</td>
<td><0.0001</td>
<td>$N_2 = 0.846$</td>
<td>$N_2 = 56.686$</td>
</tr>
<tr>
<td></td>
<td>ψ_2</td>
<td>-0.00058</td>
<td>0.000044</td>
<td><0.0001</td>
<td>$N_2 = 0.485$</td>
<td>$N_2 = 52.229$</td>
</tr>
<tr>
<td>7 (H_d)</td>
<td>γ_0</td>
<td>0.000000</td>
<td>2.02060</td>
<td><0.0001</td>
<td>0.894</td>
<td>6.738</td>
</tr>
<tr>
<td></td>
<td>γ_1</td>
<td>0.00650</td>
<td>0.02278</td>
<td><0.0001</td>
<td>0.894</td>
<td>6.738</td>
</tr>
<tr>
<td></td>
<td>γ_2</td>
<td>1.44520</td>
<td>0.03290</td>
<td><0.0001</td>
<td>0.894</td>
<td>6.738</td>
</tr>
<tr>
<td>10 (h_i)</td>
<td>τ_0</td>
<td>0.03559</td>
<td>0.00109</td>
<td><0.0001</td>
<td>0.637</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>τ_1</td>
<td>0.40604</td>
<td>0.00208</td>
<td><0.0001</td>
<td>0.637</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>τ_2</td>
<td>0.05222</td>
<td>0.00133</td>
<td><0.0001</td>
<td>0.637</td>
<td>0.119</td>
</tr>
</tbody>
</table>

where $RS = \text{relative spacing} = (43.560 / \text{TPA})0.5 / H_d$, $D_{05} = \text{th}$ diameter percentile (in.) for CAO method, ξ_j, φ_j, θ_j = coefficients to be estimated, and all other variables are defined as before.

The coefficients b (Equation 13) and c (Equation 14) were iteratively determined by minimizing the function,

$$\sum_{j=1}^{p} \sum_{i=1}^{n_i} \left(F_j - F_{ij} \right)^2 / n_i$$

where $F_{ij} = \text{observed cumulative probability of tree } j \text{ in the } i\text{th plot-age combination}$, $F_j = 1 - \exp\left(-\left(\frac{x_j - a}{b}\right)^p\right)$ or the value of the Weibull cdf evaluated at x_j, $x_j = \text{dbh}$ of tree j in the $i\text{th plot-age combination}$, $n_i = \text{number of trees in the } i\text{th plot-age combination}$, $p = \text{number of plot-age combinations}$, and all other variables are defined as before.

This approach is similar to simultaneously fitting two regression equations for b and c, but the objective was to minimize the sums of squares of error with respect to the cdf rather than to b and c (Cao 2004). Cao (2004) provides detailed information about this method, including PROC NLIN SAS code in an appendix, which was modified for use in this study.

Comparison and Evaluation Criteria

Three new diameter distribution growth models developed in this study and the model of Lenhart (1988) were compared with the independent 10% evaluation data set ($n = 45$). This study used the same evaluation procedures as Lee and Coble (2006). Percent bias (%Bias = 100 * [(predicted − observed) / observed]) and RMSE were used to evaluate whole-stand predictions of volume (cubic feet per acre), basal area (square feet per acre), and quadratic mean diameter. Mean difference (MD; predicted − observed) of volume and TPA by 1-in. diameter classes were graphically analyzed for trends across diameter class. The reader is referred to Lee and Coble (2006) for additional details.

Results and Discussion

The three models in this study (LEE, ModLEE, and CAO) were fit to the 90% model fitting data set. All coefficients for LEE were significantly different from zero ($P < 0.0001$). All coefficients for CAO were also significantly different from zero ($P < 0.05$), except for the θ_j coefficient in Equation 15. No obvious trends were evident in any residual plots (figures not shown). No parameter estimates, variances, or fit statistics are shown for the analysis of the 90% data set, although they are presented for the final LEE model fit to the 100% combined data set (Table 2).

Percent bias was lowest for ModLEE (−0.85) and LEE (−1.20) in terms of whole-stand volume, followed by CAO (−1.45) and
then Lenhart (−11.23; Table 3). Percent bias for whole-stand basal area per acre was lowest for LEE (0.81) and ModLEE (0.82), followed by CAO (6.44) and Lenhart (−7.15; Table 3). Percent bias for whole-stand quadratic mean diameter also was lowest for LEE (−0.08) and ModLEE (−0.08), followed by CAO (3.28) and Lenhart (−5.95; Table 3). RMSE values followed a similar trend as percent bias for whole-stand volume, basal area per acre, and quadratic mean diameter. In this study, the iterative methods used in ModLEE and CAO did not provide better predictions of whole-stand volume, basal area, or quadratic mean diameter in terms of percent bias and RMSE. This may seem counterintuitive to the findings of Cao (2004), but it may simply be that Cao (2004) used a single loblolly pine plantation in Louisiana while this study used 84 slash pine plantations scattered across East Texas, or another reason could be that the model structures are different. LEE and ModLEE are more specific in prediction of the percentile equations (i.e., $D_{0.0}$, D_{25}, D_{50}, and D_{95}), but Cao (2004) used only one general form for all regression equations to compare several different methodologies. In any case, we saw no reason to prefer the more complicated iterative methods used in ModLEE and CAO over the traditional parameter recovery technique used in LEE to predict whole-stand volume, basal area, and quadratic mean diameter. So, we prefer the LEE model over the other three models in terms of the whole-stand predictions as well as simplicity of use and fitting.

At the diameter class level, the MD in volume was similar for LEE and ModLEE (Figure 1). This is not surprising considering that the only difference between the two methods is a fine-tuning of the Weibull c parameter. CAO also is similar to LEE and ModLEE, while the MD values for Lenhart are quite different from the other three models. Across the range of diameters, volumes are predicted similarly for LEE, ModLEE, and CAO; no particular diameter class appears to be poorly predicted. This is not the case for Lenhart in the 10- to 15-in. diameter class range. Thus, any of these three models are preferred over Lenhart in terms of volume prediction by diameter class. In terms of TPA prediction by diameter class, LEE, ModLEE, and Lenhart have the lowest MD values above the 4-in. diameter class (Figure 2). CAO appears to have the highest MD values above the 4-in. diameter class compared with the other three models. Below the 4-in. diameter class, only LEE and ModLEE have low MD values; the MD values for CAO and Lenhart greatly exceed those for LEE and ModLEE in the 1- to 3-in. diameter classes. Again, these results may seem to contradict those of Cao (2004), but we attribute this to differences in data sets between the studies (our study used 84 slash pine plantations in East Texas and Cao’s study used...
used one loblolly pine plantation in Louisiana) and/or model structure. Thus, based on the MD values by diameter class, LEE or ModLEE are preferred over CAO or Lenhart. In terms of volume by diameter class, LEE, ModLEE, and CAO provide similar predictions. However, CAO does not predict TPA by diameter class as well as the other three models. Therefore, our final preference in terms of volume and TPA predictions by diameter class is LEE because it performs as well as the iterative models (ModLEE and CAO), but it is easier to implement.

At this point, we will no longer consider ModLEE or CAO because LEE is the preferred model. Equations 1–11 were refit to the 100% combined data set to obtain final parameter estimates for LEE (Table 2). All coefficients were significantly different from zero ($P < 0.0001$) and there were no obvious trends in the residual plots (figures not shown).

These final parameter estimates (Table 2) were used to further compare predicted cubic-foot volume per acre for wood and bark excluding stump (volume) by 1-in. diameter classes for LEE to volume predicted by Lenhart (1988; Figure 3, a–c), because Lenhart (1988) is the model commonly used for growth and yield estimation of East Texas slash pine plantations. The comparison used an example 25-year-old slash pine plantation initially planted at 600 TPA for three different SI values: 50, 70, and 90 ft. Fusiform rust infection rate was set to 10%. These conditions are representative of slash pine plantations at rotation age in East Texas.

For SI = 50 ft, Lenhart predicted lower volumes spread across smaller trees compared with LEE (Figure 3a). For SI = 70 ft, Lenhart predicted similar volumes to LEE (in terms of maximum values), but for dramatically smaller trees (Figure 3b). His maximum volumes fell in the 6- to 7-in. diameter class range, whereas LEE’s maximum volumes occurred in the 9- to 10-in. diameter class range. This result comes as no surprise, because Lenhart was developed mostly with younger plantation data. For SI = 90 ft, LEE produced a smaller maximum volume (1,150 ft3/ac) than Lenhart (1,350 ft3/ac) (Figure 3c). However, Lenhart’s maximum volume occurs at a smaller diameter class (8 in.) than for LEE (10 in.). Furthermore, LEE spreads volumes across a much wider range of diameter classes. For the entire range of SI, Lenhart predicted less volume compared with LEE. However, for all SI values, Lenhart consistently predicted a greater frequency of smaller diameter trees. Again, Lenhart’s use of younger and therefore smaller trees to build his model most likely caused this result. In summary, we recommend LEE over ModLEE, CAO, and Lenhart to estimate growth and yield of East Texas slash pine plantations.

Applications

To show how to use the new LEE model, we will illustrate the procedure used to produce Figure 3b.

1. Calculate the average height of the dominant and codominant trees (Equation 9; recall SI = 70 ft; age = 25 years):

$$H_d = 70 \times \left[\frac{1 - \exp(-0.0645 \times 25)}{0.8006} \right]^{1.4452} = 70$$

2. Calculate surviving TPA (Equation 6; recall initial TPA = 600, fusiform rust infection rate = 10%):

$$N_{i2} = (60 - 1.237712 \times 540)\exp(-0.00108 \times 70 \times (25 - 0)) + 1.237712 \times 540 \times \exp(-0.00058 \times 70 \times (25 - 0)) = 150.3,$$

$$N_{d2} = 540 \times \exp(-0.00058 \times 70 \times (25 - 0)) = 195.7,$$

Total TPA = 150.3 + 195.7 = 346.0.

3. Calculate D_q (Equation 1):

$$D_q = \exp \left(\frac{2.36552 - 18.31000(%) + 0.41638\ln(25) - 0.14639\ln(25 \times 346)}{1} \right) = 8.3$$

4. Calculate percentiles (Equations 2–5):
\[D_0 = -1.09330 + 0.62666 \times 8.3 - 0.01682 \times 25 = 3.7 \text{ in.}\]
\[D_{25} = -0.31598 + 0.9369 \times 8.3 - 0.02009 \times 25 = 7.0 \text{ in.}\]
\[D_{50} = -0.1171 + 1.03594 \times 8.3 - 0.00831 \times 25 = 8.3 \text{ in.}\]
\[D_{95} = 0.29507 + 1.20065 \times 8.3 + 0.03680 \times 25 = 11.2 \text{ in.}\]

5. Calculate the Weibull parameters (see Equations 3–5 of Lee and Coble 2006):

\[n = 346 \times 0.229568411 = 79.4307,\]
\[a = (79.4307^{1/3} \times 3.7 - 8.3)/(79.4307^{1/3} - 1) = 2.3,\]
\[c = 2.343088 / \ln \left(\frac{11.2 - 2.3}{7.0 - 2.3} \right) = 3.7,\]
\[b = -\frac{2.3 \times \Gamma(1 + 1/3.7)}{\Gamma(1 + 2/3.7)} \left(\frac{2.3}{\Gamma(1 + 2/3.7)^2} \right) \left(\frac{(\Gamma(1 + 1/3.7))^2}{\Gamma(1 + 2/3.7)^2} \right) + \frac{8.3^2}{\Gamma(1 + 2/3.7)} \]
\[= 6.4\]

Note: Use the GAMMALN function in Excel to calculate \(\Gamma(x)\).

6. Calculate the TPA in each diameter class (see Equation 2 of Lee and Coble 2006). For example, use diameter class = 10 in.:

\[P_{10} = \left(1 - \exp\left[-\left(\frac{10.5 - 2.3}{6.4}\right)^{3.7}\right]\right) - \left(1 - \exp\left[-\left(\frac{9.5 - 2.3}{6.4}\right)^{3.7}\right]\right) = 0.13\]
\[\text{TPA}_{10} = 0.13 \times 346 = 45 \text{ trees per acre in 10-in. class.}\]

This process is repeated for all diameter classes.

7. Calculate the average height for each diameter class (Equation 10). Again, use the 10-in. diameter class as an example:

\[\ln(h_{10}) = \ln(70) + 0.03559 + (\ln(10) - \ln(13)) \times (0.40604 + 0.05222 \ln(89.3)) = 63 \text{ ft.}\]

This process is repeated for all diameter classes.

8. Calculate the cubic-foot volume (CFV) for each diameter class (Equation 11). Again, use the 10-in. diameter class as an example (note that \(d = 0\) since total tree volume is desired):

\[\text{CFV}_{10} = 0.002021 \times 10^{1.790506 \times 63^{1.183087}} = 16.8 \text{ ft}^3,\]

CFV for the 10-in. diameter class = 16.8 ft\(^3\) \times 45 TPA = 756 ft\(^3\)/ac. This process is repeated for all diameter classes.

9. Once all diameter classes are calculated, sum the volume across diameter classes to find the total volume for the plantation. Note that rounding errors are present in this example; the answers will differ if all decimal places are carried throughout the calculations.

Literature Cited

