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Abstract 
Antibiotic growth promoters that have been historically employed to control 
pathogens and increase the rate of animal development for human consump-
tion are currently banned in many countries. Probiotics have been proposed 
as an alternative to control pathogenic bacteria. Traditional culture methods 
typically used to monitor probiotic effects on pathogens possess significant 
limitations such as a lack in sensitivity to detect fastidious and non-culturable 
bacteria, and are both time consuming and costly. Here, we tested next gener-
ation pyrosequencing technology as a streamline and economical method to 
monitor the effects of a probiotic on microbial communities in juvenile poul-
try (Gallus gallus domesticus) after exposure to several microbiological chal-
lenges and litter conditions. Seven days and repeated again at 39 days follow-
ing hatching, chicks were challenged with either Salmonella enterica serovar 
Enteritidis, Campylobacter jejuni, or no bacteria in the presence of, or without 
a probiotic (i.e., Bacillus subtilis) added to the feed. Three days following each 
of two challenges (i.e., days 10 and 42, respectively) the microbiome distribu-
tions of the poultry caecum were characterized based on 16S rDNA analysis. 
Generated PCR products were analyzed by automated identification of the 
samples after pooling, multiplexing and sequencing. A bioinformatics pipeline 
was then employed to identify microbial distributions at the phylum and ge-
nus level for the treatments. In conclusion, our results demonstrated that py-
rosequencing technology is a rapid, efficient and cost-effective method to 
monitor the effects of probiotics on the microbiome of poultry propagated in 
an agricultural setting. 
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Microbiota 

 

1. Introduction 

Since 1995, the Poultry industry has become one of the globes’ largest and fastest 
growing segments of animal food production [1]. The United States is one of the 
largest producers of poultry with the broiler sector playing a major role [2]. 
Crowded poultry housing conditions are stressful to the birds leading to an ele-
vated disease potential. Additionally, packed houses cause deterioration of envi-
ronmental conditions providing a situation that is conducive to the spread of 
disease and thus increase the possibility of transmission to humans [3]. Out-
breaks of campylobacteriosis and salmonellosis infections due to the consump-
tion of contaminated poultry or derived products have occurred in human pop-
ulations throughout the world and are thus a major concern [4] [5] [6] [7] [8]. 

Antimicrobial growth promoters (AGPs) consist of antibiotics that are added 
to the feed of animals to enhance their growth rate and production performance 
[9]. Unfortunately, the large quantities of AGPs that have been used in poultry 
production provided a source for development of antibiotic resistant bacteria 
[10]. For example, Campylobacter was found to be increasingly resistant to anti-
biotics such as fluoroquinolones and macrolides that are used as antimicrobials 
for the treatment of campylobacteriosis [11]. Additionally, the development of 
resistance to antibiotics by Salmonella has also been reported [12]. Hence, there 
is an increased necessity not only to minimize AGP use but also to develop novel 
non-antibiotic-based alternative treatments. Probiotics are being considered to 
fill this gap with utilization in certain farms instead of antibiotics [13] [14]. The 
most common probiotic additives used in the broiler industry include Aspergil-
lus, Bacillus, Bifidiobacterium, Candida, Lactobacillus and Sterptomyces [15] [16] 
[17].  

Effects of the implementation of probiotics on the poultry microbiome typi-
cally employ classical culture and classification methods. Notably, traditional 
culture methods are energy intensive and time consuming practices consisting of 
isolations that do not account for the presence of fastidious growing or non- 
culturable bacteria [18]. Further, the costs of selective media along with reagents 
for carbon utilization and enzyme production testing for classification of nu-
merous bacterial isolates are high. In contrast, cultureless examination of the 
microbiome of host tissue specimens using pyrosequencing of 16S rDNA is a 
method that directly detects bacterial communities and provides a means for an 
added metagenomics research approach [19]. Pyrosequencing using Roche next- 
generation sequencing (NGS) 454 technology, in particular, is comparatively 
thorough for 16S rRNA gene analysis because of the relatively long sequence 
reads obtained (ca. 500 bp) compared to other high throughput sequencing 
technologies that average 100 bp. In addition to the length of reads, NGS tech-
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nologies provide more nucleotides to characterize from a given DNA sample 
when compared with conventional approaches [20]. 

Here, we compared microbe populations present in chick cecum following 
feeding probiotics consisting of Bacillus subtilis with those fed a normal diet 
(feed without probiotics). Additionally, litter microbiota present before and after 
composting the litter were analysed. Bacterial populations were classified based 
on 16S rDNA sequencing analysis. An understanding of the development of the 
normal bacterial community provided a method to detect disruption in the flora 
and determine the effects of food animal management changes. The success and 
precise assessment of the bacterial information using high throughput pyrose-
quencing demonstrated in this study may allow for timely manipulation of the 
intestinal flora with the intention of enhancing intestinal health and feed con-
version ratios. 

2. Materials and Methods 
2.1. Probiotic Experiment 

Poultry Rearing. A total of 450 male broilers (Gallus domesticus) were ob-
tained from the Cobb-Vantress hatchery, Inc (Timpson, Texas, USA) imme-
diately after hatching (i.e. zero days of age). At the hatchery, birds were vacci-
nated for Marek’s disease, Newcastle’s disease and bronchitis using standard 
methods [21]. The broilers were divided among 28 floor pens (1.2 m 1.2 m) at 
the Stephen F. Austin State University (SFASU) Science Research Center, Na-
cogdoches, TX, USA with 15 birds per pen on fresh litter. The facility is envi-
ronmentally controlled with negative pressure rooms (i.e. air expelled from the 
room). To provide the birds a relatively stable thermal environment, ventilation 
and heat ranged from 32˚C daily to 21˚C nightly. All birds received the same 
basal diet formulated according to the Nutrient Requirements of Chickens [22]. 
Clean water and feed were provided ad libitum throughout the study via Lubing 
Feather Soft Nipple Drinkers and then Tube Feeders (QC Supply, Schuyler, NE, 
USA).  

Preparation of Inocula for Challenges. From glycerol stocks, 500 µL a of 
Salmonella enterica poultry isolate was added to 30 mL of DifcoTM Rappaport- 
Vassiliadis R10 (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) 
broth amended with novobiocin at 25 µg/mL (Sigma, St. Louis, MO) and nali-
dixic acid at 20 µg/mL (Sigma, St. Louis, MO), and incubated for 16 - 18 h in an 
Innova 4300 shaker (New Brunswick, Edfield, CT, USA) at 37˚C and 250 RPM. 
A Campylobacter jejuni poultry isolate was propagated by adding 500 µL of a 
frozen glycerol stock to 30 mL of Bolton broth base (Sigma-Aldrich, St. Louis, 
MO) amended with novobiocin at 25 µg/mL (Sigma-Aldrich, St. Louis, MO) and 
nalidixic acid (20 µg/mL, Sigma-Aldrich, St. Louis, MO) and incubated at 42˚C 
for 16 - 18 h without any agitation in the presence of 10.0% carbon dioxide, 4.9% 
oxygen and 8% nitrogen obtained as a compressed gas (Gibson Laboratories, 
Lexington, KY, USA). 

Following the incubation, 1 ml of the S. enterica culture was inoculated into 
100 mL of fresh R10 broth contained in a 500 mL flask and incubated at 37˚C, 
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250 RPM in Innova 4300 shaker incubator. Similarly, 1 ml of C. jejuni was in-
oculated in a 50 mL conical tube containing Bolton broth and incubated at 42˚C 
after the passage of compressed gas. Optical density of the culture was checked 
periodically until attaining an absorbance 0.45 at a wavelength of 625 nm. Once 
the cultures entered log phase, the bacteria were pelleted by centrifugation at 
12,000 × g for 5 min. The supernatant was discarded and the cells were washed 
with sterile Phosphate Buffer Saline (PBS; 130 mM NaCl, 7 mM Na2HPO4, 3 
mM NaH2PO4, pH 7.3) twice and then suspended in 40 mL of PBS for inocula-
tions.  

Final concentrations administered in the challenges were 3 × 109 colony 
forming units (CFU)/mL for S.enterica and 1 × 109 CFU/mL for C.jejuni. Birds 
were infected by oral gavage with S.enterica or C. jejuni in 0.2 mL of physiologi-
cal saline 0.85% w/v on the 7th and 39th day of age as designated in Table 1. 
Control groups (Treatments 5 and 6) were provided PBS. 

Caecum Samples. Previous studies by Barnes et al. (1972), and Wei et al. 
(2013) showed that a diverse microbiota was found primarily in the caecum. 
Therefore, this study focused on the ceca microbiome [23] [24]. Three days fol-
lowing each challenge, caecum samples (n = 56) were harvested (i.e. at the 10th 
day and 42nd). The cecal sacs were removed from two randomly selected birds 
per pen on the day of harvest. The caecum contents of both chicks from a pen 
were pooled for molecular analysis. 

Genomic DNA Isolation. Caecum contents were aseptically scraped into ste-
rile 50 mL tubes containing 10 mL of sterile PBS and mixed by vortexing for 3 
min. Debris was removed by centrifugation at 700 × g for 1 min. The superna-
tant was collected and centrifuged at 12,000 × g for 5 min to pellet bacteria that 
was then suspended in 2 mL PBS and centrifuged at 12,000 × g for 5 min. The 
PBS wash was repeated and the pellet was finally suspended in 2 ml PBS. Glyce-
rol stocks were prepared by drawing 500 µL of the washed cells and flash freez-
ing in liquid nitrogen immediately after the addition of 1 mL glycerol. The re-
maining cells were stored at −20˚C for DNA extraction. 

The bacterial genomic DNA was isolated using a Wizard Genomic DNA puri-
fication Kit (Promega Corporation, Madison, USA) as per the manufacturer’s 
protocol. The DNA purity was checked spectrophotometrically using a Varian 
Cary 50 UV—Vis spectrophotometer equipped with a Hellma microcell tray for 
microliter sample volumes (Hellma Analytics, Mullheim, Germany). 

2.2. Litter Compost Experiment 

Bird Rearing Facility. Between batches of birds the litter was composted to 
measure changes in the distribution of pathogenic bacteria. The broiler housing 
facility at the SFASU Poultry Center is temperature controlled with four tun-
nel-ventilations and a solid sidewall. The length and width of each house meas-
ured 152 m × 13 m and was stocked with 27,900 newly hatched broiler chicks at 
a stocking density of 0.23 m2/bird. The two facilities used were designated as 
House 1 and House 2 each of which was partitioned into two with a composted  
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Table 1. Poultry experiment with probiotic treatments. Effect of the Probiotic (Bacillus 
subtilis) on chick cecum microbial flora was determined after challenging birds with Sal-
monella enterica (S.e) serovar Enteritidis, Campylobacter jejuni (C.j), and appropriate 
controls. The experiment consisted of six treatments: Treatment 1 (S.e challenged and no 
Probiotic), Treatment 2 (S.e challenged + Probiotic), Treatment 3 (C.j challenged and no 
Probiotic), Treatment 4 (C.j challenged + Probiotic), Treatment 5 (no challenge + Probi-
otic) and Treatment 6 (no challenge and no probiotic). 

Treatment Challenge & Organism Used Probiotic added 

1 Yes (S.e) No 

1 Yes (S.e) No 

1 Yes (S.e) No 

1 Yes (S.e) No 

2 Yes (S.e) Yes 

2 Yes (S.e) Yes 

2 Yes (S.e) Yes 

2 Yes (S.e) Yes 

2 Yes (S.e) Yes 

3 Yes (C.j) No 

3 Yes (C.j) No 

3 Yes (C.j) No 

3 Yes (C.j) No 

3 Yes (C.j) No 

4 Yes (C.j) Yes 

4 Yes (C.j) Yes 

4 Yes (C.j) Yes 

4 Yes (C.j) Yes 

4 Yes (C.j) Yes 

5 None Yes 

5 None Yes 

5 None Yes 

5 None Yes 

6 None No 

6 None No 

6 None No 
6 None No 

 
and non-composted litter section. Each flock was reared for 49 days to an av-

erage market weight of 2.4 kg/bird. 
In-House Windrow Composting. Prior to the beginning of the study, both 

houses were depopulated. Recycled litter was used in order to have a higher 
population of microorganisms than new pine wood shavings. The shavings had 
been used as bedding for five previous flocks. Immediately after flock removal, 
the litter in one house was turned into two windrow composting piles that ran 
the length of the house using a hydraulic blade turned at a 45 degree angle. Litter 
windrows were left unturned for 7 days to allow composting. After 7 days, the 
litter was spread across the house and leveled prior to chick placement. This 
procedure was repeated at the completion of each consecutive flock. 
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Litter Samplings. Each house (House 1 and House 2) was divided into four 38 
m sections lengthwise. Using a 30 cm soil collection tube (Acorn Naturalists, 
Tustin, CA USA), six litter samples were collected per 38 m sections from each 
house. Samples were then pooled and homogenized to make four composted 
and four non-composted samples in sterile bags and stored at −20˚C. The bac-
terial DNA from 2.5 g poultry litter was isolated using the ZR Soil microbe DNA 
midiprep kit (Zymoresearch, Irvine, USA) as per the manufacturer’s protocol. 

2.3. Next-Generation Sequencing 

16S rDNA Synthesis. Extracted DNA from the poultry probiotic experiment 
and litter compost studies were used as templates to amplify 16S rDNA se-
quences using the polymerase chain reaction (PCR) in a MyCycler (BioRad La-
boratories, Inc., USA). Reactions were performed in a 50 µL total volume with 
GoTaq Green Master Mix from Promega Corp. (Madison, USA). The forward 
primer 27F (5’–AGAGTTTGATCMTGGCTCAG–3’) is a 16S ribosomal DNA 
specific universal primer for prokaryotes that was previously employed by Lane 
et al. [25]. The universal reverse primer for prokaryotes called 519R (5’–GWA- 
TTACCGCGGCKGCTG–3’) was used by Turner et al. [26]. 

All the primers including Multiplex Identifiers (MIDs) listed in Table 2 were 
purchased from Sigma Genosys (a division of Sigma Aldrich). Figure 1 provides 
an illustration of the strategy used to combine the bacterial 16S ribosomal DNA 
primer set with the MIDs. The PCR conditions were the following: 97˚C for 5 
minutes; 40 cycles of 60˚C for 1 minute, 72˚C for 1 minute 20 seconds and 95˚C 
for 30 seconds; followed by a 72˚C for 5 minutes and hold at 4˚C. The PCR am-
plified product was analyzed using agarose gel electrophoresis. 

Pyrosequencing Application. After quantification of DNA, equal amounts of 
purified PCR products were pooled for Roche emPCR amplification that was 
performed as per the manufacturer’s protocol (454 Roche Life Sciences, 

 

 
Figure 1. Schematic depiction of PCR primers used to amplify a 16S rDNA gene segment. 
The 16S rDNA gene includes a conserved region (thin line) and nine hypervariable re-
gions (V1-V9). The primers were designed to target conserved regions and amplify varia-
ble sections with added Multiplex Identifiers (MIDs). The MID’s were tagged to adaptors 
for sequencing using Roche 454 Lib-L Primer A: 5’-CCATCTCATCCCTGTCTCCGAC- 
3’, Lib-L Primer B: 5’-CCTATCCCCTGTGTGCCTTGGCAGTC-3’, Sequencing key-TC- 
AG, Universal Primer 27F: 5’-GRGTTTGATCMTGGCTAG, and the Universal Primer 
519R: 5’-GTNTTACNGCGGCKGCTG-3’. 
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Table 2. Degenerate primers used for bacterial 16S rDNA amplification. Primers were designed with Roche 454 Lib–L forward 
primer (Primer A) at the 5’ end, the sequencing key in the middle, and with a Multiplex Identifier (MID) and universal primer at 
the 3’ end. The reverse primer with Roche 454 Lib-L (Primer B) and universal primer were positioned at the 3’ end. 

Oligo Name Sequence (5’-3’) 

MID-1 CCATCTCATCCCTGCGTGTCTCCGACTCAGACGAGTGCGTAGRGTTTGATCMTGGCTCAG 

MID-2 CCATCTCATCCCTGCGTGTCTCCGACTCAGACGCTCGACAAGRGTTTGATCMTGGCTCAG 

MID-3 CCATCTCATCCCTGCGTGTCTCCGACTCAGAGACGCGCTCAGRGTTTGATCMTGGCTCAG 

MID-4 CCATCTCATCCCTGCGTGTCTCCGACTCAGAGCACTGTAGAGRGTTTGATCMTGGCTCAG 

MID-5 CCATCTCATCCCTGCGTGTCTCCGACTCAGATCAGACACGAGRGTTTGATCMTGGCTCAG 

MID-6 CCATCTCATCCCTGCGTGTCTCCGACTCAGATATCGCGAGAGRGTTTGATCMTGGCTCAG 

MID-7 CCATCTCATCCCTGCGTGTCTCCGACTCAGCGTGTCTCTAAGRGTTTGATCMTGGCTCAG 

MID-8 CCATCTCATCCCTGCGTGTCTCCGACTCAGCTCGCGTGTCANGRGTTTGATCMTGGCTCAG 

MID-10 CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTCTATGCGAGRGTTTGATCMTGGCTCAG 

MID-11 CCATCTCATCCCTGCGTGTCTCCGACTCAGTGATACGTCTAGRGTTTGATCMTGGCTCAG 

MID-13 CCATCTCATCCCTGCGTGTCTCCGACTCAGCATAGTAGTGAGRGTTTGATCMTGGCTCAG 

MID-14 CCATCTCATCCCTGCGTGTCTCCGACTCAGCGAGAGATACAGRGTTTGATCMTGGCTCAG 

MID-15 CCATCTCATCCCTGCGTGTCTCCGACTCAGATACGACGTAAGRGTTTGATCMTGGCTCAG 

MID-16 CCATCTCATCCCTGCGTGTCTCCGACTCAGTCACGTACTAAGRGTTTGATCMTGGCTCAG 

MID-17 CCATCTCATCCCTGCGTGTCTCCGACTCAGCGTCTAGTACAGRGTTTGATCMTGGCTCAG 

MID-18 CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTACGTAGCAGRGTTTGATCMTGGCTCAG 

MID-19 CCATCTCATCCCTGCGTGTCTCCGACTCAGTGTACTACTCAGRGTTTGATCMTGGCTCAG 

MID-20 CCATCTCATCCCTGCGTGTCTCCGACTCAGACGACTACAGAGRGTTTGATCMTGGCTCAG 

MID-21 CCATCTCATCCCTGCGTGTCTCCGACTCAGCGTAGACTAGAGRGTTTGATCMTGGCTCAG 

MID-22 CCATCTCATCCCTGCGTGTCTCCGACTCAGTACGAGTATGAGRGTTTGATCMTGGCTCAG 

MID-23 CCATCTCATCCCTGCGTGTCTCCGACTCAGTACTCTCGTGAGRGTTTGATCMTGGCTCAG 

MID-24 CCATCTCATCCCTGCGTGTCTCCGACTCAGTAGAGACGAGAGRGTTTGATCMTGGCTCAG 

MID-25 CCATCTCATCCCTGCGTGTCTCCGACTCAGTCGTCGCTCGAGRGTTTGATCMTGGCTCAG 

MID-26 CCATCTCATCCCTGCGTGTCTCCGACTCAGACATACGCGTAGRGTTTGATCMTGGCTCAG 

MID-27 CCATCTCATCCCTGCGTGTCTCCGACTCAGACGCGAGTATAGRGTTTGATCMTGGCTCAG 

MID-28 CCATCTCATCCCTGCGTGTCTCCGACTCAGACTACTATGTAGRGTTTGATCMTGGCTCAG 

MID-29 CCATCTCATCCCTGCGTGTCTCCGACTCAGACTACTATGTAGRGTTTGATCMTGGCTCAG 

MID-30 CCATCTCATCCCTGCGTGTCTCCGACTCAGACTACTATGTAGRGTTTGATCMTGGCTCAG 

519R CCTATCCCCTGTGTGCCTTGGCAGTCTCAGGTNTTACNGCGGGCKGCTG 

 
Indianapolis, IN, USA). This method was followed for 10th day, 42nd day and 

litter samples separately. A Roche GS Junior System was used for pyrosequenc-
ing. The GS De Novo Assembler (Roche) was used to trim and group the data 
(i.e., adapter, linker and primer sequences) based on MID as well as generate 
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consensus sequences of the DNA libraries. The assembled contigs were used in a 
metagenomic analysis with the CAMERA database [27] [28]. 

Statistical Analysis. Based upon the CAMERA BLASTn derived matches, the 
sequences were classified at the appropriate taxonomic levels based on Data 
Analysis Methodology offered by the Research and Testing Laboratory, Lubbock, 
TX, USA (http://rtlgenomics.com/). Additionally, RDP Naïve Bayesian rDNA 
classifier version 2.5 was used to organize the data into taxonomy groups with a 
bootstrap cutoff of 80% (https://rdp.cme.msu.edu/). Two-Way ANOVA was 
used with GraphPad Prism version 6.0.  
(https://www.graphpad.com/scientific-software/prism/), in order to further ana-
lyze the data and calculate the variance to observe the effect of treatments on the 
chick’s microbiome. A p-value <0.05 was considered statistically significant. The 
SAS based program JMP Genomics Version 5.1 was employed to organize the 
distribution of identified bacteria [29]. 

3. Results 
3.1. Probiotic Poultry Experiment 

Results of the 454 sequencing experiments performed on the samples collected 
on day 10 and 42 showed that the primers designed with the MIDs successfully 
amplified specific 16S rDNA regions of multiple bacteria. Pyrosequencing gen-
erated 19.8 Mbp with average reads of 389 bp and 43.7 Mbp with average reads 
of 342 bp for the pooled chick caecum samples from the 10th and 42nd day collec-
tion periods, respectively. 

The CAMERA BLASTn analysis using the collective data produced over 
20,000 significant matches for all of the treatment samples (Table 3). The Two- 
Way ANOVA analysis using both the 10th and 42nd day samples from treatments  

 
Table 3. Distribution of bacteria identified based on 16S ribosomal DNA sequence analy-
sis from the caeca of chicks that had been provided a probiotic and challenged with either 
Salmonella enterica (S.e) serovar Enteriditis or Campylobacter jejuni (C.j), and appropri-
ate controls. The experiment consisted of six treatments: Treatment 1 (S.e challenged and 
no Probiotic), Treatment 2 (S.e challenged + probiotic), Treatment 3 (C.j challenged and 
no Probiotic), Treatment 4 (C.j challenged + Probiotic), Treatment 5 (no challenge + 
Probiotic) and Treatment 6 (no challenge and no probiotic). Genomic DNA was ex-
tracted from poultry caeca at the 10th and 42nd day following each Treatment. 

Treatment Unique Bacterial Classified Taxonomic Bacterial Groups 

 10 Day 42 Day Total 10 Day 42 Day Total 

1 609 3444 4053 132 409 541 

2 1097 1902 2999 249 307 556 

3 1699 1974 3673 361 300 661 

4 34 1631 1665 5 226 231 

5 1468 2871 4339 332 390 722 

6 2016 2626 4642 345 394 739 

http://rtlgenomics.com/
https://rdp.cme.msu.edu/
https://www.graphpad.com/scientific-software/prism/
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that included exposure to S. enterica or C. jejuni along with the probiotic re-
vealed a difference in the number of genera with respect to collection period. 
However, the probiotic treatment did not provide statistical evidence for a re-
duction in pathogens detected (p = 0.1751). Overall, Firmicutes were predomi-
nant in both days sampled from the six phyla identified (Figure 2(a)). Further, 
increased levels of beneficial genera such as Blautia, Eubacteria, Faecalibacteria, 
among others were detected from the 10th to the 42nd sample collections (Figure 
2(b)). Clostridia that includes both pathogenic and non-pathogenic species were 
unaffected by treatment with or without the probiotic. Bacillus spp. were de-
tected in all of the treatment samples (Figure 2(d)). A total of 6923 and 14,448 
bacterial strains were identified for the 10th and 42nd day samples, respectively. 
Figures 3-8 illustrate the distributions of the identified bacteria that com-
prised >1.5% of the population. However, the number of genera decreased as 
time increased irrespective of the treatment with or without the probiotic for 
both beneficial (Figure 2(b)) and pathogenic bacteria (Figure 2(c)). As Bacillus 
spp. are ubiquitous, expectantly they were detected in the entire sample analyzed 
(Figure 2(d)). 
 

 
(a)                                        (b) 

 
(c)                                       (d) 

Figure 2. Two-way ANOVA providing the distribution of significant (p < 0.05) phyla and 
genera based on 16S rDNA sequence analysis. Genomic DNA was extracted from poultry 
caeca at the 10th and 42nd day following a challenge (Chal+) or no challenge (Chal−) with a 
bacterial pathogen (Salmonella enterica—S.e or Campylobacter jejuni—C.j), and/or pro-
biotic (Bacillus subtilis) administration. Figure (a) illustrates the phylum distribution. 
Figure (b) illustrates beneficial bacterial genera identified. Figure (c) illustrates patho-
genic genera representatives. Figure (d) illustrates the detection of Bacillus spp. without 
administration of the probiotic (Prob−) or following the probiotic treatment (Prob+). 



V. P. Guttala et al. 
 

684 

 
(a)                                                            (b) 

Figure 3. Distribution of bacteria identified based on 16S ribosomal DNA sequence analysis from caeca of chicks that had been 
challenged with Salmonella enterica and not administered a probiotic. Genomic DNA was extracted from poultry caeca at the 10th 
(Pie (a)) and 42nd (Pie (b)) day following the treatment. 

 

 
(a)                                                             (b) 

Figure 4. Distribution of bacteria identified based on 16S ribosomal DNA sequence analysis from caeca of chicks that had been 
challenged with Salmonella enterica and administered a probiotic. Genomic DNA was extracted from poultry caeca at the 10th 
(Pie (a)) and 42nd (Pie (b)) day following the treatment. 

 

 
(a)                                                          (b) 

Figure 5. Distribution of bacteria identified based on 16S ribosomal DNA sequence analysis from caeca of chicks that had been 
challenged with Campylobacter jejuni and not administered a probiotic. Genomic DNA was extracted from poultry caeca at the 
10th (Pie (a)) and 42nd (Pie (b)) day following the treatment. 

3.2. Litter Compost Analysis 

Pyrosequencing data generated 4.4 Mbp with an average read length of 412 bp 
for the pooled DNA extracted from the litter samples. The RDP database  
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(a)                                                        (b) 

Figure 6. Distribution of bacteria identified based on 16S ribosomal DNA sequence analysis from caeca of chicks that had been 
challenged Campylobacter jejuni and administered a probiotic. Genomic DNA was extracted from poultry caeca at the 10th (Pie 
(a)) and 42nd (Pie (b)) day following the treatment. 

 

 
(a)                                                        (b) 

Figure 7. Distribution of bacteria identified based on 16S ribosomal DNA sequence analysis from caeca of chicks that had not 
been challenged with a bacterial pathogen and administered a probiotic. Genomic DNA was extracted from poultry caeca at the 
10th (Pie (a)) and 42nd (Pie (b)) day following the treatment. 

 

 
(a)                                                        (b) 

Figure 8. Distribution of bacteria identified based on 16S ribosomal DNA sequence analysis from caeca of chicks that had not 
been challenged with a bacterial pathogen and not administered a probiotic. Genomic DNA was extracted from poultry caeca at 
the 10th (Pie (a)) and 42nd (Pie (b)) day following the mock a challenge with a bacterial pathogen and no probiotic administration. 

 
classification identified six phyla from the broiler litter with a majority consist-
ing of Firmicutes and Actinobacteria at the two housing units (Table 4). Sta-
phylococcus and Salinicoccus were the predominant Firmicutes genera detected 
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irrespective of the treatments (Figure 9). Comparisons of genera from the phy-
lum Actinobacteria showed that Bracybacterium was predominant in broiler lit-
ter irrespective of the treatments (Figure 10). 

4. Discussion 

The current study was intended to determine the proof of concept that next- 
generation sequencing technology could be applied to rapidly and efficiently  
 
Table 4. Two poultry rearing facilities partitioned to house poultry pens (House 1 – H1) 
and House 2 - H2) that were bedded with either non-composted or composted wood 
shavings to assess prokaryotic composition differences between the litter. Extractions of 
DNA from litter samples were used to detect bacterial phyla composition based on 16S 
rDNA bacterial sequence analysis by employing the Ribosomal Database Project—Naive 
Bayesian rDNA classifier version 2.5 (https://rdp.cme.msu.edu/). 

Phylum 
Non-Compost 

H1 
Compost  

H1 
Non-Compost 

H2 
Compost  

H2 

Actinobacteria 4807 4380 38 62 

Bacteroidetes 24 103 7 0 

Cyanobacteria 1 5 0 0 

Firmicutes 6914 8013 125 120 

Proteobacteria 10 24 2 2 

Tenericutes 4 3 0 0 

 

 
Figure 9. Distribution of genera from the phylum Actinobacteria detected in composted 
and non-composted poultry litter. Extractions of DNA from litter samples were used to 
determine bacterial phyla composition based on 16S rDNA bacterial sequence analysis by 
employing the Ribosomal Database Project (RDP)—Naive Bayesian rDNA classifier ver-
sion 2.5 (https://rdp.cme.msu.edu/). Classifications from the RDP analysis of the se-
quences had an 80% cutoff. Charts (a) and (b) illustrate the 1st set of non-composted and 
composted litter genera. Charts (c) and (d) illustrate the 2nd set non-composted and 
composted litter genera. 

https://rdp.cme.msu.edu/
https://rdp.cme.msu.edu/
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Figure 10. Distribution of genera from the phylum Firmicutes detected in com-
posted and non-composted poultry litter. Extractions of DNA from litter sam-
ples were used to determine bacterial phyla composition based on 16S rDNA 
bacterial sequence analysis by employing the Ribosomal Database Project 
(RDP)—Naive Bayesian rDNA classifier version 2.5 (https://rdp.cme.msu.edu/). 
Classifications from the RDP analysis of the sequences had an 80% cutoff. Charts 
(a) and (b) illustrate the 1st set of non-composted and composted litter genera. 
Charts (c) and (d) illustrate the 2nd set non-composted and composted litter 
genera. 

 
assess the cecal microbiome of poultry treated with a probiotic. The MIDs 

provided a manner to pool samples for cost savings and sequencing efficiency 
yet differentiate between the sample sources. Effects of probiotic administration 
on the chick microbiome, specifically on two known pathogenic bacteria S. ente-
rica and C. jejuni were the basis of the measurements. Additionally, the effect of 
windrow composting on microbial populations in reused poultry litter was also 
examined. Pyrosequencing results of pooled samples that reduced cost and 
processing time showed that the chick microbiome and poultry litter consists of 
numerous varieties of bacteria. 

In accordance with previous work [30] [31], Firmicutes were the predominant 
phylum identified. Representatives of Lachnospiraceae and Ruminococcaceae 
families were also detected as reported by Danzeisen et al. [32]. At genus level, 
the overall number of 16S rDNA sequence matches decreased from the first to 
second time interval sampled. 

The probiotic employed in this study was found to not significantly reduce 
putative pathogen levels in the microbiome of the chick caecum. Though the 
chicks were challenged with S. enterica and C. jejuni, no significant difference 
was observed in their populations at day 10 or day 42 with or without the probi-
otic. A possible explanation could be that study was conducted in an academic 
setting in contrast to an actual poultry production facility [32]. 

Here, as in general poultry industry protocol, we used recycled wood shavings 
as bedding material with a comparable ventilation system. Other work has con-

https://rdp.cme.msu.edu/
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sidered possible alternatives to litter to examine the diversity of microbial com-
munities. For example, Kim et al. [33], working on pigs showed that animal- 
to-animal variation could be negligible in genetically similar production animals 
where environment plays a critical role in determining animal gut microbiome. 
Kasier et al. [34] reported that colonization of S. enterica occurred on day seven 
post challenge. Interestingly, Wisner et al. [35], showed that the Salmonella was 
cleared after 3 and 4 days of post challenge which suggests that testing the feces 
could have helped in finding specific inoculated bacteria. 

The poultry litter microbiota analysis showed an increased bacterial diversity 
in the poultry litter at the genus and species level after windrow composting (440 
genera and 1700 species). Interestingly at the phylum level, (Table 4) reduced 
levels of Firmicutes, Proteobacteria and Tenericutes that constitute the majority 
of known pathogenic bacteria were measured. By the use of the RDP database, 
Firmicutes were the predominant phylum identified in reused litter irrespective 
of the treatments. Cressman et al. [36], showed that the pathogenic bacteria such 
as Campylobacter, Salmonella, Listeria and Yersinia species were not detectable 
by using traditional PCR platform screens. In contrast, the pyrosequencing me-
thod detected these pathogenic genera. Chlortetracycline-resistant bacteria and 
tylosin-resistant bacteria were also observed in reused poultry litter that might 
enter birds’ gut that fed on this litter thus causing resistance to antibiotics. Sta-
phylococcus and Clostridia were found to be the predominant genera in reused 
litter. 

5. Conclusions 
The results of this study showed that pyrosequencing is both a sensitive and po-
werful tool to study the microbiome of chicks after treatments in poultry man-
agement aimed to minimize downstream contamination. Also, the study showed 
that multiple samples can be sequenced simultaneously using MID’s thus, de-
monstrating that next-generation sequencing is an economical platform in com-
bination with freely available bioinformatic database tools for chick microbiome 
analysis. Additionally, the computational analysis provided a mechanism to 
identify novel and uncommon genera. There were over 400 genera and 800 spe-
cies identified from the different treatments. Results from this study suggested 
that neither of the treatments (probiotic administration or in-house windrow 
composting) had caused significant reductions of pathogenic bacteria. 

This is the first study to employ next-generation sequencing technology to 
analyze the effects of a specific probiotic administrated on the microbiome of 
broiler chicks. Results of the study indicated that neither addition of this partic-
ular probiotic nor administration of the composting schemes provided a de-
crease in pathogen presence. Nevertheless, the study helped in identifying draw-
backs of probiotic and litter treatments that could be modified in future studies 
for optimum pathogen control. Results from this work demonstrated that high 
throughput next-generation pyrosequencing technology is a cost effective me-
thod to streamline the effectiveness of potential biological strategies to minimize 
the occurrence of animal pathogens in poultry. 
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