

# Electrochemical Investigations of Benzanthrone

# Antonio Trevino and Kefa K. Onchoke Department of Chemistry Stephen F. Austin State University, TX 75962



#### 1. Abstract

- ➤ Cyclic Voltammetry (CV) and differential pulse voltammetry (DPV) of benzanthrone, an environmental pollutant, was studied in an acetonitrile solution with a 0.15 M tetrabutylammonium hexafluorophosphate as the background electrolyte.
- ➤ Benzanthrone concentrations of 0.5, 1.0, 1.5, and 2.0 mM were studied at 50, 100, 200, 500, 1000 and 2000 mV/s scan rates, or n.
- ➤ With increase in scan rates up to 200 mV/s the reversibility of benzanthrone began shifting, indicating a change in the electron transfer rate constants for low concentration solutions.
- At higher scan rates (500 2000 mV/s), quasireversible reactions, i.e.  $I_{pc}/I_{pa} > 1.5$ , were observed.
- For the 0.5 and 1.0 mM benzanthrone concentrations and higher scan rates, the reductive reaction at the surface of the electrode is not diffusion-controlled alone.
- ➤ At higher concentrations (1.5 and 2.0 mM), the cathodic peak/ anodic peak current ratio (I<sub>pc</sub>/I<sub>pa</sub>) stays close to one, with average I<sub>pc</sub>/I<sub>pa</sub> ratios of 0.986 and 1.161 respectively, indicating a diffusion controlled, reversible reaction at the electrode surface.

## 2. Reasons for Study

1. Polycyclic aromatic hydrocarbons, PAHs, contain multiple fused aromatic rings such as benzene.





# Naphthalene

# Benzo(a)pyrene

- 2. PAH form from the incomplete combustion of solid and liquid fuels such as coal, kerosene, and wood, as well as other organic matter.
- 3. These compounds are found everywhere and many people are at risk of exposure.





## 3. Materials and Methods

# 3.A. Methods

- 1. Cyclic Voltammetry
- 2. Differential Pulse Voltammetry

#### 3.B. Materials

- 1. Benzanthrone, Sigma Aldrich, 98.0% purity
- 2. Acetronitrile, EM Science, 99.93% HPLC grade
- 3. Tetrabutylammonium hexafluorophosphate, Fluka Analytical, 99.0%

#### 4. Results /Data

# 4.A. Cyclic Voltammetry





| 1.5 mM Benzanthrone |                  |       |       |         |
|---------------------|------------------|-------|-------|---------|
| Scan Rate           | (Scan Rate) ^1/2 | lpc   | Ipa   | lpc/lpa |
| 50.00               | 7.07             | 9.72  | 10.06 | 0.97    |
| 100.00              | 10.00            | 14.32 | 13.63 | 1.05    |
| 200.00              | 14.14            | 20.34 | 18.10 | 1.12    |
| 500.00              | 22.36            | 16.40 | 20.40 | 0.80    |

# 4. Data (continued)

# 4.B. Differential Pulse Voltammetry (D.P.V.)



# 4.C. Shifting Reversibility





Linearity up to 200 mV/s is consistent with all of the concentrations, showing a reversible reaction until the scan rate increases beyond 200 mV/s.

# 5. Conclusion

- •As concentration increased, the peak values Ipc and Ipa increase as expected for all of the concentrations tested, 0.5, 1.0, 1.5, and 2.0 mM of benzanthrone.
- •The shift in linearity of Ipc and Ipa v.s. square root of scan rate above 200 mV/s indicates a shift in the reversibility of the reduction/oxidation.
- •The lowest limit of detection was determined to be 0.169 mM, confirming that the concentrations used in this study would be electrochemically active using D.P.V.
- •Overall, the electron transfer that occurs in benzanthrone when potential is applied begins to shift as scan rate increases. This could be a change in the mechanism of the electron transfer. The higher scan rates, +500 mV/s, produced irreversible electron behavior .

#### References

- Kissinger, Peter T. *Cyclic Voltammetry*. Journal of Chemical Education. 60 (9). 702-706. 1983.
- Yue, Ruirui, Xu, Jingkun, Lu, Baoyang, Liu, Congcong, Li, Yuzhen, Zhu, Zhaojin, and Chen, Shuai.
   Electrochemical copolymerization of benzanthrone and 3-methylthiophene and characterization of their fluorescent copolymer. Journal of Materials Science. 44 (2009). 5909-5918. 2009.
- Singh, G.B., and S.H. Zaidi. *Preliminary clinical and experimental studies on benzanthrone toxicity*. J. Indian Med. Assoc. 1969.
- Pandey, K.M., and Das, M. Assessment of carcinogenic potential of repeated fish fried oil in mice. Food, Drug, and Chemical Toxicology. 45 (10). 741-51. 2006.

#### Acknowledgements

Special Thanks to:

Chemistry Department, SFASU Dr. Kefa Onchoke

#### Funding

Robert A. Welch Foundation: AN-0008

Department of Chemistry, SFASU

ORSP # 114110, # 107552, and Research minigrants