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I. INTRODUCTION

Upland hardwocod forest types are .by far the most

widespread in the United States. Stands cof the ocak-hickory

4

forast type alcone include 109 million acres, 23 percent of
the Nation's commercial timberland (U.S. Forest Service
1982). Many even-aged upland hardwood stands developed on
nonindustrial private lands through hardweood invasioa after
pine stands were harvested. In 1973, half of the hardwood

timber in the Scuth was determined to be on upland sites

which formerly supported pine stands (Murphy and Knight

-4

974} .

Many nonindustrial private ;andowners passively permif
the biologically better adapted hardwcods to increase after
the harvest of pines. These landowners may be pursuing
their best interests as perceived through prévailing social
and economic conditions (Boyce and Knight 1980). The
resulting even-aged hardwood stands are often pcorly stocked
and consist of mixed-species with differential growth rates.

Rates of return to landowners are typically low from
even-aged upland hardwoods. These stands can often be
converted to higher return softwood forest types @ but
Landowners frequantly reject the investment because of the
high costs and long tine periods involved. Past market

Conditions favored the production of higher guality hardweod




products but prospects .are good for expanded wmavrke:
cpportunities for lower grade hardwood raw materials. These
naw or expanded market opportgnities should improve the
future profitability of currently low value upland hardwoods
and bprovide more economic incentives fqr activa forest
management, Partial harvests are particularly attractive
forest management activities for most landowners because of
the returns generatad.

Past studies have applied mathematical programming
techniques to the optimization of harvest schedules in
scftwood stands. Stand-level hardwood harvesting models
designed to optimize econcmic objectives, however, may
depend on different relationships than softwood models,
e.g., the relationships between stumpage price and stem
gquality may be more pronounced for hardwood stands. his
study will focus on the theory and application of
mathematical programming To the problem of optimizing
harvests over time in mixed-species, even-aged upland
hardwoods. Operations research wmethods and mathematical
programming techniques have been developed as analytical
tools in management science. Several studies have been done
in the area of stand-level softwoed harvest schedules but
little application of these powerful tools has been made to

the problem of hardwood harvest scheduling.




Okbjectives

The okjectives of this study are:

1. To mathematically define the preoblem of deriving
aconomically optimal stand-level harvest sched-
ules for even~aged upland forest.types of mixed-
species.

2. To select an applicable operations research
method for solwving the mathematical model.

3. To review the growth and yield information
currently available for even-aged, mixed-species
stands with an application of the model if ade-

guate response information is available.

Justification

Hardwocd forest management has received much less
attention in the past than management of softwood forest
types. C&mparatively iow growth rates and values, as well
as relatively few markets for hardwood raw materials have
resulted in very little active hardwood forest management.
With an estimated 255 billion cubic feet of hardwoods,
covering over 260 million acres in the United States (U.S.
Forest Service 1982), the problems of managing this resource
cannot be ignored. While many upland hardwood stands are
Currently of low walue, expanding market opportunities
should enhance the possibilities for upgrading the gquality

and value of such stands through intermediate harvests




{Schropshire 1977, Sims 1981).

Commercial thinning has not bheen widely practiced in
hardwoed stands in the past, chiefly due ¢ inadeguate
maxkets for the material removed {Baumgras 1981}. Future
price increases and expanded markets for lower gquality
hardwood raw materials are expected, however. = Assuming
bagse-level price trends, the medium proiection of timber
demand by the U.8. Forest Service (1582) indicates softwéod
demand will increase by 80 percent by 2030. lHardWOod
demand, however, is projected to more than triple over the
same period. A significant portion of the increased
hardwood demand reflects ilncreased requirements for hardwood
pulpwood and hardwood lumber for pallets. Bayond the next
few decades, stumpage prices for lower-grade haronods are .
expected to rise (U.S. . Forest Service 1982). Future
competition for available hardwood supplies is expected to
be particularly intense in the South-Central Regilon.

Market opportunities for hardwood raw materials are
expected to increase due to great=r energy-wood demands as
well as tachnological advanceas in pulping and  the
development of new products. Changes in the economic
relationships of energy sources in the past decade havé led
.to an increased market for industrial and home fuel (Curtis
1980y . Aé hardwood 1s dgenerally a more esfficient fuel than

softwood, the fuel market should provide new opportunities




for intermediate harvests in hardwood stands at lower net

costs or with immediate net gains, in addition to the longer
term potential gains in tree quality.

In other areas, hardwoods are increasingly being used
in the manufacturé of pulp and paper (Malac 1378). These
increases should continue with further refinements in high-
yield pulping processes. Hardwoods are also increasingly
being used in the production of particleboard producfs
(McLintock 1979), as well as organic chemicals (Glasger
1981). Prospects for hardwood fiberboard and flakebkcard are
particularly bright, with 80 percent of the market east of
the Missiésippi River (Thielges 1980). Further enhancing
fiberboard and flakeboard prospects are the favorable raw
materials costs compared to softwood chips, which will be
experiencing increased demand and riging prices for pulping
uses during the next 20 .years (Thielges 1980}). As an
indication of future market expansion, the first two
hardwood flakeboard plants in the South are scheduled to
begin operations in 1983 (Koch and Springats 1983).

While a significant amount of research is being devoted
to developing new and better ways of utilizing the hardwood
regource in the United States, increasing emphasis is also
being placed on the problems.of managing natural hardwood
stands. Enhanced opportunities for upland hardwocod

management are almest certain and intermediate harvests




should be an important factor in hardwcod management
strategies. The problem of intermediate harvesf decisions
is particularly difficultvwhere upland stands are comprised
of mixed-species with differential growth rates.
Theoretically sound models are needed for hardwood
conditions if forest landowners or managers are to achieve
stand-level and forest-wide objectivas through  their

intermediate harvest decisions.

Literature Review

The =ability of decision-makers to answer stand-level
questions about the timing and intensity of thinnings has
been greatly =snhanced through the application of operations
research technigques to such problens. A broad class of
these teachniques will be considered with respect to
applications that have been made to softwood stands. The
literature concerning the special problems of thinnings in
the management of hardwood stands will also be reviewed.

Operations Research Applications

Simulation and Stand-Level Decisions. Simulation

techniques basically involve a specification of treatment
regimes for stands. The impacts of wvarious treatments and
timing of treatments are then assessed. The selection of a
preferred regime 1s made based on a common c<criterion of
performance. Either physical or econcmic c¢riteria may be

usad, but no assurance iz made that the management'regime




selectad will be glokally optimal where complex
ralationships are involved. Problems with the simulation
method may also arise through the stochastic nature of the
models. Methods £for statistical wvalidation of stochastic
simulation systems were presented by Gochenour and Johnson
(1973), and Reynolds et al. (1981).

Simulation methods have been applied to stand-level
decigions in several studies. Ekamples summarized by Haﬁn
and Bredie {(1980) include the work of Hamilton and Christie
(1974), Myers (1969, 1973), and Hovyer (1975). Each methed
employs a stand development model enabling the user to alter
thinnings and rotation length in the evaluation of specific
. Management programs.

In a study of maximum volume production, Walker (1981)
used a modified version of a computer simulation model
developed by Daniels and Burkhart (1975) to determine
optimal management regimes in loblolly. pine plantatiocons.
Optimization techniques were used to determine regimes which
maximizaed the mean annual increment predicted by the
stochastic stand simulation model. Management factors
examined included rotation length, planting density, and
timing and intensity of a single thinning. Response surface
analysis and a simplex search technique presented by Ollson
(19724) were used to deterﬁine mahnacgement regimes which

maximized mean annual increment.
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The Daniels and Burkhart simulation model was used in a

deterministic manner by Broderick et al. (1982) to estimate
economically optimal management regimes for loblolly
plantations. Management regimes which maximized soil
expectation wvalues were determined by evaluating the model
for various combinations of planting spacing, rotation, and
frequency, timing, and intensity of thinnings. The impacts
of assumed interest rates, prices, and product mixes on
optimal management regimes were also examined.

Optimization Technigues and Stand-Level Decigions. The

forestry literature 1s replete with applicaticons of
optimization methods to stand-level decisions. Maximizing
mean annual increment or scil expectation wvalue (SEV) were
early methods used in determining optimal rotations. Muach
©0of the recent work has concentrated on the simultaneous
determination of optimal thinning schedules and rotation
length. Mathematical programming technigques have been
applied extensively in this area.

The following discussion of stand-level decision models
is confined .to deterministic analyses. Presentatiocns have
alsc been made of stochastic stand-level decision analyses
Using operations research techniques. These studies include
Hool (1966), Lembersky and Johnson (1975), Lembersky (13876),
and Kao (1982). The stand-level decision models reviewed

are also similar in that cnly timber wvalues are used in the




analyses. Studies which address the complications arising

when non-timber wvalues are c¢onsidered include Hartman

1276), Calish et al. (1978), Nguyen ({1979), and Riitters

—~~

B

al. (1982).
Optimal management plans were derived by Hardie (1977)
for }oblolly pine plantations in the Mid-Atlantic Region.
Rotation length and thinning timing and i1intensity were
varied to determine. the regimes which maximized per écre
present net values for a single rotation. The effects of
various economic assumptions were aléo compared. The
solution | technique employed by Hardie  was conplete
enumeration and comparison of results under a highly
constrained set of thinning and rotation alternatives.

An early study by Chappelle and Nelson (1964) made use
of marginal analysis to jointly determine eptimal thinning
and rotation length. With profit maximization as the
guiding criterion, optimal stocking levels were determined
using the alternative fate cf return as the marginal unit
cost and value growth percent as the marginal unit revenue.
After determining the optimal stocking level, the wvolume
remeved by thinnings in each period was determined for
specified rotation lenagths, given the initial stocking and a
volume growth procedure. This information was then used to
determine the SEV maximizing rotation length.

The guestion of optimal growing stock levels was
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addressed from the standpoint of inventory theory by Pelz
(1977). Expected total costs of inventory were defined as
the sum of inventory heclding costs and the costs associated
with deviating frem the optimal stocking level. By
minimizing the expected total costs . of inventory, Pel=z
demonstrated a correspondence of optimal stocking level
results with thoseA of Chapprelle and Nelson (1964}, when
similar assumptions were made. Optimal rotation lengths
were not discussed.

Several attempts to determine optimal thinning- and
rotation length have been presentaed which use dynamic
programming. With time defined as a discrete rather than a
continuous variable, dynamic problems, or multi-stage
optimization problems, can be solved by discrete dynamic
programming. This technigue involves dividing the probklem
into discrete stages and then making decisions recursively
at each stage. The recursion may involve moving forward
from initial time or backward from terminal time. At each
gtage, decisicns are made based on the recursive equation.
This process employs Bellman's Principle of Optimality,
i.e., given an initial state and decision, the remaining
decisions must constitute an optimal peolicy with respect to
the state resulting from the first decision (Bellman and
Dreyfuss 1962). This principle may be paraphrased in terms

of the optimal growing stock problem as follows: once the
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optimal thinning schedule has been specified to a given
stand age and structure, the optimal plan for the next older
stand age depends only on the older stand's age/structure
combinations not yet analyzed (Hann and Brodie 1980). This
greatly reduces the number of calculations necessary fo
determine the optimal path, as various possibilities at each
stage are only considered once (Cawrse 1979). The recursion
equation 1s based on the contribution of the stage wvariable
and the optimal contribution of all preceding variables.
The results of decisions at each stage of the problem are
combined to generate the overall solution.

In applying discrete dynamic programming to determine
optimal thinning and rotation length, Amidon and Akin (1968)
obtained the same scolutions as Chappelle and Nelson (1964}.
A two dimensicnal network was defined using volume stocking
and stand age as the state descriptors. The objective of
the dynamic problem was to determine the optimal stocking
level at each age c¢lass using 1,000 board foot and 5-year
intervals between stages. In this problem, the optimal
stocking level at each age c¢lass was determined using
backward recursion, examining the objective function wvalue
for all possible points. The backward recursion method will
only solve the problem of optimal thinning plan for one
rotation at a time. Amidon and Akin therefore obtained

solutionsg for alternate rotation lengths, following
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Chappelle and Nelson in using the SEV maximizing rotation as
optimal.

The approaches of Chappelle and Nelson (1964) and
Amidon and Akin (1968) were discounted by Schreuder {1971).
Schreuder proposed that these approaches did not allow fér
possible interdependencies between stocking and rotation and
that the cost of land should be included when determinipg
optimal economic stocking lavels. Schreuder's approach was
to determine the Jjointly optimal thinning plan and rotation
by defining the harvest cut as an extreme thinning.
Schrueder formulated the problem as a continuous function of
time using the <alculus of wvariations form but found that
explicit solutions coculd only be. obtained for trivial
examples. The problem was then cast as a discrete dynamic
programming problem with backward recursion. Schreuder
concluded that solutions could be easily obtained using the
dynamic programming technigue but did not present examples.

Naslund (1969) also presented a formulation of the
optimal thinning and rotation problem using the calculus of
variations form. Both time and removals were continuous in
value. The approach assumed certain specific,
differentiable functions, e.g., a function relating the
effects of the timing and intensity of thinnings to sales
value of +the final harvest. No examples were presented by

Naslund although solution  technigues were discussed.
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Subsequent efforts by Kac and Brodie {1380) failed to obtain
a solution to Naslund's formulation.

More recent studies have reported practical
applications of dynamic programming to the joint optimality
problem of thinning and rotation length. Brodie et al.
{1978) analyzed the economic impacts of thinning and
rotation in Douglas-fir using dynamic programming. The
major goal c¢f their study was to assess the effects 5f
regenaration costs, initial stocking, quality differences,
site, and logging costs on thinning intensity and rotation
age. The approach of Brodie et al. differed from that of
Amidon and Akin by inceorporating a mortality estimator into
tha stand growth model, allowing more realistic potential
stocking for each age class, and by using the forward
racursion method. Brodie et al. demonstrated that the
appreocaches of Chappelle and Nelson (1964) and Amidon and
Akin (1968) actually do rdetérmine the jointly optimal
stocking level and rotation age ({contrary to Schreuder's
(1971) findings). A major problem with their appreach,
recognized by Brodie et al., was the lack of diameter growth
acceleration in the stand model after thinning.

Accelerated diameter growth should be reflected in
thinning analyses, especially where logging costs are
reduced and income increases with the size and gquality of

harvested material. A study by Brodie and Kao (1979)
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accounted for this problem by using a more complex stand
model and using three state descriptors. These descriptors
were stand age, basal arsa, and number of trees. Sclutions
generated with this framework are the optimal number of
trees and basal area to maintain in each time period, i.e.,
for each age class.

A related approach for deriving optimal stand density
over time was presented by Chen et al. (1980). This méthod
involves using a calculug approach to search for optimal
solutions stage by stage. Chen et al. wused this approach
to derive a set of optimal stand densities and an optimal
rotation where the criterion used was the maximization of
volume harvested. The technique proposed by Chen et al.
incorporates the advantages of both forward and backward
recursion methods. Ths approach isg not readify applicable
to optimization with an ecconomic c¢riterion, however. The
incorporation of price and cost functions prevents the
derivation of a generalized solution because of
differentiability requirements. In such cases, the thianing
Problem can be solved for the discrete case but solutions
are only optimal over the possible solutions simulated in
the discrete formulation (Chen et al. 1980).

A nonlinear programming approach for the simultaneous
Optimization of thinning and rotation was presented by Kao

and Brodie (1980). This approach allows continuous wvalues
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for both the timing and intensity of thinnings. The optimal
frequency of thinning was determined by solving the model
with ne thinnings, with one thinning, with two thinnings,
gtc., until the present net worth critsrion decreased.
Decision variables in the nonlinear formglatioh were the age
for each thinning, the percent normality of the residual
stand after each thinning ({(defining the amount harvested)},
and the age of final harvest. A comparison of this approaéh
was also made to a discrete dynamic programming formulation
of the same problem. The dynamic programming soluticn using
narrow state intervals required much more storage and
computation time. Another advantage cited by Kao and Brodie
for the nonlinear programming formulation was that
additional constraints such as wminimum removals could be
imposed.

Thinning Hardwood Stands

Even-aged hardwood stands in the South are most often
high in density. Stands referred to as poorly stocked are
usually understockaed in terms of trees of high guality or
rreferred species, rather than stems per acre (Gingrich
1970). Thinnings are usually administered to concentrate
growth on the more desirable stems, and remove trees with
Poor form or slower growth rates. In this manner, thinnings
affect both the quality and quantity of wood produced in a

stand. ©Of the information published on hardwood thinning,
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little is based on long-term experimental results and even
less on the economics involved in thinning decisions.

General Considerations. Through the timing and

intensity o¢of thinnings, emphasis can be placed on present
benefits or future benefits. The relative condition of the
residual stand may or may not be of primary concermn. In
hardwood stands, thinnings must be balanced between volume
and qguality. Heavy thinnings may provide too much qrowing
space and result iﬁ epicormic branching (Evans et al.
1975). In many cases, the price differential betws=en high
and | low guality hardwood timber may be the only
justification for thinning.

The effects of density, thinning, and specias
composition in eastern hardwoods were summarized by Gilngrich
(1970). Most of the general discussion in this section is
presented in Gingrich's work. The three factors which most
affect hardwood thinning results are species composition,
tree vigor, and potential stem quality.

Even-aged upland hardwood stands are typically composed
Oof a mixture of species. These stands often appear uneven-
aged due to a wide distribution of diameters. This
characteristic is due in part to differential species growth
(Gingrich 1967, Oliver 1980). Very little data is available
on the biolegical performance of various species mixtures

after thinning due to the large number of possible mixtures.
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Differences 1in dgrowth rates are generally known, however,
and‘thinning plansg in mixed hardwood stands must take into
account the initial composition.

The effect of relative tree vigor on thinning results
must also be considered. The growth capabilities of
residual trees often depend on the degree of past
competition through the ability of crown and root systems to
respond to relesase., The tree vigor aspect presents a sound
basis for thinning hardwoods £rom below as the subdominant
classes exhikit characteristics of greater competition
{Gingrich 1971).

Potential stem guality is another important factor in
hardwood thinnings. Hardwood gquality largely depends on the
proportion of clear bole. In a study of even-aged red oak
stands, Ward (1964) presented evidence for maintaining
higher densities to encourage natural pruning. A study of
the influence of stand density on stem guality in pole-size
northern hardwoods (Godman and Books 1971) classed bole
defects as live limbs, dead 1limbs, bumps, and epicormic

ranches. This study reported +that differences 1in the
nunber and retention of defects among species after thinning
Were primarily influenced by shade tolerance, i.e., the more
tolerant species exhibited the greatest incidence of
defects. Indications that some hardwood species produce

Clear bole more rapidly than others under common age and
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size - conditions were presented by Weitzman and Trimble
(1957). This suggests the existence of differences in grade
potential similar to previously discussed differences in
growth potential (Gingrich 1970).

Ano?her factor affecting the guality of hardwood timber
is sﬁem form. A recent study using two measures of stem
form provided evidence that post-thinning stocking levels do
not significantly affect the stem form of upland caks (Hitt
and \Déle 1979} . Stem form changes ‘were found to be
correl%ted to pre-thinning form, however. Regardless of the
residual stocking level, better formed stems deteriorated in
form after thinning while more poorly formed stemg improved
in form.

Studies have also been presented which attempt to
quantify the quality of hardwood ¢rowing stock. A system
based on the correlation betweeén the number of surface
defects and the probability that the future butt log will be
a certain grade was presented by Boyce and Carpenter (1968).
A guality classification system for voung hardwood trees has
also been developed (Sonderman and Brisbin 1978, Sonderman
1979y . In this system, external tree measurements are used
a5 a basis for predicting the future product potential of
Young hardwood stands. The system is proposed as a possible
2ld to managers in making decisions on cultural treatment

investments.
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Yield Information. Physical responsa data related to

thinning in even=-aged hardwood stands is sparse. It is
unlikély that data will ever be gathered for all
combinations of thinning schedules, species mixtures, site
quality, etec. Work that has been published in this area is
often for certain species under localized conditions.

For predominantly oak stands in the Central States
Region, Gingrich (1971) presented per acre yield resﬁlts
using a fixed 10-year thinning interwval. Results were
presented where thiﬁninqs were initiated at different points
in the lives of even~aged stands. The age at which thianing
was started was a primary £actor determining maximum
production. Per acre vyields were more than 350 percent
higher in stands where thinning began at age 10 rather than
at age 60. Gingrich ;lso found that without precommercial
thinning, the latest effective age for beginning thinning
was between 30 and 40 vears for pulpwood production, and
bétween;SO and 60 years for sawtimber production.

Growth and vyield information for upland ocak stands 10
Years after initial thinning was presented by Dale (1972}.
Thinning intensity varied up to removal of 70~80 percent of
the original stand basal area. The thinning procedure was
designed +to remoﬁe trees in all crown classes, with the

residual stand composed of evenly spaced desirable stems.

The differential effects of species composition on thinning
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response WwWere not incorporated in the presentation of
resuilts.

A study has also been installed in the Boston mountains
of Arkansas to evaluate the growth response of upland
hardwoods to thinning (Graney 1980).  Although thinning
response data are not vyet available from this study,
comparisons of initial stand conditions were made to
Schnur's (1937) yield tables for unthinned oak stands, énd
to s£and conditions reported by . Gingrich (18713.
Comparisons were also made of post-thinning stand volumes to
the predicted wvolumes for thinned upland cak stands in the
Central States Region reported by Dale (1972). ©One goal of
such compariscns 1is to help determine if the results of
thinning studies in the Central States can be applied to
other regions.

Interim results of a continuing study of thinning
effects on even-aged vellow-poplar stands in the southern
Appalachians have been reported by Beck and Della-Bianca
(1970,1972,1975). The findings presented by Beck and Della-
Bianca for vyellow poplar are the most comprehensive
available for any even-aged hardwocod forest type. In the
1975  report, equations and tables are presented for
estimating board-foot growth and vyield, and residual
duadratic mean diameter growth for a range of site indexes,

ages, residual bazal areas, and residual guadratic mean
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diameters. Individual tree responses to thinning are also
discussed.

Computerized hardwood growth simulation has also
received attention in recent years. Simulation methods for
estimating growth and yvield are often the most feasible in
light of the impracticality of field studies covering all
possible combinations of factors affecting responses to
management. Stiff (1979) modeled the growth dynamics of
natural, mixed-species Appalachian hardwood stands. In this
study, a generalized modeling system for the projection of
diameter distributions +through fime was developed to
predict growth and yield in such stands. Possibilities for
thinning were not incorporated, however.

A more general growth projection simulator, applicable
to the Lake States Region, has been developed at the North
Central TForest Experiment Station (U.S. Forest Service
1979). The system is designed to project forest growth and
mortality, with or without harvesting, for any species mix
or stand structure. The basic components of the model are a
Procedure for estimating potential diameter growth, a
brocedure for modifving potential growth to actual growth, a
rule to allocate the total projected growth to individual
trees, and a mortality function (Leary 1979). The model
Provides for three possible _ resolution levels;

differentiation by species alone, by tree sirze and species,
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or by individual trees. Data for estimation of the model
parameters were from even and uneven-aged natural stands and

plantations in the Lake States Region.




II. GROWTH MODEL DEVELOPMENT

Prior to the dévelopment of a hardwood thinning model,

a means of projecting the growth o¢f such stands must be

available. The model must be capabie of projecting the
growth of existing mixed-species stands, and must
incorporatea responses  ©o thinning. Considering - the

important factors 1in modeling such stands will aid in
determining the necessary growth model resolution. This
factor in turn affects the joint considerations necessary to
interface the mixed-species growth model with optimization

procedures.

Resclution Level

Resolution level 1is a primary factor in determining
whether or not a stand model can adeguately meet particular
users' needs. Models yielding information on total wvolume,
volume by size class, wvolume by size class and species,
etc., all have specific applications in forest management.

Recent studies concerned with optimal thinning and
rotation have recognized a need to account for diameter
Class distributions in making such stand-level decisions.
Hann and Brodie (1980) report that diameter distribution
data is important in the planning of milling facilities as

well as applying specified treatments to field conditions.

23
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Hardie (1977) notes that diameter distribution information
is necessary to fully evaluate the benefits of thinning in
loblolly pine stands, when multiple product walues occur.
That is, pulpwood, sawtimber, and pole and piling values c¢an
be assigned based on diameter.

Discrimination by size class is particularly important
in modeling the benefits from hardwood thinning as price
differentials between size classes may be pronounced. .A
further consideration is that hardw00a stands_are ugsually
comprised of mixed-species, each with different growth rates
and value-by-size-class relationships. For a mixed-species
hardwood thinning model +to adequately reflect these
relations, the underlying growth model must provide
information by size class and species over time. This level
of resolution will allow the model to clogely reflect actual
conditions, and will result in thinning prescriptions with

more realistic application in the field.

Growth Modeling Approaches

The method selected to model mixed-species growth must
be combined with a method of determining optimal thinning
schedules. Joint‘considerations are therefore required to
ensure that the necessary interface can be achieved. These

considerations will be discussed in conjunction with two

approaches to stand modeling for mixed-species.
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Diameter Distribution Apprcach

One approach to stgnd modeling which has been combined
with optimization over time involves the use of probability
density functions to describe diameter distributions. The
parameters describing the distributioﬁ{ 2.g9g., the scale,
shape, and location parameters of the Weibull distribution,
are used as decision variables in an optimization procedure.
Optimal wvalues of these parameters describe +the- optimél
residual diameter distributions for each period. This
procedurs was used by Martin (1982} in deriving optimal
management guides for uneven-aged northern hardwoods.

The diameter distribution approach to stand modeling,
however, is not readily applicable to mixed-species stands
unless species are aggregated. That is, while the diameter
distributions of entire stands may be described by such
functions, the post-thinning distributions for separate
species would be unlikely to follow smooth, continuous

patterns.

Stand-Table Projection Approach

Another approach to stand modeling which has been used
with optimization procedures 1s stand-table projection.
This approach simplifies the complex nature of modeling
stand growth and thinping response by isolating certain
growth components. Stand-tables are projected through time

by predicting upgrowthh for each size c¢lass, 1i.e., the
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proportion of trees in each size class that will grow into
the next larger class, during a fixed time period. The
réquired level of resolution may be obtained with this
approach by predicting such proportions for each species and
diameter class.,

As described by Wahlenberg (1941), three factors affect
the upgrowth of trees from a given diameter c¢lass during a
fixed time interval: diameter growth, diameter class siée,
and the distribution of the number of trees within the
diameter class. Upgrowth may be modeled by treating each of
the three components separately, or by predicting upgrowth
directly. Examples of the two approaches may be found in
Hann (1980) and Ek (1974), respectively. A modified version
of Ek's (1974) model was used by Adams and Ek (1974) to
derive optimal management strategies for uneven-aged
hardwood stands.

Adams and Ek {1974) addressed certain aspects of
uneven-aged management, treating mixed-species as
aggregates. The general approach to stand modeling and
subseguent combination with optimization techniques,
however, provides a basis for modeling the even-aged
hardwood thinning problem. That 1is, Adams and Ek used a
stand model comprised of ingrowth, upgrowth, and mortality
functions. Nonlinear programming was then used to derive an

optimal size c¢lass distribution, and an optimal cutting
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policy for achieving the desired distribution. Assuming an
even-aged stand-table projection method which accounts for
individual species, similar techniques could ke used to
derive optimal thinning and rotation for even-aged, mixed-
specles stands. Such a formulaticn would entail achieving a
distribution of zero trees in each diametsr class, for each
specles, in an optimal manhner.

Developing optimal thinning strategies with 'the
approach  outlined above requires a stand-table projection
system for even-aged, mixed-species hardwoods. Concepts

used to develop such a system and the subseguent

specification of eguations will be discussed.

Mixed—-Species Modeling Concepts

As previously noted, Adams and Ek (1974) dealt with
management problems in mixed-species stands, treating
species as aggregates. These authors also considered the
problems of recognizing individual species groups, however,
concluding that a stand simulator at the individual tree
level of resolution would be required (Adams and Ek 13875).
A more recent study concerned with uneven-aged management
concluded that a stand-table projection method could be.
designed to incorporate species {(Hann and Bare 1979). These
authors base thsir conclusion on work inveolving uneven-aged
ponderosa pine. Hann (1980) presented a projection system

for ponderosa pine which recognizes two vigor classes.
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These vigor c¢lasses were modeled in a manner similar to
recognizing two distinct species.

While Hann's (1980) approach for modeling uneven-aged
ponderosa pine is significant, the number of equations
reguired would severely limit attempts at optimization. An
even-aged stand-table projeétion model comprised of two
equations, upgrowth and mortality, for each species/diameter
class combination could be more easily interfaced Qith
optimization prdcedures. Concepts used to model mixed-
species’ hardwoods at the North Central Forest Experiment
Statien (U.S. Forest Service 1979) were used in the present
study to develop a two equation stand-table projection
model.

The growth projection system developed at the North
Central Station was designed to estimate forest growth and
mortality, with or without harvesting, for any species mix
or stand structure. The model 1s comprised of a potential
diameter growth procedure, a process to adjust potential
growth to actual grewth, a wmethod of allocating projected
growth to individual trees, and a mortality function (Leary
1979y.

One of the most significant concepts employved in the
North central Station study is the approach of estimating
diameter growth by first bracketing the estimate between

“ero and an upper potential. The upper potential represents
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diameter growth under ideal circumstances, e.g., opan-grown
conditions. This potential is then adjusted downward to an
estimate of actuai diameter gfowth. The downward adjustment
is a function of stand conditions reflecting competition,
e.g., stand density measures. Thinnings or other harvests
are incorporated since cuttings reduce stand density,
decreasing the downward adjustment of potential growth,
thereby increasing the diameter growth estimate for the
residual stand. The effects of cutting different speciss
are incorporated by including stand density measures related
to each species. That is, both total stand and separate
species density measurss are included.

This general approach to modeling growth was used by
the U.S. Forest Service (1979) in estimating total diameter
growth on mixed-species plots. A similar approach is used
in the present sfudy to model the diameter upgrowth
component of an even-aged stand-table projection system for
mixed-species stands. The development and specification of
the necessary equations will be discussed, 1including the
assumptions, advantages, and disadvantages inherent in the

model specification.

Modal Specification

Stand-~table projection models for uneven-—aged stands
mist incorporate ingrowth, upgrowth, and mortality

bProcesses. The ingrowth process allows trees to grow into
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the smallest diameter <c¢lass represented, and 1is not
necessary to model even-aged conditions. That is, while
even-aged hardwoods may appear uneven-aged by diameter
distribution, the appearance 1is attributed to differential
species growth rather than ingrowth of younger trees into
the stand (Oliver 1980). Even-aged stand-table projection
may therefore be accomplished by modeling the upgrowth and
mortality processes alone. ‘
Uggrowth/

As previously discussed, the approach used to model the
upgrowth component in the present study includes estimating
a jpdtential proportion of upgrowth, and an adjustment +to
reduce the potential to an actual estimate. The estimated
ﬁpgrowth occurs during a fixed growth peried, e.g., 5 or 10
years, and is estimated for each species and diameter class.

The upgrowth relation may be represented symbolically as:

UPG j4i = (PPijk ) (ADJ34% ) (QTYigk-1 ) (1)

where:
Subscripts represent species i, and diameter
class j, after growth period kK,
UPG is upgrowth (in units projected),
PP is potential proportion of upgrowth,
ADJ is a downward adjustment (also a

proportion), and
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QTY is guantity (in units projected).

All symbols used in the present study are defined in
alphabetical order in Appeﬁdix A. Pricr to considering the
potential and adjustment portions of relation (1) in detai%,
two 1important considerations will be discussed: the units
projected, and the relationship between diameter class size
and the length of thé growth period.

Stand-tables yield information on the numker of trees
per unit area by diameter class, and as usually applied,
stand-table projection invelves projecting numbers of trees.
As the érowth model is to be combined with an optimization
procedure, however, other projection units were considered.
Both basal area and volume were evaluated as alternatives to
numbers of treas as projection units because of their
continucus nature, possible use as measures of stand
density, and in the case of volume, the ability to assign
per unit values. DNumber of trees per unit area was selected
as the projection unit, however, for reasons to be discussed
following the upgrowth and mortality specifications.

Another consideration regarding the upgfowth compohnent
is the relationship between diameter class size and the
length of the growth period. Recognizing the periodic
nature of much forest growth data, relation (1) represents
Upgrowth over a fixed +time interval. As presented in

relation (1), a single upgrowth equation would be regquired
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for each diameter class and species, at the end of each
growth period. The specification therefore assumes that the
growth period is short enough, or the diameter classes large
enough, that no trees will advance two or more size classes.
Providing for other relations would ;equire more upgrowth
aguations, e.g., an equation for the proportion moving up
one diameter class, an equation for the proportion moving up
two diameﬁer classes, etc. The specification of additiénal
equations should only be cof concern in cases where extremely
fast growing speclies are moedeled, or where remeasurement
data were obtained after a very long growth period.

Potential Proportion. The purpose of estimating a

potential proportion of upgrowth is to provide an upper
limit on the actual estimate. The potential proporticon
moving up one diameter class is related to stand age, site
quality, and past competition, but is unaffected by present
harvesting ‘decisions. This estimated upper limit 1is
therefore a constant with respect to optimization,
Harvesting affects the degree to which the estimated
POtential is realized, but not the estimated potential
itself. For this reason, specification of a functional form
for estimating potential upgrowth is not required prior to
developing a formulation for thinning optimization.

Although functional specification is not required at

i . . —_ . " N
this stage, several factors affecting the estimation of
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potential upgrowth may be considered. Open-grown
conditions, fqr example, have besn judged unsuitable for
diameter growth studies due to differences (compared to
stand~grown trees) in the distribution of increment between
the tree bole and branches (Hahn and Leary 1979). Forest-
grown conditions in which trees of a particular diameter
clags hold domlnant and codominant positions in the canopy
are favored. Under these conditions, stand age and site
guality are factors which should affect the potential
diameter growth of trees of a given species, in a particular
diameter c¢lass. That is, information on tree diameter,
species, age, crown position, and site quality should be
sufficient to predict potential diameter growth over a fixed
time interval. These wvariables should reflect the degree of
suppression experienced, and therefore the potential ability

to respond to release.

Adiustment Procedure. The adjustment process provides
an estimats of the proportion of potential that is actually
realized. The proportion realized therefore reflects the
growth rate of trees of the relevant diameter class and
Species. As thinning affects competition and therefore
diameter growth rate, prior to formulating a problem to
derive optimal thinning schedules, the functional form of
the adjustment procedure must be specified. Due to a lack

of data, an adjustment function was tentatively specified
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based entirely on joint biological and optimization
considerations.

The diameter growth rate of a given tree should be
inversely related to stand density. The adjustment wvalue
praedicted in the present study corresponds to diameter
growth rate, with higher proportions of potential realized
as stand density approaches zero. The marginal effects of
density on growth rate should also decrease as densify
increases.. These relations, as well as the criterion that
the proportion realized must lie between zero and one, were
modeled with a negative exponential specification of the

adjustment process, as presented in relation (2}.

/

= oenppdd 843
ADJ ;s = EXP[b1 (V T’k"-l)+m£1b“‘+l (Vm,>5,k-1 )1 (2)

where:

ADJijk is the adjustment wvalue ?or species i,
diameter c¢lass j, after growth period k,

%gkrlis total volume after period k-1,

%hzj,kéﬁs volume of each species {m=1l,...,8) in
diameter classes greater than or eqgual to J,
after period k-1, note that m is used as an
index or counter in relation (2),

S is the number of species, and

bijSO,A:l,...,S+l are parameter estimates for species

i, diameter class j.
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Relation (2) incorporates the necessary properties for
the adjustment process, using stand volume as a measurs of
density. As volume approaches =zero, the proportion of
upgrowth potential realized approaches one. Increasing the
residual wvolume after period k-1 reduces the adjustment
value for period k, i.e., less upgrowth potential will be

realized. Also, the marginal reduction for period k

decreases at a decreasing rate, as density measures

increase.

Although different measures of denéity were proposed,
the genefal form of relation (2) was used by Hann (1930) in
modeling basal area growth in uneven-aged ponderosa pine.
The density wvariables specified in the present study were
based on considerations of both. thinning response and
optimization. | That 1s, as thinning should not reduce
diameter growth rate, measures were chosen such that all
partial derivatives with respect to density were strictly
negative. This condition resulted in rejecting measures
which might better reflect the relative position of each
diameter class within the stand. For example, Stage (1973)
defined variables reflecting the proportion of total stand
basal area which occured in diameter classes smaller than
the «class being modeled. Variables representing the
Proportion of stand veolume in greater diameter clasges were

considered in the present study, but were rejected due to

o
2
i
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the indsterminate algebraic sign of the first derivatives
with respect to density.

Variables indicating the volume of each species in
diameter classes dreater than or equal to the class modeled
were chosen for 1tTwo reasons. The first 1z that the
direction of change implied by changes in these wvariables is
thg. same as for total wvolume. That 1s, 1if trees in a
greater diameter class are cut; poth total wvolume and-the
volume 1in greater diameter classes are reduced. This
relationship is indicéted. by the strictly negative first
derivatives with respect to wvolume. The second reason for
choosing volumes in larger diameter classes 1s to provide
for a greater 1mpact on growth rate when trees in these
classes are cut. When trees in lower diameter classes are
harvested, for example, only total volume is reduced and the
adjustment wvalue for a particular species/diameter class
combination increases accordingly. When the same volume 1is
cut from trees in larger diameter c¢lasses, however, the
increase in the adjustment value is greater. This results
because the same reduction in total volume is augmented by a
reduction in the appropriate wvariables for larger diameter
classes.

Optimization aspects were also considered in specifying
the adjustment process egquation. These considerations dealt

with the convexity of the equation, and will be discussed
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following the development of an optimization procedure for
mixed-hardwoods.

N Another consideration regarding the adjustment process
is the recogniticn that 211 relation (2) parameters cannot
be estimated as the function is specified. That is, for the
smallest diameter class modeled, the variables representing
volumes in diaméter classes greater than or equal to the
smallest class comprise the total volume of the stand. Efom
the perspectivevof estimating parameters, a singular matrix
results for the independent variables. For this reason, in
estimating the parameters of relation (2) for the smallest
diameter class, it will be necessary to use wvolumes in
diameter classes greater than but not equal to the smallest
class.

Finally, although the -adjustment process was analyzed
in order that optimization could be considered, the
specification is tentative. Final determination of an
appropriate specification requires that data be available
for use in analyzing and evaluating alternate forms. The
proposed specification was used, however, in formulating and
evaluating an optimal thinning and rotation procedure for
mized-hardwoods.

Mortality
Mortality is the second component of <tThe even-aged

stand-table projection system. The mortality referred tc in
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this study represents regular or noncatastrophic mortality,
i.e., that resulting from resource competition {Lea 1971).
As with the adjustment process in the upgrowth component, a
mortality relation must be specified prior to formulating an
optimization procedure. Just as harvests affect growth
rates of residual trees, mortality rates are influenced by
harvesting. Also, as with the adjustment process,
specifying the mortality relation was influencéd by Eoth
biclogical and optimization considerations.

Monserud (1976) predicted overstory tree mortality in
northern hardwoods using diameter and diameter increment, a
competition index, and the length- of growth period as
independent wvariables. In the present study, diameter and
the length of growth period are fixed, Indications of
diameter increment and competition were modeled in the
adjustment process of the upgrowth component, however. The
same variables which affect diameter growth rates were
therefore used in the present study to model the proportion
of mortality for each diameter class and species. The
proposed eXpression to represent the proportion of trees
dving during a particular growth period 1is presented in

relation (3).

I & s 4]
PDijp = 1-EXPID 39(Vp,k-1)% I Pstowm (Vm,>3,k-1 )1 (3)




where:

PD is proportion of trees dying, and

Other variables are as defined for rslation (2).

Relation (3) expresses the proporticn of trees dying as
a function of the same stand density measures used to model
the adjustment to potential upgrowth. Using the same
variables was biologically reasonable and was desirable from
an optimization standpoint, as <he number of Variables
necessary to model the optimization problem is minimized.
Relation (3) alsc has the regulired property that the
proportion of trees dying must lie between zero and one,
with mortality approcaching zero as stand density appfoaches
zero. The proportion dying asymtotically approaches one at
extremely high densities. »

Again, as with the adjustmeﬁt process, the mortality
expression specified 1is tentative but was necessary for
considering thinning optimization. Further study, including
estimation, is necessary before a final specification can be
proposed. Alse, in estimating parameters for relation (3),
the singularity problem discussed with respect to relation
(2) would be encountered. The mortality proportion for the
smallest diameter class would therefore be estimated using
volume in diameter classes strictly greater than the

smallest,.
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Discussion

The growth model presented in the present study, with
the updgrowth and mortality components specified, projects
future numbers of trees for each species/diameter class
combination. There is no ingrowth component for even-aged
stands and the total number of trees. declines as stand age
increases. While the total number of trees decreases,
however, étand volume increases with age, as the initial
diameter'distribution shifts into larger diameter classes.
Directly projecting stand'volume or basal area by diameter
class in a manner similar to that proposed for numbers of
trees, however, is not as straightforward. Relationships
must‘be incorporated into the projection model to ensure
that as upgrowth occurs, stand wvolume or basal area also
increase. If a diameter class contains 100 cublc feest of
volume, for example, and upgrowth is 50 percent, the 50
cubic feét advancing into the next higher c¢lass would have
to be convertad to a greater volume or total volume growth
would not occur during the period. No explicit
consideration 1s required when numbers of trees are

projected, however, as volume automatically increases when

trees are shifted to larger diameter classes. For this
reason, stand volume variables were specified as more
relevant measures of density than numbers of trees. Using

numbers of trees as a density measure implies lower
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densities with increasing stand age, as the total number of
trees decreases.

The stand-table projection approcach to modeling forest
growth 1s a difference equation method, as opposed to
differential equation or instantaneous rate c¢f change
methods. By projecting growth over fixed time intervals,
the approach recognizes the periodic nature of much forest
growth datai Data regquirements £for estimation are noﬁ as
severe as might be expected for mixed-species, however, duse
to the step~by~step development, Remeasurement data are
required to estimate the potential upgrowth preportions, and
the adjustment process and mertality component parémeters.

Several moedeling decisions must be made prior to data
collection and component estimation. For example, although
the projection system may be specified for any number of
species, the number modeled for a given stand may be reduced
by combining species with similar growth characteristics and
value-by-size~class relationships. Also, although the
growth period is fixed, diameter class size does not have to
be the same for all species considered. Decisions
cencerning aggregating sﬁecies, and diameter class size by
Species group must, however, also consider the effects on
optimization. The number of variables in the formulation,
for example, is directly related to the number of species

group/diameter class combinations recognized.
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Growth and thinning response in mixed-species hardwoods
is difficult to model due to the biological diversity of
such stands. Also, considering the need to integrate the
growth model with an optimization procedure limits the
possible approaches to those with relatively simple equation
forms. The stand-table projection system proposed in this
study was developed considering the necessary requirements,
and was uéed in feormulating an optimal thinning and rotatfon

procedure.




ITI. THINNING MODEL EORMULATION

The thinning model formulated in the present study will
enable derivation of optimal thinning schedules for mixed-
species hardwcod stands. The formulation will also enable
determination of optimal rotation age, as final harvests
will be included in the model. Inplications of the growth
model for the thinning model formulation will be discussed,
followed by several factors regarding hardwood thinning
which should be reflected by the formulation. Dynamic
programming will also bhe considered, followed by a nonlinear
programming formulation of the hardwood thinning problem. A
complete statement of the hardwood thinning formulation,

including variable definitions, is presented in Appendix A.

Growth Model Ihplications

The - stand-takle projection model, as previously
specified, provides information on the number of trees by
diameter class and species. This level of resolution will
allow the thinning model to specify the number of frees to
harvest over time, by diameter c¢lass and species. The
specified growth model uses volume measures to reflect stand
density in the upgrowth and mortality relations. Average
volumes per tree for each species/diameter class combination

represented are therefore necessary. Average volumes are
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also necessary to derive dollar wvalues for trees scheduled
for harvegt in the thinning model.

The growth model also affects the thinning model
formulation in that the length of tﬁe growth period
determines the thinning interval. That is, as growth is
projected over fixed periods, opportunities to thin the
stand are limited to firxed intervals, and rotation length is
limited to discrete mﬁltiples of the growth period. Witﬂ a
stand currently of =zage 30; for example, using a 5S-year
growth period would result‘in possible rotation lengths of
30, 35, 40, etc. Final results from the thinning model
should therefore be considered prior to =zetting the growth
- period length in the stand-table projection system.

An alternative +to using the projection modesl growth
interval was suggestad by Adams and Ek {1975). If growth
during the fixed period is assumed to accrue in a certain
fashion, 'e.g., linearly, projections are possible for
intervals other than initially implied by the growth model.
This approach may be useful, for example, if growth data ar
avallable but the remeasurement period is inadequate from a
thinning model standpoint.

Finally, the growth model will be used in a
deterministic manner in the thinning model formulation.
Possibilities for incorporating the stochastic nature of the

growth model may be considered after developing a
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deterministic formulation.

Hardwood Thinning Factors

The major aim in formulating a thinning model in the
present study was to mathematically define the problem of
deriving economically optimal harvest schedules for mixed-
species hardwoods. The formulation must reflect the
relevant economic and biological factoré concerning harvests
in such stands. Several factors which should be represented
by the model will be discussed.

Harvests cannot exceed the volumes that exist and that

can be grown during a given time peried. The formulation
must therefore limit harvests to the stand-table
projections, i.e., the projection system must be an integral

part of the thinning model formulation. The first phase of
formulating the thinning problem will therefore bke to
represent the  stand-table projection systemn in an
optimization framework.

After representing the projection system in the
formulation, other factors may be considered. An economic
cbjective, for example, must be formulated. As shown by
Gaffney (1960), and later by Samuelson (1976), maximization
¢f Faustmann's (1849) soil expectation wvalue (SEV) is the
Ccorrect «c¢riterion  for setting rotation length. SEV
represents a present value or maximum bid price for bare

land in forestry uses and in simplest form may be expressed
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as:
# SEV = HV/({1+r)EL -1) {(4)
where:
HV=harvest wvalue,
r=interest rate assumed, and
RL=rotation length.

Equation (4) assumes a timber income of HV dollars,
every RL years in perpetuity. For typical upland hardwood
stands, this assumption is untenable. As discussed by
Klemperer et al. (1982), however, equaticn {4) may be re-

stated for the case where only one rotation is considered,
as presented in equation (5).
SEV = (HV+SEV)/(1l+r)RL (5)

Maximizing the present wvalue of land and timber over a
finite investment period is therefore consistent with a
Fausfmann formulation and is used as the economic objective
in the present study. Further discussion of this aspect of
the hardwood model will be ©presented following the
formulation of a mathematical programming objective
function.

Another consideration in formulating the hardwood .
thinning model is representing tree quality. Reflecting
differences in tree quality and recognizing the effects of
thinning on this factor are especially important with the

Specification of an economic objective,. That 1is, tree
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quality is a major determinant of per unit stumpage prices,
and can be adversely affected by heavy thinnigqs in hardwood
stands,

Finally, ths thinning mcdel formulation must ensure
that the resultsﬂﬂfrom optimization can be applied. For
example, it may be necessary that vﬁlume removals exceed
certain minimum levels, as landowners may be uhable to
market smaller guantities. Also, as per unit harvesting
costs may be inversely related to wveolume, and as stumpage
prices are directly related to harvesting costs, it may be
necessary to model per unit prices in relation to volume
removed,.

Several factors have been discussed which should be
reflected by the hardwood thinning model. The ability to
incorporate these factors is a primary formulation goal. A
major formulation emphasis will therefore be té develop a
thinning model that is theoretically complete, i.e., a model
capable of reflecting the important economic and biological
relationships. If optimal thinning schedules and rotation
length are to be derived, however, the feasibility of
solving the model must also be considered during the
formulation. A dynamic programming formulation of the
Problem was considered due to the manyAprevibus applications

for thinning softwood forest types. Nonlinear programming

was used, however, to develop a complete formulation of the




hardweood thinning model.

Dynamic Programming

Ag reviewed, several studies have applied dynamic
programming to the problem of thinning and rotation for
softwoods. The number of calculations necessary to obtain
optimal thinning schedulés is greatly reduced using dynamic
programming, as each possibility need only be considered
once. For this reason,' a discrete dynamic programming
formulation was considered for the mized-species hardwood
thinning problemn. vFormulating the thinning model as a
dynamic program was rejected, however, for both wmodeling
flexibility and dimensionality reasons.

RPepregsenting the important factors in thinning hardwood
stands requires a great deal of modeling flexibility. A
theoretically complete formulation must reflect the factors
discussed regarding thinning in mixed-species stands.
Previous épplications of dynamic programming for softwood
stands, however, have not shown evidence of sufficient
modeling detail for the hardwood problem.

State-space dimensionality is another reason why the
thinning model was noé " formulated as a dynamic¢ program.
Dimensionality becomes a problem for thinning studies when
the resolution level involves harvests by diameter classes
oOVer time. As digcussed by Hann and Brodie (1980) for a

single species, let the discrete dynamic programming state
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descriptors be classes'of numbers of trees (TC), in each of
(D) diameter classes, for each of\ the age periods (A)
represented in the network. The network space is of
dimensiqn D+1, and the number of nodes in the network is
A(TC)P.- The difficulties multiplyrwhen_mixedfspecies are
recognized.A Letting S represent the number of species, Di
the number of diameter classes for the .ith spécies, and
assuming each species has a common wvalue for TC, the nﬁmber
of dimensions of the network space is ingi+i, and the
number of nodes 1in the network is A(izlﬁchh'). For
example, for a problem representing é stand with two species
for five age periods, recognizing teﬁ TC classes for each of
ten diameter classes per species, the number of dimensions
of the network space would be 5+5+1=11, and the number of
nodes in the network would be 5(10!'9+10'1)=10'!, or 100
billion. As noted by Hann and rodie (1980), the
theoretically ©possible quickly Dbecomes impossible” in
Practical applications of dynamic programming to thinning
problems recognizing diameter classes.

A recent study by Riitters et al. (1982) partially
incorporated diameter classes in a discrete dynamic
programming problem. Optimal thinning and rotation were
derived for ponderoga pine, considering beoth timber and
forage production as outputs. Diameter -information was

stored to enable the use of a diameter-class stand growth
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model, allowing more realistic representation of the stand
and of the effects of quality premiums. Thinning decisions
for different diameter classes werae not modeled, however, as
each thinning was assumed to remove a constant proportion of
trees from each diameter class. The ‘effects of diameter
distribution on thinning were thus only partially
represented in the dynamic programming model for ponderosa

pine.

Nonlinear Programming

Nonlinear programming was successfully applied by Adgms
and Ek (1974) in a étudy recognizing diameter classes in
uneven-aged hardwoods. The formulation developed in the
present study, however, must recognize gspecies as well as
diameter classes, for even-aged hardwood stand conditions
and management geals. A proposed formulation will be
presented and discussed, followed by convexity and problem
size considerations.

Model Formulation

Selecting appropriate decision wvariables is a primary
step in model formulation, Numbers of *trees to cut from
each species/diameter class combination, after each growth
period were chosen for the thinning probleﬁ. Thinning
guides will thus specify exact numbers to harvest from each
combination, and the affects of such removals on future

growth and harvest wvaluss will be considered during
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optimization. The nonlinear pregramming constraints and
obijective function were formulated to represent the
previously discussed hardwood thinning relaticnships.

Constraints. Asg previously discusged, the first phase

in formulating the hardwood thinning problem involved
representing the stand-table projection system. That is,
constraints were developed to limit harvests, and to reflect
the effectg which cuttings would have on future growth. The
following system of eguation sets was developad in a manner
similar to that of Adams and Ek (1974) for representing

growth in uneven-aged stands.

R I c

Nijk‘: Niﬂc - Nijk {i=1,...,5 3=l,...,ni L=0) (8)
R R u M C
= - - N -
Nive ™ Nigeer ™ Mage T Nige T Mg (7)
CT (i=1,...,5 Jj=1 k=1,...,G)
R R U M C U
N = N - N - N - N + N 8
13k 1jk-1 ijk 13k i3k Ii,j-l,k (8)
(i=1,...,8 3=2,...,n4+k1 k=1,...,G)
R - U c . N _
Njijx = Ni,j-1,k = Nijk (i=1,...,8 J=ni+k k=1,...,G) (9)
Njje 2 0 (i=1,...,8 3j=1,...,njij+tk k=0,...,G) (10)

* denotes R,1,C,U, and M
where:
Nijkznumber of trees of species i, in diameter
class j after growth period k, and superscripts

R,1,C,J, and M dehote residual, initial, cut,
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upgrowth, and mortality numbers, respectively,

S=number of species,

G=number of growth periods,

n;= initial number of diameter classes for
species i,

Nwiﬂiand N?jk are from the stand-table projection
model ,

FEquation sets (é) through (9) define the residual
number of trees ifor each speéies/diameter class combination,
after each growth period. Residual numbers are necessary
for projecting growth in succeeding periods with the stand
model . In this manner, thinnings affect growth during all
preriods after they occur. Relaticen set (10} merely
represents non-negativity restrictions for all vafiables.
Ngﬂ£ and N?jk ferms are variables in the formulatiofi, while
the N&%ﬁ terms are constants, and the thi and N%k terms
are from the stand growth model.

As presented in equation set (&), the first thinning is
allowed to occur now, i.e., after_growth period zero. The
residual numbers of trees after initial thinning, by
diameter class and species, are calculated as the initial
number for each combinatien minus the number cut. Allowing
thinning to occur immediately makes possible G+1 harvests,

l.e., now and after each of G growth periods. Values of

Zero for the decision wvariables, of c¢ourse, indicate no
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harvesting, and it is assumed that final harvest of the
stand will occur immediately after the final growth period.

Equation set (7) defines the residual number of trees
in the smallest diameter class for each species, after

rowth periods 1 through G. -These numbers are defined by

the corresponding residuals after fhe preceding period,
minus upgrowth intc the second diameter c¢lass, minus
mortality during the growth interval, minus the number cut.
Bguation set (8) defines the residual number of trees for
all diameter classes except the =smallest and largest after
each growth period, for each species. For diameter classes
2 through ni+k-l, a conmponent must be added to reflect
upgrowth from the class just smaller. - Equation set (7)
therefore differs from equation set (8) merely because for
even-aged stands an upgrowth component is not added to the
smallest diameter class for each species.

Equation set (9) defines the residual number of trees
in the largest diameter class for each speciss, after each
growth period. These residuals are comprised entirely of
upgrowth from the next lower diameter c¢lass, minus the
number cut. The number of diameter classes for species i
after growth period k is repressnted by ni+tk, as the number
of diameter classzses recognized for each species increases by
cne for each period projected. This results for each

Species ag upgrowth from the largest diameter class forms a
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new highest diameter class, after each period.

In constraint sets (7)), (8), and (9), upgrowth and
mortality expressicns occur. These terms correspond to
stand-table projections, expressed as numbers of trees.
Upgrowth and mortality are estimated by multiplying the
estimated proportions by the appropriate residual number of
trees at the start of the growtﬁ‘period. The projection
model upgrowth and mortality expressions, written in terms
of the thinning model decision Variabies, are presented in

relations (1ll) and (l2), respectively.

U R ij R S5, ij R

M R ii R s 44 R
Ny Nijp-1 (1-EXPID 30 (Vg )+mfl(bs+2+m (Vi 53,2001 (12)

where:
R g n%l-k-'l ; R ' i
th_l = o1 g1 (Viijjk_l)—total residual volume

of the stand at the start of growth period k,
where Vij is averages volume per tree of species
i, diameter class j,

R =IH; ﬂl(V N R J=residual volume of

m,>j,k-1 Q=3 mq  mgk-1
each species (m=1l,...,8) in diameter classes =]

(g is a diameter index ranging from j to
ni+k-l), at the start of growth period k, and
Other wvariables are as previocusly defined.

Relation (11} represgentgs the number of trees of species
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i, advancing from diameter c¢lass j to j+1 during growth
period k. This number is the corresponding number at the
beginning of the growth interval multiplied by the product
of the appropriate potential proportion and the adjustment
value (from relation (2}). Relation (12) represents the
number of trees of species i, diameter class j, which are
projected to die during growth period k. This number is the
corresponding number af the beginning of the growth interﬁal
multiplied by the proportibn dving (from relation (3)).
Ralations (11) and (12) may Dbe substituted for the
correéponding terms in constraint sets (7);, (8), and (9).
After the appropriate substitution in eguation set (73, for
example, and after comkining terms, constraints of the form

presented in relation (13) result.

R R . ij R s 1] R '
Nige™ (Ngrea J(EXPID o4 (Vip 1 )% T (Batoim (V> 3,6-1 )11 (13)
ij R s 1] R c
~(FPyqy JEXP[by W:,k«l )+ mil(bm-’rl (Vin,>4,k-1 )3 1) =My
(i=1,...,8 j=1 k=1,...,G)

Constraint set (13} represents the residual number of

trees in the smallest diameter class for each species, after

each period. Similar results are obtained upon substitution

of relatiomns (11) and (12) in constraint sets (8) and (9).

These results are presented in the complete model statement

in Appendix A.

The constraints expressed in equation sets (7), (8},
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and (9) were specified to explicitly define residual numbers
of treés. These definitions are still reflected after
substituting for the growth model terms, however,
Constraint set (13), for example, for the appropriate
diameter class and species after each growth period, may be

interpreted as:

[Residual #trees)

il

[#Living] - [#Upgrowthl - [#Cut]

Similar interpretations apply to the other constraint sets,
after substituting and combining terms. For larger diameter
classes, however, an upgrowth term is also added

Harvesting effects on quality and minimum harvest
levels were also considered in formulating constraints in
the thinning model. Two aspects of tree quality were
congidered in the model formulation. The first, reflecting
differences in quality by size class and species, will be
discussed in association with the objective function. The
gecond aspect, the influence of thinning on quality, was
modeled as constraining the volumes removed during thinning.
That is, thinning volumes may be constrained by setting
upper bounds, preventing thinnings heavy enough to result in
quality losses from epicormic branching, enlarged lower
limbs, etc. For upland oak stands, for example, Dale (1972)
recommended that thinnings be constrained to leave at least

30 percent stocking based on Gingrich's (1964) tree-area
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ratio equation. In general, such constraints should be used
to ensure that residual volumes are sufficient to maintain
the initially assumed value-by-size-class relationships
through the £final harvest. Equation set (14) -represents
such consgtraints for thinning wvolumes removed after each
growth period.

8 n4it+k

C
- ;“' I3 S = - e 7= 1
I 5 (Va5 Vi) € Hy (=0, ...,G-1) ¢14)

where:
Hqr represents a maximum harvest volume after
growth period k, and
Other variables are as previously defined.

As cutting constraints should not apply to the final
harvest (after growth period G), constraint set {14) allows
maximum thinning levels up through period G-1. While
constraint set (l14) prevents thinning tco heavily because of
possible adverse effects on tree qualitg, constraints were
also considered for marketing reasons. That is, landowners
may be unable to market small thinning volumes, requiring
minimum total wvolumes for each thinning. These constraints
should -only be observed, however, if harvesting occurs.
Specifying minimum thinning wvolumes must not preclude the
possibility of net cutting , i.e., cheoosing not to thin.
Constraint sets (15) and (16) are specified to allow setting

minimum levels for total volumed removed, if thinning is
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performed.
s nit+tk c
z (Vi.,N ijk) = HZka (k=0,...,G-1) (15)
i=1 j=1 -~
0 2 X421 (k=0,...,G-1) (16)
where:

H o is a minimum harvest volume after period k,
significant only if thinning occurs,

Xy =1 if thinning occurs after period k, or
equals O otherwise,-and

Other variables are as previously defined,.

Constraint set (15) represents the necessary
relationship after each relevant growth periocd, assuming X x
equais 1 when thinning occurs and 0 if it does not occur.
If thinning occurs after a certain growth interwval, for
example, and szl, constraint set (1%) results in a thinning
volume greater than or equal to HZk' If thinning does not
take place, however, and X=0, the right side of the
relevant inequality is insignificant. To ensure that Xy is
unity if thinning occurs after peripd k, the right hand side
of constraint set (l14) is changed to Hlkxk, as presented in
the complete model statement of Appendix A.

The wvariable Xj, represents the binary choice of
Thinning versus not thinning after period k. Allowing Xy to
range between 0 and 1, however, avoids the differentiability

and combinatorial problems associated with incorporating
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discrete 0-1 wvariables. The ¥y variables may be permitted
to wvary continuously between 0 and 1, with extreme discrete
values being forced by suitably adjusting the objective
function. That is, selegcting M as a large positive
constant, one may add the objective function termsrpresented
in relation (17).

~MH (1-Xy) (k=0,...,G) {(17)
These terms penalize values of X; different from either O ér
l. Provided M 1s large encugh to offsef any potential gains
from non-hinary ¥ values, optimal values close to either O
or 1 will result,

The relation presented in (17) is convex, vet the
objective is to maximize present value. The term therefore
results in a nonconvex relationship. The nonlinear
programming problem is already nonconvex, however, as will
be demonstrated subsequently. Specifying appropriate wvalues
for M will be considered in demonstrating the formulated
thinning model. An alternative to the preceding technique
would be to solve the problem for fixed (0,1) values of the
Xy variables, comparing the optimum objective wvalues
obtained in each case.

Constraint sets (15} and (18), and the objective
function terms in (17) provide a means of modeling thinning
volumes considered minimum for marketing reasons, Certain

harvest lavels may also be reguired to recover the fixed
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costs associated with thinning. This &aspact of the model
formulation, however, will be discussed in association with
the objective function.

Objective Function. Maximizing the present wvalue of

both land and timber was specified as the economic objective
for the hardwood thinning model. The objective function was
formulated as the present wvalue of all timber harvested,
plus the present wvalue of selling the land after final
harvest. While owners of hardwecod timberlaﬁd may or may not
wish to sell their land after final harvest, representing .
the possible wvalue 1is necessary to determine the final
harvest age which maximizes the present value of both land
and timber. The land sale value assumed therefore replaces
SEV in the numerator of equation (5). The wvalue assumed for
land sale may be higher than the SEV, if alternative uses
for the land are considered.

Decision variables for the hardwood thinning model were
specified as the number of trees to <cut frem each
species/diameter class combination, after each growth
period. The important elements for determining the present
value of timber harvests are thereforese available. That is,
size and species should adequataly reflect per unit timber
values, and the relevant growth periocds define <the future
péints in time when harvest incomes occur. Equation (18)

represents the objective function 1in present wvalue terms,
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assuming constant per unit prices.

G 3 8 néfk[ kt] C ]
Maximize:PV = b2 b3 Pyt S{l+r N,
UZott &y g5 1R /0er) 11k
“MX(1-X )1 + [L/(1+r)5F]y (18)

where:

PV=present value o¢of land and timber,

Pij=stumpage value per tree for species i,
diameter class j, calculated as the price
per unit of volume times the average volume
rer tree,

r=real alternative rate of return,

t=number of years per growth period,

L=land sale value, and

Cther variables are as previously defined.

The objective function should‘ﬁadequately reflect
differences in wvalue due to quality, as prices are input by
size class and species. The thinning model is intended for
guidance in making stand-level decisions. For a given
stand, such quality wvariables as proportion of clear bole,
limb size, etc., should be closely related to diameter class
and species. The per unit prices assumed for a given stand
should therefore reflect distinctions between products such
as pulpwood and sawtimber, as well as any gqguality
distinctions which may be associated with the larger size

classes in the stand. As previously discussed, the thinning
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model may also include constraints to ensure that guality is
not adversely affected by thinning, thereby maintaining the
initially implied price/quality relationships for the stand.

As seen in equation (18), a present value for land sale
after period G is added to the present value of timber from
thinnings and final harvest. This term is a constant in
deriving optimal thinning schedules for a given rotation
age, but will affect the determination of which rotatién age
is optimal. That is, optimai rotation length may ke derived
by solving the thinning probklem for one growth period, two
growth periods, etc., and examining the resulting present
values of land and timber. Optimal thinning and rotation
are thus simultaneously derived, comparing the present
values from solving the thinning model for increasing
numbers of growth periods.

Hérvesting ‘costs were the final aspect of hardwood
thinning modeled in the objective function. A theoretically
complete thinning model must allow prices received to
reflect the costs of thinning. Per unit prices may, for
example, be modeled in relation to the proportion of the
stand harvested. Incorporating an assumed vrelationship
between stumpage prices and the stand proportion harvested
Was considered, as total wvolume cut and total stand volume
May be derived from the wvariables N Sﬂ£ and Iq?jk' Such

relationships, however, result in a fractional objective
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function, an undesirable property in programs with nonlinear
constraints.

In a Douglas-fir thinning model, Brodie and Kao (1979)
modeled stumpage prices and variable logging costs 1in
relation to the quadratic mean diameter of trees removed. A
fixed entry cost for thinning was also subtractéd from the
value function. In another dynamic programming application,
Riitters et al. (1982) modeled the contribution of tiﬁber
harvests to the return function as the present wvalue of the
difference betweaen total harvest wvalue and a fizxed thinning
entry cost. Total harvest wvalue for a particular thinning
was calculated as the sum over all diameter classes, of the
number ©f trees harvested multiplied by a constant stumpage
price for each class. As each diameter class is explicitly
recognized in the function, wvariable costs are reflected by
the per unit stumpage prices assumed for each clasé.

The approach used in the present study for
incorporating harvesting costs in the hardwood thinning
model is similar to that of Riitters et al. (1982). That
is, wvariable costs of thinning should be reflected by the
per unit stumpage prices assumed for each diameter class,
vet fixed entry costs will be subtracted for each harvest
which occurs. The approach used to incorporate such fixed
costs involves using the Xy variable created to reflect when

thinning does and does not occur. Letting FC represent a
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fixed thinning entry cost, the following terms are added to
the cbjective function:
-X, (FC)/{1+r)kt (k=0,...,G-1) (19)
Fiked entry costs are therefore only incurred when
thinning takes place, i.e., when ¥Xj approaches 1. Also, as
fixed costs are necessary after final harvest, Xg 1in the
ocbjective function is defined equal to 1. The final form of
the objective function 1is presented in the complete médel
statement of Appendix A.
Convexity
Problem convexity 1s an important property in nonlinear
programming as the absence of locally optimal solutions
which are not globally optimal is assured for convex
programs. Hence, 1f a solution cannot bke inmproved by a
local perturbation, it may be declared globally optimal.
For convex programs, therefore, the first-order Kuhn-Tucker
local optimality conditions are necessary (under certain
constraint qualifications) and sufficient to characterize a
global optimum. For non-convex programs, however, tne Kuhn-
Tucker conditions are not sufficient and solutions meeting
these conditions may not even represent local optima. The
hardwood thinning model formulated in this study is non-
convex. The residual defining constraints represent non-
conver relations, as demonstrated in Appendilx B; and the

binary relationships result in non-convex terms in the




objective function.

Variousg techniques have been uged to deal with
obtaining optimal soluticns To noncenvex programs. These
technigues will be considered in solving for optimal
thinning and rotation in a demonstration of the mixed-
hardwood model.

Program Size

Evaluating program size is often necessary in nonlinear
" programming as solution aigorithms' may specify maximum
numbersr cif wvariables and constraints. The gradient
projection algorithm used by Adams and Ek (1974}, for
example, allowed a maximum of 40 variables and 80
censtraints. of the currently available nonlinear
programming codes listed by Waren and Lasdon (1979), nine
had fixed limits on both variables and constraints. Program
size 1in the present sﬁudy was evaluated by developing
equations - predicting the numbers of Vafiables and
constraints, based on the number of species, diameter
classes, and growth periods projected. Reference will be
made to equation sets in the complete model statement of
Appendix &. Variables used have been previously defined.

Number of Variables. The residual defining constraint

sets, (A2) through (A5), require two sets of variables,
numbers of trees cut and residual numbers of tress for each

Specles/diameter class combination, after each growth
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pericd. Residual numbers of +trees variables ars not

reguired after period G, however, as £inal harvest occcurs.

From constraint set (A2), two sets of variables are reguired

for each speciles/diameter c¢lass combination. Hence, the

number of variables required for constraint set (A2) is
given by:

3

Z(jilni) . (20)

The number of variables required £for constraint sets

(A3) and (A4) may be represented as a total count minus the

number of residual variables counted after period G. The

number of such variables is:

21 g ; (ny+k-1)1 - [.; (n;+G-1)1 . (21)
k=1 i=1 i=1

The number of variables represented by constraint set

{(A5) is determined similarly as:
2(G*S)} - 5 . (22)
One other wvariable, X, is used in the model statement
of Appendix A, required after pericds C through G-1. Adding
G te the sum of (20), (21), and (22), and simplifying yields

the total number of thinning model variables:

s G =
G(S+1)+( £ n)+2( £ £ [n4+k~1)] . (23)
i=] k=1 i=1
Number of Constraints. The number of constraints in

Constraints sets (A2) through (A53) in the thinning model
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formulation, beginning with the residual defining

constraints, are given below in relations (24) through (27).

3

I n; (24}
i=1

S*+G B (25)

S G - :

G( igl(ni)—28)+8(kglk) (26)

S*G (27)

Equation sets (AB) thfough (A8), representing (3*G)
constraints, must also be included. Non-negativity
rastrictions are not included in the constraint count,
however. The total number of constraints in the thinning
model formulation is therefore:

= G
(G+1)( £ nj)+S( I kK)+(3*G) . (28)
i=1 k=1

The numbers of variables and constraints in the
hardwood thinning model may be predicted with eguations (23)
'and (28), respectively. The effects of program size on the
choice of a solution algorithm will be discussed in a
demonstration of the model.

Discussion

Several aspects of the hardwood thinning model
formulated in the present study warrant further discussion.
One area is the discretization of the thinning interval and

rotation age. While numbers of trees to cut are continuous
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variablesg in the formulation, thinnings are only allowed now
and after a discrete number of ¢growth intervals, each of
fixed 1length. Also, the above medel 1limits possible
rotations to multiples of the growth period. For even-aged
upland hardwoods, however, discretizing the timing of
harvests should not affect the usefulness of model results.
Stands with relatively slow growth rates may not be thinned
as frequently as stands of faster dJgrowing species. Also,
rotation lengths for such stands are commonly specified in
multiples of 5 or 10 years.

While the timing of harvests is discrete in the model
formulated, the harvest intensity for each speciles/diameter
class combination is a <¢ontinuous wvariable. Number of
trees, however, is inherently integer walued. This problem
would not be avoided by choosing wvolume as the decision
variakle, as harvest volumes specified by diameter class
must eventually be related to an integer number of Lfrees.
Continuous solutions in the thinning model demonstration
will be rounded to the nearest integer sclution. According
to the classificaton presented by Taha (1975), the thinning
model formulation is a direct integer problem. This class
of integer problems is the only one for which rounding
should be considered. As discussed by Taha (1975}, however,
a solution obtained by rounding optimal continuous wvalues

may not be an integer optimum, although it is likely to be




near the optimum.

Applying the formulated thinning model to young stands
is another area for discussion. Stands toc young for
commercial thinning may be projected to thinning age within
the optimization model. This may be accomplished by
specifying no harvesting until after a sufficient number of
growth periods, or by specifying =zero prices for the
appropriate growth periods. A more efficient approach,
however, is to project younq‘stands to thinning age prior to
applying the optimization model. This approach avoids the
additional variables and constraints necessary for
incorporating initial growth periods where thinning is not
an optioﬁ.

Further consideration should also be given to certain
thinning model constraint sets. For example, the
possibility of setting minimum thinning levels was modeled
such that -the constraints applied only if thinning occurred.
Maximum levels for thinning wvolumes were incorporated,
however, without determining whether cuttings represented
thinnings or final harvest. This determination was not
necessary, as final harvest i1s assumed after the last growth
period modeled. All other harvests may therefore be subject
to maximum thinning wvolumes.

Also regarding the constraints, setting minimum volume

levels for thinnings may not be required. Fixed costs were
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incorporated in the objective function, but are incurred
only if harvesting occurs. To realize a net gain from
harvesting, sufficient volume must be removed to rscover the
fixed costs. The thinning model may therefors be solved
without minimum harvest wvolumes, adding such constraints if
the wvolumes specified are still conéidered inadequate for
marketing or cther reasons.

Other types of constraints may also be included in the
nonlinear programming thinning formulation. For example,
non-timber considerations involving wildlife, recreation,
watershed, etc., may be incorporated. Such relationships,
however, must be expressed. as functions of volumes cut and
residual volumes, either total or by diameter class and/or
specieg, after each growth period. Rather than using
constraints, nontimber wvalues might alsc be included as
either constant or wvaryving {(with density) wvalues, added to
the objective function depending on whether or not final
parvest has occured, i.e., whether or not standing timber is
-present. The ability to reflect non~timber considerations
can be an important aspect'in modeling upland hardwoods, as
both pubklic and private landowners fregquently consider such
factors in their harvest decisions.

The thinning model was formulated with decision
variables specifying the number of trees to cut from each

species/diameter class combination. Aggraegating numbers of
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trees into small groups may be considered if solutiong to
the thinning model Zformulation cannot be obtained at the
level specifving exact numbers of treas. Thinning schedules
from such a formulation would prescribe numbers of tree
groups of 2, ‘3, 4, etc.;' toc be harvested from each
species/diameter class combination. |

Finally, applying thinning model prescriptions in the
field may require. adjustments and managerial IJudgement.
This is true in implementin@ results from any such mcdel.
In general, the stand should be defined small enough fhat
the thinning formulation accurately represents the real
system being modeled. The accuracy with which mecdel results
can be applied is directly related to how closely the input
data represents the stand to be thinned. The thinning model
may be used to develop prescriptions for wide appiication tg
frequently occuring stand types, or to derive thinning

policies for individual stands.




THINNING MODEL DEMONSTRATION

L

The thinning model developed in the preceding chapter
is baszsed on a growth model tentatively épecified for stand-
table projection of mixed-species hardwoods. Although data
were not available for estimation of the grthh model
parameters, the thinning model will be demonstrated using
assumed parameter values. Specification of the growth model
parameters will bke discussed, followed by thinning model
formulations for two problem cases. To complete the
thinning mode 1 denmonstration, three techniqueg will be
evaluated for solving the nonlinear programming

formulations.

Growth Model Parameterx Specification

Statistical estimation of the growth model parameters
requires remeasurement data for the upgrowth and mortality
parameters, and the potential proportions of upgrowth. The
optimization aspects of the thinning model were investigated
in the absence of such data by specifying a hypothetical,
mixed-species stand, and assigning parameter wvalues for
Projecting the stand. Growth model parameters were
specifiad for an assuﬁed stand of age 30, to be projected
With S-year growth intervals, with or without thinning, to

age 45. The stand dassumed for demonstration is comprised of

72
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two specles groups, a faster growing, higher wvalued group
such as vyellow-poplar, and a slower growing, lower wvalued
group such as mixed-caks. These groups will be referred to
as speclies groups 1 and 2, respectively. The initial
distribution of trees by diameter class and the averags
merchantable wvolumes per tree used in the demonstration are
presented in Table 1. The distribution of the total number
of trees by diameter class was compared to the even—éged
upland hardwood distributions rresented by Ginarich (1967).
Height~diameter relationships were assumed for each species
and merchantable volumes were obtained +through linear
interpolation of volumes presented by Schnur (1937).
‘Volumes presented for species 1 correspond to yellow-poplar
while those for species 2 correspond to white-ocak.

To specify growth model ©parameters which would
adequately project the initial stand, broad biological
considerations were made. These consideraticons will ‘be
discussed, followed by the final parameter values used in
the demonstration.

Biological Considerations

As species 1 was considered to be the faster growing
species, growth model parameters were specified to yield
relatively higher upgrowth proportions for this group.
Also, as faster growing species are offen less tolerant of

competition, - parameters for species 1 were specified to
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Table 1. Initial stand-table and average volumes per tree
assumed for the thinning model demonstration.

Diameter
Class (in.)

Species 1

*
# Trees Vol. /Tree

# Tre

Species 2 "
es Vol./Tree

10-11.9

12-13.9

14-15.9
'Total Trees

Total Volume

14 0.
55 1.
79 5.
45 12.
- 19.
-~ 28.
~- 39
193

1205. 44

Q0

95

61

80

94

62

.38

&0

75

52

10

472,

10.55

17.86

26.44

36.30

58

*Cubic-foot volume to a 4" top (o.b.)}, from Schnur's (1937)
vellow-poplar and whiite-ocak volume tables, for assumed
height/diameter relationships.
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result in higher mortality than species 2, under similar
conditions. Species 1 mortality was also modeled as being
more sensitive to stand volumes in greater diameter classes.
For both species, mortality was modeled such that larger
diameter classes experienced lower proportions dving. Also
for both species, the relative effects of competition from
smaller diameter c¢lasses, or understory, were modeled as
diminishing as diameter increases.

A major assumption 1in the growth model parameter
specification was that for both upgrowth and mortality, the
‘effects on the residual stand of cutting either species
would be the same. That is, b%iﬂagj and b%j:b%j in
relations (11) and (12), respectively, for all individual
combinations of i and j. This property may or may not hold
for actual mixed;épecies stands. For the present analysis,
however, the assumption expedited the specification of
parameters without detracting frem the usefulness of the

demenstration.

Parameter Values

Biological considerations assisted in defining several
general relationships between growth model parameters and
predicted results. Constrained by these considerations,
Parameter values were assigned such that realistic upgrowth
and mortality proportions were predicted by the growth

model . Parameter values, including the potential




76

o~

proportions of upgrowth, were therefore adjustad until
reasonable upgrowth and mortality estimates were generated.
Final parameter values used in the thinning model
demonstration are presented in Tables 2, 3, and 4. A total
of 112 wvalues were assighed.

For the assignment and adjustment process, grbwth model
projections were made for the original stand (Table 1) forxr
1, 2, and 3 growth periods of 5 years each, corresponding to
stand development ffom age 30 to 45. CGrowth model results
for upgrowth and mortality for all species/diameter class
combinations, as well as aggregate stand volume projected,
were examined for thinning intensities ranging from no
thinning to removal of over half the stand. Parameter
values were adjusted until growth model projections for up
to 3 periods were comparable to the even-aged hardwood
resulits presented by Dale (1972), GCingrich (1971), and
Schnur (1937). Projectlons beyond age 45 were not of
interest in the present study, as the thinning model
demonstration will be limited to 3 growth periods.

Thinning Model Examples

Thinning model formulations were developad and solved
for two examples. A relatively small problem, Cases I, was
studied to provide insight into the structure and solution
0f the more complete formulation, Case 1I, of the thinning

ncdel for the initial stand. Case II is further divided




Table 2. Potential proportions of upgrowth assumed for the thinning model
demonstration (relation (11)).

Diameter Growth Period 1 Growth Period 2 Growth Period 3
Class (in.) Species 1 Species 2 Species 1 ESpecles 2 Species 1 Speciles 2

8-9.9
10-11.9

12-13.9




Table 3.

parameters assumed for species 1 for the thinning model
demonstration (relations (11) and (12)).

Crowth model upgrowth (bi, b2, b3) and mortality (b,, b, bﬁ)

Diameter , Parameter
Class (in.) b, b, b3 b, bB t%
2-3.9 .0006813 ~-.0002524 -,0002524 -~.0000908 -.0000252 -.0000252
4~5.9 .0003668 -.0002494 .0602494 . 0000227 ~.0000083 ~.0000083
6-~7.9 .0003659 -,0001990 -.0001990 -.0000076 -.0000059 -.0000659
8-9.9 .0003028 -~.0002497 ~.0002497 -,0000038 -.0000038 -.0000038
10-11.9 .0002300 .0002500 -~.0002500 ~.0000030 =-.0000027 ~.0000027
12-13.9 .0001700 ~.0003000 ~.0003000 -.0000020 ~.0000018 -.0000018

8L




Table 4. Growth model upgrowth (bj, b2, bj) and mortality (by, by, bg)
parameters assumed for specles 2Z for the thinning mecdel
demonstration (relations (11) and (12)).

Diameter . Parameter
Class (in.) by b2 bs by bs bg
2-3.9 .0006056 ~.0002271 -.0002271 ~.0000379 -.0000076 ~.0000076&
4-5.9 .0004164 ~.0002079 ~.0Q002079 =-.0000088 -.0000041 -.0000041
6-7.9 . 0003280 -.0001621 ~.0001621 -.0000038 ~.0000022 ~-.0000G22
8-9.9 .0002649 -.0002123 -.0002123 -~.0000012 -.0000006& =-.0000006
10-11.9 .0002000 ~.0003000 -.0003000 ~.0000009 ~.0000002 -.0000002
12-13.9 .0001200 -.0004000 -.0004000 ~.0Q000005 -.0000001 -.0000001

6L
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into Cases @la, Ilb, and Ilc, representing formulations for
1, 2, and 3 «agrowth periods, respectively. The initial
assunmptions used in the models developed for both examples
will be discussed, followed by the explicit formulations to
ba solved.

Input Assumptions

Assumptions regarding land sale value, fixed costs,
intersst rates, and per unit prices were necessary to define
the ©objective function coefficients for the example
problems. The same values were assumed for these inputs for
both cases formulated. Certain input assumptions were
relaxed in a limited sensitivity analysis, to be discussed
following the problem formulations and solution analysis.
Input values initially assumed are summarized in Table 5.

A constant land sale value of $300 was assumed for the
exXxample problems. No attempt was made to establish actual
post-clearcut land wvalues or land appreciation rates for a
particular region. Realistic estimates of land sale wvalue
over time should not ke difficult to obtain, however, for
appliqations of the model to actual stands in a given
locality. The market value for bare land represents the
value of land in 1its highest and best use and therefore
represents an upper bound on the SEV determined considering
forestry uses.

Fixed costs of $4 per acre were used in the thinning
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Table 5. Input values initially assumed for determining

present values in the thinning model demonstration.

Land Sale Value. . . ..t iieiriennennn. L=%300/acre

Fixed Thinning Costs...................... FC=§4/acre
Real Rate of Return (decimal percent)..... JPIR TP r=.08

Stumpage Prices:

Specieg 1, 10+ inches........... P =$0.233870/cu.
Species 1, <10 inches........... P =50.050828/cu.
Species 2, 10+ inches........... P =5$0.204980/cu.

Species 2, <10 inches........... P =50.042890,/cu.

£t
ft.
ft.

f£ft.
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model examples. These costs are associated with marking and
sale administration, and are included in the model in lieu
of fixed logging costs, as data were not avallable to
establish per unit stumpage prices net of squ costs.
Administrative costs are f£ixed, however, and for purpocses of
model demonstration will represent the cost variable (EC)
defined in -the theoretical formulation and discussion.
Fixed costs were applied to thinnings and final harvest;

A real discount rate of 8 percent was assumed for

determining present values in the example problems. Some
thinning studies, e.g., Riitters et al. (1982), have used
rates as low as 3 percent. For the present demonstration,

however, private ownership is assumed and the rate
represents a before-tax, real alternative rate of return.
The assumed rate was reduced to 5 and 3 percent 1in
subsequent analyses.

In both examples, it 1s assumed that all material
harvested can. be sold at the stumpage prices assigned. Per
unit stumpage prices for the model demonstration were
obtained by averaging monthly prices reported for the
Southeast in .Timber Mart-South! for January through August,
1982, Random-length log brices were applied for trees in
diameter classes 10 inches and over, while roundwood prices

n e mm A LE AE FE e e el e e ey ——

'Monthly report of Timber Mart-South, Inc., published by
F.W. Norris, Highlands, N.C.
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were used for trees under this limit. Yellow-poplar and
mixed-hardwood prices were used for logs of species groups 1
and 2, respectively. For roundwood diameters, soft-hardwood
prices were used for species 1, prices for chemically
processéd hardwoods were used for species 2. Prices per
thousand board feet (Doyle) and per standard cord were
converted to values per cubic foot using average conversion
factors, also published in Timber Mart-South. Sawtiﬁber
price differentiation for qﬁality was not included in the
initial analysis. The initial wvalues assumed for the
thinning model demonstration are presented in Table 5.
Finally, a real stumpage price increase of 2 percent per
year was assumed for sawlog diameters of both species.
Although real increases in stumpage value are not expected
for lower quality hardwoods in the immediate future, the
U.S8. Forest Serxrvice (1982) has projected price increases
beyond the next few decades.
Case 1

Two examples of the thinning model werse formulated for
demonstration., Case I is formulated for a stand of very
simple structﬁre, while Case II represents the thinning
model <for the stand used to assign parameter values,
summarized in Table 1. Case I is formulated fof a stand of
ade 40, which on a per acre basis has 49 trees of species 1

in diameter class 8-9.9, and 39 trees of species 1 in the
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10-11.9 inch class. For species 2, the stand has 49 trees
in diameter class 6-7.9, and 19 trees 1in the 8-9.9 inch
class. The stand is therefore comprised of 156 trees, with
a total merchantable wvolume of 1852 cubic feet. The growth
model parameters used for Case I are the appropriate values
from Tables 2, 3, and 4. The previously discussed input
assumptions are the same for both examples.

For the Case I problem, thé stand will be projected for
a single 5-year growth peariod. From eguations (23) and
(28}, the thinning model formulation invelves 15 wvariables
and 13 constraints. The purpose of the formulation is to
determine the thinning policy, applied now, which maximizes
the present value of land and timber over the next 5 vyears.
The stand may be clearcut now, thinned now and clearcut in 5
"years, or left unthinned and clearcut in 5 years. It is
assumed that if thinning occurs, volume removed must range
between 30 and 50 percent of the pre-thinning stand volume.
The initial stand-table for Case I was specified soc that the
optimal Vthinning policy could be derived through an
exhaustive search of all possible thinning regimes. Case I
will be used to evaluate solution techniques and provide
insight inte the structure of the second example, where the
optimal solution is unknown.

The thinning model was formulated for Case 1 following

the equation sets presented in Appendix A. This formulation




is presented in Table 6, where for ease of presantation, the

following substitutions have been made for the wvariables

used in the Appendix.

R ) c
R c

X(3) = N3 X(4) = Nigq
R c

X(5) = Njjg X(6) = Njjg
R c

X(7) = Ny X(8) = Ny
R R

R : R

R R

The present wvalue eguation in Table 6 represents the
sum of discounted land sale wvalue arnd discounted wvalues per

tree multiplied by numbers of trees cut. The growth model

Hy

coefficients in the constraints are expressed in terms of
numbers of trees, i.e., the original coefficients are
multiplied by average volumes per tree and aggregated. The
Case I formulation presented in Table & may be simplified
through substitutien. That is, an eguivalent formulation
may be obtained by:
(1) substituting X(1)=49-X(2), X(3)=39-X(4),
X(5)=49~X(6), and X(7)=19-X(8) into the

residual-defining constraints for periecd 1,

(2) adding constraints X(2)<49, X(4)<39, X(6)<49,
and X(8)<19,

(3) replacing X(9) through ¥X(1l4) in the objective
function with the expressicns defined by the
remaining equality constraints, and

(4) simplifying and combining terms.




Table 6. Case I thinning model formulation, following the eguation sets
presented in Appendix A. '

Maximize: PV = $201.45+0.65X(2)+4.66X(4)+0.22X(6)+0.45X(8)+0.44X(9)+3.50X(10)
+5.03X(11)+0.15X(12)+0.31X(13)+2.75X(14)-4X(0)-MX(0)(1~X(0))
Subject to:

X(1) + X(2) = 49 X(3) + X(4) = 39
X(5) + X(6) = 49 X(7) + X(8) = 19

X(9)=X(1) (EXP(~.0000973X(1)~-.0001515X(3)-.0000192X(5)~.0000802X(7))
-.BEXP{-.007072X(1)~.0110169X(3)~.0015261X(5)-.0058289X(7))) = O

X(12)~X(5) (EXP(~.0000768X(1)-.0001196X(3)~.0000302X(5)~.0000633X(7))
~.25EXP(~-.0062733X(1)~0097726%X(3)~.0024701X(5)~.0051706X(7))) = O

a8

X(10)-X(3) (EXP(-.0000384X(1)~.0001137X(3)~.0000151X(5)~.0000317X(7))
- . 7EXP(~.002944X(1)-.0095712X(3)~.0011592X(5)-.0024265X(7)))
~.6X(1)EXP(~.007072X(1)-.00110169X(3)-.0015261X(5)~.0058289X(7))

tH
o

%(13)-X(7) (EXP(-.000023X(1)-:0000359X(3)~.0000091X(5)~.000019X(7))
- .35EXP(-.0061082X(1)-.0095154X(3)-.0024051X(5)-.0050345%(7))}
~.25X(5)EXP(-.0062733X(1)~.0097726X(3)~-.0024701X(5)~.0051706X(7))= O
X(11)~.70X(3)EXP(-.002944X(1)-.0095712X(3)-.0011592X(5)~.0024265X(7))= O
X(14)-.35X(7)EXP(~.006108X(1)~.0095154X(3)~.0024051X (5)~.0050345X(7})= O

12.8X(2)+19.94X(4)+5.04X(6)+10.55X(8) < 926X(0)
12.8X(2)+19,94X(4)+5.04X(6)+10.55X(8) 2 370X(0)

X(0) < 1, X(i) = 0  (i=0,1,...,14)
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The Case I formulation obtained with the above steps is
presented in Table 7. The Table 7 formulation has 5
variables and 7 constraints, compared to 15 wvariables and 13
constraints in Table 6. The problem is now comprised of a
nonlinear objective function, constraiﬁed by a small set of
linear inequalities (5 of which are merely upper bounds).
Following substitution, the nonlinear program is written
entirely in terms of the true decision variables, the number
of trees to cut from each species/diameter class
combination. Non~negativity expressions are not required
(in Table 7) for wvariables X{9) through X(14). The
residual~defining eqguations in Table 6 represent proportions
living minus proportions of upgrowth. Logically, the
upgrowth proportion in a given diameter class cannot exceed
the proportion of trees living in that class, following a
growth period. The result can also be shown algebraically,
however, based on the relative magnitudes of the exponential
coefficients in Table 6.

Case 11

The second thinning model example is comprised of thres
pProblems. Cages Ila, IIb, and IIc coeorrespond to thinning
mocdel formulations for the stand initially 'assumed for
Projection (Table 1), for 1, 2, and 3 growth perieods,
respectively. Formulations for Case Ila are presented using

vector notation in Tables 8 and 9. Vectors used in these




Tabhle 7. Case I thinning model formulation, following substitution and
simplification. :

Maximize: PV = $201.45+0.65X(2)+4.66X(4)+0.22X(6)+0.45X(8)-4X(0)~MKX(0) (1-X(0})

+(49-X(2)) (. 44EXP(~.01314+.0000973X(2)+.0001515X(4)+.0000192X(6)+.0000802X(8))
+1.836EXP(-.9617151+.007072X(2)+.0110169X(4)+.0015261X(6)+.0058289X(8)))

+(39-X(4)) (3.5EXP(~.00766+.0000384X(2)+.0001137X(4)+.0000151X(6)+.0000317X(8))
+1.071EXP (-.6204371+.002944X(2)+.0095712X(4)+.0011592X(6)+.0024265X(8)))

+(49-%(6)) (.31EXP(~.01111+.0000768X(2)+.0001196X(4)+.0001196X(6)+.0000633X(8))
+.04EXP (-.9077994+.0062733X(2)+.0097726X(3)+.0024701X(6)+.0051706X(8)))

+(19-X(8)) (.31EXP(-.003334+.000023X(2)+.0000359X(4)+.0000091X(6)+.000019X(8))
+.854EXP (-.8838532+.0061082X(2)+.0095154X(4)+.0024051X(6)+.0050345X(8)))

Subject to:

X(2) < 49
X(4) £ 39
X(6) < 49
X(8) € 19

12.8X(2) + 19.94X(4) + 5.04X(6) +10.55X(8) < 926X(0)
12.8X(2) + 19.94X(4) + 5.04X(6) +10.55X(8) = 370X(0)

X(0) € 1
X(i) =2 0  (i=0,1,2,3,4)

28




Table 8. Case IIa thinning model formulation,

89

following

the equation sets in Appendix A (vectors are
defined in Table 10).

- T
Maximize: PV = 5201.45 + PyN{ -

Subject to:

R c
Nq19 * Ny = 14,

R c

Nqjoq * Nygg = 55,
R c

Ni3p ¥ Nygg = 79
R c

Njso ¥ Nygo = 45

R T p
N 111‘1\'11{1'0 (EXP(BJN, )~.200EXP (BN, })
R - o
211’N‘§10 (EXP (B3N, )-.150EXP (BN, )) =
R . o
121"N§20 (EXP (BgN,)-.4S0EXP (BN, ))_N‘l*lo
R T .

131 Nlllgol (EXP (B, N,)-.575EXP(BgN, ))'Ni(zo

R o (al I
141_1\1[1{40 (EXP(BgN ,)-.700EXF(B N, ))~Nli30
R

2 =z =2 2 2 2

R
N 910

R
N20
R
Nos3p

R
N 940

4Xy - MXg(1-Xg)

+

+

+

+

c
Nj10

C
Njag

c
Nj3g

C

No40

7]

0

0

60

52

1o

.ZOOEXP(BgNz)

(4S0EXP (B N, )

.575EXP(B§NZ)

T T T
- E - P - .
221 1\}2‘20 (EXP(B]) N,)-.250EXB (B}, N ,)) ].\§10 1SOEXP (B N, )
R - T - ol
251 1\%30 (EXP(B],N,)~.350EXP (B, N,
R T _ - T
N 1&;40 (EXP(B] N ,)-.450EXP (B N,
R _NBR  _700EXP(BYT N ) =0
N 153 Nyo - 7OCEXR(B N, )
R _y R T -
NE NR asoExp(BIN ) =
251 240 (B1ey)
336X < VTN3 < 839X, .
R,C _ -
0<Xp <1, Nijszo (i=1,2 j=1,..

.,n +k k=0,1)
1

i

0

0

R - T N
)) =25 .250EXP(B N )=0

R T -
) )N, -350EXE (B , N )=0




Table 9.
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Case Ila thinning model formulation, following

substitution and simplification (vectors are
defined in Table 10).

Maximize: PV =

$201.45 + P N, - 44X, - MXO(I—X

3 0 o)

+(14- Nllo ) (.0014EXP (~1.566703+BoN )
+(55-1 \1120 ) (.O7OEXP(-. 052019+E§N )+.072EXP (1. 0339986+g 5))
+(79- NlBO ) (. 23EXP(-. 0287178+EifN )+.1207SEXP (~.905679+ g 3)
+(45- NMO ) (. 44EXP(-—.0003563+E§N )+2.142Exp(—-.678275+slg1\1 ))
+(60- NZlO ) (. OO6EKP(-—1.3972885+BTN3 ))
+(75- N220 ) (. QAEXP(-. 02165+Bll 4)*-0275EXP(-1. 047585+B,2 3))
+(52-1 \1230 ) (. LSEXP (- .009600+E Bl N,)+.056EXP(-, 7879961+B14N3))
+(10- NMO ) (.31EXP(-. ooz415+1315 N,)+1.098EXP(-. 589199+B16 3))
Subject to:
Nilos 14 , NEZO < 55 , N%O < 79 , N§40 < 45
NS < g0 C <75 NS < 52 NS <10

210 © V220 ’ 230 © Yago
336X < VTN3 < 839K,
0<Xgsl, Nfo20 (i=1,2 j=1,2,3,4)
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problem statements are defined in Table 10. Vector notation
was reqguired to present the Case Ila formulations due to the
gize of the program.

Following the equation sets presented in Appendix A,
the Case 1IIa formulation includes 27 wvariables and 21
constraints (Table 8). Substitutions corresponding to those
outlined for Case I result in the Case Ila formulation in
Table 9, with 9 wvariables and 11 constraints. Again‘the
substitutions result in a nonlinear objective function,
constrained by linear inegualities. Similar programs will
result for any formulation for 1 growth period, as all
exponential +terms resulting from the growth model are
transferred to the objective function.

Nonlinear programs were also defined for Cases Ilb and
ITc following Appendix A. As predicted by equations (23)
and (28), Case IIb involved 50 variables and 36 constraints,
whilé Case 1IIc had 77 wvariables and 53 constraints.
Equivalent formulations  through substitution were not
developed for these examples. Redefining the thinning model
formulations simply in terms of trees to cut after each
period becomes increasingly difficult as the number of
growth periods projected iﬁcreases. Aiso, substitution will
not replace all of the nonlinear constraints in models with
more than one growth period. Nonlinear constraints

corresponding to the inequalities added in step (2) of the




Table 10. Vectors used in the Case Ila thinning model formulations of
Tables 8 and 9.
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substitutions for Case 1 remain in the formulation. All
nonlinear egualities can be removed, however. I1f necessary,
computer programs could Dbe written to perform the
substitutions for reformulating problems with more than one
growth period. As will be discussed with the thinning model
solutions, however, reformulating Cases IIb and Ilc would
not expedite the analysis in the present study.

Thinning Model Solution

Three techniques were considered for solving the
thinning model examples. These techniques were Monte-Carlo
Integer Programming ({MCIP), Multistage Monte-~Carlo Integer
Programming (MS-MCIP), and a nonlinear programming
subroutine titled VMCON, The Monte-Carlo or random search
methods consgidered are heuristics, i1.e., non-convargent
iterative algorithms (Muller-Merbach 1981). Such algerithms
are commonly used in estimating solutions to integer or
coﬁbinatorial problems. Each of the three approaches
considered in the present study will be described, with
subsequent discussions concerning their application to
solving Cases I and II. The relative advantages and
disadvantages of each for solving thinning modsl
formulations will be considered following the application.

Solution Technigques

Monte-Carlo Integer Programming. MCIP has been

Proposed by Conley (1980) for solving mathematical
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programming problems and systems of eguations. The approach
is not new, however, and simply inveolves evaluating the
objective function of a problem for randomly selected,
feasible wvalues of the decision variables. The best
solution generated by the random sample of feasible points
is used as the estimated optimum. The approach is an
integer appreoach, as integer sclutions are ewvaluated.
Conley's title for the method is observed in the presént
study, rather than simple random sampling, because of his
single statistical argument for the approach.

The basic argument presented by Ceonley (1980} in
defense of MCIP involves examining the prebability density
function for objective function values to a particular
programming problem. For combinatorial pfoblems, the
density 1s actually a discrete, bounded distribution, more
properly terﬁed. a relative fréquency or probabkility mass
relation. Conley contends that the random search technigue
will vyield estimates wvery close to the true optimum, for
problems with distributions having light {i.e., non-
extended) right-hand tails.

For a maximization problem, the optimal solution is
that having the greatest objective value, i.e., the value at
the extreme right of the distribution of objective function
values. If this value is not isolated, or is not at the =and

of an extremely heavy right-hand tail, objective Zfunction
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values within a very small upper region of the distribution
will closely approximate the maximum. ‘The prebability (Pr)
that at least one of (n) random solutions is within a given
area (a) of the optimum is characterized by equation (29).
Pr = 1 - (1-a) . (29)

In this relation, (l-a) represents the preocbability that
a given solution is within the area (1-a). The probability
that all (n) soclutions generated fall within this area is
therefore (1-a)®. The probability that all (n) did not fall
within area (l-a), i.e., that at least one is in the upper
(a) region, is 1~(l—a)n. The value appreoaches 1 with large
random samples. For example, the probability that at least
one of 10,000 random solutions is within the upper .001
region of the probability density function for a given
problem is:

pr =1 - (1-.001)10890 = 9999548

For problems where the objective function values within
the upper .001 region are near the true maximum, the random
search technique should vield estimated solutions with
values close to the optimum. The usafulness of the approach
for a particular problem therefore depends on the shape of
the right-hand tail of the probability density function of
objective function values. These distributions will be
considerad for the thinning model examples to be solved.

Relation (29) may also be solved to determine <the
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number of samples required for certain probabilities and
areas, i.e., the number necegsary to state that the
probability is (Pr) that at least one solution is within the
upper (a) region. This relation is presented in equation
(30). |

n = 1ln{l-Pr)/ln{l-a) (30)

Although Conley (1980) doces notA refer to previous
studies, equations (29) and (30) were presented mﬁch earlier
by Brooks (1958). DBrooks proposed the use of simple random
search in estimating optimal factor <combinations in
experimental design. Examining the probability distribution
for objective function values was not fully developed by
Brooks. Recommendations: were made, however, for using
'relatively small wvalues of (a) in problems where only a
small portion of the experimental region 1s expected to
vield high responsé Values.'

To implement the MCIP approach for a given problem, a
computer program is written to select and evaluate the
chosen number of feasiblé solutions. Random solutions are
obtained using a psuedo-random number generator, i.e.,
identical sequences of random numbers are produced each time
the same initial seed number is used. Programs used in the
Present study will be described in the application of MCIP

to Cases I and II.
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Multistage Monte~Carlo Intsger Programming. MS-MCIP is

a modification of MCIP where multiple sets of random samples
are evaluated. Conley (1981l) proposes MS-MCIP as a method
of directing the random search toward the optimal solution.
" In the multistage approach, sets of random solutions are
generated, with the range of possible wvalues for each
variable reduced after each set of (n) has been evaluated.
Similar concepts were advanced over twenty years ago by
McArthur (1961) and Karnopp (1963). In the present
analysis, sufficient sets were considered to ensure that
possible ranges for decision variable values were very small
in the final (n} evaluations. Each set of random
evaluations represents a separate stage in the multistage
method.

The posgsible range of values for each variable is based
on the value of that variable in the best solution generated
thus far. Each time a solution is found with an objective
value greater than the highest obtained thus far, the new
solution is stored and the possible ranges of wvariable
values are shifted, being formed around the decision
variable values in the new solution. The possible ranges
are reduced only after each set of (n) solutions has been
denerated. The positions of these ranges are adjusted,
‘however, each time a soclution is obtained with a greater

objective function value.
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Ranges for variable values are referred to as possible
ranges as they represent the maximum possible range for
each. If the solution stored as the current best has a
variable with a value close to an upper or lower bound, for
example, the range may be less than . .the current maximum
possible., This results as the decision variable value is
used as the center of the maximum range, with the actual
range applied being reduced to reflect feasible wvalues. For
a non-negative wvariable whose current wvalue is zero, for
example, the actual range used will be the interval between
zero and one half the current range possible.

Conley (1981) relates MS-MCIP to the argument for MCIP,
stating that the first set of solutions generated should
yield an objective value estimate in the upper {(a) region,
while the second set should yield at least one solution in’
an even smaller upper region, etc. In this manner, Conley
argues that MS-MCIP will in many cases converge on the frue
optimum, although convergence 1is not shown. As will be
shown for the thinning model examples, however, in some
cases MS-MCIP vyields solutions inferior to simple random
sampling, where the same total number of solutions are
evaluated with each methcsd. The details of the M3-MCIP
computer programs written for the thinning model examples

Will also be described in the application to Cases I and II.
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Nonlinear Programming Subroutine VMCON, Methods for

f

solving nonlinear programming problems may be classed as
penalty function methods, generalized reduced gradient
mathods, augmented Lagrangian techniques, and methods based
on seolving quadratic subproblems. Subroutine VMCON is in
the last category, implementing a variable-metric method for
constrained thimization proposed by Powell (1978a). The
subroutine was developed at Argonne MHNational Laboratory,
Argonne, Illincis, by Crane et al. {1980). VMCON was used
in the present study due to its immediate availability. The
algorithm has no fixed limits on problem size , i.e., on the
number of variables or contraints. A brief introduction to
the basic algorithm used in VMCON will be followed by the
input requirements necessary to use the subroutine.

The variable metric algorithm employed in VMCON is an
iterétive method designed to converge to a point satisfying
the first-order Kuhn-Tucker conditions. The first step in
the algorithm is to determine the search directicn (d) which
minimizes a quadratic approximation of the objective
funétion, subject to linear appreximations of the
constraints. A one~dimensional search in then performed to
determine the step lengthAto be taken in the direction (d4).
The function minimized in this search is the objective
function plus a weighted sum of constraint deviations. The

Weights are calculated using Lagrange multiplier estimates
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obtained in +the quadratic programming subproblemn. The
choice of weights for the line search is based on
theoretical results on convergence derived by Han (1975), as
well as numerical . experiments reported by Powell
(1978a,197éb). The one-dimensional minimization is designed
to produce global convergence, i.e., to force convergence
from poor starting estimates. For the line search problem,
an approximate minimum is determined through an iteratife
procedure based on quadratic approximations.

After a search direction and step length are
determined, the algorithm uses information based on
differences between the previous and current values for the
decision wvariables to update the estimated Hessian matrix
for use in the next quadratic subproblem. A convergehce
test 1is performed on each iteration after the quadratic
programming problem is solved. The algorithm stops if thé
predicted change in the wvalue of the objective function,
plus a measure of the compleﬁentarity error, is less than a
User-specified tolerance. Output from VMCON can ‘be
specified for printing nearly all calculations made at each
stage of the algorithm.

To use the VMCON subroutine, two programs are recuired,.
A main or calling program is needed, as well as a subroutine
Subprogram. The main program is changed very little when

solving differsnt problems. Calling program adjustments
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involve changing the dimensions of various subscripted
variables, based on formulas using the numbers of wvariabkles
and constraints. The main program used in the present study

was a modification of the calling program used by Crane et

al. (1980), for solving an example in Bracken and McCormick
(1968). The user-supplied subroutine, however, is fairly
extensive, The subprogram must return the objective

functicon value, the gradient of the objectiwve function,-and
gach constraint wvalue and constraint gradient, given the
decision variabklea wvalues, and the number of wvariables and
constraints. Other subroutines are also called by VMCON.
These subprograms, however, have already been coded with
VMCON, or may be called from standard subroutine libraries.

Case I Solution

As previocusly discussed, Case I was specified to aid in
evaiuating the 3 sclution techniques used for the thinning
model examples. The entire set of ©possible integer
solutions to Case I was generated, and the optimum solution
recorded. With the initial stand~table for Case I, allowing
the option to cut 0O trees from any species/diameter class
compination, (49+1}*(3S+1)*(49+1)*(19+1}=2,000,000 possible
ways exist of cutting the:initial staﬁa. Not all solutions
are feasible, however, as it was assumed that if thinning
occured, tﬁe volume cﬁt must ke between 30 and 50 percent of

the original stand volume.
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A FORTRAN program was written to ewvaluate all 2,000,000
solufions to Case 1I. Q0f the possible solutions, 930,029
were feasible considering the restrictions on volume removed
in thinning. For thinning regimes which were feasible, the
residual stand was projected from age 40 to 45, where final
harvest occurs. Present wvalues were computed for each of
these solutions and the maximum recorded as $485.76. The
cptimal integer thinning solution to Case I is to cut [(now)
38 trees of species 1 from the 10-11.9 inch diameter class,
27 trees of species 2 from the 6-7.9 inch diameter class,
and 3 trees of species 2 from the 8-9.9 inch class. Again,
final harvest of the residual stand is assumed at age 45,
With the same input assumptions, cléarcutting the stand
before the first growth period yields a present value per
acre of land and timber of $528.92 . Assuming an
altarnative rate of return of 8 perxcent, therefore, it would
be preferable from a present value standpoint to sell all
the timber now. Maximum present values when lower rates
were assumed will be presented in the sensitivity analysis.

Knowing the optimal solution to Case I assisted in
evaluating the performance of the 3 solution techniques.
Solutions to Case I using the two random search methods will
be considered, followed by results from applying VMCON.

Random Search Methods. The first step in evaluating

the usefulness of the MCIP and MS-MCIP approaches for
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solving Case I was to examine the probability density
function for objective function wvalues. Computer programs
presented by Conley (1980) were used as models in writing a
FORTRAN program to determine the points for plotting the
desired distribution. The process involves evaluating all
solutions, recording the minimum and maximum cobjective
values, and dividing the difference into histogram
intervals. The total number cof objective funétion'vélues
coccuring within each interval is then determined, and each
is divided by the total number of soluticons evaluated, thus
obtaining the probabilities asgsociated with each interwval.

The distribution resulting from this process, for all
feasible solutions to Case I, is presented in Figure 1. As
previously discussed, the most important property for such
distributions is that within sméll upper regions, the range
cf possible objective function wvaluess 1is small. This
property is reflected for Case I by the light right-hand
tail of Figure 1. The distribution therefore indicates that
the random search approaches should yield estimated optimal
solutions to Case I with objective function values close to
the true optimum of $485.?6.‘

FORTRAM Dwprograms wére written to gesnerate random
solutions to the Case I thinhing model. General diagrams of
the steps involved in solving thinning model formulations

Wwith the MCIP and MS-MCIP approaches are presented in
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Figures 2 and 3, respectively. For bhoth random search
approaches, a pseudo-random number generator was coded as a
function subprogram, requiring the specification o¢f an
initial seed number. The MCIP program generates random
values for the numbers of trees to cut £from each
speciles/diameter c¢class combination. For each feasible
solution, the present value is determined over the 5-year
growth interval, and compared to the current maximum falue.
The process 1is repeated until the required number of
feasible solutions have been evaluated.

The MS-MCIP preogram for Casé I was designed to evaluate
6 sets of random solutions, i.e., 6 stages were used in the
multistage analysis. After each set the maximum range was
reduced for each decision wvariable. The maximum rangesg used
for Case 1 were 100, 50, 30, 20, 10, and 4 trees per acre.
In the first stage Qf the MS~MCIP program, the maximum randge
is 100. The Valﬁe was chosen large enough that the initial
range, for each species/diameter class combination, includeg
all possibilities, regardless of the current wvalues of the
decision variables. 1In this manner, the first stage of the
MS-MCIP approach is equivalent to the MCIP program. That
1s, the first stage merely evaluates random solutions, with
no narrowing of the wvariable ranges. Using the same initial
seed number, output from the first stage of the MS-MCIP

Program should therefore correspond exactly to the results
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using MCIP, when the same number of sclutions are generated.

After the initial (n) feasible solutions have been
evaluated with the MS-MCIP program, the maximum range of
possible variable wvalues 1s reduced to 50 trees and the
second set of solutions is ‘considered. This process
continues until the final stage when the maximum range for
trees to cut from sach diameter class is reduced to 4. As
previously discussed, however, the actual range impleménted
with the MS-MCIP program may change each time a solution is
generated with a present wvalue greater than the previous
maximum.

Optimal solution estimates for Case I were obtained
using MCIP and MS-MCIP, with the same initial geed number.
Results for the two approaches, where 1,000 random solutions
were evaluated for each stage of the MS-MCIP program are
presented in Table 11. At each line of Table 11, the =ame
numper of solutions have been considered with each
technique. The objective wvalues are the same after the
first stage of MS-MCIP, as the programs are eguivalent until
reduction in the decision wvariable ranges occurs. The M3-
MCIP method results in higher present values than MCI? at
each line of Table 11. The approach generated the true
optimum during the final stage, evaluating only 6,000
solutions from a possible 930,029. The MCIP?P program

Produced an objective value of 5481.25 after 65,000
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Table 11. Objective function walues for solutions to Case I,

for each stage of the
sead numbar =

with 1,000 random samples
MS~-MCIP approach {initial

39873).

Stage No. Total No. Present Values
(for MS-MCIP) of Samples MCIP MS-MCIP
——————— Jjacre------

1 1,000 479.37 479.37
2 2,000 479 .83 481.06

3 . 3,006 480. 42 482177

4 4,000 480.42 482.77

5 5,000 480. 42 482 .94

6 6,000 481.25 485.76"

*Optimal Value for Case I
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soluticns, $4.51 below the optimum.

The MCIP and MS-MCIP programs wers then used to solve

Case I with a different initial seed number. Again, 1,000
feasible golutions were evaluated at each stage. Present
values for these solutions are presented in Table 12. The

MS-MCIP approach again generated the optimal solutien with a
total of 6,000 evaluations. Note, however, that the M3-MCIP
present values are net higher than MCIP values after eﬁery
stage. Using the MCIP technigque, wvariables are allowed to
assume any value within their initial ranges. The simple
random search method therefore outperforms the raduced-range
method in some instances.

Tables 11 and 12 present obkjective function wvalues
obtained for Case I with 1,000 evaluations for each stage of
the MS-MCIP program. Tables 13 and 14 present the objective
values obtained with 10,000 evaluations at each stage. The
initial seed numbers used for Tables 13 and 14 correspond to
those for Tables 11 and 12, respectively. Using 10,000
evalﬁations, neither approach generated the optimal solution
to Case I. Although improved soluticons are obtained after
the first 10,000 ewvaluations, the solution used to begin the
Second stage of the MS~MCIP approachrdid net lead to the
optimum. This result would not be expected in general,
howevar, as using a small number of avaluations in the

initial stage of the MS~MCIP approach may narrow varlable




111

Table 12. Objective function values for solutions to Case I,
with 1,000 random samples for sach stage of the
M5-MCIP appreoach {(initial seed number = 42441).

Stage No. Total No. Present Values
{for MS3-MCIP) of Samples MCIP MS-MCIP
~~~~~~~ $/acre----—--
1 1,000 480.77 480.77
2 2,000 480.77 481.68
3 3,000 480.77 481.77
4 4,00C 482.81 481.93
5 5,000 482.81 485.68
6 6,000 a82.81 485.76

*Optimal Value for Case I
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Table 13. Objective function values for solutions to Case I,

with 10,000 random samples for each stage of the
MS~MCIP approach (initial seed number =

39873).

Stage No. Total No. Present Values

(for MS-MCIF) of Samples MCIP MS-MCIP
——————— S/acra~—~-==~

1 10,000 481.25 | 481.25
2 120,000 481.35 483.03 -

3 30,000 482.06 483.13

4 40,000 482.19 483.15

5 50,000 482.19 483 .46

6 60,000. 482 éZ 483 .46
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Table 14. Objective function values for solutions to Case I,
with 10,000 random samples for each stage of the
MS-MCIP apprcoach {initial seed number = 4244]1).

Stage No. Total No. Present Values

{(for MS~-MCIP) of Samples MCIP MS-MCIP
——————— 5/acre—~----

1 10,000 482.81 482.81

2 20,000 482 .81 483.02

3 30,000 482 .81 483,02

4 40,000 482.81 483 .46

5 50,000 482.85 483 .46

6 ' 60,000 482 .30 483 ., 46




114

ranges too gquickly, resulting in infericr final solution
estimates.

To further evaluate the effects of sample size on the
final estimates generated with MS-MCIP, 10 different initial
seed numbers were used to generate solutions to Case I. The.
final solutions, for samples sizes of 1,000 and 10,000 per
stage of the MS-MCIP approach, are presented in Table 15.
The first two lines in Table 15 are the MS-MCIP results froﬁ
Tables .11 through 14. Az seen in Table 15, the optimal
solution was cgenerated 3 times using 1,000 samples per stage
and only once with 10,000 per étage. Nine of the MS-MCIP
solutions using 10,000 evaluations per stage had a final
present value of $483.46. The decision variable wvalues for
species 2 at this scolution are to cut 10 trees from the
6-7.9 inch diaméter class and 8 from the 8-9.9 inch class.
In all solutions summarized in Table 15, 38 trees of species
1 are removed from the 10-11.% inch diameter class.

A major problem with the MS-MCIP approach can be
observed from tha Case I solutions presented in Table 15.
Ag values for species 1 are the same for all solutions, the
values for trees to cut from species 2 result in the present
value differences between solutions. The values for species
2 in the optimal solution are 27 and 3 {trees cut by
diameter class}. Species 2 vwvalues for the solution with

objective value $483.28 are 16 and 8 tress . For a slightly
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Table 15. Objective function and decision variable values
for solutions to Case I, with random samples
of 1,000 and 10,000 for each stage of the MS-MCIP
approach (input assumptions from Table 5).
1,000 Samples/Stage 10,000 Samples/Stage
Initial PV No. Trees PV No. -Trees
Seed No. (%$/acre) cut® (% /acre) cut ™
39873 485.76%*  (0,38,27,3) 483 .46 (0,38,10,8)
T I
42441 485.76 (0,38,27,3) 433 .46 (0,38,10,8)
67815 483.29 (0,38,14,7) 483 .46 (0,38,10,8)
98779 483,29 (0,38,14,7) 483 .46 (0, 38,10,8)
13591 485.76"" (0,38,27,3) 483 .46 (0,38,10,8)
56783 483 .28 (0,38,16,8) 483 .46 {0,38,10,8)
45987 483,29 (0,38,14,7) 483 .46 (0,38,10,8)
#k »
12125 483.29 (0,38,14,7) 485 .76 (0,38,27,3)
76533 483.46 (0,38,10,8) 483, 46 (0,38,10,8)
98459 483 .17 (0,38,23,4) 483 .46 (0,38,10,8)

*Trees cut from (species 1,
and species 2, diameters
final harvest assumed at age 45.

#**0Optimal Solution for Case I

diameters 8-9
6-7.9 and 8-9.

.9 and 10-11.9,
at age 40,

9)
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"higher objective value, 5483.29, the specigs 2 falues are 14
and 7. Also, for the most frequent solution, $483.486, the
values are 10 and 8. In each solution, the objective wvalue
increases slightly as the‘species 2 value for diameter class
6-7.9 decreases, from 16 to 14 +to 10. In the optimal
solution, however, the wvalue is 27.

In the later stages of the MS-MCIP program, the
possible ranges for variable values are reduced. Fer a
decision wvariable such as the number of trees to cut from
species 2, diameter class 6-7.9, to increase from 10 to 27,
objective function values must show improvement for small
changes in the decision wvariables. In this manner, the
variable ranges can move toward a point where 27 1s a .
possibkle value for trees to cut from the relevant
species/diameter class combination. The number of trees cut
from the smallest diameter class cannot approach 27 in the
solution with objective value 3483.46, however, as the.range
of values in the final stage is from 8 to 12 trees, and
small increases from 10 result in objective function
decreases. To show improvement over the $483.46 solution, a
largé change in the species 2 value for diameter class 6-7.9
is required. ‘The MSuMCIP-approach maf therefore result in
local optima. This property was recognized by KXarnopp
(1963) for similar multistage random search methods.

Increasing the number of samples evaluated at each
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stage of the M3-MCIP approach does not necessarily improve
the final solution:éstimate. For the MCIP method, however,
increasing the total number of samples cannot lower the
objective wvalue, as the value is simply the greatest from a
larger set of solutions. The esgtimated optimum for Case I
using the simple random search methed is $479.37, after
1,000 solutions were evaluated (Table 11). For the same
initial seed number, the estimated optimum is $481.25 with
10,000 evaluations (Table 13}. From equation (29), the
probabilities that the above solutions are within the upper
.001 region of Figure 1 are:
1 - (1-.001)090 = (,6323046, and
1 - (1-.001)10000 = (§,9999548

Actual areas under the probability density function
rapresented by Figure 1 were determined by recording the
number of solutions_qreater than the estimated optima, and
dividing by the total number of possible solutions. ‘A total
of 1226 solutions were recorded'with present'values greater
than $479.37, while only 429 had wvalues dreater than
$481.25. The actual areas to the right of these values are:

1,226 = .0013168, and . 429 = .0004608
930,029 930, 029

For +the MCIP program with 1,000 evaluations, the
estimated optimum is not within the upper .00l regicn,
although the probability that the estimate would be was

0.63230486 . With 10,000 evaluations, howaver, the estimated
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optimum is well within the upper .001 ragion. For the MCIP
approach, as many evaluations should be performed as
practical for‘a particular problem. Equations (29) and (30)
may ke of help, however, for problems where functiocnal
evaluations are pa;ticularly difficult or expensive.

VMCON. Subroutine VMCOM was used in trying to solve
the Case I thinning model formulations of Tables & and. 7.
The only change in the formulations actually implemented in
the soluticon attempts was that thinning was assumed to
ocour. That 1is, X(0) was defined eqgual to L. This
assumption simplified the coding of the user-supplied
subroutine for VMCON, avoiding the problem of specifying an
exact wvalue for the constant M in the initial trials.
Appropriate values for M may have to be determined through
trial and error, as simply specifying a very largé number
may result in ill-conditioning of " the problemn. Another
approach would be to solve the problem for both values of
X{(0), i.e., X(0)=1 and X(0)=0. This alternative is only
viable, however, in problems where the number of growth
reriods projected, and thus the number of binary choice
combinations, is relatively small.

As previously noted, the VMCON «calling pregram
bPresented by Crane et al. (1880) was modified for use with
the Case I formulations. The convergence tolerance level

was specified as 107 %, The necessary User-supplied
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subroutines were coded for both formulations of Case I, in
hopes of evaluating the gains from specifying the model
entirely in terms of variables for trees to cut. For the
formulation presented in Table 6, however, scluticons were
not obtained. For all starting solutions attempted, .the
number of functional evaluations for the initial line search
exceeded the infernal maximum for VMCON.

Solutions were obtained, however, for the formulatién
presented in Table 7, although problems were ancountered.
Many starting solutions were tried for the substituted
formulation of Table 7, yet convergence was obtained for
only two. Other starting points either resulted in
exceeding the maximum evaluations for the line search, or
resulted in  FORTRAN errors for internal arithmetic
overflows. 1In some cases, scaling techniques may be used to
regolve overflow problems with nonlinear programming
algorithms (Balachandran and Frair 1982). The objective
function and objective function gradient for Case I, Table
7, were therefore divided by a constant to reflect values
near unity. The scaling did not result in improved
solutions with the VMCON subroutine, however.

Both solutions obtained with VMCON for Case I resulted
in objactive function values of $478.25 . Variables X(2)},
X(4), %(6), and X(8) in Table 7 correspond to numbers of

trees to cut from species 1, diameters 8-9.9 and 10-11.9
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inches, and species 2, 6-7.9 and 8+9.9 inches, respectively.
The two initial starting points which generatedrthe solution
for 5478.25 were (1,1,1,1) and (25,25,25,25). As the global
optimum for Case I with continuous wvalues should be at least
$485.76, convergence to a common solution from different
starting points is not necessarily feliable for cbtaining
global optima in ncn-convex problems. The final decision
variable estimates from VMCON were (-3*10733, 36.387, 0.000,
19.000}. The objective walue for cutting 36 trees of
species 1 in the 1C~-11.9 inch class, and 19 trees of speciss
2 in the 8-9.9 inch class, was dgtermined_using the MCIP
program, specifying the above wvalues. The integer sclution
yields a present value of 5480.32

OCne of the goals 1n using the VMCON program fcor Case I
was to use the estimated optimal solutioné_from the MCIP and
MS~MCIP approaches as gstarting estimates, observing the
degres of improvement obtained.. In each case where randem
search soluticns were used as starting estimates, no
improvements were made. Due to the problems encountered
with obtaining solutions to¢ Case I with VMCON, further
efforts to produce the global optimum were not pursued.
Such efforts might have included an analysis of the sclution

results from partitioning the set of possible starting

values,




Case II Solution

The random search methods used for Case I were also
used in estimating solutions to the three subproblems of
Case II. The results obtained with the MCIP and MS-MCIP
approaches will be presented, followed by the application af

subroutine VMCCON to the Table 9 formulation of Case Ila.

Random Search Methods. Exhaustive search could not be
used to determine glokal optima £or the Casea 1II probléms.
For Case Ila, for example, there are 8.3548583%10'2 possible
ways to thin the stand. The global optima for the Case 11
problems are therefore unknown. The exact shabes of the
probability density funcfions for objective values ara also
unknewn.

The distribution of present values for all sclutions to
Case I was presented in Figure 1. The distribution
resulting from 10,000 raridom solutions to Case I 1is
bresented in Figure 4. The relationship plotted for the
large random sample of solutions corresponds to the general
shape of the distribution for all feasible solutions to Case
I (Figure 1). For the Case II problems, therefore, the
distributions resulting from 10,000 random sclutions to each
problem were plotted. These relationships are presentad in
Figures 5, 6, and 7 for Cases 1la, Ilb, and Ilc,
respectively.

Figures 5, 6, and 7 do not provide conclusive evidence
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of the exact shape of the right-hand tails of the unknown
distributions for Case II. A nonexhaustive. sample of
feasible solutions is unlikely to reveal an extended right-
hand tail. Such a tail would be indicated, however, if a
few solutions were obtained with objective values very much
greater than the majority evaluated. Figures 5, 6, and 7 do
not, however, indicate isolated values. 1f these
distributions correspond to those for the entire sets of
feasible solutions, as resulted for Case I, the fandom
search methods should provide solution sestimates near the
true optima.

The MCIP program for Case II was developed in three
~segments, corresponding to 3 growth periods. In the first
section, a feasible thinning schedule is generated randomly
and the residual Stand projected to age 35. For Case Ila,
present wvalues are calculated and compared at this point.
For Cases IIb and 1lc, however, another feasible thinning
schedule 1is generated and the residual stand projected =to
age 40, For Case IIc solutions, a third thinning schedule
is generated and the stand projected to age 45. A single
feasible solution for the 3-~growth period thinning model
therefore involves 3 thinﬁing schedules, with wvalues for a
total of 30 decision variables. Two thinning plans, with 18
variables, are required for each solution to the Z-period

model . Other details of the MCIP program were similar to




the program for Case I.

The MS-MCIP program for Case 11 was also developed in
three segments. Seven étages were used fo.r‘ the MS-MCIP
approach, with maximum wvariable ranges of 300, 100, 50, 30,
20, 1(5, and & trees per acre; for stages 1 through 7,
respectively. The MS-MCIP program for Case [Ia, l-growth
period, corresponds to the program discussed for Case 1I.
For the 2 and 3-period thinning models, however, a more
detailed procedure was used to establish actual ranges for
possible numbers of trees to cut after p-eriods 1 and 2.

The MS~-MCIP program randomly selects the numbers of
trees to cut from each species/diameter class combination
prior to growth period 1. The residual stand is then
projected to the end of period 1, where values are selected
for trees to cut before growth period 2. The number of
trees available fqr cutting cannot exceed the number
projected after growth period 1. Therefore, the rangs of
prossinle wvalues for trees to cut cannot' simply be formed
around the value of each variable in the optimal solution
generated thus far. That is, in the optimum thus far, the
number of trees cut after period 1 may be greater than the
number of trees projected at the current solution, i.e.,
considering the thinning regime prescribed for period 1 ét
the present evaluation. If this occurs, or 1if the variable

value in the optimum thus far, plus one half the current
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maximum range, 18 greater than the prejected number of
trees, the MS-MCIP program uses the number projected as the
upper bound on the range of pogsible wvalues for the
variable,

The lower bound for each wvariable range 1is defined as
the value in the optimal sclution thus far, minus one half
the maximum range possible. If the iower bound is greater
than the number of trees projected, the lower bound is
redéfined as the number projected minus one half the maximum
range, or redefined as 0 if this quantity is negative. In
the 3-period model, a similar procedurs was coded for each
species/diameter class combination, for choosing upper and
lower bounds for possible trees to cut after period 2.

Similar to the solutions evaluated for Case I in Tables
11 threough 14, Case II solutions are presented in Tables 16
through 19. Present values are presented in Tables 16 and
17 using 1,000 solutions per stage of the M3S-MCIP program,
for the initial seed numbers specified. The same sgeed
numbers were used with 10,000 evaluations per stage, and the
present values summarized in Tables 18 and 19.

For all solutions, the present wvalues after the first:
stage of the MS-MCIP program correspond exactly to the MCIP
solutions. This results as 300 was specified as the initial
maximum range for trees cut per acre from each

species/diameter class combination in the MS-MCIP program.




Table 16. Cbjective function values for solutions to Cases IIa, IIb, and Ilc,
with 1,000 random samples for each stage of the MS-MCIP approach
{initial seed number = 39873).

‘ Present Values
Stage No. Total No. Case. Ila Case IIb Case Ilc
{for MS-MCIP) of Samples MCIP MS-MCIP MCIP MS-MCIP MCIP MS-MCIP

——————————————————————— S/ ACT B e et e
1 1,000 337.89 337.89 299.22 299.22
2 2,000 338.13 338.15 299.22 299;22
3 3,000 338.13 338.54 299.22 299.22
4 4,000 338.13 338.54 299.22 299.22
5 5,000 338.13 340.92 299.22 299.87
6 6,C00 338.13 341.16 299.22 302.25

7 7,000 338.13 341.21 300.38 303.40




Table 17. Objective function values for solutions to Cases Ila, Ilb, and Illc,
with 1,000 random samples for each stage of the MS-MCIP approach
(initial seed numbher = 42441),

Present Values
Stage No. Total No. Case Ila Case Ilb Case Ilc
{(for MS-MCIP) of Samples MCIP MS-MCIP MCIP MS-MCIP MCIP MS~MCLIP

—————————————————————— $/aCrEgmm e e e e e
1 1,000 340.29 340.29 295.10 295.10 262.54 262.54 5
2 2,000 340.29 320.29 295.10 295.33 262.54 262.54
3 3,000 340.29 340.29  295.10 300.77 262.54 268.10
4 4,000 340.29 340.73  295.57 300.77 266.04 269.97
5 5,000 340.29 340.97 299.87 300.88 267.11 270.83
6 6,000 340.29 341.16 . 299.87 302.07 267.11 274.47

7 7,000 340.29 341.19 299.87 303.92 267.11 280.97




Table 18. Objective function values for solutions to Cases Ila,

IIb,

and Ilc,

with 10,000 random samples for each stage of the MS~MCIP approach
{initial seed number = 39873).
Present Values‘
Stage No. Total No. Case Ila Case IIb Case IIc

{(for MS-MCIP) of Samples MCIP MS~MCIP MCIP MS-MCIP MCIP MS-MCIP
~~~~~~~~~~~~~~~~~~~~~~ - Ted o s

1 10,000 338.13 338.13 300.38 300.38 266.76 266.76

2 20,000 338.22 340.06 302.99 302.69 275.30 271.66

3 30,000 338.22 340.43 302.99 302.69 275.30 272.74

4 40,000 340.37 341.27 304.25 302.75 275.30 272.74

5 50,000 340.43 341.59 304.25 305.41 275.30 275.24

6 60, 000 340.43 341.61 304.25 306.85 275.30 278.89

7 70,000 340.43 341.65 304.25 308.52 275.30 280.83

TET




Table 19, Objective function values for solutions to Cases IIa, IIb, and Ilc,
with 10,000 random samples for each stage of the MS~MCIP approach
(initial seed number = 42441).

: Present Values
Stage No. Total No. Case Ila Case IIb Case Ilc
(for MS-MCIP) of Samples MCIP MS-MCIP MCIP MS-~-MCIP MCIP MS-MCIP

~~~~~~~~~~~~~~~~~~~~~~ $/8Cr@-mmmmm e =
1 10, 000 340.29 340.29 299.87 299.87 267.
2 20,000 340.29 340.29 299.87 299.87  269.
3 30,000 340.29 340.91 302.04 304.58 271.
4 40,000 340.29 341.24 303.60 304.58  273.
5 50,000 340.29 341.54 303.60 304.58 273.
6 60,000 340.29 341.60 303.60 306.67 274.

7 70,000 340.29 341.60 303.60 308.37 274.




133

This ensures that neo reduction in the ranges of possible
values for the decision wvariables occurs in the first stage.

A total of 12 MS~MCIP solutions are presented in Tables
16 through 19. In all solutions evaluated for Case 11, the
M3-MCIP program resulted in greater final present value
estimates than were obtained with the MCIP method. No
solutions were obtained with greater presenﬁ values than the
5378.05 for clearcutting the stand now, howaver. Of the
Case II solutions generated, the highest present wvalues
obtained were $341.65, $308.52, and $287.99 . The thinning
regimes assoclated with these solutions are pressnted in
Table 20.

One difference between the Case I and Casge II solutions
examined is that increasing the number. of evaluations to
10,000 per stage resulted in greater present value estimates
for Case 1II. The improvements are evident with both
approaches, and afe greatest for the Case IIb and Ilc
examples, problems with greater numbers of possible feasible
solutions. These results, however, are due to the
respective shapes of the previcusly discussed objective
function distributions. The total number of possible
solutions to a problem shoﬁld have no bzaring on the degree
of objective function sensitivity to the fraction of the
total evaluated.

Finally, the present wvalue estimates £for Case 1II
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Table 20. Thinning schedules for solutions to Cases Ila,
with present values of $341.65,
raspectivly.

ITlb, and Ilc,

$308.52, and $287.99,

Diameter Class {in.) and Species (1,2)
6-6.9
(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

2-3.9 4-5.9

8-9.9

10-11.9 12-13.9

Case IIa
Period O:
Case IIb'
Period 0O:

Period 1:

Casgse Ilc
Period O:
Period 1:

Period 2:

12 57 27 55

10 54 11 66

0 2 20 4

1 1 9 4

70

39

[#8)

19

14

51

50

10

31

18

13

of Trees Harvested-—-—-—-—commwa-
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decrease as the number of growth periods projected
increases. This results for both random search methods, for
each of the solutions generated. It should not be
concluded, however, when present value decreases occur for a
given problem, that decreases ﬁill continue as the number of
periods considered is increased. The present value
relationshiv for the thinning model is not necessarily

concave with respect to the number of growth periods

projected. The relationship depends on the input
assumptions, as will ke discussed 1in the sensitivity
analysis. For a given problem, sufficient periods should be

projected that all wvalue increases assumed have been
reflected.

VMCON. The nonlinear programming subroutine was used
to solve the Table 9 formulation of Case IIla, under the
assumption that thinning occurs, i.e., X(0)=l. The
formulation presented in Table 8, developed from the
equations in Appendix A, was not coded due to the lack of
Success in solving the Case 1 formulation with eguality
constraints. For the Table 9 formulation of Case 1Ila,
arithmetic overflows resulted in premature termination of
theAVMCON algorithm for all starting solutions aﬁtempted.
Due to these results, the subroutine Qas not applied to the
much more involved 2 and 3-period formulations.

Although <convergence was not attailned, the VMCON
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program did produce one continuous solution to Case Ila with
a higher present wvalue than any integer solution obtained
with the random search methods. From a starting solution of
cutting l‘tree from each species/diameter class combination,
the algorithm produced the following. continuous solution

with an objective wvalue of 5343.66

L
= 0.910 = 0.
Nito Nglo 0.563
e _
N =19.720 N =19.676
“420 220 9.87
NG =77.295 M =52.000
130 230
n¢ = 0.000 NC = 0.000
140 240

Rounding these wvalues to integers, however, yvields a
present  value of $340.93 . An integer solution with
objective wvalue $341.65 was obtained with random search.
Had premature termination not occured, however, the
subroutine may have produced integer solutions to Case Ila
superior to the random search results. All attempts to use
random search solutions as starting points for the algorithm
resulted in termination without <changing the dinitial
estimates.

Sensitivity Analvsis

Thinning model results were presented for various
solutions to Case I, and Casesz IIa, IIb, and Ilc. The
sensitivity of these results to changes in certain input
assumptions was examined. A limited number of changes were

evaluated as the input parameters werse not developad through
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estimation. Results of this analysis are intended to
emphasize general properties of the thinning model
formulation. Most changes were evaluated only for Case I,
as the global optimum for this problem could be determined.

As noted in the Case I solution, -using an 8 percent
discount rate the present wvalue of land and timber if the
stand were clearcut now is 5528.92 . If final harvest is
postponed 5 years, the optimal policy includes thinning now,
and results in a present wvalue of £$485.76 . Assuming a
discount rate of 5 percent, however, the present wvalue of
the thinning option is $531,95, indicating the final harvest
should be postponed. Further reductlion to a rate of 3
percent results in a present value of £567.43 . Optimal
thinning schedules, however, did net change as the interest
rate was varied.

The results from two changes in the original price
assumptions were also determined for Case I. As presented
in Tahle 5, random-length log prices were originally assumed
for trees in diameter classes abhove 10 inches. Lowering
this limit to 8 inches, and assuming 25 percent higher
prices for trees akove 10 inches, resulted in a present
value from thinning of $639.27, compared to a present value
from clearcutting now of $721.70 . Significant increases in
Present value are expected in cases where smaller diameters

are used ag logs rather than roundwood. Changes also occur
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in the optimal thinning schedule under these assumptions.
In the previous solution, 27 trees of specdies 2 were cut
from the 6-7.9 inch diameter c¢lass, while only 3 were
removed froem the 8-9.9 inch «c¢lass. Under the new
assumptions, however, only 3 treeg are removed from the
smaller class while 12 are cut from the 8-9.9 inch class.
Trees in the larger diameter c¢lass have a greater value
than previocusly, and present value maximization requi?es
thev be harvested earlier than before. More of the 6-7.9
inch trees are allowed to grow intc the higher wvalued
diameter class before heing harvested.

The second price assumption wvaried for Case I involves
the difference between stumpage prices for thinned volume
versus volume removed in a clearcut. Some researchers
(e.g., Broderick et al. 1982) have modeled the effects of
increased thinning costs by reducing per unit stumpage
prices as a percentage of clearcut prices. Initial stumpage
price assumptions for Case I were changed, with Table 5
priceg representing thinning wvolumes, and assuming 25
percant higher prices for wvolume in the final harvest.
Present wvalues under this assumption were §587.12 for
clearcutting now, and $512.09 for thinning now and
Clearcut%ing in 5 vyears. The optimal thinning schedule
under this assumption included removing 26 trees of species

1l from diameter class 10-11.9, while for species 2, 48 trees
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were cut from the 6-7.9 inch class and 3 were removed from
thae 8-9.9 inch class. As 25 percentl.hiqher crices are
obtained at final harvsst, more of the larger, species 1
trees are left in the residual sgiand. For the lowest
diameter «class of species 2, however, the 25 percent
increage vrepresents a much smaller gain. More o¢f the
smaller trees are used to comprise the necessary volume for
the thinning to bhe feasible.

Finally, in determining the overall policy which
maximizes present wvalue, the number of growth periods
considered should be sufficient to zreflect all input
assumptions for the stand. Final harvest age is sensitive
to such factors as the interest rate and the producf values
assumed. For the formulations presented in the present
study, the present wvalue relationship is not necessarily
concave with respect to the number of growth periods
considered. To demonstrate this, cqnsider Case II with a
discount rate of 3 percent, and random-length log prices for
trees in the 14-15.9 inch diameter class only. Estimated
solutions to Cases IIa, IIb, and Ilc were obtained with
1,000 evaluations per stage of the MS-MCIP program. The
Present wvalue estimates for the 1, Z, and B-growth.period
formulations were $341.64, $307.37,  and $328.58,
Fespactively. It 1s also recognized that the solutions

generated are merely estimated optima. The present value
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differences are of sufficient size, however, to indicate
that the true optima. would fecllow a similar order of
magnitude. Trees do not advance inte diameter class 14-15.9
until the third prejection period, resulting in a present
value increase following the decrease for the 2-period
model, Under these assumptions, sufficient growth perieds
would have to be considered to fully reflect future growth
into the sawlog diameter classes. |

The sensitivity of thinning model solutions to certain
input assumptions was considersd. The analysis did not
reveaL any unexpected relations, but demonstrated the need
to coﬁ;ider the input assumptions in evaluating when final
harvest. should occur. Thinning model results are also
related to the growth rates implied by the stand-table
projection parameters. The parameters assumed in the
- present analysis were not varied 4in the sensitivity
evaluation, however, since these wvalues were assigned to
achieve certain growth and yield results. Arbitrary changes
in the‘parameter values assumed for the hypothetical stand
may result in illegical growth model predictions.
Discussion

The thinning model formulated in the present study
represents an entire class of problems. The model cannot be
solved for a 'single set of inputs, and the solution

universally applisd. Optimal thinning schedules wvary with
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species composition, stand age and structure, site guality,
and other biological and economic factors assoclated with
mixed-species stands. The medel must therefore be solved
for every stand for which a thinning policy is considered,
. requiring an easily applied solution technique.

The nonlinear programming subrdutiqe used in solving
the thinning model examples 1s not easily applied, _and
adequaté solutions were not obtained, even for an assumed
stand of very simple structure. Respecifyving the user-
supplied subroutine for VMCON alone detracts from its use in
sclving repeated problems. Random search methods, however,
are easily applied. Such technicques become competitive for
gsolving optimization problems when function characteristics
are difficult +to calculate, when computer storage 1is
limited, or when numerous local optima exist (Sclis and Wets
1981).

Random search techniques for optimization are direct
searcn methods, as function gradients are not considered.
Many such approaches arxe dismissed as possible solution
methods due to their lack of a theoretical basis and
demonstrated inefficiencies for c¢ertain problems. These
factors should not result in ignoring direct search methods
for many applied problems, however (Swann 1974). The
following discussion concerns the use of simple and

rnultistage random search methods for solving thinning model




formulations.

Several reascns for using random search technigues in
optimization ware presented by Karnopp (1963}). The
advantages of using such techniques for solving the hardwood
thinning model include the use of wvery little computer
memory, and the possibility of designing a single program
for use with input data from different stands. Such

rograms could be developed for microcomputers, expediting
applications of the thinning model. The longest FORTRAN
program coded for the previous examples was approximately
500 1lines. Solutions generated in the present study
required execution times from a few seconds to 3 minutes, on
an IBM 3081 central processing unit. Another advantage in
using random search techniques to solve thinning problems is
that integer solutions are obtained, avoiding the problens
involved with rounding continuous values. Also, 1f problems
are encountered witﬁ generating feasible solutions, the
random number ssts resulting in infeasible answers may be
modified to yield‘acceptable alternatives.

The random search approaches applied in the present
study also have shortcomings, however. These methods are
clearly not the most practical for many problems, and would
be extremely inefficient in solving problems with certain
structures, e.g., linear programs, problemgs which can be

solved using calculus, etc.
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Convergence 1is another issue with these technigues,
The simple random search.'approach converges only as the
number of solutions evaluated approaches infinity (Matyas
1965), while the multistage approach was shown to result in
a local marximum in some sdlutions to. Case 1. Convergence
results -have been demonstrated for other random search
algorithms by Solis and Wets (1$81), althéugh examples Zor
constrained optimization were not presented. A method of
searching for the global optimum using random search was
presented by Anderssen (1972). The method involves testing
the hypothesis that the decision wvariable wvalues obtained
aré elements of a set containing the values in the globally
optimal sclution. Repeated sampling and refinement of the
designated set is performed until the hypothesis is not
rejected.

A serious criticism of the simple random search
approach was presgsented by Golden and Assad (1981). These
reviewers contended that Conley's (1980) argument in defense
of MCIP is not the most appropriate. Conley's defense of
simple random search 1s based on the probability of
obtaining an objective function wvalue within a certain
fraction of the global optimum, considering all possible
soluticns. Gelden and Assad propose the actual objective
value as the most important consideration, and the most

appropriate goal as obtaining at least one solution with an
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obijective valué within a certain percentage of the optinmal
value., Such a goal reguires & nmuch larger sample size than
the argument prasented by Conley. Golden and Assad do not
consider the shape of the distribution for objective
function wvalues, however. As previously discussed, if the
distribution is characterized by a relatively light right-
hand tail, objective values within a small upper region will
be near (in actual wvalue) the optimal solution, achieviﬁg
the result specified by Golden and Assad. The MCIP scolution
of $481.25 for Case I, for example, is within 99 percent of
the optimal wvalus of $485.76

The greatest shortcoming of the MCIP technigque is that
for actual problems, the entire distribution of objective
values, including the exact shape of the right—hand tail, is
unknown. The deneral shape of the entire distribution for a
problem may be inspected for large random samples of
solutions. Such procedures may indiéate problems for which
random search. methods should not be usged, but cannot result
in complete confidence in wusing the approaches for a
particular problém.

Procedures for evaluating heqristic solutidns to large
combinatorial problems were investigated by Dannenbring
(1973,1977). Two general approaches were considered for
estimating optimum solution wvalues. One set of procedures

invelves random sampling to obtain reduced-bias estimates of
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the optimum vwvalue. The sscoud method uses concepts
developed in statistical extreme-value theory to derive
best-fit estimates of parameters for the asymptotic
distribution of extrema. One of the parameters obtained is
an appropriate eétimate of the optimum solution wvalue. As
previously discussed, the tail behavior of the objective
value relative freguency distribution will affect the
performance of random search algorithms. Dannenbring did,
howevar, address tail behavior in considering procedures for
evaluating the performance of such methods. A truncation
point estimator was  proposed as superior for the
combinatorial problems used in his analysis, regardless of
the objective value distribution. The statistical extreme-
value approach was used by McRoberts (1971) in evaluating
solutions obtained with a heuristic algorithm. In general,
the estimated optimal objéctive value may be compared with
estimates obtained with inexact algorithms, thexreby
evaluating the performance of such methods as random search
for solving particular problems. Additional methods for
evaluating the quality of heuristic algorithms in general
were reported by_Silver et al. (1980).

For the examples used in the present study, the MS—MCIP
approach resulted in higher final present wvalue estimates
than MCIP, for the same number cf solutions genserated. The

approach should not be considered superior to MCIP for all
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thinning model problems, however, based on the solutions
generated for the previous examples. Examining complete
objective value probability densities for problems developed
for actual stands, using estimated growth model parameters,
is required before final conclusions can be made on the-
effectiveness of these technigques for estimating optimal
hardwood thinning schedules. 0f the two approaches,
however, the multistage method appears +to have moré
potential in yielding estimated optima for such problems.
Based on results from the examples in the present study,
further investigation of this technique should include
varyling the number of stages, the numbers of evaluations
generated at each stage, and the reductions in the possible
ranges used for decision variables.

Results from using random sgearch heuristics in the
thinning model demonstration wers generally positive. Such
methods should be given further consideration for solving
this class of problems. MCIP and MS-MCIP are not the only
randem search possibilities, however. 2 random search
method for constrained optimization was presented by Luus
and Jaakola (1973), for example. The algorithm presented by
S0lis and Wets (1981) for uncqnstrained minimization is
another method which might be adapted to the present
Problemn. Further study of approaches for mixed~hardwood

thinning formulations would benefit from final growth model
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specification, with parameters estimated from remeasurement

data.




V. SUMMARY, CONCLUSBIONZ, AND RECOMMENDATIONS

Summary And Conclusions

Upland hardwood stands of mixed-species are the most
common forest types in the United States. Thinning suqh
stands has not been widely practiced in the past, chiefly
due to inadequate markets for lower quality hardwood raw
materials. Markets for lower grade hardwoods are expanding,
however, and increasing emphasis is being placed on hardwood
management. The present study involves deriving optimal
thinning and rotation for mixed-hardwood stands. A general
formulation of the problem was developed and solution
techniques were considered,.

A means of projecting growth and vield for mixed-
hardwood stands was regquired prior to formulating a thinning
optimization model. The growth model must reflec£ both
biolog;cal and eccncmic effects from partial harvests, and
therefore must predict stand volume over time by diameter
class and species. A stand-table projection model was
tentatively specified with upgrowth and mortality ecuations
for esach species/diameter class combination.

Upgrowth by species and diémeter class waz modeled by
reducing an estimated upper potential to an actual upgrowth
estimate, using stand wvolume measures *to determine the

proportion of ©potential realized. Thinning therefore
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results in increased diameter growth rates for the residual
stand, as measures of stand density are reduced. The
mortality relation for each specieg/diameter class
combrination was specified with the same variables used in
modeling upgrowth. Both equations included measures of
stand veolume for each species group recognized.

The stand-table projection m&del specified for mixed-
hardwoods was used iﬁ formulating a thinning optimization
model with nonlinear progrémming. The interface between
growth model and thinning model was accemplished by
specifying numbers of trees to cut from each
species/diameter class combination as decision variables in
the nonlinear program. Constraints were dsveloped for
defining the residual stand after each thinning. Optimal
thinning schedules are derived for successive numbers of
growth periods. The rotation with the greatest present
value of land and timber is selected as optimal, among the
set of growth periods projected.

The thinning model was formulaﬁed for stands which are
presentlgr of thinning age. Application to¢ younger stands
may be accomplished, however, by projecting such stands to
thinning age prior to solving for optimal thinning
schedules. The model has sufficient resolution to reflect
nixed-hardwood factors such as interspecific growth rates,

thinning effects, and value-by~size-class relationships.
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Another property of the thinning medel is that constraints
may be added to represent wildlife, recreation, or other
management cbjectives.

The thinning model was demonstrated for a hypothetical
stand of two species. Growth model parameters were assigned
for the demonstration for projecting the stand in 5-year
intervals. A sténd of very simple structure was also
specified to aid in evaluating sclution techniques. Two
general approaches Qere used in solving thinning model
formulations: a nonlinear programming algorithm, and
heuristic algorithmg involving random search. Both simple
random search and a multistage random search approach were
included in the evaluation.

Considering a single &5-year growth period, the optimal
thinning policy for the simple stand, Case I, was determined
through an exhaustive.search of the entire feasible region.
The problem had 2 million possible solutions, and was
therefore large enough to evaluate both random search
methods and the nonlinear programming algorithm. Froblems
were encountered in obtaining solutions with the nonlinear
programming algotrithm. Two soluticons to Case I were
obtained, however, from widely different initial estimates.
The solutions obtained were identical but were not globally
optimal. The example indicates the unreliability of

estimating glebal optima to nonconvex problems based on
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convergence to a common solution from different starting
points.

Before applying the random search techniques to Case I,
the probability density of objective function walues for the
problem was- eramined. Random search methods may be
considered for problems where functional evaluations are
relatively inexpensive, and the probability density ,Of
objective function values has a light right-hand tail. The
distribution for Case I had the desired property. 3
disadvantage of using random search methods is that for
problems of realistic size, the entire distribution cannot
be examined. For Case I, simple random search provided
solutions with objective wvalues within 99 percent of the
optimum using very little computer storage and exXecution
time. The multistage random search method produced the
globhal optimum in several trials. It was also demonstrated,
however, that the multistage approach may result in local
optima.

Case II was formulated for the stand assumed for growth
model parameter assignment, The problem involved
formulations for 1, 2, and 3 growth periods, corresponding
te Cases ‘Ila, Ilb, and IIc, respectively. The nonlinear
programming algorithm was applied to a gimplified
formulation of Case Ila with little success. ©One sclution

was obtained with a greater objective value than obtained
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with random search. Rounding the solutien to integer
numbers of trees, however, resulted in a lower present value
than obtained with the other methods. bue to the lack of
success in solving the 1l-growth period formulation, the
algorithm was not applied to solving the more involved 2 and
3-period- problems.

Randcm search solutions were generated for all Case II
formulations. Frokbability densities resulting from lO,dOO
random sclutions were examined for each subproblem. The
distributions were characterized by light right-hand tails.
In all solutions generated for the Case II problems, the
multistage method resulted in greater ©present ralue
estimates than simple random_ search. Final solutions to
Cases Ilb and 1Il¢ were more sensitive to the number of
thinning schedules evaluated.

A limited analysis of thinning model sensitivity was
performed  for changes in several input assumptions.
Although results from such changes were as expected, an
important property of the model became evident during the
analysis. . The thinning model present wvalue relaticnship is
not necessarily c¢oncave with respect to the number of growth
periods projected. In determining optimal £final harvest
age, therefore, a sufficient number of growth periocds must
be projected to ensure that all input assumptions concerning

relative preoduct values are fully reflected.
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The thinning model developed ‘for mixed-hardwoods
represents an entire set of problems. Optimal thinning
rlans vary with species composition, stand age and
structure, site gquality, and other biological and economic
factors associated with such stands. The model must
therefore be solved for every stand for which thinning is
considered, raguiring a solution method that can be easily
and inexpensively applied. The random search methods
evaluated are viable alternatives for solving the thinning
model. Although convergence to the global optimum is not
guaranteed, procedures involving exteme-value sstimation are
availlable for evaluating the estimated results frem such
solution methods. In addition, the methoeds are easily used,
and g¢gould be adapted for solution on microcomputers,
expediting a wide and inexpensive application of the model
for diverse stands.

Of the random search methods evaluated, the multistage
approach appears to have the most potential for sclving
thinning model formulations. Other random search techniques
should also be considered, howaver. Using growth model
parameters estimated from remeasurement data would ensure
future evaluations free of any artifacts which may have
resulted from the parameter wvalues assigned for the present
demonstration. Also, the final growth model specification

directly influences the exact thinning model formulation,
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and thus the solution methods considered.

Recommendations For Further Ressarch

Recomﬁendations for further study are presented for
both the growth model and the thinning model. Specification
as well as actual implementation of the growtﬁ model are
discussed. For the thinning model, recommendations for
further study are presented for both formulating and solving
the optimization problem.

Growth Model

Specification. The growth model specified for use in

deriving optimal mixed-~hardwood thinning schedules
incorporates certaln mixed-species modeling concepts in a
stand-~-takle projectidn framework. The method is an original
synthesis of concepts in modeling growth anq yvield, and in
the absence of data, only a tentative specification was
proposed. Further study of this approach to modeling stand
growth must include estimating potential proportions of
upgrowth, as well as estimating the adjustment and mortality
function parameters. Final specification of these relations
must consider the ability of alternate forms to reflect
remeasﬁrement data.

In evaluating alternate specifications of the growth
model, stand-table projections should be made as integer
numbers of trees. The ultimate use of the growth wmodel

requires reliable integer projections, following the removal
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of integer numbers of trees during thinning,

Further study of the growth model should also consider
incorporating stand age in the mortality function. Age 1is
represented in the upgrowth relation, as different potential
‘proportions are specified after each growth period. The
tentative form for the mortality relation, however, merely
incorporates the diameter class and species, and a measure
of the dedgree of competition experienced during a particﬁlar
growth interval.

Implementation. The feasibility of developing

parameter estimates for general usge in implementing the
thinning model should be investigated following the final
specification. Potential proportions of upgrowth would be
required by age, diameter class, and species group. For the
adjustment and mortality functions, parameter estimates
would be needed by -‘diameter class, for species groups
commonly associated in mixed-hardwood forest types. With
tables of such parameter estimates, optimal thinning and
rotation could be estimated for any mixed-hardwood stand,
given the initial age and stand-table information.

Thinning Model

Formulation. The complexity of the thinning model

formulation for mixed-hardwoods is directly related to the
final form of the growth model. Further study of the

Zornulation may therefore be required if significant changes
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are necessary for the growth model to adeguately reflect
growth and vield data. The formulation is also related to
the soluticon method used, however. If random search
techniques are employved, for example, the thinning model may
e much more detailed than if a nonlinear programming
algorithm 1is applied. Developing a geﬁeral nodel for
deriving optimal thinning and rotation for miged-hardwoods
requires joint considerations in all phases of modeling the
problem.

The thinning formulation presented for mixed-hardwoods

is a stand-level model, as opposed to forest-level harvest

scheduling models. Most even-aged, mixed-hardweoods are
privately owned, relatively small, and have a common
management history throughout the stand. The thinning and

rotation problem was therefore approached from the beginning
as a stand-level pfoblem, ice., in many cases for mixed-
hardwoods, the stand and forest are syhonymous. In other
situations, however, stand treatments cannot be considerad
alone. Optimal forest-level policies may be derived by
aggregating optimal stand treatments in the case of fully
regulated iforests, or if harvest-level constraints are
unnecessary (Hann and Brodie 198C). For most applications,
however, integrating stand-level optimization with forest-
level harvest scheduling is regquired. Methods of

accomplishing this have been presented by Wazareth (1973),
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Williams (1976), and De Kluyver et al. (1980). Further
study of the mixed-~hardwood thinning model should include
investigating means of formulating the problem as a forest-
level harvest scheduling model.

Solution. Two random search methods were used in
solving thinning model formulations. Further study of these
and other ran&om search approaches is recommended following
growth model specification and parameter estimation.
Further study of the multistage approach should include
varying the numbers of stages and evaluations per stage, as
well as the variable ranges used. The multistage approach
presented by Luus and Jaakola (1973) should also be
considered. The method involves evaluating relatively few
random solutions at each of hundreds of stages. Initial
variable ‘ranges are reduced by a very small percentage after
each stage. The algorithm presented by Solis and Wets
(1981) for unconstrained minimization should also be
considered for adaptation to solving thinning model
formulations.

Further research concerning thinning medel solutions
should alsc include the method fof obtaining global optima
with random search presented by Anderssen (1972).
Anderssen's refinement procedure involves hypothesis testing
and reguires that several parameter values be assigned.

Evaluating the process for the mixed-hardwood formulation
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may involve significant trial and error before suitable
values for these parameters are established. Incorporating
concepts presented by Dannenbring (1977) for evaluating
heuristic sclutions should also be investigated.  Comparing
estimated extreme (optimal) solution values with the values
obtained with random search algorithms could be used in
developing meaningful stopping criteria for random search
methods. |

The final stage of research for the mixed-hardwood
thinning problem involves developing programs for
implementing the model on microcomputers. A 'single program
could be coded to estimate optimal thinning and rotation for
vafious stands. Input to the program would include
appropriate wvalues for the economic parameters, stand age,
and stand-table data. Using tables of growth model
parameter estimates and an appropriate random search
-solution method, inexpensive estimates of optimal thinning
and rotation would be readily available for wide application

to mixed-hardwood forest types.
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Appendix A. Nonlinezr programming specification of the
hardwood thinning model.

Appendix A is a complete and general statement of the
nonlinear programming formulation of the hardwood thinning
problem, including a list of definitions for all wvariables
used in the general statement.

Obijective Function:

s nitk
[0 r % [(B../(1+)¥ NG, ] (AL)
0 i=14=1 1k

(N D]

Maximize:PV = §

k
g, FC/(L+rfF -Mx (1-X )]+[L/(1+r) %0 )
Subject to:

Residual Defining Constraints

Initial residual trees (for all species/diameter class

combinations):

R I c
N - N + N =0 (i=1,...,8 3=1,...,n,; k=0 A2
itk i3k 1jk ( J 1 ) (AZ)

Residual trees in the smallest diameter classes (after

each period):

R R ij R” ij R
N {31 (N 451 J(EXP [P g3 (V-1 )+ £ (bgi24m (Vm,>j,k-1 ) )]
m=1
1j R ij R
~(PPyji JEXPIby" (Vp k-1 )+ T (bpi1 (Vm,>y,k-1 )) 1) (A3)
- m=1
C .
+Nijk =0 (i=1,...,58 j=1 k=1,....G)
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Residual +trees in the intermediate diameter classes

(after each period):

WEov R yExeet (wR . ye e ol (v R )) 1
ijk 1jk~1 s+2' " T,k-1 =1 s+2+Hm ' m,>F,k-1
S S L STt SO IT e Nt
“(PPy o JEREDIT VDL )+m§1 (Piy Vg sit,ke1 )
uq?d_lﬁvi )=0 (i=1,...,8 3=2,...,n *k-1 K=1,...,G)

Residual trees in the largest diameter classes (after

each period):

R R 13-1, R
- P EXP 375 (% + AS5
I T I R ACL PR L. R S (A3)
S
il (yR + 8¢ =0
mil( L (Vnhzj~l,k—l )] ik

(i=1,...,S j=r +k k=1,...,G)

Maximum Harvest Volume Constraints:

r (v, N y<H X (k=0,...,G-1) (AB)
ij 14

Minimum Harvest Volume Constraints (if harvesting occurs}:

ni'H:C
z

™M

C
(Vi Nig) 2 Hy Xy (k=0,...,G-1) (A7)
i=1  j=1

Constraints Defining a Range for ¥ :

0 £ Xy < (k=0,...,G-1) (AS)




Non-negativity Restrictions:

R’C> i= j= =
NP E O (ish...8 3=l m 4k k=0,...,6) (A9)

Variable Definitions:

In all cases, indexes used are: i for species, j for
diameter c¢lass, and k for growth period. Indexes m and g
are used for summation in the problem statement, in cases
where i or j are held constant. All other variables uéed in
the general problem statement as well as the text of the
study are defined below in alphabetical order. Vectors used
in the Case Ila formulations of Tables 8 and 9 are not
included in the definitions. These vectors are defined in
Table 1C and are not used elsewhere in the study.

A represents the number of age periods in a
discrete dynanic programming network,

a is an area in the right-hand tail of a
probability density of objective function wvalues,

ADJijk is an adjustment to the ﬁotential proportion

of upgrowth, representing the percentage of PPijk

realized,

i

t>iso,m:1,...,2s+2, growth model upgrowth
(m=1,...,3+1) and mortality (m=5+2,...,25+2)

parameter estimates,

C is used as a superscript denoting numbers of

trees cut,
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D is the number of diameter classes in a discrete
dynamic programming network,

FC 1s a fixed.thinning and final harvest cost,

G is the number of growth periods modeled,

H 1x is a maximum harvest volume after period k,

H2x is a minimum harvest volume after period K,
observed only if a harvest occcurs,

HYV represents harvest value in deollars,

I is a superscript denoting initial numbers of
trees,

I, represents the land sale value assumed,

M is a superscript denoting numbers of trees
dying (mortality),

n is the number of solutions evaluzated using
random search,

ni is the initial number of diameter classes
({by species),

Niﬂ& represents the number of tress cut (by
species, diameter, and growth period),

Niﬂi represents the initial number of trees (by
apecies, diamster, and growth period),

N§ﬁ£ represents the residual number of trees (by
species, diameter, and growth period),

QTijk—l represents a quantity at the beginning

of growth period k (in units preojected},
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Pij is a per tree stumpage value, calculated as
the relevant price (per unit volume) times the
appropriate average volume per tree,

PPijk represents the potential proportion of
upgrowth (by species, diameter, and growth
period),

Pr is the probability that at least one random
search solution is obtained within area {a),

PV representé the present value of land and timber
cut,

r is a real alternative rate of return,

R is a superscript denoting numbers of residual
trees, . -

RL is rotation length in years,

S is the number of species groups represented,

SEV is soil expectation value,

t is the number of years per growth period,

TC is the number of classes used for numbers of
trees in a discrete dynamic programming network,

U is a superscript for numbers of trees projected
as upgrowth,

UPGijk is upgrowth (in units projected),

Vij is an average volume per tree (by species and
diameter),

R l'li +k

R
Vm,>i,k = (Vg mqe )} represents residual

n=j
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volume {by species and growth period) in
diameter classes 2z j,

1
nl+&

s

R

V%,kz .Z x (VijNijk) represents a total
- i=1 i=1 .

residual volume (by growth period), and

Xk is an intermediate wvariable used to reflect

whether or not harvesting occurs after period k.
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Appendix B. Evaluation of constraint convexity.

Twice differentiable multivariate functions may be
characterized as convex 1f and only if the Hessian matrix is
positive-semidefinite. This procedure was not used to
evaluate program convexity in the hardwood thinning model,
however, due to the number of variables involved and +the
resulting dimensions of the Hessian. The structure of the
residual-defining constraint sets ({(A3) through (A5}) was
examined, however, by simplifying the relation used for
intermediate diameter classes.

Consider an equation from constraint set (A4) for

residual volume after growth period 1, assuming S=2 and

2 £ 3 32n
Let;
. Z  nj n R
14 1
=bI [ ¥ ¥ (V.. NF. ) ]+bptd v BL
m=}
, ns
+blj v R ,
3 { I. 2m NZmO |
m=j
2 ny .
P 1. " D.l
B=bdl x5 (Y, Nf.f.o)hb;ﬂ (v, 1\%; o] (B2)
i=1 j_—.l J J m:j m 1m®
nz
sord [ v MR ], and
. 2m 2m
m=j
- 04 .. nj
B, =b3 iz & (v,,NI},O)Hb;J‘l[ s V. NR ] (B3)
i=1 j=1 ij 4ij m=q-1 Im 1m0
- n
s i1-10 oy MR
2m  Z2m0
m=3-1
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Using relations (Bl), (B2), and (B3), the residual defining
constraint from set (A4) may be written:

R R By By R B3 C
N 141=N {j0{e ~(PP ij1)e )}+(PPi,j-1,1 )Ni,j—l,[}e "Nijl (B&)

X R I C
From congtraint set (AZ), however, Njs0=Nij0-Nijo -

Substituting this relation into equation  (B4) and

multiplying yields:

N By _ B1,, I _,C Bg B1.C
NIi{jl Nijo & " PPiq1® "NysoNijo © P51 8 TNigo (B5)
Ba .. C
+PP L Pi_pp ¢ 3.

1,3-1,1 ¥ 1,5-1,0 1,i-1,1 ¥1,5-1,0¢ ij1

R
The sama expression may be substituted for ijO in relations

(Bl), (B2), and (B3). Considering (Bl), for example:

,. 2 T3 . Ml
I | 1 I C A I _C
B, = T Nt -N + -N B6
1= P Z L Vig Wigo Nijo)™®y" 2 Vip (Npg "Nipg ) (28)
1= _]“"'l m=]j
na

+p 1 1 L _NC
P35 mij Yom MN2m0 Nawo )

Expanding relation (B6) and collecting constants vyields:

L. 2 n4g . Y | ’ ,, 02
B = bl v, NI 4pid v. NI +pi v, Nt B7
1R E o VNt o VY NP VN e (BT
i=1 4=1 = m=]
2 1+ P n 4 n
g v NG pid Py nG pil P oy N
L . iy 130 2 “, 1m 1m0 3 -, Zm  2m0
i=1 j=1 m=3 : m=]
Relation (B7)} may be expressed as:
T

Bi1= k1~ b(N (B3)

Where k 1z a non-nedgative constant, bUJ is a wector of
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regression constants £from eqguation (Bl), and N is a vector

C
of N jjp variables multiplied by appropriate Vij constants.

Similar expressions for eguations (B2) and (B3) are:

i

T
By kg - by N (BS)

T
ky - b(3)N ‘ (BlC)

B3

Using results (B8), (BY9), and (B1lC), and letting K's also

represent non-negative constants, equation (B85) may be
expréssed:

-5, I N -, T N ¢ b LN ¢ -b,Iw
Nij]_:Kle (2) "Kze (l) —K3Nij0 =1 (2) +K4 Nijoe (1) (Bll)

Cc

T T
-b N -b N C
+K5e (3) -K6N i,j-l,O. e (3) ~N

ijl

Equation (Bll) 1s written entirely in terms of
variables expressing numbers of trees tTo cut. Ag this
exXpression 1s a nonlinear equality, it represents a
nonconvex feasible region. In addition, equation B(1ll)
lacks any convexity structure, as the right hand side
includes sums of both convex and concave functions of the
decision wvariables. The first-order Kuhn-Tucker local
optimality conditions are therefore not sufficient to
characterize a solution as globally optimal. Similar
results could be shown for the other constraint sets

defining residual numbers of trees ((A3) and (AL)).
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MIXED—HARDWOOD
THINNING OPTIMIZATION
by
Steven H. Bullard:

(ABSTRACT)

Expanding markets are expected to create new
opportunities for active forest management in upland
hardwood stands. A proceduré was developed for estimating
economically optimal thinning policies for mixed-species
hardwoods by interfacing a stand-table projection growth
model with a nonlinear programming thinning model
formulation. The thinning model ?rovides information on
numbers of trees to harvest over time by species and
diameter class, and therefore has sufficient resolution to
reflect interspecific growth rates and wvalus-by-size-class
relationships.

The diversity of Dbiolcgical and economic factors
associated with mixged-hardwoods requires soclution methods
which can be easily and inexpensively applied to

formulations for individual stands. A nonlinear programming

algorithm and heuristic methods involving random search were

evaluated as solution techniques in a demecnstration of the:
thinning model. For the demonstration, growth mod

parameters were specified for a 'hypothetical stan@f*




simple random search and multistage random search methods

appear promising for solving thinning model formulations for
mixed-hardwoods. As formulated, thinning problems are
combinatorial in nature, belonging to a class of problems
for which heuristics are often used. Further study is
needed, however, to evaluate such methods for solving mixed-
hardwood thinning problems, using growth model parameters

estimated from remeasurement data.
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