
Stephen F. Austin State University Stephen F. Austin State University 

SFA ScholarWorks SFA ScholarWorks 

Faculty Publications Forestry 

1983 

Mixed-hardwood thinning optimization Mixed-hardwood thinning optimization 

Steven H. Bullard 
Stephen F. Austin State University, Arthur Temple College of Forestry and Agriculture, 
bullardsh@sfasu.edu 

Follow this and additional works at: https://scholarworks.sfasu.edu/forestry 

 Part of the Forest Sciences Commons 

Tell us how this article helped you. 

Repository Citation Repository Citation 
Bullard, Steven H., "Mixed-hardwood thinning optimization" (1983). Faculty Publications. 153. 
https://scholarworks.sfasu.edu/forestry/153 

This Dissertation is brought to you for free and open access by the Forestry at SFA ScholarWorks. It has been 
accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more 
information, please contact cdsscholarworks@sfasu.edu. 

https://scholarworks.sfasu.edu/
https://scholarworks.sfasu.edu/forestry
https://scholarworks.sfasu.edu/forestry_department
https://scholarworks.sfasu.edu/forestry?utm_source=scholarworks.sfasu.edu%2Fforestry%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/90?utm_source=scholarworks.sfasu.edu%2Fforestry%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://sfasu.qualtrics.com/SE/?SID=SV_0qS6tdXftDLradv
https://scholarworks.sfasu.edu/forestry/153?utm_source=scholarworks.sfasu.edu%2Fforestry%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cdsscholarworks@sfasu.edu


MIXED-HARD\'/OOD 
THINNING OPTIMIZATION 

by 

Steven H. Bullard 

Dissertation submitted to the Graduate Faculty of the 

Virginia Polytechnic Institute and State University 

in partial fulfillment of the requirements for the degree· of 

APPROVED: 

DOCTOR OF PHILOSOPHY 

in 

Forestry and Forest Products 

~~~~-~ I( J(~,t.j_ __ 
!1.R. Reynolds • 

!Z!_w .~~"1/ 

May 1983 
Blacksburg, Virginia 

H.W. \hsdom 



ACKNOWLEDGEMENTS 

Throughout the research in this study,·· generous 

assistance was provided by graduate committee members to 

whom I will always be indebted. Sincere thanks are extended 

to Dr. W. David Klemperer, chairman, Dr. Harold E. Burhl1art, 

Dr. Marion R. Reynolds, Dr. Hanif D. Sherali, and Dr. 

Harold W. Wisdom. I would also like to express sincere 

gratitude to Dr .. Layne T. Watson for unsolicited assistance 

at a crucial stage of the study. 

The research summarized in this report was funded by a 

grant from the U.S. Forest Service, Southeastern Forest 

Experiment Station. I would also like to acknowledge 

Resources for the Future, Inc. , for partially sponsoring the 

research with a dissertation fellowship grant. 

Family support during my graduate program was often 

needed and never failing. I will forever be grateful for 

the encouragement of my parents and the love and sacrifice 

of my wife Susie and son Jacob. Such support can never be 

repaid but will always be cherished. 

ii 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ........................................ i i 

LIST OF TABLES ........................................... v 

LIST OF FIGURES ........................................ vii 

I. INTRODUCTION .......................................... 1 

Objectives ........................................... ;3 
Justification ......................................... 3 
Literature Review ..................................... 6 

Operations Research Applications ................... 6 
Simulation and Stand-Level Decisions ............ 6 
Optimi.zation Techniques and Stand-Level 

Decisions .................................... 8 
Thinning Hardwood Stands .......................... 15 

General Considerations ......................... 16 
Yield Information .............................. 19 

II. GROWTH MODEL DEVELOPMENT ............................ 23 

Resolution Level ..................................... 23 
Gro\•rth Modeling Approaches ........................... 24 

Diameter Distribution Approach .................... 25 
Stand-Table Projection Approach ................... 25 

Mixed-Species Modeling Concepts ...................... 27 
Model Specification .................................. 29 

Upgrov1th .......................................... 30 
Potential Proportion ........................... 32 
Adjustment Procedure ........................... 33 

Mortality ......................................... 37 
Discussion ........................................ 40 

I II. THINNING tWDEL FORMULATION ......................... 43 

Gro1vth Model Implications ............................. 43 
Hardwood Thinning Factors ............................ 45 
Dynamic Programming .................................. 48 
Nonlinear Programming ................................ 50 

Model Formulation ................................. 50 
Constraints .................................... 51 
Objective Function ............................. 60 

Convexity ......................................... 64 
Program Size ...................................... 65 

Number of Variables ............................ 65 

iii 



Number of Constraints .......................... 66 
Discussion ....................... , ................ 67 

IV. THINNING MODEL DEMONSTRATION ........................ 72 

Growth Model Parameter Specification ................. 72 
Biological Considerations ... ·: .................... 73 
Parameter Values .................................. 75 

Thinning Model Examples .............................. 76 
Input Assumptions ................................. 80 
Case I ............................................ 83 
Case II ........................................... 87 

Thinning Model Solution .............................. 93 
Solution Techniques ............................. , . 93 

· Monte··Carlo Integer Programming ................ 93 
Multistage Monte-Carlo Integer Programming ..... 97 
Nonlinear Programming Subroutine VMCON ......... 99 

Case I Solution .................................. 101 
Random Search Methods ......................... 102 
VlVICON ......................................... 118 

Case II Solution ................................. 121 
Random Search Methods ......................... 121 
VMCON ......................................... 135 

Sensitivity Analysis ................................ 136 
Discussion .......................................... 140 

V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS ........... 148 

Summary and Conclusions ............................. 148 
Recommendations for Further Research ................ 154 

Growth Model ..................................... 154 
Specification ................................. 154 
Implementation ................................ 155 

Thinning Model ................................... 155 
Formulation ................................... 155 
Solution ...................................... 157 

LITERATURE CITED ....................................... 159 

APPENDICES ............................................. 168 

Appendix A .......................................... 169 
Appendix B .......................................... 17 5 

VITA ........ · ........................................... 178 

iv 



LIST OF TABLES 

1. Initial stand-table and average volumes per tree 
assumed for the thinning model demonstration .... 74 

2. Potential proportions of upgrowth assumed for the 
thinning model demonstration (relation (11)) .... 77 

3. Growth model upgrowth (b1,bz,b3) and mortality 
(b4,b 5,b6 ) parameters assumed for species 1 
for the ~hinning model demonstration 
(relations (11) and (12)) ....................... 78 

4. Growth model upgrowth (b1,bz,b3) and mortality 
(b4,b5,b6) parameters assumed for species 2 
for the thinning model demonstration 
(relations (11) and (12)) ....................... 79 

5. Input values initially assumed for determining 
present values in the thinning model 
demonstration ............................. · ...... 81 

6. Case I thinning model formulation, follo1ving 
the equation sets presented in Appendix A ....... 86 

7. Case I thinning model formulation, following 
substitution and simplification ................. 88 

8. Case IIa thinning model formulation, following 
the equation sets in Appendix A ................. 89 

9. Case IIa thinning model formulation, following 
substitution and simplification ................. 90 

10. Vectors used in the Case IIa thinning model 
formulations of Tables 8 and 9 .................. 92 

11. Objective function values for solutions to Case 
I, 1d th 1, 000 random samples for each stage 
of the MS-MCIP approach (initial seed number 
= 39873) ....................................... 109 

12. Objective function values for solutions to Case 
I, with 1,000 random samples for each stage 
of the MS-MCIP approach (initial seed number 
= 42441) ....................................... 111 

v 



13. Objective function values for solutions to Case 
I, with 10,000 random samples .for each stage 
of the MS-MCIP approach (initial seed number 
= 39873) ....................................... 112 

14. Objective function values for solutions to Case 
I, with 10,000 random samples .for each stage 
of the MS-r~CIP approach (initial seed number 
= 42441) ....................................... 113 

15. Objective function and decision variable values 
for solutions to Case I, with random samples 
of 1,000 and 10,000 for each stage of the 
MS-r~CIP approach .............................. ~ 115 

16. Objective function values for solutions to Cases 
IIa, IIb, and IIc, with 1,000 random samples 
for each stage of the MS-MCIP approach (initial 
seed number = 39873) ........................... 129 

17. Objective function values for solutions to Cases 
IIa, IIb, and IIo, with 1,000 random samples 
for each stage of the MS-MCIP approach (initial 
seed number= 42441) ........................... 130 

18. Objective function values for solutions to Cases 
IIa, IIb, and IIc, \vith 10,000 random samples 
for each stage of the MS-MCIP approach (initial 
seed number = 39873) ........................... 131 

19. Objective function values for solutions to Cases 
II a, IIb, and IIc, \vi th 10,000 random samples 
for each stage of the MS-MCIP approach (initial 
seed number '-= 42441) ........................... 132 

20. Thinning schedules for solutions to Cases IIa, 
Ilb, and IIc, with present values of $341.65, 
$308.52, and $287.99, respectively ............. 134 

vi 



., 

.L • 

2. 

3 . 

4. 

5. 

6. 

7. 

LIST OF FIGURES 

Probability density of objective function 
values for all feasible solutions to Case I ... l04 

Diagram of the major steps involved in solving 
thinning model formulat.ions with MCIP ......... 106 

Diagram of the major steps involved in solving 
thinning model formulations wi·th MS-MCIP ...... 107 

Probability density of objective function 
values resulting from 10,000 random 
solutions to Case I ........................... 122 

Probability density of objective function 
values resulting from 10,000 random 
solutions to Case IIa ......................... 123 

Probability density of objective function 
values resulting from 10,000 random 
solutions to Case IIb ......................... 124 

Probability density of objective function 
values resulting from 10,000 random 
solutions to Case IIc ......................... 125 

vii 



I. INTRODUCTION 

Upland hardwood forest types are .by far the most 

widespread in the United States. Stands of the oak-hickory 

forest type alone include 109 million ~cres, 23 percent of 

the Nation's commercial timberland (U.S. Forest Service 

1982) . Many even-aged upland hardwood stands developed on 

r..onindustrial private lands through hardwood invasion after 

pine stands were harvested. In 1973, half of the hardwood 

timber in the South was determined to be on upland sites 

which formerly supported pine stands (!Ylurphy and Knight 

"9"'LI.) .!. ! - ~ 

Many nonindustrial private landowners passively permit 

the biologically better adapted hardwoods to increase after 

the harvest of pines. These landowners may be pursuing 

their best interests as perceived through prevailing social 

and economic conditions (Boyce and Knight 1980). The 

resulting even-aged hardwood stands are often poorly stocked 

and consist of mixed-species with differential growth rat.es. 

Rates of return to landowners are typically low from 

even-aged upland hardwoods. These stands can often be 

converted to higher return softwood forest t.ypes but 

landowners frequently reject the investment because "' O.L the 

high costs and long time periods involved. Past market 

conditions favored the production of higher quality hardwood 

l 



2 

products but prospects ·are good for expanded marke':: 

opportunities for lower grade hardwood raw materials. These 

new or expanded market opportunities should improve t.:1e 

future profitability of currently low value upland hardv10ods 

and provide more economic incentives for active forest 

management. Partial harvests are particularly attract.i ve 

forest management activities for most landowners because of 

the returns generated. 

Past studies have applied mathematical programming 

techniques to the optimization of harvest schedules in 

softwood stands. Stand-level hardwood harvesting models 

designed to optimize economic objectives, however, may 

depend on different relationships than softwood models, 

e.g. , the relationships between stumpage price and stem 

quality may be more pronounced for hardwood stands. This 

study will 

mathematical 

focus on 

programming 

the 

to 

theory and 

the problem 

application of 

of optimizing 

harvests over time in mixed-species, even-aged upland 

hardwoods. Operations research methods and mathematical 

programming techniques have been developed as analytical 

tools in management science. Several studies have been done 

in the area of stand-level softwood harvest schedules but 

little application of these powerful tools has been made to 

the problem of hardwood harvest scheduling. 
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Objecti'!es 

The objectives of this study are: 

1. To mathematically define the problem of deriving 

economically optimal stand-level harvest sched­

ules for even-aged upland forest types of mixed­

species. 

2. To select an applicable operations research 

method for solving the mathematical model. 

3. To review the growth and yield information 

currently available for even-aged, mixed-species 

stands with an application of the model if ade­

quate response information is available. 

Justification 

Hardwood forest management has received much less 

attention in the past than management of softwood forest 

types. Comparatively low growth rates and values, as well 

as relatively few markets for hardwood raw materials have 

resulted in very little· active hardwood forest management. 

With an estimated 255 billion cubic feet of hardwoods, 

covering over 260 million acres in the United States (U.S. 

Forest Service 1982), the problems of managing this resource 

cannot be ignored. While many upland hardwood stands are 

currently of low value, expanding market opportunities 

should enhance the possibilities for upgrading the quality 

and value of such stands through intermediate harvests 
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(Schropshire 1977, Sims 1981). 

Commercial thinning has not been widely practiced in 

hard\vood stands in the past;, chiefly due to inadequate 

mar]<:e ts for the material removed ( Baumgras 1981) . Future 

price increases and expanded markets for lower quality 

hardwood ravl materials are expected, however. Assuming 

base-level price trends, the medium projection of timber 

demand by the U.S. Forest Service (1982) indicates softwood 

demand will increase by 80 percent by 2030. Hardwood 

demand, hoVlever, is projected to more than triple over the 

same period. A significant portion of the increased 

hardwood demand reflects increased requirements for hardVlood 

pulpwood and hardwood lumber for pallets. Beyond the next 

few decades, stumpage prices for lower-grade hardwoods are 

expected to rise (U.S. · Forest Service 1982). Future 

competition for available hardwood supplies is expected to 

be particularly intense in the South-Central Region. 

Market opportunities for hardwood raw materials are 

expected to increase due 

Vlell as technological 

to greater 

advances 

energy-wood demands as 

in pulping and the 

development of new products. Changes in the economic 

relationships of energy sources in the past decade have led 

to an increased market for industrial and home fuel (Curtis 

1980) . As hardwood is generally a more efficient fuel than 

soft\vood, the fuel market should provide new opportunities 
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for in'cermediate harvests in hardwood stands at J.ower net 

costs or with immediate. net gains, in addition to the longer 

term potential gains in tree quality. 

In other areas.. hardwoods are increasing2.y being used 

in the manufacture of pulp and paper (Malac 1978). These 

increases should continue with further refinements in high-

yield pulping processes. Hardwoods are also increasingly 

being used in the production of particleboard products 

(McLintock 1979), as well as organic chemicals (Glasser 

1981). Prospects for hardwood fiberboard and flakeboard are 

particularly bright, with 80 percent of the market east of 

the Mississippi River (Thielges 1980). Further enhancing 

fiberboard and flakeboard prospects are the favorable rav1 

materials costs compared to softwood chips, which will be 

experiencing increased demand and rising prices for pulping 

uses during the next 20 years (Thielges 1980). As an 

indication of future market expansion, the first two 

hardwood flakeboard plants in the South are scheduled to 

begin operations in 1983 (Koch and Springate 1983). 

While a significant amount of research is being devoted 

to developing new and better ways of utilizing the hardwood 

resource in the United States, increasing emphasis is also 

being placed on the problems of managing natural hardwood 

stands. Enhanced opportunities for upland hardwood 

management are almost certain and intermediate harvests 
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should be an important factor in hardwood management 

strategies. The problem of intermediate harvest decisions 

is particularly difficult where upland ,-;tand:o are comprised 

of mixed-:opecies with differential growth rates. 

Theoretically sound models are need.ed for hardwood 

conditions if forest landowners or managers are to achieve 

stand-level and forest-wide objectives through their 

intermediate harvest decisions. 

Literature Review 

The ability of decision-makers to answer stand-level 

questions about the timing and intensity of thinnings has 

been greatly enhanced through the application of operations 

research techniques to such problems. A broad class of 

these techniques will be considered with respect to 

applications that have been made to softwood stands. The 

literature concerning the special problems of thinnings in 

the management of hardwood stands will also be reviewed. 

Ouerations Research Applications 

Simulation and Stand-Level Decisions. Simulation 

techniques basically involve a specification of treatment 

regimes for stands. The impacts of various treatments and 

timing of treatments are then ass~ssed. The selection of a 

preferred regime is made based on a common criterion of 

performance. Either physical or economic criteria may be 

used, but no assurance is made that th~.= management regime 



7 

selected will be globally optimal where complex 

relationships are involved. Problems with the simulation 

method may also arise through the stochastic nature of the 

models. Methods for statistical validation of stochastic 

simulation systems were presented by Gochenour and Johnson 

(1973), and Reynolds et a1. (1981). 

Simulation methods have been applied to stand-level 

decisions in several studies. Examples summarized by Ha.nn 

and Brodie (1980) include the work of Hamilton and Christie 

(197'1), Myers (1969, 1973), and Hoyer (1975). Each method 

employs a stand development model enabling the user to alter 

thinnings and rotation length in the evaluation of specific 

.management programs. 

In a study of maximum volume production, Walker (1981) 

used a modified version of a computer simulation model 

developed by Daniels and Burkhart (1975) to determine 

optimal management regimes in loblolly pine plantations. 

Optimization techniques were used to determine regimes \vhich 

maximized the mean annual increment predicted by the 

stochastic stand simulation model. Management factors 

examined included rotation length, planting density, and 

timing and intensity of a single thinning. Response surface 

analysis and a simplex search technique presented by Ollson 

( 1974) were used to determine management regimes which 

maximized mean annual increment. 
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The Daniels and Burkhart simulation model was used in a 

deterministic manner by Broderick et al. (1982) to estimate 

optimal management regimes for loblolly economically 

plantations. Management regimes which maximized soil 

expectation values were determined by evaluating the model 

for various combinations of planting spacing, rotation, and 

frequency, ·timing, and intensity of thinnings. The· impacts 

of assumed interest rates, prices, and product mixes on 

optimal management regimes were also examined. 

Optimization Techniques and Stand-Level Decisions. The 

forestry literature is replete with applications of 

optimization methods to stand-level decisions. Maximizing 

mean annual .increment or soil expectation .value ( SEV) were 

early methods used in determining optimal rotations. Much 

.of the recent work has concentrated on the simultaneous 

determination of optimal thinning schedules and rotation 

length. Mathematical programming techniques have been 

applied extensively in this area. 

The following discussion of stand-level decision models 

is confined .to deterministic analyses. Presentations have 

also been made of stochastic stand-level decision analyses 

Using operations research techniques. These studies include 

Hool (1966), Lembersky and Johnson (1975), Lembersky (1976), 

and Kao ( 1982) . The stand-level decision models revie1>1ed 

are also similar in that only timber values are used in the 
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analyses. Studies which address the complications arising 

when non--timber values are considered include Hartman 

(1976), Calish et al. (1978}, Nguyen (1979), and Riitters 

et al. (1982). 

Optimal management plans ·were derived by Hardie ( 1977) 

for loblolly pine plantations in the Mid-Atlantic Region. 

Rotation length and thinning timing and intensity were 

varied to determine. the regimes which maximized per acre 

present net values for a single rotation. The effects of 

various economic assumptions were also compared. The 

solution technique employed by Hardie was complete 

enumeration and comparison of results under a highly 

constrained set of thinning and rotation alternatives. 

An early study by Chappelle and Nelson (1964} made use 

of marginal analysis to jointly determine optimal thinning 

and rotation length. With profit maximization as the 

guiding criterion, optimal stocking levels were determined 

using the alternative rate of return as the marginal unit 

cost and value growth percent as the marginal unit revenue. 

After determining the optimal stocking level, the volume 

removed by thinnings in each period was determined for 

specified rotation lengths, given the initial stocking and a 

volume growth procedure. This information was then used to 

determine the SEV maximizing rotation length. 

The question of optimal growing stock levels was 
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addressed from the standpoint of inventory theory by Pelz 

(1977). Expected total costs of inventory were defined as 

the sum of inventory holding costs and the costs associated 

with deviating from the optimal stocking level. .BY 

minimizing the expected total costs of inventory, Pelz 

demonstrated a correspondence of optimal stocking level 

results with those of Chappelle and Nelson (1964), when 

similar assumptions were made. 

were not discussed. 

Optimal rotation lengths 

Several attempts 

rotation length have 

to determine optimal thinning and 

been presented which use dynamic 

programming. With time defined as a discrete rather than a 

continuous variable, dynamic problems, or multi-stage 

optimization problems, can be solved by discrete dynamic 

programming. This technique involves dividing the problem 

into discrete stages and then making decisions recursively 

at each stage. The recursion may involve moving forward 

from initial time or backward from terminal time. At each 

stage, decisions are made based on the recursive equation. 

This process employs Bellman's Principle of Optimality, 

i.e., given an initial state and decision, the remaining 

decisions must constitute an optimal policy with respect to 

the state resulting from the first decision (Bellman and 

Dreyfuss 1962). This principle may be paraphrased in terms 

of the optimal growing stock problem as follows: once the 
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optimal thinning schedule has been specified to a given 

stand age and structure, the optimal plan for the next older 

stand age depends only on the older stand's age/structure 

combinations not yet analyzed (Hann and Brodie 1980). This 

greatly reduces the number of calculations necessary to 

determine the optimal path, as various possibilities at each 

stage are only considered once (Cawrse 1979). The recursion 

equation is based on the contribution of the stage variable 

and the optimal contribution of all preceding variables. 

The results of decisions at each stage of the problem are 

combined to generate the overall solution. 

In applying discrete dynamic programming to determine 

optimal thinning and rotation length, Amidon and Akin (1968) 

obtained the same solutions as Chappelle and Nelson (1964). 

A two dimensional network was defined using volume stocking 

and stand age as the state descriptors. The objective of 

the dynamic problem was to determine the optimal stocking 

level at each age class using 1, 000 board foot and 5-year 

intervals between stages. In· this problem, the optimal 

stocking level at each age class was determined using 

backward recursion, examining the objective function value 

for all possible points. The. backlvard recursion method will 

only solve the problem of optimal thinning plan for one 

rotation at a time. Amidon and Akin therefore obtained 

solutions for alternate rotation lengths, following 
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Chappelle and Nelson in using the SEV maximizing rotation as 

optimal. 

The approaches of Chappelle and Nelson (1964) and 

Amidon and Akin (1968) were discounted by Schreuder (1971). 

Schreuder proposed that these approaches did not allow for 

possible interdependencies between stocking and rotation and 

that the cost of land should be included when determining 

optimal economic stocking levels. Schreuder's approach was 

to determine the jointly optimal thinning plan and rotation 

by de£ining the harvest cut as an extreme thinning. 

Schrueder formulated the problem as a continuous function of 

time using the calculus of variations form but found that 

explicit solutions could only be obtained for trivial 

examples. The problem was then cast as a discrete dynamic 

programming problem with backward recursion. Schreuder 

concluded that solutions could be easily obtained using the 

dynamic programming technique but did not present examples. 

Naslund (1969) also presented a formulation of the 

optimal thinning and rotation problem using the calculus of 

variations form. Both time and removals were continuous in 

value. The approach assumed certain specific, 

differentiable functions, e.g., a function relating the 

effects of the timing and intensity of thinnings to sales 

Value of the final harvest. No examples were presented by 

Naslund although solution techniques were discussed. 
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Subsequent efforts by Kao and Brodie (1980) failed to obtain 

a solution to Naslund's formulation. 

More recent studies have reported practical 

applications of dynamic programming to the joint optimality 

problem of thinning and rotation length. Brodie et al. 

(1978) analyzed the economic impacts of thinning and 

rotation in Douglas-fir using dynamic programming. The 

major goal of their study was to assess the effects of 

regeneration costs, initial stocking, ·quality differences, 

site, and logging costs on thinning intensity and rotation 

age. The approach of Brodie et al. differed from that of 

Amidon and Akin by incorporating a mortality estimator into 

the stand growth model, allowing more realistic potential 

stocking for each age class, and by using the forward 

recursion method. Brodie et al. demonstrated that the 

approaches of Chappelle and Nelson (1964) and Amidon and 

Akin (1968) actually do determine the jointly optimal 

stocking level and rotation age (contrary to Schreuder' s 

(1971) findings). l\ major problem with their approach, 

recognized by Brodie et al., was the lack of diameter growth 

acceleration in the stand model after thinning. 

Accelerated diameter growth should be reflected in 

thinning analyses, especially where logging costs are 

reduced and income increases with the size and quality of 

harvested material. A study by Brodie and Kao (1979) 
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accounted for this problem by using a more complex stand 

model and using three state descriptors. These descriptors 

were stand age, basal area, and number of trees. Solutions 

generated with this framework are the optimal number of 

trees and basal area to maintain in each time period, i.e., 

for each age class. 

A related approach for deriving optimal stand density 

over time was presented by Chen et al. (1980). This method 

involves using a calculus approach to search for optimal 

solvtions stage by stage. Chen et al. -- used this approach 

to derive a set of optimal stand densities and an optimal 

rotation where the criterion used was the maximization of 

volume harvested. The technique proposed by Chen et al. 

incorporates the advantages of both forward and backward 

recursion methods. The approach is not readily applicable 

to optimization with an economic criterion, however. The 

incorporation of price and cost functions prevents the 

derivation of a generalized solution because of 

differentiability requirements. In such cases, the thinning 

problem can be solved for the discrete case but solutions 

are only optimal over the possible so·lutions simulated in 

the discrete formulation (Chen et al. 1980) . 

A nonlinear programming approach for the simultaneous 

optimization of thinning and rotation was presented by Kao 

and Brodie (1980). This approach allows continuous values 
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for both the timing and intensity of thinnings. The optimal 

frequency of thinning was determined by solving the model 

with no thinnings, with one thinning, with two thinnings, 

etc., until the present net worth criterion decreased. 

Decision variables in the nonlinear formulation were the age 

for each thinning, the percent normality of the residual 

stand after each thinning (defining the amount harvested), 

and the age of final harvest. A comparison of this approach 

was also made to a discrete dynamic programming formulation 

of the same problem. The dynamic programming solution using 

narrow state intervals required much more storag·e and 

computation time. Another advantage cited by Kao and Brodie 

for the nonlinear programming formulation was that 

additional constraints such as minimum removals could be 

imposed. 

Thinning Hardwood Stands 

Even-aged hardwood stands in the South are most often 

high in density. Stands referred to as poorly stocked are 

usually understocked in terms of trees of high quality or 

preferred species, rather than stems per acre (Gingrich 

1970) . Thinnings are usually administered to concentrate 

growth on the more desirable stems, and remove trees with 

poor form or slower growth rates. In this manner, thinnings 

affect both the quality and quantity of wood produced in a 

stand. Of the information published on hardwood thinning, 
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little is based on long-term experimental results and even 

less on the economics involved in thinning decisions. 

General Considerations. Through the timing and 

intensity of thinnings, emphasis can be placed on present 

benefits or future benefits. The relative condition of the 

residual stand may or may not be of primary concern. In 

hardwood stands, thinnings must be balanced between volume 

and quality. Heavy thinnings may provide too much growing 

space ~and result in epicormic branching (Evans et al. 

1975). In many cases, the price differential between high 

and low quality hardwood timber may be the only 

justification for thinning. 

The effects of density, thinning, and species 

composition in eastern hardwoods were summarized by Gingrich 

(19·70). ~1ost of the general discussion in this section is 

presented in Gingrich's work. The three factors which most 

affect hardwood thinning results are species composition, 

tree vigor, and potential stem quality. 

Even-aged upland hardwood stands are typically composed 

of a mixture of species. 

aged due to a wide 

These stands often appear uneven-

distribution of diameters. This 

characteristic is due in part to differential species growth 

(Gingrich 1967, Oliver 1980). Very little data is available 

on the biological performance of various species mixtures 

after thinning due to the large number of possible mixtures. 



17 

Differences in growth rates are generally known, however, 

and thinning plans in mixed hardwood stands must take into 

account the initial composition. 

The effect of relative tree vigor on thinning results 

must also be considered. The 

residual trees often depend 

growth 

on the 

capabilities of 

degree of past 

competition through the ability of crown and root systems to 

respond to release. The tree vigor aspect presents a sound 

basis for thinning hardwoods from below as the subdominant 

classes exhibit characteristics of greater competition 

(Gingrich 1971). 

Potential stem quality is another important factor in 

hardwood thinnings. Hardwood quality largely depends on the 

proportion of clear bole. In a study of even-aged red oak 

stands, Ward (1964) presented evidence for maintaining 

higher densities to encourage natural pruning. A study of 

the influence of stand density on stem quality in pole-size 

northern hardwoods (Godman and Books 1971) classed bole 

defects as live limbs, dead limbs, bumps, and epicormic 

branches. This study reported that differences in the 

number and retention of defects among species after thinning 

were primarily influenced by shade tolerance, 

tolerant species exhibited the greatest 

i.e., the more 

incidence of 

defects. Indications that some hardwood species produce 

clear bole more rapidly than others under common age and 
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size. conditions were presented by \'lei tzman and Trimble 

(1957). This suggests the existence of differences in grade 

potential similar to previously discussed differences in 

growth potential (Gingrich 1970). 

l'.nother factor affecting the quality of hardwood timber 

is stem form. A recent study using two measures of stem 

form provided evidence that post-thinning stocking levels do 

not significantly affect the stem form of upland oaks (Hi tt 

and Dale 1979). Stem form changes were found to be 

correlated to pre-thinning form, however. Regardless of the 

residual stocking level, better formed stems deteriorated in 

form after thinning while more poorly formed stems improved 

in form. 

Studies have also been presented which attempt to 

quantify the quality of hardwood growing stock. A system 

based on the correlation between the number of surface 

defects and the probability that the future butt log will be 

a certain grade was presented by Boyce and Carpenter (1968). 

A quality classification system for young hardwood trees has 

also been developed (Sonderman and Brisbin 1978, Sonderman 

1979). In this system, external tree measurements are used 

as a basis for predicting the future product potential of 

young hardwood stands. The system is proposed as a possible 

aid to managers in making decisions on cultural treatment 

investments. 
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Physical response data related to 

hard>vood stands 

will ever be 

is sparse. It is 

gathered for all 

combinations of thinning schedules, species mixtures, site 

quality, etc. Work that has been published in this area is 

often for certain species under localized conditions. 

For predominantly oak stands in the Central States 

Region, Gingrich (1971) presented per acre yield results 

using a fixed 10-year thinning interval. Results were 

presented where thinnings were initiated at different points 

in the lives of even-aged stands. The age at which thinning 

was started >vas a primary factor determining maximum 

production. Per acre yields were more than 50 percent 

higher in stands where thinning began at age 10 rather than 

at age 60. Gingrich also found that without precommercial 

thinning, the latest effective age for beginning thinning 

was between 30 and 40 years for pulpwood production, and 

between_50 and 60 years for sawtimber production. 

Growth and yield information for upland oak stands 10 

years after initial thinning was presented by Dale (1972). 

Thinning intensity varied up to removal of 70-80 percent of 

the original stand basal area. The thinning procedure was 

designed to remove trees in all crown classes, with the 

residual stand composed of evenly spaced desirable stems. 

The differential effects of species composition on thinning 
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response were not incorporated in the presentation of 

results. 

A study has also been installed in the Boston mountains 

of Arkansas to evaluate the gro-w_th response of upland 

hardwoods to thinning (Graney 1980). Although thinning 

response data are not yet available from this study, 

comparisons of initial stand conditions were made to 

Schnur's (1937) yield tables for unthinned oak stands, and 

to stand conditions reported by Gingrich (1971). 

Comparisons were also made of post-thinning stand volumes to 

the predicted volumes for thinned upland oak stands in the 

Central States Region reported by Dale (1972). One goal of 

such comparisons is to help determine if the results of 

thinning studies in the Central States cari be applied to 

other regions. 

Interim results of a continuing study of thinning 

effects on even-aged yellow-poplar stands in the southern 

Appalachians have been reported by Beck and Della-Bianca 

(1970,1972,1975). The findings presented by Beck and Dalla­

Bianca for yellow poplar are the most comprehensive 

available for any even-aged hardwood forest 

1975 report, equations and tables are 

estimating board-foot growth and yield, 

type. In the 

presented for 

and residual 

quadratic mean diameter growth for a range of site indexes, 

ages, residual basal areas, and residual quadratic mean 
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diameters. 

discussed. 

Individual tree responses to thinning are also 

Computerized hardwood growth simulation has also 

received attention in recent years. Simulation methods for 

estimating growth and yield are often the most feasible in 

light of the impracticality of field studies covering all 

possible combinations of factors affecting responses to 

management. Stiff ( 1979) modeled the growth dynamics of 

natural, mixed-species Appalachian hardwood stands. In this 

study, a generalized modeling system for the projection of 

diameter distributions through time was developed to 

predict growth and yield in such stands. 

thinning were not incorporated, ho1vever. 

Possibilities for 

A more general growth projection simulator, applicable 

to the Lake States Region, has been developed at the North 

Central Forest Experiment Station (U.S. Forest Service 

1979). The system is designed to project forest growth and 

mortali·ty, with or without harvesting, for any species mix 

or stand structure. The basic components of the model are a 

procedure for estimating potential diameter growth, a 

procedure for modifying potential growth to actual growth, a 

rule to allocate the total projected growth to individual 

trees, and a mortality function (Leary 1979). The model 

provides for three possible resolution levels; 

differentiation by species alone, by tree size and species, 
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or by individual trees. Data for estimation of the model 

parameters were from even and uneven-aged natural stands and 

plantations in the Lake States Region. 



I. • 
~. 

II. GROWTH MODEL DEVELOPMENT 

Prior to the development of a hardwood thinning model, 

a means of projecting the growth of such stands must be 

available. The model must be capable of projecting the 

growth of existing mixed-species stands, and must 

incorporate responses to thinning. Considering the 

important factors in modeling such stands will aid in 

determining the necessary growth model resolution. This 

factor in turn affects the joint considerations necessary to 

interface the mixed-species growth model with optimization 

procedures. 

Resolution Level 

Resolution level is a primary factor in determining 

whether or not a stand model can adequately meet particular 

users' needs. Models yielding information on total volume, 

volume by size class, volume by size class and species, 

etc., all have specific applications in forest management. 

Recent studies concerned with optimal thinning and 

rotation have recognized a need to account for diameter 

class distributions in making such stand-level decisions. 

Hann and Brodie (1980) report that diameter distribution 

data is important in the planning of milling facilities as 

Well as applying specified treatments to field conditions. 

23 
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Hardie (1977) notes that diameter distribution information 

is necessary to fully evaluate the benefits of thinning in 

loblolly pine stands, when multiple product values occur. 

That is, pulpwood, sawtimber, and pole and piling values can 

be assigned based on diameter. 

Discrimination by size class is particularly important 

in modeling the benefits from hardwood thinning as price 

differentials between size classes may be pronounced. A 

further consideration is that hardwood stands are usually 

comprised of mixed-species, each with different growth rates 

and value-by-size-class relationships. For a mixed-species 

hardwood thinning model to adequately reflect these 

relations, the underlying growth model must provide 

information by size class and species over time. This level. 

of resolution will allow the model to closely reflect actual 

conditions, and will result in thinning prescriptions with 

more realistic application in the field. 

Growth Modeling Approaches 

The method selected to model mixed-species growth must 

be combined with a method of determining optimal thinning 

schedules. Joint considerations are therefore required to 

ensure that the necessary interface can be achieved. These 

considerations will be discussed in conjunction vii th two 

approaches to stand modeling for mixed-species. 
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Diameter Distribu-tion Approach 

One approach to stand modeling which has been combined 

with optimization over time involves the use of probability 

density functions to describe diameter distributions. The 

parameters describing the distribution, e.g., the scale, 

shape, and location parameters of the Weibull distribution, 

are used as decision variables in an optimization procedure. 

Optimal values of these parameters describe the optimal 

residual diameter distributions for each period. This 

procedure was used by Martin ( 1982) in deriving optimal 

management guides for uneven-aged northern hardwoods. 

The diameter distribution approach to stand modeling, 

however, is not readily applicable to mixed-species stands 

unless species are aggregated. That is, while the diameter 

distributions of entire stands may be described by such 

functions, the po-st-thinning distributions for separate 

species would be unlikely to follow smooth, continuous 

patterns. 

Stand-Table Projection Approach 

Another approach to stand modeling which has been used 

with optimization procedures is stand-table projection. 

This approach simplifies the complex nature of modeling 

stand growth and thinning response by isolating certain 

growth components. Stand-tables are projected through time 

by predicting upgrowth for each size class, i.e., the 
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proportion of trees in each size class that will grow into 

the next larger class, during a fixed time period. The 

required level of resolution may be obtained with this 

approach by predicting such proportions for each species and 

diameter class. 

As described by Wahlenberg (1941), three factors affect 

the upgrowth of trees from a given diameter class during a 

fixed time interval: 
' 

diameter growth, diameter class size, 

and the distribution of the number of trees within the 

diameter class. Upgrowth may be modeled by treating each of 

the three components separately, or by predicting upgrowth 

directly. Examples of the two approaches may be found in 

Hann (1980) and Ek (1974), respectively. A modified version 

of Ek's (1974) model was used by Adams and Ek (1974) to 

derive optimal management strategies for uneven-aged 

hardwood stands. 

Adams and Ek (1974) addressed certain aspects of 

uneven-aged m·anagement, treating mixed-species as 

aggregates. The general approach to stand modeling and 

subsequent combination with optimization techniques, 

however, provides a basis for modeling the even-aged 

hardwood thinning problem. That is, Adams and Ek used a 

stand model comprised of ingrowth, upgrowth, and mortality 

functions. Nonlinear programming was then used to derive an 

optimal size class distribution, and an optimal cutting 
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policy for achieving the desired distribution. Assuming an 

even-aged stand-table projection method which accounts for 

individual species, similar techniques could be used to 

derive optimal thinning and rotation for even-aged, mixed­

species stands. Such a formulation would entail achieving a 

distribution of zero trees in each diameter class, for each 

species, in an optimal manner. 

Developing optimal thinning strategies with the 

approach outlined above requires a stand-table projection 

system for even-aged, mixed-species hardwoods. Concepts 

used to develop such a system and the subsequent 

specification of equations will be discussed. 

Mixed-Species Modeling Concepts 

As previously noted, Adams and Ek ( 1974) dealt with 

management problems in mixed-species stands, treating 

species as aggregates. These authors also considered the 

problems of recognizing individual species groups, however, 

concluding that a stand simulator at the individual tree 

level of resolution would be required (Adams and Ek 1975). 

A more recent study concerned with uneven-aged management 

concluded that a stand-table projection method could be. 

designed to incorporate species (Hann and Bare 1979). These 

authors base their conclusion on work involving uneven-aged 

ponderosa pine. Hann (1980) presented a projection system 

for ponderosa pine which recognizes two vigor classes. 



28 

These vigor classes were modeled in a manner similar to 

recognizing two distinct species. 

While Hann's (1980) approach for modeling uneven-aged 

ponderosa pine is significant, the number of equations 

required would severely limit attempts at optimization. An 

even-aged stand-table projection model comprised of two 

equations, upgrowth and mortality, for each species/diameter 

class combination could be more easily interfaced with 

optimization procedures. Concepts used to model mixed-

species' hardwoods at the North Central Forest Experiment 

Station (U.S. Forest Service 1979) were used in the present 

study to develop a two equation stand-table projection 

model. 

The growth projection system developed at the North 

Central Station was designed to estimate forest growth and 

mortality, ·with or without harvesting, for any species mix 

or stand structure. The model is comprised of a potential 

diameter growth procedure, a process to adjust potential 

growth to actual growth, a method of allocating projected 

growth to individual trees, and a mortality function (Leary 

1979). 

One of the most significant concepts employed in the 

North Central Station study is the approach of estimating 

diameter growth by first bracketing the estimate between 

4 ero and an upper potential. The upper potential represents 
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diameter growth under ideal circumstances, e.g., open-grown 

conditions. This potential is then adjusted downward to an 

estimate of actual diameter growth. Thedownward adjustment 

is a function of stand conditions reflecting competition, 

e.g., stand density measures. Thinnings or other harvests 

are incorporated since cuttings reduce stand density, 

decreasing the downward adjustment of potential growth, 

thereby increasing the diameter growth estimate for the 

residual stand. The effects of cutting different species 

are 'incorporated by including stand density measures related 

to each species. That is, both total stand and separate 

species density measures are included. 

This general approach to modeling groJJth was used by 

the U.S. Forest Service (1979) in estimating total diameter 

growth on mixed-species plots. A similar approach i.s used 

in the present study to model the diameter upgrow·th 

component of an even-aged stand-table projection system for 

mixed-species stands. The development and specification of 

the necessary equations will be discussed, including the 

assumptions, advantages, and disadvantages inherent in the 

model specification. 

Model Specification 

Stand-table projection models for uneven-aged stands 

must incorporate ingrowth, upgrowth, and mortality 

Processes. The ingrowth process allows trees to grow into 
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th<= smallest diameter class represented, and is not 

necessary to model even-aged conditions. That is, while 

even-aged hardHoods may appear uneven-aged by diameter 

distribution, .the appearance is attributed to differential 

species growth rather than ingrowth of . younger trees into 

the stand (Oliver 1980). Even-aged stand-table projection 

may therefore be accomplished by modeling the upgrowth and 

mortality processes alone. 

Upgrowth 

As previously discussed, the approach used to model the 

upgrowth component in the present study includes estimating 

a potential proportion of upgrowth, and an adjustment to 

reduce the potential to an actual estimate. The estimated 

upgrowth occurs during a fixed growth period, e.g., 5 or 10 

years, and is estimated for each species and .diameter class. 

The upgrowth relation may be represented symbolically as: 

UPGijk = (PPijk )(ADJijk)(QTYijk-1) 

where: 

Subscripts represent species i, and diameter 

class j, after growth period k, 

UPG is upgrowth (in units projected), 

PP is potential proportion of upgrowth, 

ADJ is a dovmward adjustment (also a 

proportion), and 

( 1) 
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QTY is quantity (in units projected). 

All symbols· used in the present study are defined in 

alphabetical order in Appendix A. Prior to considering the 

potential and adjustment portions of relation (1) in detail, 

two important considerations will be discussed: the units 

projected, and the relationship between diameter class size 

and the length of the growth period. 

Stand-tables yield information on the number of trees 

per unit area by diameter class, and as usually applied, 

stand-table projection involves projecting numbers of trees. 

As the growth model is to be combined with an optimization 

procedure, however, other projection units were considered. 

Both basal area and volume were evaluated as alternatives to 

numbers of trees as projection units because of their 

continuous nature, possible use as measures of stand 

density, and in the case of volume, the ability to assign 

per unit values. Number of trees per unit area was selected 

as the projection unit, however, for reasons to be discussed 

following the upgrowth and mortality specifications. 

Another consideration regarding the upgrowth component 

is the relationship. between diameter class size and the 

length of the growth period. Recognizing the periodic 

nature of much forest growth data, relation (1) represents 

upgrowth over a fixed time interval. As presented in 

relation (1), a single upgrowth equation would be required 
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for each diameter class and s'pecies, at the end of each 

growth period. The specification therefore assumes that the 

growth period is short enough, or the diameter classes large 

enough, that no trees will advance two or more size classes. 

Providing for ·other relations would require more upgrowth 

equations, e.g., an equation for the proportion moving up 

one diameter class, an equation for the proportion moving up 

two diameter classes, etc. The specification of additional 

equations should only be of concern in cases where extremely 

fast growing species are modeled, or where remeasurement 

data were obtained after a very long growth period. 

Potential Proportion. The purpose of estimating a 

potential proportion of upgrowth is to provide an upper 

limit on the actual estimate. The potential proportion 

moving up one diameter class is related to stand age, site 

quality, and past competition, but is unaffected by present 

harvesting decisions. This estimated upper limit is 

therefore a constant with respect to optimization. 

Harvesting affects the degree to which the estimated 

potential is realized, but not the estimated potential 

itself. For this reason, specification of a functional form 

for estimating potential upgrowth is not required prior to 

developing a formulation for thinning optimization. 

Although functional specification is not required at 

this stage, several factors affecting the estimation of 
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be considered. Open-grown 

conditions, for example, have been judged unsuitable for 

diameter growth studies due to differences (compared to 

stand-grown trees) in the distribution of increment between 

the tree bole and branches (Hahn and Leary 1979). Forest-

grown conditions in which trees of a particular diameter 

class hold dominant and codominant positions in the canopy 

are favored. Under these conditions, stand age and site 

quality are factors which should affect the potential 

diameter growth of trees of a given species, in a particular 

diameter class. That is, information on tree diameter, 

species, age, crown position, and site quality should be 

sufficient to predict potential diameter growth over a fixed 

time interval. These variables should reflect the degree of 

suppression experienced, and therefore the potential ability 

to respond to release. 

Adjustment Procedure. The adjustment process provides 

an estimate of the proportion of potential that is actually 

realized. The proportion realized therefore reflects the 

growth rate of trees of the relevant diameter class and 

species. As thinning affects competition and therefore 

diameter growth rate, prior to formulating a problem to 

derive optimal thinning schedules, the functional form of 

the adjustment procedure must be specified. Due to a lack 

of data, an adjustment function was tentatively specified 
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based entirely on joint biological al''d optimization 

considerations. 

The diameter growth rate of a given tree should be 

inversely related to stand density. The adjustment value 

predicted in the present study corresponds to diameter 

growth rate, with higher proportions of potential realized 

as stand density approaches zero. The marginal effects of 

density on growth rate should also decrease as density 

increases. These relations, as v1ell as the criterion that 

the proportion realized must lie between zero and one, were 

modeled with a negative exponential specification of the 

adjustment process, as presented in rela·tion (2). 

ADJ ijk = 
ij . s ij 

EXP[b 1 (V T,k-1)+ m~lGn+l (V m,_::j,k-1)] 

where: 

ADJijk is the adjustment value for species i, 

diameter class j, after growth period k, 

VT',k~lis total volume after period k-1, 

1.\n,_::j,k-lis volume of each species (m=l, ... ,S) in 

diameter classes greater than or equal to j, 

after period k-1, note that m is used as an 

index or counter in relation (2), 

S is the number of species, and 

(2) 

b;j~O,m=l, ... ,S+l are parameter estimates for species 

i, diameter class j. 
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Relation (2) incorporates the necessary properties for 

the adjustment process, using stand volume as a measure of 

density. As volume approaches zero, the proportion of 

upgrowth potential realized approaches one. Increasing the 

residual volume after period k-l reduces the adjustment 

value for period k, i.e., less upgrowth potential will be 

realized. Also, the marginal reduction for period k 

decreases 

increase. 

at a decreasing rate, as density mea~ures 

Although different measures of density were proposed, 

the general form of relation (2) was used by Hann (1980) in 

modeling basal area growth in uneven-aged ponderosa pine. 

The density variables specified in the present study were 

based on considerations of both. thinning response and 

optimization. That is, as thinning should not reduce 

diameter growth rate, measures were chosen such that all 

partial derivatives with respect to density were strictly 

negative. This condition resulted in rejecting measures 

which might better reflect the relative position of each 

diameter class within the stand. For example, Stage (1973) 

defined variables reflecting the proportion of total stand 

basal area which occured in diameter classes smaller than 

the class being modeled. Variables representing the 

proportion of stand volume in greater diameter classes were 

considered in the present study, but were rejected due to 
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the indeterminate algebraic sign of the first derivatives 

with respect to density. 

Variables indicating the volume of each species in 

diameter classes greater than or equal to the class modeled 

were chosen for two reasons. The first is that the 

direction of change implied by changes in these variables is 

the same as for total volume. That is, if trees in a 

greater diameter class are cut, both total volume and the 

volume in greater diameter classes are reduced. This 

relationship is indicated by the strictly negative first 

derivatives with respect to volume. The second reason for 

choosing volumes in larger diameter classes is to provide 

for a greater impact on growth rate when trees in these 

classes are cut. When trees in lo,;~er diameter classes are 

harvested, for example, only total volume is reduced and the 

adjustment value for a particular species/diameter class 

combination increases accordingly. When the same volume is 

cut from trees in larger diameter classes, however, the 

increase in the adjustment value is greater. This results 

because the same reduction in total volume is augmented by a 

reduction in the appropriate variables for larger diameter 

classes. 

Optimization aspects were also considered in specifying 

the adjustment process equation. These considerations dealt 

with the convexity of the equation, and will be discussed 
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following the development of an optimization procedure for 

mixed-hardwoods. 

Another consideration regarding the adjustment process 

is the recognition that all relation (2) parameters cannot 

be estimated as the function is specified. That is, for the 

smallest diameter class modeled, the variables representing 

volumes in diameter classes greater than or equal to the 

smallest class comprise the total volume of the stand. From 

the perspective of estimating parameters, a singular matrix 

results for the independent variables. For this reason, in 

estimating the parameters of relation (2) for the smallest 

diameter class, it will be necessary to use volumes in 

diameter classes greater than but not equal to the smallest 

class. 

Finally, although the .·adjustment process was analyzed 

in order that optimization could be considered, the 

specification is tentative. Final determination of an 

appropriate specification requires that data be available 

for use in analyzing and evaluating alternate forms. The 

proposed specification \'las used, however, in formulating and 

evaluating an optimal thinning and rotation procedure for 

mixed-hardwoods. 

Mortality 

Mortality is the second component of the even-aged 

stand-table projection system. The mortality referred to in 
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this study represents regular or noncatastrophic mortality, 

) .. e., that resulting from resource competition (Lee 1971). 

,1\s with the adjustment process in the upgrowth component, a 

mortality relation must be specified prior to formulating an 

optimization procedure. Just as harvests affect growth 

rates of residual trees, mortality rates are influenced by 

harvesting. Also, as with the adjustment process, 

specifying the mortality relation was influenced by both 

biological and optimization considerations. 

Monserud (1976) predicted overstory tree mortality in 

northern hardwoods using diameter and diameter increment, a 

competition index, and the length of growth period as 

independent variables. In the present study, diameter and 

the length of growth period are fixed. Indications of 

diameter increment and competition were modeled in the 

adjustment process of the upgrowth component, however. The 

same variables which affect diameter growth rates were 

therefore used in the present study to model the proportion 

of mortality for each diameter class and species. The 

proposed expression to represent the proportion of trees 

dying during a particular growth period is presented in 

relation ( 3) . 

ij s ij 
PDijk = 1-EXP[b s+2(V T,k-1 )+ m~l bs+2+m (Vm,..::.j,k-1 ) ] (3) 
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where: 

PD is proportion of trees dying, and 

Other variables are as defined for relation (2). 

Relation (3) expresses the proportion of trees dying as 

a function of the same stand density measures used to model 

the adjustment to potential upgrowth. Using the same 

variables was biologically reasonable and was desirable from 

an optimization standpoint, as the number of variables 

necessary to model the optimization problem is minimized. 

Relation (3) also has the required property that the 

proportion of trees dying must lie between zero and one, 

with mortality approaching zero as stand density approaches 

zero. The proportion dying asymtotically approaches one at 

extremely high densities. 

Again, as with the adjustment process, the mortality 

expression specified is tentative but was necessary for 

considering thinning optimization. Further study, including 

estimation, is necessary before a final specification can be 

proposed. Also, in estimating parameters for relation (3), 

the singularity problem discussed with respect to relation 

(2) would be encountered. The mortality proportion for the 

smallest diameter class would therefore be estimated using 

volume in diameter classes strictly greater than the 

smallest. 
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Discussion 

The growth model presented in the present study, with 

the upgrowth and mortality components specified, projects 

future numbers of trees for each species/diameter class 

combination. There is no ingrowth component for even-aged 

stands and the total number of trees· declines as stand age 

increases. While the total number of trees decreases, 

however, stand volume increases with age, as the ini t·ial 

diameter distribution shifts into larger diameter classes. 

Directly projecting stand volume or basal area by diameter 

class in a manner similar to that proposed for numbers of 

trees, however, is not as straightforward. Relationships 

must be incorporated into the projection model to ensure 

that as upgrowth occurs, stand volume or basal area also 

increase. If a diameter class contains 100 cubic feet of 

volume, for example, and upgrowth is SO percent, the SO 

cubic feet advancing into the next higher class would have 

to be converted to a greater volume or total volume growth 

would not occur during the period. No explicit 

consideration is required when numbers of trees are 

projected, however, as volume automatically increases when 

trees are shifted to larger diameter classes. For this 

reason, stand volume variables were specified as more 

relevant measures of density than numbers of trees. Using 

numbers of trees as a density measure implies lower 
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densities with increasing stand age, as the total number of 

trees decreases. 

The stand-table projection approach to modeling forest 

growth is a difference equation method, as opposed to 

differential equation or instantaneous rate of change 

methods. By projecting growth over fixed time intervals, 

the approach recognizes the periodic nature of much forest 

growth data. Data requirements for estimation are not as 

severe as might be expected for mixed-species, however, due 

to the step-by-step development. Remeasurement data are 

required to estimate the potential upgrowth proportions, and 

the adjustment process and mortality component parameters. 

Several modeling decisions must be made prior to data 

collection and component estimation. For example, although 

the projection system may be specified for any number of 

species, the number modeled for a given stand may be reduced 

by combining species with similar growth characteristics and 

value-by-size-class relationships. Also, although the 

growth period is fixed, diameter class size does not have to 

be the same for all species considered. Decisions 

concerning aggregating species, and diameter class size by 

species group must, however, also consider the effects on 

optimization. The number of variables in the formulation, 

for example, is directly related to the number of species 

group/diameter class combinations recognized. 
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Growth and thinning response in mixed-species hardwoods 

is difficult to model due to the biological diversity of 

such stands. Also, considering the need to integrate the 

growth model with an optimization procedure limits the 

possible approaches to those with relatively simple equation 

forms. The stand-table projection system proposed in this 

study \vas developed considering the necessary requirements, 

and was used in formulating an optimal thinning and rotation 

procedure. 



III. THINNING MODEL FORMULATION 

The thinning model formulated in the present study 1-1ill 

enable derivation of optimal thinning schedules for mixed-

species hard1>100d stands. The formulation will also enable 

determination of optimal rotation age, as final harvests 

will be included in the model. Implications of the growth 

model for the thinning model. formulation will be discussed, 

followed by several factors regarding hardwood thinning 

which should be reflected by the formulation. Dynamic 

programming will also be considered, followed by a nonlinear 

programming formulation of the hardwood thinning problem. A 

complete statement of the hardwood thinning formulation, 

including variable definitions, is presented in Appendix A. 

Growth Model Implications 

The stand-table projection model, as previously 

specified, provides information on the number of trees by 

diameter class and species. This level of resolution will 

allo1v the thinning model to specify the number of trees to 

harvest over time, by diameter class and species. The 

specified growth model uses volume measures to reflect stand 

density in the upgrowth and mortality relations. Average 

volumes per tree for each species/diameter class combination 

represented are therefore necessary. Average volumes are 

43 



44 

also necessary to derive dollar values for trees scheduled 

for harvest in the thinning model. 

The growth model also affects the thinning model 

formulation in that the length of the growth period 

determines the thinning interval. Thc;t is, as growth is 

projected over fixed periods, opportunities to thin the 

stand are limited to fixed intervals, and rotation length is 

limited to discrete multiples of the growth period. With a 

stand currently of age 30, for example, using a 5-year 

growth period would result in possible rotation lengths of 

30, 35, 40, etc. Final results from the thinning model 

should therefore be considered prior to setting the growth 

period length in the stand-table projection system. 

An alternative to using the projection model growth 

interval was suggested by Adams and Ek (1975). If growth 

during the fixed period is assumed to accrue in a certain 

fashion, e.g., linearly, projections are possible for 

intervals other than initially implied by the growth model. 

This approach may be useful, for example, if growth data are 

available but the remeasurement period is inadequate from a 

thinning model standpoint. 

Finally, the growth model will be used in a 

deterministic manner in the thinning model formulation. 

Possibilities for incorporating the stochastic nature of the 

growth model may be considered after developing a 
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deterministic formulation. 

Hardwood Thinning Factors 

The major aim in formulating a thinning model in the 

present study was to mathematically define the problem of 

deriving economically optimal harvest schedules for mixed­

species hardwoods. The formulation must reflect the 

relevant economic and biological factors concerning harvests 

in such stands. Several factors which should be represented 

by the model will be discussed. 

Harvests cannot exceed the volumes that exist and that 

can be grown during a given time period. The formulation 

must therefore limit harvests to the stand-table 

projections, i.e., the projection system must be an integral 

part of the thinning model formulation. The first phase of 

formulating the thinning problem will therefore be to 

represent the stand-table projection system in an 

optimization framework. 

After representing the projection system in the 

formulation, other factors may be considered. An economic 

objective, for example, must be formulated. As shown by 

Gaffney (1960), and later by Samuelson (1976), maximization 

of Faustmann's (1849) soil expectation value (SEV) is the 

correct criterion for setting rotation length. SEV 

represents a present value or maximum bid price for bare 

land in forestry uses and in simplest form may be expressed 
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SEV = HV/((l+r)RL -1) 

where: 

HV=harvest value, 

r=interest rate assumed, and 

RL=rotation length. 

( 4) 

Equation ( 4) assumes a timber income of HV dollars, 

every RL years in perpetuity. For typical upland hardwood 

stands, this assumption 

Klemperer et, al. ( 1982) , 

is untenable. As 

however, equation 

discussed by 

(4) may be re-

stated for the case where only one rotation is considered, 

as presented in equation (5). 

SEV = (HV+SEV)/(l+r)RL ( 5) 

Maximizing the present value of land and timber over a 

finite investment period is therefore consistent with a 

Faustmann formulation and is used as the economic objective 

in the present study. Further discussion of this aspect of 

the hardwood model will be presented following the 

formulation 

function. 

of a mathematical programming objective 

Another consideration in formulating the hardwood 

thinning model is representing tree. quality. Reflecting 

differences in tree quality and recognizing the effects of 

thinning on this factor are especially important with the 

specification of an economic objective. That is, tree 
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quality is a major determinant of per unit stumpage prices, 

and can be adversely affected by heavy thinnings in hardwood 

stands. 

Finally, the thinning model formulation must ensure 

that the results from optimization can be applied. For 

example, it may be necessary that volume removals exceed 

certain minimum levels, as landowners may be unable to 

market smaller quanti ties. Also, as per unit harvesting 

costs may be inversely related to volume, and as stumpage 

prices are directly related to harvesting costs, it may be 

necessary to model per unit prices in relation to volume 

removed. 

Several factors have been discussed which should be 

reflected by the hardwood thinning model. The ability to 

incorporate these factors is a primary formulation goal. A 

major formulation emphasis will therefore be to develop a 

thinning model that is theoretically complete, i.e., a model 

capable of reflecting the important economic and biological 

relationships. 

length are to 

If optimal thinning schedules and rotation 

be derived, however, the feasibility of 

solving the model must also be considered during the 

formulation. A dynamic programming formulation of the 

problem was considered due to the many previous applications 

for thinning softwood forest types. Nonlinear programming 

was used, however, to develop a complete formulation of the 
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hardwood thinning model. 

Dynamic Programming 

As reviewed, several studies have applied dynamic 

programming to the problem of thinning and rotation for 

soJtwoods. The number of calculations necessary to obtain 

optimal thinning schedules is greatly reduced using dynamic 

programming, as each possibility need only be considered 

once. For this reason, a discrete dynamic programming 

formulation was considered for the mixed-species hardwood 

thinning problem. Formulating the thinning model as a 

dynamic program vras rej acted, however, for both modeling 

flexibility and dimensionality reasons. 

Representing the important factors in thinning hardwood 

stands requires a great deal of modeling flexibility. A 

theoretically complete formulation must reflect the factors 

discussed regarding thinning in mixed-species stands. 

Previous applications of dynamic programming for softwood 

stands, however, have not shown evidence of sufficient 

modeling detail for the hardwood problem. 

State-space dimensionality is another reason why the 

thinning model was not formulated as a dynamic program. 

Dimensionality becomes a problem for thinning studies when 

the resolution level involves harvests by diameter classes 

over time. As discussed by Hann and Brodie (1980) for a 

single species, let the discrete dynamic programming state 
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descriptors be classes of numbers of trees (TC), in each of 

(D) diameter classes, for each of the age periods (A) 

represented in the network. The network space is of 

dimension D+l, and the nul)lber of nodes in the net't1ork is 

A(TC)D.' The dif{iculties multiply when mixed-:-species are 

recognized. Letting S represent the number of species, Di 

the number of diameter classes for the i th species, and 

assuming each species has a common value for TC, the number 
s 

of dimensions of the network space is r D1 +1, and the 
i=l 

number of node.s in the network is 
s D1 

) . For A( .r (TC) 
l= 1 

example, for a problem representing a stand with two species 

for five age periods, recognizing ten TC classes for each of 

ten diameter classes per species, the number of dimensions 

of the netwo·rk space \vould be 5+5+1=11, and the number of 

nodes in the network would be 5(10 10 +10 10 )=10 11 , or 100 

billion. As noted by Hann and Brodie (1980), the 

theoretically possible quickly becomes impossible~ in 

practical applications of dynamic programming to thinning 

problems recognizing diameter classes. 

A recent study by Rii tters et al. (1982) partially 

incorporated diameter classes in a discrete dynamic 

programming problem. Optimal thinning an.d rotation \vere 

derived for ponderosa pine, considering both timber and 

forage production as outputs. Diameter -information was 

stored to enable the use of a diameter-class stand growth 
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model, allowing more realistic representation of the stand 

and of the effects of quality premiums. Thinning decisions 

for different diameter classes were not modeled, however, as 

each thinning was assumed to remove a constant proportion of 

trees from each diameter class. The effects of diameter 

distribution on thinning were thus only partially 

represented in the dynamic programming model for ponderosa 

pine. 

Nonlinear Programming 

Nonlinear programming was successfully applied by Adams 

and Ek (1974) in a study recognizing diameter classes in 

uneven- aged hardwoods. The formulation developed in the 

present study, however, must recognize species as well as 

diameter classes, for even-aged hardwood stand conditions 

and management goals. A proposed formulation will be 

presented and discussed, followed by convexity and problem 

size considerations. 

Model Formulation 

Selecting appropriate decision variables is a primary 

step in model formulation. Numbers of trees to cut from 

each species/diameter class combination, after each growth 

period were chosen for the thinning problem. Thinning 

guides will thus specify exact numbers to harvest from each 

combination, and the effects of such removals on future 

growth and harvest values will be considered during 
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optimization. The nonlinear programming constraints and 

objective function were formulated to represent the 

previously discussed hardwood thinning relationships. 

Constraints. As previously discussed, the first phase 

in formulating the hardwood thinning problem involved 

representing the stand-table projection system. That is, 

constraints were developed to limit harvests, and to reflect 

the effects which cuttings would have on future growth. The 

following system of equation sets was developed in a manner 

similar to that of Adams and Ek ( 197 4) for representing 

growth in uneven-aged stands. 

R I c (i=l, ... ,s j=l, ... ,ni k=O) Nijk. = N .. k Nijk ~J. 
(6) 

(7) R R u M c 
N. 'k = N. 'k 1 N. 'k - Nijk - Nijk ~J ~J - ~J 

(i=1, ... ,s j=1 k=1, ... ,G) 

NR NR u NM c Nu = Nijk - - Nijk + 
ijk ijk-1 ijk i,j-1,k 

( 8) 

(i=1, ... , s j=2, ... ,n i+k-1 k=1, ... ,G) 

* 

u 
= Ni,j-l,k 

c 
Nijk (i=l, ... ,s 

(i=l, ... ,s j=l, ... ,ni+k 
*denotes R,I,C,U, and M 

k=l, ... ,G) (9) 

k=O, ... , G) (10) 

where: 

Nijk=number of trees of species i, in diameter 

class j after growth period k, and superscripts 

R,I,C,U, and M dehote residual, initial, cut, 
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upgrowth, and mortality numbers, respectively, 

S=number of species, 

G=number of growth periods, 

ni= initial number of diameter classes for 

species i, 

N~jk and Nrjk are from the stand-table projection 

model. 

Equation sets (6) through (9) define the residual 

number of trees for each species/diameter class combination, 

after each growth period. Residual numbers are necessary 

for projecting growth in succeeding periods with the stand 

model. In this manner, thinnings affect growth during all 

periods after they occur. Relation set (10) merely 

represents non-negativity restrictions for all variables. 

Nijk and N~jk terms are variables in the formul atiofl, while 

I 
the Nijk terms are constants/ U H and the Nijk and Nijk 

are from the stand growth model. 

terms 

As presented in equation set (6), the first thinning is 

allowed to occur now, i.e., after growth period zero. The 

residual numbers of trees after initial thinning, by 

diameter class and species, are calculated. as the initial 

number for each combination minus the number cut. Allowing 

thinning to occur immediately makes possible G+l harvests, 

i.e. , now and after each of G growth periods. Values of 

zero for the decision variables, of course, indicate no 
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harvesting, and it is assumed that final harvest of the 

stand will occur immediately after the final growth period. 

Equation set (7) defines the residual number of trees 

in the smallest diameter class for each species, after 

growth periods 1 through G. These numbers are defined by 

the corresponding residuals after the preceding period, 

minus upgrowth into the second diameter class, minus 

mortality during the growth interval, minus the number ·cut. 

Equation set ( 8) defines the residual number of trees for 

all diameter classes except the smallest and largest after 

each growth period, for each species. For diameter classes 

2 through ni+k-1, a component must be added to reflect 

upgrowth from the class just smaller. Equation set (7) 

therefore differs from equation set ( 8) merely because for 

even-aged stands an upgrowth component is not added to the 

smallest diameter class for each species. 

Equation set (9) defines the residual number of trees 

in the largest diameter class for each species, after each 

growth period. These residuals are comprised entirely of 

upgrowth from the next lower diameter class, minus the 

number cut. The number of diameter classes for species i 

after growth period k is represented by ni+k, as the number 

of diameter classes recognized for each species increases by 

one for each period projected. This results for each 

species as upgrowth from the largest diameter class forms a 



i . . :, 

54 

new highest diameter class, after each period. 

In constraint sets ( 7), ( 8), and ( 9), upgrowth and 

mortality expressions occur. These terms correspond to 

stand-table projections, expressed as numbers of trees. 

Upgrowth and mortality are estimated by multiplying the 

estimated proportions by the appropriate residual number of 

trees at the start of the growth period. The projection 

model upgrowth and mortality expressions, written in terms 

of the thinning model decision variables, are presented in 

relations (11) and (12), respectively. 

· U R ij R s. ij R 
Nijk =~jk-1 (PPijk)EXP[l::J. (VT,k-1)+ m~1(bm+l(Vm,>j,k-1 ))] (11) 

M R ij R 
l\..Jk =Nijk-1 (1-EXP[b8+2 (VT,k-1 

8 ij 
) + t (b8+2+m 

m~1 

R 
(Vm,!:._j,k-1))]) (12) 

where: 

R 
ll:r,k-1 

8 nc!-k-1 R 
= t :!i (V .. N . "k 1 )=total residual volume 

i=1 j=1 1.J 1.J-

of the stand at the start of growth period k, 

where Vij is average volume per tree of species 

i, diameter class j, 

R ni+k-1 
V >" = t (V NR )=residual volume of 

m,_J, k-1 q= j mq mqk-1 

each species (m=l, ... ,S) in diameter classes ~j 

(q is a diameter index ranging from j to 

n.+k-1), at the start of growth period k, and 
]. 

Other variables are as previously defined. 

Relat·ion (11) represents the number of trees of species 
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i, advancing from diameter class j to j+1 during growth 

period k. This number is the corresponding number at the 

beginning of the growth interval multiplied by the product 

of the appropriate potential proportion and the adjustment 

value (from relation ( 2)) . Relation . ( 12) represents the 

number of trees of species i, diameter class j, which are 

projected to die during growth period k. This number is the 

corresponding number at the beginning of the growth interval 

multiplied by the proportion dying (from relation (3)). 

Relations (11) and ( 12) may be substituted for the 

corresponding terms in constraint sets ( 7); ( 8), and ( 9) . 

After the appropriate substitution in equation set (7), for 

example, and after combining terms, constraints of the form 

presented in relation (13) result. 

ij R 
- ( pp ij k ) EXP [ b 1 ( V T' k-1 ) + 

s ij 
:!: (bs+2+m 

m=1 
) ) l ( 13) 

s ij R C 
:!: (bm+l (Vin,>j,k-1 ) ) ] )-NiJ.k 

m=1 
(i=1, ... , S j=1 k=l, ... ,G) 

Constraint set ( 13) represents the residual number of 

trees in the smallest diameter class for each species, after 

each period. Similar results are obtained upon substitution 

of relations ( 11) and ( 12) in constraint sets ( 8) and ( 9) . 

These results are presented in the complete model statement 

in Appendix A. 

The constraints expressed in equation sets ( 7), ( 8), 
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and (9) were specified to explicitly define residual numbers 

of trees. These definitions are still reflected after 

substituting for the growth inodel terms, however. 

Constraint set (13), for example, for the appropriate 

[Residual #trees] = [#Living] [#Upgrowth] [#Cut] 

Similar interpretations apply to the other constraint sets, 

after substituting and combining terms. For larger diameter 

classes, however, an upgrowth term is also added 

Harvesting effects on quality and minimum harvest 

levels were also considered in formulating constraints in 

the thinning model. Two aspects of tree quality were 

considered in the model formulation. The first, reflecting 

differences in quality by size clas·s and species, will be 

discussed in association with the objective function. The 

second aspect, the influence of thinning on quality, was 

modeled as constraining the volumes removed during thinning. 

That is, thinning volumes may be constrained by setting 

upper bounds, preventing thinnings heavy enough to result in 

quality losses from epicormic branching, enlarged lower 

limbs, etc. For upland oak stands, for example, Dale (1972) 

recommended that thinnings be constrained to leave at least 

50 percent stocking based on Gingrich's (1964) tree-area 
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ratio equation. In general, such constraints should be used 

to ensure that residual volumes are sufficient to maintain 

the initially assumed value-by-size-class relationships 

through the final harvest. Equation set ( 14) .represents 

such constraints for thinning volumes removed after each 

growth period. 

( k=O , ... , G- 1 ) \14) 

where: 

H1k represents a maximum harvest volume after 

growth period k, and 

Other variables are as previously defined. 

As cutting constraints should not apply to the final 

harvest (after growth period G), constraint set ( 14) allows 

maximum thinning levels up through period G-1. While 

constraint set (14) prevents thinning too heavily because of 

possible adverse effects on tree quality, constraints were 

also considered for marketing reasons. That is, landowners 

may be unable to market small thinning volumes, requiring 

minimum total volumes for each thinning. These constraints 

should only be observed, however, if harvesting occurs. 

Specifying minimum thinning volumes must not preclude the 

possibility of not cutting i.e., choosing not to thin. 

Constraint sets (15) and (16) are specified to allow setting 

minimum levels for total volumed removed, if thinning is 
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performed. 

( k"'O, ... , G-1 ) (15) 

( k=O, ... , G-1 ) (16) 

where: 

H Zk is a minimum harvest volume after period k, 

significant only if thinning occurs, 

Xk =1 if thinning occurs after period k, or 

equals 0 otherwise, and 

Other variables are as previously defined. 

Constraint set (15) represents the necessary 

relationship after each relevant growth period, assuming X k 

equals 1 when thinning occurs and 0 if it does not occur. 

If thinning occurs after a certain growth interval, for 

example, and ~=1, constraint set (15) results in a thinning 

volume greater than or equal to H 2k. If thinning does not 

take place, however, and Xk=O, the right side of the 

relevant inequality is insignificant. To ensure that X k is 

unity if thinning occurs after period k, the right hand side 

of constraint set (14) is changed to H1kxk, as presented in 

the complete model statement of Appendix A. 

The variable Xk represents the binary choice of 

thinning versus not thinning after period k. Allowing Xk to 

range between 0 and 1, however, avoids the differentiability 

and combinatorial problems associated with incorporating 
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discrete 0-1 variables. The Xk variables may be permitted 

to vary continuously between 0 and l, \vi th extreme discrete 

values being forced by suitably adjusting the objective 

function. That is, selecting M as a large positive 

constant, one may add the objective function terms presented 

in relation (17). 

( k=O, ... , G) (17) 

These terms penalize values of Xk different from either 0 or 

1. Provided M is large enough to offset any potential gains 

from non-binary Xk values, optimal values close to either 0 

or 1 will result. 

The relation presented in ( 17) is convex, yet the 

objective is to maximize present value. The term therefore 

results in a nonconvex relationship. The nonlinear 

programming problem is already nonconvex, however, as will 

be demonstrated subsequently. Specifying appropriate values 

for M will be considered in demonstrating the formulated 

thinning model. An alternative to the preceding technique 

\vould be to solve the problem for fixed (0, 1) values of the 

X k variables, comparing the optimum objective values 

obtained in each case. 

Constraint sets (15) and (16), and the objective 

function terms in (17) provide a means of modeling thinning 

Volumes considered minimum for marketing 

harvest levels may also be required to 

reasons. Certain 

recover the fixed 
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costs associated with thinning. This £\Spect of the model 

formulation, however, will be discussed in association with 

the objective function. 

Objective Function. Maximizing the present value of 

both land and timber was specified as the economic objective 

for the hardwood thinning model. The objective function was 

formulated as the present value of all timber harvested, 

plus the present value of selling the land after final 

harvest. While owners of hardwood timberland may or may not 

wish to sell their land after final harvest, representing 

the possible value is necessary to determine the final 

harvest age which maximizes the present value of both land 

and timber. The land sale value assumed therefore replaces 

SEVin the numerator of equation (5). The value assumed for 

land sale may be higher than the SEV, if alternative uses 

for the land are considered. 

Decision variables for the hardwood thinning model were 

specified as the number of trees to cut from each 

species/diameter class combination, after each growth 

period. The important elements for determining the present 

value of timber harvests are therefore available. That is, 

size and species should adequately reflect per unit timber 

values, and the relevant growth periods define the future 

points in time when harvest incomes occur. Equation ( 18) 

represents the objective function in present value terms, 
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assuming constant per unit prices. 

G s n·+k C 
Maximize:PV = r [ [ 

k=O 
r ':1: [P·• /(l+r)ktlN·· ] 

i=l j=l ].~ ' J.]k 

where: 

PV=present value of land and timber, 

Pij=stumpage value per tree for species i, 

diameter class j, calculated as the price 

per unit of volume times the average volume 

per tree, 

r=real alternative rate of return, 

t=number of years per growth period, 

L=land sale value, and 

Other variables are as previously defined. 

The objective function should adequately 

(18) 

reflect 

differences in value due to quality, as prices are input by 

size class and species. The thinning model is intended for 

guidance in making stand-level decisions. For a given 

stand, such quality variables as proportion of clear bole, 

limb size, etc., should be closely related to diameter class 

and species. The per unit prices assumed for a given stand 

should therefore reflect distinctions between products such 

as pulpwood and sawtimber, as well as any quality 

distinctions which may be associated with the larger size 

classes in the stand. As previously discussed, the thinning 
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model may also include constraints to ensure that quality is 

not adversely affected by thinning, thereby maintaining the 

initially implied price/quality relationships for the stand. 

As seen in equation (18), a present value for land sale 

after period G is added to the present value of timber from 

thinnings and final harvest. This term is a constant in 

deriving optimal thinning schedules for a given rotation 

age, but will affect the determination of which rotation age 

is optimal. That is, optimal rotation length may be derived 

by solving the thinning problem for one growth period, two 

growth periods, etc. , and examining the resulting present 

values of land and timber. Optimal thinning and rotation 

are thus simultaneously derived, comparing the present 

values from solving the thinning model for increasing 

numbers of growth periods. 

Harvesting ·costs were the ·final aspect of hardwood 

thinning modeled in the objective function. A theoretically 

complete thinning model must allow prices received to 

reflect the costs of thinning. Per unit prices may, for 

example, be modeled in relation to the proportion of the 

stand harvested. Incorporating an assumed relationship 

between stumpage prices and the · stand proportion harvested 

was considered, as total volume cut and total stand volume 

may be derived from the variables 
c 

N ijk and 
R 

N ijk" Such 

relationships, hOI-lever, result in a fractional objective 
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function, an undesirable property in programs with nonlinear 

constraints. 

In a Douglas-fir thinning model, Brodie and Kao (1979) 

modeled stumpage prices and variable logging costs in 

relation to the quadratic mean diameter. of trees removed. A 

fixed entry cost for thinning was also subtracted from the 

value function. In another dynamic programming application, 

Rii tters et al. (1982) modeled the contribution of timber 

harvests to the return function as the present value of the 

difference between total harvest value and a fixed thinning 

entry cost. Total harvest value for a particular thinning 

was calculated as the sum over all diameter classes, of the 

number of trees harvested multiplied by a constant stumpage 

price for each class. As each diameter class is explicitly 

recognized in the function, variable costs are reflected by 

the per unit stumpage prices assumed for each class. 

The approach used in the present study for 

incorporating harvesting costs in the hardwood thinning 

model is similar to that of Riitters et al. (1982). That 

is, variable costs of thinning should be reflected by the 

per unit stumpage prices assumed for each diameter class, 

yet fixed entry costs will be subtracted for each harvest 

Which occurs. The approach used to incorporate such fixed 

costs involves using the X k variable created to reflect when 

thinning does and does not occur. Letting FC represent a 
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fixed thinning entry cost, the following terms are added to 

the objective function: 

-x, (FC)/(l+r) kt 
K 

( k=O, ... , G-1 ) (19) 

Fixed entry costs are therefore only incurred vlhen 

thinning takes place, i.e .. , when Xk approaches 1. Also, as 

fixed costs are necessary after final harvest, XG in the 

objective function is defined equal to 1. The final form of 

the objective function is presented in the complete model 

statement of Appendix A. 

Convexity 

Problem convexity is an imp·ortant pr6perty in nonlinear 

programming as the absence of locally optimal solutions 

which are not globally optimal is assured for convex 

programs. Hence, if a solution cannot be improved by a 

local perturbation, it may be declared globally optimal. 

For convex programs, therefore, the first-order Kuhn-Tucker 

local optimality conditions are necessary (under certain 

constraint qualifications) and sufficient to characterize a 

global optimum. For non-convex programs, however, tne Kuhn-

Tucker conditions are not sufficient and solutions meeting 

these conditions may not even represent local optima. The 

hardwood thinning model formulated in this study is non-

convex. The residual defining constraints represent non-

convex relations, as demonstrated in Appendix B, and the 

binary relationships result in non-convex terms in the 

! 
j 
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objective function. 

Various techniques have been used to deal with 

obtaining optimal solutions to nonconvex programs. These 

techniques will be considered in solving for optimal 

thinning and rotation in a demonstration of the mixed-

hardwood model. 

Program Size 

Evaluating program size is often necessary in nonlinear 

programming as solution algorithms may specify maximum 

numbers of variables and constraints. The gradient 

projection algorithm used by Adams and Ek (1974), for 

example, allowed a maximum of 40 variables and 80 

constraints. Of the currently available nonlinear 

programming codes listed by Waren and Lasdon ( 1979), nine 

had fixed limits on both variables and constraints. Program 

size in the present study was evaluated by developing 

equations predicting the ·numbers of variables and 

constraints, based on the number of species, diameter 

classes, and growth periods projected. Reference will be 

made to equation sets in the complete model statement of 

Appendix A. Variables used have been previously defined. il 
Number of Variables. The residual defining constraint 

sets, (A2) through (AS), require two sets of variables, 

numbers of trees cut and residual numbers of trees for each 

species/diameter class combination, after each growth 

j 
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period. Residual numbers of trees variables are not 

required after period G, however, as final harvest occurs. 

From constrain·t set (A2), two sets of variables are required 

for each species/diameter class combination. Hence, the 

number of variables required for constraint set (A2) is 

given by: 

( 20) 

The number of variables required for constraint sets 

(A3) and (A4) may be represented as a total count minus the 

number of residual variables counted after period G. The 

number of such variables is: 

G s 
2[ I r (ni+k-1) l -

k=l i=l 

s 
[ I: ( n . +G-1) ] 

i= 1 l 
( 21) 

The number of variables represented. by constraint set 

(AS) is determined similarly as: 

2(G*S) - S . (22) 

One other variable, X, is used in the model statement 

of Appendix A, required after periods 0 through G-1. Adding 

G to the sum of (20), (21), and (22), and simplifying yields 

the total number of thinning model variables: 

s G s 
G(S+l)+( I: ni)+2( r r [n 1+k-l)l (23) 

i=l k=l i=l 

Number of Constraints. The number of constraints in 

constraints sets ( A2) through (AS) in the thinning model 
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formulation, beginning with the residual defining 

constraints, are given below in relations (24) through (27). 

(24) 

S*G (25) 

s G 
G( r (ni)-2S)+S( r k) 

i=l k= 1 
(26) 

S*G ( 2 7) 

Equation sets (A6) through (AS), representing (3*G) 

constraints, must also be included. Non-negativity 

restrictions are not included in the constraint count, 

however. The ·total number of constraints in the thinning 

model formulation is therefore: 

s G 
(G+l) ( r n i)+S( r k)+(3*G) 

i=l k=l 
(28) 

The numbers of variables and constraints in the 

hardwood thinning model may be predicted with equations (23) 

and (28), respectively. The effects of program size on the 

choice of a solution algorithm 1vill be discussed in a 

demonstration of the model. 

Discussion 

Several aspects of the hardwood thinning model 

formulated in the present study warrant further discussion. 

One area is the discretization of the thinning interval and 

rotation age. While numbers of trees to cut are continuous 
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variables in the formulation, thinnings are only allowed now 

and after a discrete number of growth intervals, each of 

fixed length. Also, the above model limits possible 

rotations to multiples of the growth period. For even-aged 

upland hardwoods, however, discretizing the timing of 

harvests should not affect the usefulness of model results. 

Stands with relatively slow growth rates may not be thinned 

as frequently as stands of faster growing species. Also, 

rotation lengths for such stands are commonly specified in 

multiples of 5 or 10 years. 

While the timing of harvests is discrete in the model 

formulated, the harvest intensity for each species/diameter 

class combination is a continuous variable. Number of 

trees, h01vever, is inherently integer valued. This problem 

would not be avoided by choosing volume as the decision 

variable, as harvest volumes specified by diameter class 

must eventually be related to an integer number of trees. 

Continuous solutions in the thinning model demonstration 

will be rounded to the nearest integer solution. According 

to the classificaton presented by Taha (1975), the thinning 

model formulation is a direct integer problem. This class 

of integer problems is the only one for 1vhich rounding 

should be considered. As discussed by Taha (1975), however, 

a solution obtained by rounding optimal continuous values 

may not be an integer optimum, although it is likely to be 
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near the optimum. 

Applying the formulated thinning model to young stands 

is another area for discussion. Stands too young for 

commercial thinning may be projected to thinning age within 

the optimization model. This may be accomplished by 

specifying no harvesting until after a sufficient number of 

growth periods, or by specifying zero prices for the 

appropriate growth periods. A more efficient approach, 

however, is to project young stands to thinning age prior to 

applying the optimization model. This approach avoids the 

additional variables and constraints necessary for 

incorporating initial growth periods where thinning is not 

an option. 

Further consideration should also be given to certain 

thinning model constraint sets. For example, the 

possibility of setting minimum thinning levels was modeled 

such that the constraints applied only if thinning occurred. 

Maximum levels for thinning volumes were incorporated, 

however, without determining whether cuttings represented 

thinnings or final harvest. This determination was not 

necessary, as final harvest is assumed after the last growth 

period modeled. All other harvests may therefore be subject 

to maximum thinning volumes. 

Also regarding the constraints, setting minimum volume 

levels for thinnings may not be required. Fixed costs were 
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incorporated in the objective function, but are incurred 

only if harvesting occurs. To realize a net gain from 

harvesting, sufficient volume must be removed to recover the 

fixed costs. The thinning model may therefore be solved 

without minimum harvest volumes, adding such constraints if 

the volumes specified are still considered inadequate for 

marketing or other reasons. 

Other types of constraints may also be included in the 

nonlinear programming thinning formulation. For example, 

non-timber considerations involving wildlife, recreation, 

watershed, etc., may be incorporated. Such relationships, 

however, must be expressed. as functions of volumes cut and 

residual volumes, either total or by diameter class and/or 

species, after each growth period. Rather than using 

constraints, nontimber values might also be included as 

either constant or varying (with density) values, added to 

the objective function depending on whether or not final 

harvest has occured, i.e., whether or not standing timber is 

present. The ability to reflect non-timber considerations 

can be an important aspect in modeling upland hardwoods, as 

both public and private landowners frequently ·consider such 

factors in their harvest decisions. 

The thinning model was formulated with decision 

variables specifying the number of trees to cut from each 

species/diameter class combination. Aggregating numbers of 
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trees into small groups may be considered if solutions to 

the thinning model formulation cannot be obtained at the 

level specifying exact numbers of trees. Thinning schedules 

from such a formulation would prescribe numbers of tree 

groups of 2, 3, 4, etc., to be harvested from each 

species/diameter class combination. 

Finally, applying thinning model prescriptions in the 

field may require. adjustments and managerial judgement. 

This is true in implementing results from any such model. 

In general, the stand should be defined small enough that 

1 the thinning formulation accurately represents the real 

system being modeled. The accuracy with which model results J 
can be applied is directly related to how closely the input 

data represents the stand to be thinned. The thinning model 

may be used to develop prescriptions for wide application to. 

frequently occuring stand types, or to derive thinning 

policies for individual stands. 



THINNING MODEL DEMONSTRATION 
j 

.r 

The thinning model developed in the preceding chapter 

is based on a growth model tentatively specified for stand-

table projection of mixed-species hardwoods. Although data 

were not available for estimation of the growth model 

parameters, the thinning model will be demonstrated using 

assumed parameter values. Specification of the growth model 

parameters will be discussed, followed by thinning model 

formulations for two problem cases. To complete the 

thinning model demonstration, three techniques will be 

evaluated for solving the nonlinear programming 

formulations. 

Growth Model Parameter Specification 

Statistical estimation of the growth model parameters 

requires remeasurement data for the upgrowth and mortality 

parameters, and the potential proportions of upgrowth. The 

optimization aspects of the ·thinning model were investigated 

in the absence of such data by specifying a hypothetical, 

mixed-species stand, and assigning parameter values for 

projecting the stand. Growth model parameters were 

specified for an assumed stand of age 30, to be projected 

With 5-year growth intervals, with or without thinning, to 

age 45. The stand a:ssurned for demonstration is comprised of 

72 
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tHo species groups, a faster gro1ving, higher valued group 

such as yelloH-poplar, and a sloHer groHing, loHer valued 

group such as mixed-oaks. These groups Hill be referred to 

as species groups l and 2, respectively. The initial 

distribution of trees by diameter class and the average 

merchantable volumes per tree used in the demonstration are 

presented in Table 1. The distribution of the total number 

of trees by diameter class Has compared to the even-aged 

upland hardwood distributions presented by Gingrich (1967). 

Height-diameter relationships were assumed for each species 

and merchantable volumes were obtained through linear 

interpolation of volumes presented by Schnur (1937). 

Volumes presented for species 1 correspond to yellow-poplar 

while those for species 2 correspond to white-oak. 

To specify growth model parameters Hhich would 

adequately project the initial stand, broad biological 

considerations were made. These considerations will be 

discussed, followed by the final parameter values used in 

the demonstration. 

Biological Considerations 

As species 1 was considered to be the faster growing 

species, growth model parameters were specified to yield 

relatively higher upgrowth proportions for this group. 

Also, as fasteT growing species are often less tolerant of 

competition, ·parameters for species 1 were specified to 
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Table 1. Initial stand-table and average volumes per tree 
assumed for the thinning model demonstration. 

Diameter 
Class (in.) 

2-3.9 

4-5.9 

6-7.9 

8-9.9 

10-ll. 9 

12-13.9 

14-15.9 

Species 1 * 
# Trees Vol./Tree 

Species 2 1, 

# Trees Vol./Tree 

60 0.00 

75 1.40 

52 5.04 

10 10.55 

17.86 

26.44 

36.30 

Total Trees 197 

Total Volume 472.58 

*Cubic-foot volume to a 4 11 top (o.b.), from Schnur's (1937) 
yellow-poplar and white-oak volume tables, for assumed 
height/diameter relationships. 

I 

I 
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result in higher mortality than species 2, under similar 

conditions. Species 1 mortality was also modeled as being 

more sensitive to stand volumes in greater diameter classes. 

For both species, mortality was modeled such that larger 

diameter classes experienced lower proportions dying. Also 

for both species, the relative effects of competition from 

smaller diameter classes, or understory, were modeled as 

diminishing as diameter increases. 

A major assumption in the growth model parameter 

specification was that for both upgrowth and mortality, the 

effects on the residual stand of cutting either species 

would be the same. That is, b ~j=b fi and b!j =b~j in 

relations (11) and (12), respectively, for all individual 

combinations of i and j. This property may or may not hold 

for actual mixed-species stands. For the present analysis, 

however, the assumption expedited the specification of 

parameters without detracting from the usefulness of the 

demonstration. 

Parameter Values 

Biological considerations assisted in defining several 

general relationships between growth model parameters and 

predicted results. Constrained by these considerations, 

parameter values were assigned such that realistic upgrowth 

and mortality proportions '.Vere predicted by the growth 

model. Parameter values, including the potential 
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proportions of upgrowth, were therefore adjusted until 

reasonable upgrowth and mortality estimates were generated. 

Final parameter values used in the thinning model 

demonstration are presented in Tables 2, 3, and 4. A total 

of 112 values were assigned. 

For the assignment and adjustment process, growth model 

projections were made for the original stand (Table 1) for 

1, 2, and 3 growth periods of 5 years each, corresponding to 

stand development from age 30 to 45. Growth model results 

for upgrowth and mortality for all species/diameter class 

combinations, as well as aggregate stand volume projected, 

were examined for thinning intensities ranging from no 

thinning to removal of over half the stand. Parameter 

values were adjusted until growth model projections for up 

to 3 periods were comparable to the even-aged hardwood 

results presented by Dale (1972), Gingrich (1971), and 

Schnur (1937). Projections beyond age 45 were not of 

interest in the present study, as the thinning model 

demonstration 1vill be limited to 3 growth periods. 

Thinning Model Examples 

Thinning model formulations were developed and .solved 

for two examples. A relatively small problem, Case I, was 

studied to provide insight into the structure and solution 

of the more complete formulation, Case II, of the thinning 

model for the initial stand. Case II is further divided 
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Table 2. Potential proportions of upgrowth assumed for the thinning model 
demonstration (relation (11)). 

Diameter 
Class (in.) 

2-3.9 

4-5.9 

6-7.9 

8-9.9 

10-11.9 

12-13.9 

Growth Period 1 
Species 1 Species 2 

. 200 .150 

.450 .250 

.575 .350 

.700 .450 

--- ---
--- ---

Growth Period 2 
Species 1 Species 2 

.150 .100 

.350 .200 

.550 .300 

.650 .400 

.750 .500 

--- ---

Growth Period 3 
Species 1 Species 2 

.100 .050 

.300 .150 

.500 .250 

.600 .350 

.700 .450 

.850 .550 

_, _, 
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Table 3. Growth model upgrowth (bL b2, b3) and mortality (b 4 , b 5, b
6

) 
parameters assumed for species 1 for the thinning model 
demonstration (relations (11) and (12)). 

Diameter 
Class (in.) 

2-3.9 

4-5.9 

6-7.9 

8-9.9 

10-11.9 

12-13.9 

Parameter 
bl b2 b3 b4 bs b6 

-.0006813 -.0002524 -.0002524 -.0000908 -.0000252 -.0000252 

-.0003668 -.0002494 -.0002494 -.0000227 -.0000083 -.0000083 

-.0003659 -.0001990 -.0001990 -.0000076 -.D000059 -.0000059 

-.0003028 -.0002497 -.0002497 -.0000038 -.0000038 -.0000038 

-.0002300 -.0002500 -.0002500 -.0000030 -.0000027 -.0000027 

-.0001700 -.0003000 -.0003000 -.0000020 ~.0000018 -.0000018 

'" 00 
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Table 4. Growth model upgrowth (bl, bz, b3) and mortality (b4, b5, bfi) 
parameters assumed for species 2 for the thinning model 
demonstration (relations (11) and (12)). 

Diameter 
Class (in.) 

2-3.9 

4-5.9 

6-7.9 

8-9.9 

10-11.9 

12-13.9 

Parameter 
b1 bz b3 b4 PS b6 

-.0006056 -.0002271 -.0002271 -.0000379 -.0000076 -.0000076 

-.0004164 -.0002079 -.0002079 -.0000088 -.0000041 -.0000041 

-.0003280 -.0001621 -.0001621 -.0000038 -.0000022 ~.0000022 

-.0002649 -.0002123 -.0002123 -.0000012 -.0000006 -.0000006 

-.0002000 -.0003000 -.0003000 -.0000009 -.0000002 -.0000002 

-.0001200 -.0004000 -.0004000 -.0000005 -.0000001 -.0000001 

'4 

" 
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into Cases IIa, IIb, and IIc, representing formulations for 

1, 2, and 3 growth periods, respecti veJ.y. The initial 

assumptions used in the l)lodels developed for both examples 

will be discussed, followed by the explicit formulations to 

be solved. 

Input Assumptions 

Assumptions regarding land sale value, fixed costs, 

interest rates, and per unit prices were necessary to define 

the objective function coefficients for the example 

problems. The same values were assumed for these inputs for 

both cases formulated. Certain input assumptions were 

relaxed in a limited sensitivity analysis, to be discussed 

following the problem formulations and solution analysis. 

Input values initially assumed are summarized in Table 5. 

A constant land sale value of $300 was assumed for the 

example problems. No attempt was made to establish actual 

post-clearcut land values or land appreciation rates for a 

particular region.. Realistic estimates of land sale value 

over time should not be difficult to obtain, however, for 

applications of the model to actual stands in a given 

locality. The market value for bare land represents the 

value of land in its highest and best use and therefore 

represents an upper bound on the SEV determined considering 

forestry uses. 

Fixed costs of $4 per acre were used in the thinning 
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Table 5. Input values initially as_sumed for determining 
present values in the thinning model demonstration. 

Land Sale Value .......................... L=$300/acre 

Fix~d Thinning Costs ...................... FC=$4jacre 

Real Rate of Return (decimal percent) . . . . .. . . . . . r=. 08 

Stumpage Prices: 

Species 1, 10+ inches ........... P =$0.233870/cu.ft. 

Species 1, <10 inches ........... P =$0.050828/cu.ft. 

Species 2, 10+ inches ........... P =$0.204980/cu.ft. 

Species 2, <10 inches ........... P =$0.042890/cu.ft. 
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model examples. These costs are associated with marking and 

sale administration, and are included in the model in lieu 

of ·fixed logging costs, as data were not available to 

establish per unit stumpage prices net of such costs. 

Administrative costs are fixed, however, and for purposes of 

model demonstration wi 11 represent the cost variable ( FC) 

defined in the theoretical formulation and discussion. 

Fixed costs were applied to thinnings and final harvest. 

A real discount rate of 8 percent was assumed for 

determining present values in the example problems. Some 

thinning studies, e.g., Riitters et al. (1982), have used 

rates as low as 3 percent. For the present demonstration, 

however, private ownership is assumed and the rate 

represents a before-tax, real alternative rate of return. 

The assumed rate was reduced to 5 and 3 percent in 

subsequent analyses. 

In both examples, it is assumed that all material 

harvested can.be sold at the stumpage prices assigned. Per 

unit stumpage prices for the model demonstration were 

obtained by averaging monthly prices reported for the 

Southeast in .Timber Mart-South 1 for January through August, 

1982. Random-length log prices were applied for trees in 

diameter classes 10 inches and over, while roundwood prices 

1 Monthly report of Timber Mart-South, Inc., published by 
F.W. Norris, Highlands, N.C. 
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'tlere used for trees under this limit. Yellow-poplar and 

mixed-hardwood prices were used for logs of species groups 1 

and 2, respectively. For roundwood diameters, soft-hardwood 

prices were used for species 1, prices for chemically 

processed hardwoods were used for · species 2. Prices per 

thousand board feet (Doyle) and per standard cord were 

converted to values per cubic foot using average conversion 

factors, also published in Timber Mart-South. Sawtimber 

price differentiation for quality was not included in the 

initial analysis. The initial values assumed for the 

thinning model demonstration are presented in Table 5. 

Finally, a real stumpage price increase of 2 percent per 

year was assumed for sawlog diameters of both species. 

Although real increases in stumpage value are not expected 

for lower quality hardlvoods in the immediate future, the 

U.S. Forest Service ( 1982) has projected price increases 

beyond the next few decades. 

Case I 

Two examples of the thinning model 1-1ere formulated for 

demonstration. Case I is formulated for a stand of very 

simple structure, while Case II represents the thinning 

model for the stand used to assign parameter values, 

summarized in Table 1. Case I is formulated for a stand of 

age 40, which on a per acre basis has 49 trees of species 1 

in diameter class 8-9.9, and 39 trees of species 1 in the 

l 
j 
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10-11.9 inch class. For species 2, the stand has 49' trees 

in diameter class 6-7.9, and 19 trees in the 8-9.9 inch 

class. The stand is therefore comprised of 156 trees, with 

a total merchantable volume of 1852 cubic feet. The growth 

model parameters used for Case I are the appropriate values 

from Tables 2, 3, and 4. The previously discussed input 

assumptions are the same for both examples. 

For the Case I problem, the stand will be projected for 

a single 5-year growth period. From equations (23) and 

(28), the thinning model formulation involves 15 variables 

and 13 constraints. The purpose of the formulation is to 

determine the thinning policy, applied now, which maximizes 

the present value of land and timber over the next 5 years. 

The stand may be clearcut now, thinned now and clearcut in 5 

·years, or lef·t unthinned and clearcut in 5 years. It is 

assumed that if thinning occurs, volume removed must range 

between 30 and 50 percent of the pre-thinning stand volume. 

The initial stand-table for Case I was specified so that the 

optimal thinning policy could be derived through an 

exhaustive search of all possible thinning regimes. Case I 

will be used to evaluate solution techniques and provide 

insight into the structure of the second example, where the 

optimal solution is unknown. 

The thinning model was formulated for Case I following 

the equation sets presented in Appendix A. This formulation 
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is presented in Table 6, where for ease of presentation, the 

following substitutions have been made for the variables 

used in the Appendix. 

X(1) = 
R 

N 120 X(2) = 
c 

N 120 
R c 

X(3) = N 130 X(4) .- N 130 

X(S) = 
R 

N 210 X(6) = 
c 

N 210 
R c 

X(7) = N 220 X(S) = N 220 

X(9) = 
R 

N 121 X(lO) = 
R 

N 131 

X( 12) 
R R 

= Nl41 X( 12) = Nzn 

X(l3) = 
R 

Nz21 X(l4) = 
R 

N 231 

The present value equation in Table 6 represents the 

sum of discounted land sale value and discounted values per 

tree multiplied by numbers of trees cut. The growth model 

coefficients in the constraints are expressed in terms of 

numbers of trees, i.e., the origina'l coefficients are 

multiplied by average volumes per 'tree and aggregated. The 

Case I formulation presented in Table 6 may be simplified 

through substitution. That is, an equivalent formulation 

may be obtained by: 

(1) substituting X(l)=49-X(2}, X(3)=39-X(4), 
X(5)=49-X(6), and X(7)=19-X(8) into the 
residual-defining constraints for period 1, 

(2) adding constraints X(2)<49, X(4)_239, X(6)2_49, 
and X(8)_219, 

(3) replacing X(9) through X(l4) in the objective 
function with the expressions defined by the 
remaining equality constraints, and 

(4) simplifying and combining terms. 
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Table 6. Case I thinning model formulation, following the equation sets 
presented in Appendix A. 

Maximize:PV = $201.45+0.65X(2)+4;66X(4)+0.22X(6)+0.45X(8)+0.44X(9)+3.50X(l0) 
+5.03X(ll)+O.l5X(l2)+0.31X(l3)+2.75X(l4)-4X{O)-MX(O)(l-X(O)) 

Subject to: 

X(l) + X(2) = 49 
X(S) + X(6) = 49 

X(3) + X{4) = 39 
X{7) + X(S) = 19 

X(9)-X(l)(EXP(-.0000973X(l)-.0001515X(3)-.0000192X(5)-.0000802X(7)) 
-.6EXP(-~007072X(l)-.Oll0169X(3)-.0015261X(5)~.0058289X(7))) = 0 

X(l2)-X(5)(EXP(-.0000768X(l)-.0001196X(3)-.0000302X(5)-.0000633X(7)) 
-.25EXP(-.0062733X(l)-0097726X(3)-.0024701X(5)-.0051706X(7))) = 0 

X( 10) -X(3) (EXP (-. 0000384X( 1)-. 0001137X( 3)-. 0000151X(5)- .. 0000317X( 7)) 
-.7EXP(-.002944X(l)-.0095712X(3)-.0011592X(5)-.0024265X(7))) 
-.6X(l)EXP(-.007072X(l)-.00110169X(3)-.0015261X(5)-.0058289X(7)) = 0 

X( 13) -X( 7) (EXP (-. 000023X( 1)-; 0000359X( 3) _; 0000091X( 5)-. 000019X( 7.)) 
-.35EXP(-.0061082X(l)-.0095154X(3)-.0024051X(5)-.0050345X(7))) 
-.25X(S)EXP(-.0062733X(l)-.0097726X(3)-.0024701X(5)-.0051706X(7))= 0 

X(ll)-.70X(3)EXP(-.002944X(l)-.0095712X(3)-.0011592X(5)-.0024265X(7))= 0 

X(l4)-.35X(7)EXP(-.006108X(l)-.0095154X{3)-.0024051X(5)-.0050345X(7))= 0 

12.8X(2)+19.94X(4)+5.04X(6)+10.55X(8) ~ 926X(O) 
12.8X(2)+19.94X(4)+5.04X(6)+10.55X(8) ~ 370X(O) 

X(O) ~ 1, X( i) ~ 0 (i=O,l, ... ,l4) 

00 
0'> 
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The Case I formulation obtained with the above steps is 

presented in Table 7. The Table 7 formulation has 5 

variables and 7 constraints, compared to 15 variables and 13 

constraints in Table 6. The problem is now comprised of a 

nonlinear objective function, constrained by a small set of 

linear inequalities (5 

Following substitution, 

of which are merely upper bounds). 

the nonlinear program is lvri tlen 

entirely in terms of the true decision variables, the number 

of trees to cut from each species/diameter class 

combination. Non-negativity expressions are not required 

(in Table 7) for variables X(9) through X(l4). The 

residual-defining equations in Table 6 represent proportions 

living minus proportions of upgrowth. Logically, the 

upgrowth proportion in a given diameter class cannot exceed 

the proportion of trees living in that class, following a 

growth period. The result can also be shown algebraically, 

however, based on the relative magnitudes of the exponential 

coefficients in Table 6. 

Case II 

The second thinning model example is comprised of three 

problems. Cases IIa, IIb, and IIc correspond to thinning 

model formulations for the stand initially assumed for 

projection (Table 1), for 1, 2, and 3 growth periods, 

respectively. Formulations for Case IIa are presented using 

vector notation in Tables 8 and 9. Vectors used in these 
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Table 7. Case I thinning model formulation, following substitution and 
simplification. 

Maximize: PV = $201.45+0.65X{2)+4.66X{4)+0.22X{6)+0.45X(8)-4X(O)-MX{O){l-X{O)) 

+(49-X{2))(.44EXP(-.01314+.0000973X{2)+.0001515X{4)+.0000192X(6)+.0000802X{8)) 
+1.836EXP{-.9617151+.007072X{2)+.0110169X{4)+.0015261X{6)+.0058289X{8))) 

+{39-X{4))(3.5EXP(-.00766+.0000384X{2)+.0001137X{4)+.0000151X{6)+.0000317X(8)) 
+1.071EXP(-.6204371+.002944X{2)+.0095712X{4)+.0011592X{6)+.0024265X{8))) 

+(49-x{6))(.31EXP(-.01111+.0000768X{2)+.0001196X(4)+.0001196X{6)+.0000633X(8)) 
+.04EXP(-.9077994+.0062733X{2)+.0097726X(3)+.0024701X(6)+.0051706X(8))) 

+(19-X(8))(.31EXP(-.003334+.Q00023X(2)+.0000359X(4)+.0000091X(6)+.000019X(8)) 
+.854EXP(-.8838532+.0061082X(2)+.0095154X(4)+.0024051X{6)+.0050345X(8))) 

Subject to: 

X{2) s 49 
X(4) s 39 
X(6) s 49 
X(8) s 19 

12.8X(2) + 19 .. 94X(4) + 5.04X(6) +10.55X(8) s 926X(O) 
12.8X(2) + l9.94X(4) + 5.04X(6) +10.55X(8) 2 370X(O) 

X(O) s 1 
X(i) ?: 0 (i=O,l,2,3,4) 

cc 
cc 
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Table 8. _Case I I a thinning model formulat.lon, follovling 
the equation sets in Appendix A (vectors are 
defined in Table 10). 

T 
Maximize: PV = $201.45 + PIN 1 - 4Xo - MXo(l-Xo) 

Subject to: 

R c R c 
N 110 + Nno = 14 N 210 + N210 = 60 

R C R C 
N12o + N12o = 55 N220 + N220 = 75 

R C R C 
N 130 + N 130 = 79 N 230 + N230 = 52 

R C R C 
N 140 + N 140 = 45 N 240 + N240 = lO 

N~ll-~10 (EXP(Bit-2 )-.200EXP(B~N2 )) = 0 

N~ll-~10 (EXP(B~t-2 )-.150EXP(B~N2 )) = 0 

N~21-~20 (EXP (~N 2 )-.450EXP(B~Nz ))-~10 .200EXP(B~2 ) = 0 

N~31-~30 (EXP (B~N 2)-.575EXP(B~~ ))-~20 .450EXP(B~2 ) = 0 

N~41-~40 (EXP(B!N 2)-.700EXP(Bio~ ))-~30 .575EXP(B'f;N2 ) = 0 

N~21-~20 (EXP(Bi1 N 2)-.250EXP(Bi2 N 2))-~10 .150EXP(B~N2 )= 0 

N ~31-~30 (EXP ( Bi
3 

N 2)-. 350EXP (Bi
4 

N 2)) -~~O . 250EXP ( B izN 2) =0 

N ~41-~40 (EXP(Bis N 2)- .450EXP(Bi
6

N 2) )-~~O . 350EXP(Bi4 N 2)=0 

N ~51-N1!0 . 700EXP ( B i
0

N
2 

) =0 

R R T N 
251

-N
240 

.450EXP(B 
16

N
2

) =0 

336X
0 

,:; vTN
3 

,:; 839Xa . 

R,C 
0 :'> Xo ,:; 1 , N ijk ;:, 0 ( i=l, 2 j =1, ... , ni + k k=O, 1) 

I 
j 

j 
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Table 9. Case II a thinning model formulation, follo~!i-ng 
substitution and simplification (vectors are 
defined in Table 10). 

T 
Maximize: PV = $201.4:5 + P2 N 

3
- 4:X

0 
- MX

0
(1-X 0 ) 

C ·- T 
+ ( 14-NllO ) (. 0014:EXP ( -1. 566703+B 2N3 ) ) 

C ~ . T 
+ ( 55-N120 ) (. 070EXP (-. 052019+'-')N 

3
) +. 072EXP ( -1. 0339986+B

6 
N 3)) 

+ ( 79-NiJo ) (. 23EXP (-. 02871 78+~ N 3 ) +. l2075EXP (-. 905679+B~ N 3)) 

+ ( 4:5-Ni40 ) (. 4:4:EXP (-. 0003563+£ii N ) +2 .14:2EXP (-. 678275+B
1

; N ) ) 

+(60-N~10 )(.OQ6EXP(-1.3972885+B~~ )) 

+ ( 75-N~ZO ) (. 04EXP (-. 02165+Bi
1 

N 
3

) +. 0275EXP ( -1. 047585+Biz N 
3
)) 

+(52-N~30 ) ( .15EXP(- .009600+Bi
3 

N
3 

)+ .056EXP(-. 787996l+Bi
4 

N
3
)) 

+ (10-N~40 ) (. 31EXP (-. 0024:15+Bi~ N
3

) +1. 098EXP (-. 589199+Bi
6 

N 3 )) 

Subject to: 

N c < 14: c ,; 55 c ,; 79 c ,; 4:5 no- Nl20 N 130 ' N140 
c 60 c ,; 75 c 52 Nc s 10 N 210,;: ' N220 ' N 230 s ' l 240 

336X0 S VTN 
3 

,; 839X
0 

c 
N ijO 2 0 (i=1,2 j=l,2,3,4:) 
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problem statements are defined in Table 10. Vector notation 

was required to present the Case IIa formulations due to the 

size of the program. 

Following the equation sets presented in Appendix A, 

the Case IIa formulation includes 27 variables and 21 

constraints (Table 8). Substitutions corresponding to those 

outlined for Case I result in the Case II a formulation in 

Table 9, with 9 variables and 11 constraints. Again ·the 

substitutions result in a nonlinear objective function, 

constrained by linear inequalities. Similar programs will 

result for any formulation for 1 growth period, as all 

exponential terms resulting from the growth model are 

transferred to the objective function. 

Nonlinear programs were also defined for Cases I Ib and 

IIc following Appendix A. As predicted by equations (23) 

and (28), Case IIb involved 50 variables and 36 constraints, 

while Case I Ic had 77 variables and 53 constraints. 

Equivalent formulations through substitution were not 

developed for these examples. Redefining the thinning model 

formulations simply in terms of trees to cut after each 

period becomes increasingly difficult as the number of 

growth periods projected increases. Also, substitution will 

not replace all of the nonlinear constraints in models with 

more than one growth period. Nonlinear constraints 

corresponding to the inequalities added in step (2) of the 



r 
Table 10. Vectors used in the Case IIa thinning model formulations of 

Tables 8 and 9. 

P 1=(0.00,0.10,0.34,0.65,0.00,0.06,0.22,0.45,0.00,0.0680683,0.2393183, 
T 0.4423791,3.5050035,0.00,0.040835,0.1497283,0.3062624,2.7495561) 

Pz=(0.00,0.10,0.34,0.65,0.00,0.06,0.22,0.45)T 

C C C C C C C C R R R R R 
N:~:=(Nno ,N120 ,N130 ,Nl40 ,N210 ,Nzzo ,Nz3D ,N240 ,N 111,N 121,N 131,N l41,N 151• 

R R R R R T 
Nzn , Nz21 , N231 , Nz41 , Nzs1 ) 
R R R R R R R R T 

Nz=(Nuo ,N120 ,N13o ,N140 ,NzlO ,Nzzo ,Nz3o ,Nz4o l 
C C C C C C C C T 

N3=(Nuo ,N12o ,N13o ,N140 ,N21o ,Nzzo ,Nz3o ,Nz4o l 
T 

v = (0,1.95,6.61,12.8~0,1.40,5.04,10.55) 

B1 =(0,-.0002262,-.0007668,-.0014848,0,-.0001624,-.0005846,-.0012238)T 
BZ =(0,-.0018207,-.0061718,-.0119514,0,-.0013072,-.0047058,-.0098505)T 
B3 =(0,-.0000887,-.0003008,-.0005824,0,-.0000637,-.0022930,-.0004800)T 
B4 =(0,-.0016238,-.0055041,-.0106586,0,-.0011658,-.0041968,-.0087850)T 
Bs =(0,-.0000605,-.0002049,-.0003968,0,-.0000434,-.0001562,-.0003271)T 
B6 =(0,-.0012016,-.0040731,-.0078874,0,-.0008627,-.0031056,-.0065009)T 
B7 =(0,-.0000148,-.0000892,-.0001728,0,-.0000106,-.0000680,-.0001424)T 
B8 =(0,-,0007135,-.0037340,-.0072307,0,-.0005123,-.0002847,-.0059597)T 
Bg =(0,-.0000074,-.0000251,-.0000393,0,-.0000053,-.0000192,-.0000802)T 
B1o=(0,-.0005905,-.0020015,-.0070720,0,-.0004239,-.0015261,-.0058289)T 
B11=(0,-.0000252,-.0000853,-.0001651,0,-.0000181,-.000065,-.00013610)T 
B1z=(0,-.0012174,-.0041266,-.0079910,0,-.0008740,-.0031465,-.0065864)T 
Bl3={0,-.0000074,-.0000397,-.0000768,0,-.0000053,-.0000302,-.0000633)T 
B14=(0,-.0006396,-.0032396,-.0062733,0,-.0004592,-.0024701,-.0051706)T 
B15 =(0,-.0000023,-.0000079,-.0000230,0,-.0000017,-.0000060,-.0000190)T 
B16 =(0,-.0005166,-.0017510,-.0061082,0,-.0003709,-.0013351,-.0050345)T 

"' "' 
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substitutions for Case I remain in the formulation. lHl 

nonlinear equalities can be removed, however. If necessary, 

computer programs could be written to perform the 

substitutions for reformulating problems with more than one 

growth period. As will be discussed with the thinning model 

solutions, however, reformulating Cases I Ib and I Ic would 

not expedite the analysis in the present study. 

Thinning Model Solution 

Three techniques were considered for solving the 

thinning model examples. These techniques were Monte-Carlo 

Integer Programming (MCIP), Multistage Monte-Carlo Integer 

and a nonlinear programming Programming (MS-~1CIP), 

subroutine titled VMCON. The Monte-Carlo or random search 

methods considered are heuristics, i.e., non-convergent 

iterative algorithms (Muller-Merbach 1981). Such algorithms 

are commonly used in estimating solutions to integer or 

combinatorial problems. Each of the three approaches 

considered in the present study will be described, with 

subsequent discussions concerning their applicat.ion to 

solving Cases I and II. The relative advantages and 

disadvantages of each for solving thinning model 

formulations will be considered following the application. 

Solution Techniques 

Monte-Carlo Integer Programming. MCIP has been 

proposed by Conley (1980) for solving mathematical 
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programming problems and systems of equations. The approach 

is not new, however, and simply involves evaluating the 

objective function of a problem for randomly selected, 

feasible values of the decision variables. The best 

solution generated by the random sample of feasible points 

is used as the estimated optimum. The approach is an 

integer approach, as integer solutions are evaluated. 

Conley's title for the method is observed in the present 

study, rather than simple random sampling, because of his 

single statistical argument for the approach. 

The basic argument presented by Conley (1980) in 

defense of MCIP involves examining the probability density 

function for objective function values to a particular 

programming problem. For combinatorial problems, the 

density is actually a discrete, bounded distribution, more 

properly termed a relative frequency or probability mass 

relation. Conley contends that the random search technique 

will yield estimates very close to the true optimum, for 

problems with distributions having light (i.e., non-

extended) right-hand tails. 

For a maximization problem, the optimal solution is 

that having the greatest objective value, i.e., the value at 

the extreme right of the distribution of objective function 

Values. If this value is not isolated, or is not at the end 

of an extremely heavy right-hand tail, objective function 
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values within a very small upper region of the distribution 

will closely approximate the maximum. The probability (Pr) 

that at least one of (n) random solutions is within a given 

area (a) of the optimum is characterized by equation (29). 

Pr = 1 - (1-a)n (29) 

In this relation, (1-a) represents the probability that 

a given solution is within the area (1-a). The probability 

that all (n) solutions generated fall within this area is 

therefore (1-a)n. The probability that all (n) did not fall 

within area (1-a), i.e., that at least one is in the upper 

(a) region, is 1-(1-a)n. The value approaches 1 with large 

random samples. For example, the probability that at least 

one of 10,000 random solutions is within the upper .001 

region of the probability density function for a given 

problem is: 

Pr = 1 - (1-.001) 10000 = .9999548 

For problems where the objective function values within 

the upper . 001 region are near the true maximum, the random 

search technique should yield estimated solutions with 

values close to the optimum. The usefulness of the approach 

for a particular problem therefore depends on the shape of 

the right-hand tail of the probability density function of 

objective function values. These distributions will be 

considered for the thinning model examples to be solved. 

Relation (29) may also be solved to determine the 

I 

I 

I 

I 

I 
I 

I 
_J 
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number of samples required for certain probabilities and 

areas, i.e., the number necessary to state that the 

probability is (Pr) that at least one solution is within the 

upper (a) region. 

( 30). 

This relation is presented in equation 

n = ln(1-Pr)/ln(1-a) (30) 

Although Conley (1980) does not refer to previous 

studies, equations (29) and (30) were presented much earlier 

by Brooks (1958). Brooks proposed the use of simple random 

search in estimating optimal factor combinations in 

experimental design. Examining the probability distribution 

for objective function values was not fully developed by 

Brooks. Recommendations· were made, however, f'or using 

relatively small values of (a) in problems lvhere only a 

small portion of the experimental region is expected to 

yield high response values. 

To implement the MCIP approach for a given problem, a 

computer program is written to select and evaluate the 

chosen number of feasible solutions. Random solutions are 

obtained using a psuedo-random number generator, 

identical sequences of random numbers are produced each time 

the same initial seed number is used. Programs used in the 

present study will be described in the application of MCIP 

to Cases I and II. 
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Multistage Monte-Carlo Integer Programming. MS-MCIP is 

a modification of IYICIP where multiple sets of random samples 

are· evaluated. Conley (1981) proposes MS-MCIP as a method 

of directing the random search toward the optimal solution. 

In the multistage approach, sets of random solutions are 

generated, with the range of possible values for each 

variable reduced after each set of (n) has been evaluated. 

Similar concepts were advanced over twenty years ago by 

McArthur (1961) and Karnopp ( 1963). In the present 

analysis, sufficient sets were considered to ensure that 

possible -ranges for decision va,riable values were very small 

in the final (n) evaluations. Each set of random 

evaluations represents a separate stage in the multistage 

method. 

The possible range of values for each variable is based 

on the value of that variable in the best solution generated 

thus far. Each time a solution is found with an objective 

value greater than the highest obtained thus far, the new 

solution is stored and the possible ranges of variable 

values are shifted, being formed around the decision 

variable values in the new solution. The possible ranges 

are reduced only after each set of (n) solutions has been 

gen'i'rated. The positions of these ranges are adjusted, 

however, each time a solution is obtained with a greater 

objective function value. 

I 
J 
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Ranges for variable values are referred to as possible 

ranges as they represent the maximum possible range for 

each. If the solution stored as the current best has a 

variable with a value close to an upper or lower bound, for 

example, the range may be less than . the current maximum 

possible. This results as the decision variable value is 

used as the center of ·the maximum range, with the actual 

range applied being reduced to reflect feasible values. For 

a non-negative variable whose current value is zero, for 

example, the actual range used will be the interval bet;veen 

zero and one half the current range possible. 

Conley (1981) relates MS-MCIP to the argument for MCIP, 

stating that the first set of solutions generated should 

yield an objective value estimate in the upper (a) region, 

while the second set should yield at least one solution in 

an even smaller upper region, etc. In this manner, Conley 

argues that MS-MCIP will in many cases converge on the true 

optimum, although convergence is not shown. As will be 

shown for the thinning model examples, however, in some 

cases MS-MCIP yields solutions inferior to simple random 

sampling, where the same total number of solutions are 

evaluated with each method. The details of the MS-MCIP 

computer programs written for the thinning model examples 

Will also be described in the application to Cases I and II. 
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Nonlinear Programming Subroutine VMCON. I"lethods for 

solving nonlinear pro"i;)Tamming problems may be classed as 

penalty function methods, generalized reduced gradient 

methods, augmented Lagrangian techniques, and methods based 

on solving quadratic subproblems. Subroutine VHCON is in 

the last category, implementing a variable metric method for 

constrained optimization proposed by Powell ( 1978a). The 
' 

subrou"tine was developed at Argonne National Laboratory, 

Argonne, Illinois, by Crane et al. ( 1980). VMCON was used 

in the present study due to its immediate availability. The 

algorithm has no fixed limits on problem size, i.e., on the 

number of variables or contraints. A brief introduction to 

the basic algorithm used in VMCON will be followed by the 

input requirements necessary to use the subroutine. 

The variable ·metric algorithm employed in VMCON is an 

iterative method designed to converge to a point satisfying 

the first-order Kuhn-Tucker conditions. The first step in 

the algorithm is to determine the search direction (d) which 

minimizes a quadratic approximation of the objective 

function, subject to linear approximations of the 

constraints. A one-dimensional search in then performed to 

determine the step length to be taken in the direction (d). 

The function minimized in this search is the objective 

function plus a weighted sum of constraint deviations. The 

Weights are calculated using Lagrange multiplier estimates 
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obtained in the quadratic programming subproblem. The 

choice of weights for the line search is based on 

theoretical results on convergence derived by Han (1975), as 

Hell as numerical. experiments reported by Powell 

(1978a,l978b). The one-dimensional minimization is designed 

to produce global convergence, i.e. , to force convergence 

from poor starting estimates. For the line search problem, 

an approximate minimum is determined through an iterative 

procedure based on quadratic approximations. 

After 

determined, 

a search direction 

the algorithm uses 

and step 

information 

length 

based 

are 

on 

differences bet1-1een the previous and current values for the 

decision variables to update the estimated Hessian matrix 

for use in the ne:{t quadratic subproblem. A convergence 

test is performed on each iteration after the quadratic 

programming problem is solved. The algorithm stops if the 

predicted change in the value of the objective function, 

plus a measure of the complementarity error, is less than a 

user-specified tolerance. Output from VMCON can be 

specified for printing nearly all calculations made at each 

stage of the algorithm. 

To use the VMCON subroutine, t1-1o programs are required. 

A main or calling program is needed, as well as a subroutine 

subprogram. The main program is changed very little 1-1hen 

solving different problems. Calling program adjustments 
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involve changing the dimensions of various subscripted 

variables, based on formulas using the numbers of variables 

and constraints. The main program used in the present study 

was a modification of the calling program used by Crane et 

al. (1980), for solving an example in. Bracken and McCormick 

(1968). The user-supplied subroutine, however, is fairly 

extensive. The subprogram must return the objective 

function value, the gradient of the objective function, and 

each constraint value and constraint gradient, given the 

decision variable values, and the number of variables and 

constraints. Other subroutines are also called by VMCON. 

These subprograms, however, have already been coded with 

VMCON, or may be called from standard subroutine libraries. 

Case I Solution 

As previously discussed, Case I was specified to aid in 

evaluating the 3 solution techniques used for the thinning 

model examples. The entire set of possible integer 

solutions to Case I was generated, and the optimum solution 

recorded. With the initial stand-table for Case I, allowing 

the option to cut 0 trees from any species/diameter class 

combination, ( 49+1) * ( 39+1) * ( 49+1) * ( 19+1) =2, 000, 000 possible 

ways exist of cutting the initial stand. Not all solutions 

are feasible, hov1ever, as it was assumed that if thinning 

occured, the volume cut must be between 30 and 50 percent of 

the original stand volume. 
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A FORTRAN program was written to evaluate all 2,000,000 

solutions to Case I. Of the possible solutions, 930,029 

were feasible considering the restrictions on volume removed 

in thinning. For thinning regimes which were feasible, the 

residual stand was projected from age 40 to 45, where final 

harvest occurs. Present values were computed for each of 

these solutions and the maximum recorded as $485.76. The 

optimal integer thinning solution to Case I is to cut (now) 

38 trees of species 1 from the 10-11.9 inch diameter class, 

27 trees of species 2 from the 6-7.9 inch diameter class, 

and 3 trees of species 2 from the 8-9.9 inch class. Again, 

final harvest of the residual stand is assumed at age 45. 

With the same input assumptions, clearcutting the stand 

before the first growth period yields a present value per 

acre of land and timber of $528.92 Assuming an 

alt€rnative rate of return of 8 percent, therefore, it would 

be preferable from a present value standpoint to sell all 

the timber no1v. Maximum present values when lower rates 

were assumed will be presented in the sensitivity analysis. 

Knowing the optimal solution to Case I assisted in 

evaluating the performance of the 3 solution techniques. 

Solutions to Case I using the two random search methods will 

be considered, followed by results from applying VMCON. 

Random Search Methods. The first step in evaluating 

the usefulness of the MCIP and MS-MCIP approaches for 

1 

' j 
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solving Case I was to examine the probability density 

function for objective function values. Computer programs 

presented by Conley (1980) were used as models in \<Jriting a 

FORTRAN program to determine the points for plotting the 

desired distribution. The process involves evaluating all 

the minimum and maximum objective solutions, recording 

values, and dividing the difference into histogram 

intervals. The total number of objective function·· values 

occuring within each interval is then determined, and each 

is divided by the total number of solutions evaluated, thus 

obtaining the probabilities associated with each interval. 

The distribution resulting from this process, for all 

feasible solutions to Case I, is p~esented in Figure 1. As 

previously discussed, the most important property for such 

distributions is that within small upper regions, the range 

of possible objective function values is ·small. This 

property is reflected for Case I by the light right-hand 

tail of Figure 1. The distribution therefore indicates that 

the random search approaches should yield estimated optimal 

solu.tions to Case I with objective function values close to 

the true optimum of $485.76. 

FORTRAN programs were written to generate random 

solutions t.o the Case I thinning model. General diagrams of 

the steps 'involved in solving thinning model formulations 

With the !J!CIP and MS-MCIP approaches are presented in 
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Figure 1. Probability density of Objective function values 
for all feasible solutions to Case I. 



105 

Figures 2 and 3, respectively. For both random search 

approaches, a pseudo-random number generator was coded as a 

function subprogram, requiring the specification of an 

initial seed number. The MCIP program generates random - ·-

values for the numbers of trees to cut from each 

species/diameter class combination. For each feasible 

solution, the present value is determined over the 5-year 

grov1th interval, and compared to the current maximum value. 

The process is repeated until the required number of 

feasible solutions have been evaluated. 

The MS-MCIP program for Case I was designed to evaluate 

6 sets of random solutions, i.e., 6 stages were used in the 

multistage analysis. After each set the maximum range was 

reduced for each decision variable. The maximum ranges used 

for Case I were 100, 50, 30, 20, 10, and 4 trees per acre. 

In the first stage of the MS-MCIP program, the maximum range 

is 100. The value was chosen large enough that the initial 

range, for each species/diameter class combination, includes 

all possibilities, regardless of the current values of the 

decision variables. In this manner, the first stage of the 

MS-MCIP approach is equivalent to the MCIP program. That 

is, the first stage merely evaluates random solutions, with 

no narrowing of the variable ranges. Using the same initial 

seed number, output from the first stage of the MS-MCIP 

Program should therefore correspond exactly to ·the results 
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Assign the number of growth periods to be 
considered, and the number of thinning 
schedules to be evaluated. 

I ..._­
I 
v 

Assign input values for the initial stand 

I 
I 
l' 

I 
Generate (randomly) a feasible thinnirtg I 
schedule and project the residual stand fori 
the next growth period. Repeat until the I 
specified number of growth periods has beenl 
considered. I 

----------------.-----------------1 
I 
I 
v 

Calculate PV and compare with the optimum 
thus far. Store the solution with the 
greater PV. Has the specified number of 
thinning schedules been evaluated? 

I y 
I 

"'f 

Write the highest PV obtained, and the 
associated thinning regime. STOP. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

N I 

Figure 2. Diagram of the major steps involved in solving 
thinning model formulations with MCIP. 
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Assign the number of growth periods tc be 
considered, the number of stages and 
thinning schedules per stage, and the 
maximum variable ranges per stage. Also, 
set STAGE = 0. 

STAGE -

1.._ --
'f 
STAGE + 1 
1.._ 
I 
'f 

I Assign input values for the initial stand. I 
I Define ranges for numbers of trees to cut I 
I based on .'che optimum solution thus far, and I 
I the maximum range assigned for the current I 
I_ stage. I 

I 
I 
'f 

Generate (randomly) a feasible thinning I 
schedule and project the residual stand fori 
the next growth period. Repeat until the I 
specified number of growth periods has been! 
considered. I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I 
I I 
v I 

Calculate PV and compare with the optimum I 
thus far. Store the solution with the I I 
greater PV. Has the specified number of I_N_I 

~t~h~i~n~n~i~n~g~s~c~h~e~d==u.~l~e~s~b~e~e~n7-e~v~a=l~u~a~t~e~d~? __________ l 
I y 
I 
v 

Has the specified number of stages been I_N_ 
evaluated? I 

I y 
I 
v 

Write the highest PV obtained, and the 
associated thinning regime. STOP. 

Figure 3. Diagram of the major steps involved in solving 
thinning model formulations with MS-MCIP. 
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using MCIP, when the same number of solutions are generated. 

After the initial (n) feasible solutions have been 

evaluated with the MS-MCIP 

possible variable values is 

second set of solutions 

program, the maximum 

reduced to 50 trees 

is considered. This 

range of 

and the 

process 

continues until the final stage when the maximum range for 

trees to cut from each diameter class is reduced to 4. As 

previously discussed, however, the actual range implemented 

with the MS-MCIP program may change each time a solution is 

generated with a present value greater than 'che previous 

maximum. 

Optimal solution estimates for Case I were obtained 

using MCIP and MS-MCIP, with the same initial seed number. 

Results for the two approaches, where 1,000 random solutions 

Here evaluated for each 

presented in Table 11. 

number of solutions 

stage of the MS-MCIP program are 

At each line of Table 11, the same 

have been considered with each 

technique. The objec·tive values are the same after the 

first stage of MS-MCIP, as the programs are equivalent until 

reduction in the decision variable ranges occurs. The MS­

MCIP method results in higher present values than MCIP at 

each line of Table 11. The approach generated the true 

optimum during the final stage, evaluating only 6,000 

solutions from a possible 930,029. The MCIP program 

Produced an objective value of $481.25 after 6, 000 
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Table 11. Objective function values for solutions to Case I, 
with 1,000 random samples for each stage of the 
MS-MCIP approach (initial seed number = 39873) . · 

Stage No. 
(for MS-MCIP) 

1 

2 

3 

4 

5 

6 

Total No. 
of Samples 

1,000 

2,000 

3,000 

4,000 

5,000 

6,000 

*Optimal Value for Case I 

Present Values 
MCIP r~S-l'IICIP 

-------$/acre------

479.37 479.37 

479.83 481.06 

480.42 482.77 

480.42 482.77 

480.42 482.94 

481.25 485. 76' 
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solutions, $4.51 below the optimum. 

The MCIP and MS-MCIP programs were then used to solve 

Case I with a different initial seed number. Again, 1, 000 

feasible solutions vrere evaluated at each stage. Present 

values for these solutions are presented in Table 12. The 

f~S-MCIP approach again generated the optimal solution with a 

total of 6,000 evaluations. Note, however, that the MS-MCIP 

I present values are not higher than MCIP values after every 

I stage. Using the MCIP technique, variables are allowed to 

I assume any value within their initial ranges. The simple 

I random search method therefore outperforms the reduced-range 

method in some instances. 

Tables 11 and 12 present objective function values 

obtained for Case I with 1,000 evaluations for each stage of 

the MS-MCIP program. Tables 13 and 14 present the objective 

values obtained. with 10,000 evaluations at each stage. The 

initial seed numbers used for Tables 13 and 14 correspond to 

those for Tables 11 and 12, respectively. Using 10,000 

evaluations, neither approach generated the optimal solution 

to Case I. Although improved solutions are obtained after 

the first 10,000 evaluations, the solution used to begin the 

second stage of the MS-MCIP approach did not lead to the 

optimum. This result would not be expected in general, 

however, as using a small number of evaluations in the 

initial stage of the MS-MCIP approach may narrow variable 
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Table 12. Objective function values for solutions to Case I, 
with 1,000 random samples for each stage of the 
MS-MCIP approach (initial seed number= 42441). 

Stage No. 
(for MS-MCIP) 

1 

2 

3 

4 

5 

6 

Total No. 
of Samples 

1,000 

2,000 

3,000 

4,000 

5,000 

6,000 

*Optimal Value for Case I 

Present Values 
MCIP MS-MCIP 

~------$/acre------

480.77 480.77 

480.77 481.68. 

480.77 481.77 

482.81 481.93 

482.81 485.68 

* 482.81 485.76 
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Table 13. Objective function values for solutions to Case I, 
with 10,000 random samples for each stage of the 
MS-MCIP approach (initial seed number= 39873). 

Stage No. Total No. Present Values 
{for MS-11CIP) of Samples MCIP MS-MCIP 

-~-----$/acre------

1 10,000 481.25 481.25 

2 ·2o,ooo 481.35 483.03 

3 30,000 482.06 483.13 

4 40,000 482.19 483.15 

5 50,000 482.19 483.46 

6 60,000 482.22 483.46 
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Table 14. Objective function values for solutions to Case I, 
with 10,000 random samples for each stage of the 
NS-MCIP approach (initial seed number= 42441). 

Stage No. Total No. Present Values 
(for MS-MCIP) of Samples MCIP MS-MCIP 

------~$/acre------

1 10,000 482.81 482.81 

2 20,000 482.81 483.02 

3 30,000 482.81 483.02 

4 40,000 482.81 483.46 

5 50,000 482.85 483.46 

6 60,000 482.90 483.46 
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ranges too quickly, resulting in inferior final solution 

estimates. 

To further evaluate the effects of sample size on the 

final estimates generated with MS-MCIP, 10 different initial 

seed numbers were used to generate solutio.ns to Case I. The 

final solutions, for samples sizes of 1,000 and 10,000 per 

stage of the MS-MCIP approach, are presented in Table 15. 

The first two lines in Table 15 are the MS-MCIP results from 

Tables 11 through 14. As seen in Table 15, the optimal 

solution was generated 3 times using 1,000 samples per stage 

and only once with 10,000 per stage. Nine of the MS-MCIP 

solutions using 10,000 evaluations per stage had a final 

present value of $483.46. The decision variable values for 

species 2 at this solution are to cut 10 trees from the 

6-7.9 inch diameter class and 8 from the·8-9.9 inch class. 

In all solutions summarized in Table 15, 38 trees of species 

1 are removed from the 10-11.9 inch diameter class. 

A major problem with the MS-MCIP approach can be 

observed from the Case I solutions presented in Table 15. 

As values for species 1 are the same for all solutions, the 

values for trees to cut from species 2 result in the present 

value differences between solutions. The values for species 

2 in the optimal solution are 27 and 3 (trees cut by 

diameter class). Species 2 values for the solution with 

objective value $483.28 are 16 and 8 trees . For a slightly 

i 
L 



Table 15. 

Initial 
Seed No. 

39873 

42441 

67815 

98779 

13591 

56783 

45987 

12125 

76533 

98469 
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Objective function and decision variable values 
for solutions to Case I, with random samples 
of 1,000 and 10,000 for each stage of the MS-MCIP 
approach (input assumptions .from Table 5) . 

1,000 Samp1esjStage 
PV No. Trees 

($/acre) Cut* 

4850 76 *'' (0 38 27 3) 
' ' ' 

** 485.76 (0,38,27,3) 

483.29 (0,38,14,7) 

483.29 (0,38,14,7) 

485 0 76 ** ( 0' 3 8' 2 7' 3 ) 

483.28 (0,38,16,8) 

483.29 (0,38,14,7) 

483.29 (0,38,14,7) 

483.46 

483.17 

(0,38,10,8) 

(0,38,23,4) 

10,000 Samples/Stage 
PV No. Trees 

( $jacre) Cut* 

483.46 

483.46 

483.46 

483.46 

(0,38,10,8) 

(0,38,10,8) 

(0,38,10,8) 

(0,38,10,8) 

483.46 (0,38,10,8) 

483.46 (0,38,10,8) 

483.46 (0,38,10,8) 

** 485.76 (0,38,27,3) 

483.46 (0,38,10,8) 

483.46 (0,38,10,8) 

*Trees cut from (species 1, diameters 8-9.9 and 10-11.9, 
and species 2, diameters 6-7.9 and 8-9.9) at age 40, 
final harvest assumed a·t age 45. 

**Optimal Solution for Case I 
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higher objective value, $483.29, the species 2 values are 14 

and 7. Also, for the most frequent solution, $483.46, the 

values are 10 and 8. In each solution, the objective value 

increases slightly as the species 2 value for diameter class 

6-7.9 decreases, from 16 to 14 to 10. In the optimal 

solution, however, the value is 27. 

In the later stages of the MS-MCIP program, the 

possible ranges for variable values are reduced. For a 

decision variable such as the number of trees to cut from 

species 2, diameter class 6-7.9, to increase from 10 to 27, 

objective function values must show improvement for small 

changes in the decision variables. In this manner,. the 

variable ranges can move tov1ard a point where 27 is a 

possible value for trees to cut from the relevant 

species/diameter class combination. The number of trees cut 

from the smallest diameter class cannot approach 27 in the 

solution with objective value $483.46, however, as the range 

of values in the final stage is from 8 to 12 trees, and 

small increases from 10 result in objective function 

decreases. To show improvement over the $483.46 solution, a 

large change in the species 2 value for diameter class 6-7.9 

is required. The MS-MCIP approach may therefore result in 

local optima. This property was recognized by Karnopp 

(1963) for similar multistage random search methods. 

Increasing the number of samples evaluated at each I . 
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s·tage of the MS-MCIP approach does not necessarily improve 

the final solution estimate. For the MCIP method, however, 

increasing the total number of samples cannot lower the 

objective value, as the value is simply the greatest from a 

larger set of solutions. The estimated optimum for Case I 

using the simple random search method is $479.37, after 

1,000 solutions were evaluated (Table 11). For the same 

initial seed number, the estimated optimum is $481.25 with 

10,000 evaluations (Table 13). From equation ( 29), the 

probabilities that the above solutions are within the upper 

.001 region of Figure 1 are: 

1 (1-.001) 1000 = 0.6323046, and 

1 (1-.001) 10000 = 0.9999548 . 

Actual areas under the probability density function 

represented by Figure 1 were determined by recording the 

number of solutions greater than the estimated optima, and 

dividing by the total number of possible solutions. A total 

of 1226 solutions were recorded with present values greater 

than $479.37, while only 429 had values greater than 

$481.25. The actual areas to the right of these values are: 

1,226 = .0013168, and 
930,029 

429 
930,029 

= .0004608 . 

For the MCIP program with 1,000 evaluations, the 

estimated optimum is not within the upper . 001 region, 

although the probability that the estimate would be was 

0.6323046 . With 10,000 evaluations, however, the estimated 

I 
I 
I 
l 

I 
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optimum is well within the upper .001 region. For the MCIP 

approach, as many evaluations should be performed as 

practical for a particular problem. Equations (29) and (30) 

may be of help, however, for problems where functional 

evaluations are particularly difficult or expensive. 

VMCON. Subroutine VMCON was used in trying to solve 

the Case I thinning model formulations of Tables 6 and. 7. 

The only change in ·the formulations actually implemented in 

the solution attempts was that thinning was assumed to 

occur. That is, X(O) was defined equal to 1. This 

assumption simplified the coding of the user-supplied 

subroutine for VMCON, avoiding the problem of specifying an 

exact value for the constant ·M in the initial trials. 

Appropriate values for M may have to be determined through 

trial and error, as simply specifying a very large number 

may result in ill-conditioning of· the problem. Another 

approach would be to solve the problem for both values of 

X(O), i.e., X(O)=l and X(O)=O. This alternative is only 

viable, however, in problems where the number of growth 

periods projected, and thus the number of binary choice 

combinations, is relatively small. 

As previously noted, 

presented by Crane et al. 

the Case I formulations. 

vias specified as 

the VMCON calling program 

(1980) was modified for use with 

The convergence tolerance level 

The necessary user-supplied 
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subroutines were coded for both formulations of Case I, in 

hopes of evaluating the gains from specifying the model 

entirely in terms of variables for trees to cut. For the 

formulation presented in Table 6, however, solutions were 

not obtained. For all starting solutions attempted, the 

number of functional evaluations for the initial line search 

exceeded the internal maximum for VMCON. 

Solutions were obtained, however, for the formulation 

presented in Table 7, although problems were encountered. 

Many starting solutions were tried for the substituted 

formulation of Table 7, yet convergence was obtained for 

only two. Other starting points either resulted in 

exceeding the maximum evaluations for the line search, or 

resulted in FORTRAN errors for internal arithmetic 

overflows. In some cases, scaling techniques may be used to 

resolve overflow problems with nonlinear programming 

algorithms (Balachandran and Frair 1982). The objective 

function and objective function gradient for Case I, Table 

7, were therefore divided by a constant to reflect values 

near unity. The scaling did not result in improved 

solutions with the VMCON subroutine, however. 

Both solutions obtained with VMCON for Case I resulted 

in objective function values of $478.25 Variables X(2)., 

X(4), X(6), and X(8) in Table 7 correspond to numbers of 

trees to cut from species l, diameters 8-9.9 and 10-11.9 

l
i 

. 
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inches, and species 2, 6-7.9 and 8~9.9 inches, respectively. 

The two initial star~ing points which generated the solution 

for $478.25 were (1,1,1,1) and (25,25,25,25). As the global 

optimum for Case I with continuous values should be at least 

$485.76, convergence to a common solution from different 

starting points is not necessarily reliable for obtaining 

global optima in non-convex problems. The final decision 

variable estimates from Vf1CON were (-3*10- 33 , 36.387, o:ooo, 

19.000). The objective value for cutting 36 trees of 

species 1 in the 10-11.9 inch class, and 19 trees of species 

2 in the 8-9.9 inch class, was determined using the MCIP 

program, specifying the above values. 

yields a present value of $480.32 . 

The integer solution 

One of the goals in using the VMCON program for Case I 

was to use the estimated optimal solutions .from the MCIP and 

MS-MCIP approaches as starting estimates, observing the 

degree of improvement obtained. . In each case where random 

search solutions were used as starting estimates, no 

improvements were made. Due to the problems encountered 

with obtaining solutions to Case I with VMCON, further 

efforts to produce the global optimum were not pursued. 

Such efforts might have included an analysis of the solution 

results from partitioning the set of possible starting 

values. 

j 
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Case II Solution 

The random search methods used for Case I v<ere also 

used in estimating solutions to the three subproblems of 

Case I I. The results obtained VIi th the IVJCIP and MS-MCIP 

approaches will be presented, followed by the application of 

subroutine VMCON to the Table 9 formulation of Case IIa. 

Random Search Me·thods. Exhaustive search could not be 

used to determine global optima for the Case I I problems. 

For Case IIa, for example, there are 8.3548583*1012 possible 

'-'lays to thin the stand. The global optima for the Case II 

problems are therefore unknown. The exact shapes of the 

probability density functions for objective values are also 

unknown. 

The distribution of present values for all solutions to 

ease I was presented in Figure 1. The distribution 

resulting from 10,000 raridom solutions to Case I is 

presented in Figure 4. The relationship plotted for the 

large random sample of solutions corresponds to the general 

shape of the distribution for all feasible solutions to Case 

I (Figure 1). For the Case II problems, therefore, the 

distributions resulting from 10,000 random solutions to each 

problem were plotted. These relationships are presented in 

Figures 5, 6, and 7 for Cases IIa, IIb, and IIc, 

respectively. 

Figures 5, 6, and 7 do not provide conclusive evidence 
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of the exact shape of the right-hand tails of the unknown 

distributions for Case II. A nonexhaustive sample of 

feasible solutions is unlikely to reveal an extended right-

hand tail. Such a tail \vould be indicated, however, if a 

few solutions were obtained with objective values very much 

greater than the majority evaluated. Figures 5, 6, and 7 do 

not, however, indicate isolated values. If these 

distributions correspond to those for the entire sets of 

feasible solutions, as resulted for Case I, the random 

search methods should provide solution estimates near the 

true optima. 

The MCIP program for Case I I was developed in three 

segments, corresponding to 3 growth periods. In the first 

section, a feasible thinning schedule is generated randomly 

and the residual stand projected to age 35. For Case I I a, 

present values are calculated and compared at this point. 

For Cases I Ib and I Ic, however, another feasible thinning 

schedule is generated and the residual stand projected to 

age 40. For Case IIc solutions, a third thinning schedule 

is generated and the stand projected to age 45. A single 

feasible solution for the 3-grovlth period thinning model 

therefore involves 3 thinning schedules, with values for a 

total of 30 decision variables. Two thinning plans, vii th 18 

variables, are required for each solution to the 2-period 

model. Other details of the MCIP program were similar to I 

l
i i 
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the program for Case I. 

The MS-MCIP program for Case I I was also developed in 

three segments. Seven stages were used for the MS-MCIP 

approach, with maximum variable ranges of 300, 

20, 10, and 4 trees per acre, for stages 

respectively. The MS-MCIP program for Case 

100, SO, 30, 

1 through 7, 

IIa, 1-growth 

period, corresponds to the program discussed for Case I. 

For the 2 and 3-period thinning models, hoYJever, a more 

detailed procedure was used to establish actual ranges for 

possible numbers of trees to cut after periods 1 and 2. 

The MS-MCIP program randomly selects the numbers of 

trees to cut from each species/diameter class combination 

prior to growth period 1. The residual stand is then 

projected to the end of period 1, where values are selected 

for trees to cut before growth period 2. The number of 

trees available for cutting cannot exceed the number 

projected after growth period 1. Therefore, the range of 

possible values for trees to cut cannot simpl~y be formed 

around the value of each variable in the optimal solution 

generated thus far. That is, in the optimum thus far, the 

number of trees cut after period 1 may be greater than the 

number of trees projected at the current solution, i.e. , 

considering the thinning regime prescribed for period 1 at 

the present evaluation. If thj.s occurs, or if the variable 

value in the optimum thus far, plus one half the current 
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maximum range, is greater than the projected number of 

trees, the MS-MCIP program uses the number projected as the 

upper bound on the range of possible values for the 

variable. 

The lower bound for each variable range is defined as 

the value in the optimal solution thus far, minus one half 

the maximum range possible. If the lower bound is greater 

than the number of trees projected, the lower bound is 

redefined as the number projected minus one half the maximum 

range, or redefined as 0 if this quantity is negative. In 

the 3-period model, a similar procedure was coded for each 

species/diameter class combination, for choosing upper and 

lower bounds for possible trees to cut after period 2. 

Similar to the solutions evaluated for Case I in Tables 

11 through 14, Case II solutions are presented in Tables 16 

through 19. Present values are presented in Tables 16 and 

17 using 1,000 solutions per stage of the MS-MCIP program, 

for the initial seed numbers specified. The same seed 

numbers were used with 10,000 evaluations per stage, and the 

present values summarized in Tables 18 and 19. 

For all solutions, the present values after the first 

stage of the MS-MCIP program correspond exactly to the MCIP 

solutions. This results as 300 was specified as the initial 

maximum range for trees cut per acre from each 

species/diame·ter class combination in the MS-MCIP program. 

l
' 

. 
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Table 16. Obj'ective function values for solutions to Cases IIa, IIb, and IIc, 
with 1,000 random samples for each stage of the MS-MCIP approach 
(initial seed number= 39873). 

Stage No. Total No. 
(for MS-MCIP) of Samples 

1 1,000 

2 2,000 

3 3,000 

4 4,000 

5 5,000 

6 6,000 

7 7,000 

Case. IIa 
MCIP MS-MCIP 

Present Values 
Case IIb 

MCIP MS-MCIP 
Case IIc 

MCIP MS-MCIP 

----------------------$/acre---------------------

337.89 337.89 299.22 299.22 266.51 266.51 

338.13 338.15 299.22 299.22 266.51 268.09 

338.13 338.54 299.22 299.22 266.51 272.60 

338.13 338.54 299.22 . 299.22 266.76 274.72 

338.13 340.92 299.22 299.87 266.76 276.00 

338.13 341.16 299.22 302.25 266.76 277.67 

338.13 341.21 300.38 303.40 266.76 280.21 

/-' 
N 

"' 
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Table 17. Objective function values for solutions to Cases IIa, IIb, and IIc, 
with 1,000 random samples for each stage of the MS-MCIP approach 
(initial seed number= 42441). 

Stage No. 
(for MS-MCIP) 

1 

2 

3 

4 

5 

6 

7 

Total No. 
of Samples 

1,000 

2,000 

3,000 

4,000 

5,000 

6,000 

7,000 

Case IIa 
MCIP MS-MCIP 

Present Values 
Case IIb 

MCIP MS-MCIP 
Case IIc 

MCIP MS-MCIP 

--------------~-------$;acre------------~~-------

340.29 340.29 295.10 295.10 262.54 262.54 

340.29 340.29 295.10 295.33 262.54 262.54 

340.29 340.29 295.10 300.77 262.54 268.10 

340.29 340.73 295.57 300.77 266.04 269.97 

340.29 340.97 299.87 300.88 267.11 270.83 

340.29 341.16 . 299.87 302.07 267.11 274.47 

340.29 341. 19 299.87 303.92 267.11 280.97 

1-' w 
0 
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Table 18. Objective function values for solutions to Cases IIa, IIb, and IIc, 
with 10,000 random samples for each stage of the MS-MCIP approach 
(initial seed number= 39873). 

Stage No. Total No. 
(for MS-MCIP) of Samples 

1 10,000 

2 20,000 

3 30,000 

4 40,000 

5 50,000 

6 60,000 

7 70,000 

Case IIa 
MCIP MS-MCIP 

Present Values 
Case IIb 

MCIP MS-MCIP 
Case IIc 

MCIP ~1S-MCIP 

----------------------$/acre---------------------

338.13 338. 13 300.38 300.38 266.76 266.76 

338.22 340.06 302.99 302.69 275.30 271.66 

338.22 340.43 302.99 302.69 275.30 272.74 

340.37 341.27 304.25 302.75 275.30 272.74 

340.43 341.59 304.25 305.41 275.30 275.24 

340.43 341.61 304.25 306.85 275.30 278.89 

340.43 341.65 304.25 308.52 275.30 280.93 

f-' 

'"" f-' 
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Table 19. Objective function values for solutions to Cases IIa, IIb, and IIc, 
with 10,000 random samples for each stage of the MS-MCIP approach 
(initial seed number= 42441). 

Stage No. 
(for MS-MCIP) 

1 

2 

3 

4 

5 

6 

7 

Total No. 
of Samples 

10,000 

20,000 

30,000 

40,000 

50,000 

60,000 

70,000 

Case IIa 
P<lCIP MS-MCIP 

Present Values 
Case IIb 

MCIP MS-MCIP 
Case IIc 

MCIP MS-MCIP 

----------------------$/acre---------------------

34:0.29 340.29 299:87 299.87 267.11 267 .li 

34.0. 29 340.29 299.87 299.87 269.23 271.23 

340.29 340.91 302.04 304.58 271.70 271.94 

340.29 341.24 303.60 304.58 273.17 275.22 

340.29 341.54 303.60 304.58 273.17 279.19 

340.29 341.60 303.60 306.67 274.91 284.13 

340.29 341.60 303. 60 308.37 274.91 287.99 

f-' w 
N 

II 
I ' 
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This ensures that no reduction in the ranges of possible 

values for the decision variables occurs in the first stage. 

A total of 12 MS··MCIP solutions are presented in Tables 

16 through 19. In all solutions evaluated for Case II, the 

MS-MCIP program resulted in greater final present value 

estimates than were obtained with the MCIP method. No 

solutions were obtained with greater present values than the 

$378.05 for clearcutting the stand now, however. Of the 

Case I I solutions generated, the highest present values 

obtained were $341.65, $308.52, and $287.99 The thinning 

regimes associated with these solutions are presented in 

Table 20. 

One difference between the Case I and Case II solutions 

examinect is that increasing the number. of evaluations to 

10,000 per stage resulted in greater present value estimates 

for Case I I. The i·mprovements are evident with both 

approaches, and are greatest for the Case IIb and IIc 

examples, problems with greater numbers of possible feasible 

solutions. These results, however, are due to the 

respective shapes of the previously discussed objective 

function distributions. The total number of possible 

solutions to a problem should have no bearing on the degree 

of objective function sensi ti vi ty to the fraction of the 

total evaluated. 

Finally, the present value es·timates for Case I I 

L 
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Table 20. Thinning schedules for solutions to Cases IIa, 
IIb, and IIc, with present values of $341.65, 
$308.52, and $287.99, respectivly. 

Case II a 

Period 0: 

Case IIb 

Period 0: 

Period 1: 

Case IIc 

Period 0: 

Period 1: 

Period 2: 

Diameter Class (in.) and Species (1,2) 
2-3.9 4-5.9 6-6.9 8-9.9 10-11.9 12-13.9 

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

-------------No. of Trees Harvested-------------

8 1.2 0 57 70 51 2 1 

12 57 27 55 39 50 6 5 

1 3 18 10 ~ 4 31 3 1 0 ~ 

10 54 11 66 19 10 18 9 

0 2 20 4 14 31 3 6 1 0 

1 1 9 4 20 l 13 1 3 0 4 0 
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decrease as the number of grov1th periods projected 

increases. This results for both random search methods, for 

each of the solutions generated. It should not be 

concluded, however, when present value decreases occur for a 

given problem, that decreases will continue as the number of 

periods considered is increased. The present value 

relationship for the thinning model is not necessarily 

concave with respect to the number of 

projected. The relationship depends 

assumptions, as will be discussed in 

growth periods 

on the input 

the sensi ti vi ty 

analysis. 

projected 

reflected. 

V~lCON. 

For a given problem, sufficient periods should be 

that all value increases assumed have been 

The nonlinear programming subroutine \vas used 

to solve the Table 9 formulation of Case IIa, under the 

assumption 

formulation 

that thinning 

presented in 

occurs, 

Table 8, 

X(O)=l. 

developed from 

The 

the 

equations in Appendix A, was not coded due to the lack of 

success in solving the Case I formulation with equality 

constraints. For the Table 9 formulation of Case IIa, 

arithmetic overflows resulted in premature termination of 

the VMCON algorithm for all starting solutions attempted. 

Due to these results, the subroutine was not applied to the 

much more involved 2 and 3-period formulations. 

Although convergence was not attained, the VJVICON 
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program did produce one continuous solution to Case IIa with 

a higher present value than any integer solution obtained 

with the random search methods. From a starting solution of 

cutting 1 tree from each species/diameter class combination, 

the algorithm produced the following. continuous solution 

with an objective value of $343.66 

Nc = 0.910 ~10 = 0.563 
110 
c 

N120 =19. 720 ~20 =19.676 

Nc 
130 

=77.295 )){-
230 

=52.000 

Nc 
140 

= 0.000 ~40 = 0.000 

Rounding these values to integers, however, yields a 

present value of $340.93 An integer solution with 

objective value $341. 65 was obtained with random search. 

Had premature termination not occured, however, the 

subroutine may have produced integer solutions to Case IIa 

superior to the random search results. All attempts to use 

random search solutions as starting points for the algorithm 

resulted in termination without changing the initial 

estimates. 

Sensitivity Analvsis 

Thinning model results were presented for various 

solutions to Case I, and Cases IIa, IIb, a11d IIc. The 

sensi ti vi ty of these results to changes in certain input 

assumptions was examined. A limited number of changes were 

evaluated as the input parameters were not developed through 
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estimation. Results of this analysis are intended to 

emphasize general properties of ·the thinning model 

formulation. Most changes were evaluated only for Case I, 

as the global optimum for this problem could be determined. 

As noted in the Case I solution, ·using an 8 percent 

discount rate the present value of land and timber if the 

st~nd were clearcut now is $528.92 If final harvest is 

postponed 5 years, the optimal policy includes thinning now, 

and results in a present value of $485.76 .'\ssuming a 

discount rate of 5 percent, however, the present value of 

the thinning option is $531.95, indicating the final harvest 

should be postponed. Further reduction to a rate of 3 

percent resu-1 ts in a present value of $567.43 Optimal 

thinning schedules, however, did not change as the interest 

rate was varied. 

The results from two changes in the original price 

assumptions were also determined for Case I. As presented 

in Table 5, random-length log prices were originally assumed 

for trees in diameter classes above 10 inches. Lo1vering 

this limit to 8 inches, and assuming 25 percent higher 

prices for trees above 10 inches, resulted in a present 

value from thinning of $639.27, compared to a present value 

from clearcutting now of $721.70 . Significant increases in 

present value are expected in cases where smaller diameters 

are used as logs rather than roundwood. Changes also occur 
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in the optimal thinning schedule under these assumptions. 

In the previous solution, 2 7 trees of species 2 were cut 

from the 6-7.9 inch diameter class, while only 3 were 

removed from the 8-9.9 inch class. Under the new 

assumptions, however, only 3 trees are removed from the 

smaller class while 12 are cut from the 8-9.9 inch class. 

Trees in the larger diameter class have a greater value 

than previously, and present value maximization requires 

they be harvested earlier than before. More of the 6-7.9 

inch trees are allowed to grow into the higher valued 

diameter class before being harvested. 

The second price assumption varied for Case I involves 

the difference betv1een stumpage prices for thinned volume 

versus volume removed in a clearcut. Some researchers 

(e.g., Broderick et al. 1982) have modeled the effects of 

increased thinning costs by reducing per unit stumpage 

prices as a percentage of clearcut prices. Initial stumpage 

price assumptions for Case I were changed, Hi th Table 5 

prices representing thinning volumes, and assuming 25 

percent higher prices for volume in the final harvest. 

Present values under this assumption Here $587.12 for 

clearcutting now/ and $512.09 for thinning now and 

clearcutting in 5 years. The optimal thinning schedule 

under this assumption included removing 26 trees of species 

1 from diameter class 10-11.9, while for species 2, 48 trees 
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were cut from the 6-7.9 inch class and 3 were removed· from 

the 8-9.9 inch class. As 

obtained at final harvest, 

25 percent higher prices are 

more of the larger, species 1 

trees are left in the r?sidual stand. 

diameter class of species 2, however, 

For the lowest 

the 25 percent 

increase represents a much smaller gain. More of the 

smaller trees are used to comprise the necessary volume for 

the thinning to be feasible. 

Finally, in determining the overall policy which 

maximizes present 

considered should 

value, the number 

be sufficient to 

of growth periods 

reflect all input 

assumptions for the stand. Final harvest age is sensitive 

to such factors as the interest rate and the product values 

assumed. For the formulations presented in the present 

study, the present value relationship is not necessarily 

concave vii th respect to the number of growth periods 

considered. To demonstrate this, consider Case II with a 

discount rate of 3 percent, and random-length log prices for 

trees in the 14-15.9 inch diameter class only. Estimated 

solutions to Cases IIa, IIb, and IIc were obtained with 

1, 000 evaluations per stage of the MS-MCIP program. The 

present value estimates for the 1, 2, and 3-growth period 

formulations \vere $341. 64, $307.3 7, and $328.58, 

respectively. It is also recognized that the solutions 

generated are merely estimated optima. The present value 
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differences are of sufficient size, however, to indicate 

that the true optima. would follow a similar order of 

magnitude. Trees do not advance into diameter class 14-15.9 

until the third projection period, resulting in a present 

value increase following the decrease for the 2-period 

model. Under these assumptions, sufficient gro1-1th periods 

would have to be considered to fully reflect future gro1,vth 

into the sawlog diameter classes. 

The sensi ti vi ty of thinning model solutions to certain 

input assumptions was considered. The analysis did not 

reveal any unexpected relations, but demonstrated the need 

to consider the input assumptions in evaluating when final 

harvest should occur. Thinning model results are also 

related to the growth rates implied by the stand-table 

projection parameters. 

·present analysi~ were 

The parameters assumed in the 

not varied in the sensitivity 

evaluation, however, since these values were assigned to 

achieve certain growth and yield results. Arbitrary changes 

in the parameter values assumed for the hypothetical stand 

may result in illogical groHth model predictions. 

Discussion 

The thinning model formulated in the present study 

represents an entire class of problems. The model cannot be 

solved for a single set of inputs, and the solution 

universally applied. Optimal thinning schedules vary with 
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species composition, stand age and ·structure, site quality, 

and other biological and economic factors associated with 

mixed-species stands. The model must therefore be solved 

for every stand for which a thinning policy is considered, 

requiring an easily applied solution technique. 

The nonlinear programming subroutine used in solving 

the thinning model examples is not easily applied, and 

adequate 

stand of 

solutions were 

very simple 

not obtained, even for an assumed 

structure. Respecifying the user-

supplied subroutine for VMCON alone detracts from its use in 

solving repeated problems. Random search methods, however, 

are easily applied. Such techniques become competitive for 

solving optimization problems when function characteristics 

are difficult to calculate, when computer storage is 

limited, or when numerous local optima exist (Solis and lt1ets 

1981). 

Random search techniques for optimization are direct 

search methods, as function gradients are not considered. 

Many such approaches are dismissed as possible solution 

methods due to their lack of a theoretical basis and 

demonstrated inefficiencies for certain problems. These 

factors should not result in ignoring direct search methods 

for many applied problems, however (Swann 1974). The 

following discussion concerns the use of simple and 

multistage random search methods for solving thinning model 

-' I 
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formulations. 

Several reasons for using random search techniques in 

optimization 1-1ere presented by Karnopp (1963). The 

advantages of using such techniques for solving the hardwood 

thinning model include the use of very little computer 

me·mory, and the possibility of designing a 

for use with input data from different 

single program 

stands. Such 

programs could be developed for microcomputers, expediting 

applications of the thinning model. The longest FORTRAN 

program coded for the previous examples was 

500 lines. Solutions generated in the 

approximately 

present study 

required execution times from a few seconds to 3 minutes, on 

an IBM 3081 central processing unit. Another advantage in 

using random search techniques to solve thinning problems is 

that integer solutions are obtained, avoiding the problems 

involved with rounding continuous values. Also, if problems 

are encountered with generating feasible solutions, the 

random number sets resulting in infeasible answers may be 

modified to yield acceptable alternatives. 

The random search approaches applied in the present 

study also have shortcomings, however. These methods are 

clearly not the most practical for many problems, and would 

be extremely inefficient in solving problems 1-Ti th certain 

structures, e.g., linear programs, problems which can be 

solved using calculus, etc. 
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The simple random 

number of solutions 
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another issue with these techniques. 

search approach converges only as the 

evaluated approaches infinity (Matyas 

1965), while the multistage approach 1•/as shown to result in 

a local maximum in some solutions to. Case I. Convergence 

results have been demonstrated for other random se.arch 

algorithms by Solis and Wets (1981), although examples for 

constrained optimization were not presented. A method of 

searching for the global optimum using random search was 

presented by Anderssen (1972). The method involves testing 

the hypothesis that the decision variable values obtained 

are elements of a set containing the values in the globally 

~ptimal solution. Repeated sampling and refinement of the 

designated set is performed until the hypothesis is not 

rejected. 

A serious criticism of the simple random search 

approach was presented by Golden and Assad (1981). These 

reviewers contended that Conley's (1980) argument in defense 

of MCIP is not the most appropriate. Conley's defense of 

simple random search is based on the probability of 

obtaining an objective function value within a certain 

fraction of the global optimum, considering all possible 

solutions. Golden and Assad propose the actual objective 

value as the most important consideration, and the most 

appropriate goal as obtaining at least one solution with an 
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objective value >vi thin a certain percentage of the optimal 

value. Such a goal requires a much larger sample size than 

the argument presented by Conley. Golden and Assad do not 

consider the shape of the distribution for objective 

function values, however. As previously discussed, if the 

distribution is characterized by a relatively light right­

hand tail, objective values within a small upper region will 

be near (in actual value) the optimal solution, achieving 

the result specified by Golden and Assad. The MCIP solution 

of $481.25 for Case I, for example, is within 99 percent of 

the optimal value of $485.76 . 

The greatest shortcoming of the MCIP technique is that 

for actual problems, the entire distribution of objective 

values, including the exact shape of the right-hand tail, is 

unknown. The general shape of the entire distribution for a 

problem may be inspected for large random samples of 

solutions. Such procedures may indicate problems for which 

random search. methods should not be used, but cannot result 

in complete confidence in using the approaches for a 

particular problem. 

Procedures for evaluating heuristic solutions to large 

combinatorial problems were investigated by Dannenbring 

(1973,1977). Two general approaches \'/ere considered for 

estimating optimum solution values. One set of procedures 

involves random sampling to obtain reduced-bias estimates of 
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the optimum value. The second method uses concepts 

developed 

best-fit 

in statistical 

estimates of 

extreme-value 

parameters for 

theory 

the 

to derive 

asymptotic 

dis·tribution of extrema. One of the parameters obtained is 

an appropriate estimate of the optimum solution value. As 

previously discussed, the tail behavior of the objective 

value relative frequency distribution will affect the 

performance of random search algorithms. Dannenbring Glid, 

however, address tail behavior in considering procedures for 

evaluating the performance of such methods. A truncation 

point estimator was proposed as superior for the 

combinatorial problems used in his analysis, regardless of 

the objective value distribution. The statistical extreme-

value approach was used by McRoberts ( 1971) in evaluating 

solutions obtained with a heuristic algorithm. In general, 

the estimated optimal objective value may be compared with 

estimates obtained with inexact algorithms, thereby 

evaluating the performance of such methods as random search 

for solving particular problems. Additional methods for 

evaluating the quality of heuristic algorithms in general 

were reported by Silver et al. (1980). 

For the examples used in the present study, the MS-MCIP 

approach resulted in higher final present value estimates 

than MCIP, for the same number of solutions generated. The 

approach should not be considered superior to MCIP for all 
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thinning model problems, however, based on the solutions 

generated for the previous examples. Examining complete 

objective value probability densities for problems developed 

for actual stands, using estimated growth model parameters, 

is required before final conclusions can be made on the 

effectiveness of these techniques 

hardwood thinning schedules. Of 

however, the multistage method 

for estimating optimal 

the tv10 approaches, 

appears to have more 

potential in yielding estimated optima for such problems. 

Based on results from the examples in the present study, 

further inves·tigation of this technique should include 

varying the number of stages, the numbers of evaluations 

generated at each stage, and the reductions in the possible 

ranges used for decision variables. 

Results from using random search heuristics in the 

thinning model demonstration were generally positive. Such 

methods should be given further consideration for solving 

this class of problems. MCIP and MS-MCIP are not the only 

random search possibilities, ho>vever. A random search 

method for constrained optimization was presented by Luus 

and Jaakola (1973), for example. The algorithm presented by 

Solis and Wets {1981) for unco~strained minimization is 

another method which might be adapted to the present 

problem. Further study of approaches for mixed-hardwood 

thinning formulations would benefit from final growth model 
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specification, with parameters estimated from remeasurement 

data. 



V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Summary And Conclusions 

Upland hardwood stands of mixed-species are the most 

common forest types in the United States. Thinning such 

stands has not been widely practiced in the past, chiefly 

due to inadequate markets for lo\ver quality hardwood raw 

materials. Markets for lower grade hardwoods are expanding, 

however, and increasing emphasis is being placed on hardwood 

management. The present study involves deriving optimal 

thinning and rotation for mixed-hardwood stands. A general 

formulation of the problem was developed and solution 

techniques were considered. 

A means of projecting growth and yield for mixed­

hardwood stands was required prior to formulating a thinning 

optimization model. The growth model must reflect both 

biological and economic effects from partial harvests, and 

therefore must predict stand volume over time by diameter 

class and species. A stand-table projection model was 

tentatively specified with upgrowth and mortality equations 

for each species/diameter class combination. 

Upgrowth by species and diameter class was modeled by 

reducing an estimated upper potential to an actual upgrowth 

estimate, using stand volume measures to determine the 

proportion of potential realized. Thinning therefore 

148 
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results in increased diameter growth rates for the residual 

stand, as measures of stand density are reduced. The 

mortality relation for each species/diameter class 

combination was specified with the same variables used in 

modeling upgrowth. Both equations included measures of 

stand volume for each species group recognized. 

The stand-table projection model specified for mixed­

hardwoods was used in formulating a thinning optimization 

model with nonlinear programming. The interface between 

growth model and thinning model was accomplished by 

specifying numbers of trees to cut from each 

species/diameter class combination as decision variables in 

the nonlinear program. Constraints were developed for 

defining the residual stand after each thinning. Optimal 

thinning schedules are derived for successive numbers of 

growth periods. The rotation with the greatest present 

value of land and timber is selected as optimal, among the 

set of growth periods projected. 

The thinning model was formulated for stands which are 

presently of thinning age. Application to younger stands 

may be accomplished, however, by projecting such stands to 

thinning age prior to solving for optimal thinning 

schedules. The model has sufficient resolution to reflect 

mixed-hardwood factors such as interspecific grovrth rates, 

thinning effects, and value-by-size-class relationships. 
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Another property of the thinning model is that constraints 

may be added to represent wildlife, recreation, or other 

management objectives. 

The thinning model was demonstrated for a hypotheti.cal 

stand of two species. 

for the demonstration 

intervals. A stand 

Growth model parameters were assigned 

for projecting the stand in 5-year 

of very simple structure was also 

specified to aid in evaluating solution techniques. Two 

general approaches were used in solving thinning model 

formulations: a nonlinear programming algorithm, and 

heuristic algorithms involving random search. Both simple 

random search and a multistage random search approach were 

included in the evaluation. 

Considering a single 5-year growth period, the optimal 

thinning policy for the simple stand, Case I, was determined 

through an exhaustive search of the entire feasible region. 

The problem had 2 million possible solutions, and was 

therefore large enough to evaluate both random search 

methods and the nonlinear programming algorithm. Problems 

were encountered in obtaining solutions with the nonlinear 

programming algorithm. Two solutions to Case I were 

obtained, however, from widely different initial estimates. 

The solutions obtained were identical but were not globally 

optimal. The example indicates the unreliability of 

estimating global optima to nonconvex problems based on 
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convergence to a common solution from different starting 

points. 

Before ·applying the random search techniques to Case I, 

the probability density of objective function values for the 

problem was examined. Random search methods may be 

considered for problems where functional evaluations are 

relatively inexpensive, and the probability density of 

objective function values has a light right-hand tail. The 

distribution for Case I had the desired property. A 

disadvantage of using random search methods is that for 

problems of realistic size, 

be examined. For Case I, 

the entire distribution cannot 

simple random 

solutions with objective values within 99 

search provided 

percent of the 

optimum using very little computer storage and execution 

time. The multistage random search method produced the 

global op·timum in several trials. It was also demonstrated, 

however, that the multistage approach may result in local 

optima. 

Case II was formulated for the stand assumed for growth 

model parameter assignment. The problem involved 

formulations for 1, 2, and 3 growth periods, corresponding 

to Cases ·ria, lib, and lie, respectively. 

programming algorithm \vas applied to 

formulation of Case IIa with little success. 

The nonlinear 

a simplified 

One solution 

1-1as obtained >vi th a greater objective value than obtained 
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with random search. Rounding the solution to integer 

numbers of trees, however, resulted in a lower present value 

than obtained with the other methods. Due to the lack of 

success in solving the 1-growth period formulation, the 

algorithm was not applied to solving the more involved 2 and 

3-period problems. 

Random search solutions were generated for all Case II 

formulations. Probability densities resulting from 10,000 

random solutions were examined for each subproblem. The 

distributions were characterized by light right-hand tails. 

In all solutions generated for the Case II problems, the 

multistage method resulted in greater present value 

estimates than simple random search. Final solutions to 

Cases I Ib and I Ic were more sensitive to the number of 

thinning schedules evaluated. 

A limited analysis of thinning model sensitivity was 

performed for changes in several input assumptions. 

Although results from such changes were as expected, an 

important property of the model became evident during the 

analysis. The thinning model present value relationship is 

not necessarily concave with respect to the number of growth 

periods projected. In determining optimal final harvest 

age, therefore, a sufficient number of growth periods must 

be projected to ensure that all input assumptions concerning 

relative product values are fully reflected. 
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The thinning model developed for mixed-hardwoods 

represents an entire set of problems. Optimal thinning 

plans vary with species composi·tion, stand age and 

structure, site quality, and other biological and economic 

factors associated with such stands. The model must 

therefore be solved for every stand for which thinning is 

considered, requiring a solution method that can be easily 

and inexpensively applied. The random search methods 

evaluated are viable alternatives for solving the thinning 

model. Although convergence to the global optimum is not 

guaranteed, procedures involving exteme-value estimation are 

available for evaluating the estimated results from such 

so lu ti on methods. In addition, the methods are easily used, 

and could be adapted for solution on microcomputers, 

expediting a wide and inexpensive application of the model 

for diverse stands. 

Of the random search methods evaluated, the multistage 

approach appears to have the most potential for solving 

thinning model formulations. Other random search techniques 

should also be considered, however. Using growth model 

parameters estimated from remeasurement data would ensure 

future evaluations free of any artifacts which may have 

resulted from the parameter values assigned for the present 

demonstration. Also, the final growth model specification 

directly influences the exact thinning model formulation, 
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and thus the solution methods considered. 

Recommendations For Further Research 

Recommendations for further study are presented for 

both the growth model and the thinning model. Specification 

as well as actual implementation of the growth model are 

discussed. For the thinning model, recommendations for 

further study are presented for both formulating and solving 

the optimization problem. 

Growth JVlodel 

Specification. 

deriving optimal 

The growth model 

mixed-hardwood 

specified for use in 

thinning schedules 

incorporates certain mixed-species modeling concepts in a 

stand-table projection framework. The method is an original 

synthesis of concepts in modeling growth and yield, and in 

the absence of data, only a tentative specification was 

proposed. Further study of this approach to modeling stand 

growth must include estimating potential proportions of 

upgrowth, as well as estimating the adjustment and mortality 

function parameters. Final specification of these relations 

must consider the ability of alternate forms to reflect 

remeasurement data. 

In evaluating alternate specifications of the growth 

model, stand-table projections should be made as integer 

numbers of trees. The ultimate use of the growth model 

requires reliable integer projections, following the removal 
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of integer numbers of trees during thinning. 

Further study of the growth model should also consider 

incorporating stand age in the mortality function. l\.ge is 

represented in the upgrowth relation, as different potential 

·proportions are specified after each growth period. The 

tentative form for the mortality relation, however, merely 

incorporates the diameter class and species, and a measure 

of the degree of competition experienced during a particular 

growth interval. 

Implementation. The feasibility of developing 

parameter estimates for general use in implementing the 

thinning model should be investigated following the final 

specification. Potential proportions of upgro\vth would be 

required by age, diameter class, and species group. For the 

adjustment and mortality functions, 

would be needed by diameter class, 

commonly associated in mixed-hardwood 

parameter estimates 

'for species groups 

forest types. With 

tables of such parameter estimates, optimal thinning and 

rotation could be estimated for any mixed-hardwood stand, 

given the initial age and stand-table information. 

Thinning Model 

Formulation. The complexity of the thinning model 

formulation for mixed-hardwoods is directly related to the 

final form of the growth model. Further study of the 

formulation may therefore be required if significant changes 
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are necessary for the growth model to adequately reflect 

growth and yield data. The formulation is also related to 

the solution method used, h01vever. If random search 

techniques are employed, for example, ·the thinning model may 

be much more detailed than if a nonlinear programming 

algorithm is applied. Developing a general model for 

deriving optimal thinning and rotation for mixed-hardwoods 

requires joint considerations in all phases of modeling the 

problem. 

The thinning formulation presented for mixed-hardwoods 

is a stand-level model, as opposed to forest-level harvest 

scheduling models. Most even-aged, mixed-hardwoods are 

privately owned, relatively small, and· have a common 

management history throughout the stand. The thinning and 

rotation problem was therefore approached from the beginning 

as a stand-level problem, i .·e. , in many cases for mixed-

hardwoods, the stand and forest are synonymous. In other 

situations, however, stand treatments cannot be considered 

alone. Optimal forest-level policies may be derived by 

aggregating optimal s·tand treatments in the case of fully 

regulated forests, or if harvest-level constraints are 

unnecessary (Hann and Brodie 1980). For most applications, 

however, integrating stand-level optimization 1vi th forest­

level harvest scheduling is required. Methods of 

accomplishing this have been presented by Nazareth (1973), 
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Williams (1976), and De Kluyver et al. (1980). Further 

study of the mixed-hardwood thinning model should include 

investigating means of formulating the problem as a forest­

level harvest scheduling model. 

Solution. Two random search methods were used in 

solving thinning model formulations. Further study of these 

and other random search approaches is recommended following 

growth model specification and parameter estimation. 

Further study of the multistage approach should include 

varying the numbers of stages and evaluations per stage, as 

well as the variable ranges used. The multistage approach 

presented by Luus and Jaakola (1973) should also be 

considered. The method involves evaluating relatively few 

random solutions at each of hundreds of stages. Initial 

variable·ranges are reduced by a very small percentage after 

each stage. The algorithm presented by Solis and Wets 

(1981) for unconstrained minimization should also be 

considered for adaptation to solving thinning model 

formulations. 

Further research concerning thinning model solutions 

should also include the method for obtaining global optima 

with random search presented by Anderssen (1972). 

Anderssen's refinement procedure involves hypothesis testing 

and requires that several parameter values be assigned. 

Evaluating the process for the mixed-hardwood formulation 
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may involve significant trial and error before suitable 

values for these parameters are established. Incorporating 

concepts presented by Dannenbring (1977) for evaluating 

heuristic solutions should also be investigated.· Comparing 

estimated extreme (optimal) solution values with the values 

obtained with random search algorithms could be used in 

developing meaningful stopping criteria for random search 

methods. 

The final stage of research for the mixed-hardwood 

thinning problem involves developing programs for 

implementing the model on microcomputers. A ·single program 

could be coded to estimate op·timal thinning and rotation for 

various stands. Input to the program would include 

appropriate values for the economic parameters, stand age, 

and stand-table data. Using tables of growth model 

parameter estimates and an appropriate random search 

solution method, inexpensive estimates of optimal thinning 

and rotation would be readily available for wide application 

to mixed-hardwood forest ·types. 
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Appendix A. Nonlinear programming specification of the 

hardwood thinning model. 

Appendix A is a complete and general statement of the 

nonlinear programming formulation of the hardwood thinning 

problem, including a list of definitions for all variables 

used in the general statement. 

Objective Function: 

G s ni+k 
Maximize:PV = { r [ [ r r [ (P . ./(l+r)kt )N~.k] 

k=O i=l j =1 l.J l.J 
(Al) 

Subject to: 

Residual Defining Constraints 

Initial residual trees (for all species/diameter class 

combinations) : 

R 
N 

ijk 

I 
N 

ijk 

c 
+ N = 0 

ijk 
( i=l, ...• s j =1, ... , n i k=O) (A2) 

Residual trees in the smallest diameter classes (after 

each period): 

s 
R R ij R ij R 

N ijk-(N ijk-1) (EXP[bs+2 (VT,k-1 )+ :E (bs+2+m (Vm,>j,k-1))] 

ij R 
-(PPijk )EXP[bl (VT,k-1 )+! 

s 

m=l 
c 

m=l 
ij 

<hm+l 
R 

(Vm,>j,k-1 ))]) 

+Nijk = 0 (i=l, ... , S j=l k=l, ... ,G) 

(A3) 
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Residual trees in the intermediate diameter classes 

(after each period): 

R R ij R L s ij R 
Nijk- (N ijk-1) (EXP [b s+2 (V T,k-1). m:l (b s+2-hn (Vm,~j ,k-1 ) ) l 

-(PP .. k)EXP[bij(V~kl)+~ (VR 'kl ))])+N~.k 
lJ , - m=l m,2J, - lJ 

(A4) 

(PP )EXP [bij-l (V R ) + ~ (bij-1 (VR 
- i,j-l,k 1 T,k-1 m=l m+1 m,~j-1,k-1 ) ) l 

R 
(N .. lk

1 
)=0 (i=l, ... ,S j=2, ... ,n.l+k-l k=l, ... ,G) 

~,J- ' -

Residual trees in the largest· diameter classes (after 

each period): 

NR ( N R ) ( PP ) EXP [ b ij - 1 ( IJ R ) + (AS ) 
ijk- i,j-1,k-l i,j-1,k 1 T,k-1 

s 
r (bij-1 

m=1 m+l 
(IJ R 

m,~j-1,k-l 
) ) l = 0 

(i=1, ... , S j=Ij_ +k k=1, ... ,G) 

Maximum Harvest Volume Constraints: 

s 
r 

i=1 

n·+k 
lr (V .. N~ .k) s 
j=1 lJ lJ 

H X 
lk k 

( k=O , ... , G-1 ) (A6) 

Minimum Harvest Volume Constraints (if harvesting occurs): 

s 
r 

i=1 
( k=O, ... , G-1) 

Constraints Defining a Range for~: 

( k=O, ... , G-1) 

(A7) 

(AS) 
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Non-negativity Restrictions: 

N R,C;:: 0 
ijk 

(i=l, ... ,s 

Variable Definitions: 

j=l, ... ,n. +k k=O, ... ,G) 
l 

(A9) 

In all cases, indexes used are:. i for species, j for 

diameter class, and k for growth period. Indexes m and q 

are used for summation in the problem statement, in cases 

where i or j are held constant. All other variables used in 

the general problem statement as well as the text of the 

study are defined below in alphabetical order. Vectors used 

in the Case . I I a formulations of Tables 8 and 9 are not 

included in the definitions. These vectors ax·e defined in 

Table 10 and are not used e'lsewhere in the study. 

A represents the number of age periods in a 

discrete dynamic programming network, 

a is an area in the right-hand tail of a 

probability density of objective function values, 

ADJ .. k is an adjustment to the potential proportion lJ 

of upgrowth, representing the percentage of PPijk 

realized, 
ij 

b m ,;o ,m =1, ... , 2S+2, growth model upgrowth 

(m=l, ... ,S+l) and mortality (m=S+2, ... ,2S+2) 

parameter estimates, 

C is used as a superscript denoting numbers of 

trees cut, 
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D is the number of diameter classes in a discrete 

dynamic programming network, 

FC is a fixed thinning and final harvest cost, 

G is the number of growth periods modeled, 

H lk is a maximum harvest volume after. period k, 

H 2k is a minimum harvest volume after period k, 

observed only if a harvest occurs, 

HV represents harvest value in dollars, 

I is a superscript denoting initial numbers of 

trees, 

L represents the land sale value assumed, 

M is a superscript denoting numbers of trees 

dying (mortality), 

n is the number of solutions evaluated using 

random search, 

ni is the initial number of diameter classes 

(by species), 
c 

Nijk represents the number of trees cut (by 

species, diameter, and growth period), 

I 
Nijk represents the initial number of trees (by 

species, diameter, and growth period), 

R 
N .. ,. represents the residual number of trees (by 

lJJ.'\. 

species, diameter, and growth period), 

QTYijk-l represents a quantity at the beginning 

of growth period k (in units projected), 
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Pij is a per tree stumpage value, calculated as 

the relevant price (per unit volume) times the 

appropriate average volume per tree, 

PP ijk represents the potential proportion of 

upgroHth (by species, diameter, and growth 

period), 

Pr is the probability that at least one random 

search solution is obtained within area (a), 

PV represents the present value of land and timber 

cut, 

r is a real alternative rate of return, 

R is a superscript denoting numbers of residual 

trees, 

RL is rotation length in years, 

S is the number of species groups represented, 

SEV is soil expectation value, 

t is the number of years per growth period, 

TC is the number of classes used for numbers of 

trees in a discrete dynamic programming network, 

U is a superscript for numbers of trees projected 

as upgrowth, 

UPGijk is upgrowth (in units projected), 

Vij is an average volume per tree (by species and 

diameter), 

R 
v >" k = m,_J ,. 

R 
(V mqN mqk ) represents residual 
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volume (by species and growth period) in 

diameter classes~ j, 

R 
VT,k= represents a total 

residual volume (by growth period), and 

Xk is an intermediate variable used to reflect 

whether or not harvesting occurs after period k. 
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Appendix B. Evaluation of constraint convexity. 

Tltlice differentiable multivariate func·tions may·· be 

characterized as convex if and only if the Hessian matrix is 

positive-semidefinite. This procedure was not used to 

evaluate program convexity in the hardwood thinning model, 

however, due to. the number of variables involved and ·the 

resulting dimensions of the Hessian. The structure of the 

residual-defining constraint sets ( (A3) through (AS)) was 

examined, however, by simplifying the relation used for 

intermediate diameter classes. 

Consider an equation from constraint set (A4) for 

residual volume after growth period 1, assuming S=2 and 

2 :::: j s n . 

Let: 

. . 2 Ui 
B_t =b~J [ r r 

1 i=l j=1 

.. 2 ni 
~ =b~J [ r r 

4 i=l j=l 

2 
r 

i=1 

( V NR ) ] +bij 
:i.j ijO 5 

U? 
+ bij r- V NR ] , 

3 m=j 2m 2m0 

nl 
r v l'f 

m=j 1m 1m0 

. nz 
+ b~j [ r V NR l , and 

6 2m 2m0 m=j 
ni R .. 1 n1 
r (V .. N<'Q)]+b~2J- [ r V NR ] 

~J ~J lm lmO j=1 m=j-1 

+b ij-1 [ ~2 V NR ] . 
3 . 

1 
2m 2m0 

m=J-

(Bl) 

(B2) 

(B3) 
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Using relations (Bl), (B2), and (B3), the residual defining 

constraint from set (A4) may be 1vri tten: 

R R Bz Bl R B3 C 
N ijl=N ijo(e -(PP ijl)e )+(PPi,j-1,1 )Ni,j-1,0 e -Nijl (B4) 

From constraint set (A2), however, 

Substituting this relation into equation .< B4) and 

multiplying yields: 

. J< _ I Bz Bl I C Bz B1 C 
Nijl -NijO e -PP ijl e N ijO-NijO e +PP ijl e N;_jO (BS) 

I B3 C B3 C 
+PP i,j-1,1 N i,j-1,0 e -PP i,j-1,1 N i,j-1,0 e ··N ijl 

The same expression may be substituted for N~jO in relations 

(Bl), (B2), and (B3). Considering (Bl), for example: 

.. 2 
bl.J :!: 

1 j,=;1 

+b ij 
3 

Expanding relation (B6) and collecting constants yields: 

bij 
2 ni ill 

N I +bij 
il2 

V N I B = :!: :!: V N I +b l.J :!: v r 
1 1 i=;1 . l ij ijO 2 

m"j 
1m 1m0 3 

m"j 
2m 2m0 

J" 

-bij 
2 ni c -bij -bij 

nz 
N 

(B6) 

(B7) 

n1 V Nc V N C :!: r v :!: 1 ij ijO 2 r 1m lmO 3 2m 2m0 i=l j "1 m"j m"j 

Relation (B7) may be expressed as: 

T 
B 1 = k 1 - b (1)N (BS) 

Where k is a non-negative constant, b(1) is a vector of 
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regression constants from equation (Bl), and N is a vector 
c 

of N ijO variables multiplied by appropriate V ij constants. 

Similar expressions for equations (B2) and (B3) are: 

T 
Bz = kz - b(z) N (B9) 

(BlO) 

Using results (BS), (B9), and (BlO), and letting K' s also 

represent non-negative constants, equation (BS) may be 

expressed: 

T C -b N 
-K 3Nij0 e (2) 

-b T N C -b T N 
+Ks e (3) -K6N i,j-1,0 e (3) 

c 
-N ijl 

(Bll) 

Equation (Bll) is written entirely in terms of 

variables expressing numbers of trees to cut. As this 

expression is a nonlinear equality, it represents a 

nonconvex feasible region. In addition, equation B(ll) 

lacks any convexity structure, as the right hand side 

includes sums of both convex and concave functions of the 

decision variables. The first-order Kuhn-Tucker local 

optimality conditions are therefore not sufficient to 

characterize a solution as globally optimal. Similar 

results could be shown for the other constraint sets 

defining residual numbers of trees ((A3) and (AS)). 
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Expanding 

~UXED-HARD'tiOOD 

THINNING OPTIMIZATION 

by 

Steven H. Bullard 

(ABSTRACT) 

markets are expected to create new 

opportunities for active forest management in upland 

hardwood stands. A procedure was developed for estimating 

economically optimal thinning policies for mixed- species 

hardwoods by interfacing a stand-table projection growth 

model with a nonlinear programming thinning model 

formulation. The thinning model provides information on 

numbers of trees to harvest over time b~ species and 

diameter class, and therefore has sufficient resolution to 

reflect interspecific growth rates and value-by-size-class 

relationships. 

The diversity of biological and economic factors 

associated with mixed-hardwoods requires solution methods 

which can be easily and inexpensively applied to 

formulations for individual stands. A nonlinear programming 

algorithm and heuristic methods involving random search were 

evaluated as solution techniques in a demonstration of the 

thinning model. For the demonstration, growth model 

parameters were specified for a ·hypothetical stand. Both 



simple random search and mu.l tistage random search methods 

appear promising for solving thinning model formulations for 

mixed-hardwoods. As formulated•, thinning problems are 

combinatorial in nature, belonging to a class of problems 

for which heuristics are often used. Further study is 

needed, however, to evaluate such methods for solving mixed-

hardwood thinning problems, using growth model parame·ters 

estimated from remeasurement data. 
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