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Abstract 

 

 This thesis will explore the hypergeometric probability distribution by looking at 

many different aspects of the distribution. These include, and are not limited to: history 

and origin, derivation and elementary applications, properties, relationships to other 

probability models, kindred hypergeometric distributions and elements of statistical 

inference associated with the hypergeometric distribution. Once the above are 

established, an investigation into and furthering of work done by Walton (1986) and 

Charlambides (2005) will be done. Here, we apply the hypergeometric distribution to 

sequential sampling in order to determine a surviving subcategory as well as study the 

problem of and complete representation of the subcategories within the population. 
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1. THE HYPERGEOMETRIC MODEL: SURVEY OF RESULTS  

1.1: Introduction  

 This thesis explores different aspects of the hypergeometric distribution. The first 

part of the thesis looks at the origin of the distribution, its derivation, applications, 

properties of the distribution, relationships to other probability distributions, distributions 

kindred to the hypergeometric and statistical inference using the hypergeometric 

distribution. These topics have been summarized by evaluating various articles and other 

literature in order to synthesize information and organize it in a reasonable fashion.  

 The second portion of this thesis explores two particular sampling schemes that 

utilize variations of the hypergeometric distribution. These two schemes and the 

calculations involved are extensions of articles by G. S. Walton (1986) and C. A. 

Charlambides (2005). Both Walton and Charlambides look at sampling from populations 

that are divided up into distinct subcategories. Walton’s work was evaluated then 

incorporated into a sequential sampling scheme that applies a sampling rule until only 

subcategory contains any occupants. While still examining subdivided populations, 

Charlambides’ work was extended to take repeated samples until each subgroup 

contained one member only. 
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1.2: Origin of the Term ‘Hypergeometric’ 

 The word hypergeometric was first used to describe the hypergeometric function, 

rather than the hypergeometric distribution. In this section, the origin of the word 

“hypergeometric” will be explored along with the relationship between the original 

hypergeometric function and what is now known as the hypergeometric distribution. The 

hypergeometric mass function for the random variable 𝑋 is as follows:  

𝑃(𝑋 = 𝑥) =
(𝐷

𝑥
)(𝑁−𝐷

𝑛−𝑥
)

(𝑁
𝑛

)
. 

The hypergeometric distribution is used when the sampling of n items is conducted 

without replacement from a population of size N with D “defectives” and N-D “non-

defectives” where x is the number of defectives found in the sample. Here the word 

defective can also be substituted with success depending on the scenario.  

 When searching through mathematical literature, it more common to come across 

articles dealing with the hypergeometric function as opposed to the hypergeometric 

probability distribution. While the hypergeometric function plays a role in the 

development of the hypergeometric distribution, the hypergeometric function was not the 

focus of this research.  

 The earliest uses of the word hypergeometric can be traced back to the middle 

1600’s. The name hypergeometric originated with Wallis in 1655 to the series whose nth 

term is  

𝑎{𝑎 + 𝑏}{𝑎 + 2𝑏} … {𝑎 + (𝑛 − 1)𝑏}. 
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The word hypergeometric continued to be used in this sense until 1836 (Whittaker, 

Watson, 2010).  

 With the discovery of the hypergeometric function, the word hypergeometric 

became a widely used term in mathematical literature. The hypergeometric function can 

be used in many different contexts within mathematics, but it took years for the word 

hypergeometric to be used to describe a probability distribution. The origin of the term 

“hypergeometric distribution” is unclear in literature and though the name took off, it is 

not easily traced back to a single person, or time period.  

 In 1711, De Moivre solved “Huygens’ fourth proposed problem” and his solution 

gave the probability of selecting x white and c-x black balls from a population of a white 

and b black balls, which gave rise to the hypergeometric mass function (Johnson, Kotz, 

1992). 

 Twenty-nine years later, in 1740, Simpson derived the multivariate 

hypergeometric probability mass function. Still, after these two discoveries, it was not 

until 1843, when Cournot used the univariate hypergeometric mass function to describe 

certain situations within government, such as selection of parliament and juries, that the 

hypergeometric distribution gained a little more steam (Johnson, Kotz, 1992). 

 During the late 1800’s and early 1900’s, Karl Pearson began his work on limiting 

forms of discrete distributions. His study led him to investigate the properties of the 

hypergeometric distribution. Pearson’s work was continued by Romanovsky on into 1925 

(Johnson, Kotz, 1992).   
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 Once the hypergeometric and multivariate hypergeometric distribution were well 

established, it did not take long for variations of the distribution to arise. These 

variations, such as the negative hypergeometric distribution, will be discussed in the 

future section titled “Kindred Distributions.” 

 Since both the hypergeometric moment generating function and the probability 

generating function can be expressed in terms of the hypergeometric function, there is 

reason for the name “hypergeometric distribution.” When referring to a random variable, 

probability distributions are often expressed in terms of their generating functions as 

opposed to their probability mass or density functions. In the early investigations, much 

of the work with the hypergeometric distribution was done, not by looking at the mass 

function, but instead looking at the moment and probability generating functions, written 

in terms of the hypergeometric function (Johnson & Kotz, 1992).  

 However, in this thesis, most of the exploration and connections are made by 

looking at the hypergeometric distribution or variations thereof in terms of the probability 

mass function, rather than in terms of the hypergeometric function.  

1.3: Derivation and Elementary Applications 

Derivation 

 The hypergeometric distribution is used when sampling without replacement from 

a finite, equally likely, population of items called defectives and non-defectives (or 

successes and failures). The hypergeometric distribution is often first explained by 

finding probabilities of drawing colored balls out of an urn or probabilities of particular 
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playing cards being drawn. In deriving the mass function of the hypergeometric 

distribution, consider a situation where a population includes both red and blue balls, all 

of the same size and weight (each equally likely to be chosen on any one draw). Suppose 

there are 100 total balls in a box, 30 of which are red and the other 70 are blue. Further, 

suppose it is desired that 10 balls be selected from the box and obtain 6 red and 4 blue 

balls.  The total number of ways to select 10 balls from the original 100 is (
100
10

). 

Similarly, it can be shown that there are (
30
6

) ways to choose 6 red balls without 

replacement from the 30 total red, and (
70
4

) ways to choose 4 blue balls from the 70 total 

blue in this population. Thus by the multiplication principle, the probability that in 

choosing 10 balls without replacement from a box of 100, 6 red and 4 blue are selected is 

given by: 

𝑃(6 𝑟𝑒𝑑 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑜𝑢𝑡 𝑜𝑓 10) =  
(

30
6

) (
70
4

)

(
100
10

)
= 0.03145. 

Notice the above is just a fractional concept, where the numerator is the desired “part” or 

selection and the denominator is the “whole” or total number of possibilities.  

 To generalize the above, call the size of the population that is being selected from 

𝑁, and the size of the sample being taken 𝑛. Similarly, call the number of red balls in the 

population 𝐷 and the number of blue balls 𝑁 − 𝐷. Now, say the desire is to select 𝑥, an 

arbitrary number, of red balls in our sample. Thus, if the sample size is given to be n, the 
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remaining 𝑛 − 𝑥 balls will be blue. Next, by removing the words “red” and “blue” and 

viewing the red balls as defectives or successes and the blue balls as non-defectives or 

failures we have generalized the mass function of the hypergeometric distribution to  

𝑃(𝑥 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛) =
(

𝐷
𝑥

) (
𝑁 − 𝐷
𝑛 − 𝑥

)

(
𝑁
𝑛

)
. 

Here, the domain of our mass function is such that 𝑥 cannot be larger than 𝐷 or 𝑛, 

whichever is smaller.  

 This, however, is not the only way to derive the mass function of the 

hypergeometric distribution. Instead of basing the derivation on a scenario, a more 

mathematical approach can be taken. This approach involves viewing the hypergeometric 

distribution through a “binomial lens.” The hypergeometric distribution is characterized 

by the fact that the sample is taken without replacement. That being said, one can look at 

the hypergeometric sampling as a set of dependent Bernoulli trials where either successes 

or failures are chosen from the population of interest. Without loss of generality, say 𝑛 

items are sampled from a population of size 𝑁 where the first 𝑥 selections are 

“successes” (where there are D total successes in the population) and thus the final 𝑛 − 𝑥 

selections are “failures” (where there are N-D total failures in the population). Thus, the 

first 𝑥 selections have probability: 

𝐷

𝑁
∗

𝐷 − 1

𝑁 − 1
∗ … ∗

𝐷 − (𝑥 − 1)

𝑁 − (𝑥 − 1)
=

𝐷!

(𝐷 − 𝑥)!
∗

(𝑁 − 𝑥)!

𝑁!
. 

The last 𝑛 − 𝑥 selections have probability: 
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𝑁 − 𝐷

𝑁 − 𝑥
∗

𝑁 − 𝐷 − 1

𝑁 − 𝑥 − 1
∗ … ∗ 

𝑁 − 𝐷 − (𝑛 − 𝑥 − 1)

𝑁 − 𝑥 − (𝑛 − 𝑥 − 1)

=
(𝑁 − 𝐷)!

(𝑁 − 𝐷 − (𝑛 − 𝑥))!
∗

(𝑁 − 𝑥 − (𝑛 − 𝑥))!

(𝑁 − 𝑥)!
. 

Because the expressions above are for the very specific case of choosing all the successes 

first and all the failures last, all of the other ways to have x successes in n trials must also 

be considered, of which there are the combination (𝑛
𝑥

). Thus, synthesizing the above parts 

into a single expression, it can be seen that the probability of choosing 𝑥 successes in 𝑛 

trials when choosing without replacement can be given by:  

(
𝑛

𝑥
) ∗

𝐷!

(𝐷 − 𝑥)!
∗

(𝑁 − 𝑥)!

𝑁!
∗

(𝑁 − 𝐷)!

(𝑁 − 𝐷 − (𝑛 − 𝑥))!
∗

(𝑁 − 𝑥 − (𝑛 − 𝑥))!

(𝑁 − 𝑥)!
 

Rewriting the combination (𝑛
𝑥

) by applying its definition gives:  

𝑛!

𝑥! (𝑛 − 𝑥)!
∗

𝐷!

(𝐷 − 𝑥)!
∗

(𝑁 − 𝑥)!

𝑁!
∗

(𝑁 − 𝐷)!

(𝑁 − 𝐷 − (𝑛 − 𝑥))!
∗

(𝑁 − 𝑥 − (𝑛 − 𝑥))!

(𝑁 − 𝑥)!
 

Then by combining terms and canceling out in order to see combinatorial expressions 

gives:  

𝐷!

𝑥! (𝐷 − 𝑥)!
∗

(𝑁 − 𝐷)!

(𝑛 − 𝑥)! (𝑁 − 𝐷 − (𝑛 − 𝑥))!
∗

𝑛! (𝑁 − 𝑛)!

𝑁!
 

Last, by applying the definition of a combination once more, our expression for the 

hypergeometric mass function simplifies to: 

(
𝐷
𝑥

) (
𝑁 − 𝐷
𝑛 − 𝑥

)

(
𝑁
𝑛

)
. 
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Notice that the above is equivalent to the probability mass function that was derived by 

considering the example earlier. For more on this approach, see Broca, 2008.  

Duality and Symmetry  

 The hypergeometric probability distribution function can be alternatively 

represented by thinking of the probability of selecting x defectives out of a sample of size 

n rather than from the total number of defectives. There are (𝑛
𝑥

) ways for the x defectives 

to be distributed throughout the sample. This means, there are (𝑁−𝑛
𝐷−𝑥

) ways for the 

remaining defectives to be distributed through the rest of the population. Since the 

distribution of the defectives is now what is in question, the total number of ways for the 

D defectives to be distributed throughout the population of size N is (𝑁
𝐷

).  Thus, the 

hypergeometric mass function can be alternatively expressed as: 

(𝑛
𝑥

)(𝑁−𝑛
𝐷−𝑥

)

(𝑁
𝐷

)
. 

This is referred to as the dual representation of the hypergeometric distribution 

probability mass function (Barnier, Jantosciak, 2002). By expanding the combinatorial 

terms and rearranging, it can be seen that the above expression is equivalent to the 

hypergeometric mass function. After rewriting the combinatorial terms and multiplying 

by the reciprocal of the denominator, we have:  

𝑛! (𝑁 − 𝑛)!

𝑥! (𝑛 − 𝑥)! (𝐷 − 𝑥)! (𝑁 − 𝑛 − 𝐷 + 𝑥)!
∗

𝐷! (𝑁 − 𝐷)!

𝑁!
. 

By reorganizing the above, we can get:  
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𝐷! (𝑁 − 𝐷)!

𝑥! (𝐷 − 𝑥)! (𝑛 − 𝑥)! (𝑁 − 𝐷 − 𝑛 + 𝑥)!
∗

𝑛! (𝑁 − 𝑛)!

𝑁!
=

(𝐷
𝑥

)(𝑁−𝐷
𝑛−𝑥

)

(𝑁
𝑛

)
. 

Thus, we see that the dual representation is in fact equivalent to the hypergeometric mass 

function.  

 Barnier and Jantosciak (2002) also show that the successes and the sample can be 

considered as two independent classifications and that gives rise to another representation 

of the probability mass function of the hypergeometric distribution. Thinking of the 

population as having two independent classifications, defective (or not) and sampled (or 

not), consider thinking of the intersection of the defective and sampled groups to give the 

probability of that intersection being of size “x.” The number of total combinations of 

defectives and samples of size n are given by the following: 

(
𝑁

𝐷
) (

𝑁

𝑛
) 

Looking at the situation in terms of the categories of defective and sampled, we are 

interested in the intersection of defectives and sampled items. The entire population can 

be broken into four distinct groups by the classifications of interest.  

 

Defective and Sampled of size x Defective and not sampled of size D-x 

Non-defective and Sampled of size n-x Non-defective and not sampled of size 

 N-n-D+x 

Table 1: Group Sizes for Symmetric Representation 
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Using the multinomial coefficient, the probability mass function of the hypergeometric 

distribution can be written in the following way:  

𝑃(𝑋 = 𝑥) =
( 𝑁

𝑥,𝐷−𝑥,𝑛−𝑥,𝑁−𝑛−𝐷+𝑥
)

(𝑁
𝐷

)(𝑁
𝑛

)
. 

The numerator is written compactly above, but the multinomial coefficient can be 

rewritten as  

𝑁!

𝑥! (𝐷 − 𝑥)! (𝑛 − 𝑥)! (𝑁 − 𝑛 − 𝐷 + 𝑥)!
. 

This representation makes it easier to see that the symmetric representation is in fact 

equivalent to the hypergeometric mass function. To further show this relationship, we can 

multiply 
𝑁!

𝑥!(𝐷−𝑥)!(𝑛−𝑥)!(𝑁−𝑛−𝐷+𝑥)!
 by the reciprocal of the combinations in the 

denominator to get:  

𝑁!

𝑥! (𝐷 − 𝑥)! (𝑛 − 𝑥)! (𝑁 − 𝑛 − 𝐷 + 𝑥)!
∗

𝐷! (𝑁 − 𝐷)! 𝑛! (𝑁 − 𝑛)!

𝑁! 𝑁!
. 

The above expression can be further simplified to  

𝐷! 

𝑥! (𝐷 − 𝑥)!
∗

(𝑁 − 𝐷)!

(𝑛 − 𝑥)! (𝑁 − 𝐷 − 𝑛 + 𝑥)!
∗

𝑛! (𝑁 − 𝑛)!

𝑁!
=

(𝐷
𝑥

)(𝑁−𝐷
𝑛−𝑥

)

(𝑁
𝑛

)
, 

which is again the hypergeometric mass function. 

Applications 

 The hypergeometric distribution is commonly studied in most introductory 

probability courses. In introducing students to the hypergeometric distribution, drawing 

balls from an urn or selecting playing cards from a deck of cards are often discussed. 
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Though not very advanced examples, they are simple and focus on sampling without 

replacement. They also provide a basis of understanding that students can build on and 

then further see how the hypergeometric distribution can be used to describe other 

situations.   

 Above, when discussing the derivation of the hypergeometric distribution, a 

univariate urn example was used where 10 balls were chosen from a mixture of 100 red 

and blue balls. This is probably the most widely used elementary metaphor for 

applications of the hypergeometric distribution.  

 The hypergeometric distribution can be used to calculate probabilities in a wide 

variety of scenarios. Fury, Batiwlwalla, Gregersen and Li (2006) used the hypergeometric 

distribution to investigate scenarios within gene selection.  Schuster (1991) uses the 

hypergeometric distribution in his article entitled The Statistician in a Reverse Cocaine 

Sting. In this article Schuster describes a drug bust, the plan of action devised by the 

police and uses the hypergeometric distribution to find the probability that cocaine 

purchased in a reverse sting was in fact cocaine. Cooper (2016) even uses the 

hypergeometric distribution to establish strategies for winning a game of poker.  

 Many of the articles used in the development of this paper, are not exploring the 

hypergeometric distribution itself, but are studying topics in the sciences and see that the 

hypergeometric distribution is a result of the sampling scheme employed in the 

experiment or study. This leads to more complex applications of the hypergeometric 
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distribution and even to the development of other distributions related to the 

hypergeometric distribution, such as the negative hypergeometric distribution seen later.  

1.4: Relationships to Other Probability Models 

 In this section, both approximations and families of distributions that the 

hypergeometric belongs to will be discussed.  Well-known approximations to the 

hypergeometric distribution are given by the binomial distribution, the normal 

distribution and less commonly, the Poisson distribution. The hypergeometric distribution 

belongs also to several families of discrete probability distributions. These are discussed 

later in this section. 

Approximations 

 It is often appropriate and useful to approximate the hypergeometric distribution. 

Most often, this is done by a Binomial approximation. The binomial distribution is very 

widely known and in some cases, it can result in a simpler calculation than that of the 

hypergeometric distribution. The binomial is used in situations when sampling occurs 

with replacement and the probability of x successes in n Bernoulli (success/fail) trials is 

desired. This differs from the hypergeometric in that the sample is taken with 

replacement versus without replacement in the hypergeometric case, and thus the chance 

of obtaining a “success” is constant on each draw. Using the traditional form of the 

hypergeometric mass function, define H as 

𝐻(𝑥: 𝑁, 𝑛, 𝐷) =
(𝐷

𝑥
)(𝑁−𝐷

𝑛−𝑥
)

(𝑁
𝑛

)
. 
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Additionally, let the binomial mass function B be denoted 

𝐵(𝑥: 𝑛. 𝑝) = (
𝑛

𝑥
) 𝑝𝑥(1 − 𝑝)𝑛−𝑥. 

Further note that 𝐻(𝑥; 𝑁, 𝑛, 𝐷) = 𝐻(𝑥; 𝑁, 𝐷, 𝑛) = 𝐻(𝑛 − 𝑥; 𝑁, 𝑁 − 𝐷, 𝑛) =

𝐻(𝐷 − 𝑥; 𝑁, 𝑁 − 𝑛, 𝐷).  Thus, there are four resulting forms of the binomial 

approximation: 

𝐵 (𝑥; 𝑛,
𝐷

𝑛
) = 𝐵 (𝑥; 𝐷,

𝑛

𝑁
) = 𝐵 (𝑛 − 𝑥; 𝑁 − 𝐷,

𝑛

𝑁
) = 𝐵 (𝐷 − 𝑥; 𝑁 − 𝑛,

𝐷

𝑁
) 

(Brunk, Holstein, Williams, 1968). As N and D approach infinity and 
𝐷

𝑁
 approaches p, the 

limit of the hypergeometric mass is given by 

lim
𝑁,𝐷→ ∞,

𝐷
𝑁

→𝑝

(𝐷
𝑥

)(𝑁−𝐷
𝑛−𝑥

)

(𝑁
𝑛

)
= (

𝑛

𝑥
) 𝑝𝑥(1 − 𝑝)𝑛−𝑥 

(Miller, 2006). 

 Plachky (2003) considers the random variables 𝑋1 and 𝑋2 that are each, 

independently binomially distributed with sample size n and probability p. He then shows 

that the conditional distribution of 𝑋1 given the sum of 𝑋1 and 𝑋2 (𝑋1 + 𝑋2 = 𝑦) is 

hypergeometric with parameters 𝑛1 + 𝑛2, 𝑛1, and y. He notes also that as the sum of the 

sample sizes approaches infinity the hypergeometric distribution converges to the 

binomial distribution. Similarly, Plachy also shows that the same relationship exists 

between the negative binomial distribution and the negative hypergeometric distribution.  

 Lastly, Sandiford (1960) presents a “new” binomial approximation to the 

hypergeometric distribution. Sandiford develops this new binomial approximation by 
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equating the mean and variance of the binomial distribution to that of the hypergeometric 

distribution. This new approximation is skewed roughly as much as the hypergeometric 

distribution and is skewed in the same direction, providing what Sandiford believed to be 

a better fit when compared to other approximations.  

 The normal distribution is also used to approximate the hypergeometric 

distribution. The normal probability distribution is commonly used as an approximating 

distribution for large sample sizes due to the invocation of the central limit theorem. As 

the sample size of the hypergeometric distribution increases, along with the number of 

defectives and the population size increasing, the normal distribution becomes an 

appropriate approximating distribution. In fact, as the sample size grows, the normal 

approximation becomes more and more accurate and the margin of error decreases.  

 An issue of concern among those approximating the hypergeometric is: which 

approximation is best? Ling and Pratt (1984) concluded that among 15 approximations, 

the Peizer approximation is best. The Peizer approximation involves transforming a two-

by-two table and calculating a normal deviate. On the other hand, Liberman and Owen 

(1961) consider the binomial approximation with the smallest sample size to be best. 

Nicholson (1956) uses results from Feller’s normal approximation to the binomial to find 

a normal approximation to the hypergeometric distribution. He notes that as the sample 

size grows the absolute error decreases.  

 Along with approximating the standard hypergeometric distribution, variations of 

the hypergeometric distribution can also be approximated. Terrapabloran (2011) gives an 
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approximation to the negative hypergeometric distribution, which will be discussed in the 

section discussing kindred distributions, using the Poisson distribution. Childs and 

Balakrishanan (2000) give a method for approximating the multivariate hypergeometric 

distribution. Childs and Balakrishanan use continuous random variables to develop their 

approximations. They show that their approximation methods could be used in testing 

hypotheses concerning the parameters of the multivariate hypergeometric distribution.  

Families 

 Probability distributions can be classified in broad categories, known as families 

of distributions, based on characteristics and properties of the distribution. The 

hypergeometric belongs to several families of discrete distributions.  

 Ollero and Ramos (1995) show the hypergeometric distribution to be a member of 

a subfamily the Pearson family of distributions. The Pearson family is a very broad 

classification of distributions developed by Karl Pearson. Ollero and Ramos conjecture 

that the Pearson family consists of a subgroup of distributions, including the 

hypergeometric that are “generalized-binomial” distributions. They define “generalized-

binomial” to mean that the distribution is that of the number of successes among 

independent trials where the success probability is not the same for every trial.  

 The hypergeometric distribution also belongs to a generalized family of 

distributions described by Mathai and Saxena (1967). This generalized family is defined 

by using the hypergeometric function and Mathai and Saxena note that this family 

encompasses almost all classical probability distributions.   
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 Another family of distributions is one generated by the bivariate Bernoulli 

distribution. Marshall and Olkin (1985) show that the multivariate hypergeometric 

distribution is also a part of this family. This distribution will be further discussed in a 

later chapter.  

1.5: Properties of the Hypergeometric Distribution 

 In this section, various properties of the hypergeometric distribution will be 

explored. First we examine properties relating to the moments of the hypergeometric 

distribution and then move to particular applications of these properties.  

Moments 

 When considering the moments of a probability distribution, it can be very helpful 

to know the moment generating function (MGF) of the distribution. The MGF provides a 

concise way to represent all of the moments of a probability distribution.  

Johnson and Kotz (1992) give several different approaches to finding the moments of the 

hypergeometric distribution. The first they look at is the factorial moment generating 

function, which can be used to find the moments of the distribution. They also show that 

the moment generating function can be represented using differential equations and the 

hypergeometric function. This is one more reason the hypergeometric distribution bears 

the name hypergeometric. It is also noted that the moment generating function of the 

multivariate hypergeometric distribution can be represented in a similar fashion. 

However, Lessing (1973) shows that the MGF of the hypergeometric can be expressed 

without using the hypergeometric function.  
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 When studying probability distributions, it is often of utmost importance to 

understand and be able to calculate basic summary properties of the distribution such as 

the mean and the variance. More specifically, if the moments of the distribution can be 

found, so can the mean and variance. Recall, the probability mass function of the 

hypergeometric distribution is given by: 

𝑃(𝑥) = 𝑃(𝑋 = 𝑥) =
(

𝐷
𝑥

) (
𝑁 − 𝐷
𝑛 − 𝑥

)

(
𝑁
𝑛

)
. 

The domain of the hypergeometric mass function consists of integers from 0 to the 

minimum of D and n. This is because even if D<n, there can be at most D defectives 

(successes) in a sample of size n. Kemp and Kemp (1956) highlight the fact that the 

hypergeometric mass function can also be expressed as a product of a constant and the 

hypergeometric series. The focus here, will be on the mass function expressed in terms of 

combinations rather than the hypergeometric function. To find the expected value (mean) 

of the hypergeometric distribution, use the definition of expected value to produce the 

following:  

𝐸(𝑋) = ∑ 𝑥𝑃(𝑥) 

𝐸(𝑋) = ∑ 𝑥
(𝐷

𝑥
)(𝑁−𝐷

𝑛−𝑥
)

(𝑁
𝑛

)
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From this point, it is advantageous to expand the combinatorial terms and attempt to 

produce a second hypergeometric mass function inside the original, so that once 

constants have been removed, the sum will equal to 1.  

𝐸(𝑋) = ∑
[𝐷! (𝑁 − 𝐷)!]/[𝑥! (𝐷 − 𝑥)! (𝑛 − 𝑥)! (𝑁 − 𝐷 − 𝑛 + 𝑥)!]

𝑁!/[𝑛! (𝑁 − 𝑛)!]
 

Now, by the definition of factorial, we can rewrite D!, x!, N!, and n! by pulling out the 

first term of the factorial and multiplying by the factorial represented by the remaining 

terms. This will create of the sum of a hypergeometric probability mass function after 

pulling the constants out of the original sum. The remaining steps are shown below:  

𝐸(𝑋) = ∑
[𝐷(𝐷 − 1)! (𝑁 − 𝐷)! 𝑥]/[𝑥(𝑥 − 1)! (𝑛 − 𝑥)! (𝑛 − 𝑥)! (𝑁 − 𝐷 − 𝑛 + 𝑥)!]

[𝑁(𝑁 − 1)!]/[𝑛(𝑛 − 1)! (𝑁 − 𝑛)!]
 

𝐸(𝑋) = 𝑛
𝐷

𝑁
∑

[(𝐷 − 1)! (𝑁 − 𝐷)!]/[(𝑥 − 1)! (𝐷 − 𝑥)! (𝑛 − 𝑥)! (𝑁 − 𝐷 − 𝑛 + 𝑥)!]

[(𝑁 − 1)!]/[(𝑛 − 1)! (𝑁 − 𝑛)!
 

𝐸(𝑋) = 𝑛
𝐷

𝑁
∑

(𝐷−1
𝑥−1

)(𝑁−𝐷
𝑛−𝑥

)

(𝑁−1
𝑛−1

)
 

Because the last sum above fits the form of the hypergeometric pmf, it equates to 1 also 

and we have that:  

𝐸(𝑋) = 𝑛
𝐷

𝑁
. 

 The expected value of the hypergeometric can also be derived by creating an 

indicator function, 𝐼𝑘, such that 𝐼𝑘 is 1 if the kth item sampled is a defective and 0 if the 

kth item sampled non-defective. Thus, because the hypergeometric distribution models 

the number of defectives in a sample of size n, the expected value can be represented as:  
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𝐸(𝑋) = 𝐸 (∑ 𝐼𝑘

𝑛

𝑘=1

) 

Because expected value is a linear operator, the expected value operator on the right hand 

side can be moved inside of the sum to create the following expression:  

𝐸(𝑋) = ∑ 𝐸(𝐼𝑘)

𝑛

𝑘=1

. 

𝐸(𝑋) = ∑
𝐷

𝑁

𝑛

𝑘=1

 

This is because the expected number of defectives in a sample is equal to the proportion 

of defectives in the entire population of N items. That is, unconditionally the chance that 

the 𝑘𝑡ℎ sampled item is “defective” is 
𝐷

𝑁
 (Miller, 2006). Finally, because the above is a 

sum of a constant, we can represent the expected value of the hypergeometric as 𝐸(𝑋) =

𝑛
𝐷

𝑁
, which is the same conclusion reached by using the definition and combinatorial 

identities above.  

 Looking now at the variance of the hypergeometric distribution, recall that the 

variance of a random variable X is given as 𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2. Similar to the 

methods used above to derive the expected value, the variance can also be derived in two 

ways.  

 First, using the first factorial moment to calculate the variance, consider: 

𝐸[𝑋(𝑋 − 1)] = ∑ 𝑥(𝑥 − 1)
(𝐷

𝑥
)(𝑁−𝐷

𝑛−𝑥
)

(𝑁
𝑛

)
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= ∑ 𝑥(𝑥 − 1)

∗
[𝐷(𝐷 − 1)(𝐷 − 2)! (𝑁 − 𝐷)!]/[𝑥(𝑥 − 1)(𝑥 − 2)! (𝐷 − 𝑥)! (𝑛 − 𝑥)! (𝑁 − 𝐷 − 𝑛 + 𝑥)!]

[𝑁(𝑁 − 1)(𝑁 − 2)!]/[𝑛(𝑛 − 1)(𝑛 − 2)! (𝑁 − 𝑛)!]
 

= 𝑛(𝑛 − 1)
𝐷

𝑁

𝐷 − 1

𝑁 − 1
∑

(𝐷−2
𝑥−2

)(𝑁−𝐷
𝑛−𝑥

)

(𝑁−2
𝑛−2

)
 

= 𝑛(𝑛 − 1)
𝐷

𝑁

𝐷 − 1

𝑁 − 1
 

From this calculation and that of the expected value earlier, the variance can be found. 

The above gives us an expression for 𝐸(𝑋2 − 𝑋) = 𝐸(𝑋2) − E(X). We can then isolate 

𝐸(𝑋2) to produce   

𝐸(𝑋2) = 𝑛(𝑛 − 1)
𝐷

𝑁

𝐷 − 1

𝑁 − 1
+ n

𝐷

𝑁
. 

Using the fact that 𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2, we get  

𝑉𝑎𝑟(𝑋) = 𝑛(𝑛 − 1)
𝐷

𝑁

𝐷 − 1

𝑁 − 1
+ 𝑛

𝐷

𝑁
− (𝑛

𝐷

𝑁
)

2

 

= 𝑛(𝑛 − 1)
𝐷(𝐷 − 1)

𝑁(𝑁 − 1)
+ 𝑛

𝐷

𝑁
(1 − 𝑛) 

= 𝑛
𝐷

𝑁

𝑁 − 𝐷

𝑁

𝑁 − 𝑛

𝑁 − 1
. 

 The indicator function approach used to find the expected value could also be 

used to calculate the variance of the hypergeometric distribution. Using once more the 

fact that 𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2, we can see: 
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𝑉𝑎𝑟(𝑋) = 𝐸 [(∑ 𝐼𝑘

𝑛

𝑘=1

)

2

] − (𝑛
𝐷

𝑁
)

2

. 

Calculations similar to those done previously when finding the expected value will 

produce the same expression for Var(X). Similar methods could be used to find other 

moments of the hypergeometric distribution, but for most practical purposes, the mean 

and variance are sufficient summary statistics.  

 Remembering the duality and symmetry of the hypergeometric distribution 

discussed earlier, these properties of the distribution allow for alternative representations 

of the hypergeometric mass function and can also be counted as significant properties of 

this distribution. Bol’shev (1964) highlights this in his paper discussing simple sequential 

sampling schemes. He states that the hypergeometric distribution mass function is 

“invariant to permutation of the rows or columns of the 2 by 2 array,” which results in the 

fact that the hypergeometric mass function can be written in multiple equivalent ways 

and the moments can be found by using any of these representations of the mass function.  

Various Other Properties 

 Godbole (1990) shows that the distribution of the number of success runs, in a 

fixed number of trials, of the hypergeometric distribution is hypergeometric itself. He 

then goes on to find the distribution of the longest success runs and the distribution of the 

waiting time until the rth success run of a particular length. The distribution of the waiting 

time until the rth success run of a particular length is related to the negative 

hypergeometric distribution. Guenther (1978) further discusses the applicability of the 
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hypergeometric distribution when dealing with success runs. Guenther’s “runs test” is 

discussed in later in the section titled “Statistical Inference.”  

 Joarder (2012) looks at particular probabilities of interest when studying the 

hypergeometric distribution. He examines things such as the probability that a particular 

element of the population is included in a particular selection and situations where the 

sample space is not equally likely. He provides identities and theorems to validate his 

work. Joarder gives various examples of calculations and demonstrates how basic 

statistical properties and properties specific to the hypergeometric can be used to solve 

problems.  

Algorithms Associated with Calculations 

 When calculating probabilities, especially in more complex cases, it is often 

beneficial to ask if there is a way to make the computations easier. In the present day, 

with very little knowledge of programming or mathematical software, the average 

mathematician or statistician could pool resources and use modern software to perform 

complex computations rather quickly with ease. This is due to the fact that, in the past, 

complex algorithms were generated so that computations could be performed more 

simply using the appropriate software. Calculations of this nature can be seen in articles 

such as that of Alvo and Cabilio (2000). Other properties not included in these 

subsections are summarized in Johnson and Kotz (1992).  
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1.6: Kindred Hypergeometric Distributions 

 In this section, some variations of the hypergeometric distribution will be 

discussed. The negative (sometimes referred to in literature as the inverse) 

hypergeometric, the compound hypergeometric, the noncentral hypergeometric, the 

multivariate hypergeometric, as well as other notable distributions will be discussed in 

this section. The variations discussed here cover the popular variants of the 

hypergeometric distribution, but the list of variants discussed here is not exhaustive.  

The Negative Hypergeometric Distribution 

 Just as the binomial and the negative binomial distribution are related, so are the 

hypergeometric and the negative hypergeometric distributions. The hypergeometric 

probability mass function gives the probability of x successes being chosen in n trials, 

when the sampling is done without replacement. The negative hypergeometric gives the 

probability that it would take a random number of trials x to observe a fixed number of 

successes say r, still sampling without replacement. When using the hypergeometric 

distribution, the probability a random number of successes occur in a fixed number of 

draws is the desired quantity. Thus, it can be seen that the negative hypergeometric 

distribution fixes the number of successes and allows the number of trials to be the 

random variable. The probability mass function for the negative hypergeometric 

distribution is  

𝑃(𝑋 = 𝑥) =
(𝑥−1

𝑟−1
)(𝑀−𝑥

𝑁−𝑟
)

(𝑀
𝑁

)
. 
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Here, x denotes the number of items that need to be sampled in order to observe r 

successes/defectives. The total number of possible successes/defectives in the population 

is N and M is the size of the entire population being sampled from. The negative 

hypergeometric distribution can be extended to the multivariate situation as well. The 

multivariate negative hypergeometric will be used later when exploring the extensions of 

Walton (1986). 

 Just as in the case of the negative binomial, the first r-1 successes will be 

observed in x-1 trials and the rth success is observed on the xth trial. Because the items in 

the sample are being taken without replacement, the probability of the first r-1 successes 

occurring in x-1 trials has hypergeometric probability 

( 𝑁
𝑟−1

)(𝑀−𝑁
𝑥−𝑟

)

( 𝑀
𝑥−1

)
. 

Then, the probability that the rth success occurs on the xth trial is given by: 

𝑁 − (𝑟 − 1)

𝑀 − (𝑥 − 1)
. 

Combining the two generates the probability mass function above (Miller and Fridell, 

2007). 

 Once again, just as the hypergeometric distribution can be approximated by the 

binomial distribution, it is noted in Schuster and Sype (1987) that for large values of N, 

the negative hypergeometric can be approximated by the negative binomial distribution. 

Schuster and Sype also calculate the expected value of the negative hypergeometric 
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distribution to be 𝐸(𝑋) = 𝑟/(𝑛+1
𝑁+1

) and through a series of relationships between the 

waiting time until the first success also derives a formula for the variance of the negative 

hypergeometric distribution. Lastly, Schuster goes on to demonstrate how to estimate the 

parameters of the negative hypergeometric distribution.  

 D’Elia (2003) discusses a unique application of the negative hypergeometric 

distribution to ranking. She works to analyze rank data to both study preferences of 

consumers and the satisfaction of consumers. The hypergeometric distribution is used to 

perform both of these analyses. Instead of looking at the ranking of preferences as a 

multivariate problem, D’Elia considers the ranks of the items in reference to one 

particular item to maintain a univariate scenario.  This can be done by employing a 

multistage or iterated sampling structure where the first item chosen is the most preferred 

and this process is repeated until only the least preferred item remains. D’Elia goes on to 

show how to find the moments of this specific negative hypergeometric distribution, 

methods for parameter estimation and covers an in depth example of this distribution 

being used to study preferences in the olive oil market.  

Compound Hypergeometric Distribution 

 The compound hypergeometric distribution was defined by Hald (1960). When 

working with compound distributions in order to find the probability mass function of a 

random variable X, the joint probability mass function of X and Y must first be found. 

This is because compound distributions involve conditioning, and conditional mass 

functions are a function of the joint mass function. The first step in developing the 
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compound hypergeometric is to find the joint mass function of X and Y. Hald defines the 

joint mass function to be   

𝑃(𝑋, 𝑌) = 𝑓𝑠(𝑤 + 𝑦)
(𝑛

𝑤
) (𝑁−𝑦

𝑦
)

( 𝑁
𝑤+𝑦

)
, 

where N is the population size, n is the sample size, X is the number of defectives in the 

population, W is the number of defectives sampled, and 𝑌 = 𝑋 − 𝑊 is the number of 

defective items not sampled. Thus, in this case 𝑋 = 𝑊 + 𝑌.  Note also that, 𝑓𝑠 gives the 

probability that a population of N items contains X defectives and the conditional 

distribution 𝑃(𝑊|𝑋) is the probability that a sample of n items contains w defectives 

given that the population contains a total number of X defectives. The conditional 

hypergeometric distribution 𝑃(𝑊|𝑋) is as follows: 

𝑃(𝑊|𝑋) =
(𝑋

𝑤
)(𝑁−𝑋

𝑛−𝑤
)

(𝑁
𝑛

)
. 

The joint distribution of X and W can also be found to be: 

𝑃(𝑋, 𝑊) = 𝑓𝑠(𝑋)𝑃(𝑊|𝑋) 

and from the above the marginal distribution of W can be found to be: 

𝑔(𝑤) = ∑ 𝑃(𝑊|𝑋)𝑓𝑠(𝑋)

𝑤

 

and gives the average probability of x defectives being sampled.  

 Using the information above, the marginal distribution of W, can be given by: 
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𝑔(𝑤) = (
𝑛

𝑤
) ∑ 𝑓𝑠(𝑤 + 𝑦)

𝑁−𝑛

𝑦=0

(𝑁−𝑛
𝑦

)

( 𝑁
𝑤+𝑦

)
. 

A random variable having the above mass function is defined to be a compound 

hypergeometric variable. It is named such because it is generated by averaging the 

distribution of W over all possible values of 𝑋 = 𝑤 + 𝑦.  

 This creates a situation where there are two random variables. Both the number of 

successes that will be drawn (W) and the number of successes that will be left in the 

population (Y) are unknown. Hald further develops this distribution by calculating the 

moments of (W,Y) by first computing factorial moments, conditional expectation and 

variance.  

Noncentral Hypergeometric Distribution 

 When referring to a distribution as a noncentral hypergeometric distribution it is 

beneficial to ask if the distribution is of the Wallenius noncentral hypergeometric 

distribution type or what is known as Fisher’s noncentral hypergeometric distribution. 

Fisher’s noncentral hypergeometric distribution is sometimes referred to as the extended 

hypergeometric distribution.  

 The multivariate Wallenius noncentral hypergeometric distribution is used in 

cases where each selection taken without replacement and is not equally likely, or in 

other words, when the sampling is biased. For instance, consider that black and white 

balls were being drawn from an urn, but the white balls were two times larger than the 

black balls. This situation could be modeled using the Wallenius noncentral 
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hypergeometric distribution. More generally speaking, the population consists of N balls 

of c different colors and n balls are to be sampled from the population. In this situation, 

the probability that a particular ball is sampled is proportional to the “weight” of the ball, 

where the weight depends only on the color of the ball (Fog, 2008). Though not stated 

here, the mass function also appears in Fog (2008).  

 The multivariate Fisher’s noncentral hypergeometric distribution, sometimes 

called the extended hypergeometric distribution, can be used in simulation type 

experiments where the outcome is known beforehand. For instance, knowing row or 

column totals in a contingency table prior to filling the cells with observations. 

Accordingly, Fisher’s noncentral hypergeometric distribution is used for various tests 

when analyzing contingency tables. Liao (1992) discusses different applications of the 

extended hypergeometric distribution for 2 by 2 contingency tables and derives the mean 

and variance of Fisher’s noncentral hypergeometric distribution. The multivariate 

Fisher’s noncentral hypergeometric distribution is defined by Harkness (1965) as the 

“conditional distribution of independent binomial variates given their sum.” Harkness 

also notes that there exists a binomial approximation for Fisher’s noncentral 

hypergeometric distribution. Elsinga and Peizer (2011) give saddlepoint approximations 

for the extended hypergeometric distribution.  

 In both the Wallenius and Fisher cases, if n=1 the distribution reduces to the 

multinomial distribution. Also, if all weights are equal, the distributions reduce to the 

multivariate hypergeometric distribution.  
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Other Notable Distributions 

 Irwin (1954) discovered in his study of the spread of infectious disease that the 

spread of an infectious disease through a household could be modeled by a variant of the 

hypergeometric distribution. Irwin (1975) develops a distribution titled the Generalized 

Waring Distribution, which in one particular case reduces to what is termed the Yule 

Distribution, another variant of the standard hypergeometric model.  

1.7: Statistical Inference 

 In this section estimation of the hypergeometric parameters and statistical tests 

that have hypergeometric sampling distributions will be discussed.  

Parameter Estimation 

 In many statistical problems, it is often advantageous to estimate the unknown 

parameters. There are several different methods used for estimation, with the most 

common being maximum likelihood estimation. Zhang (2009) uses the maximum 

likelihood method to estimate the population size, N, of the hypergeometric distribution. 

He finds that the maximum likelihood estimator for the population size of a 

hypergeometric distribution is given by the integer part of  
𝐷𝑛

𝑥
, that is if the estimator is 

fractional, the estimator is rounded down to the nearest whole number. Zhang (2009) also 

finds a maximum likelihood estimator for the number of defectives in the population. His 

result shows that the maximum likelihood estimator for D, the number of defectives, is 

not unique but is given by either 
𝑥(𝑁+1)−𝑛

𝑛
 or 

𝑥(𝑁+1)−𝑛

𝑛
+ 1. It is important to note that, 

though not discussed, the method of moments approach to estimation can be used for the 
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hypergeometric distribution as well. Method of moments estimation involves simply 

equating the population moments to the expected values of the moments. 

 Other methods of estimation are explored in Tohma (1991). In his paper, Tohma 

examines six different methods for estimating the parameters of the hypergeometric 

distribution and discusses their accuracy. The six methods explored are: differencing, 

Stirlings formula, the binomial distribution, a combination of the binomial distribution 

and Stirlings formula, the normal distribution and the least squares sum method. He 

concludes that the best estimation method is the least squares sum method when 

estimating the population size.  

 Along with estimating parameters, it is sometimes nice to be able to develop 

confidence intervals for those estimates. Thompson (2012) discusses general methods for 

both estimating parameters and developing confidence intervals for those estimates. 

Wang (2015) elaborates on the ideas established by Thompson and notes that the 

unknown parameter in the hypergeometric distribution could either be the population 

size, N, or the number of defectives in the population, which Wang denoted as M. 

(Defined as D in the development of this thesis.) Wang notes that Thompson develops 

approximate intervals that can be unreliable. Wang argues for the use of exact intervals 

and goes on to show the development of an algorithm to allow for exact confidence 

intervals for the population size and number of defectives.  
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Tests with Hypergeometric Sampling Distributions 

 When performing any type of statistical test, it is important to identify both the 

test statistic and the associated sampling distribution of that test statistic. The 

hypergeometric distribution is used as the sampling distribution for various statistical 

tests, such as Fisher’s exact test, a median test, runs test and other analyses of 

contingency tables.  

 Looking first at Fisher’s Exact Test, which can be used to analyze two by two 

contingency tables comparing success probabilities, where the marginal totals (column 

and row totals) are known prior to collecting the data. Fisher’s Exact Test can also be 

used when the marginal totals are unknown and in this case is viewed as a competitor to 

Pearson’s 𝜒2 test for comparing two success probabilities. Fisher’s Exact Test relates to 

the hypergeometric distribution because the sampling distribution for the test is 

hypergeometric where the parameters are the row and column totals, which are generally 

known before sampling (Hollander, Wolfe, Chicken, 2014). 

 Mehta and Patel (1983) give an algorithm for performing Fisher’s Exact Test on r 

by c contingency tables. This is an extension of Fisher’s Exact Test for tables of any 

dimension. Mehta notes that comparing Fisher’s Exact Test and the 𝜒2 test can often lead 

to contradictory results.  

 Gart (1963) developed a median test based on an experiment where his 

application involves two groups of mice that are exposed to radiation where one of the 

groups had previously been exposed. One mouse in the control group was assigned to be 
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the “median” mouse and the group was observed until the median died.  This led to the 

development of his median test. In this procedure, the median of each population must be 

found and the number of observations in the treatment group less than the “median” of 

the control group is the variable of interest, say X. Gart shows that the null or sampling 

distribution of X is given by:  

𝑃(𝑥) =
2𝑠 + 1

𝑛 + 2𝑠 + 1

(𝑛
𝑥

)(2𝑠
𝑠

)

(𝑛+2𝑠
𝑠+𝑥

)
 

where s+1 corresponds to the placement of the median in the population. The sampling 

distribution developed by Gart is not entirely hypergeometric in nature, but it can be seen 

from the combinatorial structure that the distribution is related to that of the 

hypergeometric. Though there is a fractional coefficient in the sampling distribution that 

is not present in the standard hypergeometric mass function, the combinatorial terms in 

the numerator can be combined to form the combination in the denominator. This is the 

characteristic of the above distribution that relates it to the hypergeometric distribution.  

 Guenther (1978) discusses the use of the hypergeometric distribution in a runs 

test. His runs test looks at the probability of a particular number of success runs in a fixed 

sample size. The results of the sampling are recorded as either successes or failures and 

the number of runs is denoted R. The distribution of R is defined for both when R is an 

even number and when R is an odd number. The distribution is given below for both 

cases:  
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𝑃(𝑅 = 2𝑖) =
2(𝑚−1

𝑖−1
)(𝑛−1

𝑖−1
)

(𝑚+𝑛
𝑚

)
 

𝑃(𝑅 = 2𝑖 + 1) =
(𝑚−1

𝑖
)(𝑛−1

𝑖−1
) + (𝑚−1

𝑖−1
)(𝑛−1

𝑖
)

(𝑚+𝑛
𝑛

)
 

where m is the number of successes and n is the number of failures.  

Then, instead of focusing on the distribution of the number of runs, Guenther explores the 

connection between the distribution of the number of runs and the hypergeometric 

distribution. Guenther shows that the distribution of R can be written in the form of the 

hypergeometric distribution and the properties of the hypergeometric distribution can be 

applied to the distribution of the number of runs. 

 At this point we have given an overview of the hypergeometric distribution that 

incudes the origin of the word ‘hypergeometric’, derivation and elementary applications 

of the hypergeometric distribution, relationships that tie the hypergeometric distribution 

to other probability models, properties of the hypergeometric distribution, kindred 

hypergeometric distributions and statistical inference involving the hypergeometric 

distribution. As a result of examining literature, there were two articles that stood out. 

The first was an article by Walton (1986) on the number of observed classes from a 

subdivided population and the second was by Charlambides (2005) who looked at with 

replacement sampling from a subdivided population until a particular number of classes 

had been seen. We will extend the work of Walton to a sequential sampling method and 
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modify the work of Charlambides for without replacement sampling and extend it to a 

sequential sampling method as well.  
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2. DETERMINING A SURVIVING SUBPOPULATION USING SEQUENTIAL 

SAMPLING 

 Consider a population of size N, the members of which are divided into k classes. 

If sampling is conducted without replacement from the population, the question, “How 

many classes have been observed in this sample?” can be posed. This question is 

addressed by Walton (1986) in his article The Number of Observed Classes From a 

Multiple Hypergeometric Distribution. Walton built on the work of Emigh (1983) who 

answered the corresponding question when the sampling is done with replacement.  

 By understanding what Walton developed, we will extend his ideas to answer 

further questions regarding sampling without replacement from a population composed of 

k categories. For example, this idea could be thought of as the distribution of colors 

within a bag of candy or the distribution of colored balls in an urn. Suppose that a bag of 

chocolate candy has pieces that are blue, red, brown, yellow and orange. If a small bag 

has 4 blue, 6 red, 2 brown, 3 yellow and 5 orange, Walton’s methods can be used to 

determine the probability that only red, yellow and orange are seen in a selection of size 

8.  

 Similar to Walton’s notation, consider a population that is made up of 𝑁1 

members and divided into k categories of sizes 𝑁𝑖 where 𝑖 = 1,2, … , 𝑘 and ∑𝑁𝑖 = 𝑁1. 

We will use superscripts to denote the stages of sampling iteration, the meaning of which 

will become clear. Also, let m denote the number of observed classes in the sample. This 
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is actually the variable we seek to explore. Here, 𝑁1 and k are both fixed values. 

However, the range of values of m depends on the sample size taken from the population. 

For example, if a population of size 20 were divided into 6 subcategories, it would be 

impossible for all 6 categories to be observed in only 4 draws.  

 If samples of size n are being taken from a population of size 𝑁1, then the total 

number of ways this can be done is given by the combination, (𝑁1

𝑛
). Also, because the 

sampling is being conducted without replacement, and the population is divided into 

distinct categories, the counts of the number of members per class has a multivariate 

hypergeometric distribution. Walton uses the notation 𝑀(𝑛, 𝑚, 𝑁) to denote the total 

number of potential samples of size n in which m classes are observed. Thus, simply 

stated, the distribution of the number of classes represented (X) in a sample of size n is 

given by: 

𝑃(𝑋 = 𝑚|𝑁, 𝑛) =
𝑀(𝑛,𝑚,𝑁)

(𝑁
𝑛)

. 

 The question now becomes, how can 𝑀(𝑛, 𝑚, 𝑁) be calculated? Walton re-

expresses 𝑀(𝑛, 𝑚, 𝑁) using a list denoted as C and a function he denotes as U. Using 

those, he is able to rewrite the above probability function as: 

𝑃(𝑋 = 𝑚|𝑁, 𝑛) =
∑ ( 𝑘−𝑖

𝑘−𝑚
)(−1)𝑚−𝑖𝑈(𝑛, 𝑖, 𝑁)𝑚

𝑖=1

(𝑁
𝑛

)
 

where 𝑈(𝑛, 𝑖, 𝑁) = ∑ (𝑋
𝑛

)𝑋∈𝐶𝑖(𝑁)  and 𝐶𝑖(𝑁) lists all possible sums that are formed when 

taking 𝑖 objects from N=[𝑁1  𝑁2   𝑁3   …   𝑁𝑘]. Understanding the above expression for 
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𝑀(𝑛, 𝑚, 𝑁), and most importantly the 𝐶 and 𝑈 functions, is most easily done by looking 

at an example.  

 To do so, consider a population of size 𝑁 = 10 divided into 𝑘 = 4 subcategories. 

Assume that the original distribution of N is given to be 

𝑁 = [1    2    3    4]. 

The above notation is used to show the number of members in each of the 𝑘 = 4 

categories. That is, category one has 1 member, category two has 2, category three has 3 

and category four has 4. Now, using what Walton defines to be the 𝐶 function, 𝐶𝑖, 𝑖 =

1, … , 𝑘 , each of the 𝐶𝑖’s can be calculated by adding all possible groups of size 𝑖 to form 

a collection of sums. For example, 𝐶1 takes all groups of size 1 and creates a new set 

comprised of their possible cardinalities. This is equivalent to the original population 

distribution. So 𝐶1 = [1, 2, 3, 4]. Using the same logic, 𝐶2 adds the cardinalities of all 

groups of size two from the original population to create a new set. In other words, 𝐶2 

gives the sum of the number of elements in all (4
2
) combinations of the original 

population distribution. By calculating the six sums, we see that 𝐶2 = [3, 4, 5, 5, 6, 7]. 

These elements are a result of the sums 1 + 2, 1 + 3, 1 + 4, 2 + 3, 2 + 4, and 3 + 4. 

Similarly, 𝐶3 can be calculated by adding all the cardinalities of the elements comprising 

the possible (4
3
) groups of 3 from the original population distribution.  Calculating the 

four sums (1 + 2 + 3, 1 + 2 + 4, 1 + 3 + 4, and 2 + 3 + 4) results in 𝐶3 = [6, 7, 8, 9]. 

Similarly, there is only one possible way to add all the elements together to obtain 𝐶4. 
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Thus, 𝐶4 is simply the sum of the category sizes in N, the population size, and in this 

case, 𝐶4 = [10].  

 Now that each value of 𝐶𝑖 has been calculated for the example, the 𝑈 function can 

be used to create a table of values that will later be used in the calculation of 𝑀(𝑛, 𝑚, 𝑁). 

The 𝑈 function sums combinatorial terms according to a particular value of 𝐶𝑖. In this 

example, 𝑛 = 1, … , 10 while 𝑖 = 1, … , 4. The following table consists of all the values of 

𝑈 for all combinations of 𝑛 and 𝑖. To illustrate what is being calculated in the table below 

let’s look at 𝑈(3, 2, 10). Using the formula given by Walton,  

𝑈(3, 2, 10) = ∑ (
𝑋

3
)

𝑋∈𝐶2(𝑁)

 

= (
3

3
) + (

4

3
) + (

5

3
) + (

5

3
) + (

6

3
) + (

7

3
) 

= 1 + 4 + 10 + 10 + 20 + 35 

= 80. 

Each of the forty calculations below were done in the same way to find the values of 

𝑈(𝑛, 𝑖, 𝑁). 
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n i=1 i=2 i=3 i=4 

1 10 30 30 10 

2 10 65 100 45 

3 5 80 195 120 

4 1 61 246 210 

5 0 29 209 252 

6 0 8 120 210 

7 0 1 45 120 

8 0 0 10 45 

9 0 0 1 10 

10 0 0 0 1 

Table 2: U(n, i, N) for Original Population 

 The two above components, the 𝐶 and 𝑈 functions, can then be used to calculate 

the values of 𝑀(𝑛, 𝑚, 𝑁) needed to finally calculate the probability that a particular 

number of classes are observed in a sample of size 𝑛. 

 The values of 𝑀(𝑛, 𝑚, 𝑁) can also be summarized in a table like the one above. 

The values of 𝑀(𝑛, 𝑚, 𝑁) for this example are: 

n m=1  m=2 m=3 m=4 

1 10 0 0 0 

2 10 35 0 0 

3 5 65 50 0 

4 1 58 127 24 

5 0 29 151 72 

6 0 8 104 98 

7 0 1 43 76 

8 0 0 10 35 

9 0 0 1 9 

10 0 0 0 1 

Table 3: M(n, m, N) for Original Population 
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 Notice here that each of the rows in the table sum to (𝑁
𝑛

).  Thus, for any given n, 

the values above are divided by (𝑁
𝑛

) to calculate the probability that a particular number 

of classes, 1 through 4, are observed in 𝑛 draws.  

 From this point forward, the notation of Walton (1986) will still be used, but his 

investigation is being extended. Walton looked only at this process being iterated a single 

time. We will extend his work to an iterated process where a rule is put in place that 

governs the size of the sample taken in each iteration. 

 Now that Walton’s notation has been explained, consider iterating a process of 

this nature until a single subgroup of the original population “survives” and each of the 

𝑘 − 1 other subcategories “dies out” and has no representation. To explore this scenario, 

we establish a sampling rule. This sampling protocol regulates the number of draws taken 

in each iteration of the process. One possible way to define a sampling rule is to base it 

on percentages. In this way, the rule is defined to be that 100p% of the original 

population is collected for the first sample. This process is continued and the subsequent 

sample sizes are just 100p% of the previous sample each time. In cases where our sample 

size is a non-integer, we take the convention of rounding up to the nearest integer. 

 Using the example from above, where a population of size 10 is divided into 4 

distinct subgroups, a selection rule can be established so that, in each iteration, 50% of 

the previous group is taken. Thus, the first sample taken from the population would be of 

size 5, because 50% applied to the population size of 10 results in 5 (𝑁1 = 5). Our 

question then becomes, what is the likelihood that there would only be one surviving 
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subcategory after each sampling iteration? In the case of this example, because the 

original population distribution is [1, 2, 3, 4], if 5 samples were taken in stage 1, there is 

no chance of observing only one class, or one subgroup being the “winner” or “survivor” 

after one stage of sequential sampling.  

 So, the question becomes, what is the chance that there is one remaining 

subcategory after two stages of sampling? For this example, stage 2 of the sampling 

would sample 50% of the 5 items taken during stage one. Because 50% of 5 comes out to 

be 2.5, the sample size for the second iteration of sampling would be rounded up to 3. 

That is, utilizing previously defined notation, 𝑁2 = 3.  In order to illustrate how 

calculations would be performed in this case, a simulation can be done to see which 

subcategories remained occupied after the first stage of sampling. Realize here, it is 

possible for each of the 4 subgroups to be represented after the first stage of sampling, 

but it is also possible that only 2 of the 4 subgroups are represented after the first stage of 

sampling. To simulate the sampling, a simulation using the R computing environment 

will be done in which the member of subgroup one is labeled as element 1, the members 

of subgroup two are labeled as elements 2 and 3, the members of subgroup three are 

labeled as elements 4, 5, and 6 and the members of subgroup four are labeled as elements 

7, 8, 9, and 10.  

 Selecting a sample of 5 from the original population, labeled 1-10, resulted in the 

computer simulated sample [1, 4, 6, 7, 10] which means that categories 1, 3, and 4 are all 

still represented after the first stage of sampling. The question of how likely it is that 2, 3, 
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or 4 categories are represented after the first stage could also be posed. This question can 

be answered also by applying Walton’s formula to the original sample. Because the chart 

for all possible values of 𝑀(𝑛, 𝑚, 𝑁), where 𝑁 = 10, has already been constructed, 

calculating the probability that 2, 3 or 4 s are occupied after a sample of size 5 is taken 

from the population is simply putting the corresponding value of 𝑀 into the formula  

𝑃(𝑋 = 𝑚|𝑛, 𝑁) =
𝑀(𝑛, 𝑚, 𝑁)

(𝑁
𝑛

)
. 

Thus, the probability that when sampling 5 objects from the original 10, only 2 of the 

subcategories are still occupied is:  

𝑃(𝑋 = 2|5, 10) =
𝑀(5,2,10)

(10
5

)
=

29

252
≈ 0.115 

The probability that 3 of the subcategories are still occupied, as in the R simulated 

example, is:  

𝑃(𝑋 = 3|5, 10) =
𝑀(5,3,10)

(10
5

)
=

151

252
≈ 0.599 

And the probability that all 4 of the subcategories are still occupied is:  

𝑃(𝑋 = 4|5, 10) =
𝑀(5,4,10)

(10
5

)
=

72

252
≈ 0.286 

 Now, focusing on the R simulated example where subcategories 1, 3 and 4 are 

still occupied after the first stage of sampling, the question now becomes one of how 

likely it is that in the second stage of sampling only 1 subcategory remains occupied and 

can be declared the winner or survivor. Essentially, what has happened after the first 



 43 

stage of sampling is that the population has been reduced by 50%, so the population size 

is now 5 (𝑁2 = 5) for calculation purposes. Similarly, the number of subgroups has been 

reduced from 4 to only 3.   

 The 𝐶 and 𝑈 functions calculated for the original population must now be 

calculated again with 𝑁2 = 5 and 𝑘 = 3. The number of elements in subgroup one is still 

1 (𝑁1 = 1), the number in subgroup three is 2 (𝑁3 = 2) and the number in subgroup four 

is also 2 (𝑁4 = 2). The population can now be represented as  

[1   −     2     2]. 

Thus, 𝐶1 = [1, 2, 2], 𝐶2 = [3, 3, 4], and 𝐶3 = [5]. The values of 𝑈 can once again be 

summarized in the following table of values: 

n i=1 i=2 i=3 

1 5 10 5 

2 2 12 10 

3 0 6 10 

4 0 1 5 

5 0 0 1 

Table 4: U(n, i, N) for Iteration Two 

 Thus, using the above values of 𝑈, a corresponding table of values for 𝑀(𝑛, 𝑛, 𝑁) 

can be made: 

n m=1 m=2 m=3 

1 5 0 0 

2 2 8 0 

3 0 6 4 

4 0 1 4 

5 0 0 1 

Table 5: M(n, m, N) for Iteration Two 
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 In order to find the probability that only 1 subcategory remains occupied after 

selecting 3 objects from the 5 remaining, the only value of M needed is 𝑀(3, 1, 5) = 0. 

This is because the remaining filled subcategories each have less than 3 members. Thus, 

there is no chance that a winner is chosen after 2 stages for this example.  

 Using R once again to simulate the sampling in stage two, three elements will be 

taken without replacement from the five elements left after stage one, [1, 4, 6, 7, 10]. The 

3 elements in the sample above were [6, 7, 10] which means that subgroups 3 and 4 are 

both still represented. The probability that two subcategories remained occupied from this 

stage of sampling can be found from the above tables to be:  

𝑃(𝑋 = 2|3, 5) =
𝑀(3,2,5)

(5
3
)

=
6

10
=

3

5
= 0.6. 

 At this point, a third stage of sampling would occur where 2 items are sampled 

from the three remaining. Now, only two subgroups remain and the population size has 

been reduced to three items only. Because subgroup 3 has one member and subgroup 4 

has two members, 𝐶1 = [1, 2] and 𝐶2 = [3]. Thus, the values of 𝑈 can be found to be:  

n i=1 i=2 

1 3 3 

2 1 3 

3 0 1 

Table 6: U(n, i, N) for Iteration Three 

And the values of 𝑀(𝑛, 𝑚, 𝑁) can be found to be:  
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n m=1 m=2 

1 3 0 

2 1 2 

3 0 1 

Table 7: M(n, m, N) for Iteration Three 

 The next round of sampling will select 2 items from the three left (𝑁3 = 2), and 

the probability that one subcategory remains is given to be  

𝑃(𝑋 = 1|2,3) =
𝑀(2,1,3)

(3
2
)

=
1

3
≈ 0.333. 

Using R to simulate the drawing of two items from the remaining three, gives that 

elements 6 and 7 both remain and thus, subcategories 3 and 4 are still both occupied. This 

occurs with probability 

𝑃(𝑋 = 2|2, 3) =
𝑀(2, 2,3)

(3
2
)

=
2

3
≈ 0.667. 

 In the fourth and final sampling stage a final category will be chosen in a single 

draw from the two remaining subcategories (𝑁4 = 1). At this point, it can be clearly 

seen, that with two equally likely subcategories, the probability that category 3 is the 

ultimate “winner” (𝑃(𝑋 = 1|1,2)) is 
1

2
 and the probability that subcategory 4 is the 

ultimate “winner” (𝑃(𝑋 = 1|1,2)) is also 
1

2
. Using R to simulate the results, number 6 

was drawn first and thus it was determined that subcategory 3 is the ultimate winner in 

this simulation.  

 At this point, we can calculate the probability that the sequential sampling were to 

turn out just as it did in the R simulation. Because each probability depends on the 
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population size, sample size and the number of observed classes, there are multiple ways 

to have subcategory 3 win in four sampling stages. Thus, only the probability that the 

subcategory 3 wins from the above iterations will be considered. When only considering 

one of the ways for subcategory 3 to win in four sampling stages, the probabilities 

calculated above can be multiplied to find the probability that things turned out exactly as 

R simulated. Thus,  

𝑃(𝑐𝑒𝑙𝑙 3 𝑤𝑖𝑛𝑠|𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑎𝑏𝑜𝑣𝑒)

= 𝑃(𝑋 = 3|5, 10) ∗ 𝑃(𝑋 = 2|3, 5) ∗ 𝑃(𝑋 = 2|2, 3) ∗ 𝑃(𝑋 = 1|1,2) 

= 0.599 ∗ 0.6 ∗ 0.667 ∗ 0.5 

= .12. 

 Other questions of interest that are not within the scope of this thesis are questions 

such as, what is the probability that subcategory three is the winner without specifying 

the number of rounds required? Or, what is the probability that four stages are required? 

Or, only two stages are required? These questions, while directly related to the above, 

prove to be more complex to answer. In order to consider these questions, other questions 

such as, “how many possible ways are there for subcategory three to win?” must be 

considered. Because of the more complex nature, this is left for future investigations and 

is not covered at the present time. 

 The question now becomes, where can this be used? Though this concept is not 

widely used in literature, we believe that this idea can be applied in many different fields. 

There are many different processes, contests and elementary ideas such as the balls in 
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boxes and drawing of colored candy that can be represented by this type of process. With 

different selection rules in place, the applicability of this process becomes more evident. 

Some more specific applications that came to mind during this investigation were the 

selection of a particular Senator or House of Representative member to serve on a 

committee or something of similar nature. Also, with a sampling rule not based on 

percentages this could be applied to selecting student test scores at random to evaluate 

school performance.  

 After evaluating the work of Walton and extending it to a sequential sampling 

idea, we began to wonder what other questions can be asked in reference to subdivided 

populations and sequential sampling? This led us to the idea of sampling from a 

subdivided population until at least one item was in each category. This is similar to the 

relationship between the standard hypergeometric and negative hypergeometric in that in 

Walton’s case, the sample size was fixed, and in this new idea, our sample size is a 

random variable. This new idea is explained in Chapter 3. 
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3. SEQUENTIAL SAMPLING TO ACHIEVE COMPLETE REPRESENTATION 

OF SUBPOPULATIONS 

 Charlambides (2005) presents a sequential random occupancy model for sampling 

with replacement from an infinite population. Charlambides does so by using the 

illustration of balls in urns, and this illustration will be carried through this section to 

describe the selection process. While Charlambides is concerned with sampling with 

replacement, we will modify his sequential random occupancy model in order to model 

the case of sampling without replacement. This will be done by looking first at the 

notation introduced by Charlambides, explaining it, and then presenting the modifications 

for sampling without replacement.  

 Once Charlambides’ notation has been modified to the sampling without 

replacement case, the goal is to iterate this sampling scheme in order to have only one 

ball in each subcategory at the end of the process. This is the notion of complete 

representation of each subpopulation. In accomplishing this, the question “How many 

balls must be sampled in order to see at least one ball in each subcategory?” will be asked 

multiple times. This question is motivation to achieve our complete representation of the 

subcategories by iteratively sampling and achieving one ball in each subcategory.  

3.1: Development and Modification of Charlambides Notation for Sampling 

Without Replacement 

 To modify the idea introduced by Charlambides, consider a population of size N, 



 49 

divided into k subcategories of size 𝑁1, 𝑁2, … , 𝑁𝑘 where ∑ 𝑁𝑖
𝑘
𝑖=1 = 𝑁1. Suppose the balls 

are selected from the population one at a time, without replacement. Let the total number 

of balls drawn from the urn at any one time be n. Now, let 𝑊𝑘 denote the number of balls 

that must be drawn in order for all k urns to be occupied. Also, let M be the number of 

occupied urns after n draws from the population of size N. The probability 𝑃(𝑀 = 𝑚) ≡

𝑝𝑚(𝑛, 𝑘) where 𝑚 = 1,2, … , 𝑘  can be found by using the complement rule. Define 𝐴𝑖 to 

be the event in which the 𝑖𝑡ℎ urn remains empty. Then, the probability that M urns are 

occupied is equivalent to the probability that 𝑘 − 𝑚 of the events 𝐴𝑖, 𝑖 = 1, … , 𝑘 occur, or 

that k-m urns remain empty after n draws.  

 Charlambides chooses to denote the events 𝐴𝑖 with a double subscript where the 

first subscript indicates a particular subcategory and the second provides a count from 1 

to r of the r events of concern. When sampling with replacement, Charlambides gives that 

the probability of selecting a particular ball on any particular draw as 𝑝𝑗. Then using the 

complement rule, Charlambides shows that  

𝑃(𝐴𝑖1, 𝐴𝑖2, … , 𝐴𝑖𝑟) = (1 − 𝑝𝑖1 − 𝑝𝑖2 − ⋯ − 𝑝𝑖𝑟)𝑛 = (𝑝𝑗1 + 𝑝𝑗2 + ⋯ + 𝑝𝑗,𝑘−𝑟)
𝑛

 

where the j’s just indicate the remaining k-r cells.  

 The above can now be modified to calculate the probability of r specific cells 

being selected when sampling without replacement. Just as Charlambides did when 

sampling with replacement, we will use the complement rule to give the probability that 

k-r urns remain empty after n draws. The fact that the sampling is being done without 
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replacement gives rise to the hypergeometric structure. Instead of using Charlambides’ 

double subscripted notation, we will instead denote the number of elements in the 𝑘 − 𝑟 

filled cells as 𝑁𝑓𝑖
, 𝑖 = 1, … , 𝑘 − 𝑟 and denote the number of elements in the 𝑟 empty cells 

as 𝑁𝑒𝑗
 where 𝑗 = 1, … , 𝑟. There are (𝑁

𝑛
) possible ways to select n items from a population 

of N, and more specifically (𝑁𝑒1+𝑁𝑒2+⋯+𝑁𝑒𝑟
𝑛

) ways for the n items selected to come from 

a particular group of r empty cells. However, because the events 𝐴𝑖 mean that a cell 

remains empty rather than filled, the complement rule can then be applied or we can 

instead look at the filled cells rather than the empty. Thus, the probability that 𝑘 − 𝑟 

particular cells are filled (𝑟 cells remain empty) when choosing items without 

replacement is given by 

𝑃(𝐴𝑒1
, 𝐴𝑒2

, … , 𝐴𝑒𝑟
) =

(𝑁𝑒1+𝑁𝑒2+⋯+𝑁𝑒𝑟
𝑛

)

(𝑁
𝑛

)
=

(𝑁𝑓1+𝑁𝑓2+⋯+𝑁𝑓𝑘−𝑟
𝑛

)

(𝑁
𝑛

)
. 

 Referring back to the work of Charlambides when sampling with replacement, a 

sum over all combinations of size 𝑘 − 𝑟 can be defined as 

𝑆𝑘,𝑟 = ∑(𝑝𝑗1 + 𝑝𝑗2 + ⋯ + 𝑝𝑗,𝑘−𝑟)
𝑛

. 

From the modification of 𝑃(𝐴𝑒1
, 𝐴𝑒2

, … , 𝐴𝑒𝑟
) given above we can see that when sampling 

without replacement 𝑆𝑘,𝑟 becomes 

𝑆𝑘,𝑟 = ∑
(𝑁𝑓1+𝑁𝑓2+⋯+𝑁𝑓𝑘−𝑟

𝑛
)

(𝑁
𝑛

)
. 
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Notice, the expression for 𝑆𝑘,𝑟 when sampling with replacement involves the power n. 

This power is no longer needed in our modification because the combinatorial term in the 

numerator incorporates the effect of sampling without replacement.  

 At this point, it is important to recall the inclusion-exclusion principle for the 

purpose of counting the number of elements in the union of a fixed number of sets. To 

begin, we sum all of the elements in the individual sets that comprise the union. From this 

sum, the cardinality of all the even-way intersections is subtracted (exclusion) while the 

cardinality of all odd-way intersections is added (inclusion). By applying the inclusion 

exclusion principle, Charlambides gives that the probability 𝑃(𝑀 = 𝑚) ≡ 𝑝𝑚(𝑛, 𝑘) can 

be given by the mass function, where 𝑚 = 1,2, … , 𝑘, 

𝑝𝑚(𝑛, 𝑘) = ∑(−1)𝑚−𝑟 (
𝑘 − 𝑟

𝑚 − 𝑟
) 𝑆𝑘,𝑘−𝑟

𝑚

𝑟=0

. 

 Using the above, Charlambides shows that 𝑃𝑚(𝑛, 𝑘) ≡ 𝑃(𝑀 ≤ 𝑚) can be given 

by the following where 𝑚 = 1,2, … , 𝑘: 

𝑃𝑚(𝑛, 𝑘) = ∑(−1)𝑚−𝑟 (
𝑘 − 𝑟 − 1

𝑘 − 𝑚 − 1
)

𝑚

𝑟=0

𝑆𝑘,𝑘−𝑟 . 

 Similar to 𝑊𝑘, define 𝑊𝑚 to be the number of balls that are sampled until 𝑚 ≤ 𝑘 

urns are occupied. The probability distribution of 𝑊𝑚 can be found by using the above 

result to see that  

𝑃𝑚(𝑛, 𝑘) = 𝑃(𝑀 ≤ 𝑚|𝑆𝑘 = 𝑛) = ∑(−1)𝑚−𝑟 (
𝑘 − 𝑟 − 1

𝑚 − 𝑟 − 1
) 𝑆𝑘,𝑘−𝑟

𝑚

𝑟=0
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where 𝑆𝑘,𝑘−𝑟 is defined earlier, recalling that n is the number of balls sampled, k is the 

number of urns, and m indicates the number of occupied urns. Charlambides further 

shows that using 𝑃𝑚(𝑛, 𝑘), the probability that n draws are required in order to have m 

occupied urns (𝑊𝑚) when sampling with replacement is 

𝑞𝑛(𝑚, 𝑘) = 𝑃𝑚−1(𝑛 − 1, 𝑘) − 𝑃𝑚−1(𝑛, 𝑘) = ∑ (−1)𝑚−𝑟−1 (
𝑘 − 𝑟 − 1

𝑚 − 𝑟 − 1
) 𝑇𝑘,𝑘−𝑟

𝑚−1

𝑟=0

 

where 𝑇𝑘,𝑘−𝑟 is given by 

𝑇𝑘,𝑘−𝑟 = ∑[1 − (𝑝𝑗1 + 𝑝𝑗2 + ⋯ + 𝑝𝑗𝑟)](𝑝𝑗1 + 𝑝𝑗2 + ⋯ + 𝑝𝑗𝑟)
𝑛−1

, 

where the sum is taken over all combinations of size 𝑟. 

 Recall that the difference of two binomial probabilities can at times result in a 

negative binomial probability. To aid in understanding the equation 𝑞𝑛(𝑚, 𝑘) =

𝑃𝑚−1(𝑛 − 1, 𝑘) − 𝑃𝑚−1(𝑛, 𝑘), consider the question, “What is the chance that four flips 

of a coin are required to see three heads for the first time?” We will use the above 

definition of q to answer this question. For our illustration, 𝑚 = 3 for the three heads that 

are desired, so 𝑚 − 1 = 2 and 𝑛 = 4 for the number of flips required, thus 𝑛 − 1 = 3. 

Thus, 𝑃𝑚−1(𝑛 − 1, 𝑘) represents the probability that there are two or less heads in three 

trials. There are eight possible outcomes for three coin flips: {HHH, HHT, HTH, HTT, 

TTT, TTH, THT, THH}. We can see that seven out of those eight {HHT, HTH, HTT, 

TTT, TTH, THT, THH} indicate that there were two or less heads in three trials. So, 

𝑃𝑚−1(𝑛 − 1, 𝑘) = 𝑃2(3, 𝑘) =
7

8
. Now, we must find the chance that there are two or less 
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heads in four trials to calculate 𝑃𝑚−1(𝑛, 𝑘) = 𝑃2(4, 𝑘). There are sixteen possible 

outcomes for flipping four coins given by {HHHH, HHHT, HHTH, HHTT, HTHH, 

HTHT, THHH, THHT, HTTH, HTTT, TTTH, TTTT, TTHH, TTHT, THTH, THTT}. 

We can see that eleven out of those sixteen {HHTT, HTHT, THHT, HTTH, HTTT, 

TTTH, TTTT, TTHH, TTHT, THTH, THTT} have at most two heads in four trials. Thus 

𝑃𝑚−1(𝑛, 𝑘) for our problem is given by 𝑃𝑚−1(𝑛, 𝑘) = 𝑃2(4, 𝑘) =
11

16
. Subtracting these 

two probabilities results in 𝑞𝑛(𝑚, 𝑘) = 𝑞4(3, 𝑘) =
7

8
−

11

16
=

3

16
. To show this is equivalent 

to a negative binomial probability as stated above, consider the probability that we have 

two heads in the first three flips given by: (3
2
) (

1

2
)

2

(
1

2
) =

3

8
 and the probability that we 

flip a head on the fourth flip, in order to have three heads for the first time in exactly four 

flips, given by 
1

2
. Multiplying the two together gives the negative binomial probability 

that it takes exactly four flips to result in three heads for the first time, and the probability 

is 
3

16
 which is equivalent to that found by using the definition of the q function provided 

earlier.  

 In order to modify the T function given earlier for sampling without replacement, 

we will focus on the fact just illustrated that 

𝑞𝑛(𝑚, 𝑘) = 𝑃𝑚−1(𝑛 − 1, 𝑘) − 𝑃𝑚−1(𝑛, 𝑘). 

We will use the definitions of 𝑃𝑚(𝑛, 𝑘) and 𝑆𝑘,𝑘−𝑟 for without replacement sampling 

given earlier, to rewrite the above subtraction. This gives 
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𝑞𝑛(𝑚, 𝑘) = ∑ (−1)𝑚−1−𝑟 (
𝑘 − 𝑟 − 1

𝑘 − 𝑚
)

𝑚−1

𝑟=0

[∑
(

𝑁𝑓1
+𝑁𝑓2

+⋯+𝑁𝑓𝑟
𝑛−1

)

( 𝑁
𝑛−1

)
]

− ∑ (−1)𝑚−1−𝑟 (
𝑘 − 𝑟 − 1

𝑘 − 𝑚
)

𝑚−1

𝑟=0

[∑
(𝑁𝑓1+𝑁𝑓2+⋯+𝑁𝑓𝑟

𝑛
)

(𝑁
𝑛

)
], 

where the sums inside the brackets are taken over all combinations of size 𝑟. 

 Factoring out the common terms, we can deal now with simplifying 

(
𝑁𝑓1+𝑁𝑓2+⋯+𝑁𝑓𝑟

𝑛−1
)

( 𝑁
𝑛−1

)
−

(𝑁𝑓1+𝑁𝑓2+⋯+𝑁𝑓𝑟
𝑛

)

(𝑁
𝑛

)
. 

By writing out the combinatorial terms and multiplying by “convenient one” terms, the 

above can be shown to be  

(
𝑁𝑓1+𝑁𝑓2+⋯+𝑁𝑓𝑟

𝑛−1
)

( 𝑁
𝑛−1

)
∗

𝑁 − (𝑁𝑓1
+ 𝑁𝑓2

+ ⋯ + 𝑁𝑓𝑟
)

𝑁 − 𝑛 + 1
. 

Putting it all together, we have shown that for sampling without replacement, 𝑞𝑛(𝑛, 𝑘) = 

∑ (−1)𝑚−𝑟−1 (
𝑘 − 𝑟 − 1

𝑘 − 𝑚
) [∑

(
𝑁𝑓1+𝑁𝑓2+⋯+𝑁𝑓𝑟

𝑛−1
)

( 𝑁
𝑛−1

)
∗

𝑁 − (𝑁𝑓1
+ 𝑁𝑓2

+ ⋯ + 𝑁𝑓𝑟
)

𝑁 − 𝑛 + 1
]

𝑚−1

𝑟=0

. 

So, by definition of 𝑞𝑛(𝑚, 𝑘) given above we can see that in the case of sampling without 

replacement,  

𝑇𝑘,𝑘−𝑟 = ∑
(

𝑁𝑓1
+𝑁𝑓2

+⋯+𝑁𝑓𝑟
𝑛−1

)

( 𝑁
𝑛−1

)
∗

𝑁 − (𝑁𝑓1
+ 𝑁𝑓2

+ ⋯ + 𝑁𝑓𝑟
)

𝑁 − 𝑛 + 1
. 
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 The above can now be used to calculate the probability that we require n draws to 

occupy m urns. For our specific problem, the idea is focused on finding the probability 

that n draws are required to occupy all of the k urns.  

 Recall the T function without replacement defined earlier,  

𝑇𝑘,𝑘−𝑟 = ∑[1 − (𝑝𝑗1 + 𝑝𝑗2 + ⋯ + 𝑝𝑗𝑟)](𝑝𝑗1 + 𝑝𝑗2 + ⋯ + 𝑝𝑗𝑟)
𝑛−1

. 

Notice that the T function when sampling with replacement has geometric structure. This 

relates to the geometric mass function because the idea is waiting on the first success 

after a particular number of successes have been observed. Recall, the geometric mass 

function is a particular case of the negative binomial distribution. Thus, extending this 

idea to sampling without replacement, the structure of the T function, given below, is 

now negative hypergeometric.  

 All of the prior development allows us to use the equation 

𝑞𝑛(𝑚, 𝑘) = ∑ (−1)𝑚−𝑟−1 (
𝑘 − 𝑟 − 1

𝑚 − 𝑟 − 1
) 𝑇𝑘,𝑘−𝑟

𝑚−1

𝑟=0

, 

where 

𝑇𝑘,𝑘−𝑟 = ∑
(

𝑁𝑓1+𝑁𝑓2+⋯+𝑁𝑓𝑟
𝑛−1

)

( 𝑁
𝑛−1

)
∗

𝑁 − (𝑁𝑓1
+ 𝑁𝑓2

+ ⋯ + 𝑁𝑓𝑟
)

𝑁 − 𝑛 + 1
. 

These equations will be used to answer the question, “When sampling without 

replacement, what is the probability that all k urns are occupied after n draws?” At this 

point, the sequential sampling can be done and the above question can be asked at each 
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stage until only one ball remains in each urn. This is illustrated in the following 

simulation using the R computing environment. 

3.2: Simulated Example 

 In order to perform calculations in context, R was used to simulate the drawing of 

balls from a subdivided population. The original population for the example consisted of 

𝑁1 = 20 members divided among 6 distinct categories. To visually represent this, 

consider the following graphic:  

  

 

 

 

 

Figure 1: Original Population Distribution 

In cell one there are three members, cell two has four, cell three has two, cell four has 

five, cell five has four and cell six has two members. Thus, we have 𝑁1
1 = 3,  𝑁2

1 =

4, 𝑁3
1 = 2, 𝑁4

1 = 5, 𝑁5
1 = 4 and 𝑁6

1 = 2. This gives the original distribution of the 

population. Say now that balls are drawn one at a time without replacement. The problem 

we choose to explore is sequentially sampling in stages until there is only one member 

remaining in each cell. At this point, all of Charlambides notation has been explained and 

modified to fit our current situation of sampling without replacement. The modified 

equations developed in Section 3.1 will be used to calculate the probabilities for this 

example in Section 3.3.  
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 We will use R to generate random numbers and label the balls so that the balls in 

cell one are labeled 1-3, the balls in cell two are labeled 4-7, the balls in cell three are 

labeled 8-9, the balls in cell four are labeled 10-14, the balls in cell five are labeled 15-18, 

and the balls in cell six are labeled 19-20. The random number sequences determine 

which balls are designated as the representatives for the next round of sampling. R will 

generate the random number sequence for the first round of sampling by giving a random 

permutation of the numbers 1 through 20. Once this sequence is generated, the numbers 

in the sequence tell us which balls to sequentially place in their designated cells. Once 

there is at least one ball in each cell the remaining numbers in the sequence can be 

disregarded. For instance, if R generates the sequence {6, 12, 1, 16, 15, 2, 3, 18, 10, 17, 

14, 7, 20, 9, 19, 8, 4, 5, 13, 11}, call this “Round 1”, or the first iteration, of the process. 

Then using this sequence, balls 19, 8, 4, 5, 13, and 11 can be “thrown out” because it took 

only 14 draws to get at least one ball in each cell. Once ball number 9 was placed in it’s 

corresponding cell, there was at least one ball in each of the six cells, so the sampling 

would stop after 14 draws. Thus, for the purpose of calculations, n=14 in order for all six 

cells to be filled. The resulting cell distribution would be: 

 

  

  

 

Figure 2: Distribution after Iteration One 
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 Now for the second round of sampling, the above cell distribution can now be 

viewed as a “population” itself, the size of which is denoted 𝑁2 = 14. At this point R can 

be used to generate a random sequence of the remaining numbers representing the balls in 

this second round of sampling which are: {6, 12, 1, 16, 15, 2, 3, 18, 10, 17, 14, 7, 20, 9}. 

The resulting sequence from R is {17, 9, 2, 7, 12, 14, 3, 1, 6, 10, 16, 20, 15, 18}. 

Proceeding as before, after ball number 20 is drawn, each cell has at least one member, so 

balls 15 and 18 can be eliminated. This means that modifying the population to be only 

the members left after Round 1, it took 12 draws to see at least one member in each cell 

from our population of size 14. This leaves the following in each of the six cells:  

 

  

 

  

Figure 3: Distribution after Iteration Two 

 Thus, it can be seen that 𝑁3 = 12. Similarly, repeating the process once more, R 

generates the following sequence from the remaining balls above: {6, 7, 9, 17, 20, 2, 16, 

3, 1, 12, 10, 14}. It is easily seen that after modifying the population to be only the 

members left after round two of sampling, it only took n=10 draws to get at least one 

member in each cell. In this sequence 10 and 14 can be eliminated leaving the following 

distribution of balls:  
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Figure 4: Distribution after Iteration Three 

 Now, 𝑁4 = 10 and the next sequence (excluding now 10 and 14) generated from 

R is: {6, 16, 12, 17, 2, 20, 9, 7, 3, 1}, that means balls 6, 16, 12, 17, 2, 20 and 9 are 

placed into their corresponding cells and 7, 3, and 1 can be eliminated. We can see that in 

this case n=7 and the remaining balls are distributed as follows: 

      

Figure 5: Distribution after Iteration 4, 5, and 6 

 The next three sequences generated from R result in the same distribution as in 

Round 4. That is, 𝑁5 = 𝑁6 = 𝑁7 = 7. On the 8th round of sampling, ball 17 is 

eliminated leaving only {2, 6, 9, 12, 16, 20} as the “winning” representations from each 

subcategory.  

3.3: Probability Calculations 

 This example from Section 3.2 shows that for this particular case it took 8 rounds 

of sampling to achieve the situation where there was exactly one ball in each of the six 

cells. The question is then, what is the probability that this would have been the result? 

Or we could ask questions such as what is the probability that the desired result would 

have been achieved on the first round of draws?  
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 This question, along with others, can be answered by referring to the 

modifications of Charlambides’ work given in Section 3.1. In order to find the probability 

that all k=6 cells, in the case of the example, are occupied in a particular number of trials, 

n, we can use the equation for 𝑞𝑛(𝑚, 𝑘), where both m and k are given to be 6. It is 

important to note that while the initial population size is given to be 20, each time the 

sampling is done, members of the initial population are being “thrown out” once the 

desired “at least one in each” distribution is drawn/simulated.  

 Using the above example to illustrate the calculations, it must be carefully noted 

which iteration of the sampling is being conducted. The example is one of sequential 

sampling where the sampling scheme is the same at each stage, namely to sample until at 

least one member of each category is seen. Since the desire is to have a representative 

from each subcategory, these extra members are not needed.  

 Looking at the first iteration of the process, it can be seen that 14 draws were 

required to see at least one member in each cell. The probability that all 6 cells are 

occupied after 14 draws can be found using the equation for q given in Section 3.1 where 

T has been modified for sampling without replacement, 

𝑞𝑛(𝑚, 𝑘) = ∑ (−1)𝑚−𝑟−1 (
𝑘 − 𝑟 − 1

𝑚 − 𝑟 − 1
) 𝑇𝑘,𝑘−𝑟 = 𝑇6,1 − 𝑇6,2 + 𝑇6,3 − 𝑇6,4 + 𝑇6,5 − 𝑇6,6

𝑚−1

𝑟=0

. 

In this case, 𝑚 = 𝑘 = 6, and the combinatorial term in the equation reduces to 1. Thus 

the equation of interest for Round 1 is:  
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𝑞14(6,6) = ∑(−1)6−𝑟−1

5

𝑟=0

𝑇6,6−𝑟. 

The probability that all 6 cells are occupied after 14 draws can be found using the 

formula established in Section 3.1 for T: 

𝑇𝑘,𝑘−𝑟 = ∑
(

𝑁𝑓1+𝑁𝑓2+⋯+𝑁𝑓𝑟
𝑛−1

)

( 𝑁
𝑛−1

)
∗

𝑁 − (𝑁𝑓1
+ 𝑁𝑓2

+ ⋯ + 𝑁𝑓𝑟
)

𝑁 − 𝑛 + 1
. 

The resulting calculations for 𝑞14(6,6) are as follows: 

𝑞14(6,6)

= (−1)5
( 0

13
)20

(20
13

)7
+ (−1)4

2( 2
13

)18 + ( 3
13

)17 + 2( 4
13

)16 + ( 5
13

)15

(20
13

)7

+ (−1)3
( 4

13
)16 + 2( 5

13
)15 + 4( 6

13
)14 + 4( 7

13
)13 + 2( 8

13
)12 + 2( 9

13
)11

(20
13

)7

+ (−1)2
( 7

13
)13 + 2( 8

13
)12 + 5( 9

13
)11 + 4(10

13
)10 + 5(11

13
)9 + 2(12

13
)8 + (13

13
)7

(20
13

)7

+ (−1)1
2(11

13
)9 + 2(12

13
)8 + 4(13

13
)7 + 4(14

13
)6 + 2(15

13
)5 + (16

13
)

(20
13

)7
4

+ (−1)0
(15

13
)5 + 2(16

13
)4 + (17

13
)3 + 2(18

13
)2

(20
13

)7
 

≈ 0.0788183694531 

Notice that many of the terms can be eliminated because the combinatorial terms in the 

numerator result in a value of zero, since we have (𝑎
𝑏

) = 0 if 𝑏 > 𝑎. From this point 

forward, such terms will not be shown in the calculations.  
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 The same steps can be taken to find the probability that at any stage a particular 

number of draws is required to fill all 6 cells. Moving on to Round 2 of the process, 12 

draws were required from the remaining 14 from iteration 1 to see an occupant in each of 

the 6 cells. This means 𝑛 = 12, 𝑁2 = 14 such that the distribution of the population is 

[3,2,1,3,4,1]. In order to calculate the current probability, the equation 

𝑞12(6,6) = ∑(−1)6−𝑟−1

5

𝑟=0

𝑇6,6−𝑟 

will be used once again. Because the cell composition is different now, along with the 

population size, the calculations below will result in the probability that all 6 cells will be 

filled after 12 draws from a population of size 14.  

𝑞12(6,6) = (−1)1
(12

11
)2 + 2(11

11
)3

(14
11

)3
+ (−1)0

2(11
11

)3 + (12
11

)2 + 2(13
11

)

(14
11

)3
 

=
1

7
≈ 0.142857142857 

Continuing through each iteration, for iteration 3, 𝑛 = 10 and 𝑁3 = 12 where the third 

population is represented as [3,2,1,3,2,1]. Thus, the corresponding probability at this 

stage is given by:  

𝑞10(6,6) = (−1)1
4(9

9
)3 + (10

9
)

(12
9

)3
+ (−1)0

2(9
9
)3 + 2(10

9
)2 + 2(11

9
)

(12
9

)3
 

≈ 0.187878787879 

For iteration 4, 𝑛 = 7 and 𝑁4 = 10 and the fourth population is represented by 

[3,2,1,1,2,1] so that 
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𝑞7(6,6) = (−1)2
(7

6
)3 + 6(6

6
)4

(10
6

)4
+ (−1)1

3(8
6
)2 + 6(7

6
)3 + 4(6

6
)4

(10
6

)4

+ (−1)0
3(9

6
) + 2(8

6
)2 + (7

6
)3

(10
6

)4
 

=
1

7
≈ 0.142857142857. 

Iterations 5,6, and 7 maintained a population size of 7 with cell distribution of 

[1,1,1,1,2,1]. The probability that this happens just once is found by  

𝑞7(6,6) = (−1)4
5(6

6
)

(7
6
)1

 

=
5

7
≈ 0.71428571. 

Lastly, for the final iteration, 𝑁8 = 7 where the distribution is the same as above, but the 

probability that in 6 draws all the cells are filled is given by  

𝑞6(6,6) = (−1)1
10(5

5
)2

(7
5
)2

+ (−1)0
(5

5
)2 + 5(6

5
)

(7
5
)2

 

 

=
2

7
≈ 0.285714285714. 

 

 

 We can see that, in this particular example, eight rounds of sampling were 

required to reach our desired end of having one ball in each cell. However, this is just one 

of the many ways that this result could have been achieved. It is possible that we could 

have reached our desired result in just one round of sampling if each of the first six balls 

corresponded to different subcategories. It is also possible that this process could have 
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taken more than eight rounds to achieve one ball in each cell. We can see that in our 

example, the same balls were drawn for three rounds in a row. This could have continued 

for any number of rounds or happened at any stage of the process.  

 Similar to the survival cell problem discussed in Chapter 2, to calculate the 

probability that a particular ball would be the winner of a subcategory or the probability 

that the sampling ended after a particular number of stages is beyond the scope of this 

thesis. These are very relevant questions, but because each calculation involves subgroup 

sizes, population size and sample size the answer to those questions become very 

complex very quickly.  

 Though we did not find this concept of sequentially sampling until complete 

subcategory representation anywhere in previously published literature, we feel that this 

idea can be applied to various real world situations. For instance, thinking of the 

subpopulations as states, countries or ethnicities leads to the idea of choosing a single 

member to serve as a representative of the entire subpopulation.   
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4. SUMMARY AND CONCLUSIONS 

 Through this investigation, we have looked at not only an overview of the 

hypergeometric distribution, but extensions of the hypergeometric distribution to 

sequential sampling with the purpose of having one single subcategory survive or to 

achieve complete representation of subcategories within a population.  

 Chapter One aims to cover some of the main features, properties and facts about 

the hypergeometric distribution as well as lesser known, lesser utilized properties and 

uses of the distribution. This was done by sorting literary results into the following 

sections: Origin of the Word ‘Hypergeometric’, Derivation and Elementary Applications, 

Relationships to Other Probability Models, Properties of the Hypergeometric 

Distribution, Kindred Hypergeometric Distributions and Statistical Inference. Through 

this we were able to find and become interested in Walton’s (1986) idea of sampling 

from a subdivided population. 

 In Chapter Two, we extend Walton’s idea of finding the observed number of 

subcategories within a subdivided population. Walton’s notation and original problem are 

explained and we then extend his idea to a sequential sampling scheme. Instead of 

desiring the probability that a particular number of subcategories are occupied after a 

particular number of draws, we want to sequentially sample until there is only one 

“surviving” subpopulation. We do so by employing a sampling rule and the methods used 
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by Walton at each stage of sampling. Though the sampling rule we chose to explore was 

one based on percentages of the previous population, the sampling rule could be a 

function of the subcategory sizes or adapted to fit the desired number of samples to be 

taken at each stage.  

 Walton (1986) based his study off of the work done by Emigh (1983) who looked 

at finding the probability that m out of k classes were observed when sampling with 

replacement. Walton was able to use Emigh’s work to create a model for without 

replacement sampling. Together their work covers finding probabilities for occupied 

categories when the sample size is fixed.  

 Charlambides (2005), however, looked at the “negative binomial” case where the 

samples are being taken with replacement until m categories have been observed. We 

noticed that there appeared to be a gap in the research covering the “negative 

hypergeometric” case. Thus, we modified Charlambides’ work to model sampling 

without replacement until m categories were observed. We then extended this idea to a 

sequential sampling scheme in order to achieve only one member left in each category.  

 The following table can be seen as a summary both of the work done in this thesis 

and the work covered in earlier research.  
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We have extended the ideas developed by Walton to sequential sampling. Also, we have 

modified the work of Charlambides to model sampling without replacement until a 

particular number of classes have been observed, then once again extended this idea to 

sequential sampling.  
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