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ABSTRACT

This thesis will explore convexity as it pertains to sets of complex-valued functions.

These include preliminary looks at established linear and polynomially convex hulls,

along with the development of new types of convex hulls. These types will include,

but are not limited to the hulls determined by inversions, shift inversions, and Möbius

transformations. A convex hull must be preceded by the set of functions involved.

These hulls are the smallest convex sets that contain the original set. Justifications

and precise definitions are included within the body of the work.
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1 INTRODUCTION

A common topic in complex variables is the convex hull of a set. The goal of this

thesis is to explore different definitions of the convex hull. The functional definition

of a convex hull of a set is as follows: Let f ∈ F where F is a set of functions and

Ω is any compact subset of C. Then the F -convex hull of a set Ω, denoted Ω̂F , is

defined by

Ω̂F =
⋂
f∈F

{w ∈ C : |f(w)| ≤Mf} ,

where Mf = max
z∈Ω
|f(z)| . This definition requires further definitions to explain, all of

which including modulus and compactness, are presented as the remainder of this

chapter.

1.1 Results from Complex Variables

The usual first definition of convexity is the type called geometric convexity.

Definition 1.1. A set G is geometrically convex if given any two points a and b

in G the line segment joining a and b, ab, lies entirely in G.

This type of convexity may also be referred to as linear convexity.
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Definition 1.2. The modulus of a complex number z = x+ iy is defined as

|z| =
√
x2 + y2,

where x, y ∈ R.

Definition 1.3. The F-convex hull of a set is defined as follows: Let F be a set

of functions and Ω any compact subset of C. Then the F -convex hull of a set Ω,

denoted Ω̂F , is defined by

Ω̂F =
⋂
f∈F

{w ∈ C : |f(w)| ≤Mf} ,

where Mf = max
z∈Ω
|f(z)| .

Remark 1.4. Notice if z ∈ Ω, then |f(z)| ≤ Mf so that Ω ⊆ {w ∈ C : |f(w)| ≤ Mf}.

That is, Ω ⊆ Ω̂F .

Figure 1.1: Example 1.5 Illustration

2



Example 1.5. Let F = {z, z2} and Ω = {z : |z − 1| ≤ 1}. Find Ω̂F .

First, it is necessary to find where each of the functions in F achieve their respective

maxima. On Ω, both f(z) = z and g(z) = z2 achieve maxima at z = 2. Then the

F -convex hull is the intersection of the sets defined by two functions have modulus

less than their maxima. For f, the set of all w ∈ C that causes |f(w)| ≤ 2 is the disk

centered at the origin of radius 2. For g, the set of all w ∈ C that causes |f(w)| ≤ 4

is also the disk centered at the origin of radius 2. Thus the intersection of these sets

is the disk centered at the origin of radius 2. Therefore, the F -convex hull of Ω is

Ω̂F = {z : |z| ≤ 2}.

1.2 Results from Topology

Definition 1.6. Let X 6= ∅ be a set. Then a topology on X is a collection of subsets

of X, denoted T , obeying the following axioms:

(a) X and ∅ belong to T ,

(b) the intersection of any two elements of T is an element of T , and

(c) the union of any sub-collection of T is an element of T .

Definition 1.7. A topological space is a set X together with a topology T on X.

Definition 1.8. A set is open if it is a member of T .

Definition 1.9. A set is closed if its complement is a member of T .
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Definition 1.10. Let X 6= ∅ be a set and d : X ×X → [0,∞) be a function. Then

d is a metric for X if for any points x, y, z ∈ X, the following are true:

(a) d(x, y) ≥ 0

(b) d(x, y) = 0 if and only if x = y

(c) d(x, y) = d(y, x)

(d) d(x, z) ≤ d(x, y) + d(y, z)

Note that for this thesis, d(z, w) = |z − w|.

Definition 1.11. Let (X, T ) be a space. A base or basis for T is a collection B of

subsets of X such that:

(a) each member of B is also a member of T , and

(b) if U ∈ T and I 6= ∅, then U is the union of sets belonging to B.

Definition 1.12. Let X be a nonempty set of C and d a metric for X. The unique

topology on X generated by the set of all open r-spheres in X, denoted B(x, r) for

some r > 0 and x ∈ X, and having these open r-spheres as a base is called the

d-metric topology for X. The d-metric topology is denoted T (d). The topological

space (X, T ) is called a metric space if and only if there exists a metric d for X

such that the d-metric topology T (d) on X is the same as T . The notation for a

metric space is (X, d).
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Definition 1.13. Let (X, T ) be a topological space and A ⊂ X. A point z in set X

is a boundary point of A if and only if every open set in X containing z contains

at least one point of each of X −A and A. The set of boundary points of A is called

the boundary of A.

Definition 1.14. Let A be a subset of a topological space X. A point x ∈ X is a

limit point of A if every neighborhood of x contains at least one point of A different

from x itself.

Theorem 1.15. A set K is open if and only if it contains none of its boundary

points.

Theorem 1.16. A set K is closed if and only if K contains all of its boundary

points.

Remark 1.17. Note that a set K is non-closed if and only if K lacks any of its

boundary points.

Definition 1.18. A set K is bounded if and only if there exists an open disk that

contains all of K.

Definition 1.19. Let A,B 6= ∅ be two subsets of the metric space (X, d). Then the

distance between A and B, denoted d(A,B), is the greatest lower bound of the

set {d(x, y) : x ∈ A, y ∈ B}. If A = {a}, this is written d(a,B) for d(A,B).
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Definition 1.20. Let A be a set in C. The closure of A, denoted Ā, is defined as

follows:

Ā = A ∪ {z : z is a boundary point of A}.

The following will be especially useful in subsequent work.

Theorem 1.21. Let (X, d) be a metric space and A 6= ∅ a subset of X. Then x ∈ Ā

if and only if d(x,A) = 0.

Proof. Suppose x ∈ Ā. Then, for each r > 0, B(x, r) ∩ A 6= ∅ where B(x, r) is any

open disk of radius r centered at x. Therefore, for each r > 0 there exists a point

ar ∈ A such that d(x, ar) < r and, as a consequence, the greatest lower bound of

{d(x, a) : a ∈ A} is zero. The conclusion is that d(x,A) = 0. For the converse,

assume that x ∈ X and d(x,A) = 0. Now if x ∈ A, certainly x ∈ Ā by the definition

of Ā. So suppose x ∈ X − A. It must be shown that x is a boundary point of A.

Since d(x,A) = 0 for each r > 0 there exists a point ar ∈ A such that d(x, ar) < r. It

follows that for each r > 0, B(x, r) ∩ A 6= ∅, showing x ∈ Ā.

Corollary 1.22. If a subset of A of a metric space (X, d) is closed and x /∈ A, then

d(x,A) > 0. That is to say from any point not in the closed set, there is a positive

distance that exists between the set and that point.

Proof. This result is an immediate consequence of Theorem 1.21.

Definition 1.23. A set K is compact if and only if every open cover of K has a finite

sub-cover.
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Theorem 1.24 (Heine-Borel). A set K is compact if and only if K is both closed

and bounded.
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2 Linear Convex Hull of a Set

2.1 Geometric Linear Convex Hull of Compact a Set

A common interpretation of the linear convex hull is a geometric one. That is for

any two points in the set Ω, the line segment containing those two points is also in

the hull. For this thesis, the following definition is used.

Definition 2.1. The geometric linear convex hull of a compact set Ω is the set

composed of all line segments connecting any two points z1, z2 ∈ Ω. The geometric

linear convex hull of Ω is denoted Ω̂G.

The next several pages will include the development of the relationship between

the geometric linear convex hull from Definition 2.1 and the functional linear convex

hull from Definition 2.5.

Theorem 2.2. A compact set Ω is a subset of its geometric linear convex hull, Ω̂G.

That is, Ω ⊆ Ω̂G.

Proof. Let z ∈ Ω. Then z is either an interior point of Ω or z is some boundary point

of Ω.

Case 1: Suppose that z is an interior point of Ω. Then by definition, there is an open

disk B(z, r) ⊆ Ω. Then the closed disk A = B(z, r
2
) ⊆ Ω. Choose any diameter of

A with points z1d and z2d . Note that z1d , z2d ∈ Ω. Also, z ∈ z1dz2d . Therefore, by

8



Definition 2.1, z ∈ Ω̂G and thus Ω ⊆ Ω̂G.

Case 2: Suppose that z is a boundary point of Ω. Let z1 be any point in Ω such that

z1 6= z. Then by Definition 2.1, zz1 ∈ Ω̂G. Therefore z ∈ Ω̂G and Ω ⊆ Ω̂G.

Therefore it has been shown in both cases that Ω ⊆ Ω̂G.

Theorem 2.3. The geometric linear convex hull of a compact set Ω is bounded.

Proof. Let Ω be a compact set in C with geometric linear convex hull Ω̂G. Let

r = max
z∈Ω
{|z|}. This maximum exists due to the maximum modulus theorem and the

compactness of Ω. To prove the result it needs to be the case that z0 ∈ B(0, r) for

all z0 ∈ Ω̂G. So let z0 ∈ Ω̂G. Then there exists z1, z2 ∈ Ω such that |z2| ≤ |z1| ≤ r

and z0 ∈ z1z2. Since the line segment z1z2 can be written as z = tz1 + (1 − t)z2 for

t ∈ [0, 1], we can write z0 = tz2 + (1 − t)z2 for some t ∈ [0, 1]. Now consider the

9



following inequalities:

|z0| = |tz1 + (1− t)z2|

≤ |tz1|+ |(1− t)z2| by the triangle inequality,

≤ |tz1|+ |(1− t)z1| since |z1| ≥ |z2|,

= |t||z1|+ |(1− t)||z1|

= |z1|(|t|+ |1− t|) by the distributive property,

= |z1|(t+ 1− t) t, (1− t) > 0, t ∈ R,

= |z1|(1)

= |z1|

≤ r since |z1| ≤ r.

< r + 1

Thus for any z0 ∈ Ω̂G, |z0| ≤ r. This means for all z ∈ Ω̂G, z ∈ B(0, r + 1) and Ω̂G is

bounded.

Lemma 2.4. The geometric linear convex hull, Ω̂G, of a compact set Ω is closed.

Proof. Let z0 be a boundary point of Ω̂G. and suppose for contradiction that z0 /∈ Ω̂G.

Then there is a sequence {zn} ⊆ Ω̂G such that zn → z0. Associated with each zn, there

is a pair of points z1n , z2n such that zn ∈ z1nz2n and z1n , z2n ∈ Ω (by the definition of

geometric hull). Since Ω is compact, there is a convergent subsequence {q1n} of {z1n}.
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Similarly, let {q2n} be the corresponding subsequence of {z2n}. Again there is a conver-

gent subsequence {m2n} of {q2n} that converges to say m2. This means the associated

sequence {m1n} from {q1n} converges to say m1. Define {wn} from {zn} to be the

corresponding subsequence of points that converges to z0. Let r = inf
z∈m1m2

{|z0 − z|}

and choose d = r
3
. Consider the disks B(z0, d), B(m1, d), B(m2, d). Let l1 and l2 be

the common external tangents to B(m1, d), B(m2, d). Define t11 = l1∩B(m1, d), t12 =

l1 ∩ B(m2, d), t21 = l2 ∩ B(m1, d), and t22 = l2 ∩ B(m2, d). Let G = B(m1, d) ∪

B(m2, d) ∪ <= t11t12t22t21. Notice that the minimum distance from B(z0, d) to G is

2d > d. So there is an N ∈ N > 0 such that for all n ≥ N , |wn − z0| < d. This

means that for all n ≥ N, r = inf
z∈q1nq2n

{|wn − z|} > d, but q1nq2n → m1m2, which is a

contradiction. Thus z0 ∈ Ω̂G. Therefore all boundary points of Ω̂G are in Ω̂G and Ω̂G

is closed.
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m1 m2

t21
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l2
t22

t12
r

d

dd

Figure 2.1: Proof of Lemma 2.4.

2.2 Functional Linear Convex Hull of a Compact Set

Another interpretation of the linear convex hull is a functional one, for which the

definition is given below.

Definition 2.5. The functional linear convex hull of a compact set Ω, denoted

Ω̂F is defined as

Ω̂F =
⋂
a,b∈C

{w : |aw + b| ≤Mf} ,

where Mf = max
z∈Ω
{|az + b|}.
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Remark 2.6. In the complex plane, |az + b| ≤ r means |a(z + b
a
)| ≤ r or |z + b

a
| ≤

r
|a| , which is a closed disk centered at − b

a
of radius r

|a| . This means that a useful

interpretation of Definition 2.5 is that the functional linear convex hull of a set Ω is

the intersection of all closed disks containing Ω.

2.3 Determining the Relationship Between the Functional and

Geometric Linear Convex Hull of a Compact Set

Theorem 2.7. Let Ω be any compact set in C. Then the geometric linear convex

hull, Ω̂G, is equivalent to the functional linear convex hull, denoted Ω̂F . That is to

say Ω̂G = Ω̂F .

Proof. Let Ω be a compact set in C. Let Ω̂G and Ω̂F be the geometric and functional

linear convex hulls of Ω, respectively.

To show that Ω̂F ⊆ Ω̂G, choose a point z0 /∈ Ω̂G. Then from Corollary 1.22,Theorem 2.3,

and Lemma 2.4, there exists some minimum distance d0 from z0 to the boundary of

Ω̂G. Let z1 be on the boundary of Ω̂G such that |z0−z1| = d0. Now, construct the line

segment from z0 to z1. Let z2 be the midpoint of z0z1. Let l be the line perpendicular

to z0z1 and passing through z1. It can be shown using Euclidean geometry that Ω̂G is

contained in the complement of the half-plane that contains z0. Since Ω is compact,

there exists a greatest distance, d, across Ω. Now consider the line l, containing z1

perpendicular to z0z1 and choose points z1d , z2d on this line a distance of d away from

13



z1 so that z1 is between z1d and z2d . Since three distinct noncollinear points uniquely

determine a circle, construct the disk determined by the circle formed by z2, z1d , z2d .

This disk captures all of Ω̂G and excludes z0. Thus z0 can be removed from contention

for membership in Ω̂F . Since z0 was arbitrary, any point not in Ω̂G will also not be

in Ω̂F .

Figure 2.2: Proof of Theorem 2.7.

To show Ω̂G ⊆ Ω̂F , let z ∈ Ω̂G. Then there are two points z1, z2 ∈ Ω such that

z ∈ z1z2. Then the segment z1z2 can be written as

z = tz1 + (1− t)z2,

for t ∈ [0, 1]. Let B(q, r) be any disk containing Ω. Without loss of generality, let

14



|z2 − q| ≤ |z1 − q| ≤ r. Now consider the following inequalities for any z ∈ z1z2.

|z − q| = |t(z1 − q) + (1− t)(z2 − q)|

≤ |t(z1 − q)|+ |(1− t)(z2 − q)| by the triangle inequality,

≤ |t(z1 − q)|+ |(1− t)(z1 − q)| since |(z1 − q)| ≥ |(z2 − q)|,

= |t||(z1 − q)|+ |(1− t)||(z1 − q)|

= |(z1 − q)|(|t|+ |1− t|) by the distributive property,

= |(z1 − q)|(t+ 1− t) t, (1− t) > 0, t ∈ R,

= |(z1 − q)|(1)

= |(z1 − q)|

≤ r since |(z1 − q)| ≤ r.

Thus every point z ∈ z1z2 is contained in every closed disk containing Ω. Therefore

z0 ∈ Ω̂F . Therefore, both containments have been shown and for compact sets Ω in

C,

Ω̂G = Ω̂F .

Why is there interest in looking at the relationship between geometric and functi-

onal linear convex hulls? As shown in the previous result, compactness makes the
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respective hulls equal. Relaxing the condition of compactness leads to some interes-

ting results.

2.4 Linear Convex Hulls of Non-closed, Bounded Sets

Definition 2.8. The geometric linear convex hull of any set Ω is the set composed

of all line segments connecting any two points z1, z2 ∈ Ω. The geometric linear convex

hull of Ω is denoted Ω̂G.

To show that Ω̂G is not necessarily equal to Ω̂F for any set in C, consider the

following example.

Theorem 2.9. Let Ω be a subset of the closed unit disk centered at the origin con-

taining all of the interior of the disk. Then one of the following is true:

1. If Ω is open, then the geometric linear convex hull is itself. That is Ω = Ω̂G

2. If Ω contains any number of its boundary points, where B is some subset of the

boundary of Ω, then the geometric linear convex hull will be the interior of the

disk with the boundary points added. That is Ω̂G = Ω ∪B.
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Figure 2.3: Case 1.

Case 1: Let Ω be open. Then the geometric linear convex hull of Ω is itself.

Proof. Let Ω be open. Further let z1, z2 ∈ B(0, 1). Then any point z on the line

segment z1z2 can written in the following way:

z = z1 · (t) + (1− t) · z2 for some t ∈ [0, 1]

That is z1z2 = {z : z = z1 · (t) + (1− t) · z2 for t ∈ [0, 1]}. Here, it is necessary to show

that the entire segment is contained within Ω. That is to say, it is necessary to show

the following inequality:

|z1 · (t) + (1− t) · z2| < 1

17



Now assume without loss of generality that |z1| ≥ |z2|. Consider the following:

|z1 · (t) + (1− t) · z2| ≤ |t · z1|+ |(1− t) · z2| by the triangle inequality,

= |t| · |z1|+ |(1− t)| · |z2| since |ab| = |a| · |b|,

≤ |t| · |z1|+ |(1− t)| · |z1| by assumption that |z1| > |z2|,

= |z1| (|t|+ |1− t|)

= |z1|(t+ 1− t) since t, 1− t are positive,

= |z1| · (1)

= |z1|

< 1 since |z1| < 1.

Thus every point on every line segment has modulus strictly less than 1. That is

to say that every point is on the interior of B(0, 1). Therefore the geometric linear

convex hull of the open unit disk is itself.

Case 2: Let Ω contain any number of its boundary points. Let z1 and z2 be in Ω.

If z1 and z2 are interior points, the previous proof shows that z1z2 ⊆ Ω. If not, either

z1, z2 are both boundary points or one is a boundary point and the other is an interior

point.

18



Figure 2.4: Non-closed disk Part I: Case 2

Proof. First, consider that z1 is a boundary point and z2 is an interior point of Ω.

Then by assumption |z1| = 1 and |z2| < 1. Then any point z on the line segment z1z2

can be written in the following way:

z = z1 · (t) + (1− t) · z2 for some t ∈ [0, 1].

Here, it is necessary to show that the only boundary points that are picked up in the

hull for Ω are the boundary points in Ω. It is necessary to show the inequality below,

with equality only at t = 1.

|z1 · (t) + (1− t) · z2| ≤ 1
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Consider the following:

|z1 · (t) + (1− t) · z2| ≤ |t · z1|+ |(1− t) · z2| by the triangle inequality,

= |t| · |z1|+ |(1− t)| · |z2| since |ab| = |a| · |b|,

< |t| · |z1|+ |(1− t)| · |z1| by assumption that |z1| > |z2|,

= (|t|+ |1− t|) since |z1| = 1

= (t+ 1− t) since t, 1− t are positive,

= 1

Thus every point on every line segment has modulus less than or equal to 1. Equality

occurs at t = 1, which is the boundary point z1.

Figure 2.5: Non-closed disk Part II: Case 2

Now suppose z1, z2 are on the boundary of Ω. By assumption |z1| = 1 and |z2| = 1.
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Then any point z on the line segment z1z2 can be written in the following way:

z = z1 · (t) + (1− t) · z2 for some t ∈ [0, 1].

Here, it is necessary to show that the segment z1z2 contains only interior points other

than the endpoints. That is, it must be shown that

|z1 · (t) + (1− t) · z2| ≤ 1, with equality only occurring at the endpoints.

Consider the following:

|z1 · (t) + (1− t) · z2| ≤ |t · z1|+ |(1− t) · z2| by the triangle inequality,

= |t| · |z1|+ |(1− t)| · |z2| since |ab| = |a| · |b|,

= |t|+ |(1− t)| by assumption that |z1| = |z2| = 1,

= (|t|+ |1− t|)

= (t+ 1− t) since t, 1− t are positive,

= 1

Thus every point on every line segment has modulus less than or equal to 1. Equality

occurs at t = 1 (the endpoint z1) and at t = 0 (the endpoint z2).

It has been shown that for any non-closed subset of the unit disk containing the

interior of the disk and centered at the origin, that the geometric linear convex hull

is the original set itself.
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Theorem 2.10. For the functional case, let Ω = B(0, 1)∪B, where B is some subset

of the boundary of B(0, 1). Then the functional linear convex hull of Ω is the closed

unit disk, Ω̄. That is Ω̂F = Ω̄.

Proof. Let Ω = B(0, 1) ∪B. Then the functional linear convex hull of Ω is the inter-

section of all disks containing all of Ω. To show Ω̂F ⊆ Ω̄, let z ∈ Ω̂F . Then z is in

the intersection of all closed disks containing Ω. Since Ω is a closed disk containing

Ω, z ∈ Ω. Thus Ω̂F ⊆ Ω̄. To show Ω̄ ⊆ Ω̂F , let z ∈ Ω̄. Then either z ∈ Ω or z /∈ Ω but

z is a boundary point of Ω.

Case 1: If z ∈ Ω, then z ∈ Ω ⊆ Ω̂F . Thus z ∈ Ω̂F .

Case 2: If z is a boundary point of Ω and z /∈ Ω, then z ∈ B(0, 1). Note that the

closed unit disk centered at the origin is in the intersection of all of the closed disks

containing Ω. Thus, z ∈ Ω̂F In either case, Ω̄ ⊆ Ω̂F .

Therefore Ω̂F = Ω̄.

To summarize, the functional linear convex hull is not always the same as the

geometric linear convex hull for non-closed, bounded sets. This is the case because

of the definition of the functional linear convex hull. The functional linear hull is

defined as the intersection of all of the disks containing the original set. An arbitrary

intersection of closed sets is closed, which implies that the functional hull is closed.

This is in contrast to the geometric linear convex hull of the set in Theorem 2.9 and

Theorem 2.10. The functional and geometric linear convex hulls always agree when
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the original set is compact.
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3 Extensions to Other Functional Hulls

In the previous chapters, finding the F -hull of a set required a set of functions

F and a compact set Ω ⊆ C. Note that the functions that comprised F have been

entire. For the remaining sections, the assumption is that all of the functions in F

are analytic on Ω.

3.1 Inversion Convex Hull of a Set

The inversion convex hull of a set is found using the functions that consist of

inversions of a complex numbers of the form f(z) =
a

z
, where a ∈ C is a constant

and z ∈ C is a variable. It is useful to begin the exploration with the definition of

the inversion convex hull of a set.

Definition 3.1. Let Ω ⊆ C − {0} be compact and I =
{
f(z) : f(z) =

a

z
; a ∈ C

}
.

The inversion convex hull of a set Ω, denoted Ω̂I , is defined as:

Ω̂I =
⋂
f∈I

{w ∈ C : |f(w)| ≤Mf} ,

where Mf = max
z∈Ω
{|f(z)|} .

Now that there is some basis to find an inversion convex hull of a set, begin with

a finite set and find its hull.
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Example 3.2. Consider the set Ω = {1, 2}. Then for any a ∈ C, max
z∈Ω

{∣∣∣a
z

∣∣∣} = |a|.

That is for |z| ≥ 1, |a
z
| ≤ max

z∈Ω

{∣∣∣a
z

∣∣∣} = |a| and for |z| < 1,
∣∣a
z

∣∣ > |a| when a 6= 0.

Therefore the inversion convex hull for Ω is Ω̂I = {|z| ≥ 1; z ∈ C}. A more visual

description of this set is the complex plane with the open unit disk removed.

The previous example gives some intuition as to what the inversion convex hull

of any two point set may be.

Theorem 3.3. Let Ω = {z1, z2} be a two point set in C − {0}. Then the inversion

convex hull of the set Ω is the set Ω̂I = {|z| ≥ r} where r = min{|z1|, |z2|} ≤ |zi| for

all zi ∈ Ω.

Proof. Let Ω = {z1, z2}, where z1, z2 ∈ C and z1, z2 6= 0. Without loss of generality,

let r = |z1| ≤ |z2| and let K = {z : |z| ≥ |z1|}. Let z0 ∈ K. Note that max
z∈Ω

{∣∣∣∣az
∣∣∣∣} =∣∣∣∣ az1

∣∣∣∣ =
|a|
r

. Then

∣∣∣∣ az0

∣∣∣∣ ≤ ∣∣∣∣ az1

∣∣∣∣ and thus z0 ∈ {w ∈ C : |f(w)| ≤
∣∣∣ az0 ∣∣∣} is in the

inversion convex hull of Ω. Now let w be in the inversion convex hull of Ω. That is

to say

∣∣∣∣ aw
∣∣∣∣ ≤ max

z∈Ω

{∣∣∣∣az
∣∣∣∣} =

∣∣∣∣ az1

∣∣∣∣ = |a| for all a ∈ C. Therefore |w| ≥ |z1| and thus

w ∈ K. Therefore, K is the inversion convex hull of Ω.

Theorem 3.4. Let Ω = {z1, z2, ..., zn} be any finite set in C−{0}. Then the inversion

convex hull of the set Ω is the set Ω̂I = {|z| ≥ r} where z0 = {min{|z1|, |z2|, ..., |zn|} ≤

|zi| for all zi ∈ Ω.

Proof. Let Ω = {z1, z2, ..., zn}, where z1, z2, ..., zn ∈ C and z1, z2, ..., zn 6= 0. Without

loss of generality, let |z1| ≤ |zi| for all 1 ≤ i ≤ n. Then let K = {z : |z| ≥ |z1|}. Let
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z0 ∈ K. Note that max
z∈Ω

{∣∣∣∣az
∣∣∣∣} =

∣∣∣∣ az1

∣∣∣∣ = |a| for z ∈ Ω. Then

∣∣∣∣ az0

∣∣∣∣ ≤ ∣∣∣∣ az1

∣∣∣∣ and thus z0

is in the inversion convex hull of Ω, Ω̂I . Conversely, let w be in the inversion convex

hull of Ω. That is to say

∣∣∣∣ aw
∣∣∣∣ ≤ max

z∈Ω

{∣∣∣∣az
∣∣∣∣} =

∣∣∣∣ az1

∣∣∣∣ for all w ∈ Ω. Therefore |w| ≥ |z1|

and thus w ∈ K. Therefore, K is the inversion convex hull of Ω.

Theorem 3.5. Let Ω be a closed set in C − {0}. Then the inversion convex hull of

Ω is Ω̂I = C−B(0, r), where r is the distance from 0 to the nearest point in Ω.

Proof. Using the same argument as the proof of Theorem 3.3, choose whichever point

in Ω that is closest to the origin. This point is guaranteed to exist by Corollary 1.22.

The result follows.

3.2 Shift-Inversion Convex Hull of a Set

The shift-inversion convex hull of a set is found using the functions that consist

of inversions of a complex numbers of the form f(z) =
a

z − b
, where a, b ∈ C are

constants and z ∈ C is a variable. It is useful to begin with the definition of the

shift-inversion convex hull of a set.

Definition 3.6. Let Ω ⊆ C be compact and S =

{
f(z) : f(z) =

a

z − b
; a, b ∈ C

}
.

The shift-inversion convex hull of a set Ω, denoted Ω̂S , is defined as:

Ω̂S =
⋂
f∈S

{w ∈ C : |f(w)| ≤Mf} ,

where Mf = max
z∈Ω
{|f(z)|} .
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Now to get to the desired shift-inversion convex hull, the more useful way to

proceed is to negate Definition 3.6 to find the complement of Ω̂S , Ω̂c
S = C− Ω̂S .

Definition 3.7. The complement of the shift-inversion convex hull of a set Ω is the

set C− Ω̂S defined as

Ω̂c
S =

⋃
f∈S

{w : |f(w)| > Mf} ,

where Mf = max
z∈Ω
{|f(z)|} .

The above definition allows the verification that a point z0 is not in the hull by

finding a single shift-inversion f so that |f(z0)| > max
z∈Ω
{|f(z)|}. With this knowledge,

consider the following example.

Example 3.8. Let Ω = {1, 2}. Then the shift-inversion convex hull of the set Ω is

the original set Ω = {1, 2}.

Proof. Let Ω = {1, 2} and let z0 ∈ C − Ω. Define d1 = |z0 − 1|, d2 = |z0 − 2|, and

let δ = min{d1, d2}. Suppose without loss of generality that δ = d2. Choose zα on

2z0 such that |z0 − 2| > |z0 − zα|. Choose b on the ray −−→zαz0 such that |b − z0| = δ
4

and |b − zα| > |zα − z0|. Consider f(z) =
1

z − b
. It is necessary to show that

|f(z0)| > |f(zα)|. Based on the choice of b, it is the case that
1

|z0 − b|
>

1

|zα − b|
.

Therefore, the only points that are in the shift-inversion convex hull are points that

are in Ω to begin with. That is to say that Ω is its own shift-inversion convex hull.
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z1 z2

z0

b

δ
4

zα

Figure 3.1: Construction for Theorem 3.9.

Theorem 3.9. Let Ω be any finite two point set. Then the shift-inversion convex hull

of the set Ω is the original set Ω.

Proof. Let Ω = {z1, z2} and let z0 ∈ C − Ω. Then d1 = |z0 − z1| and d2 = |z0 − z2|.

Let δ = min{d1, d2}. Suppose without loss of generality that δ = d2. Choose zα 6= z0

on z2z0 such that |z0− z2| > |z0− zα|. Choose b on the ray −−→zαz0 such that |b− z0| = δ
4

and |b − zα| > |zα − z0|. Consider f(z) =
1

z − b
. It is necessary to show that

|f(z0)| > |f(zα)|. Based on the choice of b, it is the case that
1

|z0 − b|
>

1

|zα − b|
.

Therefore, the only points that are in the shift-inversion convex hull are points that

are in Ω to begin with. That is to say that Ω is its own shift-inversion convex hull.

Theorem 3.10. Let Ω be any finite set. Then the shift-inversion convex hull of the

set Ω is the original set, Ω.
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Proof. Let Ω = {z1, z2, ..., zn} where zi ∈ C for all 1 ≤ i ≤ n and let z0 ∈ C−Ω. Let

di = |z0 − zi| for all 1 ≤ i ≤ n and δ = min{di}. Suppose without loss of generality

that δ = d1. Let b ∈ z0z1 such that b 6= z0 and |b−z0| = δ
4
. Then the following is true:

δ = |z0 − b|+ |b− z1| Since b ∈ z0z1

≤ |z0 − zi| Since δ is minimal over Ω,

≤ |z0 − b|+ |b− zi| by the triangle inequality,

Also, |b− z1| ≤ |b− zi| and since b is chosen closer to z0 than z1, |z0− b| < |b− z1|,

so |z0 − b| < |b − z1| ≤ |b − zi|. The first and last parts of the previous inequality

show that the point z0 is closer to b than any point zi ∈ Ω. Consider the function

f(z) =
1

z − b
. Then |f(z0)| = 1

|z0−b| >
1

|zi−b| = |f(zi)| for all zi ∈ Ω. Therefore, the

only points that are in the shift-inversion convex hull are points that are in Ω to begin

with. That is to say that Ω is its own shift-inversion convex hull.

Figure 3.2: Constructions for Theorem 3.11
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Theorem 3.11. Let Ω be any closed bounded simply connected set. Then the shift-

inversion convex hull of the set Ω is the original set, Ω.

Proof. Let Ω be any closed bounded simply connected set and let z0 ∈ C − Ω. The

following constructions can be seen in Figure 3.2. From Theorem 1.21 and Corol-

lary 1.22, there exists a smallest distance from z0 to a point z1 ∈ Ω, which is on the

boundary of Ω. Let this smallest distance be called δ. Consider B(z0,
δ
4
) and choose

b ∈ z0z1∩B(z0,
δ
4
), where b 6= z0. Consider f(z) =

1

z − b
. It is necessary to show that

|f(z0)| > |f(z1)| ≥ |f(z)| for all z ∈ Ω. Based on the choice of b, it is the case that

1

|z0 − b|
>

1

|z1 − b|
≥ 1

|z − b|
for all z ∈ Ω. Therefore, the only points that are in the

shift-inversion convex hull are points that are in Ω to begin with. That is to say that

Ω is its own shift-inversion convex hull.

Theorem 3.12. Any closed set is its own shift inversion convex hull.

Proof. Let Ω be a closed set and Ω̂S be its shift-inversion convex hull. Then by

definition of shift-inversion convex hull, Ω ⊆ Ω̂S . Now for the other containment,

assume for contradiction that z0 ∈ Ω̂S and z0 /∈ Ω. As in a previous proof in this

thesis, there is a neighborhood around z0 such that a specific shift-inversion to exclude

z0 from the hull can be found. This contradicts z0 ∈ Ω̂S . Therefore all z ∈ Ω̂S are

also in Ω, or Ω̂S ⊆ Ω. Therefore Ω = Ω̂S and every closed set is its own shift-inversion

convex hull.
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Theorem 3.13. The shift-inversion convex hull of an open set is the closure of the

set.

Proof. Let Ω be an open set and Ω̂S be its shift-inversion convex hull. Let z1 be

a boundary point for Ω. Then there is no neighborhood around z1 where a shift-

inversion to exclude z1 from Ω̂S could be found because any neighborhood would also

include points inside Ω by Definition 1.13, which cannot be excluded. Thus every

boundary point of an open set is included in Ω̂S . Therefore Ω̂S is closed. Since Ω̂S is

closed, its shift-inversion convex hull is Ω̂S . Thus the shift-inversion convex hull of Ω

is Ω̂S = Ω̄.

Corollary 3.14. The shift-inversion convex hull of a non-closed set is the closure of

the set.

Proof. For boundary points, use the same argument used in proof of Theorem 3.13.

For points outside the boundary, use the same argument used in the proof of Theo-

rem 3.12.

Corollary 3.15. A shift-inversion convex hull is always a closed set.

Proof. The result follows from the fact that closed and non-closed sets have shift-

inversion convex hulls that are closed.

Remark 3.16. From the previous work in this section there is a complete classification

of the shift-inversion convex hull for any set. In summary, for any set Ω ∈ C, Ω̂S = Ω̄.
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3.3 Möbius Transformation Hull of a Set

The Möbius transformation convex hull of a set is found using the set of functions

are called Möbius transformations, that is, functions of the form f(z) =
az + b

cz + d
, where

a, b, c, d ∈ C are constants and z ∈ C is a variable with ad − bc 6= 0. Below is the

definition of the shift-inversion convex hull of a set.

Definition 3.17. Let Ω ⊆ C be compact andM =

{
f(z) : f(z) =

az + b

cz + d
; a, b, c, d ∈ C

}
.

The Möbius transformation hull of a Set of a set Ω, denoted Ω̂M, is defined as:

Ω̂M =
⋂
f∈M

{w ∈ C : |f(w)| ≤Mf} ,

where Mf = max
z∈Ω
{|f(z)|} .

Theorem 3.18. A closed set Ω is its own Möbius transformation convex hull .

Proof. Given that all shift-inversions are Möbius transformations and that Ω is a

subset of its M-convex hull, then the result is proven.

The previous result leads to a larger, more general result for F -convex hulls.

Theorem 3.19. Suppose two sets of functions have the following relationship: F1 ⊆

F2. Then the convex hull of a set Ω has the relationship Ω̂F2 ⊆ Ω̂F1

Proof. Let F1 ⊆ F2. Let Ω be any set and Ω̂F1 and Ω̂F2 be the hulls under the

respective sets of functions. Since there is potential for more functions in F2, there

is a chance to exclude more points from the hull. Therefore Ω̂F2 ⊆ Ω̂F1 .
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