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In: "New Forests for a Changing World", Proceedings of the 1983 SAF 
National Convention, Portland, Oregon, October 16-20. 

THINNING OPTIMIZATION FOR MIXED-SPECIES FORESTS 
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ABSTRACT 

An approach is summarized for esti­
mating optimal thinning and final harvest 
age for existing, mixed-species stands. The 
method involves stand-table projection with 
upgrowth and mortality equations, formulated 
as an integer-nonlinear programming problem. 
Random search methods are proposed for 
estimating optimal cutting prescriptions. 
Such solution methods warrant further study 
in forestry, since their use enables broad 
application of stand-specific modeling 
results. 

INTRODUCTION 

Mixed-species forests in the United 
States range from mixed -hardwood and pine­
hardwood forest types in the South, to 
alder-conifer and Douglas-fir-hemlock stands 
in the Pacific Northwest. Management deci­
sions in such stands can be very complex, 
especially for species with different growth 
rates, values, and value-by-size-class 
relationships. Thinning optimization 
involves the timing, frequency, and inten­
sity of partial harvests over time. We 
address the problem of optimizing harvests 
for existing, mixed-species stands of even 
age, estimating optimal thinning and the 
optimal age of final harvest. 

Thinning evaluations are based on 
models of growth and yield. We propose a 
mixed-species growth model and formulate a 
thinning model for selecting and comparing 
cutting options. Solution methods which 
recognize the discrete nature of numbers of 
trees cut over time are discussed. The 

methods are demonstrated to 
optimal harvesting strategies 
little computer time or storage. 

yield 
with 

near­
very 

GROWTH MODEL 

Three criteria were necessary for 
modeling mixed-species growth and yield. 
The approach had to project volume by spe­
cies group and diameter class. The species/ 
diameter level of resolution is necessary to 
reflect potential differences in growth 
rates and values by size classes. The 
growth model also had to reflect responses 
to thinning, and had to be compatible with 
optimization procedures. 

Stand-table projection models provide 
growth and yield estimates at the diameter 
class level of resolution. These models 
also account for growth responses to thin­
ning, and may be formulated to determine 
optimal harvesting plans, as demonstrated 
for all-aged northern hardwoods by Adams and 
Ek (1974). We propose a stand-table projec­
tion model for mixed-species stands of even 
age. Mixed-species modeling concepts used 
by the U.S. Forest Service (1979) are incor­
porated in the upgrowth and mortality compo­
nents of a stand-table projection system. 

Upgrowth is 
ing from one 
next during a 
Estimates are 

Upgrowth 

the number 
diameter 

fixed-length 
needed for 

of trees advanc­
class to the 
growth period. 
each species I 
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diameter class, for each growth period 
projected, and are obtained by multiplying 
the number of trees in each class by the 
estimated upgrowth proportion for that 
species/diameter group: 

Upgrowth (#Trees)[(Potential Proportion) 
(Adjustment Factor)] (1) 

The upgrowth proportion has two terms. 
The potential proportion is an upper limit 
on upgrowth, and should represent the pro­
portion of trees advancing for stand densi­
ties near zero. The ability of trees to 
respond to release is related to past compe­
tition, and since upgrowth is projected for 
each species, diameter class, and growth 
period, site quality is sufficient for 
predicting potential upgrowth. That is, 
site quality, age, diameter, and species 
reflect past competition and potential for 
responding to release. Harvesting, however, 
does not affect the upper bound on upgrowth, 
and potential proportions are constant with 
regard to thinning strategies. 

Upgrowth estimates are affected by 
harvesting through the adjustment factor. 
The adjustment term represents the estimated 
proportion of the potential which will be 
realized during a growth period, and is 7 
decreasing function of stand density . ..!.. 
Reducing density through cutting results in 
higher adjustment values, thereby resulting 
in greater upgrowth proportions for the 
residual stand. 

Mortality 

The mortality component of the stand­
table projection model represents the number 
of trees dying by species, diameter class, 
and growth period. These numbers are esti­
mated as: 

Mortality (#Trees)(% Mortality) (2) 

_!_/We tentatively specified the adjustment 
term as a negative exponential function of 
volume: 

-B'V 
Upgrowth= (#Trees)[(Potential)(B

0
e 

1 
)]. 

1-lhere B
0 

is a constant and B
1 

and V are 
vectors of constants and stand volume 
variables, respectively. Regression 
constants vary for each species/diameter 
class group. Potential proportions vary 
by growth period, thus reflecting stand 
age. 
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The mortality proportion is.z/m increas­
ing function of stand density- . Partial 
harvests therefore reduce the rate of morta­
lity estimated for post-harvest growth 
periods. 

Mixed-species stand-table projection 
meets the criteria necessary for modeling 
harvesting options. Both upgrowth and 
mortality are affected by thinning, and the 
model provides information at the species I 
diameter level of resolution. The stand­
table projection method can also be used to 
formulate a thinning model for estimating 
optimal harvesting plans. 

THINNING OPTIMIZATION 

In recent years, dynamic programming 
has become one of the most frequently used 
thinning optimization techniques (see Brodie 
and Kao 1979, Chen et al. 1980, and Riitters 
~ al. 1982). Dynamic programming is a 
logical choice of methods, exploiting the 
sequential nature of harvesting problems in 
forestry. For thinning problems which 
recognize diameter classes, however, state­
space dimensionality ·problems result (Hann 
and Brodie 1980). The problems expand for 
applications with separate diameter classes 
for each species. Thinning problems can 
result in billions of discrete nodes, each 
representing a management alternative to be 
evaluated in the dynamic programming net­
work. 

We formulated · the problem of thinning 
and final harvest for even-aged, mixed­
species stands using integer-nonlinear 
programming. The problem is integer since 
numbers of trees cut by species, diameter, 
and growth period are the decision varia­
bles. The formulation is nonlinear due to 
the nonlinear upgrowth and mortality equa­
tions. We discuss the formulation, includ­
ing the constraints and objective function, 
as well as proposed solution methods. 

Formulation 

The primary set of constraints in the 
nonlinear formulation defines the residual 

];_/The 
was 

specification we 
also a function 

Mortality= (#Trees)(1 

used for mortality 
of stand volume: 

-B'V 
3 

- B
2

e ) . 

Where different regression constants are 
used for each species and diameter class. 



stand after each growth period. The general 
form of these constraints is: 

[

Residual #trees] [ 
after growth = 

period k 

Residual II trees] 
after growth 

period k-1 

- [ #trees advancing J 
as upgrowth 

- Gtrees lost throug~ 
L mortality J 

+ [ /!trees gained J 
through upgrowth 

- [#trees harvested J 

(3) 

Such constraints are needed for each 
species/diameter class, after each growth 
period projected. From (3), the residual 
number for each group is the number of trees 
at the beginning of the growth period, minus 
the number growing into the next larger 
diameter class, minus the ones dying, plus 
the trees growing into the diameter class, 
minus the number of trees cut. In this 
manner, the residual stand is estimated for 
each growth period, with residual numbers 
used in the density terms of the upgrowth 
and mortality

3
Junctions for the next inter­

val projected-. Numbet~ of trees harvested 
are the decision variables, and harvests are 
possible after each of the fixed-length 
growth periods. 

Residuals defined in (3) are for inter­
mediate diameters since some terms are not 
applicable to the smallest and largest 
classes. For the smallest diameter class, 
for example, no trees are gained through 
upgrowth since stands are even-aged. 
Numbers projected in the largest diameters 
for each species, after each period, are 
comprised entirely of upgrowth minus numbers 
harvested. Upgrowth and mortality terms 
from (1) and (2) are substituted into (3) to 
complete the nonlinear programming con­
straint set (see Bullard (1983) for details 
of the modeling procedure). 

Other constraints may also be included 
in modeling thinning and final harvest age. 
Constraints setting minimum and maximum 
thinning levels, for example, are easily 
included as functions of numbers of trees 
cut by species and diameter. 

3 /A d d ' - s note , ens1ty terms were tentatively 
specified as functions of volume. Numbers 
of residual trees are converted to volume 
using average volumes per tree by species 
and diameter class. 

The most appropriate economic objective 
for valuing existing stands is the present 
value of future income (see Clutter et al. 
1983). Income is obtained from the present 
stand, and from the property after the 
present stand is removed. The objective in 
thinning and final harvest optimization is 
to estimate the policy which maximizes: 

rPresentl = 
L Value J 

[

Harvest v~luesj . 
by spec1es 

and diameter 

+ [ Income after J 
stand removal 

- [xk *Fixed costs] . 

• discounted ( 4 ) 
from each 
growth period 

.discounted 
from final 
harvest 

.discounted 
from each 
growth period 

Harvest values from the present stand 
are discounted by growth period since cut­
ting is possible after each interval. 
Reflecting different values and values by 
sizes is an important modeling attribute for 
many mixed-species forests. The second term 
in (4) represents future income from the 
property. This term may be a soil expecta­
tion value if forestry uses are expected, or 
a future market value for land if property 
sale or change in land use is considered. 
By discounting from final harvest age, the 
opportunity costs of holding an existing 
stand are reflected. Fixed costs are sub­
tracted after growth periods where thinning 
is chosen (X,_ = 1), but are not incurred 
without harves~ing (Xk = 0). 

Solution 

The mixed-species thinning and final 
harvest age problem is combinatorial; i.e., 
it involves the selection of a finite number 
of discrete objects from a larger set. 
There are no efficient converging algorithms 
for large combinatorial problems (see 
Muller-Merbach 1981), and heuristics or 
inexact solution methods are often advo­
cated. We considered simple and multistage 
random search for estimating optimal har­
vesting prescriptions for mixed-species 
stands. 

Simple random search involves randomly 
generating and evaluating solutions to 
integer mathematical programming problems. 
The approach has also been termed Monte­
Carlo Integer Programming (Conley 1980), and 
is often advocated based on the following 
simple probability argument. Given all 
solutions to an integer problem, the objec­
tive value relative frequency can be plotted 
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and is bounded on the right by the optimum 
for maximization problems (fig. 1). The 
objective in generating random solutions is 
to obtain at least one with an objective 
value which is near-optimal. This goal is 
represented in figure 1 by obtaining at 
least one solution whose objective value is 
within a desired sub-region (a) of the 
extreme or optimum value. 

"" u 
c:: 
"' ::l cr 
"' I... 
u... 

"' > 

Objective Function Value 

Figure 1. Relative f reauency of object ive function 
values for a finite, integer mathemat ical programm ing 
problem. 

The probability that a random solution 
has a lower objective value is (1- a), and 
the probability that all (n) solutions in a 
random sample have lower values is (1 - a)n. 
Therefore, the probability that at least one 
solution from a sample of (n) will have an 
objective value within the desired sub­
region of the optimum is: 

Probability = 1 - (1 - a)n (5) 

The major defense of simple random 
search is that for large values of n, the 
probability approaches 1. Two disadvan­
tages, however, are that near-optimal solu­
tions may not be adequate for problems with 
multi-million dollar objective values, and 
the degree to which estimated solutions 
approach optimal values is unknown. 

Multistage random s earch, or Multistage 
Monte-Carlo Integer Programming (Conley 
1981), refines the simpler approach by 
directing random searches to concentrated 
areas of the feasible region. Sets of 
random solutions are called stages, and 
a fter each set the ranges for generating 
decision variable values (numbers of trees 
cut by species and diameter) are narrowed, 
centered around the values in the best 
solution obtained thus far. Sampling pro­
ceeds until the number of stages specified 
has be e n complet ed. 
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In forestry applications of random 
search methods, the greatest disadvantage is 
not knowing how close an estimated solution 
is to the optimum objective value. Means 
are available, however, for gaining confi­
dence in random search algorithms. Methods 
have been developed for statistically esti­
mating the optimal objective value to a 
problem. The value is estimated from the 
random sampling results (see Zanakis a nd 
Evans 1981). The best solution obtained 
through random sampling can then be compared 
with the estimated optimal objective value, 
with continued sampling until the comparison 
is acceptable. 

We applied both simple and multistage 
random search methods to mixed-species 
thinning problems using assigned growth 
model coefficients. In an example with a 
known optimal present value of $485.76, both 
methods produced thinning schedules with per 
acre values within 99 percent of the opti­
mum, using only seconds of execution time on 
an IBM 3081. Both methods were also used to 
estimate solutions to problems with unknown 
optima. In _ all cases, the multistage 
approach produced solutions with higher 
objective values than simple random search. 
Further research in using random search in 
forestry applications should incorporate 
statistical techniques in estimating optimal 
objective values. 

DISCUSSION 

Mixed-species thinning decisions must 
account for interspecific growth rates, 
values, and value-by-size-class relation­
ships. We propose an approach for modeling 
mixed-species cutting options which recog­
nizes both the size and species of material 
harvested over time. The method involves 
mixed-species stand-table projection with 
two equations, and is formulated to estimate 
present value maximizing schedules for 
removing existing stands. 

Random search methods are particularly 
appropriate for estimating cutting strate­
gies because of the problems' integer 
nature, the lack of efficient converging 
algorithms, and the use of inexact data or 
growth projections. Multistage methods 
appear especially promising for thinning and 
other stand~ and forest-level problems. 
Random search methods can be statistically 
evalua ted and use very little computer 
memory or storage . . Ideally, master programs 
could be used to generate ha rvesting pre­
scriptions on microcomputers. Biometric and 
economic parameters, stored by forest t ype, 
would allow us ers to input stand-table data 



and generate near-optimal cutting policies 
with specified confidence levels. A possi­
ble disadvantage in using microcomputers, 
however, may be the time needed to examine 
thousands of solutions. Further work should 
examine the extent of this problem, since 
broad implementation of stand-specific 
modeling relies on wide user access. Random 
search methods, in general, however, have 
many applications and certainly warrant 
further study for complex decision-making 
problems in forestry. 
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