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The model of rupture relationship for bending st rength of solid wood beams implies that breaking load 
is a monotonic increasing function of beam width and depth. Where a single beam is cut from a log or 
bolt, a depth to width ratio equal to the j2 will yield the maximum breaking load. The ratio was derived 
using the Kuhn- Tucker conditions for characterizing optimal solutions to nonlinear programming 
problems. The ratio can be applied to determine optimal width and depth, and to calculate breaking load 
that can be obtained from a beam cut from a specific log. 
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1. INTRODUCTION 

The strength of solid wood beams is an important property to consider in construc
tion. Such beams do not receive further primary processing after leaving the sawmill, 

.. and their quality and strength properties are therefore determined by their initial, 
primary breakdown at the sawmill. The most efficient means of controlling the quality 
of solid wood beams is thus at the sawmill level. This paper presents a method of 
determining the width and depth of solid beams that will maximize breaking load. 

Strength and other mechanical properties of wood are extremely important in 
structural applications. Haygreen and Bowyer (1) describe standard procedures for 
measuring wood strength and other properties, as well as many uses of such measures 
in structural applications. Detailed descriptions of the engineering aspects of wood 
structures are provided by Hoyle (2) and Gurfinkel (3). 

The bending strength of solid wood products is most often expressed in terms of 
the models of rupture (MOR), as calculated from the load to failure in a standard 
bending test. For wood beams with rectangular cross-sections, Haygreen and Bowyer 
(1) present the following MOR equation. 

MOR = (1.5)(P)(L)/wd 2 (psi) 

where 

P = the load to failure or breaking load (pounds), 

L = the distance between supports or span (inches), 

w = the width of the beam (inches), 

d = the depth of the beam (inches). 

(1) 

In the present article, equation (1) is solved for P, and the Kuhn~ Tucker conditions 
of nonlinear programming are used to determine optimal beam width and depth, 
given constraints on raw material size. Where a single beam is cut from a log or bolt, 
maximum breaking load is shown to be achieved where beam depth is a constant 

multiple of beam width (d* = J2 w*.) 

2. OPTIMAL WIDTH AND DEPTH 

The MOR relationship reflects an important characteristic of the maximum load of 
wood beams. Equation (1) implies that maximum load is directly proportional to 
width and the square of the depth. This characteristic is shown by writing equation 
(1) in terms of P: 

(2) 
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FIGURE I. Log or bolt cross-section: w = beam width, d = beam depth, and h = hypotenuse of the 
right triangle formed by w and d; h also represents the diameter of the log or bolt. 

The bracketed term in equation (2) is a parametric constant, and for beams of a given 
length, species, moisture content, and specific gravity, the general relationship may 
be represented by: 

(3) 

For positive values of width and depth, breaking load is a monotonic increasing 
function . Where a single beam is to be cut from a log or bolt, however, width and 
depth are constrained by the diameter of the log to be sawn. Since width and depth 
form a right triangle, w2 + d 2 = h2 must hold, where h represents the hypotenuse of 
the triangle and the diameter of the log (Figure 1). 

Optimal beam width and depth, the beam dimensions that yield the greatest 
breaking lead, may be obtained by solving: 
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Maximize P = kwd 2 

{w, d} 

w, d ~0 

(4) 

(5) 

(6) 

Equations (4}-(6) represent a nonlinear programming problem with decision 
variables wand d. The program is a "convex" program since the objective function 
is monotonic increasing and for a given value of h, equation (5) represents the area 
inscribed by a circle (a convex set). For convex programs, the Kuhn- Tucker 
optimality conditions are necessary and sufficient to characterize a solution that is 
globally optimal (4). 

The Kuhn- Tucker conditions state that the optimal solution is represented by a 
point where the gradient of P belongs to the cone spanned by the gradients of the 
problem's binding constraints. For the above problem, the Kuhn- Tucker conditions 
are: 

m 

'VP(x) + I UigJx) = 0 (7) 
i = 1 

(8) 

1, . . . , m. (9) 

In equations (7)-(9), m represents the number of constraint equations [gi(x), 
i = 1, . . . , m]. x represents the vector of decision variables, and Ui represents a dual 
variable for each constraint. Equation (7) is the required relationship between the 
gradient of P and the gradients of the binding constraints; equation (9) ensures that 
only binding constraints (where gi(x) = 0) are considered in equation (7). Equation 
(9) ensures complementary slackness- if gJx) = 0, then Ui may be nonzero, and may 
be used to define the cone which spans the gradient of P in equation (7). 

With respect to the maximum breaking load problem, the above conditions are: 

(10) 

(11) 

(12) 

(13) 

(14) 
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Since wand d must be positive, U 2 = U 3 = 0, and the remaining equations may 
be solved for w* and d*, optimal beam width and depth. The constraint-based 
equation, (11), must be binding in the optimal solution, and U 1 may therefore be 
nonzero. The gradient-based conditions are: 

(15) 

2kwd + U 1wd = 0 (16) 

From equation (16), 2d(kw + U 1) = 0 must hold, and since d is positive, 
U 1 = -kw must hold. Substituting U 1 = -kw into equation (15) yields: 

(17) 

which implies that d* = J2 w*. Regardless of the diameter of the log or bolt, the 
MOR relationship implies a constant relationship between the width and the depth 
that maximizes a single beam's braking load; the depth should be larger than the 

width by a factor of J2:::::: 1.4142. 

DISCUSSION 

Many countries in the world process logs to produce solid beams. In Europe, for 
example, long and relatively small diameter logs are often sawn to produce high 
quality beams for construction. The solution above can be used to determine cutting 
dimensions for wood beams to achieve maximum breaking load. The results should 
not be interpreted without caution, however, since they depend entirely on the MOR 
relationships and the properties of specific logs. Logs are tapered rather than 
cylindrical, for example, and care must therefore be taken to measure diameter at 
the log's small end. 

Also, in applying the results of optimization based on MOR relationships, one 
must recognize that the functional form of such relationships results in part from the 
length of the beams considered. If the ratio of beam length to depth is too high, for 
example, the beam would be slender and deflection could be a governing factor in 
service. In the opposite extreme, very deep beams may experience high levels of shear 
stress. According to Bodig and Jayne (5), length to depth ratios of around 21 are 
ideal. Our finding that maximum breaking load occurs where the depth to ratio is 
approximately 1.414 is well within the bounds for lateral stability- lateral support 
is recommended where such ratios are greater than 3. 

Another area for potential concern in applying the optimization results is where 
internal defects may be present in the beam. Larger beams may have defects that 
cannot be seen, and that would not be reflected in the maximum breaking load. Logs 
with excessive heart checks are often more efficiently processed as beams; however, 
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lumber for such logs may be of very low quality since the checks may open wider in 
lumber than when they remain enclosed inside the beam. 
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